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This paper defines the extended exponential of a measure
space Exp (X,S,n), and then proves the measure theoretic analogue

of the ordinary exponential law,

ﬂlEprk = Exp[ Z Ak] ,
kel

where I is some countable index set. The results are an extension
of those of D.S. Carter on the exponential of a measure space
exp (X,S, ) -- manuscript to be published.
The construction begins with a totally o-finite measure space
n

(X,S,pn). For each ordinal number n<w, let X be the set of

0
ordered sequences of length n in X; in particular X = {}6}

Let <Xn> be the set of unordered sequences of length n in X;

that is, the set of .equivalence classes in Xn, two ordered se-
quences being equivalent if one is a rearrangement of the other.

Carter defines the exponential of X to be the disjoint union of finite



n . N ;
unordered sequences, exp X = Z <X > . This notation is moti~
n<w

vated by the following exponential law: Let Y and Z be a pair

of disjoint sets. Then there is a natural one-to-one map —d—:t on the
Cartesian product exp Y-exp Z onto exp(Y+Z). Carter shows
how the measure space structure S,p on X serves to induce a
corresponding structure exp S, expp on exp X. The resulting
measure space, exp (X,S,n) = (exp X, exp S, exp p) satisfies the

conditions,

a) (exp p) (exp X) = exp (p(X))

b) the exponential law holds in the sense that if
(X,S,p) = (Y,SY, uY) + (Z,SZ, pz), then the function ¢ above

is a measure isomorphism from the direct product

exp (Y,Sy. ny) - exp (Z,5,, )

to

exp [(Y,Sy, py) + (Z,S,,1,)] .

In this paper the extended exponential of X is defined by
adjoining the unordered infinite sequences <xX“> to exp X;

that is, Exp X = Z <X">. The measure space structure is also
n<w

extended to obtain the extended exponential Exp (X,S,n). The



measure extension is trivial; (Exp p) (< Xw>) = 0.
Now let {(Xn,Sn, pn): nel} be a family of pairwise disjoint

measure spaces in (X,S,p) such that

(X,S, 1) = E (X_.S k)

nel

where I 1is either a finite or countable index set. The exponential

law is then extended to show that there is a natural measurable iso~-

morphism ¢ from TT Exp(Xn,Sn) to Exp[z(Xn,Sn)].

nel nel
In the event 1 is finite, it is shown that ¢ is actually a measure
isomorphism from || Exp (Xn, S, pn) to Exp|[ Z(Xn, Sn’ un)] .
nel

nel
In the case I is infinite it is shown that ¢ need not be a measure

isomorphism, for the infinite product measure (TT Exp pun) may
nel

not exist.
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THE EXTENDED EXPONENTIAL OF A MEASURE SPACE

L4

CHAPTER 1. INTRODUCTION

In his studies of the mathematical foundations of statistical
mechanics, D.S. Carter [1] has constructed what he calls "the
exponential of a measure space." To visualize this construction in
terms of a simple example, consider a random experiment in which
the outcome is a variable but finite number of points Xa Xy "X

in a plane rectangle X. This outcome might be represented by the

ordered sequence

x = (e, %y, ot s %)

that is by a point in the nth direct power X® of X. The event
that there are exactly n points in X would then be represented
by the set of all such sequences of length n; i.e., by the set x".
Now suppose that the order of the points in unimportant, so that the

outcome is the same if (xl’ s, xn) is replaced by any



t PR 1 1 PRI 1 1
rearrangemen (xi » X ;X ), where i, i, i is
1 2 n
a permutation of 1, 2, ---, n. Then it is natural to represent the

outcome not by the single sequence x, but by the unordered

sequence <x>, consisting of all rearrangements of x.

Definition 1. 1. Let x = (xl, Koy 1T xn)e X", Then
<x> - o o . .
X {(xi X ;X ) : 11, iy , 1n is a
1 2 n
permutation of 1, 2, -+ , n }.

The event that there are exactly n points in X is now

represented by the set of all such unordered n-tuples, called the

t
symmetric nh power ,95. X, and denoted by <xX">

Definition 1. 2. <x"> = {<x>: xeX"}.

To include the event that there are no points in X, one
. . 0 _ .
adjoins a special set <X >, consisting of a single element e
(for "empty sequence" or "unordered sequence of length zero" in

X).

Definition 1. 3. < XO> ={e }.
x

The event that there is some finite number n,

n=0 or 1 or 2



3

of points in X, which is the universal event for the experiment in

question, is represented by the union of the symmetric powers
<X™>.  Carter calls this disjoint union the "exponential of X,

written

exp X :Z <Xn>.

n<w

The reason for this terminology lies in the following analog of the

familiar exponential law
exp (a+b) = (exp a) (exp b).

Let X be partitioned into the disjoint union of two subsets Y, Z.

Let the exponential construction be carried out for the sets Y and
Z sgparately, as it was carried out above for X. Then there is a
natural equivalence between expX = exp(Y+Z) and the direct
product set expY - expZ. This equivalence is given by the
concatenation function 5 which associates with each ordered pair

(v, z)eexpY:  expZ the concatenation g(y, z), defined by the

Here and elsewhere throughout the discussion, disjoint unions will
00
be denoted as sums. Thus we write A+B or z An iff the
n=0

intersections A ~B, or AimAJ.(i;éj, jew) are void.



following equations:

Definition 1. 4.

WYL Yo Y SEpzy 27 )
=Y Yy L E >

E;(ey, <Zl’ Z, , zn>) :<z1, Zyy s zn>

$(<Y1,---, ARSI AT S Yo

g(ey, ez) =e_

The reader will easily verify that 5 is a set-theoretic equivalence
between exp Y -exp Z and exp(Y+2Z).

Clearly, the exponential construction can be carried out for
arbitrary sets, and the "exponential law" is generally valid.

Now suppose the set X carries the structure of a totally

.0-finite measure space -- such as plane Lebesgue measure in the

example of the rectangle. It turns out that this measure on the set
X induces a natural measure on exp X. Furthermore, the ex-
ponential law above extends directly to such measure spaces, in the

sense that the concatenation function ¢ is a measure isomorphism

from the measure space exp (Y+Z) into the direct product




measure space (exp Y)- {exp Z).

The practical significance of these results stems from the
fact that the set exp X provides the sample space (set of outcomes)
of random experiments as described above. The og-algebra of

measurable sets associated with the measure space exp X then

serves an an algebra of events. Thus, exp X becomes a probabil-
ity space for an experiment by assigning an appropriate probability

measure to this c-algebra. To appreciate the significance of the

"exponential law", let X again be decomposed into a disjoint union
of subsets, X =Y + Z. Any random experiment on X induces
separate experiments on Y and Z, in which only those points

occurring in Y alone, or in Z alone, are observed. The ex-
ponential law asserts that the sample space for the experiment on
X factors into the direct product of the sample spaces for the in-
duced experiments on Y and Z. This shows that the svtandard
techniques of probability theory for product spaces are applicable,
The object of this dissertation is to extend Carter's results to
include denumerably infinite sequences, corresponding to outcomes
in which denumerably many points of X occur. Chapter 2 gives a
brief summary of those results from measure theory pertinent to this
paper and Chapter 3 a summary of Carter's results. In Chapter 4
the set <X'> of unordered infinite seqences is defined, and ad-

joined to exp X, giving the "extended exponential of X", namely:



A natural measurable space structure, Exp (X,S) is also defined
for Exp X.

In Chapters 5 and 6 we show that the exponential law extends
to the set Exp X and the measurable space KExp (X,S). Indeed,
the exponential law now holds not only for decompositions of X into

a pair or a finite number of subsets, but for arbitrary denumerable

disjoint decompositions, by analogy with the law

o0
o0
Exp ( Z a) =[] (Expa) .
n=1

n=1

As far as the exponential measure itself is concerned, the
extension is trivial, for <xX¥s s simply assigned measure zero.
(This implies that for an experiment in which denumerable distribu-
tions of points can occur with positive probability, the probability
measure cannot be absolutely‘continuous with respect to the natural
measure on Exp X).

In Chapter 7 we show under what conditions the exponential

law can be extended to the measure space Exp (X,S, K.
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CHAPTER 2. MATHEMATICAL'PRELIMINARIES

This chapter gives a brief review of those definitions and
theorems from measure theory which are pertinent to this paper,

and establishes notational convention.

I. Measure Spaces

A ring R inaset X isa non-empty class of subsets of
X which is closed under differences and under finite unions. The
ring is an algebra if XeR. A o-ring S ina set X is a non-
empty class of subsets of X which is closed under countable
unions and under differences. If a is any non-empty class of
subsets of X, then the ¢-ring S(a,) is the smallest o¢-ring
in X which contains (L. It is also called the o-ring generated
by (L -

A measurable space (X,S) is a set X together with a
o-ring S of subsets of X. A real-valued function u ona

family C of sets is finitely additive if for each pair of disjoint

sets A and B belonging to C,

(a) BA O B) = p(A) + p(B).

The function p is countably additive if for each pairwise disjoint

sequence of sets {A } in C whose unionisin C, we have
n



(b) s(UA) = ) nay
New new
Convention 2. 1. Here and elsewhere throughout the discussion,

disjoint unions will be denoted as sums. Thus, we write A+ B or

z An iff the intersections A~ B or A.lm Aj (i# 31, jew)

new

are void. Then, formulas (a) and (b) become
h(A + B)=p(A) + p(B)

and

B () A - Z b s )
New

new

A measure P is an extended real valued, non-negative
countably additive set function p defined on a ring R such that
k(¢) = 0. A measure u ona ring R is finite if W({(E) < o for

every EeR. K Xe¢R and p(X)<ow, then p is called totally

finite. If Ee¢R and there exists a sequence {En} of sets in R
such that p.‘(En)<°0 foreach n=1,2,---. and E C. o En’
new

then the measure of E is said to be g-finite. If XeR and

k(X) 1is o-finite, p is said to be totally o-finite.




We have been talking about measures W ona o-ring S of
subsets of some set X. This structure has a special name. A

measure space (X,S,u) is a measurable space (X,S) together

with a measure p on S.

Convention 2. 2. Throughout the remainder of the paper a measure

space (X,S,pn) will always be totally o-finite, and a measurable
space (X,S) will always be an algebra.
We can use a measurable space (X,S) to induce a o-ring

S on any subset Y of X by letting

Y
SY = {BmYZ BGS} .
Since X €S, it follows that YeSY. In our applications Y will
always belong to S.
Similarly, if (X,S,pn) is a measure space, we can use g
to induce a measure hy OB SY simply be letting My be the

function p restricted by S The measure space (Y,S

is the measure space inducedon Y by (X,S, ).

