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Chapter 1: Introduction 

1.1 Motivation 

Activity recognition is an important research area in the field of computer vision, which 

aims at automatically analysing ongoing events and their contexts from video data 

[29]. Various state-of-the-art techniques have been developed for these prevalent ac

tivity recognition applications, such as security surveillance, patient monitoring and 

human-computer interactions. However, the activity recognition in sports domain is still 

under-served. 

American football is the most popular sport in the United States. The game planning 

of American football teams needs a lot of annotation and analysis of videos of their 

own and opponent games. However, the existing services for football game planning 

still involve large amount of manual management, annotation, and analysis of videos, 

since they usually provide only essential user interface functionalities. Even only for 

one game, video annotation needs to be done repetitively for an average of around 150 

plays. Moreover, humans annotations tend to commit errors due to the complex and 

repetitive nature of football videos. Thus, it will be significant to automate at least 

part of the annotation process. Automatic analysis and classification of sports play 

can help sports coaches and analysts to extract patterns and develop strategies from 

large collections of sports videos. In this work, we aim at automatically classifying the 

offensive-defensive video plays of football games into one of two types with different 

offensive directions. Developing techniques for the offensive direction inference will be 
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helpful for game analysis and planning. Moreover, it can serve as one building block to 

solve more complex problems, such as the play type recognition of all plays comprising 

a football game [7]. 

1.2 Background and Challenges 

American football video analysis is conducted around the concept of football plays. A 

play is a video clip lasting approximately 10 to 30 seconds. One football game usually 

contains a sequence of approximately 150 plays. One video clip for each play in the game 

is captured following the temporal order to record a whole football game. Consecutive 

plays are separated by short time intervals, during which no game action happens and 

the teams rearrange. Our football videos are recorded by a PTZ camera from an elevated 

location along the sideline, which captures a sideline view of the football field(e.g. Figure 

3.2). 

According to the football taxonomy, each play has a distinct type. The two most 

common play types are Offense (O) or Defense (D). The offense(O), the team with control 

of the football, aims to move the ball forward by running with or passing the ball, while 

the team without control of the ball, the defense(D), attempts to stop their advance 

and take control of the ball. The offensive-defensive(OD) play refers to the play which 

involves one team on offense and the other opponent team on defense. Before each OD 

play starts, two teams lines up facing each other at the line of scrimmage (LOS) — 

an imaginary line parallel to the field lines upon which the ball is placed. An OD play 

begins at the moment of snap(MOS), when the center throws or hands the ball backward 

to one of the backs (snap), usually the quarterback, then both teams start moving and 

executing their own strategies until the play ends. A formation of a play is defined as the 
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Figure 1.1: Mos frames of 6 football plays which show the huge huge diversities of our 
football videos. 

spatial configuration of players at the moment of snap, which includes both the offensive 

formation and the defensive formation of that particular play. 

Considering the huge diversities of our football videos, we believe no off-the-shelf com

puter vision tools are capable of inferring the offensive direction effectively. Our videos 

have large variance in camera viewing angles/distances, video shot quality, weather/lighting 

conditions, the color/sizes/patterns of football field logos/markings, and the scenes 

around the field, ranging from crowds, to players on the bench, to construction equip

ments. Also, these videos are typically captured by amateurs, which leads to frequent 

motion blur, camera jitter and large camera motion. Further, videos of different games 

have large variations in team strategies, formations, and uniforms color. All these factors 

make video registration, frame-references, and background subtraction rather challeng

ing, which are critical for existing approaches [7]. 
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1.3 Problem Statement and Overview of Our Approaches 

In our work, we focus on classifying OD plays into two types with different offensive 

directions. To define our objective formally, our input is a sequence of temporally ordered 

videos comprising all OD plays of football games and the expected output is an accurate 

labeling of the offensive direction of each play to be left or right. 

We have two approaches to achieve our goal. Both our approaches make use of the 

formation (spatial layout of players) difference, which is the essential information to dis

tinguish the two types of plays with different offensive directions. Our first approach, 

the Kanade-Lucas-Tomasi (KLT) [32] trajectories analysis, seeks to detect the position 

of a special type of player—the wide receivers (WRs) to predicate the offensive direc

tion. Our second approach, spatial pyramid matching method, estimates the difference 

between formations of plays with different offensive directions, in terms of players spatial 

layout. 
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Chapter 2: Related Work 

2.1 Activity Recognition 

There is a large body of existing work on action recognition. Most of this work focuses 

on detection of human activities for a single person [14] [12] [22]. There is also some 

work that aims to recognize the actions of groups in more complex contexts, such as 

movies [24] or sport videos [36]. Although there are various approaches to do action 

recognition, a majority of them use the same framework which includes three main 

steps: extracting local features from videos, constructing a representation of the video in 

terms of these local features and finally, classification [34]. Both our methods, including 

the KLT trajectories analysis and spatial pyramid matching, fit in this framework. In the 

first step, different local features such as histograms of oriented gradients(HOG) [33] or 

trajectories [41] are extracted from videos. In the second step, each video is represented 

by a certain form of its extracted features, such as a histogram [33] [41] or a semantic 

model [40], to capture activities. Finally, supervised learning models such as SVM [3] 

or random forest [30] can be trained using the computed representations of the labeled 

training set. 

