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Data centers have been charged a great amount of electric bill by the power company 

and demand charge can contribute up to 40% of the electric bill due to the "random" 

workload. This phenomenon can be avoided by using the existing Uninterrupted 

Power Supply (UPS) as the assistant power source to supply the servers. The UPS 

will shave the peak power by supporting the servers while the peak power exceeds 

threshold during the on-peak duration. 

For using the UPS to compensate the extra power, the problems are predicting the 

future data center resource usage and predicting the remaining capacity in the UPS 

battery. Since both problems involve in a highly correlated temporal relationship 

among their data, adopting Long-Short-Term-Memory(LSTM) Neural Network to 

perform the prediction solves the problems. After the experiment, the Long-Short-

Term-Memory(LSTM) Neural Network solves the Resources Usage Prediction 

problem by having 6% Root Mean Square Error(RMSE) which outperforms the 

others and UPS Remaining Capacity achieves 7% RMSE. 
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Chapter 1: Introduction 

1.1 Why We Care About the Datacenter Electric? 

As data centers’ energy consumption continues to rise causing electric bills to 

skyrocket, more attention is being focused on reducing costs. According to the 

“United States Data Center Energy Usage Report” written by the United Ernest 

Orlando Lawrence Berkeley National Laboratory(UEOLBNL), U.S. data centers 

consumed around 70 billion kilowatt-hours(kWh) of energy making up 1.8% of the 

country’s total electric consumption in 2014 [1]. By 2020, the percentage is expected 

to jump to 4% (73 billion kWh) according to UEOLBNL’s estimates. This spike will 

cost data centers approximately 8 billion U.S. dollars annually in electric bill 

assuming constant electricity rates. For example, Google claims they consume 5.7 

billion kWh in 2015; [2] which equates to roughly $600 million. Such extravagant 

cost has left data centers desperate to find cost and power reducing solutions.   

 Sizable energy consumption has another adverse effect: increasing global 

carbon emissions. According to [3], data centers have consumed 3% of the global 

electricity supply and responsible for around 2% of total greenhouse gas emissions 

equating the entire airline industry’s carbon footprint. Climate change activists are 

also eager to find solutions to increase data center energy efficiency. 
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1.2 Challenge and Opportunity in the Data Center 

To compensate for the ever-fast-growing demand and usage of the internet, 

companies need to constantly find ways to upgrade and optimize their data centers. 

Therefore, finding solutions to minimize the energy consumption and electricity bill 

is becoming more and more important not only request by the users but also the 

servers company. While at the same time the performance could not suffer major 

degradation due to the intense user satisfaction competition among all the large 

Internet company.  

Data centers' available peak power is one of the main driving force to 

universalize data centers and enhance their computing capacity, but also is the main 

cost for operating expenses(Opex) and capital expense(Copex) [4]. Data centers 

consume a tremendous amount of electricity translating to an enormous electric bill, 

Lowering their consumption will not only be beneficial financially and computing 

resources, but will also preserve priceless natural resources and combat climate 

change.  

Common electric bills have two charging aspects: energy consumption and 

power demand defined by the highest power usage of a 15-minute time slot during the 

whole month. The power demand portion is expensive and can be as much as 40% of 

the total electricity bill. Optimizing energy efficiency and reducing the power demand 

during the on-peak hour will dramatically reduce the electric bill.  

High peak power demand can be attributed to the irregular changing workload 

flowing into the data center which leads to the irregular change in the computing 

resource usage. One way to reduce the power demand charge and avoid data center 
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performance degradation is to use existing Uninterpreted Power Supply (UPS) to 

support servers during high power demand and to recharge while demand is low.   

In order to use UPSs to shave peak power, solutions are needed for three problems: 

being able to predict future power usage, identifying the needed capacity of the UPS 

battery and aging cost with the known operation, and knowing how much and how 

long the peak power should be shaved by the energy stored in the UPS.   

 

1.3 Contribution   

To answer the three questions above, I propose the following framework which will 

reduce a data center's power demand and electric bill while ensuring the unchanged 

performance of the data center. Below is the main contribution of this Framework.  

● Proposes a total resource usage predictor. It will use a long short-term 

memory (LSTM) neural network to predict the server resource usage of future 

time slots. The LSTM neural network will learn the behavior of the future data 

center resource usage by being fed in history data combined with the 

workload information and resource usage information from the Google 

cluster-trace data [10]. The predictor achieves an accuracy increase by 22% 

compared with a base model using the Linear Regression.   

