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HILBERT MODULAR SURFACES AND UNIFORMIZING GROUPS

OF KLEIN INVARIANTS

1 INTRODUCTION

A modular curve is the quotient of the Poincare half-plane 1E1 by a congruence

subgroup of PSL2 (74 acting by fractional linear transformations. Similarly, a Hilbert

modular surface is the quotient of lH2 by a congruence subgroup of PSL2(0), with 0

the ring of integers of a real quadratic field K. These surfaces are particular examples of

Shimura varieties. In 1990, P. Cohen and J. Wolfart showed [3] that the algebraic curve

uniforrnized by any triangle Fu hsian group can be embedded into some Shimura variety.

On the other hand, numerous interesting results about the geometry of Hilbert

modular surfaces have been obtained by F. Hirzebruch. We will be considering in this

dissertation the particular case of the number field K -= Q(-15-) and its corresponding

compactified Hilbert modular surface of level 2, X2. In 1976, Hirzebruch proved [10]

that the smooth surface Y2 obtained by resolving the singularities of X2 is isomorphic to

a surface obtained by blowing-up 10 points of the cubic surface of 27 lines and is also

isomorphic to the Klein surface of the icosahedron.

Furthermore, it was shown by Hirzebruch that 15 of the 27 lines of the cubic surface

and the 10 exceptional divisors of a blowing-up of that surface, correspond in Y2 to the

lines resolving the cuspidal resolutions of X2 and to the image of the diagonal { = z2}

of 1E12 respectively. In 1997, T Schmidt identified an isomorphism between the remaining

12 lines of the cubic surface and the lift to Y2 of the curve arising from the Cohen-Wolfart

embedding of the non-arithmetic Hecke group of signature (2, 5, co) in PSL2(0K). There-
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fore one has now a modular interpretation of all 27 lines and a geometric interpretation

of the modular embedding of the groups of signature (2, 5, co). Moreover, in [16], C.

McMullen of Harvard University has recently shown the existence of algebraic curves on

Hilbert modular surfaces which are not uniformized by any subgroup of a triangle group.

We consider the Klein invariants A, B and C and their corresponding images in

the Klein surface of the icosahedron given by the curves A, I) and C. We show that

under Hirzebruch's isomorphism, the images of these curves in the Hibert modular surface

X of level I are curves uniformized by non-arithmetic, non-compact triangle groups of

signatures (3, 5, oo) and (5, co, oo). In passing, we give two interpretations of the A5-

orbits of length less than 60 of 1P2( 0), in terms of the elliptic singularities of the surface

X. The first interpretation uses the A5-covering of X by X2. The second one uses the

A5-covering of X by the Hilbert modular surface of level Vg.

We also study the Cohen-Wolfart embedding of a group of signature (5, 00, oo) and

give an attempt to interpret its pre-image in Y2 in terms of a curve of the Klein surface.

This last part is inconclusive at this point and the author intends to return to it in the

near future.

Finally, in order to illustrate the complexity that lies behind understanding the

modular embedding of curves in Hilbert modular surfaces, we give the example of the

modular curve F5 and we correct some small errors found in the literature.



2 BACKGROUND

2.1 Fuchsian Groups

We give here a brief overview of Fuchsian groups. For more details refer, for example,

to [12, 21].

2.1.1 The Group PS1,2(I11)

Consider the Poincare half-plane RI = {Z E (z) > 01 with the hyperbolic metric

and the group of matrices

3

{SL2 (R) := 7 =
(a b)

: a, b, c, d E IR, ad be = 1 .

c d
Denote by 12 the identity matrix in SL2(IR). The group PSL2(1R) = SL2(R)/{±12} acts

on Ill by fractional linear transformations. For 7 E SL2(IR) as above, denote again by 7

its image in PSL2(IR). The action is defined by:

az - b
: z E -y(z) :=

cz-Fd.

Under this action, PSL2(TR) can be seen as the group Isom+(lH) of orientation-preserving

isometies of III. An element -y of PSL2(IR) is said to be parabolic if its trace, tr(7), equals

2. It is called elliptic if tr(7) < 2 and hyperbolic if tr('y) > 2. Elliptic elements have a

unique fixed point in RI. Parabolic elements do not have fixed points in III but have one

in its Euclidean boundary, IR U fool; and hyperbolic elements have two fixed points in

IR, U fool.

The group PSL2(lR) is also a topological space, for the element 7 E PSL2(lR) can be

identified with the point (a, b, c, d) E lie.
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Definition 1. A Fuchsian group is a discrete subgroup of PSL2(1R), with respect to the

induced topology.

The following definitions can be given in a more general context but here we will

consider only the metric space IH and groups G of homeomorphisms of lH.

Definition 2. We say that a group G acts properly discontinuously on HI if the G-orbit

Gz of any point z of HI is locally finite. That is, if for any compact subset K of HI,

K n (gz) 0 for only finitely many g E G. Note that we consider a left action of G in HI.

Definition 3. Let G be a group of homeomorphisms acting properly discontinuously on

HI. A closed region R is defined to be a fundamental domain for G if

g(R)
gEG

n g(k) =0 Vg E G {Id},

where R represents the interior of R.

The family {g(R); g E G} is called a tessellation of HI

Theorem 2.1.1. Let G be a subgroup of PSL2(.11i). Then G is a Fuchsian group if and

only if G acts properly discontinuously on H.

Proof. See for example [12].

Any Fuchsian group has a connected and convex fundamental domain.

2.1.2 Triangle Fuchsian Groups

Definition 4. A triangle Fuchsian group of signature (mi, m2, m3), with mi E JWU fool,

is a Fuchsian group generated by three elements 71, 'Y2, 73 which may be elliptic or parabolic

and satisfy the fundamental relations:

1

717273 -= 12

-yri = 12, (i = 1,2,3),
(2.1)



as well as the inequality

1 1 1
1 .

mi m2 m3

The parabolic elements correspond to values in=- oo. We set = 0 for mi = 00.
711,

Geodesics in the hyperbolic plane E are semicircles and straight lines orthogonal to

the real axis IR, (see, say [121). Consider a hyperbolic triangle J with angles ,

where the vertices are the points of 1H or 1R U { oo} fixed by the and the edges are the

geodesics joining those points. The fundamental domain for a triangle Fuchsian group

of signature (mi, m2, m3) is R = .7* U where is the reflection of F about one of its

edges. The hyperbolic area of R is finite and equals

dxdy 1 1area(R) := = 2741 for z = x + iy E 1H .f M2 M3

The hyperbolic area depends only on the signature of the group. Two triangle groups of

the same signature are conjugate in PSLAIR).

Consider a triangle Fuchsian group A of signature (ml, m2, m3) and its fundamental

domain R. The action of A on 111 induces a natural projection

7r:1H A\IR,

where the points of A \lH are the A-orbits of 1E1. The quotient space AVE1 has finite

hyperbolic volume and is an oriented genus zero surface with marked points (A-orbits of

elliptic fixed points) and cusps (A-orbits of parabolic points). The volume is defined as

the area of R given by (2.2). If the group A has no parabolic elements, the space A \E is

compact and A is said to be cocompact.

5

(2.2)



2.1.3 Arithmetic Fuchsian groups

Defining arithmetic Fuchsian groups would require going over some material that is

not relevant in the present work. For an accurate definition of arithmeticity, the reader

may refer to [12, 20, 21]. Arithmetic groups are characterized by the following theorem

proven, for example, in [15].

Theorem 2.1.2. Let A be a Pluchsian group with parabolic elements. Then A is arithmetic

if and only if it is commensurable with PS L2(4 .

Another characterization of arithmetic groups is given in [20] in terms of the field generated

by the trace and the square of the trace of all the elements of A.

Nevertheless, one can interpret the notion of arithmeticity by saying that if a Fuch-

sian group A is arithmetic then the quotient space AVII parameterizes isomorphism classes

of abelian varieties.

For example, the group PSL2(ZZ) = SL2(7Z)/{±12} given by matrices with coefficients

in W is a subgroup of PSL2(IR) acting properly discontinuously on lH. The PSL2(&)-

orbit points of PSL2(7Z)VH are in one-to-one correspondence with isomorphism classes

of elliptic curves. The group PSL2(7Z), called the modular group, is in fact a triangle

Fuchsian group of signature (2, 3, oo), which is arithmetic. The quotient PSL2(7L)91-1 is

an example of a modular curve. The curves considered in the main result of this text have

the interesting property of being uniformized by non-arithmetic triangle groups.

The arithmeticity of a triangle Fuchsian group depends only on its signature, there-

fore we often say that the signature (m1, m2, m3) is arithmetic (or non-arithmetic). In

[21], Takeuchi shows and gives an explicit list that there are only finitely many

arithmetic triangle signatures.

6



2.2 Hilbert Modular Surfaces

Hilbert modular surfaces are a generalization of modular curves in dimension 2.

Here we are interested on the action of a group on two copies of the Poincare half-plane,

x M. The following is essentially based on [9].

