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This paper defines the extended exponential of a measure

space Exp (X,S, p.), and then proves the measure theoretic analogue

of the ordinary exponential law,

TT Exp Ak = Exp [
kEI

Ice I

where I is some countable index set. The results are an extension

of those of D. S. Carter on the exponential of a measure space

exp (X,S,p.) -- manuscript to be published.

The construction begins with a totally cr-finite measure space

(X,S, p.). For each ordinal number n<o.), let Xn be the set of

ordered sequences of length n in X; in particular X0 = {0 } .

Let <Xn> be the set of unordered sequences of length n in X;

that is, the set of equivalence classes in Xn, two ordered se-

quences being equivalent if one is a rearrangement of the other.

Carter defines the exponential of X to be the disjoint union of finite
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1unordered sequences, exp X = <Xn> . This notation is moti-
n <co

vated by the following exponential law: Let Y and Z be a pair

of disjoint sets. Then there is a natural one-to-one map on the

Cartesian product exp Y exp Z onto exp(Y+ Z). Carter shows

how the measure space structure S, p. on X serves to induce a

corresponding structure exp S. exp p. on exp X. The resulting

measure space, exp (X,S, p.) = (exp X, exp S. exp p.) satisfies the

conditions,

(exp p.) (exp X) = exp (p.(X))

the exponential law holds in the sense that if

(X, S, p. ) = (Y, SY, 11 Y) + (Z , SZ ' p. Z), then the function cf above

is a measure isomorphism from the direct product

exp (Y,Sy,p.y) exp (Z,Sz,p.z)

to

exp [(Y, S' ) + (Z , S , p.z)] .
Y Y

In this paper the extended exponential of X is defined by

adjoining the unordered infinite sequences <X> exp X;

1that is, Exp X = <Xn>. The measure space structure is also
n.< co_

extended to obtain the extended exponential Exp (X,S, 11 ) . The



measure extension is trivial; (Exp p.) (X(4)>) = 0.

Now let {(Xn,Sn, p.n): nE I} be a family of pairwise disjoint

measure spaces in (X,S, p.) such that

not exist.

(X,S,p.) x, s,1.1.nn n)

where I is either a finite or countable index set. The exponential

law is then extended to show that there is a natural measurable iso-

from Tr Exp (Xn,Sn) to Exp
n e I

Xn,Sn)] .
T1E1

In the event I is finite, it is shown that 4) is actually a measure

isomorphism from TT Exp (Xn, S. pn) to Exp [ 1(Xn, Sn, j.)]
ne

nE I

In the case I is infinite it is shown that cl) need not be a measure

isomorphism, for the infinite product measure ( TT ExP P.n)
fl El

may

morphism (i)
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THE EXTENDED EXPONENTIAL OF A MEASURE SPACE
4

CHAPTER 1. INTRODUCTION

In his studies of the mathematical foundations of statistical

mechanics, D.S. Carter [1] has constructed what he calls "the

exponential of a measure space. " To visualize this construction in

terms of a simple example, consider a random experiment in which

the outcome is a variable but finite number of points x xn2'
in a plane rectangle X. This outcome might be represented by the

ordered sequence

x = (x1 x2, xn)

X

ththat is by a point in the direct power Xnn X. The event

that there are exactly n points in X would then be represented

by the set of all such sequences of length n; i. e. , by the set Xn.

Now suppose that the order of the points in unimportant, so that the

.

outcome is the same if (x1, is replaced by any

x1 x3



,rearrangement

(x. , x. , , x. ) where il'2' i is
in11 12

a permutation of 1, 2, n. Then it is natural to represent the

outcome not by the single sequence x, but by the unordered

sequence <x>, consisting of all rearrangements of x.

Definition 1. 1. Let x = (x1' x2' ,
xn)E Xn. Then

<x> = f(xi , xi ,
i1' i2' , i is a

1 2

permutation of 1, 2, n } .

The event that there are exactly n points in X is now

represented by the set of all such unordered n-tuples, called the

symmetric nth power of X, and denoted by <Xn> .

Definition 1. 2. <Xn> = <x> : XE Xn .

To include the event that there are no points in X, one

adjoins a special set <X0>, consisting of a single element
ex

(for "empty sequence" or "unordered sequence of length zero" in

X).

Definition 1. 3. < X0> 72 { e } .

The event that there is some finite number n,

n = 0 or 1 or 2

2



1

3

of points in X, which is the universal event for the experiment in

question, is represented by the union of the symmetric powers

<Xn>. Carter calls this disjoint union the "exponential of X,"

written 1

exp X = <Xn> .

n<(,)

The reason for this terminology lies in the following analog of the

familiar exponential law

exp (a +b) = (exp a) (exp b).

Let X be partitioned into the disjoint union of two subsets Y, Z.

Let the exponential construction be carried out for the sets Y and

Z separately, as it was carried out above for X. Then there is a

natural equivalence between exp X = exp (Y+ Z) and the direct

product set exp exp Z. This equivalence is given by the

concatenation function (1) which associates with each ordered pair

(y, z) E exp Y expZ the concatenation (1)(y, z), defined by the

Here and elsewhere throughout the discussion, disjoint unions will
co

be denoted as sums. Thus we write A+ B or A iff the

n=0

intersections A,- B, or A. rmA. (i L j, j E c)) are void.
1 j



following equations:

Definition 1. 4.

14)(Y1 Y2 ' ' Y> , < z
1 z2' z > )

/11

y1, y2' M Zn>

(e, <zl , zn>) = <z1, z2, ,
zn>

4)(< y ' ym> , ez) = <y1' y2, , y >'

4)(e , e ) = ey z

The reader will easily verify that 4) is a set-theoretic equivalence

between exp Y exp Z and exp(Y+ Z).

Clearly, the exponential construction can be carried out for

arbitrary sets, and the "exponential law" is generally valid.

Now suppose the set X carries the structure of a totally

cr-finite measure space such as plane Lebesgue measure in the

example of the rectangle. It turns out that this measure on the set

X induces a natural measure on exp X. Furthermore, the ex-

ponential law above extends directly to such measure spaces, in the

sense that the concatenation function is a measure isomorphism

from the measure space exp (Y+ Z) into the direct product



measure space (exp Y) (exp Z).

The practical significance of these results stems from the

fact that the set exp X provides the sample space (set of outcomes)

of random experiments as described above. The cr-algebra of

measurable sets associated with the measure space exp X then

serves an an algebra of events. Thus, exp X becomes a probabil-

ity space for an experiment by assigning an appropriate probability

measure to this c--algebra. To appreciate the significance of the

"exponential law" , let X again be decomposed into a disjoint union

of subsets, X = Y + Z. Any random experiment on X induces

separate experiments on Y and Z, in which only those points

occurring in Y alone, or in Z alone, are observed. The ex-

ponential law asserts that the sample space for the experiment on

X factors into the direct product of the sample spaces for the in-

duced experiments on Y and Z. This shows that the standard

techniques of probability theory for product spaces are applicable.

The object of this dissertation is to extend Carter's results to

include denumerably infinite sequences, corresponding to outcomes

in which denumerably many points of X occur. Chapter 2 gives a

brief summary of those results from measure theory pertinent to this

paper and Chapter 3 a summary of Carter's results. In Chapter 4

the set < X(A)>. of unordered infinite seqences is defined, and ad-

joined to exp X, giving the "extended exponential of X" , namely:



n <

A natural measurable space structure, Exp (X,S) is also defined

for Exp X.

In Chapters 5 and 6 we show that the exponential law extends

to the set Exp X and the measurable space Exp (X,S). Indeed,

the exponential law now holds not only for decompositions of X into

a pair or a finite number of subsets, but for arbitrary denumerable

disjoint decompositions, by analogy with the law

oo
oo

Exp ( ai) =J (Exp ai) .

n=1
n=1

As far as the exponential measure itself is concerned, the

extension is trivial, for <Xco> is simply assigned measure zero.

(This implies that for an experiment in which denumerable distribu-

tions of points can occur with positive probability, the probability

measure cannot be absolutely continuous with respect to the natural

measure on Exp X).

In Chapter 7 we show under what conditions the exponential

law can be extended to the measure space Exp (X,S,

6



CHAPTER 2. MATHEMATICAL PRELIMINARIES

This chapter gives a brief review of those definitions and

theorems from measure theory which are pertinent to this paper,

and establishes notational convention.

I. Measure Spaces

A ring R in a set X is a non-empty class of subsets of

X which is closed under differences and under finite unions. The

ring is an algebra if XER. A o-.-ring S in a set X is a non-

empty class of subsets of X which is closed under countable

unions and under differences. If a is any non-empty class of

subsets of X, then the G" - r ing S(a,) is the smallest o--ring

in X which contains It is also called the cr-ring generated

A measurable space (X,S) is a set X together with a

cr-ring S of subsets of X. A real-valued function p. on a

family C of sets is finitely additive if for each pair of disjoint

sets A and B belonging to C,

(a) p.(A B) = p.(A) +

The function is countably additive if for each pairwise disjoint

sequence of sets {An } in C whose union is in C, we have



and

p. ( An) =
nE w nE w

A measure p. is an extended real valued, non-negative

countably additive set function p. defined on a ring R such that

p.(0 = 0. A measure p. on a ring R is finite if p.(E) < co for

every EER. If XER and p.(X) < 00, then p. is called totally

finite. If EER and there exists a sequence
{En} of sets in R

such that p.(En) < 00 for each n= 1, 2, - and E C E ,
n E

then the measure of E is said to be o---finite. If XER and

p.(X) is o---finite, p. is said to be totally cr-finite.

8

(b)
An) p. (An) .

nE w nEw

Convention 2. 1. Here and elsewhere throughout the discussion,

disjoint unions will be denoted as sums. Thus, we write A+ B or

1
An iff the intersections An B or A. n A. j; i, j E CO

1 j

are void. Then, formulas (a) and (b) become

p. (A + B) = p. (A) + 1.1(B)
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We have been talking about measures 11 on a cr-ring S of

subsets of some set X. This structure has a special name. A

measure space (X,S, p.) is a measurable space (X,S) together

with a measure p on S.

