
OSU Department of Computer Science Course Learning Objectives

Page 1

Learning Objectives
For courses in

The Department of Computer Science
Oregon State University

April 1, 2002

This document describes the overall learning objectives for courses in the department of
computer science at Oregon State University.

OSU Department of Computer Science Course Learning Objectives

Page 2

OVERALL LEARNING OBJECTIVES FOR THE COMPUTER SCIENCE DEGREE.........................3

ALGORITHMS AND DATA STRUCTURES...5
ARCHITECTURE..6
COMPUTATIONAL SCIENCE AND NUMERIC METHODS..6
OPERATING SYSTEMS...6
PROGRAMMING LANGUAGES...6
SOFTWARE METHODOLOGY AND ENGINEERING...7
SOCIAL, ETHICAL, AND PROFESSIONAL ISSUES..7

SPECIFIC LEARNING OBJECTIVES FOR COURSES IN COMPUTER SCIENCE............................8

CS101: COMPUTERS: APPLICATIONS AND IMPLICATIONS..9
CS 151: INTRODUCTION TO PROGRAMMING IN C...10
CS 160: COMPUTER SCIENCE ORIENTATION ..11
CS 161: INTRODUCTION TO COMPUTER SCIENCE...12
CS 162: INTRODUCTION TO COMPUTER SCIENCE II ...13
CS 252: USER INTERFACE DESIGN..14
CS 261: DATA STRUCTURES...15
CS 271: COMPUTER ARCHITECTURE AND ASSEMBLY LANGUAGE..17
CS 295: INTRODUCTION TO WEB AUTHORING...18
CS 311: OPERATING SYSTEMS I ..19
CS 312: SYSTEM ADMINISTRATION ..20
CS 321: THEORY OF COMPUTATION ...21
CS 325: ANALYSIS OF ALGORITHMS...22
CS 361: SOFTWARE ENGINEERING I ...23
CS 362: SOFTWARE ENGINEERING II ..24
CS 372: COMPUTER NETWORKS...25
CS 381: PROGRAMMING LANGUAGE FUNDAMENTALS ..26
CS 391: SOCIAL AND ETHICAL ISSUES IN COMPUTER SCIENCE...27
CS 411: OPERATING SYSTEMS II...29
CS 420: GRAPH THEORY WITH COMPUTER SCIENCE APPLICATIONS...30
CS 430: AI PROGRAMMING TECHNIQUES...31
CS 440: DATABASE MANAGEMENT SYSTEMS..32
CS 450: INTRODUCTION TO COMPUTER GRAPHICS..33
CS 472: COMPUTER ARCHITECTURE..34
CS 475: INTRODUCTION TO PARALLEL COMPUTING..35
CS 480: TRANSLATORS...36

CATALOG DESCRIPTIONS FOR RELATED COURSES..37

ECE 271: DIGITAL LOGIC DESIGN..37
ECE 375: COMPUTER STRUCTURES AND ASSEMBLY LANGUAGE PROGRAMMING.......................................37
MATH 231, MATH 232: ELEMENTS OF DISCRETE MATHEMATICS ...37
MATH 251: DIFFERENTIAL CALCULUS..37
MATH 252: INTERGRAL CALCULUS...37
MATH 253: INFINITE SERIES AND SEQUENCES..37
MATH 254: VECTOR CALCULUS..38
MATH 351: INTRODUCTION TO NUMERICAL ANALYSIS ..38
PHYSICS 211, 212, 213: GENERAL PHYSICS WITH CALCULUS ...38
STATISTICS 314: INTRODUCTION TO STATISTICS FOR ENGINEERS..38

OSU Department of Computer Science Course Learning Objectives

Page 3

Overall Learning Objectives for the Computer
Science Degree

The undergraduate program in Computer Science at Oregon State University seeks to
prepare graduates to understand the field of computing, both as an academic discipline
and as a profession. Achieving this goal involves imparting both a broad comprehension
of the discipline as a whole, as well as the acquisition of specific skills used by
practitioners of the discipline. It requires an appreciation of both the theory that underlies
the field, and the application of that theory to practical problems. And it demands that
graduates be aware of the role, importance and impact of computing within the larger
society.

Computer Science is simultaneously a mathematical, a scientific, and an engineering
discipline. The skills required of those who would work in the field derive from all three
traditions. This can be seen in the complex interplay between three significant
fundamental concepts at the heart of computer science: theory, abstraction and design.

The concept of theory grows out of the tradition of computing as a mathematical science.
Like mathematicians, computer scientists will on occasion work in a world of theorems,
hypotheses, proofs, and formal models.

The concept of abstraction is rooted in the experimental sciences. Like a physicist or a
chemist, a computer scientist will often take a complex system and purposely hide, or
abstract, certain features in order to make other elements more prominent. Indeed,
abstraction is the key tool used in the creation and understanding of complex systems.

Like all engineering disciplines, the concept of design is fundamental to computer
science. Producing an elegant design is not haphazard, but requires a careful evaluation
of requirements, specifications, an appreciation of the various alternatives and their
implications, and an evaluation mechanism (testing or analysis) to assess the result.

At a broad level, the general characteristics of our computer science graduates must
include the following:1

A system-level perspective. While a formal education tends to emphasize fragmented and
isolated concepts and skills, the graduate of a computer science program must understand
not only the pieces, but also how the pieces fit together to make a whole.