II. Sums of Disjoint Measure Spaces

Let {(Xk, Sk’ pk) : kel} be an indexed family of disjoint
measure spaces; that is, the Xk's are pairwise disjoint. (For

our applications, the index set I will be either a finite ordinal



N ={1,2,3,--+, n} or the first limit ordinal w= {1,2,----}.

We can use this indexed family to form a new measure space

(X,8,p) = } (Xk, Sk, pk)
kel

called the sum of the family. The construction is as follows. Let
*‘
X = Z Xk and S = Z Sk where this sum of ¢-algebras is
kel kel
defined by

*

Z Sk: {z Ak: AkeSk for all kel} .
kel kel

Let p = Z Mo where this sum of measures is defined by
kel

( Z ) 2 Ak) = z uk(Ak)

kel kel kel

ot

e

It is easy to verify that z Sk is actually a o-ring and that

kel /
2 p.k is a totally ¢-finite measure on this o-ring. Thus, (X,S, 1)
kel

is actually a measure space.

The following results, which bring out the relationship
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between induced spaces and sums, are easily verified.

Theorem 2. 3. Consider the sum of disjoint measure spaces

X,S,n) = Z (Xk, Sk, uk)
kel

as defined above. Then, for each kel, (Xk’ Sk’ uk) is the

measure space induced by (X,S,p) on the subset Xk.

Theorem 2.4. Let (X,S,pn) be a measure space, and X = Z Xk
kel

be a partition of X into disjoint measurable subsets. For each

k, let (Xk, Sk, uk)

(X,S,r). Then

be the measure space induced on Xk by

(X,S,p) = Z (Xk, Sk, uk)
kel

Remark:  Let {(Xk, S. ). kel} be a sequence of disjoint meas-

k

urable spac‘es. Let X = Z Xk and S = Zsk be defined as
kel kel

above. Then,
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ala

is the measurable space ( Z Xk, Z Sk), and the analogs to
kel kel

Theorems 2. 3 and 2. 4 for measurable spaces are true.

III. Products of Measure Spaces

Again let I be either a finite ordinal N = {1,2, ---, n}
or the first limit ordinal o= {1,2,----}. Let {(Xk,Sk) tkel}
be a family of measurable spaces indexed by the set I. We can use
the family {(Xk, Sk) :kel} to form a new measurable space

M .80 = TT x, LTI 5,)

kel kel
called the product of the family. To construct this product let

Tl- Sk be the ¢-ring S(C) generated by the family of
kel

measurable rectangles C in -l_I-Xk where
kel

Cc = { TTAk:Akesk,}.
kel

If I=N, C will be denoted C". Clearly (-|_|-X , -[_l S. )
kel k kel k

is a measurable space. Inthe event I = w, it can be shown [4]

that S(C) = S(Cw) where C® is the class of measurable rectangu-

lar cylinders defined by




C={]] A :A ¢S and A =X for all but finitely many
cer KKK Kk~ Tk

This result is important in the sequel.
A special notational convention is needed for the product of
two o-rings. It would be natural to write S1 'S2 for

2
Sk. However, we wish to reserve this notation for
k=1

5,'S, = {A ‘A

1S, :AeS_, BeS2 } .

2 1

Therefore we will denote the product ¢-ring by

S *%S_ = S(Sl'SZ)

If (Xl’sl) and (XZ’SZ) are measurable spaces, the product
2

space || (X,,S,) will be denoted by (X,,S,)"(X,, S
k=1

2)'

13

K}

Now let {(Xk S, p.k)ikeI} be a family of measure spaces.

"k

With proper restrictions on the measures W+ Wecanuse the

family to form a new measure space

TTex.s e = (1T x, TT s, LTI by

kel kel kel
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Here I | S is defined as above. The construction of I v
v k
kel kel

differs according to whether I =N or I=w.
We start with the case I = N. In this case the only restric-
tion is that each M shall be o-finite, and this condition is guar-

anteed by Convention 2. 2. Consider the set function _l—l_ p.k,
keN

defined on the measurable rectangles of x* by the equation

(TT v TT A = TT w, (A,
keNk keNk keNkk

where TT p. (A ) =0 if any factor p. (A ) = 0. This function
KeN k" k k" 'k

admits a unique extension to a c-finite measure on .ﬂ— Sk (see[4]).

keN
This is the product measure, also denoted by —H_ My -
keN
The infinite product measure —IT Mo is defined similarly

kew
except that undefined infinite products of real numbers must be
avoided. Y or this reason we assume that each (Xk,Sk, p.k) is a
probability space --that is, p.k(Xk) =1 for each kew. As in the

case of finite product measures, the set function _IT My defined
kew

on the measurable rectangles of x® by



1s

(TT e TT A =TT (a)
kewk kewk kewkl\

admits a unique extension to a probability measure on -IT Sk,
kew

called the infinite product measure -ﬂ_ My
kew

IV. Isomorphisms

Multiple use will be made of the word isomorphic. Two sets
X and Y will be called isomorphic if there exists a one-to-one
map ¢ from X onto Y. The function ¢ will be called a

set isomorphism. In the event X is isomorphic to Y via the

function ¢ we shall write
X =Y.
¢
Let (X,S) and (Y,T) be measurable spaces. A function

¢ from X into Y 1is measurable iff c,b-l(B)eS for each BeT.

The function ¢ 1is a measurability isomorphism if both ¢ and

-1 . . .
o) are measurable and ¢ is a set isomorphism. Two measure

spaces (X,S) and (Y,T) will be called measurably isomorphic

if there exists a measurability isomorphism between them. When
¢ is a measurable isomorphism from (X,S) to (Y,T) we shall

write



lo

S) = .
(X,5) s (Y, T)

Let (X,S,p) and (Y,T,v) be two measure spaces which
are measurably isomorphic, and let ¢ be a measurability iso-
morphism between the two spaces. The function ¢ is said to be

measure preserving provided

k(A) = v[eA)]

for each AeS. A measurability isomorphism which is measure

preserving is called a measure isomorphism. Two measure spaces

(X,S,pn) and (Y,T,v) will be called isomorphic if there exists a
measure isomorphism between them. Whenever ¢ 1is a measure

isomorphism from (X,S,p) to (Y,T,v) we shall write

(X,S,n) f;’ (Y, T,v).

Now suppose we have three measurable spaces (X,S), (Y,T),

(Z,U), and suppose
Y, T) = (2,0).
¢
Then there is a natural measuribility isomorphism ¢ from the

product space (X,S): (Y, T) into the product space (X,S)-(Z,U)

as follows.



Theorem 2. 5. Let (X,S,n), (Y,T,v) and (Z,U,\) be measure

spaces such that

(Y, T,v) S (2, U

Then the function o defined by

o'(x,y) (3¢, (y))

is a measure isomorphism from the product measure space
(X,S,1) (Y, T,v) ontothe product measure space (X,S,p)-(Z, U, \)

That is

(X,S, ) (Y, T, v) Q‘fj (X,S,p)-(Z, U, N).

Proef: (outline of proof)

Clearly ' ¢ 'is a set isomorphism such that
-1 -1
ag ‘(X, Y) = (X,Cl) (Z)) .

To show that ¢ is a measurability isomorphism, let S*T de-

note the product o-ring and let AeS and BeT. Then
c(A-B) = A-¢(B) e 8*U.

But then Theorem 2. 6 (see below) implies that o (S*T)¢ S*U.
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Conversely, if AeS and CeU, then
-1 -1 .
¢ (A-C) = A-¢p (C)eSx*T.

Again applying Theorem 2. 6, we have o‘—l(S*T) = S*U; hence ¢
is a measurability isomorphism.

To show 0o is a measure isomorphism, notice that there is a one-
to-one correspondence between the measurable rectangles of S*T

and those of S*U through the equation
T (A- B) = A-¢(B).
Moreover, since v(A) = XA (¢$(B)), we have‘
(k-v) (A-B) = (p-2) [e(A-B)]

Since the measures p-v and -\ are characterized by their

values on the measurable rectangles, it follows that
(k- vIE) = (k-\) [o(E)]

for every EeS*T.

V. Probability Spaces

A totally o-finite measure space (X,S,un) such that

m(X) =1 is called a probability space. The measure p is called

a probability and the sets belonging to S are called events.
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VI. Some Special Theorems

This section contains some theorems which are of use in the
sequel but which are not usually found in textbooks. For this reason

their proofs are sketched.

Theorem 2. 6. Given a set X and a measurable space (Y,S())

where C(l is any non-empty family of subsets of Y, let f bea

function from X into Y. Let

hay = (e aedy
ls@n = (£l Ay
Then
lsa@n - se .

Proof: Since L CS(A), f_l(a,) Cfvl(S(a)). But, since inverse
functions preserve Boolean operations and countable sums,

f_l(S(Q)) is a o-ring. Thus
-1 -1
S(f (@) T (s(A).
To prove the converse, let

C={ECY: EeS() and f"l(E)eS(f‘l(a))}.
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It is easily shown that C is a o¢-ring.
But L CC; therefore S(@) CC.

Thus £ L(S(A) C s~ L.

Theorem 2.7. Let (X,S((l)) be a measurable space, where cl

is a non-empty family of subsets of X. Let Y be a set, and let

A-Y={A-Y:Ac(@)} and S(@)'Y = {AY:AcS(@)}. Then

S(A-Y) = s(A@)-Y.

Proof: Let m be the projection of X-Y onto X.
That is w(x,y) = x for each (x,y)eX-Y.
Then, for each A, -n‘l(A) =A-Y.

Thus, = Q) = & Y, so that
s i@y = s(@ ).
But by Theorem 2. b,
st ha@n = v he@yn = s -v.
Thus

SI-Y) = sidd)- Y.

Theorem 2.8. Let {(Xn, S(an)):neN} be a sequence of disjoint

measurable spaces indexed by a set N. For each neN, let



@n be a non-empty family of subsets of Xn. Let

Z S(a,n) = Z An:AneS(Q—n)}
neN neN
Then

S(zd—n) = z S(Qn)-

neN nelN

21

Proof:  Since (L C S({_) for each neN, ZQHCZS.(QH).