Convention 2. 2. Throughout the remainder of the paper a measure

space (X,S, p.) will always be totally 0--finite, and a measurable

space (X,S) will always be an algebra.

We can use a measurable space (X,S) to induce a (r-ring

S on any subset Y of X by letting

S = BeS} .

Since X ES, it follows that YES.In our applications Y will
Y

always belong to S.

Similarly, if (X,S, la) is a measure space, we can use

to induce a measure p. on S simply be letting p be the

function p. restricted by S. The measure space (YS )Y Y

is the measure space induced on Y by (X,S,

II. Sums of Disjoint Measure Spaces

Let {(Xk, Sk, p.k) : kc I} be an indexed family of disjoint

measure spaces; that is, the Xk's are pairwise disjoint. (For

our applications, the index set I will be either a finite ordinal



N = { 1, 2, 3, n} or the first limit ordinal c = { 1, 2,

We can use this indexed family to form a new measure space

(X, S,) = X , Sk, )

kE I

called the sum of the family. The construction is as follows. Let

X = / Xk and S

kE I

defined by

( )

ke I

*

Sk
where this sum of a--algebras is

k E I

Sk ={ Ak : AkE Sk
kEI}for all

k I kE I

Let = ilk where this sum of measures is defined by
kE I

It is easy to verify that
Sk

is actually a o--ring and that

ke I

is a totally a--finite measure on this cr-ring. Thus, (X,S,

kEI

is actually a measure space.

The following results, which bring out the relationship

A) =
kE I k E I

10



between induced spaces and sums, are easily verified.

Theorem 2. 3. Consider the sum of disjoint measure spaces

(X,S,p4) Mk, Sk,
kE I

as defined above. Then, for each kEl, (Xk, Sk, ilk) is the

measure space induced by (X, S, p.) on the subset Xk.

Theorem 2.4. Let (X, S,) be a measure space, and X =
Xk

k E I

be a partition of X into disjoint measurable subsets. For each

k, let (Xk' Sk'k) be the measure space induced on Xk by

(X, S, p,). Then

(X,S,p.) =
(Xk

p.
' Sk,k)

k E

Remark: Let {(Xk' Sk): kE I} be a sequence of disjoint meas-

*

urable spaces. Let X =
Xk

and S = S be defined as

kE I k E I

above. Then,

(X,S) = (Xk,Sk)
kE I

11.



*

is the measurable space ( Xk, Sk), and the analogs to1
k E I k E I

Theorems 2. 3 and 2. 4 for measurable spaces are true.

III. Products of Measure Spaces

Again let I be either a finite ordinal N = {1, 2, n}

or the first limit ordinal c = 11, 2, Let (Xk,Sk) : kEI}

be a family of measurable spaces indexed by the set I. We can use

the family 1(Xk' Sk) kE I to form a new measurable space

TT k' sk '
( TT x TT s

kEl keI kkEI

called the product of the family. To construct this product let

Sk be the o--ring S(C) generated by the family of

measurable rectangles C in 1-1- X where
kE I

C { TT Ak : AkE Sk } .

kEI

If I = N, C will be denoted Cn. Clearly ( I Xk' s )

k E I k I

is a measurable space. In the event I = o, it can be shown [4]

that S(C) = S(e) where C is the class of measurable rectangu-

lar cylinders defined by

kE I



ii

C { if A: Ak E Sk and Ak = Xk for all but finitely many k}.
k E I

This result is important in the sequel.

A special notational convention is needed for the product of

two cr -rings. It would be natural to write S1 S2 for

2

ITs However, we wish to reserve this notation for
k=1

Si S2 = {Ai A2: AeSi, BES2 .

Therefore we will denote the product cr-ring by

S1 *S2 = S(S
1 S2)

.

If (X1'51) and (X2, S2) are measurable spaces, the product

2

space 7
Xk' Sk) will be denoted by (XI,Si) (X2, S2).

k=1

Now let { (Xk'Sk' kEI} be a family of measure spaces.

With proper restrictions on the measures4k' we can use the

family to form a new measure space

7ks p. k) ( TT Xk, Sk'kE T ' k'
J. kEI keI kEI



Here

differs according to whether I = N or I .

We start with the case I = N. In this case the only restric-

tion is that each ilk shall be G-finite, and this condition is guar-

anteed by Convention 2. 2. Consider the set function 7 P. ,

kEN

defined on the measurable rectangles of Xn by the equation

(IT ilk) ( r Ak) IT 1-1 k(Ak
kEN k EN kE N

where
kEN

ilk(Ak) = 0 if any factor
11k(Ak)

= 0 . This function

admits a unique extension to a er-finite measure on iT Sk
(see [4]).

kEN

This is the product measure, also denoted by I

kEN

Sk is defined as above. The construction of TfilkkEi k E I

The infinite product measure
I I Ilk

kE Cil

is defined similarly

except that undefined infinite products of real numbers must be

avoided. For this reason we assume that each (Xk,Sk, k) is a

probability space -- that is, p., k (Xk) = 1 for each kE co. As in the

case of finite product measures, the set function
kE (.A.)

k defined

on the measurable rectangles of Xw by

14



( TT
1-1,k)

H Ak) Hkk
kE ice c;.) kE

admits a unique extension to a probability measure on
kE 0.)

k'
called the infinite product measure

kE o.)
k

IV. Isomorphisms

Multiple use will be made of the word isomorphic. Two sets

X and Y will be called isomorphic if there exists a one-to-one

map it, from X onto Y. The function 4) will be called a

set isomorphism. In the event X is isomorphic to Y via the

function 41 we shall write

Let (X,S) and (Y,T) be measurable spaces. A function

from X into Y is measurable iff 4,-1(B)ES for each BET.

The function 4, is a measurability isomorphism if both 4, and

-
(I) are measurable and 4, is a set isomorphism. Two measure

spaces (X,S) and (Y, T) will be called measurably isomorphic

if there exists a measurability isomorphism between them. When

4, is a measurable isomorphism from (X, S) to (Y, T) we shall

write



(X,S) (Y, T) .

Let (X, S, p.) and (Y, T, v) be two measure spaces which

are measurably isomorphic, and let ep be a measurability iso-

morphism between the two spaces. The function cl) is said to be

measure preserving provided

p, (A) = v[l)(A)]

for each A ES. A measurability isomorphism which is measure

preserving is called a measure isomorphism. Two measure spaces

(X, S, p.) and (Y, T, v) will be called isomorphic if there exists a

measure isomorphism between them. Whenever 43. is a measure

isomorphism from (X, S, p.) to (Y, T, v) we shall write

S, (Y, T , v) .

Now suppose we have three measurable spaces (X, S), (Y, T

U), and suppose

T) (Z, U) .

Then there is a natural measuribility isomorphism cr from the

product space (X, S) (Y, T) into the product space (X, S) (Z, U)

as follows.

lb



Theorem 2. 5. Let (X,S, p.), (Y,T, v) and (Z, U,k) be measure

spaces such that

(Y, T, v) (Z , U, X ) .

Then the function T defined by

y) = ( , 4)(0

is a measure isomorphism from the product measure space

(X,S, p.) (Y,T, v) onto the product measure space (X,S, (Z, U, X).

That is

(X,S,p.)(Y,T, v) (X, S, p.) (Z, U,X).

Proof; outline of proof)

Clearly cr. is a set isomoriihisrn such that

-
a. 1(x, y) = (x, .4)-1(z)) .

To show that cr is a measurability isomorphism, let S*T de-

note the product or-ring and let A ES and BET. Then

T(A B) = A 4)(B) e S*U.

But then Theorem 2.6 (see below) implies that o- (S*T) S*U.



Conversely, if A e S and C E U, then

-11(AC) = Acl, (C)ES*T.

Again applying Theorem Z. 6, we have cr-1(S*T) = S*U; hence o-

is a measurability isomorphism.

To show cr is a measure isomorphism, notice that there is a one-

to-one correspondence between the measurable rectangles of S*T

and those of S*U through the equation

o- (A B) = A cp(B).

Moreover, since v(A) = X (4)(B)), we have

(p. v) (A B) = p, X) [cr (A B)] .

Since the measures v and p. X are characterized by their

values on the measurable rectangles, it follows that

v)(E) = (P X) [(1*(E)]

for every E E S*T.

V. Probability Spaces

A totally o--finite measure space (X,S, p.) such that

p.(X) = 1 is called a probability space. The measure p. is called

a probability and the sets belonging to S are called events.

18



VI. Some Special Theorems

This section contains some theorems which are of use in the

sequel but which are not usually found in textbooks. For this reason

their proofs are sketched.

Theorem 2.6. Given a set X and a measurable space (Y,S(

where a is any non-empty family of subsets of Y, let f be a

function from X into Y. Let

-1 -1(a) = (A): AE

f-1(S(a)) = {f '(A): A.ES(a)}.

Then

-1 -1
f (S(CL)) = S(f (Lk)).

Proof: Since a cs(a), ri(a) cr'(s(a)). But, since inverse

functions preserve Boolean operations and countable sums,

f-1(S( a)) is a cr-ring. Thus

(a)) C f (S(Ct)).

To prove the converse, let

19

{E CY: EES(a) and Cl(E)ES(f-1(a))}.



It is easily shown that C is a o--ring.

But cZCC; therefore S(a)

Thus cl(s(a)) c s(f-1-(60).

Theorem 2.7. Let (X, S(a)) be a measurable space, where a

is a non-empty family of subsets of X. Let Y be a set, and let

a {A Y:AE al and S(Ct) Y = {AY:AES(a)}. Then

S(aY) = S(a) Y

Proof: Let be the projection of X Y onto X.

That is Tr(x, y) = x for each (x, y) E X Y.

-1Then, for each A Tr (A) = A Y.

Thus, Tr-1(a) = Y , so that

1S(Tr- (a)) S(a*Y) .

But by Theorem 2. 6,

S(Tr-i(cz)) = 7-1(S(a)) = S(C/).Y

Thus

S(a, Y) = S(a) Y.

