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Abstract 

Response patterns are of importance to survey researchers because of the insight they 

provide into the thought processes respondents use to answer survey questions.  In this paper we 

propose the use of structural equation modeling to examine response patterns and develop a 

permutation test to quantify the likelihood of observing a specific response pattern.  Of interest is 

a response pattern where the response to the current item is conditioned on the respondent’s 

answer to the immediately preceding item.  This pattern manifests itself in the error structure of 

the survey items by resulting in larger correlations of the errors for adjacent items than for non-

adjacent items. We illustrate the proposed method using data from the 2002 Oregon Survey of 

Roads and Highways and report SAS code which can be easily modified to examine other 

response patterns of interest. 
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A Permutation Test for Correlated Errors in Adjacent Questionnaire Items  

1. Introduction 

Survey researchers are often interested in examining response patterns to provide insight 

into the processes respondents use to answer survey questions.  Understanding these processes is 

important as they impact both the design and analysis of surveys.  In this paper we propose the 

use of structural equation modeling (SEM) to examine response patterns and develop a 

permutation test for this purpose.  Specifically, we use structural equation modeling to examine 

response patterns to “general-specific” questionnaires that contain both a series of items all 

pertaining to a related topic and a general question regarding the same topic.  In general-specific 

questions the general question (G) either precedes (GS) or follows (SG) a series of specific items 

(S) that relate to the general question.  To examine response patterns, the specific items are 

conceived of as manifestations of a single underlying latent factor, which is then regressed onto 

the latent factor associated with the general question where the general question is assumed to be 

measured without error.  To illustrate our proposed method, i.e., using the SEM framework, we 

evaluate the hypothesis of a response pattern in which the response to a current item is 

conditioned on the respondent’s answer to the immediately preceding item.  This response 

patterns manifests itself in the error structure of the specific items such that the correlations of 

the errors between adjacent items are larger than between non-adjacent items.  To test this 

hypothesis, we use data from the 2002 Oregon Department of Transportation survey.  We first 

estimate a baseline model that assumes uncorrelated errors in the measurement model and 

compare it to an alternative model that allows for the errors of adjacent items to be correlated.  

We then implement a permutation test to evaluate how likely the observed change in chi-square 

values from the null to the alternative model is under the sampling distribution of the change in 
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chi-square values from the null model to any alternative model.  Note that the class of alternative 

models is restricted to models with the same latent variable model and equivalent degrees of 

freedom in the error structure of the measurement model.  Although this sampling distribution is 

unknown, we can estimate it through simulation and implement a permutation test to evaluate the 

significance of the change in the model chi-square values.    

The aim of this study is to extend the way in which simulation methods have previously 

been used in SEM.  Simulation studies have proved invaluable in SEM research as many 

methodological advances were made possible by these studies (e.g. Curran, Bollen, Paxton, 

Kirby, and Chen, 2002; Fan and Fan, 2005; Fan and Sivo, 2007, 2009; Jackson, 2001).  Such 

studies assess the consequences of model and data assumption violations and provide 

information about sample statistics whose distributions cannot be tracked analytically or have yet 

to be theoretically derived (Fan and Fan, 2005).  Exemplar studies have evaluated the effects 

non-normality of latent variables and residual terms, estimation methods used to obtain structural 

parameter estimates, sample size, and model misspecifications on parameter estimates and model 

goodness of fit indices (e.g. Bentler and Satorra, 2010; Bentler and Yuan, 1999; Chen, 2007; 

Enders, 2001; Enders and Bandalos, 2001; Herzog and Boomsma, 2009; Lei and Lomax, 2005; 

Murphy, Beretvas, and Pituch, 2011; Olinsky, Chen, and Harlow, 2003; Ory and Mokhtarian, 

2010).  To the best of our knowledge, however, simulation studies have not been used to 

examine response patterns and thus the major contribution of this paper is to develop a 

permutation test and to present a SAS program for this purpose.  Though we only examine one 

specific response pattern, both the methodology presented in this paper and the provided SAS 

program can be easily modified to examine other response patterns of interest to researchers.  