● Purposes a Battery Capacity Predictor which adopting the Long Short-Term 

Memory Neural Network which predicts the UPS battery capacity aging effect 

for a hypothesis operation. The LSTM neural network learns the battery 

capacity and aging after a hypotheses normal operation by feeding in the Li-

ion battery data [11]. 
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● Purposes a battery shaving police controller that focus on reducing the data 

center peak power by utilizing the energy stored in UPS battery to compensate 

the peak power and making decisions on adjusting the shaving peak.  

The remainder report is organized as follows. Chapter 2 presents the background of 

data center architecture, electricity bill model, Google cluster-trace datasets and Li-

ion battery sets and motivation for analyzing the peak power shaving ideal cases. 

Chapter 3 presents the literature review. Chapter 4 introduces the framework. Chapter 

5 evaluates the framework and Chapter 6 concludes this paper.   
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Chapter 2. Background and Motivation 

 

In order to find solutions to shave the peak power and reduce electricity bills in data 

centers, undertraining the data center architecture, especially the power usage part 

and electricity bill model, are the primary condition.  

 

2.1 Data Center Architecture  

According to [4], datacenters is the center of the information system; providing 

information service to enterprise and the public through Internet network. Being more 

specific, the data center is an infrastructure performing several types of data services 

application, using IT technology and unified standards to establish the information 

management system including data processing, data storage, data transmission and 

comprehensive analysis. The information system brings the standardization of 

business process and the promotion of operational efficiency to the enterprises. Data 

centers provide a stable and reliable infrastructure and operating environment for it 

while ensuring that it can be easily maintained and managed.  

The first challenge faced when building a data center is the location. A variety 

of factors, including the company's development strategy, budget, operational cost, 

and safety, should be taken into consideration. Among them, communication, power, 

and geographical location are the three main factors when selecting a site. Since high-

performance optical communication technology solves the long distance, high 

bandwidth, and fast transmission of information problems, service radius does not 
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need to be considered. With access to the backbone communication network, data 

centers can provide services to the world.  

 A location’s available power supply is a significant determining factor. A 

data center’s location must be able to provide adequate and stable power. Power costs 

must be low because of electricity’s large overhead of data centers’ operating costs, 

Data centers have strict requirements on reliability and availability to ensure stability.  

Safety is another determining factor of a data center’s location. To avoid 

being affected by outside threats, they should be located away from any nuclear 

power plants, chemical plants, airports, communication base stations, military targets 

and natural disaster-prone areas.  

A location’s climate must also be considered. Cooling costs are roughly 20% 

of their monthly electricity bills, so choosing a cool location or place near a natural 

water source can lower the operating cost.   

A complete data center architecture consists of three logical parts: the support 

system, the computing device, and the service information system. The support 

system mainly includes building, power equipment, environmental adjustment 

equipment, lighting equipment and monitoring equipment, which are necessary to 

ensure the normal and safe operation of the computer equipment. The computing 

device mainly includes the server, storage equipment, network equipment, and 

communication equipment. These facilities support information systems. This system 

is software that provides specific information services for enterprises and the public. 

The quality of information services depends on the serviceability of the underlying 

support system and computer equipment. 
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This paper focuses on the support system and computing device which are the 

main power drawers. Figure 1 shows the data center architecture and power support 

connections with centralized UPS.  The power grid system is the data center’s source 

of power. The high-tension electricity will go through several transformation 

processes to different voltages and phases to fit various electric equipment. The main 

power load in the data center is the lighting, office, fire emergency system, computer 

equipment and cooling. To ensure the reliability of the power supply to the data 

center, power supply system in the data center contain redundant to all the power 

supply equipment. As shown in figure 1, there are two diesel generators, two 

centralized UPS. 

The computing device includes servers size scale from 5 to 100K as the 

computing resources. Each server mainly contains CPU, RAM, Disk, and 

motherboard. The computing device also includes the network gear and storage. The 

servers are placed onto racks and form array of racks as shown in Figure 1 as the 

green cycle number 7. Data centers use switches to enable the communication among 

all the servers, storage, and the network. The support systems are the building, power 

supply system, cooling system, monitoring system and lighting system, specifically to 

support the computing device operating efficiently and safely.  

