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In this thesis, maximum likelihood Doppler frequency estimation and phase

noise suppression algorithms for Orthogonal Frequency Division Multiplexing

(OFDM) systems are presented. A novel handover decision algorithm for wireless

systems, called predictive base station switching (PBSS), is also introduced.

The maximum Doppler Frequency is the ratio of the speed of the mobile

user and the carrier frequency. The Doppler frequency information of each mobile

can be exploited to minimize the number of handover scenarios and to improve

channel estimation. The estimation of this quantity in time-varying multipath

channels is performed in this thesis by a frequency-domain approach that utilizes

pilot subcarriers, which are commonly implemented in most practical OFDM sys-

tems. In the proposed estimator, the effect of the intercarrier interference (ICI)

caused by the time-varying fading is taken into consideration with a proper model

for accurate results. The Cramer-Rao bounds are also derived and simulation

results are provided to quantify the performance of the algorithm.

This thesis also presents a maximum likelihood approach exploiting the

OFDM pilot subcarriers to suppress phase noise due to imperfect local oscillators.

This algorithm does not require perfect channel equalization and is applicable for



the two common types of oscillators: phase-locked and free-running oscillators.

Furthermore, doubly-selective fading is considered rather than assuming time-

invariant and/or flat fading channels.

Finally, a new handover decision algorithm, PBSS, is presented. PBSS is

designed for broadband wireless access (BWA) systems (where users can travel at

vehicular speeds) that typically have small cell sizes due to high-data-rate trans-

mission. High-mobility users of BWA systems usually need to perform frequent

handovers, which degrades the overall network performance. PBSS uses mobile

speed and direction information to reduce the number of handovers without de-

grading the received signal level. Simulation results show that PBSS performs

better than algorithms solely based on information of signal strength and distance

and has a comparable outage probability, even when the users move randomly or

accurate direction and speed information is unavailable.



c©Copyright by Orhan Can Özdural
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Performance-Improving Techniques for Wireless Systems

1. INTRODUCTION

1.1. Background and Motivation

It is not a dream anymore to have a hand-held device that not only merges

mobile phone and personal digital assistant (PDA) devices together, but also per-

forms as MP3 player and an access point to a certain network. Such devices must

effectively combine different wireless standards. Such a device would need the ca-

pability of connecting to Wireless Local Area Networks, Personal Area Networks

and Wide-Area Networks. Thus improving the performance of each of these wire-

less standards would be a very significant contribution to the ongoing research

efforts in the area.

As wireless systems are used by more people and become a permanent

part of our daily lives, future wireless systems in all forms will have to provide im-

proved data rates for a given bandwidth to address the needs of new applications,

standards and devices. To be able to provide more bandwidth, the performance

of the wireless systems must be optimized. In this thesis, three novel techniques

to improve the performance of Wireless Systems are provided, each focusing on a

different aspect of the problem.
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TABLE 1.1. Comparison of different Wi-Fi standards.

Standard Modulation Type Max. Data Rate Op. Frequency

802.11b CCK/DSSS 11Mbps 2.4GHz

802.11g OFDM 54Mbps 2.4GHz

802.11a OFDM 54Mbps 5GHz

802.11n MIMO/OFDM 200Mbps 2.4 or 5GHz

1.1.1. Comparison of Different Wireless Standards

1.1.1.1. Wireless Local Area Networks (WLAN)

Wireless Local Area Networks (WLAN) can be considered as an implemen-

tation of Local Area Networks (LAN) using microcellular wireless systems, which

cover a small geographic area, like a home, an office or a small-sized building.

The smaller geographic range allows WLAN to have higher data rates compared

to larger wireless networks. These networks are also frequently called Wi-Fi net-

works, which is a trademark of the Wi-Fi alliance. This alliance is a trade orga-

nization that also certifies equipment compliance with IEEE 802.11 standards [1].

The variations between different IEEE 802.11 schemes are presented in the Table

1.1.

The first Wi-Fi standard, 802.11b was based on a form of Direct-Sequence

Spectrum Spread (DSSS) CDMA modulation scheme called Complementary Code

Keying (CCK) and operates at 2.4GHz. The following standard, 802.11g, has

changed the modulation scheme to OFDM with backwards compatibility with

802.11b schemes. Later, due to the relatively high interference at 2.4GHz, a new

standard called 802.11a, also based on OFDM, has been developed operating at
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5GHz. The next addition to the 802.11 standards will be 802.11n, which will

have a Multiple-Input Multiple Output (i.e. using multiple antennas at both the

transmitter and the receiver side) OFDM (MIMO-OFDM) scheme, which will

considerably increase the data rate due to the increase in the capacity provided

by spatial multiplexing [2], [3].