An appreciation of both theory and practice. The graduate must understand both the
fundamental concepts and results of theory, and the relevance and application of theory to
practical situations.

1 This list is adapted from Chapter 11 of the Draft ACM Computing Curricula 2001.

OSU Department of Computer Science Course Learning Objectives

Page 4

Recognition of common themes. There are many themes that occur repeatedly throughout
computer science. Examples include recursion and repetition, complexity, modeling,
time-space tradeoffs, and abstraction. The student should understand the common
features of these themes, and their application to specific situations.

Team project experience. Students must understand that the solution to complex
problems almost always involves the combined efforts of many individuals with differing
skills and backgrounds. Experience with working in such teams must be an essential part
of the student experience.

An awareness of change. Graduates must possess both a solid foundation in Computer
Science and an awareness and willingness to deal with rapid changes in the field.

Almost no area of human endeavor experiences change at a rate comparable to that of
Computer Science. While many other academic disciplines must confront an explosive
growth in new information, typically the transformations wrought by these innovations
occur at the edges of their respective fields, well beyond the accepted core of basic
knowledge. In contrast, in the field of computer science we continually face
revolutionary changes that cut to the heart of our discipline. In just the past decade, for
example, we have witnessed the following developments:

• The rise of the Internet as a truly world-wide communication medium

• The development of the world-wide-web as a tool for commerce, education, and
knowledge distribution

• Object-oriented programming becoming the dominant programming paradigm

• Computing in embedded systems becoming an intrinsic part of an ever larger
number of everyday appliances, and the increasing interconnections between
these devices

• An increased awareness on the part of society as a whole in both the benefits and
dangers of a networked society, including concerns over security and safety

Because change is fundamental, any description of a curriculum in computer science
must necessarily represent only a static snapshot of a constantly evolving scheme. A
student graduating with a degree in computer science in 1970 might never have heard the
term “structured programming.” The student in 1980 would almost certainly not have
been taught object-oriented programming. The graduate of 1990 would not know about
the World-Wide-Web. With this history it is clear that the one assurance we can give any
student of computer science is the guarantee that at least some of the knowledge they
gain during their academic preparation will at some point in their career be superseded by
new innovations.

OSU Department of Computer Science Course Learning Objectives

Page 5

It is therefore clear that the most important skill that we must impart to our graduates is
an approach to learning. For a computer scientist learning is not something that is done
in college and then applied throughout a lifetime of work; instead learning must be a
continual and lifelong process. It is therefore imperative that we teach not only specific
information, but we must also impart to the student how to accommodate new
information on their own once they leave college.

The forgoing must not be construed as asserting that knowledge in computer science is a
type of quicksand, a mirage that will vanish and reappear in a different form every few
years. Decades of experience as a discipline have shown that there is a fundamental body
of knowledge that supports the field of computer science, and any student of computer
science should be exposed to this information. One synopsis of this body of knowledge
can be found in the curriculum guidelines published by the Association for Computing
Machinery, the leading professional organization for computer science. In their
curriculum guidelines they divide the subject matter appropriate for computer science
into several categories, with suggested topics within each category. These categories
include the following:

1. Algorithms and Data Structures
2. Architecture
3. Computational Science and Numeric Methods
4. Operating Systems
5. Programming languages
6. Software Methodology and Engineering
7. Social, Ethical and Professional

Within each category a specific set of topics are described. In the following sections we
summarize these categories, and illustrate where within our own curriculum each topic is
discussed. The number given in square brackets ties the concept to a specific learning
objective for the course. For example, CS 160[5] means that the topic is addressed by
learning objective number 5 in the course CS 160. These values are omitted for courses
from other departments, since we do not yet have detailed learning objectives for these.
(A section at the end of this document presents catalog descriptions for courses given in
other departments that are part of our program.) A parenthesis around the course means
the topic is discussed in the given course, but the course is not required for graduation.

Algorithms and Data Structures

Topic Discussed in Course
Basic Data Structures CS 151[5], CS 162[6], CS 261[4]
Abstract Data Types CS 261[3]
Recursive Algorithms Math 231, CS 325[1]
Complexity Analysis CS 162[4], CS 261[3]. CS 325[9]
Complexity Classes CS 325[6]
Sorting and Searching CS 162[7], 261[6], 325[5]

OSU Department of Computer Science Course Learning Objectives

Page 6

Computability and Undecidability CS 321[5]
Problem-Solving Strategies CS 161[7], CS 325[7]. CS 361[1]
Parallel and Distributed Algorithms (CS 475[1])

Architecture

Topic Discussed in Course
Digital Logic CS 160[5], ECE 271, ECE 375
Digital Systems CS 472[1], ECE 271, ECE 375
Machine Level Representation of Data CS 160[6], CS 151[5], CS 472[4], ECE

271, CS 480[7]
Assembly Level Machine Organization CS 160[7], CS 472[2], ECE 271
Memory System Organization and
Architecture

CS 472[6], ECE 271

Interfacing and Communication CS 372[2]
Alternative Architectures CS 472[5], (CS 475[4])