Consider the quadratic number field K = Q(%/g). Its ring of integers 0 is the rank

two 71-module generated by the unit 60 = 1+2.4.. The Hilbert modular group for the field

K is the subgroup of SL2(IR,) defined by

( a b
SL2(0) = :a,b,c,de0 .

ed
The group P := PSL2(0) = SL2(0)/{±12} acts properly discontinuously on 1112. For any

( a b
= E F ,

the action is defined by fractional linear transformations

z2) E 1112 1_4 (7(1)zi ,y(2)z2)

( b(i)where 7(0 =I and for any X E K,x x(i) is the i-th Galois embedding of
c(i) di)

K in R. In particular, for i 1 we have the identity and ,y(1) ------ 7.

The Hilbert modular surface of K is the quotient r\1H2. It is a non-compact surface

with finite volume, where the volume is given by the element

( 1 )2 dXidY1 dX2dY2
2 2

rW = MT Zj = Xj ± iyi . (2.3)
27r Y1 Y2

The cusps of F are defined as the orbits of P in 1131(K) = K U fool. The number of

cusps equals the class number of the field K. For K .(14(,/), that number equals 1. We

7
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represent this single cusp by the point oo of 1P1 (K). The surface \1112 is compactified

by adding the cusp co. Let

X := rva2 = r\1H2 u fool

be its compactification. It is an algebraic surface with singularities at oo and at the elliptic

fixed points of F. These consist of two points of order 2, two points of order 3 and two

points of order 5. Resolving the cusp singularity yields a surface that we denote by Y and

we let Z be the smooth surface obtained by resolving the remaining elliptic singularities.

2.3 The Ideal 20

The principal congruence subgroup of level 2 of r is defined as

( a b
F2 ----- :a-,-_-_-d=±1m0d20;b7=-_c=-0mod20 .

The group r2 is a normal subgroup of F. The quotient r/f2 is isomorphic to PSL2(IF4)

because 0/20 ce IF. On the other hand, PSL2(1P4) is isomorphic to the alternating

group A5. This isomorphism is induced by the action of PSL2(IF4) on the five points of

IF1(1F4) (see for example 121). Therefore we have

rir2 A5.

2.3.1 The Cusps of F2

The cusps of the surface F2 are the various orbits of 1P1(K) under the action of F2.

There are 5 such orbits. Indeed, consider two points gh and of 1P1 (K) with a, 0, -y, 6 E 0

and gcd(a,0) gcd('y, 8) = 1. We will also denote these points by = [a : 0], with the

condition [a : /3] = [ka : ki3] for any k E K*. With this notation we have oo = [1 : 0]. The
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points [a : [3] and [-y : 6] are conjugate under the action of F2 if and only if there exists an

element
( a b

of F2 such that
c d

[aa + bfi : ca + 431 [-y : 6]

in Ti(K), that is

laa
+ bi3 /cry

ca (1,3 k5

for some k E K*. In fact, we can suppose k E 0 with k 0. We know that

Ja d 1 mod20

b--a-ca-0 mod 20

and a, E 0, so

{aa-..

,-- a mod 20

bt3 a- 0 mod 20

ca a- 0 mod 20

43,=_ d mod 20;

thus we have

a fry mod 20, kb mod 20

and 0/20 IF4. Therefore, in ORO we have

[a : [k-y: k5] [-y : .

It follows that the points [a : f3] and [7 : 5] belong to the same orbit by the action of F2

in 1P1 (K) if and only if they define the same point on 1P1 (]F4. Since lPi(F4) consists of

5 points, there are 5 orbits for the action of F2.



2.3.2 The Surface X2

The group P2 acts freely on 1112 with 5 cusps. Indeed, the elliptic elements of r

are given in [7] and one can check that none of them are in 1'2. The surface r2\1-H2 is a

non-compact surface with finite volume that we compactify by adding five points. The

surface

X2 := r2\11-12

is an algebraic surface with singularities only at the 5 cusps. We denote by Y2 the surface

obtained by resolving these singularities.

The isomorphism r/r2 PsL2(1F4) and the action of r on 1E12 induce an action of

A5 on X2 and an A5-cover

X2

X
The group A5 acts also on Y2 and in particular on the resolution of the cusp singularities.

2.4 The Cusp Resolution

In order to fix notation, we will recall without giving details, some of the steps of

the resolution of cuspidal singularities as in [9].

Let K be a real quadratic number field with ring of integers 0 and M be a 7Z-module

of K of rank 2 (usually we will take M = 0). An element x E K is said to be totally

positive if x(1) > 0 and x(2) > 0, where x(i), i = 1,2 are the images of x under the two

Galois embeddings of K into IR. Let U be the group of totally positive units e of K

such that eM M. The elements of U are algebraic integers. Let V be a finite index

subgroup of U. Consider also the subgroup of GL(K) given by

10



G(M,V)\1112 = (G(M,V)\N-12) U loo}.

We construct the local ring of G(M,V)VE-I2 by taking continuous functions on G(M,V)\11-12

such that their restriction to a neighborhood of fool are holomorphic. We wish to resolve

the singularity of G(M, V)\IE12 at the point {04

The module M acts on ()2 by translations (zi, z2) (zi + A(1), z2 + A(2)), where A E M.

Consider the subgroup M+, of totally positive elements of M. For k > 0, k E 2Z, there

are bases (Ak_bAk) of M given by successive boundary points of the convex hull of M+

in Et+, in such a way that An > 41) and 4221 <A2). For each k there are integers

r > 0 and bk > 2 and an e E V such that

1

Ak-i A- Ak+1 =--- bkAk,

Ak±r = EAk .

One may define a group isomorphism for k > 0

: MVU2 (C* x

z2) mod M (tik, Vk)

as follows.

Consider the map

11

a b
G(M,V) =1( ;aEVbEM

0 1

The group G(M,V) acts on 1E12 and the quotient G(M, V)\IH2 is a complex manifold that

we compactify by adding a point oo and denote

Alvo 4 (C/7Z x (C/7Z
(2.6)

(zi , Z2) MOd M (yi, y2) mod ZZ2 ,

(2.4)

(2.5)
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such that zi = A1 y1 4)y2 mod M(i). This is well defined because M is a 7L-module

of rank 2 and M acts on (C2 as follows. For all x aAk_i + bAk EM; a, b E Z4

(Z1, Z2) + x(1) , z2 ± x(2)) ,

with

+ x(1) = zi + aA(:)1 + b41)

(Y1 + a)41)1 ± (y2 + 041)

Z2 + x(2) Z2 ± aA(2)1 bA(2)k k

= (Yi + a)42)1 ± (y2 + b)42)

Finally, we define the map

(C/7Z x (C/7Z (C* x (E*

(Y1, y2) mod 7z2 (uk,vk) (e2i1ry1 e2ilry2)

Therefore q5 is defined by

1

2i7rzi = 24(k1)1 log uk + 41) log vk mod (2i7rM(1))

2iirz2 = 42)1 log uk + 42) log vk mod (2i7M(2)) .

Take two copies of (C* x (C* and the map:

: (C* x (C* ---÷ (B* x (C*

(uk, vk) (74+1, Vk+1)

(2.7)

(2.8)



defined by

1 bVkkUk+1 =---- Uk

Vk+1 -= Uk .

(2.9)

The maps 0 and 0 are compatible under the change of basis of (Ak_i, Ak) into (Ak, Ak+1.),

using (2.4). We can extend 0 to {(uk, vk) c c2; uk 0} and if we glue different copies

of (C2 for k > 0 by this extension 1,--b (provided it is well defined), we obtain a complex

manifold Y which contains a family of rational curves Sk given by vk = 0 on the k-th

coordinate system and by uk+1 = 0 on the (k + 1)-st coordinate system. The curves Sk

and 8k+1 intersect transversally in one point; the curves Sk and Sk+i with Ill > 1 intersect

nowhere.

The coordinate uk+i given by (2.9) can be viewed as a meromorphic function on Y

(see [9], Section 2.2). Suppose r > 2. The divisor of uk±i is a finite linear combination

of the Sk. On the curve Sk_i, it has the multiplicity bk, on Sk the multiplicity 1 and on

Sk+1 the multiplicity 0. So this divisor is linearly equivalent to

bkSk-1 Sk ± 04+1 =(0).

The intersection of this divisor with Sk is then zero and we obtain

bk Sk Sk = 0

Therefore, the intersection number of Sk is bk (and is (2 bk) if r = 1; see [9], Section

2.4).

We have an exact sequence of groups

1 > M G(M,V) --> v > 1.

The group G(M, V) acts on 1E12 and M also acts on 1E12 by translations, so V acts on

mvEr.

13



Consider the surface:

where 0 is the embedding

17+ = 0(M\II-12) U (Uk>oSk)

0: M\IEI2 Y

induced by (2.5).

The subgroup V acts on Y and its action is given by a generator e E V as in (2.4) in such

a way that en sends a point of Y with coordinates (uk,vk) on the k-th coordinate system,

to the point with the same coordinates on the (k + nr)-th coordinate system.

This action is compatible under 0 to the action of V on M\RV. It leaves invariant the

surface Y+ and the action of V on Y+ is free and properly discontinuous (see [221, lemma

3.1).

We consider now the surface Y(M,V) Y+/V which contains a cycle of rational curves

Sk; k E 7L/r, with intersection numbers as given above.

The surface Y (M,V) is the resolution at the point fool of a normal complex surface

Ak-iWkAk

14

isomorphic to G(M, V)\IR2, (see [22]).