WLAN systems allow LANs to be deployed without any cables, which

reduces the cost of network deployment. Another important advantage WLAN

brings over conventional LAN is the ease of network expansion, making it possible

to connect new devices to the same network. Unlike cellular carriers and other

cable-based broadband Internet access schemes, Wi-Fi is based on a set of global

standards, which allow the devices to work in any country independent of the

country of origin of the device. The wide-availability of public hot-spots is also

another advantage of WLAN systems, which is caused by the relatively low silicon

pricing of such systems.

However, WLAN systems also have some disadvantages associated with

them, their small geographic area being the foremost one. Furthermore, the spec-

trum assignments vary in different regions of the world, which requires the current

region to be determined during the initial network setup. Another problem arises

if the number of users of a WLAN system is high, increasing inter-channel in-

terference. The bands in which IEEE 802.11 standards operate is the unlicensed

spectrum near 2.4GHz (except for 802.11a, which operates around 5GHz), and

many other wireless devices, including amateur radio, using this range might

cause significant disturbance.

The information security problems of WLAN systems further compound

the problem, as the information provided by the user might be intercepted. The

regular encryption standard, Wired Equivalent Privacy (WEP), has been shown to
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be breakable even when correctly configured [4]. Secondary encryption standards

known as Wi-Fi Protected Access (WAP and WAP2), offer stronger encryption

schemes if appropriate passwords are used. However, the standard mode of op-

eration of public WLAN access points is generally encryption-free, as it would

not make sense to encrypt the information if the password would be available to

everyone.

1.1.1.2. Personal Area Networks (PAN)

Personal Area Networks (PAN) are intended to connect two devices that

are close to each other. The most common examples of PAN networks are Blue-

tooth [5] or Wireless USB [6]. These networks are called personal as the devices

they connect theoretically belong to the same person: peripherals such as key-

board, mouse, printer, digital camera to a computer; computer, palm or mobile

phone to a headset; mobile phone to PAN equipped vehicle; game controller to

the games console; a laptop computer to a desktop station, etc. The devices can

even be in different rooms, as long as the signal level is above a certain level. The

reach of PAN is generally limited to a few meters.

The inherent difference between WLAN and PAN lies in their design goals.

Some PAN types (such as Bluetooth) use the same spectrum as WLAN. WLAN

devices are built to fully replace cable-based LANs, whereas PANs are intended

to provide a wireless low-power, high-efficiency scheme to allow basic communica-

tion between different devices and their peripherals. WLAN has a higher power

consumption, larger geographical range, higher data rates and better security.

However, it would be truly unwise to expect a headset to connect to a mobile
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phone via WLAN, due to size, cost and power consumption considerations. This

is the reason why, many devices are equipped with both standards.

1.1.1.3. Wide-Area Networks (WAN)

Wide-Area Networks (WAN) can be classified as high data rate networks

that cover larger areas compared to WLAN. The range of WAN systems depend

on the coverage of the service provider, however it would be reasonable to assume

they will be available in all major city centers in the near future.

To provide examples of WAN systems, one can cite schemes that work

over existing 2G cellular systems, such as General Packet Radio Service (GPRS)

and Enhanced Data rates for GSM Evolution (EDGE); pure 3G systems such as

Evolution-Data Optimized (EV-DO) for CDMA2000 standard, High-Speed Up-

link Packet Access (HSUPA) and High-Speed Downlink Packet Access (HSDPA)

for Universal Mobile Telecommunications System (UMTS) standard; and broad-

band wireless access schemes, such as (Worldwide Interoperability for Microwave

Access) WIMAX (i.e. IEEE 802.16 standard).

It should be noted that 2G extension schemes, such as GPRS, are developed

strictly for mobile phone applications, whereas 3G schemes, such as EV-DO, can

be considered as a means for broadband Internet access replacement. WIMAX,

which is purely packet-switched, is developed independent of a cellular network

and can provide higher bandwidths. Generally all 2.5G/3G systems can actually

be considered as add-ons to what is essentially a voice service. WIMAX, theoret-

ically, can also provide voice services through Voice-over-IP (VoIP). WIMAX is

also considered as a Metropolitan Area Network (MAN).
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TABLE 1.2. Comparison of WLAN and WAN systems.