" neN
We know (see Section III) that Z S(dn) is a o-ring.
neN
%
Thus, S(Z Qn) cz S(an).r
nelN neN

Conversely, since CZ,kCZ a’n for each keN,
neN

s(&,) CS(Z an>.

b3
Therefore, ZS(CZk) - S(Z &n).
keN ne N

There is a similar result for products, namely:

nelN
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Theorem 2.9. Let (X,S()) and (Y,S(d)) be two measurable

spaces where A and B are non-empty families of subsets of X

and Y respectively. Suppose Xell  and Ye@. Then
S(A) *s(B) =s(@- B)
where S(a)*S(B) is the product o¢-ring, and

a-@ - {A'B:Aeaf and BQB}.

Proof: Since (L B CTs(@)*s(®), it follows that

s(@-B)C s(@)*s(B). To prove that S(@A)*S(®) C s(@ B), it
suffices, in view of the definition of the product o-ring, to show that
s(A)-s(B)cs(d-B). Let E=A-B, where AcS(@) and

BeS(@). - Then
E=(A-Y)~ (X'B)

But A-YeS(Q) Y=8(A-Y) by Theorem 2.7, and
X-BeX-S(g):S(X-@) by the same theorem. Since
S(Q-Y)cs(@-B) and sS(x-B)CTs(@B), wehave A-Y and

X -BeS(A-B). Thus

E=(AY)~ (X-B)eS(l B)
so that

sia)-s(B) c s 6).
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CHAPTER 3. THE EXPONENTIAL OF A MEASURE SPACE

This chapter gives a brief summary of the exponential of a
measure space as developed by D.S. Carter. The construction re-
quires a measure space (X,S,u) where, according to Convention
2.2, S isa co-algebrain X and p is a totally o-finite meas-

. th n
ure. Recall from Chapter 1 that the symmetric =n power <X >

of a set X 1is
{<x> ixeXn}

where <x> 1is the unordered sequence of length n corresponding
to x (see Definition 1. 1);. ‘and that the exponential of a set X,

. . o . . th
written exp X, is the disjoint union of symmetric n powers of

X. That is

epr:Z<Xn>.

new

Since to each point in x* there corresponds a unique point in
n . . . n n
<X">, there exists a naturally induced function f from X

onto <X'> , given by

Definition 3. 1. For each xeXn, the function £~ maps x onto

<x>. That is,
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fn(x) =<x> .

To keep notation compact, multiple use will be made of the
symbol < > throughout the sequel according to the following conven-

tion.

Convention 3. 2.

a. Let xeXn. Then <x> denotes the unordered

sequence of length n corresponding to x.

b. Let AC X" (new). Then

<A> = {<x>:xecA}.
c. Let C be a family of subsets of E Xn' Then
new

<C> = {<A>:AcC}.

That is, < > applied to a point in X® means "symmterize" the point,
< > applied to a set means symmetrize every point in the set, and
< > applied to a family of sets means apply < > to every set in the
family.

Let C; be the family of all measurable rectangles in X.

That is,

n
Definition 3. 3. c? = {TT A :AeS}, n#0.
X e &K

Then S(C;) =s"  is the ordinary product o-ring of subsets of x"

generated by the family C?{ (2;III). Since S is an algebra, s”
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is also an algebra. We now let the family < C?{> (see Convention
n n
3. 2) generate a ¢ -algebra S<CX> for <X'> .

Another oc-algebra is S°, defined by

Definition 3. 4. For each n# 0

S oA C<xPs ™ Naye sTy .

n . . . . .
S is clearly a o-algebra since inverse functions preserve unions
and differences. A third possibility is <s™> (see Convention 3. 2)
. n . s n .
provided <S> is a g¢-ring. Carter not only proves <S> is a

c-ring but also

Theorem 3. 5. For each new, n# 0

He uses this result to prove the isomorphism theorem.

An analogous theorem is, as yet, unavailable in the infinite
product case. However, the difficulty can be by-passed by avoiding
the infinite analogue of Definition 2. 4 (see Chapter 4).

In the special case n =0, the only subsets of <XO> = {eX}

0
are f and {eX}. Thus, if we define <S > by

Definition 3. 6. <s% - {g, {eX} },
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0 . - .
then <S> istrivially a c-algebra. We shall, on occasion, also
0 0 0
denote <S > by <C > or S<C > .
The machinery is now available to obtain a e¢-ring for exp X.

Referring to 2;II, the sum

sle
R

Z<Sn> = {ZA cA e<8™>)
n n

Ne® new

is a co-algebra for expX. Since by Definition 3.5 <s™> = S<C;1<>
e E3
for each n, Z <s”> = Z S<C;1<>. We give this o-algebra
new new

the special name exp S.

e

Definition 3. 7. expS = Z s<c?{> .

nNew

The pair (exp X, exp S) is a measurable space denoted by

exp (X,S) .
Definition 3. 8. exp (X,S) = (exp X, exp S)
Convention 3. 9. When it is necessary to emphasize the fact that S

is a c-algebra of subsets of X, a subscript X will be appended
to S. Thus (X,SX) is the set X together with the o-ring SX

in X. Using this convention we write exp (X,SX).

Now let X be decomposed into a disjoint union, and let ¢
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be the concatenation function of Definition 1. 4. Then one easily ob-

tains

p
Theorem 3. 10. Let X =Y + Z be any decomposition of X into

a pair of disjoint, measurable subsets. The function ¢ 1is a set

isomorphism of exp Y- -exp Z into exp (Y + Z). That is

exp Y-exp Z=exp (Y + Z).
¢

But ¢ is more than just a set isomorphism. It is actually

a measurability isomorphism (see 2;IV). To state this precisely,

consider the measurable spaces (Y,SY) and (Z,SZ) induced in
Y and Z by (X,S). Let exp (Y,SY) - exp (Z,SZ) denote the
product of the measurable spaces exp (Y,SY) and exp (Z,SZ) ac-

cording to 2;III. Then Carter has established

Theorem 3.11. Let (X,S) = (Y,S,)+ (Z,S,). Then b is a

measurability isomorphism of

exp (Y,SY) - exp (Z,SZ) into exp [(Y,SY) + (Z,SZ)] )

Thus,

exp (Y,Sy) exp (Z,S,) “exp[(Y,sY) +(z,8)].

[

Our ultimate goal is to do probability theory. For this reason
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we ghall refer to members of SX’ SY, SZ’ etc. as events. The
significance of the isomorphism theorem is that it enables us to
"factor" an event occurring in X into an event occurring in Y alone
and an event occurring in Z alone. That is, a random experiment
on X induces separate experiments in Y and Z.

Meanwhile, there is available a very natural measure <p>

for exp (X,S). Let (Xn,Sn, pn) denote the product of the measure

n
space (X,S,n) n-times. That is, (Xn,Sn,pn) = Tl— (Xt’ St’ ut)
t=1
where Xt = X, St =S5, and by = K for each t=1,2,---,n.

Then there is a measure /@n on (<Xn>, <Sn>) defined by

Definition 3.12. Let Ae<S">. Define the set function /ﬁn on

<s"> by

n,,n -1
APm) - 2O )

when n # 0.

0 0
In the special case n =0, let m [{eX}] =1 and T (f)= O.

It follows easily [ 4] that /}:n is a measure for each new. We

now define <u > .

Definition 3.13. Let A = Z An be any set in exp S (see Defini-
hew

tion 3.7). Define the set function <p> on exp$S by
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Then <p> is also a measure [4] and (exp X; exp SX; <p> ),

denoted by exp (X,S,p), is a totally o-finite measure space.

<p> 1is certainly not the only measure available to us, but it has

interesting properties. One of these is that it satisfies the equation

<p>[exp X] =exp[p(X)] =

To see this, let AeS. Then, forany n=12, .-

' A-A- - L A) = <A

n-times

and <A"> ¢ <c;1<> C <8™>. Furthermore, since A"

metric,
() <A"> = A ,

and therefore,

)"

N nfl n
pULEY) <AT>] =

by definition of a product measure. Thus

M (XY

is sym-
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0

n
<An>) = ‘-[-E(;é—l]———:ep(A) -1.

1 n=1

(1) <> (

B8

0
In the special case n =0, <X > = {eX}; so that

<p>[exp X] = exp [p(X)] eH(X) .

This result is more, however, than a piece of mathematical
sophistry. For example, assume X 1is a subset of R3 (3-
dimensional Euclidean space), and that X is the family of Lebesgue
measurable subsets of X with Lebesgue measure p. Then,
provided 0 < p(X) <o, the setfunction <p> on expS defined

by

<p>@a) = e P B> m)

is a probability (2;V). Referring to the physical model of Chapter 1,

<p> can be interpreted as a "Poisson distribution". To see this,

let Ae¢S. Then using equation (i),

<p>[exp A - {e,}] =

0
oo (X) Z [w(a)] ®
n! :
n=1
e-H(X)[eH(A) _ ]]

is the probability of the event "A contains at least one particle. "
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That is

A contains exactly 1 particle
or

A contains exactly 2 particles

or

A contains exactly n particles

where mnew. The distribution is uniform (homogeneous) in that the

larger w(A), the more likely the event exp (A) - {eA }.
Theorem 3. 11 stated that ?4; was a measurability isomor-

phism of exp (Y,SY)- exp (Z,SZ) into exp [(Y,SY) + (Z,SZ)] )

Actually ?4; is a measure isomorphism (see 2;IV) in the following

sense. Ilet X =Y+ Z andlet

(X,S,p) = (Y,SY,MY) + (Z,Sz,uz)

be a decomposition of (X,S,n) according to Theorem 2.4. This
decomposition of (X,S,n) induces a decomposition of exp (X,S,p)

into exp (Y,SY,MY) and exp (Z,Sz,pz). Let
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exp (Y,SY, pY)- exp (Z,SZ, pz) denote the direct product of the
measure spaces exp (Y,SY,pY) and exp (Z,Sz,pz). Then we

have

Theorem 3. 14. Let X =Y+ Z beadecomposition of X into
a pair of:disjoint measurable sets and let

(X,S,p) = (Y,SY, pY) + (Z,Sz, pz) be the corresponding decompo-
sition of (X,S,p). Then -cE is a measure isomorphism of

exp (Y8, hy) exp (Z,5,, 1) into exp[(Y,Sy,ky)+(Z,5,, 1]

That is

exp (Y,SY,MY)-exp(Z,SZ,uZ)%“ exp [(Y,S,py) +(2,8,,p,)]

In the next chapter exp X is extended to Exp X so as to

include infinite symmetric sequences.
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CHAPTER 4. THE EXTENDED EXPONENTIAL OF (X,S)

In this chapter we adjoin the set <X“  of unordered infinite
sequences to exp X to obtain the extended exponential Exp X.
We also induce a ¢-algebra, S<Cw>, in <Xw> determined by
an arbitrary o-algebra S in X. In this way we endow <Xw>,
and hence also Exp X, with the structure of a measurable space.
Finally, the exponential of a measure is extended in a trivial way
from exp X to Exp X.

