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Chapter 1: Introduction

1.1Why We Care About the Datacenter Electric?

As data centersd energy consumption cont.i
skyrocket, more attention is being focused on reducing cdsteording to the
AUni ted States Data @enwreirt tEennerlgy tUse gnik
Orlando Lawrence Berkeley National Laboratory(UEOLBNL), U.S. data centers
consumed around 70 billionl&watt-hours(kWh) of energy making up 1.8% of the
countrybés tot al electric consumption in 20
to jump to 4% (73 billion kWh) according t
cost data centers approximately 8 ibill U.S. dollars annually in electric bill
assuming constant electricity rates. For example, Google claims they consume 5.7
billion kWh in 2015; [2] which equates to roughly $600 million. Such extravagant
cost has left data centers despetatiéind cost ad power reducing solutions.

Sizable energy consumption has anothdwerg effect: increasing global
carbon emissions. According to [3], data centers have consumed 3% of the global
electricity supply and responsible for around 2% of total greenhowsengesions
equating the entire airline industryés cal

also eager to find solutions to increase data center energy efficiency.

17



1.2 Challenge and Opportunity in the Data Center

To compensate for treverfastgrowing demand and usage of the internet
companies neetb constantly find ways to upgrade and optimize their data centers
Therefore, finding solutions to minimize the energy consumption and electricity bill
is becoming more and more important not only retbg theusersbutalso the

servers company. While at the same time the performance could notnsaijber
degradation due to the intense user satisfaction competition amonglaibthe
Internet company.

Data centers' available peak power is one ofriandriving force to
universalize data centers and enhance their computing capacity, but alsmagrthe
cost for operating expenses(Opex) and capital expense(CopeRpfd]centers
consume a tremendous amount of electricapslating to an enormoesectric bill,
Lowering their consumption will not only be beneficial financially and computing
resources, but will also presemrcelesmatural resources and combat climate
change.

Commonelectric bills have two charging aspects: energy consumption a
power demand defined by the highest power usage ofaiiiite time slot during the
whole month. The power demand portion is expensive and can be as much as 40% of
the total electricity bill. Optimizing energy efficiency and reducing the power demand
during the onpeak hour will dramatically reduce the electric bill.

High peak power demand che attributedo the irregular changing workload
flowing into the data center which leads to tfnegularchange in the computing

resource usage. One way to reelthe power demand charge and avoid data center
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performance degradation is to use existing Uninterpreted Power Supply (UPS) to
support servers during high power demand and to recharge while demand is low.

In order to use UPSs to shave peak power, solstare needed for three problems:
being able to predict future power usage, identifying the needed capacity of the UPS
battery and aging cost witheknown operation, and knowing how much and how

long the peak power should be shaved by the energy stotes UPS.

1.3 Contribution

To answer the three questions abdyappose the following framework which will
reduce a data center's power demand and electric bill while ensurungctienged
performance of the data center. Below is the main contribwfithis Framework.
Proposes a total resource usage preditttaill use a long shofterm
memory (LSTM) neural network to predict the server resource usage of future
time slots. The LSTM neural network will learn the behavior of the future data
centerresource usage by being fed in history adatabined withthe
workload information and resource usage information from the Google
clustertrace data [10]. The predictor achieves an accuracy increase by 22%
compared with a base model using the Linear Resgya.
Purposes a Battery Capacity Predictor which adopting the Long-Béont
Memory Neural Network which predicts the UPS battery capacity aging effect
for a hypothesis operation. The LSTM neural network learns the battery
capacity and aging after gotheses normal operation by feeding in the Li

ion battery data [11].
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Purposes battery shaving police controller that focus on reducing the data
center peak power by utilizing the energy stored in UPS battery to compensate
the peak power and making dgions on adjusting the shaving peak.

The remainder repois$ organizedas follows. Chapter 2 presents the background of

data center architecture, electricity bill model, Google clustee datasets and-Li

ion battery sets and motivation for analyzing ffeak power shavirigeal cases.