2. Background: General Specific Questionnaires 
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 Questionnaires often contain a series of questions under a single preamble. Examples 

include “general-specific” or “part-whole” questions in which a general question (G) either 

precedes (GS) or follows (SG) a series of specific items (S) that relate to the general question. 

For example, psychologists have asked survey respondents to rate the overall quality of their life 

and the quality of specific domains of life such as work, family, friends and community 

(Campbell, Converse, and Rogers, 1972; McClendon and O’Brien, 1988).  Similarly, researchers 

in community sociology, city planning, and marketing have asked respondents to rate their 

overall satisfaction with particular services such as local government services and facilities, and 

then also ask respondents to evaluate each specific service, such as streets, schools and police 

protection (DeMoranville and Bienstock, 2003; DeMoranville, Bienstock, and Judson, 2008; van 

de Walle and van Ryzin, 2011; Willits and Ke, 1995; Willits and Saltiel, 1995).  

General-specific questionnaires have traditionally examined the effects of question order 

on responses to the general question by implementing “split-half” experiments in which 

respondents are randomly assigned one of two forms of the questionnaire.  The resulting data are 

analyzed using either two sample t-tests or regression analysis.  Under the two sample t-test 

approach, the means of the general question are compared for the two forms of the survey (GS or 

SG) where results from previous studies have indicated that the mean of the general question is 

more positive in the SG order than in the GS order (McClendon and O’Brien, 1987; Schul and 

Schiff, 1993; Willits and Ke, 1995).  Under the regression approach, the specific items are 

conceived of as predictors, or “cause indicators” of the general question (Bollen and Davis, 

2009; Bollen and Lennox, 1991; MacCallum and Browne, 1993) where an indicator variable for 

survey type (GS or SG) is used to model the order of the general and specific questions.  The use 

of an indicator variable further allows the inclusion of interaction terms of the survey type and 
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specific items to the model when appropriate (Schul and Schiff, 1993).  This approach enables 

researchers to compare estimated regression coefficients and R
2
 values within and between 

survey forms where previous studies have indicated higher R
2
 values for the SG order than for 

the GS order (McClendon and O’Brien, 1987; Schul and Schiff, 1993; Willits and Ke, 1995).  

These findings have been explained as follows: when the general question is asked first (GS), 

respondents scan their memory for salient information, and tend to recall negative events; in 

contrast, respondents answering the SG order interpret the general question as a request to 

summarize the specific items, both good and bad (Baumeister, Bratslavsky, Finkenauer, and 

Vohs, 2003; Krosnick and Presser, 2010; and Schul and Schiff, 1993).   

Although these approaches have provided valuable insights, they have several 

shortcomings.  A main issue, for example, is that under the regression approach collinearity 

among the specific items makes it difficult to draw inferences about the relative importance of 

specific items on responses to the general question.  Perhaps more importantly though, previous 

research on surveys with general-specific questions has focused on the effects of the specific 

items on the general question, but it has not addressed relationships among the specific items, 

which would provide information regarding response patterns. 

3. Theoretical Framework 

 One approach to examine the relationships among specific items is structural equation 

modeling (SEM).  Figure 1 illustrates this approach by depicting an SEM model in which the 

specific items are conceived of as manifestations of a single underlying exogenous latent factor, 

 , and the general question is measured (presumably without error) by the latent variable  .  

We assume the general question is measured without error as we have no measure of reliability 
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allowing us to estimate the error variance (Bollen, 1989).  Finally, the latent variable η is 

regressed onto (or correlated with) the latent variable   associated with the specific items.   