Standard Type Uplink Downlink Indoor Range

WI-FI / 802.11b WLAN 11Mbps 11Mbps ∼30m

WI-FI / 802.11g WLAN 54Mbps 54Mbps ∼30m

WI-FI / 802.11a WLAN 54Mbps 54Mbps ∼30m

WI-FI / 802.11n WLAN 200Mbps 200Mbps ∼50m

GPRS WAN 0.080Mbps 0.040Mbps

EDGE WAN 0.474Mbps 0.474Mbps

EV-DO 1x Rev. B WAN 4.9Mbps 1.8Mbps

HSDPA WAN 14.4Mbps 0.384Mbps

HSUPA WAN 14.4Mbps 5.760Mbps

WIMAX / 802.16e WAN 70Mbps 70Mbps

It is important to note however, that the use and design considerations

of WLAN and WAN (especially WIMAX) systems are completely different, as it

was the case for PAN and WLAN systems. WAN systems basically have a higher

geographical coverage, and this allows continuous network access regardless of the

location of the user in a WAN deployed urban area, however the data rate might

be relatively low. WIMAX, on the other hand, is further intended to replace

Digital Subscriber Line (DSL) for Business Offices.

Table 1.2 provides the comparison of different WLAN and WAN systems in

terms of downlink/uplink capacity, type of wireless service and the indoor range

of the service (if applicable) [7].

In any case, it would not be unreasonable to expect a hand-held device to

be compatible with at least one PAN (e.g. Bluetooth), one WLAN (e.g. IEEE
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802.11n) and one WAN (e.g. EV-DO) standard along with a voice service. Thus,

helping to solve the problems of these different but necessary technologies, as done

in this thesis, would be a very important contribution to the ongoing research and

development efforts on wireless systems.

1.1.2. Maximum Likelihood (ML) Maximum Doppler Frequency
Estimation

Orthogonal frequency division multiplexing (OFDM) has been adopted by

many Wi-Fi and WAN wireless standards such as IEEE 802.11a [9] and 802.16e

[10] and has been implemented in many practical systems. OFDM systems are

chosen over other alternatives as they have superior performance in frequency-

selective channels, and they allow the efficient use of the available bandwidth.

t

d

transmitter

FIGURE 1.1. Geometry associated with Doppler shift.
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To be able to explain the effect of Doppler, one can make use of Fig. 1.1

[8]. In this figure, the received signal may undergo a narrowband Doppler shift of

fD = v cosθ/λ, where θ is considered to be the arrival angle of the received signal

relative to the direction of motion, v is the receiver velocity towards or away from

the transmitter in the direction of motion, and λ = c/fc is the signal wavelength

(c = 3×108 m/s is the speed of light, and fc is the carrier frequency). The Doppler

shift basically is the result of transmitter or receiver movement over a short time

interval ∆t, which causes a slight change in the distance (∆d) the transmitted

signal needs to travel to reach the receiver (∆d = v∆t cos θ). The phase change

due to this path length difference is ∆φ = 2πv∆t cos θ/λ. The Doppler frequency

can then be obtained as in Eq. 1.1 [8]

fD =
1

2π

∆φ

∆t
= cos θ v/λ. (1.1)

The maximum Doppler frequency, fd, can then be obtained as the maxi-

mum fD, which is the ratio of the speed of the mobile user and the wavelength

of the carrier, fd = v/λ. Knowledge of mobile speeds is critical in improving the

performance of multi-cell wireless communication systems. For example, in the

pico-cell deployment overlaying with existing macro-cells, the Doppler frequency

information of each mobile allows optimization of user assignments to proper

base stations, and thus minimizes the number of handover scenarios. The mo-

bile speed information is also very critical for implementing a number of physical-

and network-layer functions such as adaptive and fast link adaptation, and accu-

rate channel prediction. Thus, the scheduler gain due to multiuser diversity and

spectral efficiency of the system can be increased.