After the introduction of the architecture, component, and location of the data 

center, knowing the power consumption of each part of the data center is critical for 

lowering its electric bill. However, before that, it is important to know the power 

measuring method and electricity bill model. Below are parts showing how the power 

has been used, measured, and charged in the data center. 
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Figure 1. Data Center Architecture and Power Supply connection with centralized UPS[6] 

2.2 Power Usage Efficiency (PUE) and Electricity Bill Model 

Power usage effectiveness(PUE) as shown in function (1) is the most popular metric 

used by the data center industry to represent energy efficiency, specifically, how 

much energy is used by IT equipment in the duration of month or year.  
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𝑃𝑈𝐸 =
Total Power Usage 

IT Power Usage
 (1) 

 

When the PUE equal to 1.5, it means that there is 0.5-watt power used in 

cooling or maintaining whenever there is a 1-watt power used on IT side.  As for 

showing in figure 2, Google's data center as PUE is around 1.12 which means on 

average, every 1 watt of IT power will need 0.12-watt supporting power.  

PUE in different data centers is influenced mainly by power saving 

technology on the cooling side and the outside temperature. For every data center, the 

annual PUE is almost a fix number respect to the local weather with the condition that 

the power saving technology is unchanged. 

Using the IT equipment energy consumption with the current PUE, the 

Datacenter power can approximately be determined. In other words, by reducing the 

IT energy (no degrade of performance), the total energy consumption for the data 

center will be reduced in the factor of the PUE. 
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Figure 2. Google data center PUE[5] 

 

The electric bill breaks down for data centers illustrates the main components 

of energy consumption with respect to the IT power. Figure 3 shown below depicts 

the data center energy consumption component and power loss portion. The red 

blocks are the overhead energy consumption component. The green blocks are the IT 

Energy which may also refer to producing energy. The black capital abbreviations list 

to the side of lines and blocks are the associated power consumption component with 

some representing power losses. 

As shown in Figure 2 and 3, Google’s data center can perform a roughly fixed 

PUE around 1.12. This means more than 80 percent of the power is used for 
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computing. Therefore, any reduction of power and energy on the server-side will 

dramatically reduce the total power and energy of the whole data center.  

 

Figure 3. Google Data Center Energy usage break down and category based on 

Computing Energy. [5] 

 

 

2.3 Electricity Bill Model 

After introducing the PUE as the power efficiency measurement metric, this section 

will introduce the electric bill model.  

As shown in Table 1, some electric companies define their pricing method as some 

combination of energy and power price 8]. As shown in Figure 4, energy is the 
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integration of the power trace with respect to the whole charging period (usually a 

month). The green shadow shown in figure 4 gives the energy usages for a given 

power trace in a data center. For calculating the peak power cost, first, the electric 

company defines its on-peak period in a day. It will then decide a time slot unit such 

as 5,10,15 or 30 minutes. The company will average the power for each time slot as 

the red dot shows in Figure 4, which gives the peak power for every time slot. All the 

red dots in the month will be compared, and the highest red dot will be the peak 

power for that month.   

Using the Duke utility company [9] as an example, the on-peak hour is 

defined differently for summer which is from June 1st to September 30th starting at 1 

pm to 9 pm and winter which is from October 1st to May 31st starting at 6 am to 1 

pm.  Within the on-peak hour during a day, the electric company will define the 15 

minutes to be the time slot and divides the on-peak duration into the 15 minutes slots.  

 

 

 

Table 1. Some Commercial US Electric Utilities Charging Table 
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Figure 4. Data Center Power Trace and Peak Power for a Day’s On-Peak Period 

 

The power demand for a specific time slot is the average power usage during 

it. As shown in Table 2, the company charges on-peak power demand at $17.0920  

during the summer and $10.0070 during the winter for the first 2000 kW of Billing 

Demand per kW, per month. The next 3000 kW will have around 2 dollars drops for 

both summer and winter, and for the power over the 5000 kW will again have the 

price drop around 2 dollars compared to the second range. With the study shown in 

[8], the peak power demand charge can get up to 40% to the electric bill in the data 

center. Therefore, finding a way to stabilize  power usage and shave the peak will 

save  large amounts of the electric bill. 