Under the SEM framework there are two submodels: the measurement model that describes 

the relationship between each latent variable and its indicators, and the latent variable model that 

describes the relationships among the latent variables themselves.  We assume that all variables 

are deviated from their means, allowing us to express the equations associated with the 

measurement model, i.e., the relationship between each of the ki ,....2,1  specific items ( iQ ) and 

the latent variable,  , as well as the relationship between the general question and the latent 

variable  as simple linear regressions: 

iiiQ   ,   ),0(~ 2

ii N    

00.1  G . 

The response to each specific item iQ  is regressed against the latent variable  where i  denotes 

the regression coefficient and i is the residual (Bollen, 1989, 2002; Brown 2006).  Similarly, 

the response to the general question, G, is regressed against the latent variable   where the 

regression coefficient is set equal to one and the error term is set equal to zero due to the default 

assumption that the general question is measured without error.   

 The responses to the general question, conceived of as manifestations of the latent 

variable , are then regressed against the latent variable , as shown by the directed arrow in 

Figure 1.  The equation associated with the latent variable model is the regression of η on  , 

written as a simple linear model: 

    ),0(~ 2

 N    
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where   denotes the regression coefficient and   denotes the latent error in equation such that 

),0(~ 2

 N .   

<FIGURE 1 ABOUT HERE> 

Associated with the latent variable model are the covariance matrices   and  , where  

  is the covariance matrix of errors in the latent variable equations and  is the covariance 

matrix of the exogenous latent variables.  In the context of Figure 1,   is a 1 x 1 matrix of the 

error variance associated with latent error term  and  is also a 1 x 1 matrix of the variance of 

the latent variable  .  Similarly there are two covariance matrices associated with the 

measurement model,   and  , the covariance matrices associated with the measurement 

errors of the indicators associated with the exogenous and endogenous latent variables, 

respectively.  In the context of Figure 1,   is a 1 x 1 matrix of the error variance associated 

with the general question, which we assume, is equal to 0.    is a k  x k covariance matrix 

containing the error variances associated with the measurement errors of the specific items on the 

main diagonal and the error covariances between the measurement errors of the specific items on 

the off-diagonal.   

One implication of the SEM model is that the error terms of the specific indicators are 

assumed to be uncorrelated with each other as the observed correlations among the specific items 

are assumed to be spurious due to the common latent variable (see visualization in Figure 1).  

The absence of arrows linking the error terms associated with the specific items implies that 

cov( ji  , ) = 0 such that   is a diagonal matrix of error variances: 
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In practice, however, it is possible that the latent variable does not absorb all correlations 

between error terms leading to the possibility that at least some of the off-diagonal elements of 

 take on values other than zero in turn implying that there is a common source of variability 

between i  and j  beyond that due to the common latent variable .  In this study, we 

hypothesize and examine a specific pattern in the correlations among the error terms, which 

suggests that the unique variance in the response to one specific item is shaped by respondents’ 

answers to the immediately preceding specific item.  This results in correlated errors between the 

adjacent specific items, as denoted by the parameters θ21,…, and θk(k-1) in Figure 2.  Associated 

with the error terms of this model is the covariance matrix: 
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Because this may be only one of a number of possible response patterns we then further 

hypothesize that this response pattern is more common than any other response pattern implying 

that the correlations between error terms of adjacent items are significantly larger than between 

all other combinations of error terms associated with the specific items.  We examine this 

hypothesis using a permutation test of the error structure of the specific items.  Evidence in favor 
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of this hypothesis implies that respondents shape their response to the current item primarily on 

the most recent item as opposed to other previous items.  This pattern might be more likely in 

situations where respondents have not developed strong opinions about the items. Under such 

conditions, respondents are more likely to take cues from the context in which questions are 

asked, and one context is the immediately preceding specific item.   