Computational Science and Numeric Methods

Topic Discussed in Course
Number Representation, Errors, and
Portability

CS 151[5], CS 160[6], ECE 271, Math 351

Iterative Approximation Methods Math 351

Operating Systems

Topic Discussed in Course
History, Evolution, and Philosophy CS 311[2]
Tasking and Processes CS 311[4], CS 411[3]
Process Coordination and Synchronization CS 311[3], CS 411[3]
Scheduling and Dispatch CS 311[3], CS 411[3]
Physical and Virtual Memory
Organizations

CS 311[2], CS 411[1]

Device Management CS 311
File Systems and Naming (CS 312[5]), CS 411[1]
Security and Protection (CS 372[7]), CS 411[1]
Communications and Networking CS 311[6], (CS 372[1]), CS 411[1]
Distributed and Real-time Systems CS 472

Programming Languages

Topic Discussed in Course

OSU Department of Computer Science Course Learning Objectives

Page 7

Representation of Data Types CS 151[5]. CS 160[6], CS 480
Sequence Control CS 151[3], 161[4], 162[3], CS 381[8]
Data Control, Sharing, and Type Checking CS 381[3]
Finite State Automata and Regular
Expressions

CS 311[7], CS 321[1,2], CS 480[5]

Context-Free Grammars and Pushdown
Automata

CS 321[3]

Language Translation Systems CS 480[6]
Programming Language Semantics CS 381[9]
Programming Paradigms CS 381[8]
Distributed and Parallel Programming
Constructs

(CS 475[4])

Software Methodology and Engineering

Topic Discussed in Course
Fundamental Problem-solving Concepts CS 160[9], CS 325[7]
The Software Development Process CS 361[1], CS 362[5]
Software Requirements and Specifications CS 361[3], CS 362[5]
Software Design and Implementation CS 161[7], CS 361[4], CS 362[6]
Verification and Validation CS 161[7], CS 361[4], CS 362[1,2]

Social, Ethical, and Professional Issues

Topic Discussed in Course

Historical and Social Context of
Computing

CS 391[1]

Responsibilities of the Computing
Professional

CS 160[10], CS 391[2]

OSU Department of Computer Science Course Learning Objectives

Page 8

Specific Learning Objectives for Courses in
Computer Science

In the following sections we describe the specific learning objectives for each course in
the Computer Science program. Each description is also accompanied by the Catalog
description for the course. Taken together, these represent a concise description of the
course, its goals and objectives.

OSU Department of Computer Science Course Learning Objectives

Page 9

CS101: Computers: Applications and Implications

Catalog Description

The varieties of computer hardware and software. The effects, positive and
negative, of computers on human lives. Ethical implications of information
technology. Hands-on experience with a variety of computer applications,
including multimedia and Internet communication tools. (4 credits)

On completion of the course, students must demonstrate the ability to:

1. Describe the functions of the hardware components,

2. Describe different computer systems and their purposes,

3. Describe different types of software and their purposes,

4. Describe networking and telecommunication concepts and protocols,

5. Demonstrate general understanding in several computing fields such as computer

security, artificial intelligence, software system design, and robotics.

6. Describe social and ethical implications of computers in different aspects of our

society and life.

7. Demonstrate familiarity and ability to use:

• Word processing application

• Spreadsheet application

• Presentation graphics application

• Image editing application

• Web browser and search applications

• Web authoring application

• Email application

OSU Department of Computer Science Course Learning Objectives

Page 10

CS 151: Introduction to Programming in C

Catalog Description

Thorough treatment of the basic elements of C, bitwise operations, flow of
control, input/output, functions, arrays, strings, and structures. (4 credits)

Upon completion of this course students will be able to understand and demonstrate:

1. Rules for defining valid identifiers in the C language. Create identifiers for of
variables and functions. Recognise invalid identifiers.

2. Rules for creating and evaluating expressions using the arithmetic, relational, logical
and reference operators in the C language. Evaluate expressions and create
appropriate C language expressions from human language statements.

3. Behaviour of C as a procedural language and a program as a linear sequence of steps.
Evaluate conditional, selection, and repetitive control statements. Create appropriate
conditional, selection, or repetitive control statements as required to accomplish a
programming task.

4. Function use and definition. Use pre-defined functions. Prototype functions. Write
functions. Demonstrate and use scope rules for local identifiers. Distinguish the role
and use of formal and actual arguments.

5. Role of data types. Explain the distinction between integer and floating point data
types. Select the appropriate data type based on the relative range and or accuracy of
the data to be represented. Use single dimensional arrays as an ordered collection of
data of a single type. Use multiple dimensional arrays of a single data type. Use
structures, unions, and enumerated data types. Use pointers, references and de-
references to data. Demonstrate the use of NULL. Use the typdef keyword.

Submitted by Mike Johnson, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 11

CS 160: Computer Science Orientation

Catalog Description

Introduction to the computer science field and profession. Team problem solving.
Social and ethical issues surrounding use of computers. (3 credits)

On completion of the course, students must demonstrate the ability to:

1. Set up a user account on the College of Engineering network. Describe and use the
basic features of an email program and a Web browser.

2. Use the library’s electronic catalog to find a book’s Library of Congress call number,
given its title or its author. Use the library’s web-based database to locate magazine
and journal articles matching multiple subject criteria.

