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improvements for future experimental studies. These experiments resulted in total, form, 

and skin drag coefficients to be directly measured with the nominal trend of increasing 

form drag for increasing bubble diameter experimentally confirmed. The virtual mass 
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1 INTRODUCTION 

Nuclear power plants and reactors often employ the use of best estimate codes, such as 

RELAP5 or TRACE V5 [1], to perform reactor safety analyses. The use of computer codes 

allows for large and complex calculations to be performed relatively quickly and with a 

known degree of accuracy. Most of these codes perform their calculations by receiving the 

inputs of the systems operating conditions and evaluate state properties, boundary 

conditions, and solve conservation equations. These codes are capable of modeling two 

phase flow by using conservation equations of mass, momentum, and energy for each of 

the two phases. The balance equations for both phases interact with each other through 

“jump conditions”. These jump conditions are applied at the interfacial surface area of the 

two-phase fluid for interfacial forces such as drag, virtual mass, turbulent dispersion, and 

lift forces [2]. Modeling the interactions between the phases has historically relied on 

empirical and semi-empirical correlations, however analytical models can be implemented 

for simplified geometries such as spheres. These closure relationships were developed by 

performing a multitude of fluids experiments. When using an empirical approach, 

correlations are developed from experiments to be used to predict reactor and plant 

behavior. However, the limitation of this approach is that correlations are limited to being 

used only within the range of the experimental database they are developed from. 

 

Because best estimate codes are used to design nuclear power plants and for reactor safety 

analyses, the accuracy of these codes impact the safety margins they can operate at. This 

results from uncertainty propagation due to numerical implementation of mechanistic 

models and the accuracy of the experimental database used for the empirical correlations. 

This means that the error propagation from experimental uncertainty can be a limiting 

factor when determining safety margins. 

1.1 Motivation 

Experiments that developed empirical correlations typically relied on measurement devices 

such as probes, hot wire anemometry, and pitot tubes, which are intrusive and provide 



2 

single point measurements. An intrusive technique disrupts the fluid structure and provides 

limited information regarding the underlying flow pattern. This disruption of the fluid 

structure can cause deformation of each of the two phases that comprise the fluid and alter 

the flow’s velocity distribution which can result in large uncertainties in bias associated 

with the experimental data. 

 

However, there have been many advancements in fluid measurement technology that can 

reduce the uncertainty by obtaining more accurate measurements. One such advancement 

is particle image velocimetry (PIV). Particle Image Velocimetry is an investigative 

technique that uses a high-powered laser and high-speed camera to obtain non-intrusive, 

spatially resolved instantaneous velocity measurements within a flow field [3]. This 

eliminates the flow irregularities caused by typical intrusive measurements and reduces the 

uncertainty associated with the flow measurement. 

 

While computational capabilities have greatly increased, the improvement in the 

characterization of these experiments and empirical models have not increased 

equivalently. A reexamination of drag and virtual mass coefficient correlations can be 

performed with the PIV technique to possibly reduce the uncertainty associated with drag 

correlations and provide a better understanding of the virtual mass coefficient. Reducing 

the uncertainty associated with these relationships could further improve the modeling 

capabilities of these phenomenon in thermal hydraulic codes. 

1.2 Purpose 

The purpose of this study is to provide an evaluation of existing drag coefficient 

correlations and the virtual mass coefficient for a single bubble using the PIV technique. 

1.3 Objectives 

The objective of this thesis is to provide a quantitative error between experimental data and 

existing drag and virtual mass coefficient correlations by varying Reynolds number and 

bubble radius. The goal of this work is to demonstrate the reduced uncertainty by obtaining 
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improved velocity measurements to better characterize the phenomenon of drag in two 

phase flow. This study will proceed with the following objectives: 

• Construct an experimental flow loop which can control flow rate and bubble size 

to perform PIV measurements of a two phase fluid flow. 

• Perform experiments varying Reynolds number and bubble radius and obtain 

velocity field information around a single bubble. 

• Compare existing drag coefficient correlations using the experimental data. 

• Measure virtual mass coefficient for single bubbles 

• Perform uncertainty analysis based upon the experimental data. 

1.4 Document Overview 

This chapter discusses the context of the study and identifies motivation for the need to 

reexamine drag coefficient correlations. This document is organized with the following 

breakdown: 

Chapter 2: Literature Survey – This chapter will include a review of pertinent literature 

that describes two phase flow experimental techniques, drag coefficient, and virtual mass. 

The measurement techniques used by past researchers will be discussed and what impacts 

it made on the formulation of drag coefficient correlations. 

Chapter 3: Experimental Setup and Methods – The experimental setup used in this study 

will be described and a thorough explanation of the methodology implemented will be 

given. Justification and limitations of the methodology will be examined. 

Chapter 4: Results – Presents the results of the PIV experiments. 

Chapter 5: Discussion – Discussion of the results and phenomena observed from the 

experiment. 

Chapter 6: Conclusion – Contains concluding remarks on the study and discussion of 

significant finds and future work to improve the experiment. 
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2 SURVEY OF LITERATURE 

There has been extensive research into bubble systems and their dynamics, this chapter 

reviews the relevant literature on drag and virtual mass coefficients. Determining these 

coefficients has relied on various measurement techniques. These techniques are 

introduced with a description of their working principles, strengths, and limitations. 

Particle image velocimetry will be discussed with highlights for its selection as the 

measurement technique used for this study. 

2.1 Two-Phase Drag 

Drag force is the combination of pressure and frictional effects on a body to oppose its 

relative motion in a fluid. It is typically described by eq.(1): 

 21
2D D f rF C Au  (1) 

where 𝜌𝜌𝑓𝑓 is the density of the fluid surrounding the body, 𝐴𝐴 is the projected cross sectional 

area tangential to the direction of the drag force, 𝑢𝑢 is the relative velocity between the body 

and the fluid, and 𝐶𝐶𝐷𝐷 is the drag coefficient for the body in the flow system. In bubbly 

flows, the primary motion investigated is the rise of bubbles. As bubbles rise, they quickly 

reach their terminal velocity which is used as the relative velocity. There are three types of 

motion rising bubbles have: a rectilinear path, helical spiral, or a rectilinear path with 

rocking [4]. These motion types have been found to be largely dependent on the Reynolds 

number which depends on bubble shape [4], [5]. Drag coefficient on spherical solid 

particles, drops, and bubbles have been extensively studied by Cox (1962), Levich (1962), 

Taylor and Acrivos (1964), Wellek et al. (1966), and Soo (1970). 

 

An early comprehensive study on the motion of bubbles was performed by Haberman and 

Morton [4] to study air bubbles rising in various liquids. This study used eight fluids (water, 

glim solution, mineral oil, varsol, turpentine, methyl alcohol, corn syrup, glycerine-water 

mixtures, olive oil, and syrup), with water at two temperatures and filtered/unfiltered, and 

with corn syrup and glycerine at two concentrations. Observations of drag coefficient 
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dependent on surface contamination showed that pure systems had lower drag coefficient. 

The possible explanation was that surface contaminates eliminates the internal circulation 

and causes the bubble to behave more as a rigid particle (sphere) which has higher drag 

than deformable fluid particles. Figure 1, adapted from reference [4], shows the calculated 

drag coefficients based on measured terminal velocity for various liquids versus Reynolds 

number, eq. (2). Each liquid is plotted based by increasing Morton number, eq. (3). 

 2Re c e

c

Ur


  (2) 

 
4

3Mo c

c

g
 

   (3)  

The Morton number is unique for each fluid. It was shown that liquids with low Morton 

numbers 8Mo 10  all experienced minimum drag coefficients near Re=250 whereas 

liquids with high Morton numbers  2Mo 10  did not reach this same minimum and 

transitioned to spherical cap bubbles earlier than other liquids. 

 
Figure 1: Haberman and Morton measured drag coefficients for various liquids [4] 

The drag coefficient was high at low Reynolds numbers which corresponded to small 

spherical bubbles which follow Stokes flow. At small particle sizes a fluid particle behaves 

as a rigid particle which has higher drag than fluid particles as mentioned above. As the 
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equivalent bubble radius (𝑟𝑟𝑒𝑒) increases, the bubble shape transitions from spherical bubbles 

to an ellipsoidal shape because the inertial forces become larger than the surface tension of 

the bubble [6]. Spherical cap bubbles occurred in all liquid systems after a Weber number, 

eq. (4), of 20 was reached. 

 
22We c eU r


  (4) 

The drag coefficient for the cap bubbles were all independent of bubble size and equaled 

2.6DC  , with the terminal velocity only depending on the equivalent radius [4]. This 

indicated that after We ≥ 20 the drag coefficient of spherical cap bubbles did not depend 

on the continuous phase’s fluid. 

 

Harmathy’s early work related the drag coefficient of drops or bubbles to spherical solid 

particles [5]. An important aspect investigated is the effect of bubble shape on bubble 

motion and resulting drag coefficient. Harmathy notes that small fluid particles with a 

spherical or slightly ellipsoidal shape move in straight line (rectilinear) motion. When the 

particle becomes predominantly ellipsoidal and more distorted, the motion becomes more 

zig-zag and helical in its path. However, the magnitude of this oscillatory motion decreases 

with greater distortion. After enough distortion, the fluid particle transitions to a spherical 

cap bubble which has rectilinear motion again which was also observed by Haberman and 

Morton. Oscillating motion was seen occurring with Reynolds number larger than 500 and 

indicated turbulent flow conditions had been reached. Harmathy discusses that under 

turbulent flow conditions, the drag coefficient becomes independent of the Reynolds 

number over a wide range while retaining the same shape. Several prior publications 

reported that drag coefficient strongly depended on Reynolds number, however Harmathy 

notes that varying the Reynolds number for fluid particles often changes the particle shape. 

Harmathy stated that particle shape was the dominant influence on the drag coefficient in 

the turbulent flow regime, and results in the dependence of the Eötvös number (Eo), eq.(5)

, which compares gravitational and surface tension forces acting on bubbles or drops. 

 
2

Eo egD



  (5) 
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Harmathy noted that the zig-zag or spiraling path for ellipsoidal bubbles increases the drag 

coefficient of the bubble and developed a correlation, eq.(6), from experimental data to 

relate drag coefficient for ellipsoidal bubbles in an infinite medium to spherical particles 

in an infinite medium, eq.(7) [5]. 

  
1
2

,

1.29Eo ; Eo 13
o

s

C
C





   (6) 

 , 2

4
3

e
s

c

d gC
u






  (7) 

Where ,oC   is the drag coefficient for a sphere, u  is a sphere’s terminal velocity, c  is 

the continuous phase’s density,   is the difference in density between the continuous and 

dispersed phases, ed  is the equivalent bubble diameter, and g  is the gravitational constant.  

 

Moore derived a drag coefficient correlation, eq. (8), for spherical gas bubbles rising in a 

pure system by evaluating the viscous dissipation of the wake using potential flow [7]. 

However, if there was any contamination in the flow than the correlation breaks down 

quickly. 

 
5
6

1
2

48 2.21 Re
Re Re

DC O


                

 (8) 

This helped show how the level of contamination in the flow greatly affects the drag force 

experienced by the bubble. Wallis describes the relationship of terminal velocity and 

corresponding bubble radius [8], and suggested that in theory surface tension should be the 

only parameter distinguishing drops and bubbles from solid particles. However, the varying 

contamination between experimental datasets was considered to cause of the wide spread 

of data. 

 

Ishii and Zuber developed single bubble drag coefficient correlations based on over 1000 

experimental data points. This work summarized previously studied drag coefficient forms 

to describe drag on single bubbles to develop drag coefficient relations for multi-particle 

systems [9]. They defined the correlations, eqs.(9)-(12), based on four flow regimes: stokes 
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regime, viscous regime (undistorted particles), distorted particle regime, and spherical-cap 

regime which are listed below respectively with applicable ranges. 

 24 ; Re 1
ReDC    (9) 

  0.75 524 1 0.1Re ;1 Re 2 10
ReDC       (10) 

 

   0.5 0.75

2
0.5

0.50.5

36 2 1 0.1Re
Re

4 ;
3

cD e

c

N

gC r N

g





 



 



                          

 (11) 

 
0.5

8 ; 2
3D eC r

g



        
 (12) 

Equation (10) is very similar in form to a correlation, eq.(13), developed by Schiller and 

Naumann in 1933 [6]. 

  0.68724 1 0.15Re ;Re 800
ReDC     (13) 

Equations (9)-(12) are plotted in Figure 2, adapted from reference [9], and show the flow 

regime regions considered by Ishii and Zuber. The plot shows similar trends seen in Figure 

1, the transition to spherical cap bubble roughly follows the same shape and is shown to 

depend on the parameter N  which is described as the viscosity number. This number 

scales the viscous force of the dispersed fluid by the bubble’s surface tension [9]. Fluids 

with low viscosity numbers approximate solid particles for larger Reynolds numbers, 

because the surface tension forces are substantially stronger than the viscous forces which 

allows the bubble to act as a rigid surface. As described in Figure 1, the drag coefficient in 

the distorted regime reaches a minimum before it transitions to a spherical cap bubble. 

Unlike Haberman and Morton, Figure 2 shows that the minimum drag coefficient largely 

depends on the viscosity number. 
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Figure 2: Drag coefficient for single particle in infinite medium [9] 

Tomiyama et al., investigated drag coefficient on single air bubbles dependent on fluid 

properties, gravity, bubble diameter, and contamination of the continuous phase [10]. 

Spherical bubbles are categorized into three groups: pure systems, slightly contaminated, 

and contaminated. Because the bubbles are spherical, they exhibit rectilinear motions. 