<FIGURE 2 ABOUT HERE> 

4. Data and Methods  

 The data used in our application come from the 2002 Oregon Survey of Roads and 

Highways.  Oregon is divided into 16 transportation administration districts and, in each district, 

a random sample of Oregon drivers was selected and randomly mailed either a GS or SG form of 

the questionnaire.  The general question asked “Overall, please rate how satisfied or dissatisfied 

you are with the conditions of those highways you have used in the past 12 months.”  The 

responses were recoded on a scale from very satisfied (5) to very dissatisfied (1).  The specific 

items, in order, asked about litter, rest areas, control of roadside vegetation, the gravel edges, 

guard rails and roadside guide posts.  They were each coded on a scale from excellent (4) to poor 

(1).  In 2002, of the 4100 mailed questionnaires 1746 were returned.   

The two models associated with Figures 1 and 2, where k = 6, are of particular interest. 

The first model, which we refer to as the baseline or null model, M0, assumes that all off-

diagonal elements of the covariance matrix of the measurement errors are zero, implying that 

there is no systematic response pattern in the errors associated with the adjacent items.  The 

second model, referred to as the model of adjacent correlations, M1, eases this restriction and 

estimates the elements θ21, θ32,…, θ65 and thus implying that the response to an item is 

conditioned on the previous item.  The results of these two models, including estimated factor 
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loadings, estimated path coefficients, estimated correlations between adjacent errors for M1, and 

model diagnostics such as the model chi-square values, the RMSEA (Root Mean Square Error of 

Approximation), and TLI (Tucker Lewis Index) are found in Table 1.  The model diagnostics 

indicate that our models are appropriately specified and suggest that the adjacent correlations 

model fit the data better than the null model.  When comparing the null model to the adjacent 

correlations model, the reduction in the model goodness of fit chi-square statistic is sufficiently 

large to conclude that the first order error model M1 fits the data significantly better than the null 

model.  This is also reflected in the RMSEA value which decreases almost in half and the TLI 

value which increases by nearly 0.08.   

For both the GS and SG versions of models M0 and M1, the factor loadings are all above 

0.5 and significant (see Table 1).  The regression coefficient of the specific factor on the general 

factor is significant for all models reported and is smaller for the GS version than the SG version 

for both models.  The estimated correlations between error terms are significant with the 

exception of 32̂ and 43̂  for the GS version, which indicates that they do not share a common 

source of variability. This suggests that, for whatever reason, respondents do not appear to have 

answered the 4
th

 item (on gravel edges) in the list of specific items by taking cues from the 3
rd

 

item (on roadside vegetation).  The two items may have been different enough to interrupt the 

response set. 

<TABLE 1 ABOUT HERE> 

Although the chi-square value decreases when allowing for first order correlated errors, 

the chi-square value would decrease if any set of correlated errors were freely estimated.  This 

leads to the following question:  Is the change in the estimated chi-square from the null model to 

the first order model larger than the reduction in the chi-square from the null model to any other 
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model with the same number of estimated correlated pairs of errors?    To answer this question 

we adapt and implement the permutation test described below.   

Permutation test procedure 

Because the sampling distribution of the reduction in chi-square values for our data is 

unknown, it must be estimated.  This estimation is possible in the framework of a permutation 

test of the error structure.  To conduct such a test we first define a null hypothesis as follows: H0:  

the decrease in the model chi-square value when allowing for first order correlated error terms is 

not significantly larger than the decrease in the model chi-square value for any other model with 

the same number of correlated error terms.  This hypothesis implies that respondents do not take 

more cues from the immediately preceding question to answer the current question than they take 

from any other question.  If the null hypothesis is true, then any set of randomly chosen 

correlations of error terms could be added to the model and the reduction in chi-square 

associated with this model compared to the null model is not considerably different than the 

values shown in Table 1.  To test the null hypothesis, the following steps, as adapted from Efron 

and Tibshirani (1998), are used: 

Step 1: Decide on a test statistic and compute its value.  Here, the test statistic of interest 

is the change (drop) in the model chi-square value from the null model to the model with 

correlated first order errors as found in Table 1.   