 

Table 2. Duke Utility Company Peak Power Charging Table 
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2.4 UPS Battery  

After knowing the data center electric measurement method, distribution and 

charging model, the result for shaving the peak power will be much valuable and use 

the Uninterpreted Power Supply (UPS) has been purposed for years to shaving the 

peak power.  

The UPS was initially designed to support the servers in a brief time interval 

around one minute during power outages until an emergency diesel generator turned 

on. The UPS battery can differ in structure types. One is the centralized UPS which 

uses Lead Acid batteries. They occupy a single room. The centralized UPS receives 

an alternating current and transfers it to DC current to store the energy. During the 

power outage, the centralized UPS battery will be discharging the stored energy in 

DC current and transferring that to alternating current back to the power supply unit 

in the data center. The centralized UPS will face two transformers and lead to two 

unnecessary energy lost. The other one is the distributed UPS which is frequently 

adopted by large company’s' data centers such as Facebook and Google. The 

distributed UPS used Lithium-ion battery most and placed on the server which 

supplies and charged to DC current with not transformation need. There is another 

reason makes the distributed UPS better than the centralized UPS which is the 

redundant problem. To increase the reliability and power support units inside, data 

centers need to have the redundant part which means there will be more centralized 

UPS and diesel generator. Adding redundant UPS is expensive not only to the data 

center structure space cost but also to the battery sets cost. However, the distributed 

UPS will not face the redundant problem due to a large amount of individual battery 
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attached to all the racks or servers. Having few dead UPS will not hurt the reliability 

of the whole data center and can be taken care on the software side. Therefore, this 

paper will focus on the distributed UPS battery structure. 
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Chapter 3 Literature Review 

In this chapter, the solutions to lowering the energy consumption and peak power 

demand charge will be introduced and analyzed.  

 

3.1 Lower Energy Consumption 

Lowering the energy consumed by all components of the data center is a major path 

that many scientists have been following with. They can be categorized by the target 

component: The server, the cooling system, and the energy producer. 

For reducing the energy used by servers, turning it on and off will make a 

significant difference. Servers in a data center are usually in a load of 10% - 15% 

workload which turn-off the server to various sleep models which save significant 

amounts of power. However, knowing the number of servers to provide at a certain 

time is hard, and it is even harder to predict the needed server in the future due to 

irregular incoming workflow and the weak up time. As [12] described, the current 

way is balancing the trade-off for the energy-performance. Turning off the server 

while it is idle and wake it up while traffic will save energy but hurts performance.  

Reducing the energy consumed to cool data centers has been the focus for the 

last decade. Various improvements have already been made most noticeably at 

Google which led to their low PUE[5]. The changes included changing the racks 

array into containers for battery airflow control [4], switching to cooler environments 

[13], and for raising the temperature inside the data center for less work on the 
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cooling side. There is also research focused on the free cooling technology to build  a 

data center in a cold place which uses the air outside to cool the data center [13].  

However, for an existing data center, changing their current cooling system means a 

completely new design and potentially  constructing  a new data center.    

Recently, the most popular solution for reducing energy costs is using green 

energy. Green energy such as solar, wind [14], have environmental benefits and can 

provide cheap power. However, the capital cost and location constraint of data centers 

are big drawbacks for using green energy [15].  

   

3.2 Lower the Peak Power Demand  

For the purpose of lowering peak power demand, UPS battery serves as the secondary 

energy source has been long introduced due to the perfect energy storage 

characteristic to meet the power budget. The cutting-edge technology for using the 

UPS energy still faces problems. As [7] described, current design about using UPS 

battery to shave the peak power introduces a large size lithium-ion battery and use a 

state machine with a fixed depth of discharge. When using a large battery, problems 

are the high price, large space for installing the battery and hard balance on the 

battery equilibrium effect. Without the ability to adjust the shaving value, the state 

machine policy will be vulnerable to the irregular incoming workload environment. 

The peak power shaving line needs a near perfect design to hold the peak power. The 

line will be hard to hold in the data center with the irregular workload and large 

amounts of servers provided.  If the battery fails to hold the data center’s new peak 
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power line, then the system’s benefits are wasted. If the new peak power line design 

is too conservative, then the peak power saving will not be the optima.     