Tomiyama et al., noted that in pure systems an internal circulation is formed which 

decreases viscous drag, which is noted by Harmathy as well [5]. A contaminated system 

causes the bubble interface to act as a rigid surface, and suggest that contaminated systems 

allow spherical bubbles to behave similar to solid particles [10]. The researchers modeled 

the drag coefficient for non-spherical bubbles as a wave propagation caused by the gas 

phase acting as a “disturbance” in the liquid phase. This disturbance causes a wave 

propagation that has a characteristic phase velocity. Because the bubble’s terminal velocity 

cannot be larger than its phase velocity, the limit on the terminal velocity becomes the 

phase velocity. The terminal velocity is then calculated as: 

 
 2 2

2
f g

T
f f

gd
V

d
 

 


   (14) 
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Using eq.(14) as the definition of terminal velocity and performing a force balance between 

the drag and buoyancy forces results in the drag coefficient being: 

 8 Eo
3 Eo 4DC 


 (15) 

This result was verified against experimental data by Clift, Grace, and Weber [6] for 

0.7 1.5mmd   sized bubbles. Three drag coefficient correlations, eqs.(16)-(18), for non-

spherical bubbles were subsequently developed for pure, slight contaminated, and 

contaminated systems. 

  0.68716 48 8 Eomax min 1 0.15Re , ,
Re Re 3 Eo 4DC

             
 (16) 

  0.68724 72 8 Eomax min 1 0.15Re , ,
Re Re 3 Eo 4DC

             
 (17) 

  0.68724 8 Eomax 1 0.15Re ,
Re 3 Eo 4DC

        
 (18) 

It can be noted that the drag coefficient correlations for pure systems are similar to the 

correlation derived by Moore [7], and contaminated systems include correlations from Ishii 

and Zuber [9]. 

 

Zhang, et al numerically investigated the effect of closure models for interfacial forces 

consisting of drag, lift and virtual mass [11]. Closure relations proposed by Tomiyama [12] 

for each interfacial force were compared to velocity data from 4 mm bubbles by Deen [13]. 

The drag coefficient correlation presented by Tomiyama differed from previous 

correlations and is shown with eq.(19): 

 
 
 

 2 4
3 3

2
2

2

Eo 1 E8 E
3 E Eo 16 1 E E

DC F 


 
 (19) 

 0.757

1E
1 0.163Eo




  

  
   0.5 0.51 2 2

2

sin 1 E E 1 E
E

1 E
F

   



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where DC  is the bubble drag coefficient, E and  F E   are functions of the Eötvös number. 

The drag correlation, eq(19), was shown to over predict the drag force on the gas phase 

when the bubbles were still low in the tank column and matched well as the bubbles rose 

higher into the tank.  

 

Kelbaliyev and Ceylan used the method of tangents to combine several drag coefficient 

correlations dependent on Re, Mo, and Eo numbers at low Reynolds numbers into a single 

correlation with a range up to Re=100 [14]. They noted that the drag coefficient of drops 

or bubbles continue to decrease as a function of Reynolds number until it reaches a 

minimum. According to Kelbaliyev and Ceylan, this minimum drag occured at eq.(20). 

 
1
6ReMo 7  (20) 

This indicated that shape deformation would occur at values larger than 7 [14]. 

Traditionally, correlations show that the drag coefficient becomes constant at higher 

Reynolds numbers, but these correlations do not factor shape deformation which alters the 

drag. 

2.2 Virtual Mass 

The virtual mass (also known as added mass) force of a particle is the force needed to 

“accelerate the apparent mass of the surrounding fluid phase when the relative velocity 

changes” [2]. The most commonly expressed form for the virtual mass force is shown in 

eq.(21): 

 g g f fVM
k VM g f

D u D u
F C

Dt Dt
 

      
  (21) 

where VM
kF  is the virtual mass force for either phase, VMC  is the virtual mass coefficient, 

g  is the dispersed phase void fraction, f  is the continuous phase density, the first 

material derivative term is for the dispersed (vapor) phase, and the second material 

derivative is for the continuous (liquid) phase. The virtual mass occurs in unsteady motion 

and is one of the two additional terms considered in the momentum equation, where the 

Basset force is the other term which describes boundary layer development resulting from 
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the acceleration. Lamb used potential flow theory to analytically derive the virtual mass 

coefficient for a rigid sphere which is 0.5VMC  [15]. This coefficient value has been 

traditionally used when including the force in two-fluid models.  

 

Zuber modified the momentum equation proposed by Bassett’s single particle accelerating 

in laminar flow model which used the same virtual mass coefficient as Lamb [16]. Using 

void fraction in this modification the virtual mass coefficient was expressed with eq.(22): 

 
1 21

2 1
g

VM
g

C








 (22) 

where g  is the dispersed phase void fraction. A factor that Zuber considered to determine 

the expression’s validity was that it returns Lamb’s virtual mass coefficient when 0g   

which causes 0.5VMC  . 

 

Wijngaarden and Jeffrey analyzed the effect of virtual mass on bubble clouds to determine 

the effective virtual mass of a bubble in a two phase mixture. Their potential flow analysis 

showed that a massless sphere moving in an impulsively generated flow causes the sphere 

to move with the three times the velocity it had in the uniform flow [17]. 

 

Geurst derived equations of motion for two phase flows, and derived a dispersion equation 

of the dispersed phase in the continuous phase which possessed two complex conjugate 

roots when the relative velocity difference is not too large. This suggested that two-phase 

flows that neglect virtual mass force will generally be unstable [18]. The equations of fluid 

motion were derived using Hamilton’s principle which uses a Lagrangian reference frame 

and resulted in the virtual mass coefficient being expressed as: 

  
ˆ1 2ˆ 1 1

ˆ2VM o o o
mC m

m
  

       
 (23) 

where o  is the void fraction, and m̂  is a parameter dependent on the flow. Spherical 

bubbles use ˆ 1m  , which show that the virtual mass coefficient goes to zero with a void 

fraction 0.333o  . The author suggested this showed that bubbly flow breaks down at 

that void fraction and transitions to another two phase flow regime [18]. 
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Felderhof analyzed virtual mass in two phase flows with linearized Navier-Stokes 

equations at low Reynolds numbers in an inviscid fluid with a potential flow analysis. This 

analysis found that the virtual mass coefficient of spherical particles suspended in a fluid 

can be a direct expression, eq.(24), in terms of an effective dielectric constant  . 

 1
2 3VMC 

 



 

 (24) 

The added mass determined from this approach did not match the induced mass term 

derived by Zuber except when the dielectric constant is approximated with the Clausis-

Mossotti value. Which results in 1   which causes the virtual mass to become identical 

with Zuber’s expression [19]. 

 

Mei and Klausner numerically modeled a stationary spherical bubble in a flow with small 

fluctuations in the free stream velocity. They found the added mass term to be directly 

proportional to the Reynolds as shown in eq. (25). 

 Re
18VMF   (25) 

They noted that at Re 6  the added mass force exceeds the Basset force and at Re 200  

the added mass greatly exceeds the Basset force by a factor of 64 at low frequency velocity 

oscillations which showed the more dominant effect from the added mass. However, the 

study is limited to its range of Reynolds number from 0.6 Re 200  , and assumes no 

deformation in the bubble shape [20]. 

 

Previous studies of virtual mass used potential flow theory to derive a virtual mass 

coefficient for bubbly flows, but did not include the influence of bubble wakes on the 

motion of bubble swarms. Sankaranarayanan et al. used a Lattice Boltzmann method to 

numerically model a bubble’s conservation equations [21] to compute virtual mass 

coefficient on bubble swarms of spherical, ellipsoidal, and spheroid bubbles shown by 

eq.(26). 

  1 0.37Ta 1
2VMC    (26) 
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0.23Ta ReMo  (27) 

Simulations were performed for various Tadaki numbers, eq.(27), to obtain a linear fit for 

virtual mass coefficient of a single bubble. They noted that the aspect ratio of a 

spheroid/ellipsoidal bubble can be correlated to a single bubble’s virtual mass coefficient 

and can account for variations produced by different Weber and Eötvös numbers. However, 

aspect ratio was determined to not be an appropriate measure to estimate virtual mass in 

uniformly spaced bubble swarms [21]. 

 

Ohl et al. investigated the effect of bubble expansion on the added mass. This was 

performed with a bubble force balance that allowed the bubble diameter to change with 

respect with time and resulted in eq.(28). 

  3 33 2
4

g f D
g f R R

dU dU CdR U U g U U
dt dt R dt R

      (28) 

Equation (28) modeled the added mass contribution with the inclusion of the second term 

on the right hand side. An experiment with an air bubble injected into a stagnant tank was 

used to compare the added mass modeled with eq.(28), and eq.(28) without the second right 

hand side term. The added mass model including the bubble expansion had good agreement 

with the rise velocity while the omitted model consistently over predicted the rise velocity 

[22]. 

 

Zhang et al, examined the impact of the virtual mass coefficient correlation presented by 

Tomiyama with a numerical comparison [11] to experimental data from Deen as previously 

described in section 2.1. The correlation used by Tomiyama [12] is shown with eq.(29): 

 
 

  

0.51 2

0.51 2 1

cos E 1 E

2E E 1 E cos E
VM

E
C



 

 


  
 (29) 

 0.757

1E
1 0.163Eo




 

where VMC  is the bubble’s virtual mass coefficient, and E is a function of the Eötvös 

number. The rise velocity for the liquid and gas phases were compared between the 

measured velocity data and the use of three different virtual mass coefficient inputs. The 
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inputs were a virtual mass coefficient of zero, the traditional 0.5VMC   value, and the 

coefficient calculated with eq(29). The study showed that there was no notable difference 

between either virtual mass coefficient correlation used, and suggested that the large impact 

of the interfacial lift force as the likely reason for no impact from virtual mass [11].  

 

Kendoush derived a semi-analytical correlation for virtual mass coefficient for oblate-

ellipsoidal bubbles noting that virtual mass changes based on shape. This led to virtual 

mass coefficients for spherical cap bubbles, but few solutions for ellipsoidal bubbles. As a 

result the author derived eq.(30): 

 
13 2

2 2 26.613 3 32 1 We 1 We 1 We
64 32 16VMC

                                                       
 (30) 
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As the Weber number approaches zero it results in the traditional 0.5VMC   value from 

potential flow theory. The semi-analytical correlation had good agreement with the work 

from Sankaranarayanan et al. up to a Tadaki number of 4.75 [23]. 

 

The virtual mass force is often included in simulations to add numerical stability [24]. 

Numerical instability can occur because the two-fluid model is an ill-posed system of 

partial differential equations (PDEs) and needs constitutive modelling. RELAP5/MOD3.3 

includes virtual mass but neglects the spatial derivatives of the flow’s material derivative 

[25]. The truncated form of the virtual mass force in RELAP5/MOD3.3 was compared to 

the Pauchon and Banerjee Model (P-B Model), which uses the material derivatives in 

eq.(21), with experimental data from Bernier which injects 5 mm bubbles into flow with 

varying liquid velocities [26]. For high void fractions RELAP5/MOD3.3 was seen to have 

PDEs more well-posed than the P-B model. Additionally, the RELAP5/MOD3.3 had slight 

over predictions of the experimental data which was attributed to the models choice of drift 

velocity correlation and not the truncated virtual mass force. However, Fullmer et al. did 

note that solutions still become unstable at high enough liquid fluxes. 
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2.3 Two-Phase Experimental Techniques 

There are numerous instruments used to measure relevant two-phase flow parameters such 

as interfacial area concentration, and liquid and gas velocities. Conductivity probes have 

been used to measure interfacial area concentration and gas velocities. Common ways 

liquid velocity is measured is with a rotameter, electromagnetic flow meter, hot wire 

anemometry, Laser Doppler Anemometry (LDA), or particle image velocimetry (PIV), 

although this list is not exhaustive. 

 

Hot wire anemometry (HWA) uses a very thin heated wire placed perpendicular to the 

main flow. The wire temperature is monitored with a thermocouple, and because of the 

cross flow over it causes convective heat transfer to occur along the wire. Typically, HWA 

uses a controller to keep the temperature of the wire constant, this is achieved by adjusting 

the voltage in a bridge and amplifier circuit. The flow velocity is then correlated to the 

bridge voltage [27]. Hot wire anemometers can provide different components of velocity 

based on how many wires are being used, one wire corresponds to one component of 

velocity, where a 3-wire anemometer can provide full 3-D information on the velocity 

vector. 

 

Double-sensor and four-sensor conductivity probes developed by Kataoka [28] have been 

used to measure the interfacial area and interfacial velocity of the vapor phase in two phase 

flow. For double-sensor probes, two parallel thin electrodes are offset by a known distance 

with the impedance measured between the probe tip and a common ground [29] When a 

vapor bubble passes through a wire, the difference in conductivity in the vapor compared 

to the liquid produces an increase in measured impedance. When the vapor bubble passes 

through the second wire it causes another pulse. The time between pulses and distance 

between wires is used to determine velocity. Limitations to the double-sensor include the 

requirement of spherical bubbles and a statistical approach to account for bubbles that miss 

one electrode [29]. The four-sensor conductivity probe can provide three components of 

interfacial velocity at a point but suffered from a large size which made it ineffective for 

flows with small bubbles. As a result, a miniaturized probe was developed to overcome the 
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size restriction [30]. Dang et al. used the miniaturized four-sensor conductivity probe to 

measure interfacial velocity, interfacial area concentration, and Sauter mean diameter with 

a total instrumentation uncertainty of ±11.9% [31]. 

 

Laser Doppler anemometry (LDA)/ laser Doppler velocimetry (LDV) is a non-intrusive 

measurement technique with a probe volume made up of laser beams and uses the Doppler 

effect to determine velocity. There are four main operational modes of LDA/LDV: 

spectrometer, reference beam, one beam, and fringe systems. The most widely used 

operation mode is the fringe system, which uses a laser beam split into two coherent beams 

which are crossed to create a fringe pattern with equally spaced bright and dark planes. A 

particle in the flow moves across this fringe pattern which scatters the light from the fringes 

to a photodetector which records the frequency the signal. Multiplying the signal frequency 

by the distance between fringes results in an instantaneous velocity measurement [32]. The 

spacing of the fringes are proportional to particle’s velocity and velocity magnitude 

determined is normal to the fringe probe volume.  

 

Advantages of LDA/LDV are the non-intrusive capabilities which are well suited to 

transonic, supersonic, and combustion flows. It can provide high spatial and temporal 

resolution with sample times on the order of a few microseconds and a probe volume 

smaller than the smallest turbulent flow scale. Disadvantages of using an LDA/LDV 

system is that it provides only local point measurements, requires optical access, and does 

not provide velocity information regarding the flow field or flow structure [32].  