Step 2: Construct the sampling distribution of the test statistic in step 1 as if the null 

hypothesis is true.  For this step the data, the pairs of correlated errors are permuted under the 

assumption that the null hypothesis is true.  In the present application, there exist six error terms 

associated with the specific questions leading to 15 unique pairs of correlated errors and 3003 

distinct ways to randomly select 5 correlations from among 15 possible correlations without 
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replacement
1
. Using a SAS macro, described in Section 5, a set of five pairs of correlated errors 

is randomly chosen without replacement and is then added to the null model (five pairs were 

chosen as there are five pairs of first order correlated errors and thus the degrees of freedom of 

these models will be the same).  Next, the reduction in the chi-square value associated with this 

model from the null model is calculated.  This process is repeated a total of 999 times to 

approximate the sampling distribution of the reduction in chi-square value (999 was chosen to 

yield a total 1000 models including the model used in step 1).  

Step 3: Count the number of cases that produce a test statistic at least as unusual as the 

observed test statistic in step 1.  For this step the number of cases that had a reduction in chi-

square as large as or larger than what was obtained in step 1 are counted.  Because the change in 

the chi-square value for the model in step 1 is known, one is added to this number. 

Step 4: Calculate the p-value by dividing the number found in step 3 by the total number 

of fitted models.  As with step 3, one is added to the number of models run to account for the 

model run in the first step, leading to a total number of models equal to 1000. 

The results for the permutation test are displayed in Figure 3.  For each form, the 

reduction in chi-square for each fitted model is plotted where the vertical line represents the 

reduction in chi-square from the null model to the adjacent correlations model.  The p-value is 

the area to the right of this line.  For the GS questionnaire the p-value is 0.084 while for the SG 

questionnaire the p-value is 0.035.  These results indicate that for the GS case there is weak 

evidence to suggest a systematic first order structure in the error terms while for the SG case 

there is stronger evidence of a systematic first order structure.  Consequently, the statistical 

                                                 
1
 While it would potentially be computationally feasible in this example to compute all 3003 models, this need not 

be the case, especially when there are more than six indicators associated with a latent variable.  For example, 

suppose there are 10 indicators, implying nine first order correlations and 45 possible pairs of correlated errors.  This 

would lead to 886163135 different models, which is not computationally feasible.   
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pattern found in the data is consistent with a pattern respondents would produce if the response 

an item is conditioned by their response to the immediately preceding item but not any of the 

other items. In this case, the image we have is that survey respondents work through 

questionnaires in an almost linear fashion, answering each question with whatever information is 

available at that moment, and  a substantial part of that information is their recall of the 

immediately preceding item and their response to it. 

<FIGURE 3 ABOUT HERE> 

 

 5. SAS Code 

 

The previous analysis of Section 4 was conducted in SAS version 9.22 using PROC 

CALIS to estimate the models and a SAS macro (presented below) to conduct the permutation 

test.  SAS was used instead of the more familiar LISREL, Mplus, SPSS (AMOS) or other SEM 

programs because it has the programming flexibility necessary to conduct the permutation test.  

While these other programs are capable of simulating data, they do not allow for simulating 

different model structures as done in our study. The SAS program used for our analysis is 

presented in Appendix A. 

There are three major components to this SAS program. In the first part, a data set is 

created that specifies all possible pairs of correlated errors. The second part consists of a macro 

that randomly selects five of these pairs created in the first part and adds these to the null model 

with no correlations.  The chi-square value associated with the executed model is saved.  In the 

final part the simulated p-value is calculated using the chi-squared values from the simulated 

models. 

Variable Names and Descriptions 
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Before presenting the SAS code for this simulation, the variables and a brief description 

of the variables used in this analysis are given in Table 2.  In relation to the conceptual model in 

Figure 1, q2a_1 through q2f_1 are represented by Q1 through Q6 in Figure 1, respectively 

while q3 is represented by the variable η2.  