Chapter 3 presents the literature review. Chapter 4 introduces the framework. Chapter

5 evaluates thtameworkandChapter 6 concludes this paper.
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Chapter 2. Background and Motivation

In order tofind solutions to shave the peak power and reduce electricity bills in data
centers, undertraining the data center architecture, especially the power usage part

and electricity bill model, are the primary condition.

2.1 Data Center Architecture

According to [4], datacenterss the center of the information system; providing
information service to enterprise and the public through Internet netieikg more
specifig the data center is an infrastructure performing several types of data services
application,using IT technology and unified standards to establish the information
management system including data processing, data storage, data transmission and
comprehensive analysis. The information system brings the standardization of
business process and themiotion of operational efficiency to the enterprises. Data
centers provide a stable and reliable infrastructure and operating environment for it
while ensuring that it cabe easily maintainednd managed.

The first challenge faced when building a datateeisthelocation A variety
of factors, including the company's development strategy, budget, operational cost,
and safety, should be taken into consideration. Among them, communication, power,
and geographical location are the three main factors a#leting a site. Since high
performance optical communication technology solves the long distance, high

bandwidth, and fast transmission of information problems, service radius does not
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need tobe consideredWith access to the backbone communication awdata
centers can provide services to the world.

A |l ocationb6s av asialsigrifitant dgeeanining facorup p | y
data centerods |l ocation must be able to pro
must be | ow becageeovérhkéadtof cdeoftshs ceater
Datacenters have strict requirements on reliability and availability to ensure stability.

Safetyisanot her determining factor of a da
being affected by outside threats, they utidbe locatedaway from any nuclear
power plants, chemical plants, airports, communication base stations, military targets
and natural disastgrone areas.

A | ocati onds bectonsmerdad.eCoaling sosts aael raughly 20%
of their monthly eleticity bills, so choosing a cool location or place near a natural
water source can lower the operating cost.

A complete data center architecture consists of three logical parts: the support
system, the computing device, and the service information nsystée support
system mainly includes building, power equipment, environmental adjustment
equipment, lighting equipment and monitoring equipment, which are necessary to
ensure thenormal and safe operation of the computer equipment. The computing
device manly includes the server, storage equipment, network equipment, and
communication equipment. These facilitegportinformation systemsrlhis system
is software that provides specific information services for enterprises and the public.

The quality of iflormation services depends on the serviceability of the underlying

support system and computer equipment.

22



This paper focuses on the support system and computing device which are the
main power drawersFigure 1 shows the data center architecture and pswgmgyort
connections with centralized UPS. The pow
of power. The highension electricity will go through several transformation
processes to different voltages and phases to fit various electric equipmentaifhe
power load in the data center is the lighting, office, fire emergency system, computer
equipment and cooling. To ensure the reliability of the power supply to the data
center, power supply system in the data center contain redundant to all the power
suppgy equipment. As shown in figure 1, there are two diesel generators, two
centralized UPS.

The computing device includes servers size scale from 5 to 100K as the
computing resources. Each server mainly contains CPU, RAM, Disk, and
motherboard. The computirdgevice also includes the network gear and storage. The
servers are placed onto racks and form array of racks as shown in Figure 1 as the
green cycle number 7. Data centers use switches to enable the communication among
all the servers, storage, and théwwk. The support systems are the building, power
supply system, cooling system, monitoring system and lighting system, specifically to
support the computing device operating efficiently and safely.

After the introduction of the architecture, componamnig location of the data
center, knowing the power consumption of each part of the data center is critical for
lowering its electric bil.However, beforethat, it isimportantto know the power
measuring method and electricity bill model. Below are prtsving how the power

has been used, measured, and charged in the data center.
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DATA CENTERS

o SDMO diesel 0 UPS Symmetra MW e UPS batteries o Servers/Storage/

generator (Uninterruptible power supply) Networking equipment
e Automatic Transfer o Emerson Network Power 0 Emerson Network Power
Switch (ATS) Power Chiller Power climate control