 

Particle image velocimetry (PIV) is a non-intrusive laser measurement technique which is 

capable of providing spatially resolved flow velocities and qualitative flow visualization 

[3]. The basic working principle for PIV is the use of a high-powered light source to 

illuminate tracer particles suspended in a flow. The light is refracted by the tracer particles 

and recorded by a high-speed camera. Velocity field measurements are generated by 

observing the displacement of tracer particles between two frames recorded with a high-

speed camera, such as a CCD or CMOS camera. The field of view is discretized into 
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“interrogation windows” which are represented as a specific pixel resolution. The light 

scattered off of tracer particles is recorded as an intensity field. Image processing uses these 

intensity fields to determine the best statistical match of the image pairs. A correlation 

function uses these image pairs to produce a displacement vector; in addition, given the 

time between the two frames and the displacement vector, a velocity vector can be built. 

Repeating this process across all the interrogation windows enables the velocity field to be 

constructed. 

 

Figure 3: Typical PIV Planar System 

As with LDA/LDV systems, PIV does not provide direct measurement of the fluid but 

instead measures the seeding particles’ velocity. This makes accuracy of the velocity field 

dependent on the particle used to seed the flow. Unless the density of the tracer particles 

matches the fluid exactly, there will always be an amount of settling or rising of the 

particles. This is described as the velocity “slip” error between the particles and the fluid 

[33]. Equation (31) shows the velocity “slip” difference: 

 1
p o ov g





 u  (31) 

where 𝑣𝑣𝑝𝑝 is the particle velocity, 𝒖𝒖 is the flow velocity, 𝜌̅𝜌 is the particle density, 𝑔𝑔 is the 

gravitational constant, and 𝜏𝜏𝑜𝑜 is the time constant associated with the flow. This slip error 

can be associated with the Stokes Number (St): 
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where ou  is the flow velocity, p  is the particle relaxation time constant, and pl  is the 

particle’s characteristic length. The Stokes number is used to describe how well particles 

can follow the streamlines of a flow. Particles that have a St 1  are able to accelerate with 

the fluid when the flow changes, and able to match the streamlines very well which implies 

a reduction in velocity slip [34]. 

 

Brücker investigated the wake structure of rising spherical bubbles with a helical or zig-

zag pattern with Reynolds numbers up to Re=700 with a PIV system. The system used a 

continuous Ar-ion laser. It was noted that it was impossible to eliminate out of plane motion 

with bubbles rising in stagnant liquid. This resulted in a scanning laser sheet method to 

vary the vertical laser sheet’s horizontal position to ensure bubbles were mostly in the laser 

sheet and prevent out of plane motion issues. A high-speed camera was used at a 400 Hz 

framerate with a 512 x 512 pixel resolution and 512 number of frames. The field of view 

was 3 x 6 cm2 with interrogation window size of 32 x 32 pixels [35]. While the author was 

able to account for the presence of the bubble in their cross-correlation method, the only 

uncertainty estimation mentioned in the study was a maximum 5% uncertainty on 

determining the y-coordinate of a bubble’s centroid. Brücker also noted that the use of 

tracer particles acts as contaminants and causes the bubbles to behave as they would in a 

contaminated system. 

 

Deen examined 4 mm rising bubbles in a stagnant tank with PIV using rhodamin-B 

florescent tracer particles with a 75 µm diameter and 15 Hz Nd:YAG pulsed laser with a 

laser sheet 3 mm thickness. Images were captured with two Kodak Megaplus ES 1.0 

cameras with a 1008 x 1018 pixel resolution. One camera used an orange optical filter to 

filter out light with a wavelength below 590 nm and the other camera used a band pass 

filter to allow the 532 nm wavelength laser light to be captured which detected the gas 

phase. The PIV algorithm used in the analysis was compared to a synthetically generated 
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PIV image and compared the ability for the algorithm to calculate velocity fields to match 

the synthetic image, but an uncertainty on the velocity measurements was not presented.  

 

Hosokawa et al. calculated the pressure distribution around solid single spherical particles 

and single bubbles in Reynolds number ranges from 20 Re 61   in a glycerol-water 

solution with a 4 Watt Ar-ion laser PIV system to produce a 1.2 mm thick laser sheet. A 

pump was used to run counter current flow from the top of a test section to make the rising 

bubble stationary in the field of view. The test section was a square rod with a 30 mm 

diameter cylindrical hold to allow undistorted optical access with a round flow channel 

which allowed a two-dimensional axisymmetric flow assumption. The system measured 

the velocity of 3 µm diameter sized silicon dioxide tracer particles with a CCD camera with 

1024 x 1016 pixel resolution. Velocity measurements obtained had uncertainties of less 

than 5% which resulted in a maximum 20% error in the evaluated pressure distributions 

[36]. 

 

Ortiz-Villafuerte, et al used a PIV system to evaluate drag and lift coefficients of ellipsoidal 

bubbles in rising stagnant water over a Reynolds number range of 400 Re 650  . Air 

bubbles were injected into a 12.7 mm inner diameter pipe which resulted in wall effects 

contributing . Three charged couple device (CCD) cameras were used to recorded the PIV 

images, each camera had a maximum resolution of 640 x 480 pixels with a resolution of 

640 x 240 pixels for a 60 fps framerate with a 12.7 mm horizontal field of view [37]. The 

measured velocities in the axial direction had a reported 3% uncertainty and calculated 

drag coefficients had a reported 7% uncertainty. Large uncertainties on the lift coefficient 

led the researchers to note that cameras with resolutions larger than 1000 x 1000 pixels and 

higher framerates would greatly assist with reducing experimental uncertainty [37]. 

Visualizing the movement of a discontinuous vapor phase in a liquid has been performed 

with high speed cameras in past studies. Haberman and Morton used a close-up lens camera 

that had film speeds of 25, 50, and 35 frames per second with a 1.4 x 1.8 to 1.75 x 2.3 [in.] 

field of view [4] which was a comparable setup for Ortiz-Villafuerte et al.  
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2.4 Summary 

Drag coefficient for single bubbles has primarily focused on spherical shapes without much 

consideration for the effects of shape deformation. Drag coefficient correlations have been 

well developed for Reynolds numbers typically below 2Re 10 , above 4Re 10  which is 

a known constant value, and has been under examined in the order of magnitude range of 
2 310 Re 10  . Research into the virtual mass force on bubbles has primarily used potential 

flow theory with some work looking into bubbles in viscous flows. Correlations developed 

to model the virtual mass coefficient collapse down to Lamb’s analytically derived value 

which is typically used to approximate the virtual mass coefficient in computer codes. 

Similar to drag coefficient, the virtual mass coefficient has been studied for a range of low 

Reynolds numbers with few experimental studies performed. Studies for both coefficients 

that have relied on experimental databases to evaluate the analytical, semi-analytical, and 

empirical correlations developed typically did not report instrument uncertainty which 

affects the ability to quantify error in computer code validation studies. 

 

Two phase flow measurements have typically relied on point measurements, however LDA 

is capable of providing a non-intrusive measure. Particle image velocimetry has been used 

to non-intrusively study bubble flows to observe flow dynamics and velocity fields. These 

studies investigated rising air bubbles in either stagnant or flowing water systems within 

the range of Reynolds numbers observed for previous drag and virtual mass coefficient 

experiments. A majority of the PIV studies have suggested using higher camera resolution 

and framerate to greatly reduce experimental uncertainty. The suggested experimental 

improvements and review of relevant literature has shown a region of interest that will be 

investigated with this study. 
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3 EXPERIMENTAL FACILITY 

This study was performed with the Bubble Investigation Loop (BIL), shown in Figure 4, 

which is a non-heated recirculating water flow loop. The loop uses a rectangular acrylic 

test section which provides optical access to the flow. This test section has a bubble 

injection system attached to the bottom of the section which can inject varying sized 

bubbles into the flow and imaged with the PIV system. A pump is used to recirculate 

counter-current flow to the bubble rise and controls a bubble’s rise time. The PIV system 

includes a high-speed camera mounted perpendicular to one of the test sections sides, a 

laser is positioned to send a light sheet into the test section which is also perpendicular to 

the camera. In addition to the PIV system, other instrumentation includes a thermocouple, 

flowmeters, static pressure transducer, and a differential pressure transducer provide 

supplementary flow information needed to obtain thermophysical properties of the fluid. 

 

Figure 4: Bubble Investigation Loop 
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3.1 Facility Description 

The facility design is centered on the acrylic test section used to investigate the rising 

bubbles. Acrylic was chosen for its low cost and optical access with a similar refractive 

index to water. The test section has a 3in. x 3in. inner cross section, 3/8 in. wall thickness, 

and 40 in. height. This cross-sectional area was chosen to minimize wall effects on the 

bubbles and manufacturing cost; while the height was selected to reduce entrance effects 

from the inlet at the top of the test section.  

 

Flow is circulated up through the piping on the pump’s discharge side to the top of the 

facility and down through the test section to provide counter-current flow on injected 

bubbles rising. Flow rate is controlled using a Variable Frequency Drive (VFD), additional 

flow control is provided with a bypass loop which can redirect a portion of the flow back 

to the pump suction side without having to travel through the test section.  

3.2 Instrumentation 

Thermophysical properties for the fluid flow were obtained using pressure and temperature 

instruments. Table 1 lists the instrument specifications. An Omega K-Type thermocouple 

with a 304 SS sheath and 1/16” diameter was used to record temperature on the pump 

suction side. Because the BIL is an unheated system only one thermocouple was used. An 

Omega gauge pressure transducer was located next to the thermocouple for installation 

ease, and an Omega PX-409 differential pressure transducer has its instrument line taps 

also on the pump suction side and immediately after the pump discharge side. This location 

was selected because the minimum and maximum pressures in the system occur there. 

Instrumentation readings were recorded using a National Instruments (NI) cDAQ-9174 

chassis and LabVIEW software. The uncertainty of a single measurement can be evaluated 

by taking the square root of the sum of the squares of sources of uncertainty which is shown 

in eq. (33), where x  is the uncertainty for a measured value, and i , j , and k  are various 

sources of uncertainty. 

 0.52 2 2
x i j k       (33) 
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This takes the square root of the sum of the instrument and data acquisition system (DAQ) 

errors squared. The instrument error is approximated from the accuracy reported by the 

manufacturer and the DAQ error comes from the reported errors from the NI modules used 

to record the instruments signals. Because the instruments are connect to a DAQ, the 

resolution error is instead the quantization error associated with the number of bits the 

module can use to record values. When determining the uncertainty contributed from the 

NI modules, quantization error was neglected due to its uncertainty values being on the 

order 10-6 which was substantially smaller than the modules’ gain and offset errors. It is 

important to specify that the uncertainty for the flowmeters neglects the DAQ uncertainty 

from its corresponding NI-9205 module. The reasoning for neglecting the DAQ uncertainty 

is based on how flowrate is calculated. The turbine flow meters generate voltage pulses 

from a magnetic tip on the turbine blade passing a pick coil hosed in the meter. This voltage 

pulse is read by the NI-9205 module and sent to LabVIEW. A LabVIEW application 

performs a Fast Fourier Transform (FFT) on the voltage signal to determine a pulse rate 

which is then multiplied by a calibration factor to convert pulse rate to flow rate. Because 

the flow meters are not critical instruments, did not provide data used in any calculations, 

the difficulty in prorogating uncertainty through an FFT analysis, and the low uncertainty 

of the module itself, the DAQ uncertainty was neglected when evaluating the flow rate 

uncertainty. Additionally, the meters provided a qualitative check to identify the major 

flow path when the bypass loop was opened to prepare the flow loop for testing. 

Table 1: Instrumentation Specification 

Instrument Manufacturer Model Number Range Instrument 
Uncertainty  

K-Type 
Thermocouple Omega KMQSS-062U-4 –270 to 

1372°C ±2.2oC 

Differential 
Pressure 

Transmitter 
Omega PX-409-030DWUI 0-30 psi ±0.08% of 

reading 

Gauge Pressure 
Transducer Omega MMG030C1P4C0T3A5CE 0-30 psig ±0.20% of 

reading 

Flow Meter Omega FTB-103 1.25-9.5 
gpm 

±0.5% of 
reading 

Flow Meter Omega FTB-108 8-130 
gpm 

±0.5% of 
reading 
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Table 2: Data Acquisition System Uncertainty 

Module Manufacturer Model 
Number Range DAQ 

Uncertainty  
Uncertainty 

Value 

Current Input National 
Instruments NI-9208 ±22 mA 

Gain ± 0.167 mA 

Offset ± 0.0088 
mA 

Total:  ± 0.228 psi 

Voltage Input National 
Instruments NI-9205 ±10 V 

Gain ± 4.76 mV 
Offset ± 1.40 mV 
Noise ± 0.072 mV 
Total: ± 6.23 mV 

Thermocouple National 
Instruments NI-9214 ±78.125 

mV 

Gain ± 0.117 mV 
Offset ± 0.008 mV 
Noise ± 0.22 µV 
Total: ±0.3625oC 

 

3.3 Particle Image Velocimetry System 

The primary measurement technique used in this study was a Dantec Dynamics PIV 

system. This system consists of the following main components: laser, laser optics, high 

speed camera, speeding particles, synchronization and timing box. Dantec DynamicStudio 

software was used to control the laser, camera, and synchronization. The laser and camera 

specifications are listed in Table 3 and Table 4 respectively. Optics supplied from Dantec 

Dynamics are used to diffuse the beam into a laser sheet. The SpeedSense camera operated 

at a 1920 x 1200 resolution, with a 400 Hz framerate, and could store a maximum of 427 

image-pairs. Spatial calibration was performed by lowering a 0.75 inch ball attached to the 

base of a 0.25 inch diameter rod into the PIV field of view where an image capture could 

be taken and used to measure the scale factor. Polymethyl-methcrylate (PMMA)-

Rhodamine-B fluorescent tracing particles ranging from 1-20 µm diameter were used to 

seed the flow and eliminated glare from the bubbles by using an optical filter that only 

allows the fluorescent wavelength emitted by the particles after receiving the light sheet. 

The particles gave the water a pink hue as visible in Figure 5 and Figure 6. 
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Table 3: PIV Laser Specifications 

Manufacturer Litron Lasers Ltd. 