2.2 American Football Video Analysis 

Sports video analysis is one of these applications of activity recognition that focuses on 

sports domain. In our work, we mainly focus on the video analysis of one specific sport
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American football. Most of the work on American football analysis focuses on either 

classifying different types of plays or recognizing football formations. In [3], a framework 

for automatic recognition of offensive team formations in American football plays is 

proposed. As one stage of this framework, a method based on the spatial distribution of 

players is used to infer the offensive direction(see more details in Section 3.3). Siddiquie 

et al. [33] come up with a learning based method under discriminative feature selection 

framework for recognizing plays in American football games. In their feature selection 

framework, the spatial pyramid matching is used to capture information of the spatial 

and temporal distribution of the local features, which is similar to our spatial pyramid 

method, but has different types and dimensions of local features compared with our 

method. Using the players’ trajectories as features, a probabilistic generative model 

is introduced to recognize American football plays in [27]. Swears and Anthony [37] 

propose a non-stationary kernel HMM approach which processes player trajectories to 

recognize American football play types. In [19], a mixture of pictorial-structure model 

is used to recognize football formations by locating and identifying players. To classify 

American football plays into different camera view types, a top-down HMM-based video 

representation model is developed in [11]. Due to the challenges of our data-set (Section 

1.2), we believe it is beyond the capabilities of these existing football video analysis 

approaches with restricted assumptions to be successful for our data-set. Specifically, 

these assumptions can be overhead view of football field, video registration, background 

subtraction (e.g. [3]), video stabilization (e.g. [37]), access of certain video features such 

as players’ trajectories (e.g. [27] [37]) or spatial-temporal interest points (e.g. [33]). 
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Chapter 3: Approaches 

We will describe three different approaches in this section. The KLT trajectories analysis 

seeks to detect the wide receivers to predicate the offensive direction. It first detects the 

initial motion of one or more WRs in a football play, then we know that the offense 

is on the side opposite to the direction of this motion. The spatial pyramid matching 

method estimates the players’ spatial layout difference between plays to distinguish their 

offensive directions. It applies the spatial pyramid to extract formation features from 

the players’ foreground football plays, then train a classifier to predict the offensive 

direction using the extracted features and offensive direction labels of our training set. 

The method based on the spatial distribution of players infers the offensive direction by 

applying the insight that offensive formations tend to have smaller variance of players’ 

spatial distribution than defensive formations. The player distribution of the offensive 

or defensive team of a play is modelled by a spatial pmf, and the offensive team is 

determined as the team with a smaller pmf variance. 

Both the KLT tracks and foreground aim to represent the players in different indirect 

ways, which aim to provide us the necessary information of players spatial configuration 

of a play to infer its offensive direction. A player detector is a more direct and popular 

way to detect players, why don’t we use a player detector? With a robust player detector, 

we can easily and explicitly analyze the spatial configuration of players of a play to infer 

its offensive direction. However, it turns out to be rather difficult to have a robust player 

detector for our football videos. For example, we trained a deformable part based model 

(DPM) [16] [13] for players detection, which is one of the most successful model for 
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Figure 3.1: Red bounding boxes represent DPM player detections. There are three 
problems here: the player in the yellow box is missing, the referee in the blue box is 
detected as a player, and two close players in the green box are detected as one player. 

object detection recently. The testing results show that a DPM model is not capable to 

detect all players correctly (e.g. Fig. 3.1) for our videos, mainly due to the limitation 

of the model itself and the challenges of our data-set. Thus, we resort to features that 

are more feasible to generate compared to player detections, such as KLT trajectories 

and players foreground. KLT trajectories and foreground can be noisy, but they can be 

exploited to infer the offensive direction with reasonable analysis. 

3.1 KLT Trajectories Analysis 

3.1.1 Motivation and Overview 

We seek to detect a certain type of offensive players called, wide receivers (WRs), whose 

motion is predictive of which side of the LOS the offense is on. As shown in Fig. 3.2, 

WRs are players that usually line up at the ends of the field, and are isolated from the 

other offensive players. A majority of videos of OD plays show at least one WR. After a 
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Figure 3.2: Two frames showing two wide receivers (in red boxes) running from right to 
left. 

Figure 3.3: Pipeline of KLT tracks analysis method. 

play starts, the WRs will almost always immediately run in the direction of the defense. 

Thus, our approach for offensive direction inference is to detect the initial motion of one 

or more WRs, then we know that the offense is on the side opposite to the direction of 

the motion. Note that there are rare cases of OD plays where there are no WRs on the 

field. In these cases, our approach will produce arbitrary results. The pipeline of our 

KLT track analysis method can be seen from Fig 3.3. Each step of the pipeline will be 

described in detail in the rest of this section. 