Figure 1. Data Center Architecture and Power Supply connection with centralized UPSI[6]

2.2 Power Usage Efficiency (PUE) and Electricity Bill Model

Power usage effectiveneB&{E) as shown in function (1) is the most popular metric
used by the data center industry to represent energy efficispegifically how

much energy is used by IT equipmenthe duration ofmonth or year.
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(1)

When the PUEequalto 1.5, it means thathere is0.5-watt power used in
cooling or maintainingwhenever there is &-watt power usedon IT side. As for
showing in figure 2, Google's data center as PUE is around 1.12 which means on
average, every 1att of IT power will need 0.X:vatt supporting power.

PUE in different data centers is influenced mainly by power saving
technology on the cooling side and the outside temperature. For every data center, the
annual PUE is almost a fix number respect eltital weather with the condition that
the power saving technology is unchanged.

Using the IT equipment energy consumption with the current PUE, the
Datacenter power can approximately be determined. In other words, by reducing the
IT energy (no degrade gferformance), the total energy consumption for the data

center will be reduced in the factor of the PUE.

25



Generators

Transformy 1

Datacenter ">«

Natural gas

Figure 2.Google data center PURg]

The electric bill breaks down for data centers illustrates the main components
of energy consumptiowith respet tothe IT power. Figure 3 shown below depicts
thedata center energy consumption comporeict power loss portion. The red
blocks are the overhead energy consumption component. The green blocks are the IT
Energy which may also refer pvoduéng energy The black capital abbreviations list
to the side of lines and blocks are the associated power consumption component with
some representing power losses.

As shown in Figure 2 and 3, Googl eds

PUE around 1.12This means more than 80 percent of the poisarsedor
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computing. Therefore, any reduction of power and energy on the -stieewill

dramatically reduce the total power and energy of the whole data center.

Electricity E _ Eﬁ\

Data Center Site Substation ac
ETX AC
Switches
EHV
) I ]
Supporting Infrastructure IT Power
Power Substation(s) | A€ AC AC Ac | Substation(s)
Eesis [ EITS
Switches Switches
& Chillers Servers, Network Gear & Storage ]
Cooling Towers m EUPS
Naturalcas 1. ]
& Fuel Olls by
EF
L UPS |H Network Gear | ENet?
Key

Red = Overhead Energy
Green = IT Energy

ESIS - Supporting Infrastructure Substation Energy

EITS - IT Substation Energy

ETX - Medium/High Voltage Transformer Losses

EHV - High Voltage Cable Losses

ELV - Low Voltage Cable Losses

EF - Fuel Oil & Natural Gas Energy

ECRAC - CRAC Energy
EUPS - UPS Losses
ENet1 - Network Room Energy

Figure 3. Google Data CenteEnergy usage break domv and categry based on

Computing Energy[5]

2.3 Electricity Bill Model

After introducing the PUE as the power efficiency measurement metric, this section

will introduce the electric bill model.

As shown in Table 1, some electric companies define gr@ing method as some

combination of energy and power price 8]. As shown in Figure 4, energy is the
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integration of the power traogith respect tahe whole charging period (usually a
month). The green shadow shown in figure 4 gives the energy usagasyioen
power trace in a data center. For calculating the peak power cost, first, the electric
company defines its epeak period in a day. It will then decide a time slot unit such
as 5,10,15 or 30 minutes. The company will average the power for eachkltitras
the red dot shows in Figure 4, which gives the peak power for every time slot. All the
red dots in the month wilbe comparedand the highest red dot will be the peak
power for that month.

Using the Duke utility company [9] as an example, thgeak hour is
defined differently for summer which is from June 1st to September 30th starting at 1
pm to 9pm andwinter which is from October 1st to May 31st starting at 6 am to 1
pm. Within the orpeak hour during a day, the electric company willrtethe 15

minutes to be the time slot and divides thepeak duration into the 15 minutes slots.