To define <Xw> ,  let the Cartesian product

szw{Xt : Xt =X, tew}

be the infinite direct product of X. Alternatively,

X = {(x,,x

1 2,"'):xieX, iew}

is the set of all ordered infinite sequences in f Now let G('0

be the group of permutations on w; that is, let Goo be the set of

all one-to-one functionson ® onto w. Each permutation ger
w
induces a corresponding function, also denoted by g, on X

through the equation

g(xlsxzs"') = (xg(l)’ xg(z):
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@ .
For each ordered sequence xe¢X , the corresponding unordered

infinite sequence <x> is the class of all "permutations of x".

That is,

Definition 4. 1.

<x> = {g(x) : ger} .

The symmetric wth power of X, denoted <Xw>, is

the set of all unordered infinite sequences in X.

Definition 4. 2.

<x®> = kx> xexX¥}.

Finally, the extended exponential of X, Exp X, is the

infinite disjoint union of symmetric powers.

Definition 4. 3.

ExpX = z <X7>
n<

The extension of Convention 3.2to Exp X  reads identically.

That is
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Convention 4. 4.

a. Let xeXn for n<ow. Then <x> denotes the

unordered sequence of length n corresponding to x.

b. Let ACZ X% . Then

n<w
<A> = {<x>:xeA} .

c. Let C ©bea family of subsets of }Xn . Then
n<

w
<C> = {<A> :AcC}.

Now let C;‘; be the family of all measurable cylinders in

X. That is,

Definition 4. 5.

c;; ={TT A tA ¢S and A =X for all but finitely many k}.

Then <C§> is the family of symmetrized cylinder sets. The

o -algebra, S<C§> (see 2;I), associated with a given ¢-algebra
S on X is thena ¢-algebra for <x%> . Combining Definitions

4.5 and 3.7 we are able to define a o-algebra for Exp X, given by
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Definition 4. 6,

Clearly exp ST ExpS. The set Exp X together with the
oc-algebra Exp S forms a measurable space (Exp X, Exp S),

given by

Definition 4. 7.

Exp (X,S) = (Exp X, Exp S).

The extension of the exponential measure <u> to Exp X
has physical ramifications. Suppose the model you have in mind is a
rectangle (measurable) X in R3 of finite volume (measure)
throughout which a variable, but countable, number of points are in
motion. If "points" correspond to some physical entity, such as gas

molecules, then the event X described by
"there is a countably infinity of points in X"

never occurs. That is, the probability p<Xw> equals zero. If we
are again thinking of a Poisson (homogeneous) distribution, we must

choose <p> on Exp X so that

<p> <X®> =0.
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In this case everything works out nicely; that is,

<p> [Exp X] = eH(X) ;

while
<p> <Xw> =0,

If however, W(X) = (that is, our rectangle has "infinite
volume" ), the event <x®> may certainly occur. We still choose
<p> <xX®> =0 even though the probability of the event <x“> may
be greater than zero. This means that the probability measure on

Exp (X,S) will not be absolutely continuous with respect to <u> .

Definition 4. 8. Let <p> Dbe the exponential measure of Defini-

tion 3.13, To extend <p> to Exp X, let
Aw
po(A) =0
w
for each AeS<CX> .

Obviously /}}w is a measure, albeit trivial, on S<C§> .

In particular ﬁw< x> = 0. Extending Definition 3. 13 we have

Definition 4. 9. Let A = ZAn be any set in Exp S (see
n<w

Definition 4. 6). We define the set function <p> on ExpS by
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<p> () = Z ).

n<w

It is worth noting that <p> (Exp X) = eH(X), and that

<p> <x%s = 0. The measure space (Exp X, Exp S, <p>), which
is denoted by Exp (X,S,p), is totally o-finite. This follows

trivially from the total o¢-finiteness of exp (X,S,n). Thus, we have

Definition 4. 10.

Exp(X,S,p) = (Exp X, Exp S, <p>)

Lemma 4.11. Let (X,S,p) be a totally o-finite measure space.

Then Exp (X,S,n) is totally o¢-finite.
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CHAPTER 5. THE EXPONENTIAL LAWS FOR SETS
In this chapter we will extend the exponential law

exp Y-exp Z exp (Y+Z)

¢
to Exp Y- -Exp Z. That is, we will construct a set isomorphism

¢ such that

Exp Y -Exp Z z Exp (Y+2)

and such that ¢ 1is actually an extension of ¢. This occurs as a
special case of a more general construction as follows: Let

{Xk: keI} be a disjoint family of sets indexed by a finite or count-
able set I, as in Chapter 2; II. We will construct a set isomor-

phism ¢ such that

-H—Exp in Exp (Z Xk)

kel kel

In the case I={1,2}, the restrictionof ¢ to exp X_ -exp X2

1
is ;

It is easy to describe ¢. Let

(ak: kel) = (al, az, cee)

be an ordered sequence in Tl- Exp X Let ake ak. Then ak

kel k
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is an ordered sequence in Xk. To construct ¢, we mustcom-

. k. -
bine the terms of these sequences a into one long sequence a,

k _
and then take ¢(a : kel) to be the unordered sequence <a> .
This can be done in many different ways; e. g., by any "diagonaliza-
tion process" applied to the family of sequences a .
To make these notions precise, we shall use the interpretation

of an ordered sequence (xl,x ',xn) of length n in a set

2
X as a function x from the set n ={0,1,---,n-1} into the set

X such that x(k) = xk+1. Similarly, an ordered sequence of length
w in X isamap x from w into X suchthat x(k) = X1
The case n =0, corresponding to the event that there are no points
in X, may be treated as a special case, as follows: We define

a sequence of length zero to be a functionon 0 =f into X.

There is only one such sequence, namely the empty function g.

We therefore write X0 = {#}. Since there is only one equivalence
relation on a set with one element, there is only one choice for the
unordered sequence of length zero, namely <> = {ﬂ} . This

provides a concrete interpretation for the empty sequence ey in-

troduced in Chapter 3, namely,

= > .
ey <fg

Notice that with this interpretation, the empty sequence e is inde-

pendent of the set X. However, we shall continue to attach
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subscripts X,Y,Z to e whenever we wish to think of e as

associated with the particular sets X,Y,Z.
It is also convenient for purposes of defining ¢ to work

with the notion of a generalized sequence in the sense of

Definition 5. 1. A generalized sequence in a set X is a function

whose range is in X and whose domain is a finite or countably in-

finite set. The length of a generalized sequence is the cardinality of

its domain. That is, if a 1is a generalized sequence with domain

‘A, then its length L is

L=w if A 1is infinite

L=n={0,1,---,n-1} if A has exactly n points

=
il
o
fi

g if A is empty.

Now the terms of a generalized sequence a can be arranged
into an ordered sequence as follows: Let A be the domain of 7,
L Dbe its length, and f be any set isomorphism of L into A.
Then a¢f is an ordered sequence of length 1L, whose terms are
just those of a . Although there are many such ordered sequences,

depending on the choice of f, the unordered sequence <aof>

is clearly independent of f. For if g 1is a second isomorphism
-1
of L into A, then w=g of isa permutationon L such

that @ of = (@ og)em, sothat <acf> =<ao.g> . We may therefore
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regard this unordered sequence as determined directly by @a. This

justifies

Definition 5. 2. ILet a be a generalized sequence in X with

domain A and length I, andlet f be any set isomorphism of
L. into A. Then <ao+f> will be called the unordered sequence

determined by a, and will be denoted by <a> !

<a> =<aef> .

Note that if @ is an ordinary ordered sequence, then the
unordered sequence <a>, as given by Definition 5.2, coincides

with those of Definitions 1. 1 and 4. 1.
For later application we need

Lemma 5. 3. Let a,b be two generalized sequences with do-

mains A,B respectively. Then <a> =<b> if and only if there

is a set isomorphism w: A—B such that a =be .

Proof: Suppose there is such a set isomorphism w. Then the
lengths (cardinalities) of A,B, which we shall denote by L, M,
respectively, are equal. Thus, if f 1is any isomorphism of L
into A, then weof is an isomorphism of M into B, and

acof =boe(mef). Therefore,
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<a> =<aof> = <bo(moef)> =<b> .

Conversely, suppose <a> =<b>. Let f£,g be isomorphisms

of L,M into A,B respectively. Then <aof> =<beog>, and
the sequences ac°f, bog are equivalent. That is, they have the
same domain, L = M, and there is a permutation p on L such
that a °ﬁf =(beg)op. Thus the function m=gop efﬁl is an iso-

morphism of A into B suchthat a=bom.
We are now ready to define ¢ precisely.

Definition 5.4. Let a = (ak: kel) = (al,az, *** ) be an ordered

sequence in TT Exp Xk; so that each ak is an unordered se-
kel

k k
quence in Xk' For each kel, let a ¢a be an ordered se-
k
quence representing «¢ , and let Ak be the domain (length) of
k . .
a . Let a be the generalized sequence with domain

A = {(k,j): kel, jeAk}

such that at(k,j) is the jth term of ak; i.e.,
. k,,
a(k,j) =a (j) .

Then ¢ is that function on TT Exp Xk such that
kel

d(a) = <a>
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To be sure that ¢ is properly defined we must show that if
k . k k .
the a are replaced by equivalent sequences b ¢a , and b is
k.
the corresponding generalized sequence such that b(k,j) = b (j),

then <b> =<a> .

Lemma 5. 5. ¢ is well-defined.
. k k .
Proof: Since the sequences b and a are equivalent, they
have the same domain Ak’ and there is a permutation m. on
: . k k .
- Ak ~“such that a =b oM - Thus the generalized sequences a
and b have the same domain A. Moreover the function

defined on A Dby

m(k,j) = (k7 ()

is a set isomorphism such that a =bo.w. Hence by Lemma 5. 3,

<a> =<b> .

Lemma 5.6. ¢ is one-to-one.