3.1.2 KLT Trajectories Generation and Pre-processing 

As an efficient and simple feature extraction approach, the Kanade-Lucas-Tomasi (KLT) 

makes use of the spatial intensity information to search the best match position in the 

image [32]. To detect WRs, we extract and analyze KLT trajectories in order to infer 
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which ones are likely due to WRs, and then infer the WR motion direction based on 

those trajectories. We run the KLT tracker on a sequence of 45 video frames follow

ing the predicted MOS. The extracted point trajectories typically correspond to player 

movement, non-player foreground motion, and background features under camera mo

tion. When a WR is visible, the KLT trajectories are capable of extracting relatively 

long trajectories due to the WR’s characteristic swift and straight-line motion. To help 

remove KLT trajectories caused by camera motion, we use the field lines extracted with 

the method described in [7] to pre-process the KLT trajectories, by measuring the rela

tive motion of each KLT trajectory to its closest field line. Ideally, this relative motion 

is small when a KLT trajectory corresponds to a stationary background feature. This 

allows removing all KLT trajectories whose relative motion falls below a threshold. The 

specific threshold choice is not critical, since the KLT trajectories of WRs generally have 

very large relative motion. 

3.1.3 LOS and Wide Receivers Detection 

Given the remaining KLT trajectories, the key to inferring which ones belong to WRs 

is to use our knowledge that: i) WRs are typically located at the far ends of the LOS, 

and ii) WRs are usually isolated from the majority of players lined up at the LOS. This 

requires first inferring the LOS. We know that the LOS is supposed to have relatively 

large amount of players’ movements when the play starts, because the LOS is usually 

in the region of highest players intensity. The background features such as the logo of 

the field might also have large amount of movements due to camera motion, which is 

taken care of by our camera motion reduction method mentioned above. Further, we 

know that the LOS is always parallel to the field lines. We use a sliding window to scan 
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Figure 3.4: Plot of one video’s KLT trajectories with LOS bounding box (purple rectan
gle) and ranges for WRs (green rectangles). Red (blue) vectors are the KLT trajectories 
outside (inside) the range of the WRs. 

across the frame for the region of highest KLT trajectories intensity, where the medial 

axis of the window is enforced to pass through the estimated vanishing point of the field 

lines (i.e., to be “parallel” under perspective to the field lines). As we scan, the window 

size is adapted to the distance between the detected field lines. The sliding window 

with maximum number of KLT trajectories gives a good estimate of the location of the 

offensive and defensive lines of players. We use two other windows on each side of this 

maximum-gradient window to identify likely areas where WRs are located. Figure 3.4 

shows an example of extracted KLT trajectories, with the maximum KLT trajectories 

intensity window, and the two WR windows. 

3.1.4 Offensive Direction Inference 

Finally, we estimate the motion direction of WRs using a weighted average of the KLT 

trajectories in the two WR windows. In particular, we linearly weight each KLT track 

according to its distance from the center of the maximum-gradient window. This assigns 
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higher weights to KLT trajectories that are more isolated, and hence more likely to be 

due to WR’s motion. We use the direction of the vector resulting from the weighted 

average, relative to the field lines, as the estimated direction of the WR. Note that in 

cases where either the upper or lower WR is not present in the video, this combination 

will tend to be biased in favor of the visible WR, since there will typically be few highly 

weighted KLT trajectories in the WR window not containing a WR [7]. 

3.2 Spatial Pyramid Matching 

3.2.1 Introduction of Spatial Pyramid Match Kernels 

To understand our spatial pyramid matching method, we will introduce the definition 

and methodology of the pyramid match kernel and the spatial pyramid match kernel in 

this section. By treating these two types of plays with different offensive directions as 

two types of scenes, the offensive direction inference can be solved as a scene recognition 

problem. Recognizing the semantic scene category of an image is a significant problem in 

computer vision. Bag of features [15] [39] represents an image by an orderless collection 

of local features, which has achieved impressive performance to recognize the semantic 

category of images. However, bag of features disregard the spatial layout of features, 

which leads to limited ability to describe objects or scenes. Moreover, it is not able to 

localize the position of objects or capture the shape of objects without using the geomet

rical information. To take advantage of the global geometrical correspondence of different 

parts of objects, such as human or football formations, the spatial pyramid matching 

[25] [26] method is proposed. Spatial pyramid matching repeatedly subdivides images 

into increasingly finer sub-regions and computes the histogram of local features inside 
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each sub-region. As a kernel-based method, it computes the geometric correspondence 

on a global scale by applying an efficient approximation method based on the pyramid 

matching scheme of Grauman and Darrell [18]. The experiments in [25] [26] show that 

the spatial pyramid method significantly outperforms the bag-of-features representation. 

Pyramid matching measures the similarity between two sets of feature vectors. It 

repeatedly subdivides the feature space into a sequence of increasingly finer grids and 

computes the weighted sum of the number of the matched features inside each grid at 

all resolution levels. At a certain resolution level, two feature points in the feature space 

are said to be a match if they fall into the same grid. Let X and Y be two sets of feature 

vectors in a d dimensional feature space. The feature space is repeatedly subdivided to 

resolution levels 0, ..., L. Each dimension of the feature space in the lth level is split into 

2dl2l cells. In total, lth level has D = grids. Let H l and H l be the histogram of the X Y 

number of features of all grids at lth resolution level for X and Y . H l (i) and H l (i)X Y 

represent the number of features falling into the ith grid at lth resolution level of X and 

Y respectively. The histogram intersection function [35] of Equation 3.1 computes the 

number of matches between X and Y at lth level. 