(cent/kWh)

Duke 4.7 12
Ohio AEP 4.9 9.86

PG&E 10.8 12
Georgia Power 10.7 12.93
PEPCO 4.3 7.36

Table 1. Some Commercial US Electric Utilities Charging Table
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Figure 4. Data Center Power -HeakdPermd and Peak

The power dmand for a specific time slot is the average power usage during
it. As shown in Table 2, the company chargespeak power demand at $17.0920
during the summer and $10.0070 during the winter for the first 2000 kW of Billing
Demand per kW, per month. Thext 3000 kW will have around 2 dollars drops for
both summer and winter, and for the power over the 5000 kW will again have the
price drop around 2 dollars compared to the second range. With the study shown in
[8], the peak power demand charge can getoup0fb6 to the electric bill in the data
center. Therefore, finding a way stabilize powerusage and shave the peak will

save largamounts of the electric bill.

Summer Winter
On-Peak D d ch th (June 1st to | (Oct. ist to
n-Peak Deman arge per mon Sept. 30th) | May 30th)

For the first 2000 kW of Billing Demand per kW, per month $17.0920 $10.0070
For the next 3000 kW of Billing Demand per kW, per month $15.1619 $ 8.3356
For all over 5000 kW of Billing Demand per kW, per month $12.2217 $ 6.1855

Table 2. Duke Utility Company Peak Power Charging Table

29



2.4 UPS Battery

After knowing the data center electric measurement method, distribution and
charging model, the result for shaving the peak power will be much valuable and use
the Uninterpreted Power Supply (UPS) teeen purposeébr years to shaving the
peak power.

The UPS was initiayl designed to support the servers in a brief time interval
around one minute during power outages until an emergency diesel generator turned
on. The UPS battery can differ in structure types. One is the centralized UPS which
uses Lead Acid batterieShey occupy a single room. The centralized UPS receives
an alternating current and transfers iti@ currentto store the energy. During the
power outage, the centralized UPS battery will be discharging the stored energy in
DC currentand transferring that talternating current back to the power supply unit
in the data center. The centralized UPS will face two transformers and lead to two
unnecessary energy lost. The other one is the distributed UPS wHiggugntly
adoptedby large c 0 mp d mgtad enterssuch as Facebook and Google. The
distributed UPSuseal Lithium-ion battery most and placed on the server which
supplies and charged to DC current with not transformation need. There is another
reason makes the distributed UPS better than the centralizedwdR8 is the
redundant problemTlo increase the reliability and power support units inscia
centers need to have the redundant part which means there will be more centralized
UPS and diesel generator. Adding redundant UPS is expensive not onlydatdahe
center structure space cost but also to the battery sets cost. However, the distributed

UPS will not face the redundant problem due to a large amount of individual battery
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attached to all the racks or servers. Having few dead UPS will not hurlitielitg
of the whole data center and can be taken care on the software side. Therefore, this

paper will focus on the distributed UPS battery structure.
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Chapter 3 Literature Review

In this chapter, the solutions to lowering the energysamption and peak power

demand charge wilbe introducecnd analyzed.

3.1 Lower Energy Consumption

Lowering the energy consumed by all components of the data centeajsrgath
that many scientists have been followimigh. They can be categorizeg the target
component: The server, the cooling system, and the energy producer.

For reducing the energy used by servers, turning it on and off will make a
significant difference. Servers in a data center are usually in a load of 1%%
workload which eirn-off the server to various sleep models which save significant
amounts of power. However, knowing the number of servgreoiideat a certain
time ishard andit is even harder tpredictthe neededserverin the future due to
irregular incoming workbw and the weak up time. As [12] described, the current
way is balancing the traef for the energyperformance. Turning off the server
while it is idle and wake it up while traffiwill save energy buturts performance

Reducing the energy camsed to cool data centers has been the focus for the
last decade. Various improvemghtvealready been made most noticeably at
Google which led to their low PUE[5]. The changes included changing the racks
array into containers for battery airflow contfé], switching to cooler environments

[13], and forraising the temperature inside the data center for less work on the
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cooling sideThere is also research focused on the free cooling technology to build a
data center in a cold place which uses thewside to cool the data center [13].
However, for an existing data center, changing their current cooling system means a
completely new design and potentially constructing a new data center.