3. Plan a course of study that satisfies all requirements for a B.S. in computer science.

4. Work as a member of a team to complete written homework assignments and a
programming project.

5. Determine the output of simple logical circuits containing AND, OR, XOR, and NOT
gates.

6. Represent, add, and subtract integers and recognize overflow. Represent, add, and
subtract floating-point numbers and recognize overflow and round-off error.
Represent ASCII characters and machine language instructions.

7. List the four basic computer hardware functional units (CPU, memory, input, and
output) and describe how they interact.

8. Write simple machine language programs and describe and three phases in the
execution of a machine language instruction.

9. Describe what an algorithm is, represent simple algorithms in pseudocode, perform
simple worst case analysis of algorithms, and describe a problem for which there is
no algorithm.

10. Evaluate ethical problems using both ends-oriented and means-oriented reasoning.

11. Describe several career options available to B.S. graduates in computer science

OSU Department of Computer Science Course Learning Objectives

Page 12

CS 161: Introduction to Computer Science

Catalog Description

Overview of fundamental concepts of computer science. Introduction to problem
solving, software engineering and object-oriented algorithm
development and programming. PREREQ: CS 151 or equivalent. COREQ: MTH
231.

Upon completion of this course students will be able to understand and demonstrate:

1. Demonstrate the rules for defining valid identifiers in a programming language by
creating identifiers for variables, methods or functions, classes, and objects.

2. Demonstrate the rules for creating and evaluating arithmetic, relational, and logical
expressions by evaluating and creating valid, appropriate expressions from human
language statements.

3. Create appropriate control statements as required to accomplish a program task,
including the interception and handling of error conditions.

4. Recognize and understand the importance of rudimentary software engineering
design principles and software quality factors.

5. Recognize and understand the relationship between the software engineering design
principles and software quality assurance and testing.

OSU Department of Computer Science Course Learning Objectives

Page 13

CS 162: Introduction to Computer Science II

Catalog Description

Basic data structures. Computer programming techniques and application of
software engineering principles. Introduction to analysis of
programs. PREREQ: CS 161, MTH 231.

On completion of the course, students must demonstrate the ability to:

1. Demonstrate an understanding of abstraction, modularity, separation of concerns by
decomposing a process into an appropriate sequence of functions.

2. Understand abstract data types, classes, objects, inheritance, and encapsulation.

3. Describe the characteristics of an algorithm.

4. Describe the asymptotic execution time of simple algorithms (big O notation).

5. Understand software testing techniques.

6. Demonstrate an understanding of basic linear structures and describe instances
appropriate for their use.

7. Compare and contrast iterative and recursive algorithms and demonstrate an
understanding conditions appropriate for their use.

OSU Department of Computer Science Course Learning Objectives

Page 14

CS 252: User Interface Design

Catalog Description

Introduction to the basic principles of user interface design and evaluation.
Includes the use of interactive devices, layout, symbolism, color and other
interface characteristics, tools and methods for evaluating interfaces, and related
topics from human factors and usability engineering. (4 credits) Prereq: CS 161 or
CS 295.

Upon completion of this course, students will be able to understand and demonstrate:

1. The basic principles of human-computer interactions and how they affect the usability
of software interfaces.

2. The ability to apply guidelines based on those principles in the design of user
interfaces.

3. The ability to design, build, and evaluate computer interfaces using methods from
usability engineering.

4. The adherence to the standard coding practices employed in software companies.

5. Productivity and cooperation on team-based software engineering projects.

OSU Department of Computer Science Course Learning Objectives

Page 15

CS 261: Data Structures
Catalog Description

Complexity analysis. Approximation Methods. Trees and graphs. File processing.
Binary search trees. Hashing. Storage management. (4 credits) Prereq: CS 162,
Math 232.

On completion of the course, students must demonstrate the ability to:

1. Demonstrate an understanding of abstraction, modularity, separation of concerns,
classes, objects, inheritance, correctness, reliability, robustness, ease of use,
efficiency, modifiability, and encapsulation by their considered implementation in
programs in an appropriate programming language.

2. Determine the asymptotic complexity of an algorithm and be able to compare the
execution time of competing algorithms based on their asymptotic complexity, space
utilization, and other factors.

3. Demonstrate an understanding of abstract data types, such as stacks, queues, priority
queues, tree structures, and hash tables, by implementing them in appropriate
language.

4. Demonstrate an understanding of and the ability to implement software testing
techniques.

5. Demonstrate an understanding of recursion by its appropriate use in software
engineering assignments.

OSU Department of Computer Science Course Learning Objectives

Page 16

CS 262: Programming Projects in C++

Catalog Description

Learning a second computer programming language. Elements of C++. Object-
oriented programming. Experience team work on a large programming project.
Prereq: CS 261.

On completion of this course, the students should have demonstrated:

 1. Use of good programming practices and a consistent programming style.

 2. Proficiency with builtin types and control structures in C++.

 3. Proficiency with basic container types in the standard template library.

 4. Proficiency in using streams for basic input/output operations.

 5. Proficiency in designing concrete and abstract classes.

 6. Proficiency in using pointers.

 7. Proficiency with basic memory management in C++.

 8. Ability to use inheritance and virtual functions.

 9. Ability to design simple generic types and functions.

OSU Department of Computer Science Course Learning Objectives

Page 17

CS 271: Computer Architecture and Assembly
Language

Catalog Description

Introduction to functional organization and operation of digital computers.
Coverage of Assembly language; addressing, stacks, argument
passing, arithmetic operations, decisions, macros, modularization, linkers and
debuggers. PREREQ: CS 161, MTH 231.