DD 
I(H l

Y ) = X (i), HY
l (i)) (3.1)X , H

l min(H l 

i=1 

To be convenient, we will use I l to represent I(H l , H l ). Since each grid at level l can be X Y 

decomposed into multiple finer grids at level l + 1, the matches at level l include all the 

matches at level l + 1. The number of new matches at level l is I l − I l+1 . Intuitively, the 

matches in coarser resolution levels contain less important correspondence information 

because coarser levels involve increasingly dissimilar features. Therefore, the weight of 

level l is set to 1 , which is inversely proportional to the grid size. The pyramid kernel 
2L−l 
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is defined by equation 3.2 as a Mercer kernel [18]. 

L−1D 
(I l − I l+1)kL(X, Y ) = IL + 

1 
(3.2)

2L−l 
l=0 

Pyramid matching performs matching of bag-of-features in appearance(feature) space, 

but totally ignores the spatial information. While, spatial pyramid matching performs 

matching of features in 2-dimensional image space and clustering of features in feature 

space. Assume the features extracted from one image are clustered into M discrete 

types. Each type of features has two sets of 2-dimensional vectors Xm and Ym, which 

represent the image coordinates of features of the image X and Y respectively. The 

spatial pyramid kernel is computed by summing the kernels from all M types: 

MD 
KL = kL(Xm, Ym) (3.3)X,Y 

m=1 

Spatial pyramid kernel is actually a weighted sum of histogram intersections of Xm and 

Ym for all types of features, which is shown by Fig 3.5. To keep the total number of 

features in all images to be consistent, each histogram is normalized by the total weight 

of all features in the images. 

The order of histogram is important to estimate the spatial layout correspondence 

between different images using spatial pyramid matching. For a set of images with 

the same scene(e.g. highway, mountain, forest, etc), the ith grid at the lth resolution 

level is supposed to represent approximately the same part of that particular scene in 

these different images with the same scene. In [25], it assumes different images of the 

same scene have the approximate same scale and occupies the approximate same area to 

guarantee the order. Note that the spatial pyramid kernel not only takes advantage of 
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Figure 3.5: A simple example of a three level pyramid[18]. Three types of features are 
represented by circles, crosses and diamonds respectively. Firstly, the image is subdivided 
into 3 levels. Secondly, count the number of features inside each grid to construct the 
histogram. Finally, compute the weight of different resolution levels using equation 3.2 

the spatial layout information of features, but also maintains a rich visual vocabulary by 

clustering features. According to the experiments in [25], spatial pyramid matching has 

achieved promising results on multiple challenging datasets, which is significantly better 

the orderless bag-of-features method. 

3.2.2 Motivation and Overview 

The spatial pyramid makes use of the spatial layout and the visual vocabulary of features 

to recognize scenes. Both the offensive and defensive team formations have their own 

pattern of players spatial configuration, which are totally different from each other. Thus, 

the formation of the two types of plays with different offensive directions will have vital 

difference in terms of the players spatial layout. By treating these two types of plays as 

two different scenes, it is natural to apply spatial pyramid matching to infer the offensive 

direction. The input of each play is the registered foreground of its MOS frame. The 
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Figure 3.6: Pipeline of spatial pyramid matching method. 

players’ foreground pixel is the local feature. Our spatial pyramid matching method 

follows the pipeline shown by Fig 3.6. All stages of the pipeline will be introduced one 

by one in rest of this section. 

3.2.3 players’ foreground Generation 

Different techniques can be applied to generate players’ foreground for football videos. 

For example,recent work in [3] firstly performs video registration and constructs a back

ground model, then generates plays foreground via background subtraction. As men

tioned in section 1.2, our videos have large variance in terms of camera viewing an

gles/distances, video shot quality, weather/lighting conditions, the color/sizes/patterns 

of football field logos/markings and the scenes around the field, it is impractical to con

struct a background model for each football play of our data-set. But scene segmentation 

is feasible to detect players’ foreground of our football videos. As one of the relatively 

successful methods in scene segmentation, conditional random field [38] is applied to 

segment players’ foreground for the MOS video frame of each OD play in our data-set. 

The MOS frame of an OD play includes all its formation information, which contains 

significant patterns to infer the offensive direction. By focusing on the MOS frame, it 

not only saves the effort of processing and analyzing multiple video frames, but also gets 

rid of the effect of camera motion. The visual quality of one of our foreground results can 

be seen from Fig 3.7. As we can see, the foreground results could have some noise(e.g. 
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Figure 3.7: The left image is the MOS frame of a play. The right image is the foreground 
of the left image. In the right image, the yellow pixels represent the players’ foreground 
and the green pixels represent the background. 

generated by yard lines and field logos), but their quality satisfies the need to infer the 

offensive direction, which can be shown by the experiments. 