Recently, the most popular solution for reducing energisdssising green
energy. Green energy such as solar, wind [14], have environmental benefits and can
provide cheap power. However, the capital cost and location constraint of data centers

are big drawbacks for using green energy [15].

3.2 Lower the Pe& Power Demand

For the purpose of lowering peak power demand, UPS battery serves as the secondary
energy source has been long introduced due to the perfect energy storage
characteristic to meet the power budget. The cuthge technology for using the

UPS energy still faces problems. As [7] described, current design about using UPS
battery to shave the peak power introduces a large size lHbiuipattery and use a

state machine with a fixed depth of discharge. When using a large battery, problems
arethehigh price, large space for installing the battery and hard balance on the
battery equilibrium effect. Without the ability to adjust the shaving value, the state
machine policy will be vulnerable to the irregular incoming workload environment.
The peakpower shaving line needs a near perfect design to hold the peak power. The
line will be hard to hold in the data center with the irregular workload and large

amounts of servers provided. I f the batte
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powerlinet hen the systembs benefits are wasted.
is too conservative, then the peak power saving will not be the optima.
In [11], the paper introduces physical battery control policy which accurately
estimates the batteriiowe\er, the control policy does not have the ability to adjust
the peak power corresponding to the data center power trace to find the best net

saving.
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Chapter 4 Peak Power Shaving Framework

4.1 Power Shaving Approach to Ideal Case

4.1.1 Introduce the Ideal Case
The goal of this project report is to shave the peak power of data centers during the
on-peak period for the best net saving. The best net saving means to know how much
peak power to shave at each time. Thus, the peak shavingwoakineeds to adjust
itself corresponding to the future power trace and battery capacity to make the smart
decision to have the largest net saving.

Figure 5 shown below is the ideal case. The new peak value is suitable for the
UPS battery capacity becausean shave the peak power with its own energy. Fhe X
axis shows time that starts and end for a-toourr peak period in a 15 minute per slot
fashion for a workday. The-gxis shows the power trace with the unit in kilatt.
Thesolid blueline represets the power trace of the qeak period for a regular
weekday. The green shadow shows the energy supported by the UPS battery and red

one shows the UPS battery charging stage.

Data Center Power Trace and Peak Shaving

1
i Original Peak
1

i i i 1 Shaved Peak
— 1 1 1 1 1 1 1
= H H H i H H H
= A ! : V i !
A7 SR B W ’V/\i\ New Peak
— ”
S 729 %, | A
= r A = Battery Discharging g
£ 77 7
- Battery Charging ﬁ
Utility Power 3
— Power Trace
Start Part of the Time slots in a day (15mins/slots) End

Figure 5. Ideal Case for unchanged Peak Value.
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The upper yellow dashed lishows the original peak power and the lower yellow
dashed line is the new peak power. For a random power trace, the new peak line
means the battery can cover the energy alipaaedthe peak power is shaved to it.
For this ideal case, the thradjacent geen shadow on the right side of the graph is
the critical part which in this case determines the minimum battery size.

Figure 6 shown below is modified base from Figure 5 which increase the
value of the threadjacent green shadow on the right sides Tdeal case shows that
the initial new peak line is not suitable for the UPS battery which means the battery is
not capable of supporting enough energy to the server due to the irregular power trace
in the data center. If the new peak line does not travability to adjust itself, then
this graph will no longer show the ideal caaedthe peak power demand will jump
back to the highest point of the rightmost green shadow. Since this ideal case has the
ability to adjust its new peak line to a new valilne, peak power saving can be
promised to an optimal situation that battery capacity can support. The ability to
adjust the new peak line corresponding to the incoming power trace and battery