In [11], the paper introduces physical battery control policy which accurately 

estimates the battery. However, the control policy does not have the ability to adjust 

the peak power corresponding to the data center power trace to find the best net 

saving.  
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Chapter 4 Peak Power Shaving Framework 

 

4.1 Power Shaving Approach to Ideal Case 

4.1.1 Introduce the Ideal Case   

The goal of this project report is to shave the peak power of  data centers during the 

on-peak period for the best net saving. The best net saving means to know how much 

peak power to shave at each time.  Thus, the peak shaving framework needs to adjust 

itself corresponding to the future power trace and battery capacity to make the smart 

decision to have the largest net saving. 

Figure 5 shown below is the ideal case. The new peak value is suitable for the 

UPS battery capacity because it can shave the peak power with its own energy. The x-

axis shows time that starts and end for a four-hour peak period in a 15 minute per slot 

fashion for a workday. The y-axis shows the power trace with the unit in kilo-watt. 

The solid blue line represents the power trace of the on-peak period for a regular 

weekday. The green shadow shows the energy supported by the UPS battery and red 

one shows the UPS battery charging stage.  

 

Figure 5. Ideal Case for unchanged Peak Value.  
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The upper yellow dashed line shows the original peak power and the lower yellow 

dashed line is the new peak power. For a random power trace, the new peak line 

means the battery can cover the energy above it, and the peak power is shaved to it. 

For this ideal case, the three-adjacent green shadow on the right side of the graph is 

the critical part which in this case determines the minimum battery size.    

Figure 6 shown below is modified base from Figure 5 which increase the 

value of the three-adjacent green shadow on the right side. This ideal case shows that 

the initial new peak line is not suitable for the UPS battery which means the battery is 

not capable of supporting enough energy to the server due to the irregular power trace 

in the data center. If the new peak line does not have the ability to adjust itself, then 

this graph will no longer show the ideal case, and the peak power demand will jump 

back to the highest point of the rightmost green shadow. Since this ideal case has the 

ability to adjust its new peak line to a new value, the peak power saving can be 

promised to an optimal situation that battery capacity can support. The ability to 

adjust the new peak line corresponding to the incoming power trace and battery 

capacity is the key to approaching the ideal peak shaving solution.   

 

Figure 6. Ideal Case for changed Peak Value.  
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4.1.2 Operation Approach to Ideal Cases   

As shown in figure 5 and 6, the key point behind the ideal case is to use the UPS 

battery to support the server while the power trace exceeds the new peak value chosen 

to have the best net saving for the peak power demand charge. The goal is to choose 

and maintain the new peak value which is difficult. However, when operating a data 

center’s UPS to achieve the ideal case in real time, there will not have the power trace 

in advantage. With the operation in the real time, the real capacity of the battery used 

for a long time is hard to estimate accurately. Even when the battery is new to 

estimate the capacity well, the data center will not have the data showing the future 

power trace telling. Without the future datacenter power trace, adjusting the New 

Peak line is impossible.  

Therefore, to approach to the ideal case, it is necessary to operate the data 

center UPS battery in real time to see how to achieve the ideal case which maintains 

the New Peak power line and adjust itself. As operating the UPS, assume it is the start 

time of the on-peak period and there is a New Peak value chosen ahead of time. Then 

at the time equals to the zero which means the starting of the on-peak period, there is 

no power trace for the future and no battery information. To maintain the New Peak 

Power, it is necessary to know if the energy stored in the battery is enough for 

pushing the peak power demand at the New Peak value. Then the prediction for both 

future power trace and battery capacity needs to be known. This is true for Figure 6 

case as well since the prediction of the future power trace, and battery capacity is the 

key reason to adjust the New Peak ahead of time. 
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4.1.3 Optical Net Saving    

The goal of this paper is to reduce data centers’ overall costs by lowering the peak 

power demand charge. The initial cost of UPS batteries must be considered when 

finding a solution . Equation 2 shows that net savings equal to the saving in peak 

power minus battery costs. 

 Net Saving = 𝑆𝑎𝑣𝑖𝑛𝑔 𝑖𝑛 𝑃𝑒𝑎𝑘 𝑃𝑜𝑤𝑒𝑟 − 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑜𝑠𝑡  (2) 

 

The costs saved by power shaving is the savings in peak power.  

The objective is to know the hypotheses battery cost for comparison. Knowing 

the cost of the battery is a challenging case which requires knowing each hypotheses 

operation cost. The problem becomes even worse when accounting the irregular 

usages behavior and the battery aging effect. If the battery is used with no regulation, 

then the price for individual battery operation will not be known until the time that 

battery dies.  