Theorem 2.8. Let { (Xn, S(an)):ne N} be a sequence of disjoint

measurable spaces indexed by a set N. For each neN, let

20



Cl-n be a non-empty family of subsets of X. Let

Then

S(Ian) = S(a.n)

nE N nE N

Proof: Since an C. S(C?n) for each N, s ).

nEN neN

S(a.n) =
nE N

We know (see Section III) that S(an)
ne N

An: AnES(an) 1

nE N

is a a- - r ing .

21

Thus, S(1 an) C S(an

nE N nE N

Conversely, since akCI an for each kEN,

ne N

S(ç)CS(I
nE N

Therefore, /S(Ctk) C S(ICL ).

kE N nE N

There is a similar result for products, namely:



22

Theorem 2. 9. Let (X,S(a)) and (Y,S(a)) be two measurable

spaces where a and are non-empty families of subsets of X

and Y respectively. Suppose XE and YE e . Then

s(Ct)*s(e) = s(a. )

where scav6(e) is the product cr-ring, and

a {AB:Aca- and Be,

Proof: Since 03 c s( a)*s( 6), it follows that

s(7_43)C S(61..)*S(6) To prove that S(a)*S(6)c s(a. 6),

suffices, in view of the definition of the product o--ring, to show that

sccosce)cs(a.$). Let E = A B, where A ES(a) and

B E S (63 ). Then

E = (A Y) (X B)

But A Yes(a.).Y= s(a.Y) by Theorem 2.7, and

X BE X S(6) S(X ) by the same theorem. Since

S(aY)CS(ae) and S(X q3) cs( e), we have AY and

BEsca..6). Thus

E = (A Y) (Th (X B) Es(a. e)

so that

s(2-)s(6) c sca: 8).
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CHAPTER 3. THE EXPONENTIAL OF A MEASURE SPACE

This chapter gives a brief summary of the exponential of a

measure space as developed by D. S. Carter. The construction re-

quires a measure space (X,S, [I) where, according to Convention

2. 2, S is a o--algebra in X and v. is a totally cr-finite meas-

ure. Recall from Chapter 1 that the symmetric nth power <Xn>

of a set X is

{<x> :xEXn}

where <x> is the unordered sequence of length n corresponding

to x (see Definition 1. 1); and that the exponential of a set X,

written exp X, is the disjoint union of symmetric nth powers of

X. That is

exp X = < Xn

nE

Since to each point in Xn there corresponds a unique point in

<X n>, there exists a naturally induced function f from Xn

onto <Xn>, given by

Definition 3. 1. For each XE Xn, the function fn x onto

<x>. That is,



That is,

Definition 3.3.

fn(x) = <x> .

To keep notation compact, multiple use will be made of the

symbol < > throughout the sequel according to the following conven-

tion.

Convention 3. 2.

Let X E Xn. Then <x> denotes the unordered

sequence of length n corresponding to x.

Let AC Xn (nE Then

<A> = {<x> : xEA} .

Let C be a family of subsets of X . Then
n

n E

<C> = {<A>: AEC} .

That is, < > applied to a point in Xn means "symmterize" the point,

< > applied to a set means symmetrize every point in the set, and

< > applied to a family of sets means apply < > to every set in the

family.

Let CX be the family of all measurable rectangles in X.
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k= 1

Then S(C) = Sn is the ordinary product f-ring of subsets of X

generated by the family C III). Since S is an algebra, Sn



is also an algebra. We now let the family <C> (see Convention
X

3. 2) generate a a- algebra S <Cn > for <Xn> .
X

Another ur-algebra is11, defined by

Definition 3. 4. For each n 0

= {A C < > 1(A)e Sn} .

is clearly a 6--algebra since inverse functions preserve unions

and differences. A third possibility is <Sn> (see Convention 3. 2)

provided <S is a o--ring. Carter not only proves <Sn> is a

(f-ring but also

Theorem 3. 5. For each nec, n 0

"n
S <CX> = S = <Sn> .

He uses this result to prove the isomorphism theorem.

An analogous theorem is, as yet, unavailable in the infinite

product case. However, the difficulty can be by-passed by avoiding

the infinite analogue of Definition 2. 4 (see Chapter 4).

In the special case n = 0, the only subsets of <X°> = {ex}

are ji and } . Thus, if we define <S°> by

"n

25

Definition 3. 6. <s°> = {0, {ex} }
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then <S0> is trivially a (7 - algebn'a. We shall, on occasion, also

denote <S0 > by <C0 > or S<C0 >

The machinery is now available to obtain a cr-ring for exp X.

Referring to 2;I, the sum

<Sn> {I An: AE < Sn> }

n E C;.; n E CO

is a T.-algebra for exp X. Since by Definition 3.5 <Sn> = S<Cnx>

for each n, <Sn> = S<Cx>. We give this Cr -algebra

E CO 11 E

the special name exp S.

Definition 3.7. expS = S<CX> .
11 E Cil

The pair (exp X, exp 5) is a measurable space denoted by

exp (X,S) .

Definition 3.8. exp (X,S) = (exp X, exp 5)

Convention 3. 9. When it is necessary to emphasize the fact that S

is a cr-algebra of subsets of X, a subscript X will be appended

to S. Thus (X,Sx) is the set X together with the 0--ring Sx

in X. Using this convention we write exp (X,Sx).

Now let X be decomposed into a disjoint union, and let 4)
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be the concatenation function of Definition 1.4. Then one easily ob-

tains

Theorem 3.10. Let X = Y + Z be any decomposition of X into

a pair of disjoint, measurable subsets. The function -c-b is a set

isomorphism of exp Y exp Z into exp (Y + Z). That is

exp Y exp Zexp (Y + Z).
(1)

But (ID is more than just a set isomorphism. It is actually

a measurability isomorphism (see 2; IV). To state this precisely,

consider the measurable spaces (YS) and (Z,Sz) induced in

Y and Z by (X,S). Let exp (YS) exp (Z,Sz) denote the

product of the measurable spaces exp (YS) and exp (Z,Sz) ac-

cording to 2; III. Then Carter has established

Theorem 3.11. Let (X, S) = (Y, Sy) + (Z , Sz). Then c a

measurability isomorphism of

exp (Y, Sy) exp (Z , Sz ) into exp [(Y, Sy) + (Z , Sz)] .

Thus,

exp (Y,Sy)-exp (Z,Sz) exp[(Y,Sy) + (Z,Sz)] .

Our ultimate goal is to do probability theory. For this reason



we shall refer to members of S SY' S etc. as events. The

significance of the isomorphism theorem is that it enables us to

"factor" an event occurring in X into an event occurring in Y alone

and an event occurring in Z alone. That is, a random experiment

on X induces separate experiments in Y and Z.

Meanwhile, there is available a very natural measure <p.>

for exp(X,S). Let (Xn,Sn, p.n) denote the product of the measure
n n nspace (X,S, p,) n-times. That is, (X ,S , ) = H (Xt' St' p.t)

t=1

where Xt = X, St = S, and
p.t

= .i for each t = 1,2, ,n.

Then there is a measure 1i.n on (<)(n>, <sn>) defined by

AnDefinition 3.12. Let AE <Sn> . Define the set function p. on

<5n> by

fn 1(A)}
11111(A) -

n!
when

In the special case n = 0, let p. [ =1 AO
and p. (0) = 0.

It follows easily [4] that 1.1\.n is a measure for each new . We

now define <p, > .

1Definition 3.13. Let A = An be any set in exp S (see Defini-

nE CO

tion 3.7 Define the set function <y. > on exp S by

28



by definition of a product measure. Thus

29

oo

<p,> (A)
(An)

n=0

Then <p.> is also a measure [4] and (exp X; exp Sx; <p,> ),

denoted by exp (X,S,p.), is a totally o--finite measure space.

<p.> is certainly not the only measure available to us, but it has

interesting properties. One of these is that it satisfies the equation

< p.> [exp X] = exp [p. (X)] = (X) .

To see this, let A ES. Then, for any n = 1, 2,

(A A A) = <A >

n- times

and <A > E <C> C <Sn>. Furthermore, since A is sym-

metric,

(fn)- l< An An

and therefore,

-1rPCA)1/1In[ <A">] -
n!



(1)

oo oo

[1-1(A)1 n la (A)<11> ( < An>) e -1 .
n!

n=1 n=1

In the special case n = 0, <X0 > = 1, so that

<11 >[exp X] = exp [p. (X)] eP- (X)

This result is more, however, than a piece of mathematical

sophistry. For example, assume X is a subset of R3 (3-

dimensional Euclidean space), and that X is the family of Lebesgue

measurable subsets of X with Lebesgue measure p. Then,

provided 0 < p.(X) < co, the set function <p> on exp S defined

by

> (A) = (X)< p.> (A)

is a probability (2;V). Referring to the physical model of Chapter 1,

<p> can be interpreted as a "Poisson distribution" . To see this,

let A E S. Then using equation (i),
oo

<p>[exp A - feAl] e-I-L(X) 1.11(11/2)1n
n!

n=1

= eX) 1.1(A)
[e - 1]

is the probability of the event "A contains at least one particle.

30



where new. The distribution is uniform (homogeneous) in that the

larger 11 (A), the more likely the event exp (A) - feAl.

Theorem 3.11 stated that (I) was a measurability isomor-

phism of exp (Y, Sy) * exp (Z, Sz) into exp[(Y,Sy) + (Z,Sz)] .

Actually (1) is a measure isomorphism (see 2; IV) in the following

sense. Let X = Y + Z and let

(X,S,p.) = (Y,Sy,p.y.) + (Z S )' Z' Z

be a decomposition of (X, S, p.) according to Theorem 2.4. This

decomposition of (X,S,p.) induces a decomposition of exp (X,S,p.)

into exp (Y, Sy, p. y) and exp (Z,Sz,p.z). Let

31

That is

A contains exactly

or

1 particle

A contains exactly

or

2 particles

A contains exactly n particles
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exp (YS p. ) exp (Z,SZ' p.Z
) denote the direct product of theY' Y

measure spaces exp (Y,Sy,p.y.) and exp (Z,Sz,p.z). Then we

have

Theorem 3.14. Let X = Y + Z be a decomposition of X into

a pair of disjoint measurable sets and let

(X,S, p.) = (Y,S p. ) + (Z,S , p. ) be the corresponding decompo-

sition of (X,S, p.). Then (I) is a measure isomorphism of

exp (Y,Sy, y) exp (Z,Sz, p.z into exp [(Y, Sy, p. y) (Z Sz , z )1 .