3.2.4 Registration 

Image registration refers to the process of transforming a set of images into the same 

coordinate system [5] [17]. Due to different camera views, the size of players and the 

distance between players become different for different football plays in the image space, 

which should be the same in the football field space. Even for the same play, the same 

problem exists because of the perspective. For example, the size of players and the 

distance among players will be shrinked at these positions further away from the camera 

in the image space. To make both the players’ size and the distance between players 

well normalized both within the same play and across different plays, it is necessary to 

register the MOS frame of all plays of one game to the same football field coordinate. The 

registration of foreground is done by applying the perspective transform to the image 

with the homography [1] estimated from the point correspondences labelled manually. 

To compute the homography, we need at least 4 corresponding pairs of points between 
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Figure 3.8: The left image is the registration result of the MOS frame of Fig 3.7. The 
right image is the registration result of the foreground of Fig 3.7. The blue bounding 
boxes represent the LOS detection result in both images. The blue dots inside the LOS 
bounding box are the detected LOS center. 

the MOS frame and the football field model. These corresponding pairs of points can 

be annotated efficiently by making use of these intersection points between the hash 

lines and the yard lines/field boundaries. One registration example of foreground and 

the MOS frame can be seen from Fig 3.8. As can be seen from this example, both the 

players’ size and the distance between players are well normalized after the registration. 

3.2.5 LOS Detection 

As mentioned in Section 3.2.1, the order of features matters for spatial pyramid match

ing. To guarantee the ith spatial pyramid grids of these different plays with the same 

offensive direction represent approximately the same part of the formation, we use the 

LOS center as an anchor point to construct spatial pyramid for each football play. 

We don’t use the same LOS detection result of the KLT tracks analysis here, because 

it is necessary to keep the spatial pyramid matching independent with the KLT tracks 

analysis. Player foreground intensity is supposed to be highest at the LOS region com

pared to other areas in the rectified foreground of MOS frame. A sliding window method 

is used to find the region with highest player foreground intensity as the LOS region. 
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However, since our players’ foreground results are generated from scene segmentation, 

the field logos are possible to be labelled as foreground, because their textures are differ

ent from the other parts of the football field. Moreover, the noise of a field logo can not 

be ignored since its area can be as large as or even larger than the area of LOS region. 

For example, the logo region becomes a false positive result of the LOS detection in the 

middle image of Figure 3.9 by finding the area with the highest players’ foreground in

tensity. To solve this problem, we make use of the information that the uniform color of 

the offensive players on one side of the LOS is usually hugely different from the uniform 

color of the defensive players on the other side of LOS. In contrast, a field logo usually 

has consistent color from one side to the other. Thus, the LOS region can be detected 

by using these two properties: i) highest player intensity property around LOS region 

and ii) the color difference between two sides of LOS. 

Let fgScore(x, y) represent the number of foreground pixels inside the sliding window 

centered at position (x, y). Let clrScore(x, y) be the absolute value of the average color 

difference between the left half and right half of the sliding window centered at position 

(x, y). The LOS score of the sliding widow centered at position (x, y) can be computed 

by summing the normalized foreground score and the normalized color score, which can 

be seen from equation 3.4. In equation 3.5, the position (x, y) whose sliding window 

has the best LOS score will be detected as the LOS center and the corresponding sliding 

window will be detected as the LOS bounding box. The right image of Figure 3.9 shows 

that the correct LOS detection is achieved by incorporating the team color difference for 

the same play of the middle image in this Figure. To be specific about the size of the 

sliding window in our experiment, let d be the distance between adjacent yard lines(i.e. 

5 yard on the football field or 75 pixels in our football field model), the width of the 

sliding window is d and the length is 2d. 
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Figure 3.9: The left image is the registered foreground of the play p. The LOS detection 
of p using foreground can be seen from the middle image. The LOS detection of p using 
both foreground and color is shown in the right image. The blue rectangle represents 
the LOS bounding box in both the middle and right image. 

score(x, y) = fgScore(x, y)/max(x,y)fgScore(x, y)+clrScore(x, y)/max(x,y)clrScore(x, y) 

(3.4) 

LOS center = argmax(x,y)score(x, y) (3.5) 

3.2.6 Feature Extraction 

After having the LOS center, the spatial pyramid is applied to extract the formation 

feature vector from the registered foreground of each play. Our spatial pyramid has four 

resolution levels. The ith level has 22l+2 spatial pyramid cells, which is different from 

the definition of the spatial pyramid introduced in section 3.2.1. In section 3.2.1, the 

spatial pyramid has exactly 1 grid at the first level, while it has 4 in our case. There 

are M = 340 grids at all four resolution levels in total. Still, let d be the distance 

between adjacent yard lines. Each level of the same football play covers the same 16d 

by 16d square region centered at the LOS center in the registered foreground, which 

represents both the offensive and defensive team region. The local appearance feature 
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Figure 3.10: An example of our four-level spatial pyramid. Each level is represented by 
one image. Red rectangles represent the spatial pyramid grids. Blue rectangle is the 
LOS bounding box. Blue dot is the LOS center. 

of the spatial pyramid is the foreground pixel, and the histogram of one spatial pyramid 

grid is computed by counting the number of foreground pixels inside this grid. The total 

formation feature vector is obtained by concatenating the histogram of all cells at all 

resolution levels following a specific order relative to the LOS center. An example of our 

four-level spatial pyramid can be seen from Figure 3.10. 