The choice of the bases of M is realized using continued fractions in the following

way. Suppose that the module M is generated by

A-1 --= wo, Au = 1 ,

with coo E M satisfying 0 < <1 < coo. By setting for all k > 0,



the equation (2.4) becomes equivalent to

bk
1

Wk+1

and we have a continued fraction

1

1

b2

denoted by ((bo, , br)).

If we take other values for A_1 and Ao, the module M generated by such a basis

(A_1, AO is strictly equivalent to the module Ao-1M generated by (wo, 1), with wo =

Ai/A0 satisfying 0 < w 1 < 41) wo. We know that there exists a one-to-

one correspondence between strict equivalence classes of complete 7Z-modules in K and

isomorphism classes of cyclic singularities with a primitive admissible cycle ((b0, , br));

see [9], Section 2.5. So we can always consider the module M as generated by (wo, 1) as

above.

2.4.1 The Cusp Resolution of X

Consider again the number field K = Q(A and its associated Hilbert modular

group SL2(0). Denote by U the subgroup of units of 0. A fundamental unit is so =

1(1 + A and the subgroup of totally positive units of 0 is

U+ = u2 = ler; n E

As we said in Section 2.2, the compact surface X r\E2 u fool has a cusp at the

point oo. The isotropy subgroup of this cusp is of type G(M, V), with M 0 and

V = U+ U2.

15
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3

1
3

we obtain, for all k > 0, Wk = wo, and bk = bo = 3.

On the other hand we have, using (2.4), Section 2.4,

A_1 = wo

=441
= 3 coo = 1(3 Ai6)Ao,

with 1(3 E V. Thus we have e = 1(3 -Vg) and r = 1. Therefore the

resolution of the cusp oo of X corresponds to a configuration of a unique curve So of

self-intersection number So So = 2 bo = 1.

16

In the notation of Section 2.4, we can take wo = s6 = (3 + 4 which satisfies

(2) (1)0 < <1 < = wo and considering the continued fraction

1 1

= + Vg) = 3 3

Figure 2.1: Configuration on Y. Resolution of the cusp.

2.4.2 TheThe Cusp Resolution of X2

The compact surface X2 contains 5 cusps with respect to the congruence subgroup

F2 which we resolve by a surface Y2. These cusps are conjugated by some element of

SL2 (lR), thus it is enough to study the isotropy subgroup of one of these cusps, say oo .

Denote this subgroup by r2; we have

1

1



r200 ( 6 gAi

But we can also write (see [10])

}:

E E U, e 1 mod 20, A E 20

( Et A )
: p E 37Z, A E 20

0 Eo-P

The image of P200 in PS1,2(K) is in fact of type G(2M,V3) G(20, (U2)3) which is

2 0
conjugated by

)
to G(0, (u2)3).

o 1

We obtain then for each cusp of X2 a configuration of 3 curves which intersect transversally

and whose self-intersection number is (-3). Therefore the surface Y2 contains five such

configurations.

Figure 2.2: Resolution of one cusp on Y2

2.4.3 The Action of A5 at the Cusp Resolutions

In order to determine the intersection of some curves in Y and their pull-back

in Y2 with the resolution of the cusp singularities of X and X2 respectively, we need

to understand the action of r00/r200 on the resolution of the cusp oo. The following

summarizes the discussion given in [10].

The isotropy group of the cusp oo for the action of A5 on X2 is isomorphic to the

alternating group A4. This subgroup contains a Klein group V. When acting on the

resolution of co, a given involution 7- E V leaves invariant each line of the triangle, fixing

17



18

one of them pointwise and fixing also the opposite vertex. We blow-up that vertex as in

Figure 2.3.

1

1

4

4

4

3

4

Figure 2.3: The A5-action on the cusps (a)

The vertical lines are fixed by T while the horizontal lines are invariant but not pointwise

fixed. The other two involutions of V fix the horizontal lines and leave the vertical lines

invariant. When we factor out by the action of T and then by the action of V/{1,7-}, we

obtain the configuration shown in Figure 2.4.

3

B.U.

2

2

2

1

V/{1,-r}6

4

4

Figure 2.4: The A5- action on the cusps (b)

Blowing down the new exceptional curve, we get the configuration 2.5.

Blowing down
the (-1)-curve

Figure 2.5: The A5- action on the cusps (c)

4

1

4

3

3
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Finally, the group A4/V 7Z3 acts by permuting the lines of this triangular configuration,

so the quotient by this action yields the same configuration as the resolution of oo on Y

(see Figure 2.6).

Figure 2.6: The A5- action on the cusps (d)

This is true for each cusp. The five resolutions on Y2 are identical and the elements of order

5 of A5 act by permuting these five configurations, so the image in Y is the resolution

of oo of X. Following the steps above, one can follow from Y2 to Y or vice versa, the

behavior of a given curve at the neighborhood of the cusps.

For instance, the image of the diagonal z2 of lH2 in X is the modular curve F1 (X),

which is irreducible. Its image F1 (Y) in Y intersects the cusp resolution of Figure 2.1

transversally at a single point, distinct from the self-intersection point P. Tracing this

behavior up to Y2 and using the fact that the stabilizer in A5 of F1 (Y) is isomorphic to the

symmetric group S3, Hirzebruch determines in [10] the intersection of the 10 components

of the pull-back of F1 (Y) to Y2 with the resolutions of the five cusps. That is, each

component intersects transversally 3 of the five resolutions at a single point and avoids

the other two, in such a way that each of the 15 lines of the resolutions intersects exactly

two different components of F1(172)-

2.5 The Clebsch Surface and the Klein Icosahedral Surface

The icosahedron of 1R3 is a regular polyhedron formed by 20 triangles, with 12

vertices and 30 edges. Consider an icosahedron I whose vertices lie on the unit sphere S2.



Under the antipodal identification

s2/{±1} IR) c IP2(c),

the 12 vertices form 6 projective points. The 20 mid-points of the faces form 10 points

in IP2(C). Finally, two opposite edges of I can be joined by a circle in S2, that is by a

projective line. We have therefore 16 points and 15 lines in lP2( (C). Consider now the

surface K obtained by blowing-up the 16 points in IP2((L).

:= IP2(C) with 16 blown-up points.

We call this surface the Klein icosahedral surface. The proper transforms on IC of the 15

lines form five disjoint sets of triangles, giving a configuration identical to the resolution

of the cusp singularities in Y2 (see Figure 2.2). The exceptional curves corresponding to

the 10 mid-points intersect the five triangles of IC in the same way as the 10 components

of F1(1'2) intersect the cuspidal resolutions in 1'2.

Consider now the Clebsch diagonal surface. This is the cubic surface defined by:

4

S = {[x0 : X1 : X2 : X3 : X4] E 1P4( Pi Xi = 0, >2, 4 =0 .

i=0 t=0

The hyperplane xi = 0 cuts S in 3 lines intersecting pairwise in a point. These sections

thus define five sets of 3 lines. Moreover, given three distinct sets, there are three lines,

one from each set that coincide at a single point. There are 10 such points of intersection

(see for example [101). The surface

= S with 10 blown-up points

is obtained by blowing-up these 10 points of intersection. Following Hirzebruch, we also

call this surface the Clebsch diagonal surface. Again, the configuration obtained in g with

the 15 lines and the 10 exceptional divisors is identical to the triangular configuration of

20
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Y2. Considering a particular invariant of the three surfaces k, g and Y2, namely the Euler

number, Hirzebruch shows in [10] the following result:

Theorem 2.5.1 (Hirzebruch). The Hilbert modular surface Y2, the Klein icosahedral

surface k and the Clebsch diagonal surface g are isomorphic.

This is actually a corollary of a stronger result proven in [10]. The surface S is also

known as the cubic of 27 lines. We have identified 15 of them. The remaining 12 lines

correspond under g IC to the exceptional divisors of the fundamental points and the

proper transform of the six conics passing through 5 fundamental points.

2.6 The Klein A5 Invariants of IP2(C)

The set of invariants for the action of A5 on IP2( (V) is generated by a conic A, a

sextic B, a curve C of degree 10 and a curve D of degree 15, with a relation among A,B,C

and D2:

D2 = 1728/33 + C3 + 720AB3C 80A2BC2 + 64A3(5B2 AC)2

We call these curves the Klein invariants. In the following we mostly use Klein's [13]

notation. Consider 6 points ei on IP2( (V) so that no three of them are collinear. We can

think of these points as the ones coming from the vertices of the icosahedron in Section

2.5. We call these points the fundamental points.

For each fundamental point e, there is a conic Gi avoiding ei and containing the other

5 points. Consider the polar line to ei with respect to G. This line intersects Gi in 2

points, see Figure 2.7 that we call the polars to ei with respect to G. We have in total

12 such points.

The conic A passes through the 12 polars and avoids the 6 fundamental points. In fact,

A and Gi (Vi = 1, , 6), share tangents at the polars to e. Therefore, the 12 polars with



polar point

polar point

C6

e4

Figure 2.7: Polars to fundamental points

respect to Gi are also polars to the fundamental points with respect to A.