In [18], an autocorrelation-based scheme for maximum-Doppler-frequency

estimation was proposed for single-carrier systems, where the estimate is obtained
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using the envelope of the received signal. In [19], a method based on the differ-

entials of the channel estimates is employed for the estimation process. Another

method based on the level-crossing rates was proposed in [20]. In most OFDM

systems, a cyclic prefix (CP), which is the replica of the OFDM symbol tail, is

used as the guard interval. In [21], the correlation between the tail of the OFDM

symbol and the guard interval was exploited to estimate fd, where the effects of

intersymbol interference (ISI) was not considered. In [22], the estimate of fd is

obtained via a maximum-likelihood (ML) based time-domain method for TDMA

and CDMA systems. The application of this algorithm to OFDM systems was

presented in [23], where time-domain channel estimates were used to obtain the

maximum Doppler frequency estimates. In this model, the channel is not esti-

mated based on pilot subcarriers, but by using preambles and inserting frequent

mid-ambles, and in the frequency domain approach, the ICI is ignored. Thus, an

error floor is observed.

In this thesis, an ML algorithm of Doppler frequency estimation for OFDM

systems is presented in Chapter 3. This part of the thesis focuses on wireless

systems (generally WAN or WLAN) that employ the OFDM scheme.

1.1.3. ML Phase Noise Suppression

Although OFDM systems provides many advantages in the implementation

of wireless systems, one of its main disadvantages is its sensitivity to phase noise,

which is a random process caused by fluctuations of the transmitter and receiver

oscillators [26] and time-selective fading. Both phase noise and time-selective fad-

ing destroy the orthogonality among subcarriers, causing inter-carrier interference

(ICI). Many future-generation wireless systems will use higher frequency bands
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(e.g., 60 GHz radio). Voltage-controlled oscillators (VCO) with low phase noise

operating at these frequencies, although feasible [27], are usually expensive. Al-

ternatively, such a high-frequency carrier could be generated by multiplying the

output of a VCO operating at relatively low frequency with a reference signal at a

frequency close to the carrier frequency. In this case, both phase noise and fading

rapidity scale up linearly relative to the conventional radios (e.g., those operating

at 5 GHz).

Depending on whether the local oscillator is a phase-locked loop (PLL) or

is frequency-locked (free-running), phase noise can be categorized by two different

models. For the former, phase noise can be modeled as a zero-mean, stationary

random process with finite power [29], whereas for the latter, phase noise is a

zero-mean, nonstationary Wiener process with infinite power. As suggested in

[28], even though the phase noise process cannot always be assumed as stationary,

the phase noise disturbance can be. The phase noise effects can be reduced to a

certain extent by improving the performance of the local oscillator itself; however,

this could be costly. Hence, it is important to develop simple, low-complexity

alternatives to expensive VCOs.

The effects of phase noise have been analyzed extensively by existing work,

which generally consider time-invariant channels. In [26], the bit-error-rate (BER)

sensitivity of OFDM systems over AWGN channels is analyzed, where phase noise

is assumed to be a Wiener process. Similarly in [30], the effects of the Wiener phase

noise on different modulation schemes for OFDM systems are characterized. In

[31], the dependence of phase noise effects on subcarrier spacing is studied and in

[32] this analysis is extended to study the system performance with varying num-

bers of subcarriers. A general analysis that unifies and extends previous results is

provided in [28]. In [29], a feed-forward phase noise correction method based on
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pilot subcarriers is presented. A method to suppress the phase noise employing a

minimum-mean square error (MMSE) equalizer and assuming quasi-static fading

for multiple-input multiple-output (MIMO) wireless local area networks (WLAN)

is presented in [33]. In [34], a blind detection method in the presence of PLL

phase noise is provided based on the expectation-maximization (EM) technique;

however, no fading model is considered and the phase noise is modeled as the

output of an autoregressive moving average (ARMA) system driven by a white

Gaussian noise, which is not an exact model.

In Chapter 4, a ML phase-noise estimation and suppression scheme is de-

rived. This part of the thesis also focusses on wireless systems that employ the

OFDM scheme.

1.1.4. Predictive Base Station Switching for Broadband Wireless
Systems

Broadband wireless access (BWA) systems such as WIMAX (i.e. IEEE

802.16e [10]) are expected to support high-mobility mobile stations (MS). High-

data-rate transmission requires strong received signal levels; thus micro-cells or

pico-cells are commonly deployed for BWA. Traditional handover decision algo-

rithms developed for mobile cellular communications usually result in an excessive

number of handovers, when applied to BWA micro- or pico-cell systems, due to

possible high user speeds and smaller cell sizes. This will be a setback for handover

schemes that require considerable amount of network resources since there will be

a significant handover overhead, resulting in a reduced overall network through-

put. In addition, the delay caused by the handover process might be a problem for

delay-sensitive applications. Although faster handover algorithms have previously
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been proposed [39], the ideal solution to reduce handover delay and overhead is

to minimize the number of handovers while maintaining the received signal level.