Model LDY304 PIV 

Type Nd:YLF 

Wavelength Emitted 527 nm 

Pulse Duration 100 ns 

Pulse Frequency 0.2-20 kHz (each cavity) 

Maximum Power 150 W 

Beam Diameter 5 mm 

Beam Divergence < 3mrad 
 

Table 4: High-Speed Camera Specifications 

Manufacturer Phantom 

Model Miro320S SpeedSense 

Camera Sensor CMOS 

Resolution 1920 x 1200 

Pixel Size 10 μm 

Bit Depth 12 

Frame rate 400 fps 
Maximum Framerate @ Max 

Resolution 1380 fps 

 

3.4 Bubble Injection System 

The injection system needed to repeatedly inject bubbles of known volume into the flow 

field. Figure 5 and Figure 6 show the injection system’s components comprised of a 

syringe, tubing, and a coalescence device. A 5 mL capacity syringe and 0.5 mL capacity 

syringe were used to allow variable bubble. In both figures, the syringe is attached to a 

three-way valve which allows the syringe to be filled with air and opened to inject the air 

into the test section. The coalescence device allowed injected bubbles to form larger 
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bubbles instead of dispersing a stream of small bubbles which can be rotated to release the 

bubble into the flow field. 

 

A range of bubble volumes were achieved based on the use of two different syringes and 

accompanying tube sizes with specifications shown in Table 5. The expected minimum 

spherical equivalent bubble diameter was determined using Tate’s Law [38], shown in eq 

(34), 
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 (34) 

where bd  is the spherical equivalent bubble, nd  is the tube diameter the bubble emerges 

from,   is the surface tension,   is the density difference between bubble and fluid, and 

g  is the gravitational constant. This equation is used to estimate the diameter a bubble will 

form based on the tube diameter it is injected from. This was used to determine the 

minimum volume from a syringe that can be injected before a bubble is formed. The 

different syringes provide different levels of resolution which aids in keeping instrument 

uncertainty for the syringes lower when dealing either small or larger bubbles. The 

resolution uncertainty was approximated as half of the syringe’s resolution. 

Table 5: Bubble Injection System Specifications 

Setup Parameter Setup 1 Setup 2 

Syringe Capacity 0.5 mL 5 mL 

Resolution 0.005 mL 0.1 mL 

Resolution Uncertainty ± 0.0025 mL ± 0.05 mL 

Tube OD 1/16” 1/8” 

Wall Thickness 0.02” 0.028” 
Minimum Bubble 

Diameter 2.9 mm 4.8 mm 
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Figure 5: Injection System with 5 mL Syringe 

 

Figure 6: Injection System with 0.5 mL Syringe 
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4 METHODOLOGY 

A method has been developed to acquire instantaneous velocity fields around a bubble and 

calculate its associated drag coefficient and virtual mass reported on a Reynolds number 

basis. 

 

Prior to every data collection, a calibration image of the 19.05 mm ball in the field of view 

was captured. This calibration image provided the particle pixel displacement length scale 

when evaluating velocity. The bubble images were acquired with the PIV and bubble 

injection systems described in. A known bubble volume is injected into the coalescence 

device. The Rhodamine-B seeding particles have a slightly larger density than water which 

made settling more noticeable. The pump was run to ensure mixing of the particles in the 

fluid occurred prior to any data collection. The Dantec Dynamic software allows the 

particle density to be calculated and was used to ensure the recommended 8-10 particles 

per interrogation area [3] was achieved. The pump would continue to provide counter 

current flow at roughly 100 mm/s to the injected bubbles which stabilized the helical rise 

and increased its time in the camera’s field of view. This flow speed choice was determined 

from visual inspection and balanced stabilizing the bubble’s rise while not changing the 

rise trajectory because of the turbulent flow characteristics. Once the coalescence device 

was rotated to release the bubble, the PIV system was initiated to capture the image pairs 

of the bubble while it moved through the field of view. The system used a high frame 

collection rate of 200 Hz with a 1 ms time between each laser pulse for an image pair. 

 

Because the bubble is not included with the particles when analyzed in the correlation 

method, the bubble is masked and not treated as a region of interest for the correlation 

method. This prevents unrealistic and erroneous velocity vectors from being produced due 

to an interrogation area going from a defined seeding density to no seeding density where 

the bubble is located. After masking the bubble, the Dantec Dynamics DynamicStudio 

software calculated the velocity field for each image pair. In PIV, the velocity is calculated 

by performing a spatial correlation, also known as a cross-correlation. During data 

collection, two quick successive images are captured and treated as an image pair with each 
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frame having an associated light intensity distribution across it which appears as the 

greyscale image. The location of light intensity peaks represents the physical location of 

the tracer particles. The image frames are divided into interrogation area windows where a 

cross correlation is performed on each interrogation area. The cross correlation between 

the two exposed image frames is performed in each interrogation area with eq. (35) which 

calculates correlation coefficient between the intensity peaks location in each image frames 

interrogation area.  

      1 2R d  s X X s X  (35) 

where 1  and 2  are the weighted light intensity distributions for the interrogation area in 

frame 1 and frame 2, X  is the position vector of the intensity peak, and s  is the 

displacement vector of the intensity peak between the two frames. The maximum 

correlation coefficient,  R s , represents the average in-plane displacement and provides 

the two velocity components for the flow in that interrogation area. Figure 7 shows an 

example correlation map with a high peak located off the center which provides the 

displacement vector of the particles in this interrogation area. The correlation map also 

shows the ratio of the highest peak to the second highest peak, referred to as the SN ratio, 

and provides the normalized height of the maximum peak. 

 

Figure 7: Example cross-correlation map 
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The software used an adaptive-PIV correlation which performs a cross correlation and 

iteratively adjusts the size and shape of interrogation areas to ensure a predefined seeding 

density in that interrogation area is achieved. A maximum and minimum pixel interrogation 

area size of 64x64 and 16x16 were specified respectively, where the first iteration of the 

analysis uses the maximum interrogation area and subsequently can divide the 

interrogation area by two after each iteration if the seeding density is higher than the 

predefined seeding density value. A peak height validation process and correlation peak 

signal to noise ratio was used to accept, reject and substitute rejected spurious velocity 

vectors. The peak height validation process input defines a minimum height that a 

correlation peak must be above to be accepted. The correlation peak signal to noise ratio 

takes a ratio of the tallest and second tallest correlation peaks and evaluates them against 

another user defined input. A ratio greater than or equal to the input results in an accepted 

vector. A signal to noise ratio of 2 was selected based on recommendations of threshold 

values of 1.2 [39]and 2 [40] being able to reliably avoid spurious vectors being accepted. 

The correlation method requires that both the peak height and signal to noise ratio 

processes pass to accept the calculated velocity vector. The exported data contains the 

Cartesian coordinate of the vector, x and y velocity components, and status to indicate if 

the vector is original, substituted, or rejected. The rejected status is used to indicate what 

region in the image had been masked. 

4.1 Drag Coefficient 

The drag force and respective coefficient are determined by calculating the total drag and 

form drag. The total drag force has been traditionally calculated by the steady state force 

balance between the buoyancy and drag force as seen in eq. (36)-(37). This force balance 

is used to directly calculate the total drag coefficient, eq.(38), which only requires the 

estimation of the equivalent spherical bubble diameter and the relative bubble velocity. 

This approach is consistent with past studies methodology [4]. 

 B DF F  (36) 

   3 2 21 v
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Because PIV has the ability to measure the velocity distribution around the bubble, it allows 

the force distribution surrounding the bubble to be calculated. This can provide direct 

calculation of the form drag and allows the contribution of skin drag for each bubble to be 

determined as well by subtracting the form drag force from the total drag. The form drag 

coefficient is calculated using eq.(39), where the force ,formDF  is obtained by the surface 

integral of the pressure field surrounding the bubble. 

 ,form
,form

2 21 v
2 4

D
D

f e r

F
C

D



    

 (39) 

The surface integration for force ,formDF , is shown in eq. (40), which requires the pressure 

field P  around the bubble surface.  

  ˆF P n dS 


 (40) 

The pressure field can be determined from a rearrangement of Navier-Stokes equation for 

the pressure gradient term, eq.(41), and then integrated between two points, eq.(42).  

 2v vDP
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 
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The velocity components, location and mask location were imported into the queen2 

algorithm, developed by Dabiri et al. [41], which calculates a pressure field and was 

developed to handle “substantial body deformation characteristics” [42] and was verified 

against swimming deformable bodies such as jellyfish. This algorithm and application was 

considered ideal to handle the unstable bubble surface. The algorithm integrates the Navier-

Stokes equation along a line integral to calculate the pressure at a point in the field of view. 

The pressure at a single location in the field of view is evaluated by performing eight line 

integrals from the left, right, top, bottom boundaries and from the upper left, upper right, 

lower left, and lower right regions of the field of view. The pressure is determined from a 

median polling to reduce the sensitivity to outliers. The median polling takes the top two 
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median values and averages them to obtain the final pressure value at the location point of 

interest. This process is repeated at every velocity vector location in each frame. Because 

the algorithm calculates the velocity’s material derivative, it truncates the last frame to 

implement the finite differencing scheme that evaluates the temporal derivative in the 

material derivative. An important element of the algorithm is its assumption of a zero 

pressure boundary condition at the edge of the field of view which results in final calculated 

pressures relative to this zero pressure boundary. However, this limitation on the pressure 

field calculation does not impact this study because the force on the bubble only relies on 

relative pressure differences 

 

A Matlab script was used to perform a numerical surface integral of the pressure along the 

bubble’s masked boundary. First a line integral is numerically approximated by 

multiplying the pressure value by the horizontal and vertical cell widths to obtain the 

vertical and horizontal force per length components respectively in each cell along the 

bubble mask. Subsequently, an azimuthal symmetry assumption was made to complete the 

surface integral and calculate the force exerted on the bubble. This required obtaining the 

masked bubble’s centroid and determining the surface cell’s distance from the centroid to 

each location along the two-dimensional bubble surface. The force per length value at each 

bubble surface position was rotated about the centroid’s axis to complete the surface 

integral. Figure 8 shows an example revolution of each side of the masked bubble image. 

Because pressure information is provided on both sides of the bubble mask, each side is 

rotated 180 degrees as shown with the black and red arrows with their respective revolution 

paths. This preserves as much of the original geometry provided by the planar image; 

however it does not represent the true bubble surface area and is a limitation of using planar 

PIV. 



34 

 

Figure 8: Pressure surface integral geometry diagram 

This assumption was considered necessary because planar PIV prevents information from 

being known outside of the light sheet plane. The bubble velocity was found by tracking 

the bubble mask’s centroid and using the distance travelled between frames to obtain the 

bubble’s horizontal and vertical velocity components. Because the drag force acts opposite 

to the direction of motion, the bubble velocity components were used to find the unit vector 

opposite of the bubble’s direction. Figure 9 shows an example vector component 

breakdown for determining the unit vector and the dot product between the calculated force 

on the bubble and the unit vector to determine the form drag force contribution (highlighted 

in red) to the net force.  

 

Figure 9: Example drag force component determination 

After determining the form drag force components and net force, the drag coefficient could 

be found with eq.(39). It is important to specify that the cross-sectional area was based on 

z 
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the bubble’s spherical equivalent diameter to provide a consistent reference area. This 

assumption introduces a source of error in the drag coefficient calculation since the cross-

sectional area of the ellipsoidal/distorted bubbles do not match. Because the equivalent 

surface area is based on a sphere of the same volume, it will produce a larger projected 

cross-sectional area. This will cause the calculated drag coefficient to be under predicted.  

However, it is typical to report drag coefficient against the spherical equivalent Reynolds 

number to allow a consistent comparison of different experimental databases. This process 

was repeated for each frame in a trial and time averaged to produce an average drag 

coefficient for each trial with a specific spherical equivalent bubble diameter.  

4.2 Virtual Mass Coefficient 

The virtual mass coefficient is a non-dimensional form of the added mass a bubble carries 

with it after an acceleration or deceleration. The virtual mass coefficient has traditionally 

been treated as the analytical 0.5VMC   value derived from a spherical potential flow’s 

kinetic energy. The added mass represents the influence of an object to the fluid’s original 

kinetic energy. Lamb’s derivation [43] of the spherical potential flow case used eq (43): 

 1
2f fKE dS

r


 



  (43) 

where f  is the fluid density,   is the potential flow function for a sphere, and the 

integration is performed over the sphere’s surface area. The surface integration was 

converted from a volume integral over the entire fluid domain using Greens Theorem. This 

step allowed an easier analytical integration to be performed by changing the reference 

frame to the sphere as opposed to the fluid domain. Because these two integrals are 

equivalent, the kinetic energy of the fluid can be found by numerically integrating the 

kinetic energy in each discretized cell of the flow domain as shown in eq. (44)-(46) 
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where ix  and iy  are the field of view’s horizontal and vertical cell widths respectively, 

ir  is the cell center’s distance from the centroid location, iu  is the measured velocity of a 

cell, and U  is the freestream velocity. It is important to specify that while the kinetic energy 

of the relative velocity is not equivalent to subtracting the freestream kinetic energy from 

the measured flow kinetic energy, the integration of both kinetic fields are equivalent. Both 

the relative and freestream velocities are obtained from a flow solution such as potential 

flow or PIV data. The volume is determined from the  i i ix y r   term and is calculated 

similar to the drag force. It is revolved only 180o degrees about the centroid along the axis 

parallel to the freestream direction to preserve information on both sides of the bubble 

surface and retain as much of the bubble geometry as possible. The added mass in this form 

can be thought of as the summation of the flow domain’s velocity-weighted mass based on 

the relative kinetic energy in the flow. Similar to the drag force calculation, the added mass 

calculation relies on an azimuthal symmetry about the bubble’s centroid. After calculating 

the added mass, the virtual mass coefficient is determined by dividing the fluid mass 

displaced by the bubble as shown in eq. (47): 
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VM disp f eq
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   (47) 

where f  is the liquid density, and eqD  is the equivalent spherical bubble diameter. 