There are 15 lines in the projective plane joining 2 fundamental points each. The

union of these lines gives a curve D of degree 15. Any three of these lines passing through

3 distinct pairs of fundamental points form a triangle. So we have 5 triangles. We denote

by Lij, j = 1, , 6, the line joining ei and ej, and by 68, s = 0, , 4, the five triangles.

Thus if we label by s E {0,1, 2, 3, 4} the five disjoint partitions {(i, j)(k, 1)(m, n)} of 2

elements of {1, 2, 3, 4, 5, 6}, we have:

(58 = LijLkiLrnn, 5 = 0, ,4; and D (5061.82a3(54.

Three lines L3 from 3 different triangles intersect at a point called a Bria,nchon point.

There are 10 such points and we denote them by wi, i = 1, , 10. For each Brianchon

point consider its 2 polars with respect to A, these are the intersection points of A and

the polar line to to with respect to A. There are 20 such points.

The conic A therefore goes through the 20 polars to the Brianchon points and

through the 12 polars to the fundamental points.

The sextic B goes through the 6 fundamental points having nodes at each of them, and

these are the only singularities of B. This curve passes also by the 12 polar points where

it intersects A transversally.

22
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The curve C of degree 10 intersects B at the fundamental points. It has double cusps at

these points and shares its tangents with B. The intersection multiplicity with B at each

fundamental point equals 10. The curve C intersects A transversally in the 20 polars to

the Brianchon points.

2.7 The Cohen-Wolfart Embedding

In [31, P. Cohen and J. Wolfart show that the quotient space A \RI of a Fuchsian

triangle group (arithmetic or not) has a modular embedding in a Shimura variety V. The

arithmetic case is trivial since we can take V = AVII itself. The more interesting case is

for non-arithmetic triangle groups. In the following we consider a specific type of triangle

groups and explain their Cohen-Wolfart embedding in the Hilbert modular surface X.

Consider a Fuchsian triangle group A of signature (p, q, t) generated by elements

-yp,yQ,-yT, satisfying (2.1) and so that A is contained in the Hilbert modular group r

PSL2(0) for the field Q(-16). The Cohen-Wolfart embedding of A is defined as follows:

There is an injective, non-singular, complex analytic embedding

F =(fi,f2) : E 1H2

(2.10)
Z (h(z), f2(z))

compatible with the inclusion t: A r so that

F(-yz) = t(7)F(z), z E IH, E A. (2.11)

Moreover, F can be extended continuously to the cusps of A, so that their images are

again cusps of F. Finally, F induces on A \IR a(-rational morphism:



Under an appropriate normalization, the compatibility condition (2.11) is

(fi('yz), f2(rz) = 7(1)11(z), 7(2).f2(z) )

In fact, ry(1) = and 11 is the identity map (see [3] for details). The map f2 is defined in

the following way:

Let F be the hyperbolic triangle of vertices P, Q and T and angles (Rip, rig, ir/t). A

fundamental domain for the action of A is R. = Fu . as defined in Section (2.1.2). Consider

the image A(2) of A under the non-trivial Galois automorphism of K. The corresponding

hyperbolic triangle .7-(2) is given by the vertices P(2) , Q(2), TM which are the fixed points

of 1,1;), y. The map 12 is such that it maps the interior of F to the interior of

The region R gives a tessellation of IH. By the Schwartz reflection principle, the

map 12 can be continued across the sides of the triangle and extended to the images of

P,Q and T under A, to define an analytic function on III. This function also satisfies

f2(7z) = -y(2) f2 (z).

As examples of their construction, Cohen and Wolfart give in [3] the modular em-

bedding of groups of signature (2, 5, oo) and (5, 00, 00) in the Hilbert modular surface X.

The embedding of the Hecke group of signature (2, 5, oo) in X was studied by T. Schmidt

who shows in [18] that the pull-back of the embedding to Y2 is given by the exceptional

divisors Ei obtained by blowing-up the fundamental points ei in IP2( C).

2.8 Some Notation

The diagram in Figure 2.8 summarizes the correspondence between the surfaces

mentioned above.

Let C be a curve in IP2( C). We denote by C the proper transform of C in /C. By C(S)

we mean the image of the curve C.- in the surface S. The latter being any of the Hilbert

modular surfaces X, X2, Y, Y2 or Z.
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1P4((r)
4B.U. 10 points g

I .-+ JP() B.U. 16 points
1C

y2 resol. cusps> x2 T2 \1H2 ir2

1 A5
1 A5..-r/1"2

Z
resol. elliptic resol. cusp> x r\E2

+ Y

Figure 2.8: Correspondence between surfaces

For instance, the proper transform on /C of the curve B c 1P2( C) is denoted by B and

B(Y2) is its image under the isomorphism Ka-. Y2. The curve B(Y) is the A5-orbit of

B(Y2) as seen in Y and B(X) is its image under the map that resolves the cusp singularity

of the surface X.

Throughout this text we will refer to the involution T. This is the automorphism in 11-12

defined as:

T :

25

(2.12)

(zi,z2) (z2, z1)

This involution induces involutions on X and on X2, see [11, 9]. We denote these induced

involutions again by T. The induced T operate also on the smooth models Y and Y2. The

action on X is so that the points of order 2 and 3 are fixed and the points of order 5 are

exchanged.

The curve F1 in X is also fixed (pointwise) by T. The action of T in Y2 is explained in

[18].

112
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3 UNIFORMIZING GROUPS FOR THE KLEIN INVARIANTS

3.1 The Main Result

Consider the modular curve F1 of the Hilbert modular surface X. This is the image

in X of the diagonal { = z2} of 1H2. The stabilizer in P of the diagonal is PSL2(7L), an

arithmetic group of signature (2, 3, cc).

Consider now the non-compact, non-arithmetic Fuchsian triangle groups that are con-

tained in the Hilbert modular group F. These are of signature (2, 5, cc), (3, 5, cc), (5, 5, cc)

and (5, cc, cc). We want to relate the Klein invariants of IP2( (C) to modular embeddings

of the groups above.

T Schmidt shows in [18] the correspondence between the Cohen-Wolfart embedding of

a group of signature (2, 5, cc) and the image in k of the exceptional divisors Ei of the

fundamental points e2. The action of the involution T in X and Y2 gives also the proper

transforms of the conics Gi.

Theorem 3.1.1. Consider the Klein invariants A, B,C and D of 1P2( C) and their proper

transform in the Klein surface IC obtained from 1P2 ( C) by blowing-up 16 points as de-

scribed in Section 2.5. Consider the Hilbert modular surface X, the level 2 surface X2 and

the surfaces resolving the corresponding cusp singularities, Y and Y2 respectively. Under

Hirzebruch's isomorphism /C Y2 we have the following correspondence:

1. The proper transforms of A and C in IC are the lifted images in 172 of curves uni-

formized by groups of signature (3,5, cc) in X. The two corresponding curves are

equivalent under the action of the involution r.

26

2. The proper transform of B in IC is the lifted image in V2 of a curve uniformized by

a group of signature (5,5, co) in X.
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3. The proper transform of D in IC is the union in Y2 of the 15 lines resolving the cusp

singularities of X2-

Part (3) was proven by Hirzebruch in [10]. In the following sections we will prove the rest

of the theorem.

3.2 Elliptic Points of X and the Points of the Icosahedron

We first give an interpretation of the A5 orbits of IP2( (V) of length less than 60 and

the elliptic points of the surface X. Following the definitions of Section 2.6, such orbits

are given by the following proposition:

Proposition 3.2.1. The orbits of points under A5 of size less than 60 are:

I. The 6 fundamental points

The 10 Brianchon points.

The 15 vertices of the five triangles of D =- 0.

.4. The 12 polars to the fundamental points.

The 20 polar points with respect to the Brianchon points.

The 30 points that are the intersection of A and the lines of D (there are 2 on each

Orbits of length 30 consisting of points on the 15 lines of D that are not on A and

are not the fundamental points nor the vertices of the triangles.

Proof This has been discussed in [13] but for another proof, see for example [6].

Using the isomorphisms proved by Hirzebruch in [10], we look at the images of these orbits

in the Hilbert modular surface X and its smooth model Y.
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Definition 5. Let -y be an elliptic element of order n of r, fixing the point a = (4,4)

of ff-12 . We say that a is of type (n;p,q) with p and q relatively prime to n if the rotation

factors of 7 and 7(2) are equal to e2iP1-; and digf: respectively. That is, if -y and y(2) are

PSL2(IR)-conjugate to matrices of the form

ei -,7" 0) eir-7 0
and

0 0 e'
respectively.

The elliptic points of the surface X are two of type (2; 1, 1), one of each type (3; 1, 2),

(3; 1, 3), (5; 1, 2) and (5; 1, 3), as is shown in [71.

Proposition 3.2.2. Under the isomorphism 1C r.-.2 Y2, the A5-orbits of 1P2( e) and the

elliptic points of X are related as follows:

The 6 fundamental points ei correspond to a curve T which is the Cohen- Wolfart

embedding in X of a fuchsian group of signature (2, 5, oo). The elliptic points of

type (2; 1, 1) and (5; 1,2) of this curve in X correspond in 1P2( C) to specific tangent

directions at the

The 10 Brianchon points correspond in X to the modular curve F1. The elliptic

points of type (2;1,1) and (3;1,1) of F1 correspond in 1P2( tr) to specific tangent

directions at the Brianchon points.