Proof: Let a = (ak: kel) and B = (Bk: kelI) be two sequences

k
such that d¢(a) = ¢(B). For each k let ake ak and bkeﬁ be
representative sequences with domains Ak’ Bk’ and let a,b be

k .k . .
the generalized sequences determined by the a , b with domains

A,B respectively. Then <a> =<b>. By Lemma 5.3 there is a

set isomorphism w: A— B suchthat a =bew. We will show that
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for each k there is an isomorphism ™ Ak — Bk such that

m(k,j) = (k,'n'k(j)) for all jeAk .

Hence a(k,j) = b(mk,j)) = b(‘rrk(j)) or alternatively,

ak(j) = bk(‘rrk(j) ), so that ak = bk o - Since ™ is a set iso-

morphism, the cardinalities Ak and Bk are equal, and L is

a permutation. Therefore <ak> =<bk>, so ak:Bk and ¢ is

one-to-one.

To show that ™ has the required form, choose any jeAk,

and write w(k,j) = (k, ). Then a(k,j)=0b(K,j), and since
a(E,j_)eXk we have b(k,]j) = bk(j_)eXk. Therefore k =k and we

may write w(k,j) = (k,'rrk(j)), where ™ is a function on Ak

into Bk. If o denotes the inverse of w, and U'k is the cor-

responding function on B such that o¢(k,j) = (k, Gk(j)), then it

k

is easy to check that ¢ is both a left and right inverse to

k k’

Hence -rrk is both one-to-one and onto, and the lemma follows.

Lemma 5.7. ¢ is onto.

Proof: Let @ be any element of Exp ( z X, ), and aea
kel

be any representative sequence. Let L be the length of a, and
for each kel let

L = 'a"l[x

5 = {jeLia(ex ).

e
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Since the Xk‘s .are disjoint, the Lk’s form a disjoint decompo-

sition of L. Let Ak be the cardinality of Lk (the number of

terms of  a in Xk)’ and let be any set isomorphism on

Sk
. k
Ak onto Lk' Define the ordered sequence a in X.k by
k k

k _ k
a =aoeg, and the unordered sequence a ¢Exp Xk by a =<a >.

Then the sequence a = (ak:ke I) belongs to TT Exp Xk. We will
' kel
show that @ = ¢(a) ; i.e., that <a> =<a>, where a is the

k .
generalized sequence determined by the a . Consider the function

g on A ={(k,j)kel, jeAk} into L, defined by
glk,j) = gk(j)

k
Then g is clearly a set isomorphism, and af(k,j) =a (j) =

_a_(gk(j))z—a-(g(k,j)). Hence a=aog or —a_:aog~1, and

<a> =<a> by Definition 5. 2.
We have now proved

Theorem 5.8. For each finite or countably infinite index set I,

¢ 1is a set isomorphism from TT Exp Xk onto Exp ( Z Xk)'
kel kel

That is
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Actually, for each I there is a ¢; so it would be more
correct to write ¢I. However, we shall employ the symbol cbn
in case I=1{1,2,---,n} only, for purposes of emphasis. In the

~

case I =w, we shall always write ¢ in accordance with

Convention 5. 9. If I=w we shall always write

————

The reader will easily verify that in the case n =2 we

have

Theorem 5.10. If n =2, the restrictionof ¢ to

exp Xl' exp XZ is E)—

This will enable us to use the results of Chapter 3 in proving

2

2

T Exp (X, ,8,) 'g Exp [ Z (XS] -
k=1 ot

Aside from the fact that ¢ is a set isomorphism, the two most

important results of this chapter are the next two lemmas.

n

Lemma 5. 11. Lef X = Z Xk be a disjoint decomposition. For
k=1
each keN, let ake Exp Xk Let m be an integer, 1 <m <n.
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Then
1 n 1 m m+1 n
¢n(a ’ s a ) - ¢Z(¢m(a ’ ’ a )! ¢n_m(a ’ ’ a ))
k k .
Proof: For each kel, let a e¢a , andlet Ak be the domain
of ak. Let a,b,c be the generalized sequences determined re-

spectively by (ak: 1 <k<n), (ak: 1<k<m) and (ak: m+1 <k < n).

The domains of these generalized sequences are
A ={k,j): 1 <k<n, jeAk}
B={k,j): 1<k<m, jeAk}

}

= ,': < < n- ,'A
C={k,j): 1<k<n-m, jeA ,

Notice that C 1is isomorphic to the relative complement of B in

A. That is

C=B-A = {k,j): m<k<njeA )

is isomorphic to C through the function h: C— C given by
h (k,j) = (k+m,j) .

Notice also that b 'is the restrictionof a to B, and that

a°h is equalto C.

To determine <b> = ¢m(al, SN am) and
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m+1
a

<c> =¢ ( ,---,an), let L, M be the lengths of B,C, and

n-m
let f,g be the isomorphisms of L,M into B,C, respectively.
Then <b>, <c> are represented by the sequences b ofe <b>

and coge<c>. Therefore ¢2(<b>, <c> ) 1is determined by

the generalized sequence d, with domain
D = {(i,j):i=1, jeL or 1i=2, jeM}

such that

1
[y

bof(j) if i

a(i, j) =

1
(A

cog(j) if i

We are to show that the generalized sequences a and d
determine the same unordered sequence <a> =<d>. For this

purpose consider the function w: D —A defined by

£(3) if i=1
m(i, j) =
h(g(j)) if i=2
Since f,g,h are set isomorphisms, so alsois m. Moreover

d=ase¢mwm, for
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i
—

a(f(j)) = DbEG) if i

a(n(i, j)) =

1
[\V]

a(h(g()) = clg3)) i i

Hence by Lemma 5.3 <a> =<d> .

A completely analogous proof establishes

Lemma 5. 12. Let X = z Xk be a disjoint decomposition of X.
kew

For each kew, let ake Exp Xk Then for each kew

Flaal )= aylalat,e?, e, T L)

The remainder of this chapter is devoted to some lemmas
about ¢ which are needed for later proofs. They can be easily
verified by the reader. Lemmas 5. 14 and 5. 15 examine the effect
of ¢2 and :ﬁ on certain distingu%shed subsets of ExpY- -Exp Z.
Similarly, Lemmas 5. 16 and 5. 17 examine the effect of ¢n and

¢ on certain distinguished subsets of their domains. We will need

Definition 5. 13. ILet A and B be sets. Then (A-B)w

consists of all sequences of the form

(XI’ yl’ Xzs st "')
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where xieA and yieB for all iew.

Lemma 5. 14. Let B,Al,---,ApC Y and let
C, A , A ,°**,A CZ. Then, using CAonvention 4.4, we have
ptl’  p+2 n ‘
w w = o)
<A " ""-A - > - < . =< . . >

(a) ¢2[ 1 . B Ap+1 An C] k_llAk {B-C)

k w - k _w
b <A 777 . > - < . >] =< . -C >
(b) ¢, [ ) Ap B Alo+l A -C ] il—l1Ai B -C

w
<A T AA .< .
(c) ¢2[ Al Ap B > Ap+1

>-.< >] = <A - >
(d) ¢,[<A, A A A >] A A A

Exp Y and Exp Z each contain the unordered empty se-
quences; that is, eye ExpY and e e Exp Z. It is easy to show

—_ >
(l) (e B <z> ) = <z

¢, (<y>, e )

i
N

<
\

b, (ey: e,) = ey = ey, 5

Continuing the idea of Lemma 5. 14, we therefore have
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Lemma 5. 15. lLet ACExpY, then

b,[a fe )] = A

b, ey} ley)] = foy)

[ Note that if A = {eY} , these formulas imply that {eX} = {eY} ,
in keeping with the fact that the empty sequence is independent of

the set. If we did not wish to indicate the sets with subscripts, we

would write ¢,(e,e) = e. ]
n
Now suppose X = ZXk where n > 2. Generalizing
k=1

Lemma 5. 15, we have

Lemma 5.16. For each keN, let e be the empty sequence in

X let a, ¢ Exp X

K’ and let AkC Exp X Then

k’ k°

a. ¢n (el,ez,---,en)zeX

m’em+l’...,en):d)m(al’az’-..a )

b. ¢n(a1,a2,---,a
for each, m where 1<m<n.
n

. ¢n[A1-A2-'"-Am-k:TJ_nH{ek}] =¢ [A A, """-A ]

Extending these results to the infinite case, we obtain
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Lemma 5.17, Let X = Z Xk. For each kew, let e be the

k
kew
. A .
empty sequence in Xk’ let akeExp Xk’ and let kC Exp Xk
Then
a. ¢(e1,e2,---) = ey
b. For each new
¢(alsa2:'":an:en+1:en+2:"'):¢n(als"':an)

c. Foreach new
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CHAPTER 6. THE EXPONENTIAL LAWS FOR
MEASURABLE SPACES

In the last chapter we showed that

n
ExpX
k=1

R

n
" Exp ( Z XJ)
k=1

for each new, and that

Exp (z Xk) .

kew

TT Eprk
kew

o1

In this chapter we show that ¢ and 'c]\; are actually measurability

isomorphisms (see 2;IV). Let I be any finite or countably infinite

index set, and let ﬂ_ Exp (Xk,Sk) denote the ordinary direct
kel

product of the measurable spaces Exp (Xk,Sk), kel (see 2; III)

where
(X,8) = Z(Xk’sk)'
kel
We shall prove thatif I= {1,2,:--:,n}, then

n

n
ElExp(xk,Sk) ? Exp Z (X, .S,)
- k=1
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for each new, and if I = w, then

TT Exp (X5, % Bxp () (X5,

kew keow

We begin with the case I={1,2}, proving that if

(X,S) = (Y,SY) + (Z,SZ), then

Exp(Y,SY)- Exp (Z,Sz)i Exp[(Y,SY) + (Z,SZ)] .

Let CX denote the family of all measurable rectangles in

Exp X. That is, using Convention 2.1,

Definition 6. 1. <X - Z < C?{ >
n<w
We first establish
X
Lemma 6. 2. Exp SX = S(CT)
Proof: By Definition 4. 6

Applying Theorem 2. 8, we have
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*

n n
Z s<c> - S(E<CX>)

n<w n<o

Therefore
Exp SX = S(CX) .
Y Z ,
Lemma 6. 3. S(C-C7) = Exp SY * Exp SZ
Proof: From Lemma 6. 2
S(CY) = Exp SY and S(CZ) = Exp SZ .

Thus

e T _ Y, . z
ExpSY % ExpSZ = S(C7) *S(C).

But by Theorem 2.9
z
sicYyssch=sccY c?).

For the statement of the next lemma, recall Definition 5. 13

for (A- B)w .