Equation (46) in conjunction with eq (47). was verified against Lamb’s analytical 

0.5VMC   value for potential flow around a sphere. The flow domain and spatial resolution 

was varied over a large range of both domain sizes and resolution to determine if the 

method converges on the analytical value regardless of how large the domain is. Figure 10 

shows the calculated virtual mass coefficients converges to the predicted 0.5 value for 

various domain sizes and flow domain resolutions. 
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Figure 10: Predicted virtual mass coefficient for spherical potential flow 

Each line plotted was for a particular square domain size of an integer multiplied by the 

sphere’s radius (R). A square domain was used to make equal cell sizes in the x and y 

directions. The potential flow analysis identified a grid size spacing normalized by the 

object radius ratio of 0.05y R   is needed to have agreement with the analytical solution. 

It also showed that a domain size below four times the radius from the sphere’s center was 

not large enough to calculate the analytical virtual mass coefficient as well as the remaining 

larger domain sizes did. 

 

A similar analysis was performed on a half cylinder to confirm the two-dimensional case 

for an infinite cylinder. A distinct difference between the potential flow solution for virtual 

mass on a sphere and a cylinder is the reduction of the volume integral over the flow 

domain to a two-dimensional cross sectional area of the same flow domain. Figure 11 

shows a kinetic energy per unit length spatial map for potential flow over a stationary 

cylinder with a uniform inlet velocity. The acceleration across the topside of the half 

cylinder is readily apparent and the stagnation point on the half cylinder’s front and 
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backside. The kinetic energy map provides a clear visualization of the kinetic energy 

influence from the stationary cylinder’s presence in the flow field. The integrated kinetic 

energy difference between the potential flow and freestream flow without the cylinder 

when normalized by a reference kinetic energy quantifies the cylinder’s virtual mass. 

 

Figure 11: Infinite cylinder kinetic energy per unit length spatial map 

Equation (48) shows this kinetic energy difference definition for the virtual mass: 

ref

f o
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KE KE
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KE


  (48) 

where fKE  is the flow domain’s integrated kinetic energy, oKE  is the flow domain’s 

kinetic energy without the object, and refKE  is the reference kinetic energy such as the 

kinetic energy of the object moving with the freestream’s velocity. In the case of a 

stationary flow field and a moving object, the flow domain kinetic energy term is zero. For 

the case of both a moving object and fluid, a relative velocity is used to make either the 

object or fluid stationary. Appendix B: Potential Flow Kinetic Energy Proof provides a 

proof showing that there is not a dependency on the reference frame used to evaluate the 

velocity in the flow’s kinetic energy. 
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Because potential flow can leverage an analytical flow field, the kinetic energy difference 

in the freestream location is exactly zero. However, actual velocity data collected from PIV 

will have some amount of noise which prevents the kinetic energy difference in the 

freestream from ever reaching zero. To prevent this noise from artificially increasing the 

added mass in the flow domain, two modifications were made. The flow domain size 

integrated over can be varied by using integrating over a small layer surrounding the 

masked bubble. The added mass is then calculated using eq.(46) over the volume of the 

small layer. The size of the layer is then increased by the length of a single cell and the 

volume integration is repeated. This process continues until the added mass does not 

change by 10% between to two layers. The shape of the layer was determined to not 

influence the calculated added mass. The second modification was the use of a threshold 

for the squared velocity difference. If the difference between the measured fluid velocity 

squared in a cell was at least larger than 10% of the freestream speed squared the velocity, 

 2 2 20.1iu U U  , the cell’s kinetic energy would be considered in the added mass 

calculation, otherwise it would be assumed to have no kinetic energy contribution. 

4.3 Sources of Error 

Particle image velocimetry can provide a high-resolution quantitative velocity field with 

minimal intrusiveness. However, there are numerous factors that influence the accuracy in 

the calculation of the velocity vectors. Some contributions include the physical calibration 

length, camera optics, laser beam width, particle lag, and seeding density, however this list 

is not exhaustive. A source of error in planar PIV measurement comes from the out-of-

plane motion that the flow has when capturing light intensity from the particles in the laser 

plane and the particles leave perpendicular to the laser plane. Because planar PIV cannot 

capture the third velocity component information, any region of flow that is highly three-

dimensional, such as the wake behind the bubble, there is an expected decrease in reporting 

accepted velocity vectors from the DynamicStudio software. 

 

A large source of uncertainty comes from the correlation method used to determine the 

velocity vectors. One approach involves quantifying the true pixel displacement 
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uncertainty using information from the cross-correlation plane, where the error is related 

to the ratio of the largest detectable correlation peak to the second highest peak [44]. Other 

work has involved generating a four-dimensional uncertainty response, also referred to as 

an “uncertainty surface”, which is dependent on the particle displacement, particle image 

diameter, particle image density, and shear [45]. The correlation algorithm’s response is 

recorded for each of these four parameters and used to generate the uncertainty surface. 

The uncertainty for the reported velocity vector is obtained by inputting the four known 

parameters into the uncertainty surface to have the velocity’s uncertainty calculated. 

Currently, there is no accepted best practice for quantifying the uncertainty resulting from 

a correlation method and is an active research area. A method proposed by Jackson [46] 

provides a simple uncertainty analysis framework that considers the physical spatial 

calibration length, pixel uncertainty, and timing uncertainty based on the laser/camera 

synchronization. This uncertainty analysis by Jackson is ideal when using commercial PIV 

software that does not provide the user with information related to the correlation method 

needed for the signal to noise ratio or uncertainty surface methods. For this reason, the 

method used by Jackson was implemented to determine the measured velocity field’s 

uncertainty. 

4.4 Uncertainty Analysis 

Uncertainty was propagated using the Kline McClintock method show in eq. (33). For the 

measured velocity field, this study considered the physical calibration length resolution, 

image plane calibration length, and timer box resolution for the sources of error in velocity. 

A velocity vector is calculated based on the general equation, eq. (49), shown by Jackson 

[46]: 

 v ;pixx l
t L
 


 


 (49) 

where pixx  is the pixel displacement, t  is the time between image pairs,   is the pixel-

spatial scale factor determined by the spatial calibration, l  is the physical calibration object 

length [mm], and L  is the calibration object’s length in number of pixels. The pixel 

displacement is determined by the DynamicStudio software, and the time between image 
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pairs is controlled by user input. Applying the three velocity uncertainty sources mentioned 

previously and eq. (49) into the Kline-McClintock method results in eq. (50) where it can 

be noted that actual pixel displacement does not need to be used directly to determine the 

velocity uncertainty and relies on the reported velocity from the correlation method. 
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 (50) 

The cross-sectional area uncertainty was propagated from the injected volume uncertainty 

which affects the spherical equivalent diameter used in the area. Tate’s law, eq. (34), was 

used for bubbles smaller than 0.1 mL injected volume to determine the minimum injectable 

bubble diameter and used a separate uncertainty propagation to consider the injection 

system’s tube diameter. The full uncertainty propagation derivations are provided in 

Appendix A. The drag coefficient uncertainty was performed by propagating the drag 

force, velocity, and reference area. The uncertainty contribution was not performed for the 

pressure when determining the form drag force because of the nature of determining the 

uncertainty of the pressure field calculations. Applying the Kline McClintock method to 

the form drag force requires propagating the velocity uncertainty through the queen2 

algorithm, which integrates the pressure gradient along eight different tracks to the cell of 

interest in the field of view. The queen2 algorithm is not able to report which integration 

tracks were used in the median polling, and to remain conservative the longest track length 

would be assumed to be used for average of the median polling which would be integrating 

diagonally across the discretized flow domain. However, conservatively propagating 

uncertainty through the numerical integration of eq. (42) results in pressure uncertainties 

on the same order of magnitude as the calculated relative pressures and shows that the 

numerical integration compounds uncertainty results in large uncertainty contribution from 

the pressure algorithm. Because the accuracy of the algorithm has already been 

demonstrated in other studies [41], [42], the pressure uncertainty was neglected from the 

analysis. This reduces the drag coefficient uncertainty to eq. (51): 
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where DF  is the calculated drag force, f  is the liquid density, A  is the equivalent spherical 

bubble diameter, and rv  is the relative bubble velocity. The virtual mass coefficient 

uncertainty is found from eq. (55)-(57) 
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Because the virtual mass coefficient is based only on the measured velocity field, the 

uncertainty propagation does not encounter issues such as the pressure uncertainty. 
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5 RESULTS & DISCUSSION 

A total of 11 bubble sizes were injected with an equivalent spherical bubble diameter 

ranging from 2.94 mm 20 mmeqD   with total drag, form drag, and virtual mass 

coefficients calculated with an uncertainty propagation analysis performed. Bubble sizes 

below 0.1 mL volume had 6 repeated trials to allow consideration of the random 

uncertainty. Bubble volumes greater than or equal to 0.1 mL only used one trial since these 

bubbles are larger than ellipsoidal range and occupy the beginning of the spherical cap 

regime and were largely used to confirm an expected drag coefficient value of 2.33. Table 

6 shows the injected bubble volumes, diameter, and equation used to determine equivalent 

diameter in this study: 

Table 6: Bubble Test Matrix 

Volume [mL] Diameter [mm] Trials 

0.013±0.004 2.94±0.26 6 

0.027±0.007 3.70±0.33 6 

0.04±0.011 4.24±0.38 6 

0.053±0.014 4.67±0.42 6 

0.067±0.018 5.02±0.45 6 

0.1±0.003 5.76±0.05 1 

0.8±0.05 11.52±0.24 1 

1.25±0.05 13.37±0.18 1 

2.0±0.05 15.63±0.13 1 

2.5±0.05 16.84±0.11 1 

4.0±0.05 19.69±0.08 1 

 

For bubble volumes below 0.1mL  , Tate’s Law, eq (34), was used to estimate the 

minimum bubble diameter that could be injected using Setup #1 as listed in Table 5. The 

minimum bubble diameter 2.94mmeqD   resulted in a minimum 0.013 mL injectable 

volume. The volumes 0.027-0.067 mL were achieved by injecting one of the minimum 
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bubble sizes at a time to reach the desired volume. Volumes larger than 0.1mL   relied 

on the known injected air volume from the syringe and did not rely on the minimum 

injectable bubble size. Additionally, each of the injected bubbles coalesced into the total 

single bubble volume prior to its release into the flow field. 

 

Because spheroidal and ellipsoidal bubbles rise in a helical or zig-zag motion, the bubble 

would not remain centered in the laser plane for the entire collection time. Trials where the 

bubble remained in the laser plane for at least more than 10 consecutive frames and at least 

two occurrences would be analyzed. Because of the quasi-steady state assumption used for 

the buoyancy and drag force, each frame provides an instantaneous measurement of the 

drag force which is averaged across the other measured values and made the segmented 

analysis sequences of a trial acceptable. 

 

Figure 12-Figure 16 shows bubbles, ranging from spheroidal to ellipsoidal, rising through 

the field of view. Bubble volumes of 0.013 mL and 0.027 mL (Figure 12, Figure 13) exhibit 

spheroidal geometry and have a helical rise path. As a result, trials for these bubble sizes 

needed to be analyzed in sections where the bubble remained within the laser plane. 

Because of the counter-current flow, the tightness of the spiral was reduced which allowed 

more direct vertical zig-zag motion thereby increasing the number of frames with the 

bubble moving upwards through the laser plane. Bubbles from 0.04 mL to 0.067 mL 

exhibited ellipsoidal geometry with zig-zag rise paths which reduced the amount of out-of-

plane motion. The 0.067 mL bubbles also began to experience some distorted bubble 

behavior with the bubble aspect ratio between the height and width fluctuating throughout 

the rise. This is specifically seen in Figure 16 at time steps t=1.770s and 1.8s where the 

bubble expands from an ellipsoidal shape to a more spheroidal shape before reverting to 

its ellipsoidal shape. Bubble sizes ranging from 0.1 mL to 4.0 mL transitioned to distorted 

and eventual spherical-cap bubbles with rectilinear rise paths as expected. All injected 

bubbles were accompanied with vortex shedding. 
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Figure 12: 0.013 mL bubble rising 

 

Figure 13: 0.027 mL bubble rising 
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Figure 14: 0.04 mL bubble rising 

 

Figure 15: 0.053 mL bubble rising 
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Figure 16: 0.067 mL bubble rising 

The vortex shedding is visible when looking at the velocity field, velocity and pressure 

contour maps. Figure 17 shows the PIV velocity field obtained for the smallest bubble size 

where the blank white region represents the masked bubble, note that the axis are zoomed 

in but retain original aspect ratio from the field of view. The vertical and horizontal velocity 

components are shown in Figure 18 and Figure 19 respectively. The bubble speed is 

indicated by the high positive values directly behind the bubble, additionally a stagnation 

point can be seen in front of the bubble which aligns as expected since the counter-current 

flow would slow to zero slightly above the bubble’s surface. A shed vortex is visible about 

two bubble diameters behind along with the bubble’s wake from the rise. The horizontal 

components behind the bubble extend away from the wake centerline indicating the 

recirculation zone which is further visible from Figure 20 with the countering acting 

vorticity in the wake. Additionally, it is noted that while there is counter-clock wise 

direction vorticity on the bubble’s left hand side and clock wise vorticity on the right hand 

side, there exists vorticity directly at the bubble left and right edge respective opposite sign 

as well as through the near bubble wake. This structure becomes less defined around four 

bubble diameters away from the bubble and indicates the far wake region. 
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Figure 17: 0.013 mL bubble velocity field | t=0.453 s 

 

Figure 18: 0.013 mL bubble vertical velocity field | t =0.453 s 
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Figure 19: 0.013 mL bubble horizontal velocity field | t=0.453 s 

 

Figure 20: 0.013 mL bubble vorticity map | t=0.453 s 
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When looking at the largest ellipsoidal bubble size (0.067 mL), the bubble exhibits more 

zig-zagging rise path and has stronger wake dynamics than compared to the 0.013 mL 

bubble. Figure 21 shows the PIV velocity field obtained for a 0.067 mL bubble with 

zoomed axis and preserved aspect ratio. The larger bubble size shows a much stronger 

recirculation zone directly behind the bubble when compared to the 0.013 mL bubble in 

Figure 17. As with the other bubble cases, vortex shedding is observed occurring with 

about one bubble diameter spacing as seen in Figure 22. The vortex has a much larger size 

and velocity. The horizontal velocity component directions in Figure 23 retain the same 

pattern as before with the diagonal symmetry repeating in the far wake region. Looking at 

Figure 24, the vorticity does not keep its structure past the immediate recirculation zone 

behind the bubble. While the vorticity in the 0.013 mL bubble case has a largely continuous 

vorticity in the wake, the 0.067 mL case has distinct clusters of vorticity in the wake 

accompanying each prior vortex. This is consistent with the primary helical vortex wake 

and secondary wake formation seen in bubble wake dynamics [47] where the primary wake 

is characterized by vortex zone which has asymmetrical vortex shedding forming the 

secondary wake with shed vortices decaying from viscous stresses. 