Most of the existing handover algorithms are developed for mobile cellu-

lar systems that operate in macro-cell configurations and that have less restrictive

bit-error-rate (BER) requirements compared to BWA systems. Hence, minimizing

the number of handovers is far more critical for micro-cell or pico-cell networks.

Mobile speed and traveling direction information, when appropriately exploited,

could help increase the efficiency of handover algorithms. In [40], a method based

on the maximum Doppler frequency to dynamically change the measurement in-

tervals for handoff decisions based on mobile speeds is provided, and a similar but

more comprehensive work can be found in [41]. An algorithm employing global

positioning system (GPS) with a hysteresis parameter that is regulated based on

the distance between the MS and surrounding base stations (BS) is presented for

wideband code-division multiple-access systems in [42]. Similarly, in [43], a soft

handover scheme based on dynamically adjusted hysteresis values based on the

MS direction is presented, where a BS to which the MS is approaching is favored

over a BS from which the MS is receding. A seamless handoff architecture with an

integral movement tracking algorithm can be found in [44], where the direction is

estimated from the location measurements of the MS. The direction information

is used to decide on the movement patterns: linear, stationary, or stochastic.

The goal of Chapter 5 is to develop a new handover algorithm, called

predictive base station switching (PBSS), which will dramatically reduce the han-

dover rate without degrading the received signal levels. This is achieved by utiliz-

ing the mobile speed and direction information. This algorithm can be used for

hard handover schemes to decide the new target BS, for soft handover schemes
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to select the new anchor BS, and even for softer handover schemes to create a

connection with an active BS in the diversity list.

Chapter 5 mainly focusses on WAN systems (especially WIMAX).
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1.2. Contributions

1.2.1. Contributions provided by ML Maximum Doppler Fre-
quency Estimation

This algorithm presented in Chapter 3 is a frequency-domain approach

which can be readily applied to any OFDM system as it is based on the already-

existing pilot subcarriers, and hence it does not cause additional system overhead

as mid-amble based algorithms. The estimator can be implemented as a low-

complexity, finite impulse response (FIR) filter bank, whose coefficients can be

pre-calculated and conveniently stored in the system memory.

It is well known that time-varying fading causes intercarrier interference

(ICI) in OFDM systems. However, existing work on Doppler estimation has not

properly modeled ICI effects. A novel ICI model is provided taking into considera-

tion its effects for accurate estimation results in order to avoid an error floor. The

algorithm accommodates different choices of design parameters, allowing flexible

performance-complexity tradeoffs. The Cramér-Rao lower bound is also derived

for the presented algorithm.

1.2.2. Contributions provided by ML Phase Noise Suppression

Main contributions provided by the work presented in Chapter 4 are as

follows:

(a) The fast time-varying aspect of the channel is incorporated, and the

effect of ICI is included in the phase noise suppression. While this type of mod-

eling is more practical, a great majority of the existing works only consider time-

invariant, or quasi-static channels. As will be shown in Section 4.4, when both fast
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time-varying fading and phase noise are considered, the effect of the phase noise,

unlike the case for time-invariant fading channels, cannot be readily separated

from the channel coefficients and data symbols to be presented as a simple com-

mon phase error (CPE) term. To make the analysis and suppression of phase noise

tractable, an approximation to the phase noise is presented with justification.

(b) The method provided is valid for both the phase-locked and free-

running cases.

(c) Phase noise correction is performed without assuming perfect channel

equalization, whereas in much of the prior work, the channel is assumed to be

known prior to the phase noise suppression, which is not realistic. The phase

noise estimation is performed using the pilot subcarriers that are embedded in

practical OFDM systems. The major components to implement the proposed ML

approach can be stored in the system memory for reduced complexity.

(d) A doubly-selective fading environment is considered rather than as-

suming a time-invariant and/or flat-fading channel.

1.2.3. Contributions provided by Predictive Base Station Switch-
ing

The algorithm proposed in Chapter 5 differs from existing algorithms based

on direction and speed in many ways:

(a) It employs signal measurements and MS-BS distance to decide whether

a handover is necessary.