<TABLE 2ABOUT HERE> 

Component 1: Create Data Set of Possible Pairs of Correlated Errors.  A data set 

named errors is created first by specifying all possible pairs of correlated errors.  As 

mentioned in Section 4 there are 15 unique correlations based on two distinct items from the list 

of Q1 through Q6 leading to the 15 observations in this data set. 

Component 2: SAS Macro.  The next step of the analysis entails randomly selecting five 

pairs of correlated errors without replacement, which we implemented through a macro.  This 

macro consists of four distinct parts—randomly selecting five pairs of correlated errors from the 

data set errors, defining these pairs as macro variables, adding these pairs of correlated errors 

to the null model, and finally saving the chi-square value associated with the new model.  To 

ensure that the same randomly selected errors are chosen for each year and survey version, we 

set the seed to be equal to the value of the associated simulated model (i.e. for the third model 

the seed is set to three) plus the constant 900 (chosen randomly).  This ensures that the simulated 

p-values remain the same each time the program is run.  To determine if this seed possibly led to 

anomalous results different constants besides 900 were randomly chosen and tested.  The results 

of these simulated p-values are markedly similar to the aforementioned simulated p-values.  

Part 1: Choose Five Pairs of Correlated Errors.  Using PROC SURVEYSELECT, five 

observations are drawn from the data set errors using simple random sampling without 

replacement.  These observations are then outputted to the data set rs.   
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Part 2: Define the Randomly Chosen Pairs of Correlated Errors as Macro Variables.   

Because the randomly chosen pairs of correlated errors change for each simulation, they must be 

defined as macro variables.  This is accomplished using two steps.  In the first step, the data set 

rs is read into PROC IML in order to reformat the data set in a way that simplifies the defining 

of macro variables in the second step through the use of PROC SQL.   

Parts 3 and 4: Add Pairs of Correlated Errors to the Null Model and Save the Associated 

Chi-Square Value.  In this part of the macro, PROC CALIS is called to run the null model as 

specified by the user.  The pcov statement is called and the randomly selected pairs of 

correlated errors are added to the null model using the macro variables defined in the previous 

part.  The fit indices associated with this model are saved into the data set semout2002.  Using 

PROC TRANSPOSE, the chi-square value for each simulation is saved in the data set 

chisq2002. 

Component 3: Calculate the p-value. The last stage of this study is to calculate the 

simulated p-value through two steps.  In the first step the null model and the adjacent 

correlations models are run.  The associated chi-square values are saved using PROC 

TRANSPOSE in a process similar to the one used for the chi-square values in the macro.  

Secondly, these data sets and the data set chisq2002 are read into PROC IML to calculate the 

p-value.  Using PROC IML the change in chi-square from the null model to the adjacent 

correlations model is calculated as are the reduction in chi-square from the null model to each of 

the simulated models.  The simulated p-value is then calculated as the proportion of changes that 

are as great as or greater than the drop from the null to the first order error model.   

6. Discussion and Conclusions 
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 Understanding response patterns in surveys is a topic of interest to survey researchers as 

it impacts both the design and analysis of surveys.  In this paper we use structural equation 

modeling to examine response patterns through the implementation of a permutation test of the 

error structure of the survey items in general-specific questionnaires.  Though simulation studies 

have been used to examine many topics of interest in SEM, to the best of our knowledge they 

have not been used to examine specific response patterns in social surveys.  In our particular 

application, we examine the presence of a first order response pattern in which respondent’s 

answer to a given specific item is conditioned on their answer to the immediately preceding item.  

Through this analysis, we make two major contributions to the literature on surveys and SEM.  

First, is the development and implementation of a permutation test allowing us to test a research 

hypothesis regarding response patterns that, to our knowledge, has not previously been examined 

in the literature.  Second, we provide the SAS program necessary to conduct such a test.  This 

SAS program can be easily modified to examine other response patterns of interest. 