Lemma 6. 4. et ACY, BECZ, and Cc Cx™ for some

new. Then
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00
<C-(A+B)¥> =<C-(A-B)*> + E [<C-aF B®> +<c BN A% ]
k=0
where, in the case k=0, <C 'AO- BY> s interpreted to mean
<C-Bw>, and <CvBO'Aw> means <C-Aw> )
Proof: <C- (A+B)w> consists of all sequences of the form
a X, Xy, PX s W, W,
where (XI’XZ’ ,xn)eC and wieA or B for each iew.
But if wieA or B foreach i=1,2,---, then
Case one: wieA for only finitely many i and
w.e B for only infinitely many i
or
Case two: wieA for infinitely many i and
W€ B for only finitely many i
or
Casethree: w.eA for infinitely many i and

1

w,leB for infinitely many 1i.

Furthermore, these three possibilities are mutually exclusive

because A and B are disjoint.
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o0

Case one implies ace 2 <C -Ak- B®> for some kew.
k=0

Case two implies ace Z <C -Bk- A®>  for some kew.
k=0

Since, in case three, the sequence (w -) can be rear-

1’ WZ’ )
ranged so that its terms alternate between A and B, case

three implies
ae<C- (A-B)w>

This coupled with the mutual exclusiveness of the possibilities

implies
0
w k Jw k w
ae<C-(A-B) > + Z[<C-A -B > +<C-B A >]
k=0
Conversely
0
w k _w k w
<C-(A-B) > + [<C-A"-B >+ <C-*B A >]
k=0
consists of all sequences
y W >

b:<x1,x2,"',x, w
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where either

1. be <C-(A-B)w>, in which case WZieB for each 1i=1,2,...

and w,, ,¢eA foreach i=1,2,---,
2i-1

or

2. be <C'Ak-Bw> for some kew (in which case

Wi Woy oo ,wkeA and wieB for all i =k+1, k+2, ---),

or

3. be<C'Bk-Aw> for some kew (in which case

wl,wz,---,wkeB and wieA for all i= k+1, k+2, --- ).

In either of cases 1, 2, or 3
3
be <C-(A + B) >

Turning now to the proof that the set isomorphism ¢ from
Exp Y -Exp Z onto Exp X is also a measurability isomorphism,
we will show that ¢[ cY. CZ] C Exp Sy 2nd that
¢ 1[CX] C Exp SX * Exp SZ. Then we will invoke Theorem 2, 6

to obtain

s(67'1c®1) = ¢ hs1c¥))
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and

zZ zZ

s@lct-c?]) = ss[cY. c?]).

It will then followthat ¢[Exp SY - Exp SZ] = Exp SX.

Lemma 6.5. d)—l[CX] CS[CY-CZ) .

Proof: ¢'1[CX] = {BCExp Y-Exp Z:B = ¢'1(A) for some AeCX}.

AeCX implies that Ae<C§<> for some pew, or that Ae<C§>.

But, in view of Theorem 3. 11,

-1 Lo o,
¢ [expS] =exp SY>- exp SZCExp SY * Exp SZ .

Since <C§<> C exp SX for each pew, clearly

-1 P .
< > *
¢ [ CX ] T Exp SY Exp SZ.

Thus it suffices to prove

-1 w .
¢ [<CX>]CExp SY ¥ Exp SZ -

Let Ac <C§> (see Convention 4.4 and Definition 4.5). Then, for

some New



n

<TTA - TTA. > where A =A forall tew
k t t
k=1 tew

(S
u

Ak, KES, k=1,---,n,

n
<WAk- AY>
k=1

But S is the sum of the wo-algebras SY and SZ (see 2; II).

Therefore we can write

A=B+C and A _=B_+C_

k k
= 2 P
where BkeSY and CkeSZ for each k =1,2, ,n, and
BeSY, CeSZ. Then
n n
k=1 k=1
can be expressed as a finite union of sets of the form
D.:D.-"""-D = D
k
1 2 n k=1
where Dk = Bk or Dk = Ck. But then A 1is a finite union of

sets of the form
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and ¢-1(A) is a finite union of inverse images of such sets. Thus,

we can assume that

n n
A=<TAa A% =<TTAa -B+)°
k k
k=1 k=1

where AkGSY or AkeSZ for each k and A = B+ C where

BeSY and CeSZ. But using Lemma 6. 4
00
2 w = W & k w
<HA-(B+C)>=<||A "(B+C) > + [<||A B -C >
‘ k k k
k=1 k=1 k=0 k=1

L k w
+ < . . >
klzllAk C ‘B >]

Now reorder the Ak's (if necessary) so that

AI’A ",ApeS and A , ', A €S

2’ Y p+l n Z°

Then from Lemma 5. 14

0
w w w

< . . > = < . Lt . S < LA CT >
I_rlAk (B-C) o[<a -A, A B Ay . ]
and for each kew

& Kk .o k ©

< A - . > = < . > - <A A - CT > d
1T L BC (<A A B b1 . ] an

k=1
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n
k _w w k
< A -C - > = <A """ LA - > < sttt A > .
-ﬂ— k B ¢l 1 pB A'p+]l nC ]
k=1
Thus
-1 w w
A) = <A - . . > . R . >
¢ “(A) ) ApB <Ap+1 A -C
00
k w
+ <A, - ‘A B >-<A A -C7>
1 p+l n
k=0
00
+2<A""-A -B¥> .<A A Ck>
1 P pt+l n
k=0

where each set on the right belongs to CY-CZ. Since ¢_1(A)

is a countable union of members of CY-CZ s

o ayesicY . c?.
But, by Lemma 6.3

S(CY- CZ) = Exp SY %* Exp SZ .
Thus

-1, X -
¢ [CT] CExpSYﬂExpSZ .

Now we prove that ¢ maps each set A-B belonging to CY- CZ
/



onto a set in Exp S. That is,

Lemma 6. 6. ¢(CY~ CZ) - S(CX) .

Proof: Let A-Be(CY-CZ). Since

d{exp SY * exp SZ) = exp SX C Exp SX ,

it suffices to consider the following cases only.

64

Case one: Ae <C§> for some pew and Be <sz>,
or
Case two: Ace <C$> and Be <C;> for some pew,
or
w LW
Case three: Ae <CY> and Be <CZ> .

The proofs of cases one and two are analogous; so it suffices to

consider cases one and three.

Case one: Ae<C§> for some pew implies

_ < ] S
A A1 A2 Ap where AkeSY forneach
k=1,2,---,p. Be<Co> implies B=<]|] B -B"> for
Z k=1 k
some new where B_,B ,-ﬂ‘~B , BeS But then,
172 n Z ,

from Lemma 5.13
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n
o[<A -""-A >-<[[B -BY>]
1 P k
k=1
= <A A ‘A B B B>
- 1772 p 1 n
The expression on the right belongs to C since S is

X

the sum of the #-algebras S and SZ (i. e., SY S

X X

and SZCSX).

Thus

o(A - B)eC™ .

Case three: Ae<C®> and Be <C;> imply that for some
Y

m, New
2 —w
A:<TTAkA >
k=1
m .
B=<[[B -B">
k=1
h A =
where Ak, AeSY for k=1,2, ,n and
Bk’ BeSZ for k=1,2, , m

Then, again using Lemma 5. 13,

n ——
oA-B)=<]]A - [ B @& B> .
ol K k
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n m
Let C= [|A - [[ B, : Then &A B)=<C-(A-B)O> .
kel © k=1 K

Using Lemma 6.4

o0
H(A* B) :<C.(K+§)w> } z[<C'Ak~’éwf>+<C=Bk-Kw>],
A+ B —k zow L=k —w
But <C-(A+B) >, <C-A -B"'>, and <C-B -

X
i C s s Ty .
are all members of C gince SY SX and ?Z SX

Then ¢(A-B) is the difference between a member of CX

and a countable union of members of C° . Thus,

S(A - B)e S(CX)

so that

scY-c? sy .

The last two lemmas suffice to prove that ¢ 1is an iso-

morphism. That is,

Theorem 6.7. Let (X,S) = (Y,SY) + (Z’SZ)' Then

Exp (Y,SY)- Exp (Z,SZ) 5 Exp (Y + Z, bY + SZ)

Proof: By the previous two lemmas
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olc” - c?1 csc®),

and

@ '[c*] csic¥-c? .

But both ¢ and ¢-1 are functions. Therefore, using Theorem

2.6,

Z

a.  9lsc’c?)] = s{elcY c?lycsc)

and

b. o7 sc™) = s{e7 ™ ycscY-c?.

Combining (a) and (b)

That is, ¢ is a measurability isomorphism.

Now let X = X1 + X2 + . 4+ Xn be a decomposition of X

and let

(X,8) = (Xl’sl) + (XZ’SZ) + o 4 (Xn’sn)

be the corresponding decomposition of (X,S) according to Theorem

n
2.4. Let || Exp (X,,S,) denote the ordinary direct product of the
k=1
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measurable spaces Exp (Xk,Sk), k=1, 2, o0, n. To prove

n
n -~
]I_Fl Exp (X, 8)) & Exp [ } (X, 8]
- k=1

for each new, we use mathematical induction and a decomposition

n
of c]>n. For each Ace TT Exp Sk’ we must show that

k=1
n

n
¢(A)e Exp ( z Sk) ; and, for each BeExp ( Z Sk) , we must
k=1 k=1

n
show that cb_l(B)e TT Exp Sk .
k=1

n
Theorem 6.8. Let (X,S) = Z(X ,S). Then

n
n
E X ,8 )= E X ,S
]Lfl xp (X,.8,) & Xp[kz_l(k ]

Proof: We know the theorem is true for n=1 and n = 2.
For the inductive proof we assume, for some integer n > 2, that
the theorem holds for all { <n. From Lemma 5.11, if

n
(x,x ,"',xn)e Exp X, then
P2y
k=1



69

b Gkt = oo, ).

n
Bap [ ) (5]

Exp (Xk’sk) 4_’”1
n- k=2

Since forming the Cartesian product of sets is an associative opera-
tion, we shall treat (XI’XZ’ <o ,xn) and (Xl’ (XZ’ <. ,xn)) as if

they were identical. We conclude from Theorem 2.5 that

n
n
TT-Exp(X?,Sk) = Exp (X,S,)" Exp[ Zg(xifskn
k=1 1 =,

n

Now let v, = 4)2 applied to Exp Xl - Exp (z Xk). By Theorem
k=2

6.7 (or the induction hypothesis),

n n

Exp (Xl’sl) - Exp [ Z (Xk,Sk)] E_—Z Exp [ Z (Xk,Sk)]
k=2 k=1

° T and T,0 0T, is clearly a measurable

But c]>n =0, 1’
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n
n
isomorphism from TT Exp (Xk,Sk) into Exp [Z (Xk,Sk)] ,
k=1 k=1

since the composition of two measurable isomorphisms is a measur-
able isomorphism.