capacity is the key to approaching the ideal peak shaving solutio

Data Center Power Trace and Peak Shaving
1 1 1 1 1
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Shaved Peak
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Figure 6. Ideal Case for changed Peak Value.
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4.1.2 Operation Approach to Ideal Cases
As shown in figure 5 and 6, the key point behind the ideal case is to use the UPS
battery to support the server while the power trace exceeds the new peathoskre
to have the best net saving for the peak power demand charge. The goal is to choose
and maintain the new peak value which is difficult. However, when operating a data
centerd6s UPS to achieve the idealtracrase in
in advantage. With the operation in the real time, the real capacity of the battery used
for a long time is hard to estimate accurately. Even when the battexy i n
estimate the capacityvell, the data center will not have the data sigwhe future
power trace telling. Without the future datacenter power trace, adjusting the New
Peak line is impossible.

Therefore, to approach to the ideal case, it is necessary to operate the data
center UPS battery in real time to see how to achlevédeal case which maintains
the New Peak power line and adjust itself. As operating the UPS, assume it is the start
time of the orpeak periocandthere is a New Peak value chosen ahead of time. Then
at the time equals to the zero which means the gjasfithe orpeak period, there is
no power trace for the future and no battery informaflanmaintain the New Peak
Power, it is necessary to know if the energy stored in the battery is enough for
pushing the peak power demand at the New Peak value ti@@nediction for both
future power trace and battery capacity needs to be known. This is true for Figure 6
case as well since the prediction of the future power teaxcbattery capacity is the

key reason to adjust the New Peak ahead of time.
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4.1.3 Opical Net Saving

The goal of this papestoreduced at a centersé overall <costs

power demand charge. The initial cost of UPS batteries must be considered when
finding a solution . Equation 2 shows that net savegslto the savig in peak

power minus battery costs.

L ADAVETYOL MH@WE 006 Go 0@4 ko )

The costs saved by power shaving is the savings in peak power.

The objective is to know the hypotheses battery cost for comparison. Knowing
the cost of the battery is a challenging cake&ch requires knowing each hypotheses
operation cost. The problem becomes even worse when accounting the irregular
usages behavior and thattery agingeffect. If the battery is used with no regulation,
then the price for individual battery operationlwibt be known until the time that
battery dies.

Knowing the battery cost for each operation is critical for operating the ideal
case. As introduced in chapter 2, the lithiton battery life cycle and DoD have a
direct mapping, therefore, if the battexgn be set to a fixed DoD value and severing
year, then the cost of each operation can be known by using the battery cost divided
the life cycle for the corresponding DoD value. Additionally, since the life cycles and
the serving years are fixed, the mdwptbr daily life cycle of the battery can also be

determined.
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In the end, th@etsaving function is presented in equation 3. The battery cost
will be determined by accumulating all the cycle cost inttemonth. Andthe nin
the second accumulationpgr bond means the battery usage cycles in a day.
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4.2 Power Shaving Framework Componets Flowchart

Since the key conditions for building the Power Shaving have already been discussed,
the Peak Power Shaving Framework is build up and shown in Figure 7 which include
the components and their flowchart. This flowchart shows its deaisaking

process.

The components of the Peak Power Shaving Framework are the whole data
center power trace, power trace predictor, battery pack history, battery capacity
predictor, and shaving policy controller. The battery usage guide is the output control
command of this Peak Power Shaving Framework.

In the following sections, the component building process will be introduced

including some necessary modification for the component.
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Figure 7 shaving policy flowchart

4.3 Whole Data Center Poweil race

First, inroduce the whole data center power trace. This component is serving the
purpose of providing data center power trace history data for later predictor building
up.

The data source is called Google Data Trace [10]. As being one of the largest
Internet Corpany in the world especially having its search engine and YouTube, the
workload trace is valuable and large enough to represent a modern datacenter. The
Google data center monitored in this trace contains 12.5K Servers with mol®than
different server tyes. The data covers 29 days of task and job level activity every
server. The Google clustamace data consists of job_events table, machine_attributes
table machine_events table task _constraints table task events table, and task_usage
table. The event bdes show the incoming job workload events with their respective
time, event type, jolnd/ortask id, machine id, request CPU, RAM, and DISK. The

usage table shows the usage measurement of each task in a 5 minutes period for the
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whole life of the task iHading CPU related measurement, Ram related measurement,
and Disk related measurement. The task usage table is the largest and has the size of
170GB.