We understand that the presented results have some limitations.  First, the hypothesized 

pattern in the residuals is not the only possible pattern; for example, we could hypothesize that 

the error terms for the 2
nd

 through last specific items are conditioned by the 1
st
 item rather than 

by the immediately adjacent item.  This hypothesis too can be tested with the presented SAS 

algorithm.  Second, we acknowledge that this pattern may not be present in all surveys and also 

may depend upon the order of the specific items.  We suspect that this type of response pattern is 

most likely to appear in surveys in which respondents do not have strong feelings about the 

survey topic.  Under this scenario, they may take cues form other sources, including contextual 

elements of the questionnaire, and we hypothesized that the most proximal contextual factor was 

the immediately preceding specific item. 
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Though this paper gives results for only one survey during one year, we employed the 

procedure described in this paper with multiple years of data from the Oregon road quality 

survey, as well as with data regarding governmental services in rural Iowa towns.  It is perhaps 

noteworthy that for the Oregon road quality survey the order of the specific items varied across 

survey years, thus allowing for different correlated errors among specific items.  Regardless of 

the order of the specific items, evidence was found to suggest the presence of the response 

pattern of interest in the majority of these surveys indicating that the ordering of the specific 

items may not be able to mitigate the response pattern of respondents.  All of these factors 

strengthen the likelihood that our findings are not idiosyncratic and the permutation test we 

develop and implement using the provided SAS program provides a useful way to examine this 

and other patterns.  Identifying such patterns is crucial to better understand systematic sampling 

error that may create bias in response patterns and threaten the validity of sample surveys. 
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Appendix A: SAS Code 

 
/*Component 1: Construct data set of all unique pairs of correlated errors*/ 

data errors; 

input  q1 $ q2 $; 

datalines; 

q2a_1 q2b_1 

q2a_1 q2c_1 

q2a_1 q2d_1 

q2a_1 q2e_1 

q2a_1 q2f_1 

q2b_1 q2c_1 

q2b_1 q2d_1 

q2b_1 q2e_1 

q2b_1 q2f_1 

q2c_1 q2d_1 

q2c_1 q2e_1 

q2c_1 q2f_1 

q2d_1 q2e_1 

q2d_1 q2f_1 

q2e_1 q2f_1 

; 

run; 

 

/*Component 2: SAS macro */ 

/*Define the macro*/ 

%MACRO Do_tcalis2002 ( 

datst,  /*input data set*/ 

nrun  /*number of simulations*/ 

); 

options nonotes nosource nosource2 errors=0; 

%DO I = 1 %TO &nrun; 

%let seed=%eval(&I+900); 

 

/*Part 1: Randomly select five pairs of correlated errors without 

replacement*/ 

proc surveyselect data=errors method=SRS rep=&nrun sampsize=5 seed=&seed 

out=rs noprint; 

id _all_; 

run; 

 

/*Part 2: Define these pairs as macro variables*/ 

proc iml; 

use rs; 

read all var{'q1' 'q2'} into XM; 

XMnew = XM[1,] || XM[2,] || XM[3,] || XM[4,]|| XM[5,]; 

cname = {"qe1" "qe2" "qe3" "qe4" "qe5" "qe6" "qe7" "qe8" "qe9" "qe10"}; 

create store from XMnew [colname = cname]; 

append from XMnew; 

quit; 

proc sql noprint; 

select * 

into: qe1, :qe2, :qe3, :qe4, :qe5, :qe6, :qe7, :qe8, :qe9, :qe10 

from store; 

%put &qe1; %put &qe2; %put &qe3; %put &qe4; %put &qe5;  