Knowing the battery cost for each operation is critical for operating the ideal 

case. As introduced in chapter 2, the lithium-ion battery life cycle and DoD have a 

direct mapping, therefore, if the battery can be set to a fixed DoD value and severing 

year, then the cost of each operation can be known by using the battery cost divided 

the life cycle for the corresponding DoD value. Additionally, since the life cycles and 

the serving years are fixed, the monthly or daily life cycle of the battery can also be 

determined.  
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In the end, the net saving function is presented in equation 3. The battery cost 

will be determined by accumulating all the cycle cost in the i-th month. And the n in 

the second accumulation upper bond means the battery usage cycles in a day.   

 

Net Saving(ith month )  

= 𝑆𝑎𝑣𝑖𝑛𝑔 𝑖𝑛 𝑃𝑒𝑎𝑘 𝑃𝑜𝑤𝑒𝑟(𝑖𝑡ℎ  𝑚𝑜𝑛𝑡ℎ )

− ∑ ∑ 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑦𝑐𝑙𝑒 𝐶𝑜𝑠𝑡  (𝑖𝑡ℎ  𝑚𝑜𝑛𝑡ℎ )

𝑛

1

30

1

 

(3) 

 

 

 

4.2 Power Shaving Framework Components Flowchart 

Since the key conditions for building the Power Shaving have already been discussed, 

the Peak Power Shaving Framework is build up and shown in Figure 7 which include 

the components and their flowchart. This flowchart shows its decision-making 

process.  

The components of the Peak Power Shaving Framework are the whole data 

center power trace, power trace predictor, battery pack history, battery capacity 

predictor, and shaving policy controller. The battery usage guide is the output control 

command of this Peak Power Shaving Framework.  

In the following sections, the component building process will be introduced 

including some necessary modification for the component. 
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Figure 7 shaving policy flowchart 

 

4.3 Whole Data Center Power Trace 

First, introduce the whole data center power trace. This component is serving the 

purpose of providing data center power trace history data for later predictor building 

up.   

The data source is called Google Data Trace [10]. As being one of the largest 

Internet Company in the world especially having its search engine and YouTube, the 

workload trace is valuable and large enough to represent a modern datacenter. The 

Google data center monitored in this trace contains 12.5K Servers with more than 10 

different server types. The data covers 29 days of task and job level activity every 

server. The Google cluster-trace data consists of job_events table, machine_attributes 

table machine_events table task_constraints table task_events table, and task_usage 

table. The event tables show the incoming job workload events with their respective 

time, event type, job and/or task id, machine id, request CPU, RAM, and DISK. The 

usage table shows the usage measurement of each task in a 5 minutes period for the 
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whole life of the task including CPU related measurement, Ram related measurement, 

and Disk related measurement. The task usage table is the largest and has the size of 

170GB.   

Google keeps this data trace in the hash and has released no information 

regarding the power usage trace. Therefore, there is no power trace data. However, 

the power trace for a data center's server group is made by the power usages for all 

the component inside a server which are CPU, RAM, and Disk. Knowing the usages 

of these resources is a good representation of the power flow in a data center. If the 

server model is released, the mapping between the resource usages trace and the 

power trace will be very easy to measure and record.  

Even though we do not have the direct power trace, the resources usages trace 

for the whole datacenter is enough to represent the flow of the power trace. The 

component now will be renamed as whole data center resource usages trace.   

 

 

4.4 Predictor 

The predictor will predict the resource usage for the data center; the predictor is also 

renamed as the Resources Usages Predictor. Currently, the state-of-art uses the 

Machine Learning method, such as linear regression, predict the workload for a data 

center [17]. It only predicts the workload of a data center on the scale of seconds, 

which is not suitable for our application which is in minutes. And the algorithm is 

lacking the ability to leverage the temporal relationship of the data. Therefore, this 

will be a base model.  
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The state-of-art algorithm for prediction is deep neural networks which serve 

as a black box. Some uses of deep neural networks include convolutional neural 

networks and recurrent neural networks, and long short-term memory(LSTM) neural 

networks. Convolutional neural networks are famous for picture detection. They also 

perform well when the data has a built-in spatial relationship. LSTM is used to 

remember historical information and forget useless information. This paper chose 

LSTM algorithms to make predictions. 