That is

exp(Y,Sy,p.y)exp(Z,Sz,p.z)-=1 exp [(Y,Sy, p.y) + (Z,Sz,p. )]
14)

In the next chapter exp X is extended to Exp X so as to

include infinite symmetric sequences.



CHAPTER 4. THE EXTENDED EXPONENTIAL OF (X,S)

In this chapter we adjoin the set <f> of unordered infinite

sequences to exp X to obtain the extended exponential Exp X.

We also induce a cr-algebra, S <Cw> , in <Xw> determined by

an arbitrary a--algebra S in X. In this way we endow <Xw>,

and hence also Exp X, with the structure of a measurable space.

Finally, the exponential of a measure is extended in a trivial way

from exp X to Exp X.

To define <f>, let the Cartesian product

XL° = {Xt : Xt = X, t E

be the infinite direct product of X. Alternatively,

X =
{(x1' X2'

: X. E X, E CO}

is the set of all ordered infinite sequences in Xw. Now let
Goo

be the group of permutations on co. that is, let Goo be the set of

all one-to-one functions on co onto Each permutation g E Goo

induces a corresponding function, also denoted by g, on X

through the equation

,x2' (xg(l) xg(2)'

33



For each ordered sequence XE X`), the corresponding unordered

infinite sequence <x> is the class of all "permutations of x"

That is,

Definition 4. 1.

That is

<x> = {g(x) : gEGw}.

The symmetric coth power of X, denoted <X , is

the set of all unordered infinite sequences in X.

Definition 4. 2.

<co> = X> X E XG)} .

Finally, the extended exponential of X, Exp X, is the

infinite disjoint union of symmetric powers.

Definition 4. 3.

Exp X = < Xn>

n<

34

The extension of Convention 3. 2 to Exp X reads identically.



Convention 4. 4.

Let XE Xn for n < co. Then <x> denotes the

unordered sequence of length n corresponding to x.

Let ACI Xn . Then

n<

<A> = {<x>: xEA} .

Let C be a family of subsets of Xn . Then

n<(A)

<C> = {<A> :AEC} .

Now let C the family of all measurable cylinders in
X

X. That is,

Definition 4. 5.

C A: Ak ES and Ak = X for all but finitely many k}
X k

KE

Then <C> is the family of symmetrized cylinder sets. The
X

o--algebra, S<C)cw> (see 2; I), associated with a given o--ailgebra

S on X is then a cr-algebra for <Xci.)> . Combining Definitions
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4. 5 and 3.7 we are able to define a o--algebra for Exp X, given by



Definition 4. 6,

Exp S =

36

n<

Clearly exp S CExp S. The set Exp X together with the

T.-algebra Exp S forms a measurable space (Exp X, Exp S),

given by

Definition 4. 7.

Exp (X,S) = (Exp X, Exp S).

The extension of the exponential measure <p.> to Exp X

has physical ramifications. Suppose the model you have in mind is a

rectangle (measurable) X in R3 of finite volume (measure)

throughout which a variable, but countable, number of points are in

motion. If "points" correspond to some physical entity, such as gas

molecules, then the event X described by

"there is a countably infinity of points in X"

never occurs. That is, the probability p<X(4> equals zero. If we

are again thinking of a Poisson (homogeneous) distribution, we must

choose < p.> on Exp X so that

<4> <X(')> = 0 .



In this case everything works out nicely; that is,

<I-L> [Exp xi e[1(X)

while

<p> <f> = 0.

If however, 1.1. (X) = 00 (that is, our rectangle has "infinite

volume" ), the event <Xw> may certainly occur. We still choose

<Xw><p.> <X(4)> = 0 even though the probability of the event may

be greater than zero. This means that the probability measure on

Exp (X,S) will not be absolutely continuous with respect to <p.> .

Definition 4. 8. Let <p.> be the exponential measure of Defini-

tion 3.13. To extend <1.1.> to Exp X, let

Ap.u)(A) = 0

for each A e S <Cw > .
X

Obviously p. is a measure, albeit trivial, on S <C() >
X

In particular /i.i.w<Xu)> = 0. Extending Definition 3.13 we have

1Definition 4. 9. Let A = An
be any set in Exp S (see

Definition 4. 6). We define the set function <p.> on Exp S by
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It is worth noting that <
(

X)p.>(Exp X) = e , and that

<p.> <X(A)> = 0. The measure space (Exp X, Exp S, <p.>), which

is denoted by Exp (X,S,p,), is totally ff-finite. This follows

trivially from the total cr-finiteness of exp (X,S, p.). Thus, we have

Definition 4.10.

Exp (X, S, p. ) = (Exp X, Exp S, < p.> )

Lemma 4. 11. Let (X,S, ) be a totally ff-finite measure space.

Then Exp (X,S, p.) is totally cr-finite.

< p,> (A) =
nri
1.1. (An) .
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CHAPTER 5. THE EXPONENTIAL LAWS FOR SETS

In this chapter we will extend the exponential law

exp Y exp Z exp (Y + Z)
(I)

to Exp Y Exp Z. That is, we will construct a set isomorphism

13. such that

Exp Y -Exp Z Exp (Y+Z)
(i)

and such that 4, is actually an extension of This occurs as a

special case of a more general construction as follows: Let

{X k: ke I} be a disjoint family of sets indexed by a finite or count-

able set I, as in Chapter 2; II. We will construct a set isomor-

phism (1) such that

In the case I = {1, 2} , the restriction of .1) to exp X1 exp X2

is

It is easy to describe 4). Let

k 12(a: kEI) =- (a , a

k kbe an ordered sequence in TT Exp Xk. Let a e a . Then ak
k E I

if Exp Xk =--(1) Exp
k E I

39
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is an ordered sequence in
Xk. To construct 43, we must corn-

blue the terms of these sequences ak into one long sequence 7. ,

and then take (1)(a : kE I) to be the unordered sequence .

This can be done in many different ways; e. g., by any "diagonaliza-

tion process" applied to the family of sequences ak.

To make these notions precise, we shall use the interpretation

of an ordered sequence
(x1 ' x2' ,x) of length n in a set

X as a function x from the set n = {0, 1, ,n-l} into the set

X such that
x (k) Xlc+ 1

Similarly, an ordered sequence of length

(4 in X is a map x from o.) into X such that x(k) x,1.
The case n = 0, corresponding to the event that there are no points

in X, may be treated as a special case, as follows: We define

a sequence of length zero to be a function on 0 = 0 into X.

There is only one such sequence, namely the empty function

We therefore write X0 = {0} . Since there is only one equivalence

relation on a set with one element, there is only one choice for the

unordered sequence of length zero, namely <0> = {0} . This

provides a concrete interpretation for the empty sequence eX in-

troduced in Chapter 3, namely,

e = <0> .
X

Notice that with this interpretation, the empty sequence eX is inde-

pendent of the set X. However, we shall continue to attach



subscripts X, Y, Z to e whenever we wish to think of e as

associated with the particular sets X, Y, Z.

It is also convenient for purposes of defining .43. to work

with the notion of a generalized sequence in the sense of

Definition 5. 1. A generalized sequence in a set X is a function

whose range is in X and whose don-min is a finite or countably in-

finite set. The length of a generalized sequence is the cardinality of

its domain. That is, if T. is a generalized sequence with domain

A, then its length L is

L = co if A is infinite

L = n = {0, 1, n-1} if A has exactly n points

L = 0 = 0 if A is empty.

Now the terms of a generalized sequence can be arranged

into an ordered sequence as follows: Let A be the domain of "57,

L be its length, and f be any set isomorphism of L into A.

Then T. of is an ordered sequence of length L, whose terms are

just those of T.. Although there are many such ordered sequences,

depending on the choice of f, the unordered sequence <-67 of>

is clearly independent of f. For if g is a second isomorphism

of L into A, then Tr = g-1 of is a permutation on L such

that F. of = g) o r, so that <-a-. of> 0 g> . We may therefore

41
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regard this unordered sequence as determined directly by This

justifies

Definition 5. 2. Let -a-. be a generalized sequence in X with

domain A and length L, and let f be any set isomorphism of

L into A. Then <a of > will be called the unordered sequence

determined by and will be denoted by <-a->

<T> <a-of>

Note that if 1" is an ordinary ordered sequence, then the

unordered sequence <-/.>, as given by Definition 5. 2, coincides

with those of Definitions 1. 1 and 4. 1.

For later application we need

Lemma 5. 3. Let a, b be two generalized sequences with do-

mains A, B respectively. Then <a> = <b> if and only if there

is a set isomorphism Tr: A B such that a = b 0 Tr.

Proof: Suppose there is such a set isomorphism Tr. Then the

lengths (cardinalities) of A, B, which we shall denote by L, M,

respectively, are equal. Thus, if f is any isomorphism of L

into A, then Tr of is an isomorphism of M into B, and

a of = b 0 (Tr 0f). Therefore,



43(a) = <a>

43

<a> = a of> = <bo(Tr of)> =<b>

Conversely, suppose <a> = <b>. Let f, g be isomorphisms

of L, M into A, B respectively. Then <a 0f> g>, and

the sequences a of, bog are equivalent. That is, they have the

same domain, L = M, and there is a permutation p on L such

that a of = (b ° g) P Thus the function ir gop of is an iso-

morphism of A into B such that a = b o Tr

We are now ready to define cl) precisely.