Now let X = Xl + X2 + --- be a countable decomposition of
X and

(X,8) = (Xl’sl) + (XZ’SZ) b

be the corresponding decomposition of the measurable space (X,S).
We wish to show that the function ES (see Convention 5.9) is an

isomorphism of the infinite product space

T Exp (X_,S ) = (1T Exp X_, [ Exp S_).

new nNew new

That is, we will prove that

Exp [ Z (Xn,Sn)]

new

T Exp (X_,S )

nNew

©-¢ R

Recall from Chapter 2;III that the infinite product o-algebra

T—]_Exp Sk is defined as the ¢-algebra S(C) where
kew

= Exp Xk for all but finitely many k}.

C :{TTAk.AkeExpSk and A,

kew
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By analogy with the proof of Theorem 6.7, we begin by showing that

?S maps sets in C into sets in Exp S = S(CX).

Lemma 6. 9. g[C] C Exp S.
Proof: Let AeC. Then for some new
n
A=TTA - 1T Exp X,
k=1 K>n

where AkeExp Sk for each k=1,2, ---,n. But by Lemma 5. 12,
Slps s ks Xyt ) = Al xg, X )y Bl ax oo )]
for each (xl,xz,--- ) e WExp Sn.
new

Thus

~ n Lad

o[al =olel TTA T ¢ TTExx]1] .

k=1 k>n

But by Theorem 5.8

AT Ewx] = Exp( ) X )eExp () S,).

k>n k>n k>n

By Theorem 6. 8
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n
o JlAk]eExp (S, +S,+ - +5_).

Then using Theorem 6.7

o[of TTA ] - F TT ExpX J]ecExps.
k=1

k>n

That is

$[C]l < Exps.

We again turn to the proof that $~1[Exp S]C W Exp S
kew

.
. X
Since, by Lemma 6.2, ExpS =S(C"), we need only prove, by

analogy with Theorem 6.7, that :5_ l[CX]C TT Exp S We will

kew k

need the fact (see 2; III) that

TT Exp S, = S(C) = S(H)

kew

where H = { -lTAkiAkeExp Sk} . We will also need a definition
kew

and some lemmas. Lemma 5. 12 states

~ ~

(1) ¢(a1:a2:"' ):¢2(¢N(a1:"':aN): ¢(aN+l:"' ))
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for each New andfor each (a,,a_, " )e TTEXp Xk Actually,
1’72
kew
the right-hand side of equation (1) is a composite function

¢, ° N

where ¢2 is ¢ applied to

Exp (X1+--- +XN)- Exp (XN+1+ cee)
and N is defined by,
Definition 6. 10. Let (a,,a., " )e TTExp Xk For each new
1’72
kew
define
O-N(al’az’... ):(¢N(a1’ ...’a‘N)’ ¢(a‘N+1’ tt ))

With this definition, we have

Lemma 6. 11, oy Maps W Exp Xn one-to-one onto
new

Exp(X1+--- + X)) Exp (X

N N+l T

Proof: Follows immediately from the fact that maps

N

N
-ﬂ— Exp X one-to-one onto Exp (X, + -+ + X ), and that ¢
k=1 k 1 N
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maps TT Exp X, one-to-one onto Exp (X

4o
Kk>n k N+1

The following lemma is also needed.

Lemma 6. 12. Let A be a subset of Exp (X1 + - + X ) and let

N

B Dbe a subset of Exp (ZXk). Then

k>n

- ~-1
oy [AB] = ¢ [A] - §7[B]

Proof: By the definition of TN

1

-1 ~-1 -1 \ ~ = _ .
ol o [A]-& 7 [BI] = (b o6 [A])- (337 [B]) = A" B

We are now ready to prove

Lemma 6. 13. 3 c®) © TTExp Sy
kew

Proof: Recall Definition 6. 1 for CX. If AeCX, then

n
a. Ae<CX> for some new, or

w
b. Ae<C®> .
Svx

We begin with
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Case (a) : Suppose Ac <C;1(> .

Then A:<A1'A2-"'-An> where AkeS for each k=1,2,- - ,n

b

But S = z Sk. Thus, each A can be uniquely expressed as

k
kew

where each B_. .€S.. Then
ki 1

k=1 k=l
jew
can be expressed as the union of all sets Cl- C2 R Cn where
C. =B, , for some iew. Butthe number of such sets is c,ountable.

k ki

Thus E;' 1(A) can be expressed as a countable union of sets of the

form

©-?
[y
Q
v

<C’...

where each Cke S, for some ike w. Then without loss of general-
i .
ity, we can assume

where each C_ ¢S, for some i ew. Let
k 1k



N = max {11,12, ---,1n}.
Then,
N
Cke Z Sk for each k=1, - ,n.
k=1
Thus,
N>.'<
(1) A=<C1-C2- -Cn>eExp(Z Sk).
k=1

Since $:¢2o0','N, we have '5_1"4)51.

Here

4,
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maps

Exp (X1 +-00 4 XN)-Exp (XN+1+ *++). Thus, using Lemma 5. 16,
¢£1 [A] =<C - c > {eN}] .
Therefore
37'A - (Tl\‘rl o ¢2'1[A] =0'1\_Il[<C1- e Ny

But by Lemmas 6. 12 and 5. 17,

-1 N -1
N [<C1 Cn>-{e

Since, using equation (1), < Cl- T Cn> €

}] :¢N<C1.'.

k

o0
'-Cn> . -I—I_ {ek} .
k=N+1
S it follows from



Theorem 6.8 (the isomorphism theorem for finite products) that

N
-1
. . > .
¢N < Cl CN ekl_llExp Sk

But, since {ek}e Exp Sk for each k> N, it follows from the

definition of an infinite product o¢-ring (see 2; III) that

Biit then

Thus

Therefore

Case (b) :

TT {ek} € -I_l— Exp Sk .
k>n

k>n

~.1;, Ny -
¢4y <C,°C, C_>-9 e }elll—wExpSk.

g_l[A] € -I_l— ExpSk.
kew

~ -1

® <C1;<>C’_’—Expsk for each new.

kew

w
< >
Ace CX

Then, for some new

77
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n
A = < Tl_AkwA@>
k=1
where KGS and A_,A_, " ,A €S.
1’772 n

Using the same argument employed in case (a), we can assume each

N

sk sk
Ake Z Sk for some New. Then, since S :Z Sk’ we have
k=1 N % ¢ k=1
A=B+D where Be Zsk and De Zsk.
k=1 k>N
Thus
. w
A=<A_-A_- ‘A - (B+D) >
1 2 n

Using Lemma 6. 4

CA L . W, _ . DY
<A1 5 An (B+D) > A1 An {B-D)
+Z[<A°""A-Bk-Dw>
1 n
kew
+<A-"'-A-Dk-Bw>].
1 , n

Using Lemmas 5. 14 and 6.4 on the right-hand side of this equation,

we have



-1 w R w
. . . = . . 9 o < >
4>2 [<A1 .An (B+D) >] <A1 An B> <D
k w
. ‘A <D >
+ Z[<A1 An B >:<D
kew
w k
+<A """ A LB >.<D >] .
1 n
But
k N*
w
(0) <A1 An'B > and <A1' An-B >eExp ( Z Sk),
k=1
whereas
*®
<D¥> and <D%> eExp(Z 8,) -
k>N
. ~-1_ -1 -1
Since ¢ =0y °¢2 ,
sl - o [<A A B> . <DY>)
00
+ Z cer[<A1 A_- B> <D®> ]
k=1
)
-1 w k
+Z¢N[<A1. ‘A +B”>.<D >] .
k=1

Using Lemma 6, 12,

79



-1 -1 . w_ -1 w
= < . > - <D >
() § (A = o <A A BY> -G
0
-1 k. ~- w
< . <A > < >
+ Z[q;N A, L B>-¢ <D
k=1
-1 A ~-1 k
<A’ . . > - <D >].
t oy 1 A B ¢ ]
Theorem 6. 8 tells us that
N . N
(2) TTExp (X,,8,) = Exp[ ) (X ,S.)].
k' 7k’ $ K’k
k=1 n
k=1
Thus (0) implies that ¢1_\11<A1-"'°An-Bw> and
-1 L k N
.. <A -"TTA B > ¢ TTExpS. From case (a) we have
N 1 n k=1 k
(3) E;‘ <Dk> € Tr Exp Si for each kew.
i>N

It remains to prove that

$-1<Dw> € -H— Exp Sk.
k>N

But

(4) <D®> = Exp D - exp D.

80
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Thus

$-1<Dw> = :E_I[Exp D] - $~1[exp D]J.

Again using case (a),

(5) 'J)’-l[exp D] ¢ [ Exp Sk.
k>N

For each k> N, let Dk':Xkr\ D. Since DkC Xk’ we have

1T Exp DkC WExp Xk Moreover, if a=(ak :k>N)e TI—Exp Xk"
k>N k>N k>N

it is clear that 'ci;(a) is an unordered sequence in D if and only if

each ak is alsoin D, and hence in Dk. That is

3 ' [Exp D] = TT Exp D,
k>N

i > t
But since DkeSk, Exp DkeExpSk for each k N, so tha

(6) 'J)’—I[Exp D] e TT Exp Sk.
k>N

Equations (4), (5), and (6) imply that

~-1

(7) b <D™ ¢ TTExpSk.
k>N

Equations (1), (2), (3) and (7) now imply that
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T Al ¢« TT Exp S,

kew

Thus

$-1[<Cw>] C I Exps, .

X k
kew

Cases (a) and (b) together imply

3 hc®) © TTExp s, -

kew

This leads us to,

Theorem 6. 14.

kew

TT Exp (X,,5,) % Exp [ Z (X,.8,) ]

kew

Proof: The proof is completely analogous to that of Theorem 6. 7.