3.2.7 Classifiers Training 

Given the formation feature vectors and offensive direction labels of the OD football 

plays in the training set, our goal is to train a classifier to predict the offensive direction 

for football plays. We use three kinds of supervised classifier: SVM, random forest and 

KNN. All these trained classifiers are tested with leave-one-play-out validation, whose 

results can be seen from the experiments. 

SVM is an efficient model for classification. SVM represents each training example 

as one point in the feature space and attempts to make the gap as wide as possible to 

separate training examples of different categories [10] [6]. Testing examples are mapped 
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into the same feature space and classified to a category according to which side of the gap 

they fall into. Considering the complexity and variance of the spatial layout of different 

formations, it is mostly possible that the formation features are not linear separable 

in the original feature space, which makes linear SVM not suffice. Fortunately, SVM 

is able to perform classification for non-linear separable data-sets by using the kernel 

trick[20] [21], which maps the training data points into an implicit high-dimensional 

feature space by applying kernel functions. The kernel function is equivalent to an inner 

product in the implicit transformed feature space, which makes the computation more 

efficient than the explicit computation of the coordinates. We already defined the spatial 

pyramid matching kernel in equation 3.3 for our problem, which measures the similarity 

between formations. Therefore, it is natural to train a SVM classifier with the spatial 

pyramid kernel to infer offensive directions for football plays. 

Random forest is an ensemble classifier, which constructs multiple decision trees to 

perform training and predicts the output as the majority vote of the individual decision 

trees [8] [4]. By training a set of individual decision trees, random forest overcomes the 

overfitting problem of the decision tree to the training set. A decision tree divides the 

feature space into axis-parallel rectangle regions and labels each rectangle region into one 

of the K classes [31], which makes random forest a reasonable classifier for the offensive 

team direction inference. Intuitively, the random forest will divide the feature space 

into different regions based on the spatial layout of all players to predict the offensive 

direction. 

The k-Nearest Neighbours (kNN for short) is a non-parametric classifier [2]. The 

testing example’s k closest training examples in the feature space are picked as its neigh

bours, and the testing example is classified by a majority vote of the classes of these k 

closest neighbours [9]. k is usually a small positive number. kNN is also a reasonable 
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classifier for the offensive inference, because these OD plays with the same offensive 

direction tend to have similar formations. 

3.3 A Method Based on the Spatial Distribution of Players 

Both the offensive and defensive formation have repetitive spatial structures. The differ

ence between the spatial layout of the offensive and defensive formation can be exploited 

to distinguish them. The positions of the offensive team players are usually more compact 

on the football field, especially around the LOS or along the horizontal(y axis) direction 

of the field, while the players in defensive formation are usually more spread in order 

to increase the defense area, which can be seen from the formation of Figure 3.11 and 

Figure 3.12. Based on this difference between the offensive and defensive formation, in 

[3], the offensive direction is determined as the side of the LOS whose spatial distribution 

of players’ foreground has smaller variance. The player distribution on one side of LOS 

is modelled by a spatial pmf as shown in Equation 3.6. The probability that a player 

exists at position (x, y) in the registered foreground is computed as a function of the 

foreground value fg(x, y) at (x, y). The side d which has smaller variance is determined 

to be the offensive direction, as shown in Equation 3.7. 

fg(x, y)
p(x, y|d) =  ; [d ∈ {left, right}] (3.6)

fg(x, y)(x,y)∈d 

offense team direction = argmax σ(p(x, y|d)) (3.7) 
d∈{left,right} 
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Figure 3.11: An example of football formation from Wikipedia (http : 
//en.wikipedia.org/wiki/Americanf ootballrules). Red O symbols represent offensive 
players, blue X symbols represent defensive players. In this diagram, the offense is in the 
I formation and the defense is in the 4-3 formation, which are both common formations. 

Figure 3.12: The MOS frame of one football play in our dataset. The left yellow team 
is on defense and the right white team is on offense. 
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Chapter 4: Experiments and Results 

In this section, we will first describe the data-set for our experiments. Then we will 

show the overall quantitative results for these three approaches: the KLT trajectories 

analysis, spatial pyramid matching with different classifiers, and the method based on 

players spatial distribution. To know how our LOS detector works, we will also evaluate 

the LOS detection accuracy based on the ground truth of the LOS. Then experiments 

with different parameters are performed on spatial pyramid matching in order to analyze 

it in further detail. Specifically, we will discuss the SVM with different kernels and the 

KNN with different K. Finally, we will discuss the running time of each method. 

4.1 Data-set 

Our data-set of study is provided by a large company which offers the web service of 

football videos for over 13,000 high school, college, and professional teams. Specifically, 

our data-set includes 10 diverse, real-world football games, which were selected by the 

web-service company from their database in an attempt to cover the wide diversity of 

football videos [7]. The football video diversity includes camera viewing angles/distances, 

video shot quality, weather/lighting conditions, the color/sizes/patterns of football field 

logos/markings, and the scenes around the field. These selected 10 games have 1450 

plays in total, among which 1190 plays are on OD. The true MOS and team direction 

of each play are annotated to allow for more refined evaluations. The MOS can also 

be predicted with relatively good accuracy on average using our approach in [28]. The 
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automatic registration (e.g. the automatic registration method in [3]) doesn’t have good 

performance for our challenging data-set, but we need the registration for both the spatial 

pyramid matching and the player distribution method. Thus, we manually annotated 

the corresponding pairs(at least 4) of points between the original MOS frame and the 

football field model to perform registration for all OD plays of 4 games(436 OD plays). 