Definition 5. 4. Let a k: ke I) = (a 1
, a2, ' be an ordered

sequence in Tr Exp Xk; so that each ak is an unordered se-
k e I

quence in Xk. For each ke I, let ak k
EC be an ordered se

ak,

-

quence representing and let A be the domain (length) of

ak. Let a be the generalized sequence with domain

A = {(k, j): keI, jeA }

such that a(k, j) is the jth term of ak; i.e.

a(k, j) = ak(j)

Then 4) is that function on TT Exp Xk such that
k E I



set isomorphism Tr: A such that a = b 0 Tr. We will show that

44

To be sure that cl) is properly defined we must show that if

ak k kthe are replaced by equivalent sequences b E a, and b is

the corresponding generalized sequence such that b(k, j) = bk (j),

then <b> = <a>

Lemma 5. 5, (I) is well-defined.

Proof: Since the sequences bk and ak are equivalent, they

have the same domain Ak' and there is a permutation
Irk

on

such that ak = bkk. Thus the generalized sequences aAk

and b have the same domain A. Moreover the function Tr

defined on A by

Tr (k, j) = (k, Trk(j) )

is a set isomorphism such that a = b or. Hence, by Lemma 5. 3,

<a> = <b> .

Lemma 5. 6. (I) is one-to-one.

Proof: Let a = (ak: kE I) and 13 = (pk: kE I) be two sequences

such that (I)(a) = 03). For each k let ak E ak and bE pk be

representative sequences with domains Ak' 73k' and let a, b be

the generalized sequences determined by the ak , bk with domains

A, B respectively. Then < a > <b > By Lemma 5. 3 there is a



for each k there is an isomorphism Irk: Ak Bk such that

Tr (k, j) (k, Trk(j)) for all j E Ak .

Hence a(k, j) = b(r(k, j)) = b(rk(j) ) or alternatively,
k k .a (3) b (Trk(3) ), so that ak = bko Trk . Since irk is a set iso-

morphism, the cardinalities
Ak and B are equal, and irk is

a permutation. Therefore <ak> <bk>, so = i3k and (I) is

one-to-one.

To show that TT has the required form, choose any j E Ak ,

and write Tr(k, j) (TC, . Then a(k, j) = b("R,D, and since

aff,DEXk we have b(Z,7) = b17.(T)EXk. Therefore k and we

may write Tr(k, (k, Trk(j)), where Irk is a function on Ak

into B . If 4:1- denotes the inverse of ir, and
0-k

is the cor-

responding function o B such that cr(k, j) = (k, crk(j)), then it

is easy to check that crk is both a left and right inverse to

Hence Tr is both one-to-one and onto, and the lemma follows.

Lemma 5.7. (I) is onto.

Proof: Let -a- be any element of Exp 1 Xk), and a E a

k E I

be any representative sequence. Let L be the length of T., and

for each ke I let

-1
Lk = T [Xk] = fjE L: T..(j) E X .
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Since the Xk's are disjoint, the L 's form a disjoint decompo-

sition of L. Let Ak be the cardinality of Lk (the number of

terms of T in Xk)' and let gk be any set isomorphism on

Ak onto Lk. Define the ordered sequence ak in Xk by
k _a = a 0 gk, and the unordered sequence akEExp X by ak = <ak>

Then the sequence a ( :k I) belongs to 7 Exp Xk. We will
k E I

show thatTt 7.. (1)(a) ; i.e., that <a>, where a is the

k.generalized sequence determined by the aConsider the function

on A = {(k, j): k E I, jEAk} into L, defined by

g(k, j) = gk(j) .

Then g is clearly a set isomorphism, and a(k, j) = ak(j) =

-(gk(j)) j)). Hence a = T. g or a = ag1, and

<T> = <a> by Definition 5.2.

We have now proved

Theorem 5. 8. For each finite or countably infinite index set

(I) is a set isomorphism from Tr Exp Xk
kE

That is

Exp Xk
kEI

Exp
Xk

)

kEI

onto Exp ( X ).

kEl



2

IT Exp Xk' Skk=1
Exp

k=1
Xk Sk)]

Aside from the fact that 4) is a set isomorphism, the two most

important results of this chapter are the next two lemmas.

Lemma 5. 11. Let X = X be a disjoint decomposition. For
k= 1

each k E N, let ake Exp Xk Let m be an integer, 1 <m < n.

47

Actually, for each I there is a 4); so it would be more

correct to write 4)i. However, we shall employ the symbol
ci)n

in case I = {1, 2, only, for purposes of emphasis. In the

case I = co, we shall always write in accordance with

Convention 5. 9. If I = c.k) we shall always write

if Exp
Xk

Exp ( Xk) .

kE k e I

The reader will easily verify that in the case n = 2 we

have

Theorem 5. 10. n z-- 2, the restriction of 4) t

exp Xi- exp X2 is 4).

This will enable us to use the results of Chapter 3 in proving



Then

1n 1
am+1 , an)), a) "=, (1)2((l)m(a , a ),

qpn-m

Proof: For each kE I, let akE ak, and let Ak be the domain
ka.of Let a,b,c be the generalized sequences determined re-

spectively by (ak: 1 <k < n), (ak: 1 <k < m) and (ak: m+1 <k < n).

The domains of these generalized sequences are

A = {(k, j) : 1 < k < n, j E Ak}

B = {(k, j) : 1 < k < m, j E Ak}

C {(k, j) 1 < k < n-m, j EA }k+m

Notice that C is isomorphic to the relative complement of B in

A. That is

= B-A = {(k, j) < k < E

is isomorphic to C through the function h : C given by

h (k, j) = (k+m, j) .

Notice also that b is the restriction of a to B, and that

a oh is equal to C.

To determine <b> = (al, a ) and

48



< c > = (am+ 1, - ,a ), let L,M be the lengths of B,C, andn-m
let f, g be the isomorphisms of L, M into B, C, respectively.

Then <b>, <c > are represented by the sequences b ofe <b>

and c o ge <c >. Therefore s:1)2(<b>, <c> is determined by

the generalized sequence d, with domain

:i=1, jeL or i = 2, jeM}

such that

b of(j) if i= 1

j) =

cog(j) if i = 2

We are to show that the generalized sequences a and d

determine the same unordered sequence <a> = <d>. For this

purpose consider the function Tr: D defined by

if i = 1

h(g(j)) if i = 2

Since f,g,h are set isomorphisms, so also is Tr. Moreover

d = a pg Tr, for
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a(Tr(i, j)) =

OW) = W(j)) if i = 1

a(h(0))) c(g(j)) if i = 2

Hence by Lemma 5. 3 <a> 7.- <d> .

A completely analogous proof establishes

/Lemma

5. 12. Let X =
Xk be a disjoint decomposition of X.

kE

For each ke co, let akEExp Xk. Then for each kE

-,- 1 21 2 k k+1 k+2
ct) (a ,a , = (1)2(.4)k(a, a, a ), 4.(a ,a , ))

The remainder of this chapter is devoted to some lemmas

about (1) which are needed for later proofs. They can be easily

verified by the reader. Lemmas 5. 14 and 5. 15 examine the effect

of c1)2 and 4 on certain distinguished subsets of Exp Y Exp Z.

Similarly, Lemmas 5. 16 and 5. 17 examine the effect of
4.n

and

41 on certain distinguished subsets of their domains. We will need

Definition 5. 13. Let A and B be sets. Then (A B)c"'

consists of all sequences of the form

(x y
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Awherex.e and y.E B for all 1EW.

Lemma 5. 14. Let B,A1' ,A C Y and let

C, Ap+1, Ap+2, ,AnC Z. Then, using Convention 4. 4, we have

(a)(132[<A1. -Ap Bc4> <A =
P+ 1

< I I A B
k=

-n-(c) 4)2[<A1 ' A13 (`)> <A ' -An- Ck> = <A. Bo.)>
p+1

i=1

( d)c1)2[<A ><A >
1 P+1

Exp Y and Exp Z each contain the unordered empty se-

quences; that is, e E Exp Y and e EExp Z. It is easy to show

that

<z>) = <z>

(I)
2

(<y>, e) <y>

= eX = ey z

C<A)>] = <TTA. Bk. C(1')

1=1 1

<

Continuing the idea of Lemma 5. 14, we therefore have

>
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(b)4)2[ <A1- Bk> <
p+1



Lemma 5.15. Let A C Exp Y, then

4)2[A {ez}] = A

(1)2[ fey} fez}] = {ex}

[Note that if A = {ey} , these formulas imply that {ex} = {ey}

in keeping with the fact that the empty sequence is independent of

the set. If we did not wish to indicate the sets with subscripts,

would write 4)2(e, e) = e.

Now suppose X = X where n> 2. Generalizing

k=1

Lemma 5. 15, we have

Lemma 5.16. For each kE N, let ek be the empty sequence in

X , let akE Exp Xk, and let AkC Exp Xk Then

a. (fn (el, e2, en) = eX

b. cOn(a , a2 a ), am, em+1, ' 2'

for each m where 1 <m < n.

c. (1)11.[ Al' A2. I { ek}] = cp.m[A A2. Am] .

k=m+1

Extending these results to the infinite case, we obtain
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Lemma 5. 17. Let X = Xk.
For each kE CO, let ek be the

ke

empty sequence in X , let akeExp Xk, and let A Exp Xk.

Then

0:1) (e 1, e2, = eX

For each n CO

42.(a a2' n' en+ en+2' (1)n

For each n E CO

n
cly[ TT A {e.6.}] = 41)ri[A1.A2' .A]

k=1 k>n



CHAPTER 6. THE EXPONENTIAL LAWS FOR
MEASURABLE SPACES

In the last chapter we showed that

Exp
Xk

Exp (1
Xk)k=1

k=1

for each nE c).), and that

TT ExpXk Exp (/ Xk) .

kE w kE w

In this chapter we show that 3 and are actually measurability

isomorphisms (see 2; IV). Let I be any finite or countably infinite

index set, and let Tr Exp (Xk,Sk) denote the ordinary direct
k E I

product of the measurable spaces Exp (Xk,Sk), kE I (see 2; III)

where

(X, S) = (Xk, Sk) .

k E I

We shall prove that if I = { 1, 2, ,n}, then

TT Exp(Xi,,
Sk

) Exp (Xk, Sk)
k=1 k=1
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for each nE co; and if I = co, then

Exp (Xk,Sk) Exp / (X S ) .k' kkco)
kEco

We begin with the case I = { 1, 2}, proving that if

(X,S) = (YS) + (Z,S ), then

Exp (Y, Sy) Exp (Z , Sz ) Exp [(Y, Sy) + (Z , Sz)] .