The 15 vertices of the five triangles of D = 0 correspond to the cusp oo of X. In Y,

their image is the double point of the resolution of the cusp.

The 12 polars to the fundamental points become in X the elliptic point of type (5; 1,3)

that is on -r(T).

5. The 20 polar points with respect to the Brianchon points correspond in X to the

elliptic point of type (3;1,2).
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Figure 3.1: Triangular configuration on Y2

6. The 30 points orbits are sent on X to the cusp oo. Their image in Y is a point on

the curve of the resolution of the cusp, other than the double point.

Proof. The surface Y2 is obtained (up to isomorphism, see Section 2.5) by blowing-up the

6 points ei and the 10 Brianchon points. The cusp oo of X lifts in Y2 to the 5 triangles.

Each divisor Ei intersects one of the lines of each triangle and each one of the 15 lines

intersects two of the E. Each component of F1 in Y2 intersects one of the lines of 3

triangles and avoids the other two triangles. Each one of the 15 lines intersects two of the

10 components of F1; see Figure 3.1. For all of this, see [10]. We will use these facts in

the following argument.

1. The 6 fundamental points e. These form an orbit of length 6, therefore each

point is fixed by a dihedral group, in particular by some element of order 2 and some

element of order 5.

The fact that the corresponding 6 exceptional divisors Ei of Y2 descend to a curve T in

X, which is the Cohen-Wolfart embedding of a Fuchsian group of signature (2, 5, oo), was

proved by T. Schmidt [18].

The stabilizer in A5 of each exceptional divisor Ei of Y2 is isomorphic to 1)5. In X the

curve T passes through an elliptic point of order 2, the elliptic point of type (5; 1,2) and

the cusp oo (see Lemma 4.1.2). The point of order 2 lifts to 30 points in X2 as well as in

72 (since X2 does not have elliptic singularities). By A5-symmetry, each component Ei

contains five of these 30 points, all distinct. None of these points lie on any of the 15 lines
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of the triangles of Y2. An element of order 5 of the stabilizer of Ei permutes the 5 points

on E. An element of order 2 fixes one of the points and permutes the others. When we

blow down each Ei (as seen in k) to 1P2( U), the 5 points give five tangent directions at

the corresponding point e, distinct from the lines of D. The element of order 5 of A5 that

fixes ei permutes these tangents. The element of order 2 fixes one of them and permutes

the others.

We do a similar argument for the point of order 5 of X. This point has a fiber of 12 points

in X2 and in Y2. Each component E contains 2 of them, all distinct. Again, none of these

12 points lie on any of the 15 lines of the triangles. An element of order 5 of the stabilizer

of Ei fixes the 2 points. An element of order 2 permutes them. When we blow down each

Ei, the 2 points give two tangent directions at the corresponding point e, distinct from

the lines of D. The element of order 2 that fixes ei permutes these tangents. The element

of order 5 fixes them.

Therefore the 7 (= 5 + 2) points that lie on each Ei and are in the fibers described above,

give in 1P2(C) seven tangent directions at ei of any (irreducible) curve of X that intersects

T at the points of order 2 and 5.

The curve r(T), where T is induced by the involution in 1112 given in Section 2.8, intersects

T at the point of order 2 of X. Therefore the pull-back of r(T) to 1P2() has 5 tangents

directions at each of the fundamental points e. From [18] we know that r(T) corresponds

in IP2( C) to the union of the G. Therefore the five tangent directions are the tangents

to the 5 conics Gi, j i that go through e. This also implies that the intersection of T

and r(T) in X occurs only at the point of order 2.

Remark 3.2.3. If a curve intersects T at some regular point of X, this intersection will

give 10 tangent directions of the image of that curve at the points ei of IP2( C).

Furthermore, any two curves in X intersecting T at one of its elliptic points are such that

their pull-back to IP2( (V) share their tangents at the fundamental points.
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The 10 Brianchon points. The stabilizer of each point in A5 is isomorphic to S3,

therefore each point is fixed by some element of order 2 and some element of order 3 of

A5. In Y2 these points have been blown up and are the 10 components of the image of the

diagonal F1 of X. Here again, each component of F1 is invariant under a subgroup S3 of

A5 (see [10]).

In X, F1 passes through an elliptic point of order 2 resulting from (i, i) E lH2 and different

from the one of T, the elliptic point of type (3;1,1) and the cusp cc, see [9].

The point of order 2 lifts to 30 points in Y2. By A5-symmetry, each component of F1

contains three of them, all distinct and none on the intersection with the triangular con-

figurations. Considering the action of the stabilizer of each component of F1 and blowing

down each component, we can see again that these three points give in 11)2( (C) three

tangent directions at the Brianchon points.

There are 20 points in Y2 above the point (3;1,1), two on each component of F1. None

of these points lie on the 15 lines of the triangles. These two points give in IP2( (D) two

tangent directions at the Brianchon points.

The five tangent directions above are all distinct from the lines of D.

As before, if two irreducible curves of X meet F1 at a point of order 2 or 3, then their

images in 1132(0) must share their corresponding tangents at the Brianchon points. Other

tangent directions (in multiples of 6) may come from the intersections at regular points

of X.

The 15 vertices of the five triangles of D = 0. The stabilizer of each vertex is

of order 4, so these points are fixed by elements of order 2 of A5. Since the vertices are

distinct from the fundamental points and the Brianchon points, on Y2 we have again 15

points, vertices of the five triangles of the cuspidal resolutions. Therefore the 15 vertices

correspond to the cusp oo of X. In Y, their image is the double point of the resolution of

the cusp (see Figure 2.1).
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The 12 polars to the fundamental points. Their stabilizer is of order 5. Therefore

these points are fixed by elements of order 5 of A5. On Y2 we have again 12 points, none

of them belonging to the triangular configurations. Therefore these points become in X

an elliptic point of order 5. Since the conics Gi in 1P2( U) go through the 12 polars, the

point in X is the one that is in r(T), this is the point of type (5; 1, 3).

The 20 polar points with respect to the Brianchon points. The stabilizer of each

point is of order 3. On 1'2 we have again 20 points, none of them belonging to the triangular

configurations, therefore these points correspond in X to an elliptic point of order 3. Since

the 20 polars are distinct from the Brianchon points, the point in X is the point that does

not belong to F1; therefore, it is of type (3;1,2).

Orbits of length 30 consisting of points on the 15 lines of D. By symmetry,

there are two points on each line. On Y2 they become 30 points, two on each line of the

triangular configurations and distinct from the vertices. These points are sent to the cusp

of X.

The stabilizer of a point of this orbit in Y2 is of order two. The non-trivial element

of A5 that fixes it is the involution that fixes (pointwise) the corresponding line of the

triangle and its opposite vertex. Taking the quotient of the resolution of a given cusp by

its stabilizer on A5 as it is done in Section 2.4.3; we can see that the image of the 30 points

in Y consists of a single point on the curve of the resolution of the cusp, other than the

double point (see Figure 3.2).

Corollary 3.2.4. With the notations above, any curve of X intersecting T at the point of

order 2 is such that its pull-back in 1132(0) shares 5 tangents at each ei with the 5 conics

Gi, j i.

Proof. This is a consequence of Remark 3.2.3. 0
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Figure 3.2: Intersections at the cusps

3.3 The Curve B and the Group (5, 5, oo)

3.3.1 The Image of B in the Surface X

In IP2((t), the curve B passes with multiplicity 2 through each of the 6 fundamental

points (its intersection with C). It has a node at each such point. In 1'2, these fundamental

points have been blown up, hence B(Y2) intersects each of the exceptional divisors Ei at 2

different points. These points are not on any of the 15 lines of the triangular configuration

because the tangents to B at the fundamental points are distinct from the lines of D.

Indeed, consider one of the fundamental points, say el. There is an element a of order 5

of A5 that fixes ei (its stabilizer is of order 10). Any element of A5, and in particular a,

33
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Figure 3.3: Intersection of B(Y) at the resolution of oo

leaves B invariant. On the other hand, B has two tangents at el. But a permutes the

five lines of D that go through el (the stabilizer of each line is of order 2). Hence these

lines cannot be the tangents to B.

We have then 12 points of intersection B(Y2)n(uiE1) and B(Y2) is As-invariant. Therefore

these 12 points form the orbit of a point in the fiber above a point of order 5. Furthermore,

B(X) intersects T at the point of order 5 and the intersection is transversal.

In 1P2( C), B contains the 12 polar points to the e, and we know that B and Gi

intersect transversally at those points (see [6]). Thus B(X) intersects r(T) transversally

at the corresponding elliptic point of order 5.

On the other hand, B c IP2((li) intersects D transversally at 30 points other than

the fundamental points; two distinct points on each line of D. This can be checked by

using Bezout's theorem for B and one of the lines Li j of D. Indeed, the two curves should

intersect in 6 points (counting multiplicities). They intersect at two fundamental points

with multiplicity 2 at ea,ch one of them. Thus there are two other points of intersection.

If these two remaining points of intersection between B and Lij were not distinct, then

the As-action on Bn Lij would give an orbit of length less than 30, but from Proposition

3.2.1 and from the geometry of B, we can see that this is impossible. So these other two

points of intersection must be distinct.