Moreover, we did the annotations of the LOS center for all OD plays of 1 game(101 

OD plays) to validate our LOS detection methods. Since it takes a lot of manual effort 

to do the annotation, especially for the corresponding points of registration, we didn’t 

annotate all 10 games. 

4.2 Quantitative Results 

4.2.1 Accuracy of Different Methods 

The accuracy of different methods for both true MOS and predicted MOS can be seen 

from Table 4.1. The KLT trajectories analysis is tested on all 10 games(1119 plays). 

The spatial pyramid matching method and the method based on the players spatial 

distributions are tested on the 4 games(436 plays) with registration annotation, since 

they need the registered foreground. To compare the accuracy of the KLT trajectories 

analysis with other methods, the KLT trajectories analysis method is also tested on these 

4 games(436 plays) with registration annotation. Leave-one-play-out is used to test the 

spatial pyramid matching with different classifiers(SVM, random forest and KNN) in 

order to access how the model will generalize to an independent data set [23], whose 

accuracy can be seen from Table 4.1. 

Four conclusions can be made from the accuracy of all methods. Firstly, the accuracy 
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of the predicted MOS is close to the accuracy of the true MOS, which shows that our 

predicted MOS is reliable enough. Secondly, spatial pyramid matching method has best 

performance and the method based on players spatial distributions has worst perfor

mance. The most important information of a formation is its spatial layout of players, it 

is not surprising that these methods which take better advantage of this information will 

have better performance. The spatial pyramid models the spatial layout of all players in 

the formation of a play. The KLT trajectories analysis uses the spatial layout informa

tion of a certain type of players-wide receivers. The player spatial distribution method 

relies on the conclusion that the offensive team players tend to have smaller distribution 

variance than defensive team players, but the variance difference can be relatively small 

for a lot of football plays, and it can easily be affected by foreground noise(e.g. yard 

lines) compared to these two other methods. Thirdly, different classifiers(SVM, random 

forest and KNN) have similar accuracy for the spatial pyramid matching. Fourthly, 

both the accuracy of KLT tracks analysis and spatial pyramid matching are above 85% 

for either the predicted MOS or true MOS, which shows the effectiveness of these two 

methods. 

Method True MOS Predicted MOS Number of Plays 
KLT Trajectories Analysis 0.87 0.86 1119 

KLT Trajectories Analysis 0.88 0.86 436 
Spatial Pyramid with SVM 0.93 0.90 436 

Spatial Pyramid with Random Forest 0.92 0.91 436 
Spatial Pyramid with KNN 0.90 0.90 436 
Players Spatial Distribution 0.62 0.61 436 

Table 4.1: Accuracy of different methods
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Figure 4.1: Three error cases of KLT trajectories analysis. For each image of a certain 
play, purple rectangle is the LOS bounding box, green rectangles are the ranges for 
WRs, red (blue) vectors are the KLT trajectories outside (inside) the range of the WRs. 
From left to right, the main error sources for these 3 cases are: wrong MOS detection 
and large camera motions, inexact low WR range detection, and LOS detection failure, 
respectively. 

4.2.2 Error Sources Analysis 

There are different error sources which lead to the failure cases of different methods. 

Wrong LOS/MOS detections, missing of WRs, and inaccurate WRs’ estimation of ar

eas(e.g. caused by the unnormalized distance between players) could lead to the failure 

of KLT tracks analysis, which can be seen from these three failure cases in Figure 4.1. 

The error sources of spatial pyramid matching could be: wrong MOS/LOS detection, 

noisy foreground, and missing players, which can be seen from Figure 4.2. Except the 

wrong LOS and MOS detection, the failure reasons for the method based on players 

spatial distribution could be: noisy foreground and relative small variance difference 

between the spatial players distribution of the offensive and defensive team. One failure 

case of the method based on players spatial distribution is shown in Figure 4.3. The 

offensive direction of the same play in Figure 4.3 can be correctly predicted by the 

spatial pyramid matching using the same foreground, which shows that spatial pyramid 

matching are more robust to the noisy foreground. 
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Figure 4.2: Three error cases of spatial pyramid matching. In each image, red rectangles 
represent the spatial pyramid cells, blue rectangle is the LOS bounding box, blue dot 
is the LOS center. From left to right, the main error sources for these 3 cases are: 
wrong LOS detection caused by both the field logo and wrong MOS detection, missing 
of players and false positive foreground generated by the field logo, and wrong MOS 
detection, respectively. 

Figure 4.3: One error case of the players spatial distribution method, which is due to: 
i) the difference of the variance between the players spatial distribution of offensive and 
defensive team is relatively small, ii)false positive player foreground generated by field 
logos/boundaries/markings. 

4.2.3 LOS Detection Evaluation 

KLT trajectories analysis requires LOS detection in order to infer the region of WRs. 