Let CX denote the family of all measurable rectangles in

Exp X. That is, using Convention 2. 1,

Definition 6. 1.

We first establish

Lemma 6. 2.

Proof: By Definition 4. 6

Exp Sx = S < Cn >
X

n<u)

Applying Theorem 2. 8, we have

CX = < Cn > .

X
n<co

Exp SX = S(Cx)
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Therefore

Lemma 6. 3.

Proof: From Lemma 6. 2

S(CY = Exp S.y and S(CZ) = Exp Sz

Thus

Exp Sy Exp Sz S(C) *S(Cz) .

But by Theorem 2. 9

y
S(CY)*S(Cz)= S(C

Z
).

For the statement of the next lemma, recall Definition 5. 13

for (AB)..

Lemma 6.4. Let A C Y, B C Z, and C C Xn for some

nE w. Then

*

1 S<Cn> = S ( <C11 > )X X
n<w n<0.)_

Exp Sx = S(CX) .

YS(C CZ ) = Exp Sy Exp Sz
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00

Cr) ,<C (A + B)(1)> =<C (A B)(4> + <C.A.k-B(A)>+<C-Bk > j

k=0

where, in the case k= 0, <C AO- B(A)> is interpreted to mean

<C B>, and <C BOAw> means <C Aw> .

<C (A+ B)w> consists of all sequences of the form

a = <xl, x2, xn, w1, w2,

where (xx x)E C and W,E A or B for each i E W.
1' 2' n 1

But if W.E A or B for each i = 1, 2, then

Case one: AW.E for only finitely many i and

W.E B for only infinitely many

Or

Case two: ANME for infinitely many i and

W.E B for only finitely many i

Proof:

or

ACasethree:W.E for infinitely many i and

W,E B for infinitely many 1.

Furthermore, these three possibilities are mutually exclusive

because A and B are disjoint.
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001 -(4Case one implies aE <CAk B> for some kE .

k=0

co

wCase two implies a E <C BkA> for some kEw .

k=0

Since, in case three, the sequence (In, w , can be rear-

ranged so that its terms alternate between A and B, case

three implies

aE<C(A B)w > .

This coupled with the mutual exclusiveness of the possibilities

implies

00

aE <C (A - B)w> + [< C -Alc-Bw> +< C BkAu)>]
k=0

Conversely
co

<C (A B)w> + [<C -Ak- Bc°> + <C Bk Aw>

k=0

consists of all sequences

b = <xl, x2' x , w1, w2, >
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where either

bE <C (A B)(1)> , in which case
w2iE

B for each i = 1, 2,

and w
2i- lE

A for each i = 1, 2,

or

bE <C Ak. Bco> for some kE co (in which case

Bw,w , wkEA and W .E for all i = k+1, k+2, ),
1 2

or

be <C Bk Aco> for some k co (in which case

w 1,w2 , wkE B and w.E A for all i = k+ 1, k+2, ) .

In either of cases 1, 2, or 3

bE <C (A + B)(LI>

Turning now to the proof that the set isomorphism (I) from

Exp Y Exp Z onto Exp X is also a measurability isomorphism,

we will show that CY CZ] C. Exp Sx and that

(0- 1[ CX] C Exp S *Exp S. Then we will invoke Theorem 2. 6

to obtain

-
S(4)-1[CX] ) =

1

(S[CX 1)
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and

s((p[cy ) = (I)(s[cy CZ})

It will then follow that 44Exp Sy Exp Sz] = Exp S.

Lemma 6. 5. (1)-1[CX]
C.S[CY -CZ

)

Proof: (10-1[ CX] = {B C Exp Y Exp Z B (1)-1(A) for some AE CX}.

AECX implies that A E <CP >
X

But, in view of Theorem 3. 11,

-1
of) [ exp S] = exp SY * exp S CExp S * Exp Sz

Since <CP > C exp SX for each pew, clearlyX

-1 p
(1) [ < Cx > ] C Exp S Exp Sz

Thus it suffices to prove

CL) > ] Exp S * Exp .
X SZ

Let A E <CC° > see Convention 4.4 and Definition 4.5). Then, forX

some nE W

for some pE W, or that A e<C6)>
X
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A = <7 Ak - 7At > where At =A for all t E

k=1 t E co

Ak' AES, k = 1, - ,n,

= <iT Ak Aw>
k=1

But S is the sum of the cr-algebras Sy and Sz (see 2; II).

Therefore we can write

= B + C and Ak = Bk + Ck

where BkESY and CkESZ for each k= 1, 2, ,n, and

B e S C eSz . ThenY'

TTk TT (Bk + Ck)k=1 k=1

can be expressed as a finite union of sets of the form

D1 D2

where D = B ork k = Ck. But then A is a finite union of

sets of the form

< TT DkAk=1
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<TT
Ak

(B + C)@> = <TT
Ak

(B + C)(A)> +
k=1 k=1

+ <Tr Ak'k=1

[<TT A
kk=0 =1

Now reorder the Ak's (if necessary) so that

A ,A ,A ES and A A ES, .
1 p Y p+1 n

Then from Lemma 5.14

< TT A (B C)w>
=(1)[<A1 A2 A - Bw> <Ap+1' nk=1

and for each keu)

Bk.<TT
Ak-13 > =(1)[<A1 '''A Bk> <Ap+1-' -A C(4>] and

k=1

k B>
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and (1)-1(A) is a finite union of inverse images of such sets. Thus,

we can assume that

-A = < jr
Ak

A > = < fr.
Ak-

(B + C
k=1 k=1

where AkEY or Ak ESZ for each k and A = B + C where

BEST and C E S But using Lemma 6.4

oo



k
.<H AkCk -B > =43.[<A A Bc)3> <A >i .

p+Ik=1

Thus

) = < -A Bc`)> <A An.cc.°>p+1

00

+ <A - Bk> .< A C>Li 1p p+1 n

k-7.0

co

+ <A B(A3> -An-Ck>1

k=0

Y Z -1where each set on the right belongs to C C . Since 4, (A)

Yis a countable union of members of C CZ

-1
4) (A) ES(CY

But, by Lemma 6. 3

ys(c .0z = Exp Sy* Exp Sz .

Thus

-1 X C Exp Sy *Exp Sz .

YNow we prove that 4, maps each set A B belonging to C CZ

4)-1(
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onto a set in Exp S. That is,

Lemma 6. 6. li
r Z

cl)(C ) C S(C

Proof: Let A E (CY CZ ). Since

cb(exp Sy exp Sz) = exp Sx C Exp S
X

it suffices to consider the following cases only.

Case one: A E < CP > for some pE co and BE < Cc..) >

Case two: AE <C> and B E < CP > for some pE

Case three: A E < CY> and B E < CC.s.) > .

The proofs of cases one and two are analogous; so it suffices to

consider cases one and three.

Case one: A E < C > for some p EC) implies

A = <A1
A2. -A > where

Ak E SY
for each

k= 1, 2, ,p. BE <C> > implies B = <TT
Bk

w> for
k=1

some no where B
1 B2' Bn, 13 E S . But then,

from Lemma 5. 13
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ci)[<A1.
° ° ° -A > .< Bw>]

k=1

= <A1- A2° Ap B1 B w>

The expression on the right belongs to since SX is

the sum of the s-algebras
SX

and Sz (i e. , S CS
Y X

and Sz C Sx )

Thus

ep(A B) E CX

Case three: AE < C (4) > and BE <Cwz> imply that for some

m, n E

A = < II Ak" -AcI3>
k=1

B = < TT Bk >
k=1

where Ak' AES for k = 1, 2, . ,n and

Bk' TiES for k 1,2,- - ,m.

Then, again using Lemma 5. 13,

43(A B) = < Ak Bk .

k=1 k=1
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Let C = H Ak TT B Then (1)(A B) <C (A. B)w> .

k=1 k=1

Using Lemma 6. 4

(1)(A B) = <C (-1\:+ii)w> -

k=0

But <C + 13)w > , <C T3- , and <C. 17i w>

are all members of CX since SC SX and
Z X

Then ci:,(A B) is the difference between a member of CX

Xand a countable union of members of C . Thus,

c(.A. B) S(CX)

so that

Y(C CZ)) CS(C

The last two lemmas suffice to prove that (I) is an iso-

morphism. That is,

Theorem L7. Let (X,S) = (YS) + (Z,Sz). Then

Exp (Y,Sy) Exp (Z,Sz) Exp (Y Z Sy + Sz)

Proof: By the previous two lemmas
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and

44C S(C ),

-1
(4)) [CX] C SY CZ) .

But both 4) and -1 are functions. Therefore, using Theorem

2. 6,

4)[S(CY CZ )] = S { CY CZ C S(CX)

and

(i:.1[s(cX)} s{4)-1[c }C.S(CY CZ).

Combining (a) and (b)

41.[S(CY CZ)] = S(CX)

That is, (I) is a measurability isomorphism.

Now let X = X1 + X2 + Xn
be a decomposition of X

and let

(X, S) = (X1S1) + (X2,52) + +n, Sn)

be the corresponding d-3composition of (X,S) according to Theorem

67

2.4. Let TT Exp (Xk,S ) denote the ordinary direct product of the
k=1



k=1
k=1

for each new, we use mathematical induction and a decomposition

For each AE I I Exp Sk, we must show that
k=1n

4)(A) e Exp /
Sk)

; and, for each -E..... r ,xp (
Sk we must

k=1

R

k=1
n

show that 4)- 1(B) e Exp Sk .

k=1

Theorem 6.8. Let (X, S)

k=1

k=1

Exp (Xk,Sk) cpn Exp

Then

Proof: We know the theorem is true for n = 1 and n = 2.