OSU Department of Computer Science Course Learning Objectives

Page 18

CS 295: Introduction to Web Authoring

Catalog Description

Techniques and tools for designing and publishing on the World Wide Web;
hypertext and HTML; site and page design; media integration; issues raised by
Internet publishing. 4 credits.

By the completion of this course, students will be expected to:

1. Formulate the basic HTML and web design principles and apply them to web page
creation, including Tags, lists, tables, images, links, fonts

2. Understand the limitations associated with the web media and be able to articulate the
trade off between lowest common denominator and high end web presentations

3. Experience working in a group to present materials. And develop intra group
communication skills

4. Understand the life cycle of Web page development.

5. have the basic graphic art skills to create and manipulate images for web sites

6. Clearly understand how to communicate a story via web pages

7. Understand the dynamics of web based commerce.

8. Be able to create web pages which include pre-coded programs to enhance a web site,
this may include cgi, javascript, or other dynamic page generation languages.

9. Have experienced several (more than 2) web creation tools to be able to compare and
contrast the ease of use of the tools.

10. Have added sound and/or video to a web page as a way to enhance the page. And
learning the limitations around multi-media presentation.

OSU Department of Computer Science Course Learning Objectives

Page 19

CS 311: Operating Systems I

Catalog Description

Introduction to operating systems using UNIX as the case study. System calls and
utilities, fundamentals of processes and interprocess communication. (4 credits)
Prereq: CS 151, CS 261, ECE 271 or CS 271,

By the completion of this course, students will be expected to:

1. Demonstrate the ability to develop programs using the following programming
tools:
• development environments
• libraries
• revision control systems
• scripting languages

2. Demonstrate a knowledge of the overview of operating systems including history,
structure, and implementation.

3. Demonstrate an understanding of processes including data structures, states, state
transitions, and synchronization.

4. Demonstrate the ability to do concurrent programming.

5. Demonstrate the ability to write code that provides mutual exclusion for processes
sharing variables or other resources.

6. Demonstrate the ability to write socket based client/server systems.

7. Demonstrate the ability to program with regular expressions.

Submitted by Mike Johnson and Jon Herlocker, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 20

CS 312: System Administration

Catalog Description

Introduction to UNIX system administration. Network administration and routing.
Internet services. Security issues. (4 credits) Prereq: CS 311 or instructor approval

By the completion of this course, students will be able to:

1. Install an OS and configure a system for a specific task-partitioned disk space,
add and remove network services, connect to a network. Add new packages to a
system.

2. Add/delete users, check disk space usage, change passwords. Manipulae and
change user permissions on files and directories.

3. List processes, kill rogue processes, detect high use processes, move processes
from foreground to background. Change process priority.

4. Shut down and reboot a system safely.

5. Write programs to automate simple system administration tasks.

6. Demonstrate the ability to research a topic and present a clear articulation of the
topic issue.

7. To work with a team to expand the amount of work that is possible to do through
delegation, organization and sharing of resources.

Submitted by John Sechrest, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 21

CS 321: Theory of Computation

Catalog Description

Survey of models of computation including finite automata, formal grammars,
and Turing machines. Prereq: CS 261, Math 231

On completion of the course, students will be able to:

1. Describe the properties of regular and context-free languages. Be able to determine if
a language is regular or context-free.

2. Design finite state automata (both deterministic and nondetermanistic), regular
grammars and regular expressions for regular languages and convert one description
to another.

3. Design grammars and push down automata for context-free languages and convert
one to the other.

4. Explain the concept of a Turing Machine and write simple programs for aTuring
Machine.

5. Explain the concept of undecidability and give examples of undecidable problems.

Submitted by Paul Cull, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 22

CS 325: Analysis of Algorithms

Catalog Description

Recurrence relations, combinatorics, recursive algorithms, proofs of correctness.
(4 credits) Pereq: CS 261, Math 232.

On completion of this course, students will be able to demonstrate an understanding of
the following topics:

1. Recursive algorithms.

2. Using difference equations

3. Inductive proofs of correctness

4. Timing algorithms

5. Search algorithms

6. NP completeness

7. Divide and conquer algorithms

8. Approximation for optimisation

9. Big Oh notation and asymptotics

OSU Department of Computer Science Course Learning Objectives

Page 23

CS 361: Software Engineering I

Catalog Description

Introduction to software engineering beginning with an overview of the software
lifecycle, followed by a focus on the "front end" of that lifecycle including
requirements analysis, and specification and design techniques. (4 credits) Prereq:
CS 261. WIC course.

On completion of the course, students will be able to:

1. Describe three process models of the software life cycle and discuss their phases,
advantages, and disadvantages.

2. Gather requirements for a realistic software system by interacting with a user or
user group; write a requirements specification document.

3. Model system requirements using one or more semi-formal notation such as:
UML, dataflow diagrams, entity-relationship diagrams, or state diagrams.

4. Design software systems at the architectural level, and at lower levels using one
or more techniques such as: object-oriented or structured design. Express designs
in design specification documents.