LOS detection is also important to extract features from a play using spatial pyramid. 

Moreover, the players spatial distribution method also relies on the LOS detection to 

distinguish the offensive and defensive team. In Figure 4.4 and 4.5, the LOS center 

detection accuracy are measured with different offset pixel distance relative to the LOS 

center ground truth for 101 OD plays of a game for both KLT tracks analysis and spatial 
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Figure 4.4: LOS center detection accuracy for KLT tracks analysis with different offset 
pixel distance. 

pyramid matching, respectively. As can be seen, both methods achieve an above 90% 

accuracy when the offset distance reaches 150 pixels, which shows the effectiveness our 

LOS detection methods. The LOS center detection for spatial pyramid matching method 

performs better than KLT tracks analysis, for example, when the offset distance is 100 

pixels, the accuracy of spatial pyramid matching achieves 100%, which outperforms the 

approximate 80% accuracy of KLT tracks analysis. 

4.2.4 SVM with Different Kernels 

To compare the performance of SVM with different kernels, we performed the leave-

one-play-out test on these 436 plays with the registration annotation for SVM with 

different kernels, including spatial pyramid matching, linear, polynomial, radial basis 

function and sigmoid kernel. The results are shown in Table 4.2. The accuracy of spatial 



31 

Figure 4.5: LOS center detection accuracy for spatial pyraimd matching with different 
offset pixel distance. 

pyramid matching kernel is significantly better than these 4 other types of kernels, which 

shows that the spatial pyramid matching is able to capture the essential spatial structure 

information of formations and estimate the similarity between formations. 

SVM Kernel True MOS Predicted MOS 
Spatial Pyramid 0.93 0.90 

Linear 0.58 0.55 
Polynomial 0.55 0.55 

Radial Basis Function 0.55 0.55 
Sigmoid 0.55 0.55 

Table 4.2: Leave-one-play-out accuracy of SVM with different kernels.
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4.2.5 KNN 

To see the effect of different K value, the leave-one-play-out test for KNN is performed 

on these 436 OD plays with registration annotations with different Ks, whose accuracy 

can be seen from Table 4.3. As can be seen from the result, smaller Ks(e.g. from 1 to 

5) have better performance than bigger Ks. This is reasonable because the bigger the 

K is, the more dissimilar cases will be contained in the selected nearest neighbours. 

K True MOS Predicted MOS 
1 0.90 0.90 
2 0.88 0.86 
3 0.88 0.89 
4 0.90 0.90 
5 0.90 0.91 
10 0.88 0.90 
50 0.84 0.85 
100 0.83 0.83 
200 0.81 0.82 

Table 4.3: Leave-one-out accuracy of of KNN with different K 

4.3 Running Time Analysis of Different Methods 

We have already discussed the performance of different methods in term of accuracy. 

Considering the real-world football video data-set usually has huge size, it is also im

portant to show that all these methods have reasonable running time. Our code is 

implemented in C++ using OpenCV library and tested on a Red Hat Enterprise 64 bit, 

3.20 GHZ machine. The generation of KLT trajectories for 45 video frames following 

the MOS takes 10 − 15 seconds per play. The KLT trajectories analysis for offensive 

direction inference takes 1 − 2 milliseconds per play. The players’ foreground generation 
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takes approximately 1s per MOS frame. For the spatial pyramid matching method, it 

takes 1 − 2 seconds to extract features from the foreground of the MOS frame of a play. 

The leave-one-play-out test of one play among 436 plays(including training on 435 plays 

and testing one play) takes approximately 0.5 − 1 second for SVM(no matter the type 

of kernel), 10 − 15 seconds for random forest and 1 − 10 milliseconds for KNN. Finally, 

the running time of the players spatial distribution is 0.5 − 1 second per play. Overall, 

all methods are fast enough for practical use. The main time consuming part for KLT 

trajectories analysis is the generation of KLT trajectories. The training takes most of 

the time for spatial pyramid method, but the training only needs to be done once in real 

application with a representative training set. 
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Chapter 5: Conclusion 

We have described three different methods for offensive direction inference of American 

football videos. The KLT trajectories analysis method seeks to detect the wide receivers 

to predict the offensive direction. The spatial pyramid matching method estimates the 

spatial layout correspondence of the players’ foreground between the two types of plays 

with different offensive directions to distinguish them. The player spatial distribution 

method infers the offensive direction based on the conclusion that the offensive formation 

tend to have smaller player spatial distribution variance than the defensive formation. 

All these methods have been evaluated on a large data-set of real-world football videos 

with wide variations of video conditions and formations. The evaluation shows that both 

our KLT trajectories analysis and spatial pyramid matching methods achieve promising 

results(above 85% accuracy), which is close to being usable for real-world applications. 

The most essential information of a formation is its spatial layout of players, which 

can be shown by the convincing performance of the spatial pyramid matching. Future 

work such as offensive formation recognition can also resort to the spatial layout of 

players. But we probably need more complex models to capture the spatial structure 

of different types of offensive formations in more details, because the difference between 

different offensive formations will not be as obvious as the difference between offensive 

and defensive formations. 
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