For the inductive proof we assume, for some integer n> 2, that

the theorem holds for all I < n. From Lemma 5. 11, if

, 12 n,kx 2X ,...,x J,X E ExpXk' then
k=1
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measurable spaces Exp (Xk, k , 2, , n. To prove

ii Exp (Xk'Sk) Exp [
(Xk, Sk)]



Let

q5n(xl,
x2, xn)

=2
(xl,

cj)n- 1
(x2 , x3, ° xn)).

1 21 2 3 ncr (x , x , xn) (x , x, x, , x)) .

By the induction hypothesis

I I Exp (Xk,Sk) Exp [
k=2 rn-1 k=2

Since forming the Cartesian product of sets is an associative opera-

tion, we shall treat (x1,x2,,xn) and
(x1' (x2' ,xn))

as if

they were identical. We conclude from Theorem 2. 5 that

I I Exp (Xk' Sk) Exp (X1'S1) Exp [
(Xk ,Sk

)]
crk=1 1

k=2

Now let o2 =
(1)2

applied to Exp
X1

Exp
Xk).

By Theorem

k=2

6.7 (or the induction hypothesis),

Exp (X , Si) Exp [ (Xk, Sk)] Exp [ (Xk, Sk)]

k=2 k=1

But
4)n

=
0'2

u
Crl'

and
cr2

0 Cr1 is clearly a measurable
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isomorphism from I I Exp (Xk,Sk) into Exp [ (Xk, Sk)]
k--= 1

k= 1

since the composition of two measurable isomorphisms is a measur-

able isomorphism.

Now let X
X1

+ X2 + be a countable decomposition of

X and

(X, S) = (X 1, Si) + (X2, S2) +

be the corresponding decomposition of the measurable space (X,S).

We wish to show that the function cb (see Convention 5. 9) is an

isomorphism of the infinite product space

I Exp (Xn,Sn) = (
I

Exp Xn, Exp Sn).
E nee.) new

That is, we will prove that

Exp (X ,S ) Exp [ (Xn,Sn)]
n n

ne 0.)
E

Recall from Chapter 2; III that the infinite product ir-algebra

TTExp Sk is defined as the a--algebra S(C) where
kE

70

C = {ITAk :Ak E Exp Sk and Ak Exp Xk for all but finitely many k}.
k e w



By Theorem 6. 8

`1){(1 (xl'xcb(xi,x2, ,x* n'

for each (xi, x2, )E TT Exp Sn.
neW

Thus

71)[A] =[[AO -4)I TT ExP Xkl
k=1 k > n

But by Theorem 5. 8

H Exp Xk] = Exp E Exp ( S ) .

k>n

n)' 4°(xn+ 1' XI1+2' )1
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By analogy with the proof of Theorem 6.7, we begin by showing that
X

4) maps sets in C into sets in Exp S = S(C ).

Lemma 6. 9. :I;[C] C Exp S.

Proof: Let A E C. Then for some n E

A = TrAk Exp Xk
k=1 k>n

where AkEExp Sk for each k = 1, 2, n. But by Lemma 5. 12,

k>n k>n



(11E Exp (S1 +S2 + n).k1

Then using Theorem 6.7

cbr cb[ A TT Exp X ] E Exp S.
k=1 k>n

That is

[c]c Exp S.

We again turn to the proof that cl) [Exp S] C I
I

Exp Sk.
kE w

Since, by Lemma 6. 2, Exp S S(CX ), we need only prove, by
--analogy with Theorem 6.7, that (I)

1 [CX jC' II Exp S We will
kE (.)

need the fact (see 2; III) that

Exp Sk = s(c) S(H)
kE

where H = { TTAk :AkEExp Sk} . We will also need a definition
k E

and some lemmas. Lemma 5. 12 states

(1) 71)(a 1, a2, = c1:12(4)N(a 1, aN),
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for each NE CO and for each

the right-hand side of equation (1) is a composite function

where ab
' 2

is 4 applied to

Exp (Xi + +X

and is defined by,

a2' 7 Exp Xk. Actually,
k e

Exp X
+1+

Definition 6. 10. Let (a
1 ' a2, TT Exp Xk For each ne c.4.)

k e
define

a22-
(4.N(a

an),
aN+

With this definition, we have

Lemma 6. 11. maps 7 Exp Xn one-to-one onto
n e

Exp (Xi + XN) Exp (XN+1 +

Proof: Follows immediately from the fact that cl) maps

IfExp Xk one-to-one onto Exp (X1 + and that (I:1
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maps TT Exp Xk one-to-one onto Exp (XN+1 + ).
k>n

The following lemma is also needed.

Lemma 6. 12. Let A be a subset of Exp (X1 + + XN) and let

B be a subset of Exp ( Xk). Then

k>n

-1 -1 1o-N [A B] = cl)N [A] [Bj

Proof: By the definition of crN,

Lemma 6. 13.

We begin with

3")-1[B] = ((!)N ° '4)N-1[A] ) (Z);(1; 1[13]) A B

We are now ready to prove

Proof: Recall Definition 6. 1 for

A E < Cn > for some new, orX

Ae<e> .

X

-1[CX
cl) ] c I Exp

kE u 1\..)

. If A CX, then

74



where each C ES.kk
ity, we can assume

Ak
13ki

iEW

where each
BkiESi. Then

can be expressed as the union of all sets Cl
= Bki for some &Eck). But the number of such sets is countable,

Thus Cr) 1(A) can be expressed as a countable union of sets of the

form

1
(I) C

1-

for some

A=
1 C2

>

where each C ES for some iE co. Letkk ik

where

kE
Then without loss of general-
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Case (a) : Suppose AE <Cx>
Then A = <Al- A2. An > where Ak S for each k 1, 2,

But .= Sk. Thus, each A can be uniquely expressed as



Then,

Thus,

(1) A =
C2 Exp (

k=1

Exp (X1 + XN) Exp (X1++ Thus, using Lemma 5. 16,

`v2
= < Cl }]

Therefore

- 1
1) [A] = o- 1)-1 A = o- -1r<C {e}

N 2 1

But by Lemmas 6. 12 and 5. 17,

co-1-
a-N [<C1-**-Cn> -{eNA =1) l<C1 TT {ek}.N

k=N+ 1

N = max fir i2, - - in}

for each k = 1, ,n.

-1we have 4)
01)2

. Here 1)-1
2

maps
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Since, using equation (1), <C1 Cn> E
Sk it follows from

k= 1

Since
= (1)2 °



Theorem 6. 8 (the isomorphism theorem for finite products) that

4)-1< C > Exp SN 1 k

But, since {ek}EExp Sk for each k> N, it fOlows from the

definition of an infinite product a--ring (see 2; III) that

if {el} E Exp S .

k>n k>n k

BLit then

-1
4)N < C2- .4)

Thus

Therefore

Case (b)

Then, for some nE

AE <C>
X

A TT Exp Sk .

kE

- 1 1).
.4) <C > C JJ Exp

Sk for each nE .X
kE

TTExp Sk .

kE
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we have

n.

A = < TT
Ak

-A. 6.3 >

k=1

where E S and A1' A2' ° , AnE S.

Using the same argument employed in case (a), we can assume each
N N* *

AkE
1 Sk for some NE CI). Then, since S Sk' we have
k=1 N k=1g *

-A.- = B + D where BE Sk and DE Sk .

k= 1 k>N

Thus

A = <A1 A2 + D)w > .

Using Lemma 6. 4

<A1° A2. (B + D)w> =A D w
1

[<A1. Dw >

ke

+ <A - ° .A Dk Bcz> .
1

Using Lemmas 5. 14 and 6.4 on the right-hand side of this equation,

78



(.01
[

<A1 (B+D) >] =
<A1 B > <D >2

+ D<A ..AnBk> <D>
ke

+<A B(`)> <Dk>
But

(0)
<A1 Bw> ad <A1 B > eExp

whereas

<D > and <D> E Exp ( Sk) .

k>N

-1Since ciS =

3; -1(A) -1r

Using Lemma 6.12,

k=1

Al. An.e> <D(&)

oo

cr 1{<A1AnBk> <D(4>
k=1

o--1[<A1.***A B(o> <D >i .

k=1

S )k'
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(1) -ir) -1(A) = l<AI -An-
Bw> C1)--1< D>

N

00

k
/L4)N<A1A >4:1) <D>

k=1

Theorem 6. 8 tells us that

-1
ION <A B >

Exp (Xk,S)
sv

Exp [
k= 1 n k=1

Thus (0) implies thatcp-l<A1 B(41> and
N

(1)Ni <
A > c TT Exp Sk. From case (a) we have

k=1

-1< Dk> -r-T-H Exp Si for each k 6.) .

i > N

It remains to prove that

-1 0.)<D > e Exp
k>N

But

(4) = Exp D - exp

< Dk >] .
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Thus

<D > = [Exp D] - -4-).-1[exp D].

Again using case (a),

(5) exp D] E TT Exp Sk
k > N

For each k> N, let Dk = Xkn D. Since DkC Xk' we have

TT Exp Dk c TT Exp Xk.
k>N k>N

Moreover, if a =(ak :k>N)e 1TExp
k>N

it is clear that 11(a) is an unordered sequence in D if and only if

each a
k is also in D, and hence in Dle That is

-
4) [ E xp 13] = TT Exp

Dkk> N

But since DkESk' Exp DkEExp Sk for each k> N, so that

- 1 [ExpDJ e TT Exp
Skk>N

Equations (4), (5), and (6) imply that

o.)
.4) < D > E TT Exp Sk

k>N

Equations (1), (2), (3) and (7) now imply that
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- 1
CI) [ A E Exp Sk.

Ice co

Thus

cl) [<CX > C TT Exp
SkkE

Cases (a) and (b) together imply

1
[CX] c Tr Exp

Sk

This leads us to

Theorem 6.14.

if Exp (Xk,Sk) Exp I (X S )k' k
k E

CI) ke

Proof: The proof is completely analogous to that of Theorem 6.7.