 

 

4.4.1 Understanding LSTM Networks 

Figure 8 shows how the LSTM has the ability to update itself with information that it 

inherits from before. The LSTM is a special kind of Recurrent Neural 

Network(RNN), which can learn dependency for a long time and forget unimportant 

information to avoid memory explosion. 

 

 

Figure 8. LSTM updating scheme 

 Figure 9 below shows details about LSTM inner structure. For a current 

operation, the LSTM will receive information from the last stage including cell and 
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hidden information. It will combine the information between current input, last output 

and last cell stage to make a decision regarding what information to remember, what 

to forget and what to output. The yellow square named layer is the memory cell. 

 

Figure 9. LSTM inner structure 

 

 

 

4.5 Battery Data 

The battery data [17] was collected by experiment on 7 different comparisons 

between high or low room temperatures, uniform distribution charge, and discharge 

or Uniform distribution discharge; Low or High probability on high discharging 

current. 

Each testing group contains  four individual 18650 battery cells and monitoring over 

6 months with measurements on the power, current, and temperature every 5-10 

seconds. The data was created into 19 battery state. The experiment focused on 
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modifying irregular discharging and charging behaviors to regular Lithium-ion 

batteries. 

4.5.1 Battery Predictor 

Battery fading has a high temporal correlation in these data sets. Therefore, the 

LSTM will serve as the battery predictor as well. The battery data will feed into this 

predator and output the end voltage of the battery which can be used to determine the 

capacity of the battery. This process is the first of its kind to our knowledge that uses 

the LSTM to predict the irregular DoD battery aging behavior. 

 

4.6 Shaving Policy Controller 

Due to the fact that there is no direct mapping between source usages (CPU, RAM, 

DISK) and power trace for the servers in the Google data center, the shaving policy 

controller will only consider based cases and will not do the evaluation  

The controller will determine whether to adjust the new peak line or not. It will also 

control whether break the Battery DoD limitation to use the remaining energy stored 

in the battery.  

As keeping the new peak line, the beginning of the month means less cost in battery 

and the end of the month means the large battery cost. Therefore, if at the end of the 

month, the new peak line can be maintaining for just breaking few times of the DoD 

to use the energy stored in the battery and at the same time the net saving is high, then 

the controller can be designed to allow certain DoD break. 
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Chapter 5 Evolution 

5.1 Google Data Preprocessing 

In this work, the LSTM was built with Keras [19] Python Deep Learning Neural 

Networks library that runs on top of TensorFlow [20]. In order to train data with the 

Keras, the data must be in a certain form. The Google trace data was on the task and 

job level, and in this step, it had been converted to the task level resources usage data 

to machine level resources usage data and checked for integrity and consecution. The 

goal is to know the power trace for a data center with a certain period, therefore the 

old task and job level measurement data will be not suitable for this objective.  

To increase the accuracy, the Google data trace is divided into 6 files 

according to its CPU and ram value. Therefore, for future implantation, the mapping 

between resources usages and power trace for the same type of server model will be 

available. Figure 10 shown below is the shaped data structure.  

The Data structure has 8352 lines with 18 columns for every file. X features include 

workload account, CPU, RAM request for all the 5 minutes, and time. 

Y includes average CPU or Ram usages in the 5 minutes. 

 

Figure 10.  Modified Google Data File Structure  
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5.2 Battery Data Preprocessing 

I chose the Uniform Distribution Discharge Room Temperature experiment which 

belongs to 1 of the 7-experiment group. The data has 4 battery sets. 

This experiment will randomly discharge the battery at a different time and constant 

current. Then will charge a battery at a constant current but the random period from 

0.5H to 3H.  

In order to make the prediction simple, I predict the end voltage for a known 

operation.  The X feature includes time start, time end, time steps, voltage start, 

current start, temperature mean, prior energy used, and total energy used. The Y is the 

end voltage. Therefore, there are 4 files for battery end voltage prediction. The data 

structure is (8352, 19) per file. 

 

Figure 11.  Modified Battery Data File Structure  

 

5.3 LSTM Data Converting 

The training was done using Tensorflow with Keras. Keras requests the input have 

the same length, and the data need to be three dimensional to inherit the historical 

data. The data will be warped in the fashion that includes data of X and Y in the input 

and predicts the next output. Using the look back window equals 4 as an example.  

Google Trace data should look like below. 