Therefore B n D form a As-orbit of length 30 and B(X) goes through the cusp oo.

Its image B(Y) intersects the curve of the resolution of the cusp transversally at a single

point as shown in Figure 3.3.
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The curve B does not go through the Brianchon points of 11'2( C), thus B(Y) does

not intersect FAY) and B(X) intersects F1 only at the cusp oo. In particular, B(X)

avoids the points of order 2 and 3 of

3.3.2 The Uniformizing Group for B(X)

We show now that B(X) is the compactification of the quotient of E by a Fuchsian

group of signature (5, 5, oo). We do this by proving that the elliptic points of order 5 are

indeed quotient singularities in B(X) and that B(X) is a curve of genus zero.

The curve B(Y) goes once through two points of order 5 and the resolution of the

cusp oo. It does not contain any other elliptic point. We need to check that the elliptic

points are indeed quotient singularities in B(Y), in other words, that the A5-covering

B(Y2) B(Y) is ramified above those points. We know that B(Y2) is irreducible and

invariant under the action of A5.

We thus compute the ramification above the elliptic points of order 5 and above oo.

In Y2, the fiber above each point of order 5 consists of= points. From the discussion

in Section 3.3.1, we know that the curve B(Y2) passes through all of these points with

multiplicity one. Therefore the ramification number equals 120 24 = 96, 48 for each

point.

There are 5 cusps in X2 above the cusp co of X. The curve B(Y2) intersects the resolution

of each of them 6 times. Therefore the ramification number above oo equals 60-6-5 30.

We can now apply the Riemann-Hurwitz formula to B(Y2) and B(Y) in order to

compute the genus of B(Y). The curve B has genus 4. Hence B(Y2) has genus 4 as well,

and is smooth. The total ramification number is 96 + 30 = 126. If g is the genus of B(Y),

we have

60 (2g 2) = (8 2) 126

and g = 0. Thence B(X) is singular at the two points of order 5 and the cusp oo and has
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genus zero. Let B(F \IH2) be the curve corresponding to B(X) in the non-compact space

r\ne. The non-compact curve B(FVE12), seen as a Riemann surface, has a hyperbolic

covering and the covering group is a subgroup of F with two elliptic elements of order

5, one parabolic element and no hyperbolic element. This is a non-arithmetic Fuchsian

triangle group of signature (5, 5, oo).

3.4 The Curves A and C and the Group (3,5, oo)

3.4.1 The Image of A in the Surface X

In 1P2((D), the curve A, a smooth conic, contains the 12 polar points to the ei. Thus

its image in Y2 contains the 12 images of those points, and these are regular points for

A(Y2). It follows that A(X) passes once through the elliptic point of order 5 of r(T).

Also we know that A and Gi share tangents at the 12 polar points (see [6]), hence A(X)

intersects r(T) at the elliptic point of order 5, sharing its tangent at that point.

In 1P2( (C), A passes through the 20 polar points to the Brianchon points (these

correspond to the intersection of A and C). Therefore A(X) goes through the point

(3;1,2).

Furthermore, A C JP2 (IX) intersects D transversally in 30 points. Two points on each line

of D, all distinct from the vertices. Therefore, A(Y) intersects the curve of the resolution

of the cusp transversally at a single point, distinct from the point of intersection of this

curve with B(Y).

The curve A does not go through the fundamental points nor through the Brianchon

points of IP2(C). Therefore A(X) intersects neither T nor F1 except at cc. In particular,

A(X) avoids the points of order 2 and 5 of T and the points of order 2 and 3 that belong

to F1.



3.4.2 The Uniformizing Group for A(X)

We show now that A(X) is the compactification of the quotient of 1E1 by the Fuchsian

group (3, 5, oo). The curve A(X) goes once each through a point of order 3, a point of

order 5 and the cusp oo. It contains no other elliptic point. We also know that A(Y2)

irreducible and invariant under the action of A5. We again check that the A5-covering is

actually ramified above the given points by computing the ramification indices.

The point of order 3 has63- ss 20 points above it. The curve A(Y2) passes through each of

them with multiplicity one. Therefore the ramification number equals 60 20 = 40. The

point of order 5 has 12 points above it. The curve A(Y2) passes through all of them once.

Therefore the ramification equals 60 12 -= 48.

There are 5 cusps in X2 above the cusp oo of X. The curve A(Y) intersects the resolution

of oo once whereas A(Y2) intersects each one of the resolutions in 1'2 six times. Therefore

the ramification equals 60 6 5 = 30.

Hence A has ramification above all these points. The curve A(Y2) has genus zero and is

smooth. Since a curve of genus zero can only cover curves of genus zero, we conclude that

A(Y) has genus zero as well.

Thus A(X) is a curve of genus zero with quotient singularities at the points of order

3, 5 and the cusp oo. Therefore, A(F \lH2) is uniformized by a non-arithmetic Fuchsian

group of signature (3, 5, oo).

3.4.3 The Image of C in the Surface X

In 1P2( (D), the curve C has a double cusp at each of the 6 fundamental points.

In Y2, these fundamental points have been blown up, hence C(Y2) intersects each of the

exceptional divisors Ei tangentially at 2 different points. These intersection points are the

same as those of {B n Ei, i 1, , 5}, because B and C share their tangents at the

From Corollary 3.2.4, it follows that C(X) intersects T at the point of order 5, going only

once through that point but sharing its tangent with T.
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Like A in 1P2((U), C passes through the 20 polars to the Brianchon points. Therefore

C(X) also goes through the point (3;1,2).

Using the same argument as for B, we can see that C C 1P2( (C) intersects D

transversally at 30 points other than the fundamental points; two distinct points on each

line of D. Indeed, C and one of the lines Li ,j of D must intersect in 10 points (counting

multiplicities). They intersect at 2 fundamental points with multiplicity 4 (multiplicity

of C) at each one of them. Thus there are 2 other points of intersection. But none

of the lines Lij is tangent to C, and C does not have other singularities than at the

fundamental points. So these other two points of intersection must be distinct. They are

also distinct from the 30 intersection points of B and D (since B and C intersect only at

the fundamental points).

Consequently, C(Y) intersects the curve of the resolution of the cusp transversally

at a single point, distinct from the points of intersection with A(Y) and with B(Y). See

Figure 3.4.

Figure 3.4: Intersections in Y

The curve C does not go through the Brianchon points of 1132( 0), therefore C(X)

does not intersect F1 but at the cusp oo and avoids in particular the points of order 2 and

3 of F1.

3.4.4 The Uniformizing Group for C (X)

The final step is to prove that C(X) is also the compactification of the quotient of

I11 by the Fuchsian group of signature (3, 5, oo). This is the same signature as for A. Only

the points of order 5 are different. This is consistent with fact that 1-(A) =-- C.



where il="2( () is the surface obtained by blowing-up the 6 fundamental points in 1P2((r)-
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The curve C(X) goes once through a point of order 3, a point of order 5 and the

cusp oo and through no other elliptic point. We also know that C(X2) is irreducible and

A5-invariant. We need to check again that the A5-covering C(Y2) C(Y) is actually

ramified above those points.

The ramifications above the elliptic points of order 3 and 5 and above oo are as

follows. Since C(Y2) passes through all of the 20 points above the point of order 3 with

multiplicity one, the ramification at that point equals 60 20 = 40. The curve C(Y2)

passes through the 12 points above the point of order 5 with multiplicity one. Therefore

the ramification equals 60-12 = 48. The curve C(Y2) intersects each of the five resolutions

of cusps above oo six times. Therefore the ramification equals 60 6 5 = 30.

Therefore C(Y2) has ramification above the given elliptic points of order 3 and 5 and the

cusp. It is a curve of genus zero and smooth. It follows that C(Y) has genus zero. Thence

C(X) is a genus zero curve with quotient singularities at a point of order 3 and a point

of order 5. Therefore C(IA1H2) is uniformized by a group of signature (3, 5, oo). The fact

that the involution r in 1P2(00) induced by T switches the curves A and C is well known.

This completes the proof of Theorem 3.1.

3.5 The Hilbert Modular Surface of Level Nig

Consider the congruence subgroup r5 of associated to the ideal Vg0. The corn-

pactified quotient of lH2 by r5 gives the Hilbert modular surface of level -f5', X5 which

has 6 cusps and no elliptic singularities. Let Y5 be the surface of the resolution of the

cusps. Here again r5 is a normal subgroup of F and r/r, A. so X5 is a A5-cover of

X. In [11], Hirzebruch shows that there is an isomorphism

T\Y5 li32(e), (3.1)
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It is also proven in [11] that under this isomorphism, the lifted image of F5 to Y5

projects under the 7-action to the Klein invariant D, and in a similar way the lifted image

of F1 corresponds to the Klein invariant C.

Using this isomorphism, we can show the following result, which gives a second

interpretation of the elliptic points of X, this time in terms of the points of 1P2(C).