5. Validate requirements and designs by reviewing specifications with the user or
user group; adjust the specification or design as necessary.

6. Work effectively in teams.

7. Prepare effective, professional software-related documents.

Submitted by Curt Cook and Gregg Rothermel, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 24

CS 362: Software Engineering II

Catalog Description:

Continued introduction to software engineering, focusing on the "back end" of the
software lifecycle, including implementation, software verification and validation,
and software evolution and maintenance. (4 credits) Prereq: CS 361

On completion of the course, students will be able to:

1. Describe several techniques for validating and measuring the quality of software,
including both formal and semi-formal techniques.

2. Apply testing techniques including black-box and white-box techniques, at the
unit, integration, system, and regression testing phases.

3. Actively participate in a software inspection or review.

4. Use a debugger and other applicable techniques to locate faults.

5. Describe advantages of, and cost-benefit tradeoffs inherent in, the use of
automated tools for building software and automating configuration management,
such as make and CVS, and use such tools in a realistic setting.

6. Describe and justify a set of common programming guidelines and procedures.

7. Describe several methods of estimating the cost and developing a schedule for a
programming project.

8. Work effectively in teams.

Submitted by Curt Cook and Gregg Rothermel, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 25

CS 372: Computer Networks

Catalog Description:

Introduction to principles, organization and implementation of computer
networks. Basic converage of fundamentals, architecture, topography, and
application issues. 4 Credits. Prereq: CS 261, CS 311, Math 231.

On completion of the course, students will be able to to:

1. Describe the basic principles involved in network hardware and software design.

2. Describe the fundamental physical layer design methods, which include data
transmission, transmission media, data encoding and data communication interface.

3. Describe the basic data link layer issues; error control techniques and data link
protocols.

4. Describe the basic medium-access sublayer issues and basic multiple access
protocols.

5. Describe the basic network layer design issues and associated routing algorithms.

6. Describe the basic transport layer issues and simple protocols.

7. Describe the basic application layer design issues, including simple security design
methods.

Submitted by Bella Bose, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 26

CS 381: Programming Language Fundamentals

Catalog Description

An introduction to the concepts found in a variety of programming languages.
Programming languages as tools for problem solving. A brief introduction to
languages from a number of different paradigms. (4 credits) Prereq: CS 261

On completion of the course, students will be able to:

1. Describe and work problems that accurately predict program behavior under static
versus dynamic scoping mechanisms.

2. Describe and work problems that accurately predict program behavior under static
versus dynamic typing mechanisms, with or without the use of type constraints.

3. Describe and work problems that accurately predict program behavior under the by-
value, by-reference, by-constant, by-result, by-value-result, and by-name mechanisms
of parameter passing.

4. Describe the contents of the run-time stack as it stands at any moment in program
execution.

5. Describe the extent of polymorphism facilitated by dynamic typing versus inheritance
versus overloading.

6. Understand exception handling mechanisms and be able to implement exception
handlers in Java and in 2-3 other programming languages.

7. Explain the essential differences between the imperative, functional, dataflow, and
object-oriented paradigms. Create programs in several paradigms.

8. Explain how programming language semantics are defined (axiomatic, denotational,
operational semantics).

Submitted by Margaret Burnett, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 27

CS 391: Social and Ethical Issues in Computer Science

Catalog Description

In-depth exploration of the social, psychological, political and ethical issues
surrounding the computer industry and the evolving information society. (3
credits) Prereq: C 101

On completion of the course, students will be able to:

1. Identify and evaluate the social impact of current and future computer-related
technologies.

2. Explain the roles and responsibilities of today's computer professional.

3. Interpret state, federal, and international laws with respect to computer activity.

4. Identify and evaluate risks associated with computer technologies.

5. Identify and evaluate the benefits of computer technologies.

6. Prepare and present informational and engaging presentations about issues facing
computer professionals.

OSU Department of Computer Science Course Learning Objectives

Page 28

CS 395: Interactive Multimedia

Catalog Description

Technological, aesthetic, and pedagogical issues of communication using
interactive multimedia and hypermedia; techniques for authoring
interactive multimedia projects using a variety of digital media tools. PREREQ:
CS 101, ART 120.

On completion of the course, students will be able to:

1. understand the relationship between digital media and multimedia.

2. digitize photographs, sound clips, and video clips, edit them, apply digital effects,
and optimize them for delivery on the Web or CD-ROM.

3. create animated interactive presentations using a cross-platform multimedia
authoring tool.

4. use a multimedia authoring tool to integrate audio, video, graphics, and animation
into interactive multimedia projects for delivery on CD-ROM and the Web.

5. apply basic graphic design principles to create aesthetically pleasing multimedia
projects.

6. apply basic user-interface design principles to create multimedia projects that are
easy to understand and to use.

7. understand the nature of the multimedia design team and the kinds of work done
by team members.

8. coordinate a multimedia project from the earliest design phase through the
storyboard and prototype phases to the final tested product.

9. discuss the fundamental ethical and legal issues related to interactive multimedia
design.

OSU Department of Computer Science Course Learning Objectives

Page 29

CS 411: Operating Systems II

Catalog Description

Principles of computer operating systems; concurrent processes, mutual
exclusion, memory management, file systems, I/O systems, performance
evaluation, multiprocessor systems, and distributed systems. (4 credits) Prereq:
CS 311, ECE 375 or CS 271.