Simply invoke Theorem 2. 6.
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if Exp(X ,Sn, p.n) into Exp (X,S, p. ) provided
n E I

When I is infinite, it is shown that 4) need not be a

measure isomorphism, for the infinite product measure

( TT < ph ) may not exist. We do show, however, that 4 is a
TIE CO

measure isomorphism in the trivial case p.(X) = 0.

We begin with the case I = 2 1. Let X = Y+ Z and let

(X,S,1.1) (YS p.) + (Z,S )Y' Y

is finite.

be the corresponding decomposition of (X, S, ). By Convention
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CHAPTER 7. THE EXPONENTIAL LAWS FOR MEASURE SPACES

Let (X,S, ) be a measure space. Let this space be de-

composed (see 2; II) so that

(X,S, p.) X S )n" n
n E I

where I is a finite or countable index set. In the last chapter we

showed that the set isomorphism 4) of Chapter 5 is a measurability

isomorphism of TT Exp
(Xn,Sri) into Exp (X, S). In this chapter

nE I

we will show that 4) is also a measure isomorphism of
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2. 2, each of the component measure spaces is a--finite. Carry out

the exponential construction on each of the three measure spaces

obtaining Exp (X,S,p.), Exp (Y,Sy,p. y) and Exp (Z ,Sz

Each of these is totally a--finite (see Lemma 4.11). Let

Exp (Y, Sy, y) (Z , Sz , p.

denote the product of the measure space Exp (YS with the

measure space Exp (Z , Sz , p.z). We know (see Theorem 6.7) that

Exp (YS) Exp (Z,Sz) Exp [(YS) + (Z,Sz)]

and (see Theorem 3.14) that

(1) exp (Y,S ,p. ) (Z,S exp [(Y,S )+ (Z SY Y Z' Z

Equation (1) tells us that if A E exp Sy* exp Sz, then

<11y> <1-tz> (A) = <I-1> (q){A}).

But is 4) restricted to exp X, so that

<> <> (A) = <P.> ({A1).

Thus, in order to prove

Exp (YS p.y) Exp (Z Sz , z) Exp [ (Y, Sy, 11 y ) Z S

z)]



we must show <> <11z> (B) = <1.4> (4[ B] ) for every

B E Exp Sy * Exp Sz - exp Sy* exp Sz.

The following lemmas are needed in the proof.

*
Lemma 7. 1. Exp S * Exp S =

Y Z S<CX > *S<Cn >TM

Y
m, n< co

Proof: By Definition 4. 6, Exp Sy = S < C rn > and

m<

Exp Sz =

Thus,

S<Cn > . Since S<C > C Exp S for each
Y Y

m,

To prove the converse we need only show that for each A e Exp S

and B e Exp Sz ,

A Be
m, n<

S <Cm > * S <Cn > C Exp S * Exp Sz

S <Cm >
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n<

and since 5 <Cn > C Exp Sz for each n < co,

S <Cm> S< Cn > C Exp S * Exp S .



Thus, let A E Exp Sy and let BE Exp S.

naThen A=Y A where A ES <C > andM M Y
m<

B =
Bn where BnES<C

n<

Then

A B A ( B) = A Bn .inn
m< n<co m,n<o.)

But

/ Am
BnE

S < C > * S < C >
IY1

n < m,n.<

Hence

Exp Sy *Exp S C S<C > *S<Cn >
m,n<o.)

We can show similarly that

Lemma 7. 2. exp S * exp Sz S<C1>*S<C11z>
m, n <
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Theorem 7. 3. Let (X, 5,11. ) (Y,Sy, p. y ) S , z).

Then

Exp(Y,Sy, y) Exp(Z,Sz,p.z)7 Exp[(Y,Sy,p.y)+(Z,Sz,p,z)] .

Proof: Let A E Exp Sy* Exp S. To show that

<N-y> z> (A) = ([A ) it suffices, in view of Theorem 3. 14,

to let

A E Exp Sy * Exp $z exp S * exp Sz .

Using Lemmas 7. 1 and 7. 2,

Exp Sy * Exp S z - exp Sy * eXP Sz S <CW > * S <C mz >

A = Am

m <

m <

n<co

Therefore A may be decomposed into a disjoint union of the form

S <c;> *S<Cw >

where AES<Cw>*S<Czm> and B eS<Cn *S< Cwz >m .n Y
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Therefore
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This being the case, we can, without loss of generality, assume that

n.A ES<C > * S<C > for some n.E

or that

AES <C > *S<Cw> for some m < w .

We prove only the first case, the proof of the second case being

completely analogous.

Since AES<Cw> *S<Cn> , we have A C < Y(43> Zn> .

But

A CO n. n n< p, > <Z>p. > (<y> <Zn> ) = p, (<Y > ) (<Z > ) = 0Y

since pLy(4(<Y(1)>) = 0.

Thus <p., > <L Z> (A) = 0.

Now consider <p.> [ ((A)] . Since A C <Yu)> < n>, it

follows that (f)(y, z)E <e> for each (y, z) A. Thus

4:.[A] c <x".>

so that

<p.> (4[A] ) = 0 .



<p.> <p, > (A) = <p.> (4A] )

for each A E Exp Sy* Exp Sz.

The previous theorem generalizes easily to the case

I = 1 , 2, Let X = X and (see 2; II) let
k=1

(X, S, p.) = X ,Sk'p. )

Ic=.1

be the corresponding decomposition of (X,S,p.). Carry out the

exponential construction on each of these measure spaces. By

Lemma 4.11 each of the measure spaces Exp (Xk,Sk,p. ) is

totally cr-finite. Let if Exp (Xk,Sk,p.k) denote the product of
k=1

the n measure spaces Exp (Xk,Sk, ), k 1, 2, ,n. By

Theorem 6.8

n.

TT Exp (Xk
k=1

We now prove

Theorem 7.4. Let (X, S,) =X , Sk, p,k). Then

k=1

Exp
4'n k=1
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(1)

TT Exp (Xk,Sk, (X S 1101k) Exp [ k, k
k=1

k=1

Proof: The theorem is trivial in case n = 1, since
4)1

is the

identity function on Exp X. It is true in case n -= 2 by Theorem

7. 3. Proceeding by induction, suppose the theorem is true for

k = n-1, where n> 2. Then

(3) Exp (X ,

ExpXk' Sk'k=2

Let cr(x , xn) = (xi, fox(i)n- i(xv xn)) each

(x1 ,x2' ) TT Exp Xk. Then using Theorem 2.5 and equationn
k=1

(1), we have

(2) Exp (X S p. ) Exp (Xl, S1' p. Exp [ (X S p. )
k 0- k' k

k=1
k=2

But

) ExP
1

k=2

Exp

k=2

X Sk' p.k ) Exp
cpz

Xk' S p. )]k
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and

That is,

(:)) = Or
n 2

Thus equations (2) and (3), plus the transitivity of measure isomor--

phisms, imply that

11-IT Exp (Xk, Sk, p, k) Exp
k=1

(X,S, p.) =

k=1

Xk' S

kE (4)

We now turn to the question of whether (f) is a measure

isomorphism in the case of a countably infinite decomposition,

We first show that 41 is an isomorphism in the trivial case

p. (X) = 0. In this case we have

<11> (Exp X)ell (X)
=

so that <p.> is a probability measure. Furthermore this measure

is concentrated at the single point e, since by Definitions 3. 12 and

4. 9

<11> (<Xo>) = <F1> ({
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<p.> (A) =

1 if e e A

0 if ejA

Similarly, for each kEw, the measure <p.k> is a probability

measure on Exp Xk, concentrated at the single point ek = eX ;

for
Xk

C X so that p.(Xk) = 0. It follows that the infinite product

measure space TT Exp X Sk' k) is defined, and is a probability
kE O.)

space (see 2; III). Moreover, the infinite product measure 7<p.k>
kE CL)

is concentrated at the single point (el, e2, ) since

( I I <lak>) ({el} *fed.kEw 1II <4k> ({ eld) =I
E W

Proof: Let A E S . If xE A, then ye O[A] and we have
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The fact that O is a measure isomorphism will now follow from

Lemma 7.5. Let (X, S, p. ) and (Y, T,v) be measure spaces

such that p, is concentrated at a single point x E X and v is

concentrated at a single point y E Y. Suppose there is a measurabil-

ity isomorphism O from (X, S) to (Y, T), such that = y.

If p, ({4) = v({y}), then O is a measure isomorphism.



1-1, (A) = (Ix)) = v({Y}) = v([A] )

If x/A then y/ 4)(A) and

p. (A) = v (44A] ) = 0

Thus 4) is a measure isomorphism.

Theorem 7.6. Let (X, S, p.) If p. (X) = 0, then
ke

if Exp (Xk, Sk,) Exp [ (Xk,Sk, p.k)]
kE

ke co

Proof: By Theorem 6. 14, is a measurability isomorphism of

7Exp (Xk,Sk)
ice co

infinitely many

into Exp [ / (Xk'Sk)] . By Lemma 5. 17

kE

(11, (e
1,

e 2,

The theorem now follows directly from Lemma 7. 5 and the remarks

preceding it.

The last theorem is not particularly interesting. Is a more

general theorem possible? In general, if <p,> (Exp Xn) 1 for

the measure space 7 Exp (X ,S , p, ) mayn n nnE G)
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not exist. To see this, let (X,S, p.) be the real line with Lebesgue

measure Let X =
Xn, and choose the sequence {X} so

ne
1that 11(X2n) = 2 and p. (X2n_ ) =
2

Then ( TT<Fin>)( TT<X > )
IlEC4 /1ECO
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is not defined. Thus, if Exp (Xn,S , p.n) does not exist and
E (p.)

there is no isomorphism to discuss.

There may be many cases where 0 < <p> (Exp Xn) L 1

for infinitely many new, and yet TT Exp (Xn,Sn,p.n) is defined.
nE

If this is the case, must it follow that TT Exp (X ,S, is iso-
n e

morphic under to Exp [ (Xn,Sn, pn)] ? This remains an
nE

interesting open question.
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