 

Figure 21: 0.067 mL bubble velocity field | t=1.740 s 
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Figure 22: 0.067 mL bubble vertical velocity field | t=1.740 s 

  

Figure 23: 0.067 mL bubble horizontal velocity field | t=1.740 s 
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Figure 24: 0.067 mL bubble vorticity map | t=1.740 s 

The terminal velocity, reported in Figure 25, shows a good agreement between the 

predictions, but with consistently lower values which would suggest that the drag 

coefficient would have be larger than predicted. Uncertainty on the bubble terminal 

velocity increases with bubble size which results from the timing uncertainty associated 

with tracking the bubble centroid. Because all bubble sizes were captured using a 200 Hz 

frequency between image-pairs, it is expected that the greater distance travelled with the 

same timing resolution would begin to limit the accuracy of the velocity measurement. 

However, the maximum terminal velocity uncertainty with 95% confidence is 2.34% of 

the measured value and is considered acceptable. 
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Figure 25: Bubble terminal velocity versus spherical equivalent bubble diameter 

5.1 Drag Coefficient 

The total and form drag coefficient for each bubble trial were time averaged with 

measurement and random uncertainty propagated, with the 6 trials averaged again with 

uncertainty propagated to determine the representative drag coefficient for that bubble size. 

Figure 26 overlays the averaged total drag coefficient on a log scale plot against the 

Reynolds number using the equivalent spherical diameter and the averaged measured 

terminal velocity. The dashed line is based on experimental data collected by Haberman 

and Morton [4] in tap water at 21oC. The dotted line shows the predicted values from 

eq.(18), developed by Tomiyama et. al. [10] for heavily surface contaminated fluid which 

was considered appropriate due to the tracer particle presence in the flow field. 
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Figure 26: Measured total drag coefficient versus Reynolds Number 

The total drag coefficient observed trend is consistent with the trends shown from the other 

data and correlation. The total drag coefficient value plateaus in the spherical cap regime 

as expected and agrees with the previous work. Additionally, the transition from spheroidal 

to ellipsoidal/distorted occurs near Reynolds number of 3Re 10  which is accompanied by 

a decrease in drag coefficient which agrees well with past work. It can be noted that the 

collected data has larger values than the prior work below this Reynolds number range. A 

possible explanation is the high concentration of tracer particles in the fluid which increases 

surface contamination. The higher concentration of contamination has been correlated to 

higher surface tension values [6] which results in the bubble surface behaving more akin 

to a rigid particle with a non-uniform surface which increases drag force experienced by 

the particle. 

 

Figure 27 shows a direct comparison between the calculated drag coefficients and 

Tomiyama’s predicted values from Figure 26 with 10% deviation lines from a 1:1 

agreement included.  
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Figure 27: Measured total drag coefficient versus prediction 

It is seen that except for four cases, there was agreement within 10% of each other 
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Table 7: Total Drag Coefficient Values with 95% confidence 

Bubble 
Volume 

Re ,D tC  Measurement 
Uncertainty 

Random 
Uncertainty 

Total 
Uncertainty 

0.013 mL 471±82 1.827 0.419 0.725 0.838 

0.027 mL 806±140 1.209 0.220 0.365 0.426 

0.04 mL 972±169 1.217 0.226 0.208 0.307 

0.053 mL 1096±190 1.263 0.178 0.261 0.316 

0.067 mL 1143±199 1.466 0.238 0.336 0.411 

0.1 mL 1341±29 1.557 0.286 0.542 0.613 

0.8 mL 3053±169 2.531 0.093 1.601 1.603 

1.25 mL 3420±148 3.083 0.061 1.723 1.724 

2.0 mL 4681±205 2.547 0.054 0.851 0.853 

2.5 mL 5397±219 2.440 0.050 1.132 1.133 

4.0 mL 5899±274 3.253 0.043 1.365 1.366 

The form drag coefficient was similarly time averaged with uncertainty propagated and is 

shown on a log scale against Reynolds number in Figure 28. The data is overlaid with the 

predicted total drag coefficient from Figure 26 to display the form drag contribution. 
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Figure 28: Form drag coefficient versus Reynolds number 

The figure shows a nominal trend of increasing form drag with increasing Reynolds 

number. This agrees with the qualitative discussion of form drag having greater 

contribution with increasing bubble size. The form drag is expected to become dominate 

at very high Reynolds number because the boundary layer separation point moves from the 

backside of the bubble towards the front which increases the pressure drop from the flow 

separation thereby increasing the form drag force.  
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turbulent wakes as seen in Figure 20. Figure 29 shows the calculated skin drag from 
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would be expected that as the cap bubble size further increases the form drag will continue 

to increase and thereby become more dominant than the skin drag force.  

 

Figure 29: Measured skin drag versus Reynolds number  

While the nominal trend agrees well for form drag, the uncertainty propagated across all 
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of improved spatial resolution. However, because only one trial was used for the bubble 

sizes of  0.1 mL   the random uncertainty from the spread of calculated drag coefficient 

values at each recorded time frame explains the very large standard deviation from the time 

averaged value. 

Table 8: Form Drag Coefficient Values with 95% confidence 

Bubble 
Volume 

Re ,D fC  Measurement 
Uncertainty 

Random 
Uncertainty 

Total 
Uncertainty 

0.013 mL 471±82 0.091 ±0.058 ±0.110 ±0.124 

0.027 mL 806±140 0.110 ±0.064 ±0.115 ±0.131 

0.04 mL 972±169 0.106 ±0.059 ±0.087 ±0.105 

0.053 mL 1096±190 0.134 ±0.056 ±0.089 ±0.105 

0.067 mL 1143±199 0.142 ±0.071 ±0.071 ±0.101 

0.1 mL 1341±29 0.368 ±0.080 ±0.675 ±0.679 

0.8 mL 3053±169 1.024 ±0.038 ±1.229 ±1.230 

1.25 mL 3420±148 0.698 ±0.016 ±0.800 ±0.800 

2.0 mL 4681±205 1.338 ±0.025 ±1.298 ±1.338 

2.5 mL 5397±219 1.773 ±0.030 ±1.152 ±1.152 

4.0 mL 5899±274 1.058 ±0.011 ±0.917 ±0.917 

5.2 Virtual Mass Coefficient 

The method for calculating virtual mass coefficient was initially performed on with a 

stationary cylinder rod representing an infinite cylinder case in the flow channel described 

in Section 3.1. Varying inlet velocities of 120, 150, 210, and 270 mm/s were used to collect 

PIV data over a range of Reynolds numbers as listed in Table 9. The velocity field was 

processed to obtain the pressure field to be integrated across the cylinder surface to 

calculate the form drag. Because the cylinder produced a distinct shadow region on the 

cylinder’s backside, only the front half of the field of view was analyzed. 
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Table 9: Cylinder rod flow conditions 

Re Measurement 
Uncertainty 

Random 
Uncertainty 

Total Uncertainty 
(σ95%) 

1059 ±0.86 ±57 ±58 

1530 ±1.18 ±99 ±99 

1992 ±1.15 ±132 ±132 

2438 ±1.80 ±125 ±125 

2603 ±1.98 ±174 ±174 

A benefit to using a static cylinder was the two-dimensional flow assumption used to treat 

the planar wake. Figure 30 shows a spatial map of the turbulent integral time scale 

calculated for the cylinder data with a 210 mm/s inlet velocity. This was performed for the 

other four data sets were the maximum integral time scale was selected to compare to the 

total collection time. All five data sets were collected over a 2.135 s time frame which 

ensured the measurement period sufficiently captured the integral time scales for each flow 

speed. The integral time scales for 120, 150, 210, 250, and 270 mm/s flows were 13.8, 

14.7, 10.9, 15.4, and 10.8 ms, respectively. The integral time scale distribution shows the 

largest time scales within the free shear layer of the turbulent wake. This positioning is 

reasonable since it describes the characteristic time scale that bulk eddy movements occur 

at. The macroscopic portion of the wake resides near the wake boundary with the 

freestream and is associated with the production of turbulent kinetic energy supplied to the 

microscale features of the turbulence. The presence of these microscale eddies is evident 

in the minimum time scale portion in the wake interior and is characterized by increased 

mixing.  
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Figure 30: Cylinder 250 mm/s integral time scale spatial map 

Figure 31-Figure 35 display the turbulent kinetic energy for each flow condition with a 

consistent colorbar scale for more direct comparison. As expected, the increase in Reynolds 

number results in increase in the turbulent kinetic energy and the growth of the free shear 

layer on the cylinder backside which agrees with past studies of flow past a cylinder [47]. 

The turbulent kinetic energy is largely confined to the wake boundary and corresponds to 

the large bulk eddies losing kinetic energy to supply the microscale eddies performing most 

of the mixing within the wake structure. A source of the turbulent kinetic energy is visible 

on the cylinder surface and indicates the vorticity generation along the surface which is 

supplied to the primary wake region visible by the lower portion of turbulent kinetic energy 

directly behind the cylinder. The increasing Reynolds number and further definition of the 

wake boundary visualizes the kinetic energy influence of the object on the freestream flow 

which provides a qualitative understanding of how virtual mass is affected by viscous 

effects and the presence of a wake. As the Reynolds number increases, the wake boundary 

becomes narrower and supports a potential flow assumption for high Reynolds number 
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flows. This behavior is currently the basis for implementing potential flow solutions for 

virtual mass in flow analysis. 

 

Figure 31: Cylinder 120 [mm/s] turbulent kinetic energy map 
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Figure 32: Cylinder 150 [mm/s] turbulent kinetic energy map 

 

Figure 33: Cylinder 210 [mm/s] turbulent kinetic energy map 
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Figure 34: Cylinder 250 [mm/s] turbulent kinetic energy map 

 

Figure 35: Cylinder 270 [mm/s] turbulent kinetic energy map 
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Because of the planar wake flow occurring from the cylinder the virtual mass can be treated 

similar to an infinite cylinder analysis and allows a direct comparison to its potential flow 

solution. The potential flow solution is obtained by integrating flow’s kinetic energy the 

cross sectional area of the fluid from the cylinder surface into an infinite fluid domain as 

shown in eq. (58)-(62): 
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where   is the fluid density, R  is the cylinder radius, and oU  is the speed the cylinder 

moves at in a stationary fluid. The analytical solution is equivalent to a stationary cylinder 

with a moving flow domain, a proof is provided in Appendix B. When considering the 

experimental data, the integration over an infinite flow domain is numerically 

approximated as discussed in Section 4.1 but instead on a per unit length basis and does 

not require a volume integral of the flow domain which results in eq. (63)-(65): 
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Where ix  is the horizontal cell width, iy  is the vertical cell width, ,vr i  is the relative 

measured fluid velocity, R  is the cylinder radius, and 2
oU  is the inlet velocity. The inlet 

velocity was subtracted from the flow field to make the relative velocity appear that the 

cylinder is moving in a stationary flow domain to make qualitative comparisons to Lamb’s 

derivation easier since it was derived for a moving object in a static infinite fluid. Figure 

36 shows the calculated virtual mass coefficient for each Reynolds number measured with 

95% confidence uncertainty intervals included and provides comparison to the potential 

flow solution. 

 

Figure 36: Cylinder measured virtual mass coefficient versus Reynolds number 
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10 3 10 4

Reynolds Number (Re)

-5

0

5

10

V
irt

ua
l M

as
s C

oe
ff

ic
ie

nt
 (C

V
M

)

Measured virtual mass
Cylinder potential flow



67 

objects in viscous flows has been an active research area with no accepted method for 

quantifying the virtual mass in the presence of a wake. Experiments to consider viscosity 

have been performed on sinusoidal oscillating cylinders with a force decomposition used 

to back out the virtual mass coefficient. However, experimental data from several studies 

have been contradictory [48] which adds to the open ended nature of determining virtual 

mass with viscous effects. When considering an energy balance perspective of a moving 

cylinder in a stationary fluid, the virtual mass describes the kinetic energy that is being 

added to the fluid by the object moving fluid particles out of its path. This is apparent when 

considering the streamlines of a moving cylinder or sphere in potential flow. From a control 

volume analysis from an energy balance perspective, the difference between a potential 

flow and viscous flow both in steady state is the presence of the drag force. The moving 

cylinder is performing work on the fluid through the viscous shear stresses and pressure 

gradient which appears as the total drag force. The source of kinetic energy in the wake 

comes from this drag force acting over a set distance the object has traveled. Because the 

viscosity prevents the flow behind the cylinder from mirroring the front side as would occur 

in potential flow, the flow domain needed to capture the entire influence of the object would 

likely need to include the entire wake. This would be impractical from an experimental 

perspective to capture the entire wake while still maintaining adequate spatial resolution. 

For instance, turbulent planar wakes can take up to 1000 diameters downstream to become 

self-persevering [49]. 

 

A control volume energy balance between the potential flow and viscous flow solutions 

shows that the difference is the energy added to the fluid by the drag work. A possible 

method to obtain the potential flow solution from a real viscous flow is to determine the 

drag work performed in the portion of the wake visible in the field of view and subtract the 

drag work from the fluid’s total integrated kinetic energy to obtain the potential flow 

kinetic energy. The drag work was obtained by multiplying the calculated form drag on the 

cylinder determined by the pressure distribution and multiplied by the wake length 

visualized in the field of view. Subtracting the drag work from the integrated kinetic energy 

is expressed as a modification to eq. (65) resulting in eq.(66): 
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where '
,D fF  is the form drag force per unit length, and wakeL  is the wake length included 

in the flow domain integration. 