Students who take Computer Science 411 must:

Demonstrate an understanding of the fundamental objects, functions, issues,
algorithms, design issues, and tradeoffs involved in …

1. process and thread management
2. process synchronization
3. CPU scheduling
4. memory management, including paging and virtual memory systems
5. file systems and file management
6. I/O management
7. operating system protection & security

8. Implement and test algorithms for operating system functions such as CPU
scheduling, multiprogramming, virtual memory, and disk scheduling.

Submitted by Jon Herlocker, April 2002

OSU Department of Computer Science Course Learning Objectives

Page 30

CS 420: Graph Theory with Computer Science
Applications

Catalog Description

Directed and undirected graphs; paths, circuits, trees, coloring, planar graphs,
partitioning; computer representation of graphs and graph algorithms.
Applications in software complexity metrics, program testing, and compiling. (3
credits) Prereq: CS 325, Math 232

 On completion of this course, a student will be able to:

1. Demonstrate an understanding of major concepts in graph theory including paths,
distance, connectedness, isomorphism, matching, planarity, coloring, independence,
covering, factoring, and spanning trees.

2. Demonstrate an understanding of the fundamental results in graph theory including
characterizations of trees, Euler graphs, planar graphs, and n-connected graphs,
degree sequences of graphs, planar graph coloring, Hamiltonian graphs and network
flows.

3. Understand basic graph algorithms including depth-first and breadth-first search,
minimal spanning trees, maximal matching, and shortest path.

4. Describe computer science applications in the areas of software testing, software
complexity, network topologies, and data structures.

Submitted by Curt Cook, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 31

CS 430: AI Programming Techniques

Catalog Description

Symbols and symbolic programming. List basics: eval, recursion, variable binding
and scoping, macros. Representation and problem solving in Lisp, advanced
topics: alternative data representations, generators, data-driven control, agendas,
AI Programming paradigms (4 credits) Prereq: CS 325, CS 381

On completion of the course, students will be able to:

1. Define the dimensions along which agents and environments vary, along with the
key functions that must be implemented in a general agent.

2. Implement agents using various search methods, including uninformed and
informed, deterministic and stochastic search.

3. Explain and apply the basics of logical and structured (e.g. Bayesian Network)
probabilistic inference and decision evaluation.

4. Compare and contrast learning methods including supervised and unsupervised
learning, the role of generalization in learning and the kinds of generalization that
takes place in various learning methods.

Submitted by Prasad Tadepalli, march 2001

OSU Department of Computer Science Course Learning Objectives

Page 32

CS 440: Database Management Systems

Catalog Description

Purpose of database systems, levels of data representation. Entity-relationship
model. Relational systems: data definition, data manipulation, query language
(SQL), relational calculus and algebra, data dependencies and normal forms.
DBTG network model. Query optimization, recovery, concurrency control.(4
credits) Prereq: CS 261

 On completion of the course, students will be able to:

1. Describe the fundamental principles and goals of integrated data management.

2. Design and implement a relational database and formulate SQL queries.

3. Explain the principles of data modelling, create an ER diagram or UML class
diagram, and generate a relational schema from such a diagram.

4. Understand the mechanisms of Web-based database access and create a simple
Web-based database application.

Submitted by Toshi Minoura, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 33

CS 450: Introduction to Computer Graphics

Catalog Description

Display devices, graphics software, interactive graphics, three-dimensional graphics.
(4 credits) Prereq: CS 311, CS 325

 On completion of the course, students will be able to:

1. Describe the use of an API for 2D graphics programming.

2. Explain the concepts of windows and viewports and perform coordinate
conversions for them.

3. Understand the mechanisms for 2D and 3D transformations with homogeneous
transformation matrices.

4. Perform view transformations, local transformations and projections.

5. Explain the mechanisms for backface removal and hidden surface elimination.

6. Explain various shading methods and use them.

7. Explain the concepts for ray tracing.

8. Create animated 3D scenes.

Submitted by Toshi Minoura, March 2001

OSU Department of Computer Science Course Learning Objectives

Page 34

CS 472: Computer Architecture

Catalog Description

Computer architecture using processors memories, I/O devices and I/O interfaces
as building blocks. Study of instruction set design and implementation, processor
implementation, pipelining and memory hierarchies. Issues and tradeoffs involved
in the design of Reduced Instruction Set Computer (RISC) architectures. (4
credits) Prereq: ECE 375 (Colisted as ECE 472)

On completion of the course, the students will be able to:

 1. Describe the performance of a computer system in terms of the number of
instructions, clock cycles per instruction and clock period.

 2. Describe the basic instruction sets for a simple computer system.

 3. Design a simple data path using a subset of instructions.

 4. Describe the basic concepts of 1's and 2's complement number systems and floating
point number systems.

 5. Describe basic concepts of pipeline architectures and the design issues.

 6. Describe the architecture of memory systems, and simple parallel interconnection
networks.

OSU Department of Computer Science Course Learning Objectives

Page 35

CS 475: Introduction to Parallel Computing

Catalog Description

Theoretical and practical survey of parallel processing, including a discussion of
parallel architectures, parallel programming languages, and parallel algorithms.
Programming one or more parallel computers in a higher-level parallel language.
(4 credits) Prereq: CS 325, CS 472 or ECE 472.