Simply invoke Theorem 2. 6.
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CHAPTER 7. THE EXPONENTIAL LAWS FOR MEASURE SPACES

Let (X,S,n) be a measure space. Let this space be de-

composed (see 2;II) so that

(X,S,p) = Z (Xn,Sn,un)

nel

where I is a finite or countable index set. In the last chapter we
showed that the set isomorphism ¢ of Chapter 5 is a measurability

isomorphism of TT Exp (Xn,Sn) into Exp (X,S). In this chapter
nel

we will show that ¢ is also a measure isomorphism of
TTEXp (Xn,Sn, pn) into Exp (X,S,n) provided 1 is finite.
nel
When I is infinite, it is shown that 'JJ need not be a

measure isomorphism, for the infinite product measure
(TT<%>') may not exist. We do show, however, that $ is a
New
measure isomorphism in the trivial case p(X) = 0.

We begin with the case I= {1,2}. Let X =Y+Z and let
(X’S’“‘) = (Y:SY!“‘Y) + (Z’SZ’ HZ)

be the corresponding decomposition of (X,S,p). By Convention
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2.2, each of the component measure spaces is o¢-finite. Carry out
the exponential construction on each of the three measure spaces
obtaining Exp (X,S,p), Exp (Y,SY,HY) and Exp (Z,SZ,HZ).

Each of these is totally ¢-finite (see Lemma 4. 11). Let

Exp (Y,SY, pY) - Exp (Z,SZ, pz)

denote the product of the measure space Exp (Y,SY, pY) with the

measure space Exp (Z,SZ, pz). We know (see Theorem 6.7) that

Exp (Y,SY) - Exp (Z,SZ) i Exp [(Y,SY) + (Z,SZ)]

and (see Theorem 3. 14) that

(1) exp (Y,S;,p ) exp (Z’Sz’“z)g exp [(Y,S,,py)+(Z,S,,p,)].

Equation (1) tells us that if Aeexp SY* exp SZ’ then

Shy> <p,> (A) = <p> ($[A]),

But ¢ is ¢ restrictedto exp X, so that

py> <p > (A) =<p> (o[A]).

Thus, in order to prove

Exp (Y,Sy, py) Exp (Z,Sz,uz)jj Exp[(Y,Sy, ky)+(Z,8,,k,) ],



we must show <|..(,Y> <|J,Z> (B) = <p> (¢[ B]) for every
* - * ex
BeExp SY ExpSZ exp SY< exp SZ.
The following lemmas are needed in the proof.

*
. _ m_ n
Lemma 7. 1. ExpSY% ExpSZ Z S<CX> S<CY>

m,n<w

%

Proof: By Definition 4.6, Exp$, = Z S <cr;> and

m<w
%*

n . . m ’
Exp SZ = ZS<CZ >. Since S<CY > C Exp SY for each
n<w

m < w, and since S<CIZ1 > C Exp SZ for each n< w,

m s n o+
S<CY> S< cZ > C Exp SY <Expsz.

Thus,

%

m 3 n %
S<CY> >.S<CZ>CExpS aExpSZ.

Y

m,n<w

To prove the converse we need only show that for each Ae¢Exp SY
and Be Exp SZ,

L N )
m n
. % .
A Be% S<CY> 3 S<CZ>

m,h<w

85
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Thus, let AeExp SY and let BeExp SZ.

Then A:Z A where A eS<Cm> and
m m Y

m<w

B = ZB where B eS<Cn > .
n n Z

n<w

Then
A-B:(EA)-(ZB):ZA ‘B .
m n m n
m<w n<w m,n<w
But
* n
m
. < > %S < > .
zAm Bne ZS CY S CZ
m,n<w m,n<w
Hence

b
m n
. *
Exp S *ExpSZC ES<CY> s$<C, > .

Y
m,n<w
We can show similarly that

*
s = s xs<c?
Lemma 7.2. exp SY exp SZ Z S<CY > *S CZ> .

m,n<w
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Theorem 7.3. Let (X,S,p) = (Y,SY,pY) + (Z,Sz,pz).
Then

Exp (Y,Sy. 1) Exp (Z’SZ’”Z)’T; EXP[(Y,SY, hy)t(Z,S,, MZ)] :

Proof: Let Ae¢Exp SY* Exp SZ. To show that
<pY> '<pz> (A) =<p>([A]) it suffices, in view of Theorem 3. 14,

to let

% - *
Ac¢Exp SY Exp SZ exp SY exp SZ .

Using Lemmas 7.1 and 7. 2,

*
s - 2 - > % o
Exp SY ExpSZ expSY> expSZ z‘ S<C.Y> S<CZ

m<w

*
2> x5<Ce>
+ Z S <CY> S CZ .
n<w
Therefore A may be decomposed into a disjoint union of the form
A< YA+ ) B
m m

m<w n<w

w m n w
sk > ¥k >
where AmeS<CY> :<S<CZ > and I?:neS<CY S< CZ
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This being the case, we can, without loss of generality, assume that
w n
AeS<CY> % S<CZ> for some neuw,
or that

AeS<C;n> >n‘<S<C(£> for some m<w.

We prove only the first case, the proof of the second case being

completely analogous.
Since AeS<Cy> #S<C,>, wehave A C<Y® <z,

But

kg <p > (<Y®s - <z™>) =’QY‘*’(<Y‘*’>) -ﬁ;(<zn>) =0

since ﬁ$(<Yw>) = 0.

Thus <”Y> -<p,z> (A) = 0.

Now consider <p>[¢(A)]. Since A C<Y® -<z™>, it

follows that ¢(y, z)e <X“>  for each (v,z)eA. Thus
o[A] C <x>

so that
<p> (¢[A]) =0.

Therefore
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Sky> <> (A) = <p> (¢[A])

for each Ae¢Exp S, * Exp SZ.

Y

The previous theorem generalizes easily to the case

n
I-= {1:2:"‘,11}. Let X:ZXk and (see 2; II) let
k=1
n
(X:S: “‘) = Z (stsk: “‘k)
k=1

be the corresponding decomposition of (X,S,n). Carry out the

exponential construction on each of these measure spaces. By

Lemma 4.11 each of the measure spaces Exp (Xk,Sk, uk) is

totally o-finite. Let Tr Exp (Xk’sk’ uk) denote the product of
k=1

the n measure spaces Exp (Xk,Sk, pk), k=1,2,---,n. By

Theorem 6.8

n n
1T Exp (Xk,sk);—' Exp [ z (Xk,Sk)]
k=1 k=1

We now prove
n
Theorem 7.4. Let (X,S,n) = Z (Xk,Sk,pk). Then
' k=1
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n

n

kT:TlEXp (XS0 my) & Exp [ z (X,,S, 1))
k=1

Proof: The theorem is trivial in case n =1, since cbl is the
identity function on Exp X. It is true incase n =2 by Theorem
7.3. Proceeding by induction, suppose the theorem is true for

k =n-1, where n> 2. Then

n n

(1) 1T Exp (X, .85 1y) . Exp [ Z (X, .8, k)]
k=2 n-1
k=2
Let o (Xl’ s ,xn) = (xl, ¢n-1(X2’ < ,xn)) for each
n .
(x.,,x,,""",x e TT Exp X, . Then using Theorem 2. 5 and equation
1"72 n' k

(1), we have

n
n
(2) lelExp (Xk,Sk, pk) g, Exp (Xl,Sl,pl)-Exp[ Z (xk,sk, pk)]
- k=2

But

n n
(3) Exp(xl,sl,ul)-Exp[Z(xk,sk,uk) g—z-Exp[thk,sk,uk)]
k=2 k=1
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and y¢ =¢2°cr.

Thus equations (2) and (3), plusthetransitivity of measure isomor -

phisms, imply that
n
n
k=1 n ko1

~

We now turn to the question of whether ¢ is a measure

isomorphism in the case of a countably infinite decomposition,

(X,S,p) = Z (X, 580ty ) -
kew

We first show that ¢ 1is an isomorphism in the trivial case

p(X) = 0. In this case we have
<p> (Exp X) = eH(X) =1

so that <p> is a probability measure. Furthermore this measure
is concentrated at the single point e, since by Definitions 3. 12 and

4.9
<p> (<XO>) =<p> ({e}) =1

That is,
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<> (A) =

0 if edA

Similarly, for each kew, the measure <p.k> is a probability

measure on Exp X , concentrated at the single point e = ©x
k

for }S( C X so that p(Xk) = 0. It follows that the infinite product

measure space || Exp (Xk’sk’“k) is defined, and is a probability
kew

space (see 2; III). Moreover, the infinite product measure -H_<uk>
kew

is concentrated at the single point (el, ey ) since

( TT<w>) ey} {eyd )= TTap >(ed =1

kew kew
The fact that E{ is a measure isomorphism will now follow from

Lemma 7. 5. Let (X,S,pn) and (Y,T,v) be measure spaces

such that u is concentrated at a single point xe¢X and v is
concentrated at a single point yeY. Suppose there is a measurabil-
ity isomorphism ¢ from (X,S) to (Y,T), such that ¢(x) =y.

¥ p({x}) =v({y}), then ¢ is a measure isomorphism.

Proof: Let Aes. If xeA, then yed[A] and we have
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R(A) = p(fx}) = v(ly}) = v(¢[A]).

If x/A then y¢ ¢(A) and

() = v($[A]) = 0

Thus ¢ is a measure isomorphism.

Theorem 7. 6. Let (X,S,pn) = Z (Xk,Sk,p.k). ¥ p(X) =0, then

kew

T Exp (X, 08, 1y) 3’ Exp [ Z (X, 8,y )]
kew Kew

Proof: By Theorem 6. 14, :5 is a measurability isomorphism of

TTEXp (Xk,Sk) into Exp [ Z (Xk,Sk)] . By Lemma 5. 17

kew kew

g(el’eZ’.“ ) = e

The theorem now follows directly from Lemma 7.5 and the remarks

preceding it.

The last theorem is not particularly interesting. Is a more

general theorem possible? In general, if <p> (Exp Xn)aé 1 for

infinitely many n, the measure space TT Exp (Xn,Sn, p.n) may
hew
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not exist. To see this, let (X,S,p) be the real line with Lebesgue

measure p. Let X = ZXn, and choose the sequence {Xn} ‘so
New

)= 5. Then (TT<p >)(TT<x_>)
New New

that p(in):Z and ;L(in_1

is not defined. Thus, || Exp (Xn,Sn, pn) does not exist and
new

there is no isomorphism to discuss.
There may be many cases where 0< <p> (Exp Xn) £ 1

for infinitely many mnew, and yet _H.Exp (Xn,Sn, pn) is defined.
New :

If this is the case, must it follow that TT Exp (Xn, Sn’ pn) is iso-
New

morphic under E; to Exp [ Z (Xn,Sn, un)] ? This remains an
New

interesting open question.
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