 

The subtraction of the drag work from the visible flow field evaluating the potential flow 

virtual mass from the measured value. This was viewed appropriate by considering the 

integrated kinetic energy proceeding further into the wake. Figure 37 shows a plot of the 

integrated kinetic energy per unit length of the flow domain for the 250 mm/s flow case 

across increasing integration layers into the wake. The integration layer begins from the 

direct back side of the cylinder and increases by one cell distance vertically downward into 

the wake. 

 

Figure 37: Integrated kinetic energy with increasing distance into wake 

The nominal trend of the kinetic energy with increasing integration layers corresponds to 

a linear fit a with simple regression value of 2 0.997R  . The significance of this linear 
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trend is that incremental kinetic energy addition from the wake is not affected by the 

viscous dissipation within the wake. If the dissipation was non-negligible, increasing 

distance into wake would result in integrated kinetic energy plateauing. This would result 

from incremental kinetic energy decreasing to zero which corresponds to the viscous 

dissipation eventually causing the wake to return to the freestream conditions. This was 

used to justify the consideration of the drag work in the energy balance in eq. (66). 

 

Figure 38 shows the results obtained from evaluating eq. (66) where two different form 

drag forces were input to determine the difference between using the calculated form drag 

from the measured pressure distribution and drag coefficients available from literature for 

the Reynold numbers measured. 

 

Figure 38: Cylinder measured virtual mass coefficient with drag work subtracted 

Looking at the virtual mass coefficient values using the measured form drag reveals that 

all but one test had non-physical values. The calculated drag coefficient values are 

compared against literature in Figure 39 which shows the four non-physical values 

corresponded to over predicted drag coefficient values. The one value that showed a return 

10 3 10 4

Reynolds Number (Re)

-5

0

5

10

V
irt

ua
l M

as
s C

oe
ff

ic
ie

nt
 (C

V
M

)

Measured
Minus measured drag work
Minus predicted drag work
Potential flow



70 

to the potential flow value was occurring at 250 mm/s and had the best agreement with the 

value from literature. Using the predicted drag coefficient values to determine the form 

drag force resulted in a good agreement between the virtual mass coefficient and the 

potential flow solution. 

 

Figure 39: Cylinder measured drag coefficient versus Reynolds number 

The agreement when using the predicted drag coefficient demonstrates the sensitivity this 

method has to the form drag as expected and highlights that the pressure field obtained 

from the PIV data resulted in an overestimated form drag. The overestimation of the form 

drag likely comes from the spatial resolution as discussed in Section 5.1. Table 10 lists the 

calculated virtual mass coefficient values with uncertainty intervals and the result of 

subtracting the drag work. It is important that to mention that reported virtual mass 

coefficient does not necessarily reflect what the true virtual mass coefficient is for the 

cylinder at these specific Reynolds numbers. The agreement of the virtual mass with the 

predicted drag work subtracted suggests that the measured virtual mass in the field of view 

is accurate, but the true virtual mass coefficient would likely require full visualization of 

the entire wake. 
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Table 10: Cylinder virtual mass coefficient w/ 95% confidence 

Re CVM Measurement 
Uncertainty 

Random 
Uncertainty 

Total 
Uncertainty 

CVM 
(minus 
drag 

work) 

CVM(minus 
drag work w/ 

literature 
CD) 

1059 5.55 ±4.651E-4 ±1.089 ±1.089 -1.41 1.3926 

1530 4.97 ±7.068E-4 ±0.585 ±0.585 -3.39 0.9885 

1992 4.96 ±7.334E-4 ±0.921 ±0.921 -1.65 1.1902 

2438 5.03 ±5.110E-4 ±0.713 ±0.713 1.60 1.2050 

2603 4.95 ±5.736E-4 ±0.871 ±0.871 -0.37 1.1212 

The open ended nature of determining the virtual mass for the two-dimensional planar flow 

case of the cylinder revealed that determining the virtual mass for the recorded bubble data 

would be hampered by the three-dimensional effects of the bubble rise, such as the spiraling 

bubble motion, helical vortex shedding, and deformable surface. Additionally, the virtual 

mass potential flow solution of a sphere requires a volume integral to be performed which 

planar PIV data would not be able to support without resulting in large uncertainty and an 

overestimation of the virtual mass. As the bubble rises any vortex that had been shed would 

be rotated around the centroid axis which causes the kinetic energy of the vortex to be 

treated as axisymmetric. This axisymmetric assumption would not be physical because of 

the alternating vortex shedding that occurs and would result in an artificial vortex ring of 

kinetic energy existing in a single time frame. However, it is possible that with a 

sufficiently long collection time that the time averaged three-dimensional flow field would 

be axisymmetric. Obtaining this long collection time with a bubble consistently in the laser 

sheet would be non-trivial. An alternative would be to use stereoscopic PIV to obtain three-

dimensional information about the flow field and would greatly allow the uncertainty of 

the bubble within the laser sheet to be incorporated. 
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6 CONCLUSIONS 

Modern fluid measurement techniques have the capability to improve understanding of 

various flow phenomena. This study examined the drag coefficient of rising ellipsoidal 

bubbles and the virtual mass coefficient on a stationary cylinder rod. The drag coefficient 

of ellipsoidal bubbles for five varying diameters have been experimentally measured with 

PIV which allowed the form and skin drag coefficients to be directly measured in addition 

to the total drag coefficient. Flow over a stationary cylinder rod for five Reynolds numbers 

utilized a method that allowed the virtual mass coefficient to be measured in steady state 

conditions. The cylinder virtual mass analysis revealed several sensitivities when 

measuring virtual mass in a flow field with significant wake effects. A method for 

retrieving the potential flow virtual mass from a measurement was showcased and 

identified improvements to experimentally measure virtual mass in real fluid flows. A 

rigorous uncertainty analysis was performed for drag and virtual mass coefficients using 

Kline-McClintock with uncertainty propagated, when known, from independent measured 

variables. 

6.1 Significance of Work 

The measured total drag coefficient used the traditional measurement technique of tracking 

the bubble velocity based on consecutive image frames. The use of modern digital imaging 

allowed the bubble centroid to be tracked objectively. The simultaneous use of PIV resulted 

in the form drag force, and by extension skin drag force, to be directly measured on rising 

ellipsoidal bubbles. This provided experimental observation for the trend of increasing 

form drag with increasing bubble diameter which is often described from a qualitative 

perspective. 

 

A spatial integration of the kinetic energy measured in the flow around an object was 

applied to PIV data on a cylinder. This method allowed the virtual mass coefficient to be 

measured for steady state conditions which previously had been limited to only transient 

flow conditions in order to measure the virtual miss. The kinetic energy integration method 
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follows the original derivation of virtual mass and provides direct comparison of the 

viscous flows to potential flow solutions. The removal of predicted drag work retrieved the 

potential flow solution which showcases the method’s potential to isolate the viscous 

effects on the virtual mass coefficient. 

6.2 Assumptions and Limitations 

A key assumption used in the measurement of drag coefficient was that the bubble entered 

the PIV laser plane directly in the center of the bubble. If the bubble is not centered while 

in the laser plane, the bubble image masked will have a smaller cross section along with a 

different velocity and pressure distribution around the bubble interface. The uncertainty 

contribution from this was not considered as a part of the uncertainty analysis performed 

in this work. Another significant assumption applied was a steady state approximation for 

the bubble and cylinder force balances. This assumption was deemed appropriate because 

of its common usage in other drag coefficient experiments with similar experimental setups 

and provided a direct comparison to other experimental data. 

 

Two-dimensional flow was assumed for the bubble’s motion during its residence in the 

laser plane. This assumption was made because of planar PIV’s inability to resolve three-

dimensional effects from the bubble and fluid motion, such as a helical rise path, vortex 

shedding, and out-of-plane motion. The largest impact of out-of-plane motion was the 

increase to velocity uncertainty, and was a dominant factor in making the bubble off center 

in the laser plane. This two-dimensional flow assumption was similarly applied to the 

cylinder rod flow and resulted in the wake being evaluated as planar flow. Another 

important assumption was the velocity uncertainty determination. As mentioned previously 

in Section 4.4, there is no currently accepted best practice for quantifying the uncertainty 

in PIV velocity fields. There are several different methods for determining the uncertainty 

from the cross-correlation performed in the interrogation areas. This uncertainty was not 

considered in the analysis because the cross-correlation algorithm used in DynamicStudio 

is proprietary and not available. The inclusion of this uncertainty source would increase 

the velocity uncertainty. 
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6.3 Observations 

Measured drag coefficient on ellipsoidal agreed with previous work and included total, 

form, and skin drag forces. Total drag coefficient was measured using the traditional 

technique of equating the total drag force to the buoyancy force and resulted in values 

consistently largely than prior experimental data and resulting correlations. However, when 

considering the uncertainty the predicted values do fall within the 95% confidence interval. 

The measured terminal velocities were lower when compared to prior work and was the 

source of the larger drag coefficient values which pointed to the influence of surface tension 

from tracer particles. Form drag was directly measured on the rising bubbles and showed 

a nominal trend of increasing form drag with bubble size which has agreement with 

qualitative understanding of form drag behavior on bubbles. An important observation 

from the uncertainty analysis was the significant uncertainty on the form drag force. This 

uncertainty provided improvements for future experiments measuring the pressure 

distribution around a bubble and highlights the importance of spatial resolution for 

resolving the bubble interface. 

 

The virtual mass coefficient for an object in a real fluid flow was shown to require more 

experimentation to fully capture. Based on the definition of virtual mass representing that 

fluid mass with kinetic energy influenced by an object it appears that the entire wake needs 

to be visualized to make an objective determination on the extent of the virtual mass. The 

linear increase in kinetic energy in the wake showed that viscous dissipation was negligible 

which allowed the potential flow solution for each Reynolds number case to be retrieved 

by subtracting the predicted drag work from the flow domain’s integrated kinetic energy. 

This work on the virtual mass coefficient for a cylinder showed that planar PIV would be 

incapable of measuring virtual mass on rising single bubbles without significant 

uncertainty from three-dimensional effects. 

6.4 Future Work 

Further studies in drag coefficient using PIV would benefit from improved spatial 

resolution to reduce uncertainty on the measured form drag coefficient. The measured form 
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drag force is highly dependent on the pressure distribution along the bubble interface and 

increasing the number of velocity vectors around the bubble provides greater fidelity when 

quantifying the pressure distribution and thereby the form drag force. The use of 

stereoscopic PIV would eliminate the need for two-dimensional and azimuthal assumptions 

This would greatly reduce the effects of out-of-plane motion on velocity uncertainty and is 

recommended for future experimental setups. 

 

The virtual mass coefficient analysis has identified several improvements that can be made 

to future experiments. The impact of the wake dynamics needs to be well characterized and 

would benefit from flow over the stationary cylinder over a large range of Reynolds 

numbers. Using another fluid to generate varying wake structures such as steady wakes 

with a separation region, Von Karman vortex sheets, laminar wakes. Operating at very high 

Reynolds number would provide experimental confirmation of virtual mass approximating 

the potential flow solution which would be expected considering that wake size would 

decrease. In addition to a greater operating range of Reynolds number, a large enough field 

of view to capture the entire wake would remove subjectivity on the wake’s ultimate 

influence on the virtual mass and allow the presented method for steady state flows to be 

fully explored. 

 

The measured virtual mass values with measured drag work subtracted produced 

unphysical values that did not correspond to the potential flow values. Using a predicted 

drag coefficient for the correspond Reynolds numbers resulted in drag work values that did 

cause the measured virtual mass values to return to the potential flow solution. This 

highlights the need to improve the form drag characterization on the cylinder rod. An 

important consideration from the virtual mass experiments is the current inability to 

objectively measure the virtual mass coefficient on a rising bubble in steady state that can 

characterize the influence of wake dynamics and three-dimensional effects. Further studies 

in characterizing this influence would be considerably improve the current understanding 

of virtual mass. 
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NOMENCLATURE 

Letters  

A  Cross Sectional Area 

DC   Drag Coefficient 

d , D   Diameter 

F   Force 

g   Gravitational Constant 

KE  Kinetic Energy 

l   Characteristic Length 

u   Velocity 

U  Mean Velocity 

R   Cross-Correlation Coefficient 

r   Radius 

s   Particle Displacement Vector 

   Volume 

X   Light Intensity Position Vector 

Greek Letters  

   Void Fraction 

   Surface Tension 

   Density 

   Dynamic Viscosity 

   Relaxation Time Constant 

   Dielectric Constant 

Subscripts  

b   Bubble 

c   Continuous Phase 

d   Dispersed Phase 

e   Spherical Equivalent 

f   Liquid Phase 
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field  Flow Domain 

g   Gas Phase 

o   Reference Flow Condition 

p   Particle 

r  , R   Relative 

ref   Reference Kinetic Energy Condition 

T   Terminal Velocity 

   Spherical Sphere in Infinite Medium 
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APPENDIX A: UNCERTAINTY ANALYSIS 

An uncertainty analysis was performed for calculated values presented in the work using 

the Kline-McClintock method. The independent measured parameters included: velocity, 

bubble volume, cylinder diameter, pulse timing, image-pair timing, calibration length 

scale, and pixel calibration length. The subsections below detail how the Kline-McClintock 

was performed for drag coefficient and virtual mass coefficient. The uncertainty 

contribution from dependent variable, for example the drag coefficient depends on 

uncertainty from the total or form drag force, relative bubble terminal velocity, and bubble 

cross sectional area. The uncertainty for dependent variables within each of these variables 

is similarly propagated until the independent variables are the only uncertainty source for 

a variable. Because the BIL facility is operated at a nominal 21oT C  temperature and in 

an unpressurized environment, thermophysical property values (density, viscosity, surface 

tension) for water and air were identified using the National Institute of Standards and 

Technology (NIST) Chemistry WebBook and uncertainty contribution from these values 

were not considered. 