Proposition 3.5.1. Under the isomorphism Y5/7 :1-P2(C ), the elliptic points of X and

the A5-orbits of IP2(C ) are related as follows:

I. The elliptic point of order 2 that belongs to F1 corresponds in 1P2( C) to the 30 points

of intersection of C and D, distinct from the fundamental points;

The elliptic point of order 2 that F1 avoids, corresponds in 1l'2 ( C) to the 15 vertices

of the five triangles of D;

The elliptic point of type (3; 1, 1) corresponds in 1P2( C) to the 20 points of inter-

section of A and C, thus to the 20 polars to the Brianchon points;

The elliptic point of type (3; 1,2) corresponds in 1132(C) to the 10 Brianchon points;

The two elliptic points of order 5 correspond in 1132( C) to the 12 polars to the

fundamental points;

Proof. The proof is based on an argument similar to the proof of Proposition 3.2.2 and

on the following facts.

The involution T defined by (2.12) also induces an involution on X and on X5, see [11].

The induced involutions that we denote again by 7-, act in the following way. As we said

in Section 2.8, T fixes in X the elliptic points of order 2 and 3 and permutes the points of

order 5. In fact, the set of fixed points of T equals F1 U F5. On Y5 the induced action of

is such that the set of fixed points equals the pre-image of F1. All of the above is given

in [11].
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On the other hand, the curves F1 and F5 intersect at one of the points of order 2. The

curve F5 passes through the other point of order 2 and through the point of type (3; 1, 2).

The point of type (3; 1,1) belongs to F1. The points of order 5 belong to neither F1 nor

F5. This is given in [91.

The remaining details of this proof can be easily checked.

0



4 FURTHER RESULTS

4.1 Embedding of (2, 5, oo)

When studying the Cohen-Wolfart embedding of groups of signature (2, 5, oo), T.

Schmidt considers in [18] the Hecke group G5, as was suggested in [3], generated by S,T

and U with:

( 1 E0 ( 0 )
S= T , U = ST . (4.1)01 10

One of the vertices of the fundamental domain of G5 in RI is the point z = i fixed

by T. Its image under F, see (2.10), is the point (i, i) that belongs to the diagonal of

IH2 and therefore its F-orbit in X is the point of order 2 of F1. But Schmidt shows in

[18] that the Cohen-Wolfart embedding for the signature (2, 5, oo) is unique and that the

corresponding curve T in X does not intersect

Although not explicitly stated in [3], the geometric construction of the Cohen-

Wolfart embedding depends upon the choice of the group and its generators for the

given signature. In fact, this embedding cannot be applied directly to G5 but to some

PSL2(IR)-conjugate of this group. We give here the correct choice of the group of signature

(2, 5, oo) for the construction of the Cohen-Wolfart embedding.

The elliptic points of the surface X are given in [7]. The points of order 2 are the

r-orbits of the points v2,1 = (i, i) and v2,2 (EP, Eoi), where co = 14316 and we denote

by eio the Galois conjugate 42). We know now that T should pass through the second

point. The points of order 5 are the F-orbits of v5,1 = (On, (to) and V5,2 = (a, 0.0),

where (n, denotes the primitive n-th root of unity,
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The point v2,1 as we mentioned above is fixed by

01
T=I 1 0 )

Notice that in PSL2(0) this is the same element T as the one given in (4.1). We make

this different choice of sign here in order to preserve the normalization used in [7].

The point v2,2 is fixed by the element:

( 0 )
=

-60 0

The matrices T and r are conjugate by the element of PS1,2(110

0

01
)

that sends v2,1 to v2,2. Now we apply the same conjugation to all the generators (4.1) of

G5. This gives for S the element:

5' m2siti2-1 -
1 1 )
0 1

that fixes the cusp cc.

As a matter of normalization, we again replace the element U given in (4.1) by one

of its powers, this is Ti = (S.T)-1, for T as in (4.1). In this way we preserve the relations

(2.1) given in Section 2.1.2 as well. The conjugate of U,
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(4.2)M2=

fixes the point v5 = (-40o, coa)-

U' = M2U M2-1 =
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These three elements T', S' and U' are in PSL2(0) and generate a group of signature

(2, 5, oo) that is PSL2(IR)-conjugate to G5. We have the relation S' T' U' = 12.
The point v5 is not in the fundamental domain of F but must of course be F-

conjugate to either v5,1 or V5,2. The rotation factor of U' (see Definition 5) equals

(eiaL5r ei ). Therefore v5 is a point of type (5; 1, 2) and hence it is conjugate under F

to 1/5,2, which is of same type.

Remark 4.1.1. In [7], Gundlach gives the rotation factor corresponding to v5,1 as being
z 4/r 2.21 67T

e-T) and the rotation factor corresponding to V5,2 as (e` 5 , e` 5 ) . After verifying

the formulas given in [7], we found that these should be switched. We should have indeed,

05,1 of type (5; 1, 3) and v5,2 of type (5, 1, 2).

Using the notation z = (z', z") e 1112, the hyperbolic triangle .F given by the vertices

24,2, V15 and oo has angles 0). The hyperbolic triangle .F(2) given by /4,2, vg and oo

has angles 0). Therefore the calculations of the volume given in [18] are correct,

as well as the main result concerning the embedding of the group of signature (2, 5, oo).

Moreover, we can now state:

Lemma 4.1.2. The image T of the Cohen- Wolfart embedding in X of the group of sig-

nature (2, 5, oo) conjugate to the Hecke group G5 by the matrix (4.2), passes through the

elliptic point of type (2; 1, 1) represented in 1112 by (e'oi,e0i) and the elliptic point of type

(5; 1, 2) given by (CO, (10)

4.2 The Curve (5, 00, oo)

We have described the geometry of all the triangle non-compact and non-arithmetic

modular embeddings in 1P2( (D), except for groups of signature (5,00, oo). We are in-

vestigating this embedding and we discuss in this chapter the results we have found so

far.
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Consider the non-arithmetic triangle group ,A0 of signature (5, 00, oo). We wish to

find the pre-image in IP2( (V) of the Cohen-Wolfart embedding

The parabolic matrices are

( 1 1 )
0 1

The element of order 5 of the group is

(5, 00, oo)VH rva2

in terms of the Klein invariants.

Remark 4.2.1. This group is not maximal. It is contained in the Hecke group of index 10,

of signature (10, 2, cx)).

4.2.1 Generators of Ao

The following set of generators for a group of signature (5, oo, co) is given in [3].

and 'TT ( 1

2

'YP = ±(7Q7T)-1

The fixed points for the action of these elements in 1H, are oo , 0 and (1 + i NA5 + 24).

Unfortunately, these do not form a hyperbolic triangle with angles 0,0 and, but rather

0,0 and 4-1-5r. We need to find therefore a group Ao with the appropriate set of generators.

In order to respect the construction of the Cohen-Wolfart embedding of this group, this

set must in particular be such that the elliptic point fixed by the generator of order 5

corresponds to one of the elliptic points of order 5 of the surface X.

Lemma 4.2.2. Consider a group ao C SL(0) of signature (5, oo, c>o). A set of generators

for the image of Ao in PSL2(0) consists of the two parabolic elements:



fixing the cusps z = oo and z = [-1 : 1], respectively; and the elliptic element of order five

fixing the point v5,1 = (60, ao).

Proof. We first consider the standard set of generators given in [17] for the signature

(5, 00, oo). These are a translation U that fixes oo, the elliptic element E of order 5 that
sin(*)fixes in III the point z = Ai, with in our case A = 2+2cos(15)

P=

( 1 2+ Eo
U=1

0 1

and T=
( 2 1 )

1 Eo

(cos(i)
Il cos()

2 2 cos() i cos(E)

and the parabolic element P that fixes the point z : 1]:

1 0

( cos(-75-) + i sin(i) A sin( i) + cos( -i) 2 + cos() 1 + cos(75-9)
=

sin(i) cos(i) 2 2 cos(i) cos()
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with the relation P E = 12-

One of the elliptic points of order 5 of the surface X is given by the point v5,1 =

(60, a) E 1112, (see [7]). Since the Cohen-Wolfart embedding is given by

f: IH IH2

z (z, f (z)),

we can require the fixed point of order 5 of Ao to be z = 60. Therefore, we need to

conjugate the generators above by the element of GL2(111) that sends z --= Ai to z = 6o.

E
cos() A sinei

sin(i) cos(i)



This element is the matrix

MA =
( 2 + 2cos(E-) cos())

0 1

The elliptic element E becomes then

L = MAEMi-1 = ( 0
-1

One can check that this is the same element of order 5 of PSL2(0) given by Gundlach in

[7]. The parabolic element P becomes:

121 )
T = MAPMV =

-1 0
and T fixes the cusp z = [-1 :1] E ii31( K) Finally, the parabolic element U (we recycle

the notation used above for its conjugate) that fixes z = oo is

( 1 2 + 60

1

)
U = ±(T.L)-1 = 1 .

0

In PSL2(0), this becomes simply

( 1 2 + Eci )
0 1

U =

4.2.2 The Curve Ao\llif Embedded in X

To construct the Cohen-Wolfart modular embedding in X,

41: 6.0\11-1 -4 X

1

eo
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we consider the image Aio of Ao under the non-trivial Galois automorphism of the field

K (see [3]). The corresponding hyperbolic triangles .F and .F' have angles 0,0) and

(151-`, 0, 0). The fundamental domain 7Z in 111 for the action of Ao is ,FU:f., where F is

the reflection of .F about the line joining two of its vertices. The image of R, under F as

defined in (2.10), Section 2.7, is 7-Z1 = U P and Ao acts on 7Z.