On completion of the course, the students will be able to:

1. Define and compute speedup, parallelizability, and efficiency.

2. State Amdahl’s Law and use it to predict the maximum speedup achievable from
a parallel version of a sequential program, given its execution profile.

3. Identify parallelism occurring in a program as pipelining, control (task)
parallelism, or data parallelism.

4. Define Flynn’s taxonomy and give examples of SISD, SIMD, and MIMD
computers.

5. Draw the most common interconnection networks (mesh, perfect shuffle,
butterfly, and hypercube) and explain the relative advantages and disadvantages
of each with respect to diameter, bisection width, and number of edges/node.

6. Explain the advantages and disadvantages of constructing parallel computers
using commodity off-the-shelf components.

7. Write SPMD-style parallel programs using either a standard message passing
library or threads package. The collection of programs produced should exhibit
local communications, collective communications, barrier synchronizations, and
file I/O. They should demonstrate both block and cyclic allocation of array
elements to processors.

OSU Department of Computer Science Course Learning Objectives

Page 36

CS 480: Translators

Catalog Description

An introduction to compilers; grammars, syntax-directed translation, parsers,
semantic analysis, and optimisation. (4 Credits).
Prereq: CS 321, ECE 375 or CS 271.

On completion of the course, students will be able to:

1. Describe characteristics common to a wide variety of different forms of translators
(XML->html, Tex->dvi, hardware description languages, and so on)

2. Describe the phases of a compiler

3. Understand the difference between the compile time and run time representation of a
program, and the structures common to each. (For example, symbol tables and
activation records).

4. Use regular expressions and context free languages to define a language syntax.

5. Perform manipulations on a grammar for a simple context free language (for
example, removal of recursion, factoring, making a grammar LL(1)).

6. Implement a lexical analyser to recognise tokens defined by regular expressions

7. Implement a parser, using either top down (recursive descent) or bottom up (LR)
techniques

8. Explain the purpose and importance of types in programming languages, including
internal representation issues and type checking.

9. Generate working target language for simple programming constructs.

Submitted by Tim Budd and Martin Erwig, march 2001

OSU Department of Computer Science Course Learning Objectives

Page 37

Catalog Descriptions for Related Courses

We do not have explicit learning objectives for those courses taught in other departments.
However, the catalog descriptions for these courses give some indication of the topics
discussed in each course.

ECE 271: Digital Logic Design

A first course in digital logic design using small and medium scale integrated circuits. 3
Credits.

ECE 375: Computer Structures and Assembly
Language Programming

Introduction to the Von Neuman computer architecture and assembly language
programming. 4 Credits.

Math 231, Math 232: Elements of Discrete Mathematics

Elementary logic, mathematical induction, functions and sequences, finite and infinite
sets, counting techniques, basic matrix algebra, relations, graphs, trees, semigroups. 4
Credits each.

Math 251: Differential Calculus

Differential calculus for engineers and scientists. Rates of change: the derivative,
velocity, and acceleration. The algebraic rules of differential calculus and derivatives of
polynomial, rational, and trigonometric functions. Maximum-minimum problems, curve
sketching, and other applications. Antiderivatives and simple motion problems.
PREREQ: MTH 112. (Bacc Core Course)

Math 252: Intergral Calculus

Definite integrals, elementary applications to area, force, and work. Integral tables and
basic techniques of integration, calculus of logarithmic and exponential functions, polar
coordinates, applications to areas, volumes, force, work, and growth and decay problems.
PREREQ: MTH 251. (Bacc Core Course)

Math 253: Infinite Series and Sequences

Indeterminate forms. Sequences and series, especially Taylor's formula and power series.
Applications to numerical estimation with error analysis. Series with complex terms and

OSU Department of Computer Science Course Learning Objectives

Page 38

the Euler identities. Brief introduction to functions of several variables, partial
derivatives, the chain rule, and double integrals in rectangular coordinates. PREREQ:
MTH 252. (Bacc Core Course)

Math 254: Vector Calculus

Vectors and vector functions. Surfaces, partial derivatives, gradients, and directional
derivatives. Multiple integrals with applications. Related matrix and linear algebra
concepts. PREREQ: MTH 252. (Bacc Core Course)

Math 351: Introduction to Numerical analysis

Introduction to the computation of approximate solutions to mathematical problems that
cannot be solved by hand; analysis of errors; rootfinding for nonlinear equations in one
variable; interpolation of functions; numerical integration.

Physics 211, 212, 213: General Physics with Calculus

A comprehensive introductory survey course intended primarily for students in the
sciences and engineering. Topics include mechanics, wave motion, thermal physics,
electromagnetism, and optics. Elementary calculus is used. Laboratory work accompanies
the lectures. Concurrent enrollment in a recitation section is strongly recommended.
PREREQ: MTH 251 for PH 211; MTH 252 and PH 211 for PH 212; MTH 254 and PH
212 for PH 213. COREQ: MTH 252 for PH 211, MTH 254 for PH 212. Lec/lab. (Bacc
Core Course)

Statistics 314: Introduction to statistics for Engineers

Probability, common probability distributions, sampling distributions, estimation,
hypothesis testing, control charts, regression analysis, experimental design. PREREQ:
MTH 253.