[[𝑥0
1, ⋯ , 𝑥0

17, 𝑦0],[𝑥1
1,  ⋯  𝑥1

17, 𝑦1],[𝑥2
1,  ⋯  𝑥2

17,  𝑦2],[  𝑥3
1, ⋯ , 𝑥3

17, 𝑦3] 
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[𝑥1
1, ⋯ , 𝑥1

17,𝑦1],[ 𝑥2
1,  ⋯  𝑥2

17, 𝑦2],[𝑥3
1,  ⋯  𝑥3

17,  𝑦3],[  𝑥4
1, ⋯,𝑥4

17, 𝑦4] 

⋮ 

[𝑥8348
1 , ⋯ , 𝑥8348

17 , 𝑦8348],[𝑥8349
1 , ⋯ 𝑥8349

17 , 𝑦8349],[𝑥8350
1 , ⋯  𝑥8350

17 , 𝑦8350], 

[  𝑥8351
1 , ⋯ , 𝑥8351 

17  𝑦8351]] 

[

𝑦4

𝑦5

⋮
𝑦8351

] 

 

 

5.4 LSTM Network Structure 

The figure 12 shown below is the structure used in this work that. It has multiple 

LSTM layers and is connected to a regression model.  

 The LSTM Network will first take in the information for the first sample including 

the y value for the first sample, then the second to fourth sample with their y value 

will be feed in serious and predict the fifth y value. This process repeats until 

reaching the end of the data.    
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Figure 12. Deep Neural Network structure for the Predictor  

 

 

5.5 LSTM Result on Google Trace data 

As shown in figure 13, below is the testing result for Google Trace Data using LSTM. 

The Mean Square Error for both training and testing data is 0. And the Root Mean 

Square Error is 0.6 for training part and testing part. Comparing to the linear 

regression algorithm base model, the training score of LSTM is 0.11 higher for MSE 

and 0.16 higher for RMSE, and the testing score is 0.14 higher for MSE and 0.22 

higher for RMSE.   

This improvement is related to the LSTM structure that can remember 

important historical information and learn the principle based on it. From this 

accuracy, it can be concluded that the resources usages in the data center for the 
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future 5 minutes are highly dependent on the past workload accounts, CPU request, 

ram request, and the resources usages history. 

 

Figure 13. LSTM Prediction Accuracy for Google Cluster Data  

 

 

5.6 LSTM Result on Battery data 

As shown in figure 14, below is the testing result for battery data using LSTM. The 

Mean Square Error for both training and testing data is 0 and 0.01. And the Root 

Mean Square Error is 0.07 for training part and 0.09 testing part.  

From this accuracy, it can be concluded that the battery capacity fading can be 

captured accurately using the LSTM algorithm with irregular charging and 

discharging behavior.     
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In the middle of figure 14, the orange line does not flow the two cases where 

the blue line jumped above the 1.0 normalization value. Since the 1.0 means the 4.2 

voltage of the battery, that two blue value must be mistakes and the LSTM is smart 

enough not to follow the fault value. 

 

 

Figure 14. LSTM Prediction Accuracy for Battery Data  
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Chapter 6 Future Work 

This work focusses on predicting the resources usage of the data center in a five 

minutes time slots and predicting the battery end voltage. Therefore, for the future 

work, there are more implementations we would like to work on, which will be listed 

below: 

• Predict the resources usages and power trace in the data center.  

• Build a deeper model to break the five minutes prediction limitation. The goal 

is to predict the future resources usages, power trace, and battery end voltage 

at least for the next fifteen minutes.   

• Predict the battery capacity from the end voltage or directly predict from the 

battery history information.  

• The accuracy model can shift the focus to the upper accuracy because the 

power exceeding the peak value line is more important.  
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Chapter 7 Conclusion 

The solution to the current UPS problem has been defined and evaluated. Without the 

ability to adjust the New Peak line, the expensive UPS battery will not be fully 

utilized.  

In this work, the Peak Power Shaving Framework has been established for 

adjusting Peak Power to achieve best net saving. The consisted components of the 

Framework has been well discussed with some necessary modification.  

In this work, the LSTM Neural Network has been adopted to predict the Data 

Center Resources Usage and achieve an accuracy increase of 22%. The LSTM Neural 

Network has been adopted to predict the Li-ion Battery Capacity and achieve an 

accuracy of 0.09 RMSE. 
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