Google keeps this data trace in the hash and has released no information
regarding the power usage trad@erefore, there is no power trace data. However,
the power trace for a data center's server group is made by the power usages for all
the component inside a server which are CPU, RAM, and Disk. Knowing the usages
of these resources is a good represemtatf the power flow in a data center. If the
server modeis released, the mapping between the resource usages trace and the
power trace will be very easy to measure and record.

Even though we do not have the direct power trace, the resources usages tra
for the whole datacenter is enough to represent the flow of the power trace. The

component now will be renamed as whole data center resource usages trace.

4.4 Predictor

The predictor will predict the resource usage fordaacenter the predictoris also
renameds the Resources Usages Predictor. Currently, thedstaté uses the

Machine Learning method, such as linear regression, predict the workload for a data
center [17]. It only predicts the workload oflatacenteron the scale of seconds

which is not suitable for our application which is in minufesd thealgorithm is

lacking the ability to leverage the temporal relationship of the d@atxefore this

will be a base model.
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The stateof-art algorithm for predictions deep neural netorks whichserve
as a black box. Some uses of deep neural networks include convolutional neural
networks and recurrent neural networks, md) shortterm memory(LSTM) neural
networks. Convolutional neural networks are famous for picture detection aldtey
perform well when the data hasuilt-in spatial relationship. LSTM is used to
remembehistorical information and forget uselesformation This paper chose

LSTM algorithms to make predictions.

4.4.1 Understanding LSTM Networks

Figure 8 shows hothe LSTMhas the ability taupdate itself with information that it
inherits from before. The LSTM B speciakind of Recurrent Neural
Network(RNN), which can learn dependency for a long time and fargetportant

information to avoid memory explosion.
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Figure 8. LSTM updating scheme
Figure 9 below shows details about LSTM inner structure. For a current

operation, the LSTM will receive information from the last stage including cell and
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hidden information. It will combine the information between curneput, last output
and last cell stage take a decision regardinghat information to remember, what

to forget and what to output. The yellow square named layer is the memory cell.

Output
Gate

Figure 9. LSTM inner structure

4.5 Battery Data

The battery datal[/] was collectedby experiment of7 different comparisons
between high or low room temperatures, uniform distributitarge anddischarge

or Uniform distribution discharg&;ow or High probability on high discharging
current

Each testing groupontainsfour individual 18650 battery cells and monitoring over
6 months with measurements on the power, current, and temperature -@¥ery 5

seconds. The dat@as createéhto 19 battery state. The experiment focused on
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modifying irregular discharging and chargibehaviors to regular Lithiunon

batteries.

4.5.1 Battery Predictor

Battery fading has a high temporal correlation in these data sets. Therefore, the
LSTM will serveasthe battery predictor as well. The battery data will feed into this
predator and outp the end voltage of the battery which can be used to determine the
capacity of the battery. This process is the first of its kind to our knowledge that uses

the LSTM to predict theregularDoD battery aging behavior.

4.6 Shaving Policy Controller

Dueto thefact thatthere is nalirect mapping between source usages (CPU, RAM,

DISK) and power trace for the servers in the Google data center, the shaving policy
controller will only consider based cases and will not do the evaluation

The controller will gtermine whether to adjust the new peak line or not. It will also
control whether break the Battery DoD limitation to use the remaining energy stored

in the battery.

As keeping the new peak line, the beginning of the month means less cost in battery
and he end of the month means thegebattery cost. Therefore, if at the end of the
month, the new peak line can be maintaining for just breaking few times of the DoD

to use the energy stored in the battery and at the same time the net saving is high, then

the controller can be designed to allogrtainDoD break.
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Chapter 5 Evolution

5.1 Google Data Preprocessing

In this work, the LSTM was built with Keras [19] Python Deep Learning Neural
Networks library that runs on top of TensorFlow [20]. Inesrtb train data with the
Keras, the data must be in a certain form. The Google trace data was on the task and
job level, and in this steft,had beertonveredto the task level resources usage data
to machine level resources usage data and checkeddgrity and consecution. The
goal is to know the power trace for a data center with a certain pdrevdforehe
old task and job level measurement data will be not suitable for this objective.