Drag Coefficient Uncertainty Propagation: 

The total drag coefficient is calculated from eq. (67): 

 2

2
v
D

D
f r

FC
A

  (67) 

where DF  is the total drag force, f  is the fluid density, A  is the bubble’s spherical 

equivalent cross sectional area, and vr  is the bubble’s relative terminal velocity. Applying 

Kline-McClintock uncertainty propagation to eq. (67) results in eq. (68) which identifies 

uncertainty sensitivity terms and the uncertainty contribution of each depend variable on 

the right hand side of eq. (67). The uncertainty sensitivity terms are defined by eq. (69)-

(71) 
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The uncertainty propagation for either total or form drag coefficient use the same 

definitions listed above expect using the appropriate drag force in the equations 

Total Drag/Buoyancy Force Uncertainty Propagation: 

The total drag force uncertainty can be substituted by the buoyancy force and its 

uncertainty because of the steady state assumption applied to the bubble force balance. 
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Looking at eq. (72)-(74) it can be seen that source of uncertainty for the total drag force 

comes from bubble’s spherical equivalent diameter. 

Form Drag Uncertainty Propagation: 

The form drag force is calculated by taking the dot product of the net pressure force and 

the normal vector opposite of the bubble’s velocity as shown in eq. (75), with normal vector 

components defined in eq. (76)-(77). 
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The uncertainty propagation for the form drag force magnitude is shown below and 

considers the horizontal and vertical components of the net pressure force and velocity 

normal vector accompanying sensitivity terms. 
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The uncertainty for each normal vector component is next identified as being dependent 

on the bubble terminal velocity magnitude and components. The uncertainty sources for 

the relative velocity is evaluated later in Appendix A: Uncertainty Analysis. 
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The net pressure force’s horizontal and vertical components are analytically defined with 

eq. (89)-(90). These analytical definitions were numerically evaluated with the pressure 

field with eq. (91)-(92). 

 , ,ˆnet x x surfF P n dS   (89) 

 , ,ˆnet y y surfF P n dS   (90) 

 , ,net y i i cent iF P x r   (91) 

 , ,net x i i cent iF P y r   (92) 

The uncertainty propagation for both components is performed below and is identical with 

the exception of the cell distance used. 
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To fully propagate uncertainty through the net pressure components the uncertainty from 

a cell width needed to be evaluated. The Kline-McClintock method is applied again to eq. 
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(101) resulting in eq. (102) where the uncertainty depends on the length scale calibration 

used for each trial.  
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Additionally, the distance from the cell to centroid horizontally was used for the 180 degree 

revolution needed to complete the surface integral is defined by eq. (105). The uncertainty 

was similar propagated and also depended on the length scale calibration. 
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Skin Drag Uncertainty Propagation: 

The measured skin drag coefficient had uncertainty propagation from both the total and 

form drag coefficients. The skin drag coefficient definition, eq. (109), resulted in a simple 

uncertainty propagation of the two different drag coefficients as shown in eq. (113) 
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Area Uncertainty Propagation: 

The cross sectional area uncertainty is only dependent on the bubble diameter uncertainty 

which depends on the bubble volume used. 
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Diameter Uncertainty Propagation for V ≥ 0.1 [mL]: 

For bubble volumes greater or equal to 0.1 mL, the bubble diameter was evaluated using 

the volume for a sphere and has uncertainty dependency on the syringe resolution from 

Setup 2 in Section 3.4. 
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Tate’s Law Uncertainty Propagation for V < 0.1 [mL]: 

For bubble volumes smaller than  
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Velocity Uncertainty Propagation: 

The bubble’s relative velocity is defined in eq. (123) and has its uncertainty propagation 

applied in eq. (124) with sensitivity terms defined in eq. (125)-(127). 
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The uncertainty sources, 
,b yv , 

,vo y
 , 

,vb x
 , are calculated using eq. (128), which uses the 

respective velocity variable in the definition. The velocity uncertainty propagation method 

is described below and is adapted from Jackson [46].  
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 (128) 

The uncertainty sources are from the length scale calibration and timing information used 

to capture an image pair. The velocity definition is leveraged to not rely on the pixel 

displacement determined by DynamicStudio’s cross-correlation method which is 

unreported by the software. The sensitivity definitions in eq. (130)-(132) show that for the 

same length scale and timing uncertainties, the velocity uncertainty will increase as 
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measured velocity increases. This trend is noticeable by the increasing velocity uncertainty 

seen in the bubble terminal velocity in Figure 25. 
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Pressure Uncertainty Propagation: 

The pressure uncertainty contribution to the form drag force was not considered in the 

uncertainty analysis as discussed in Section 4.4. A conservative application of the Kline 

McClintock method is performed on a general form of the queen2 algorithm described in 

Dabiri [41]. Pressure at a coordinate position is determined by integrating the pressure 

gradient from a boundary location to the coordinate position of interest as shown in eq. 

(133). The pressure at the boundary condition is assumed to be zero in the queen2 

algorithm. An assumed pressure boundary condition does not affect the form drag force 

calculation which depends only relative pressure differences. 
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The pressure gradient expressions in eq. (137)-(138) are numerically approximated as 

shown in eq. (139). The remaining derivation is performed on the horizontal pressure 

gradient but is analogous for the vertical pressure gradient with the velocity variable 

replaced by its respective vertical velocity component.  
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 (139) 

The terms in eq. (139), are substituted using definitions in eq. (140) which resulted in eq. 

(141). This maintained readability and assisted with keeping track of variables. The Kline-

McClintock is applied resulting in eq. (142). 
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The sensitivity terms are expressed below in eq, (143)-(149): 
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An order of magnitude analysis can be used to determine the most influential contributions 

to the uncertainty. Because queen2 performs eight distinct path integrations and averages 

the top two median numbers, it would require the source code to be modified to output the 

specific integration paths selected for every velocity vector location that is having the 

pressure computed. It is known that the largest velocity components are on the order of 

[cm/s] and uncertainties in velocity are on the order of [mm/s]: 
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The order of magnitude for uncertainty and variable values in eq. (150)-(151) are 

substituted into the sensitivity terms to determine the approximate order of magnitude of 

the total uncertainty for a pressure gradient. 
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 (157) 
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  
2

23 3 12
v 10 10 10




  
        

 (158) 

Looking at the order of magnitude analysis, the viscous, eq. (155)-(158), and the temporal, 

eq. (152), sensitivity terms do not contribute to the pressure gradient’s uncertainty and can 

be neglected. This reduces the pressure gradient uncertainty equation to: 

 
0.52 2

v vt t
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                    
 (159) 

Substituting order of magnitudes above into the above equation results in a pressure 

gradient having roughly and uncertainty of: 
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 (160) 

 3 Pa10
mP

x




 
 
  

 (161) 

The numerical integration of the pressure gradient can be represented as: 

 
1

N

i i
i

P P x


     (162) 

The queen2 algorithm performs this line integral from eight different locations along the 

physical boundary of the spatial data. To remain conservative the largest uncertainty would 

come from integrating diagonally across the data to provide the longest track length. If the 

uncertainty of the pressure gradient in the x and y directions are assumed to be equal and 

the same in each cell, the uncertainty for the relative pressure is: 

   2 3 4 3 5Pa Pa10 cells; x 10 m ; 10 ; 10 ; 10 m
m mP xN P   

 

   
         
      

 (163) 

     
0.52 2

P P xN x P   
      

 (164) 

     
0.52 22 3 3 4 510 10 10 10 10P

    
 

 (165) 

  110 PaP   (166) 

The conservative approximation of the relative pressure uncertainty is on the same order 

of magnitude as the calculated pressure differences and shows that the numerical 
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integration compounds uncertainty results in a unreasonably large uncertainty contribution 

from the pressure algorithm. Because the accuracy of the algorithm has already been 

demonstrated in other studies [41], [42], the pressure uncertainty was neglected from the 

analysis. This reduces the pressure force uncertainty to eq. (167) which has no uncertainty 

dependence on the pressure. 
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
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 (169) 

Virtual Mass Coefficient Uncertainty Propagation: 

The virtual mass coefficient is defined by eq. (170) with uncertainty dependent on the 

added mass, eq. (171), and displaced mass, eq. (173). The added mass is the summation of 

each differential added mass cell in the flow domain defined by eq. (172). 
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4disp f eqm D
  (173) 

Virtual mass coefficient uncertainty is defined by the Kline McClintock method in eq. 

(174), with uncertainty sensitivity terms defined by eq. (175)-(176). 
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 (176) 

The added mass uncertainty is propagated from the summation of differential added mass 

cells, eq. (177), which has uncertainty in each cell calculated with eq. (178). 
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 (178) 

The sensitivity terms defined in eq. (179)–(182) use a relative velocity measured in each 

cell in a reference frame with the flow field stationary and the cylinder moving. 

 
2

,2 , ,
2

a D i r i
i

i o

m u
y

x U



 


 (179) 

 
2

,2 , ,
2

a D i r i
i

i o

m u
x

y U



 


 (180) 

 ,2 , ,
2

,

2a D i r i
i i

r i o

m u
x y

u U



  


 (181) 

 
2

,2 , ,
32a D i r i

i i
o o

m u
x y

U U



  


 (182) 

The values ,i ix y   are the cell widths in the horizontal and vertical directions, 

respectively. The definition of the cell width is shown in eq. (183), and is analogous for 

the vertical cell width. 
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The displaced two-dimensional mass uncertainty and sensitivity is shown in eq. (187)-, and 

is only a function of the cylinder rod diameter. 
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disp
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 (188) 

The uncertainty for each cell’s added mass per unit length is performed across the flow 

field and the maximum value is chosen to apply for every cell’s uncertainty to add 

conservatism. This reduces eq. (177) to eq. (190). 
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Reynolds Number Uncertainty Propagation: 

The Reynolds number is defined by eq. (191), and has uncertainty dependency on the 

relative velocity and diameter for either the bubbles or cylinder. The thermo-physical 

properties for density and dynamic viscosity were not considered because values were 

obtained from the National Institute of Standards and Technology (NIST) Chemistry 

WebBook. 
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APPENDIX B: POTENTIAL FLOW KINETIC ENERGY PROOF 

The reference frame used to evaluate the kinetic energy in the flow domain does not impact 

the virtual mass calculated. The PIV data recorded was for a stationary cylinder with 

downward fluid flow, while virtual mass is typically determined for moving objects in a 

stationary fluid. To provide this direct comparison there are two methods to change the 

moving fluid reference frame to the stationary fluid. One method is to calculate the kinetic 

energy of the moving fluid and subtract the uniform kinetic energy field as if the object 

was not in the flow. The second method is calculating the relative velocity from the 

measured velocity field for a reference frame with a moving object in a stationary fluid. 

Relative Kinetic Energy 
The virtual mass coefficient is defined, eq. (195), by the ratio of the integrated kinetic 

energy field, eq. (196), over a reference kinetic energy, eq. (197), such as the cylinder 

moving at the inlet velocity. 

 field
VM

ref

KE
C

KE
=  (195) 

 ( )
2

2 21
2field

o R

KE V U rdrd
π

ρ θ
∞

= −∫ ∫  (196) 

 2 21
2refKE R Uρπ=  (197) 

The moving fluid velocity, V, and reference uniform velocity, U, are defined in polar 

coordinates in eq. (198), with subsequent component definitions by eq. (199)-(200) 

 2 2 2 2 ;r rV v v U U Uθ θ= + = +  (198) 

 ( ) ( )
2 2

2 2cos 1  ; sin 1r
R Rv U v U
r rθθ θ

   
= − = − +   

   
 (199) 

 ( ) ( ) ;rU Ucos U Usinθθ θ= = −  (200) 

The preceding definitions are substituted into eq. (201), and expanded in eq. (202)-(205). 

 2 2 2 2 2 2
r rV U v v U Uθ θ− = + − −  (201) 



97 

 ( ) ( )
22 2 4

2 2 2
2 2 4

2cos 1 cos 1r
R R Rv U U
r r r

θ θ
    

= − = − +    
    

 (202) 

 ( ) ( )
22 2 4

2 2 2
2 2 4

2sin 1 sin 1R R Rv U U
r r rθ θ θ

    
= − + = + +    

    
 (203) 

 ( ) 22
rU Ucos θ =    (204) 

 ( ) 22U Usinθ θ =    (205) 

The expanded velocity components are combined to form a single expression in eq. (206), 

which is substituted into eq. (207) resulting in eq. (208). 
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The integration with respect to r , is performed resulting in eq. (209) and evaluated across 

its limits to obtain eq. (211). 
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The integration across  , is next performed and evaluated across its limits in eq. (212). The 

definition of logarithms addition division results in the two natural logarithm terms in eq. 

(213) to be equal to natural log of one which is zero. This simplifies to eq. (214) and 

subsequently eq. (215) 
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 2 21
2

=fieldKE ρπR U  (215) 

Equations (197) and (215) are substituted into eq. (195) and results in a virtual mass 

coefficient for on a cylinder in potential flow to be: 
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Relative Velocity 
The second method for evaluating the virtual mass coefficient is shown here. The virtual 

mass coefficient definition is shown in eq. (218) and is equivalent to eq. (195). The 

integrated kinetic energy field is defined by eq. (219) and the reference kinetic energy is 

defined by eq. (220). 

 field
VM

ref

KE
C

KE
=  (218) 
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KE V rdrd
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 2 21
2refKE R Uρπ=  (220) 

The relative velocity is defined by the uniform inlet velocity components subtracted from 

the moving fluid velocity and is shown in eq.(221)-(228). 

 2 2 2 2 ;r rV v v U U Uθ θ= + = +  (221) 

 ( ) ( )2 2
rel r rV v U v Uθ θ= − + −  (222) 

 ( ) ( )2 22
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The relative velocity definition from eq. (228) is substituted into the kinetic energy 

equation which results in eq. (229). 

 ( ) ( )
2 4 4
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The radiation integration is performed in eq. (230) and evaluated across its limits resulting 

in eq. (232). 
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Common constant values from in eq. (232) are factored from the sine and cosine terms to 

implement the trigonometric definition for    2 2cos sin 1      . This simplifies the 

expression to eq. (233) and subsequently eq. (236). 
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 2 21
2fieldKE R U   (236) 

Substituting eq. (220)and eq. (236) into eq. (218) results in eq. (237). This simplifies to a 

virtual mass coefficient value of one which is equivalent to the result obtained from the 

relative kinetic energy method. 
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