We can therefore evaluate the volume of the embedded curve T = (A0\111).

This is [w](T), where w wi +W2 is as in (2.3), Section 2,2 and wi applied to T give the

normalized area of 7Z and 7Z'. Using the Gauss-Bonnet formula for the area of a hyperbolic

triangle of angles a, # and ,y (see for example [12], pp. 13):

area = 7F - a- 0 --y,

we find

1
area(R,) = 2741 -

-5
- 0 - 0) = 2ir -4;

5

3 2
area(V) = 27r(1 - -6) o) = 2,2r 6.

And the volume equals:

[wi
w2](T)

(45) 2

We define now the congruence subgroup of level 2 of Ao-

PSL2 (0) of

A2 {-y E Ao; 12 mod(20) }

Since Lo C G, it is easy to see that

This is the image in
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and .6,2 is a normal subgroup of Ao. The quotient AO/2 in G/F A5 is isomorphic to

D5, the dihedral group of order 10. Indeed, this quotient is the subgroup generated by

the cosets of U,T and L that we denote again by U,T and L in 64.6.2. It is therefore the

group of coset representatives:

H LO/2 = {12, U,T , L, L2, L3, L4, LT ,U L ,U L2} D.

A component of the pre-image of T in X2 corresponds to a copy of the embedding of

A2 in F2. We denote it by 22. There are 6 such components in X2 because the subgroup of

G/F2 that stabilizes one of them is A0/.6.2. The volume of 22 equals 10 times the volume

of the curve in X, this is -12.

The curve T2 does not have elliptic singularities because 6.2 is contained in in, which acts

freely on III. The number of cusps is at least equal to the number of cusps of r2, this is 5.

We can explicitly compute this number by considering the H-orbit of each of the cusps of

T. For the cusp oo := [1 : 0] E IP1(K), we have the following images:

/2(oo) = U(oo) = [0 : 1] = oo;

L(oo) = [0: 1];

L2(oo) -+- :

L3(00) [1: 11;

L4(oo) = [6 : 1],

that give us 5 cusps inequivalent under F2 and therefore certainly inequivalent under 6,2

The remaining points of the orbit:

T(oo) = [-2 : 11;

LT(oo) = [1: 2 + eo];

UL(oo) = [-2 eo 1];

UL2(oo) = [2 + \/; : 11,



LTU L2 =
( 1 460 2+ 260 )

E A2
6 1460 7 + 86o

(UL2)2 E 6,2 Sends L3(00) to UL2(00);

L)2 E A2 sends L4(oo) to UL(oo).

It follows that the curve 6.2\lH has 5 distinct cusps above oo. Consider now the

H-orbit of the cusp T : [ 1 : 0]:

/2(r) = T(r) T = [-1 : 1] [1 : 1] mod F2;

U (r) = L4 (r) = kg : 11-=[: 1] mod 1'2;

L(r) = LT (r) = [42 :][60: 1] mod 1-12;

L2(r) = [60 : 2] 00 mod r2;

L3(T) [2: 1] [0: 1] mod F2;

UL(r) = [4: 1];

U L2 (r) = [-34 + 7: 2].

The first five images give us 5 distinct cusps for the action of A2. The points UL(r)

and U L2 (r) are 6.2 equivalent to L3 (r) and L2 (r) respectively. One can check again that:

U LT L2 E A2 sends L3(r) to UL(T);

L2T L3 E 6,2 sends L2(r) to U L2 (r).

sends L2(00) to LT(oo);
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are actually A2 equivalent to the first five, and therefore represent the same cusps. Indeed,

LUT -1
(1-2

_23 )
/2 mod (20)

is an element of 12 and sends T(oo) to L(oo). In the same way,
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We conclude that the curve A2\1E1 has 5 distinct cusps above T and 5 above oo.

Therefore, the curve 22, seen inside of Y2, goes through the five F2 cusps, intersecting

each one twice.

We want to find the genus g of 72. For this, we apply the Riemann-Hurwitz formula

to the curves 72 and T.

2 2g = 10 2 R , (4.3)

where R= r5+r, + roo is the sum of the ramification indices at the fixed points of Ao

Above the elliptic point of order 5 of T there are = 12 points, 2 on each component of

the cover (because of symmetry), hence 2 in 72 . Therefore, the ramification index at the

point of order 5 equals r5 = 10-2 = 8. We saw that above the cusp at oo of .A0 there are

5 cusps in Z. Therefore roc = 10 5 = 5 and for the cusp T we have also r = 5. From

4.3, we find:

2 2g = 20 8 5 5;

g = O.

Therefore, the curve 22 in Y2 is a genus zero curve with no elliptic points and which

intersects twice each of the 5 cusps resolutions of Y2.

Using the isomorphism between Y2 and the blow-up of the cubic surface given in

[10], we have various ways to express the canonical divisor K2 of Y2 (see [18]). One of

them is

K2 = -[wl +W2]- E

where 7r : Y2 X2 is the map resolving the cusp singularities of X2 and L1 are the

curves of the resolution. We have then for any irreducible curve C on Y2,
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K2 C = -V01(C) - E (7*4) C,

and using the adjunction formula,

K2 C = CC + 2 2g(C)

we get

C C = 29(C) 2+ vol(C) + E . C. (4.4)

Since 72 intersects each cusp resolution twice, we find using (4.4) that its self-

intersection number equals T2 T2 = 0 - 2 12 + 10 = 4.

Next we can apply the formulas from [18], pp. 537 to obtain the following system:

3aEbiEci=-2
(4.5)

15a 5E 3Eci = 10

We have then

= 10.

Thus the curve 72 intersects the 10 components of the diagonal F1(Y2) in 10 points.

The curve F1(X) goes through a point of order 2 and a point of order 3 in X. The curve

T does not have singularities at any of these points. The curve F1 (X) avoids the points

of order 5. Therefore we believe that all the possible intersections of F1 (X) and T are the

following. We give these results without proof since we are still verifying them.

Case I: The intersection is a simple point of both curves away from the resolution of

oo. In this case T2 intersects five of the components of F1 (Y2) with multiplicity 2, this is

cj = 2 for five values of i, and each component of the diagonal meets twice three of the

components of the A5 orbit of T2 at six different points.
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Case 2: The two curves intersect in X at the point of order 2 of FAX). In this case

Cj = 1, Vi. The curve T2 intersects the 10 components of F1(Y2), two copies of 'T2 meet

each component of F1 at a single point and each component of F1 (Y2) meets the six

components of 2 (Y2)-

Case 3: The intersection in X occur at the point of order 3 of FAX) which is a regular

point for T. Here ci = 2, Vi, but three copies of 72 meet each component of F1 at a single

point.

Case 4: The curves fl(Y) and T(Y) intersect at the resolution of the cusp oo. Then

= 1, Vi and 2 copies of T2 intersect D34 at one single point and D34 intersects the six

copies of Z.

4.3 Elliptic Points and Uniformizing Groups

One of the questions that arose during this research is whether the knowledge of

the elliptic points that belong to a curve C on X determines unequivocally the signature

of the uniformizing group of C. The answer is clearly no.

Consider indeed the modular curve F5 C X defined as the F-orbit of the curve {Az2

A(2) zi = 0} in 1E12 This curve passes through the two elliptic points of order 2 and

through the point of type (3; 1, 2), see [9]. However, the uniformizing group of F5 (see [9])

is a degree 2 extension of the congruence subgroup F0[5] of SL2(7L), which has signature

(2, 2, co, oo). The extension is given by the matrix

( 0 J-
Nig

N/6 0

From [19] we have therefore that the uniformizing group of F5 has signature (2, 2, 2, co).

This means that the point of order 3 that F5 passes through is not a singularity of the

curve itself. We can check this by computing the ramification index above that point.
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For this we consider the Hilbert modular surface of level X5 given by the

congruence subgroup r5 of associated to the ideal Vg(9. Let Y5 be its smooth model.

Here again F5 is a normal subgroup of 1-"' and r/r5 A5. SO X5 is a A5-cover of X. In

[111, Hirzebruch shows that the quotient r \ Y5 is isomorphic to the surface P2 ((1) obtained

by blowing-up the 6 fundamental points in 1P2( CC). It is also proven in [11] that under

this isomorphism, the lifted image of F5 in Y5 corresponds to the Klein invariant D.

Indeed, the curve F5 has 15 components on Y5, the stabilizer of each one in r/r5 is of order

4 and each component is a non-singular rational curve. Each component corresponds in

1P2( or) to one of the 15 lines of D. Fix one of these components and denote it by F5,1.

We want to show that F5,1 is not ramified above the elliptic point (3; 1,2) of X.

From Proposition 3.5.1, we know that the fiber in T \ Y5 above the elliptic point (3; 1,2)

corresponds in 1152(C) to the 10 Brianchon points. Each line of D contains two such points

and each point belongs to 3 distinct lines. Under the action of -r, these 10 points give 20

points in Y5, the curve F5,1 passes therefore through 4 of them. These are 4 of the 20

points on the fiber of the point (3; 1,2) under the A5-cover: X5 X. The stabilizer of

F5,1 being of order 4, this proves that F5,1 is not ramified above (3; 1, 2).
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