To increase the accuradhe Google data trace is divileto 6 files
according to its CPU and ram value. Therefore, for future implantation, the mapping
between resources usages and power trace for the same type of server model will be
avalable. Figure 10 shown below is the shaped data structure.
The Data sucture has 8352 lines with 18 columns for every file. X features include
workload account, CPU, RAM request for all the 5 minutes, and time.

Y includesaverage CPU or Ram usages in the 5 minutes.

x5 v xg Yo ‘
1 17
| Xg352 "7 Xg352 Y8352

Figure 10. Modified Google Data File Structure
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5.2 Battery Data Preprocessing

| chose the Uniform Distribution Discharge Room Temperature experiment which
belongs to 1 of the-éxperiment group. The data has 4 battery sets.

This experiment will randomly discharge the battery at a different time and constant
current. Then will charge a battery at a constant current but the random period from
0.5H to 3H.

In order to make the prediction simple, | predict the end voltage for a known
operation. The X feature includes time start, time end, time steps, volate st
current start, temperature mean, prior energy used, and total energy used. The Y is the
end voltage. Therefore, there are 4 files for battery end voltage predittierchta

structureis (8352, 19) per file.

xg v xg° Yo
1 18
Xg352 - Xg352 Y8352

Figure 11. Modified Battery Data File Striuce

5.3 LSTM Data Converting

The training was done using Tensorflow with Keras. Keras requests the input have
the same length, and the data need to be three dimensional to inherit the historical
data. The data will be warped in the fashion theludes data of X and Y in the input
andpredics the next output. Using the look back window equals 4 as an example.
Google Trace data should look like below.

[OFE hd ][GhE & ][GhE & hodl[ oFE b o]
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5.4 LSTM Network Structure

The figure 12 shown below is the structure used in this work that. It has multiple
LSTM layers and is connected to a regression model.

The LSTM Network will first take in the information for the first sample including

the yvalue for the first sample, then the second to fourth sample with their y value
will be feed in serious and predict the fifth y value. This proogssas until

reaching tle end of the data.
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Figure 12. Deep Neural Network structure for the Predictor

5.5 LSTM Result on Google Trace data

As shown in figure 13, below is the testing result for Google Trace Data using LSTM.
The Mean Square Error for both training anditgsdata is 0. And the Root Mean
Square Error is 0.6 for training part and testing p&domparing to the linear
regression algorithm base mogdgie training scoref LSTM is 0.11 higher for MSE
and 0.16 higher for RMSEand the testing score is 0.14 higher forSH and 0.22
higher for RMSE.

This improvement is related to the LSTM structure that can remember
important historical information and learn the principle based on it. From this

accuracy, it can be concluded that the resources usages dattheenterfor the
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future 5 minutesare highly dependent on the past workload accounts, CPU request,

ram requestandthe resources usages history.
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Figure 13. LSTM Prediction Accuracy for Google Cluster Data

5.6 LSTM Result on Battery data
As shown in figure 14, bew is the testing result for battery data using LSTM. The
Mean Square Error for both training and testing data is 0 and 0.01. And the Root
Mean Square Error is 0.07 for training part and 0.09 testing part.

From this accuracy, it can be concluded thatotery capacity fading can be
captured accurately using the LSTM algorithm with irregular charging and

discharging behavior.
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In the middle of figure 14, the orange line does not flow the two cases where
the blue line jumped above the 1.0 normalizat@lue. Since the 1.0 means the 4.2
voltage of the battery, that two blue value must be mistakes and the LSTM is smart

enoughnot tofollow the fault value

Figure 14. LSTM Prediction Accuracy for Battery Data
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