%put &qe6; %put &qe7; %put &qe8; %put &qe9; %put &qe10; 
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/*Parts 3 and 4: Add correlated errors to the null model and save the chi-

square value associated with this model*/ 

proc calis data = &datst cov outfit=semout2002 nop; 

path 

/*measurement model*/ 

q2a_1 <- specific = 1.0, 

q2b_1 <- specific = lambda2, 

q2c_1 <- specific = lambda3, 

q2d_1 <- specific = lambda4, 

q2e_1 <- specific = lambda5, 

q2f_1 <- specific = lambda6, 

/*structural model*/ 

specific -> q3 = b21; 

/*randomly chosen pairs*/ 

pcov 

 &qe1 &qe2 = corr1, 

 &qe3 &qe4 = corr2, 

 &qe5 &qe6 = corr3, 

 &qe7 &qe8 = corr4, 

 &qe9 &qe10 = corr5; 

by version; 

run; 

data semout2002 (keep=FitValue); 

set semout2002; 

where IndexCode = 203; 

run; 

proc transpose data=semout2002 out=newfit2002(drop=_LABEL_ _NAME_) 

prefix=chisqv let; 

run; 

proc append base=chisq2002 data=newfit2002 FORCE; 

run; 

%END; 

%MEND Do_tcalis2002; 

%Do_tcalis2002(odot2002,999) 

 

/*Component 3: Calculate simulated p-value*/ 

/*Run the null model with no constraints and save the chi-square value*/ 

proc calis data = odot2002 cov outfit=m0; 

 path 

 /*measurement model*/ 

 q2a_1 <- specific = 1.0, 

 q2b_1 <- specific = lambda2, 

 q2c_1 <- specific = lambda3, 

 q2d_1 <- specific = lambda4, 

 q2e_1 <- specific = lambda5, 

 q2f_1 <- specific = lambda6, 

 /*structural model*/ 

 specific -> q3 = b21; 

by version; 

run; 

/*Run the model with added correlated first order errors and save the chi-

square value*/ 

proc calis data = odot2002 cov outfit=m1; 

 path 

 /*measurement model*/ 

 q2a_1 <- specific = 1.0, 
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 q2b_1 <- specific = lambda2, 

 q2c_1 <- specific = lambda3, 

 q2d_1 <- specific = lambda4, 

 q2e_1 <- specific = lambda5, 

 q2f_1 <- specific = lambda6, 

 /*structural model*/ 

 specific -> q3 = b21; 

 pcov 

 q2a_1 q2b_1 = corr1, 

 q2b_1 q2c_1 = corr2, 

 q2c_1 q2d_1 = corr3, 

 q2d_1 q2e_1 = corr4, 

 q2e_1 q2f_1 = corr5; 

by version; 

run; 

/*keep only needed values in the output for M0 and M1*/ 

data m0 (keep=FitValue); 

set m0; 

where IndexCode = 203; 

run; 

proc transpose data=m0 out=m0t(drop=_LABEL_ _NAME_) prefix=chisqM0v let; 

run; 

data m1 (keep=FitValue); 

set m1; 

where IndexCode = 203; 

run; 

proc transpose data=m1 out=m1t(drop=_LABEL_ _NAME_) prefix=chisqM1v let; 

run; 

/*use PROC IML to calculate p-values*/ 

proc iml; 

use m0t; 

read all var _all_ into M0; 

use m1t; 

read all var _all_ into M1; 

use chisq2002; 

read all var _all_ into chisq; 

changeM0M1 = M0 - M1; 

changeM0M1v1 = changeM0M1[1,1]; 

changeM0M1v2 = changeM0M1[1,2]; 

change = M0 - chisq; 

n = NROW(chisq); 

v1p = J(n,1,0); 

v2p = J(n,1,0); 

do i = 1 to n; 

if change[i,1] >= changeM0M1v1 then v1p[i,1] = 1; 

if change[i,2] >= changeM0M1v2 then v2p[i,1] = 1; 

end; 

p1 = sum(v1p)/(n+1); 

p2 = sum(v2p)/(n+1); 

print p1 p2; 

run; 

 