(b) A decision metric is calculated for each BS, considering the fact that

even if the MS is approaching two base stations, the MS might remain connected

to one of them much longer than the other one.
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(c) The length of the prediction step is variable and is based on the MS

speed.

(d) The degradation in the received signal levels as a result of using PBSS

is negligible, and

(e) It does not require a movement pattern.

It is demonstrated via simulation results that even when the MS moves

randomly or when the direction information is not available, the PBSS perfor-

mance is still better than classical schemes based only on signal strengths and

MS-BS distance information.
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1.3. Notation Summary

Acronyms and mathematical notations are listed below.

Notation Description

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BS Base Station

BWA Broadband Wireless Access

CBSS Classic Base Station Switching

CPE Common Phase Error

CRB Cramer-Rao Bound

FBSS Fast Base Station Switching

FFT Fast Fourier Transform

GPS Global Positioning System

HHO Hard Handover

ICI Intercarrier Interference

i.i.d. Independent and identically distributed

ISI Inter-symbol Interference

MDHO Macro Diversity Handover

ML Maximum Likelihood

MLE Maximum Likelihood Estimation

MMSE Minimum Mean-Square Error

MS Mobile Station

MSE Mean-Square Error
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OFDM Orthogonal Frequency Division Multiplexing

PAN Personal Area Networks

PBSS Predictive Base Station Switching

PSD Power Spectral Density

QPSK Quadrature Phase-Shift Keying

SHO Soft Handover

SNR Signal-to-Noise Ratio

WAN Wide-Area Networks

WLAN Wireless Local Area Networks

WIMAX Worldwide Interoperability for Microwave Access

J0(·) Zeroth-Order Bessel Function of the First Kind

(·)H Complex Conjugate Transpose

fd Maximum Doppler Frequency

fdT Normalized Maximum Doppler Frequency

φ(n) Phase Noise

θ(n) Phase Noise Disturbance

Pdir Probability of Direction Change

vMS MS speed

RBS Effective Base Station Range

PBS Expected time MS will be connected to a certain BS

tBS Time MS spends in RBS

dBS Average MS-BS Distance

λBS Base Station Decision Metric
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2. OVERVIEW OF OFDM SYSTEMS AND CHANNEL MODEL

Since most of the research findings in this thesis are closely related to

orthogonal frequency division multiplexing (OFDM) systems, OFDM systems will

be reviewed in this chapter. In addition, given that the research presented in this

thesis is on wireless systems, it is also crucial to reassess the model for the medium

in which wireless signals travel, namely, the channel model.

2.1. OFDM System Description

The review on OFDM systems presented in this section will not be very

profound, however it will not be brief either. The intent of this chapter is to make

a reader not familiar with OFDM systems but has good knowledge in Signal

Processing and Telecommunications Theory to understand the rest of the thesis

and the underlying reasoning behind the algorithms presented in this thesis.

As presented in Chapter 1, wireless standards are going through an evo-

lution, with a focus on broadband, IP-centric platforms rather than legacy nar-

rowband, circuit-switched systems. Due to its advantages in high-speed commu-

nications, as it will be presented later in this chapter, OFDM has become the

modulation scheme of choice for a number of high profile wireless systems.

The reason for the strong presence of OFDM in many broadband wireless

systems lies in the fact that it transmits high-data rates via multiple parallel low-

rate frequency-domain streams, and provides increased robustness to multiple-

access interference (MAI) and the effects of multipath channels. OFDM therefore

offers an excellent performance over frequency selective and interfered channels.

The notion of frequency-division multiplexing (FDM) can be dated back

at least half a century. Early OFDM systems have first been proposed for military
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applications by Bello [11], Zimmermann [12] and other researchers. High spectral

efficiency and low cost implementation of FDM became possible in the 1970s and

1980s with advances in Digital Fourier Transform (DFT), however one had to

wait until 1990s to witness the first OFDM-based wireless system, which was the

Digital Audio Broadcasting (DAB) standard of the European Telecommunications

Standards Institute (ETSI) [13].

The main reason OFDM has become so preferred lies in its intrinsic design

properties. Wireless systems have to cope with many different types of inter-

ference. Main interference sources that arise from the physical medium can be

considered to be the channel fading (both time and frequency selective, or the so-

called doubly-selective channels); and multiple-access interference (MAI), arising

from the interference of other users using the same system and hence the same

spectrum.

The basic idea behind an OFDM system is to use orthogonal subcarriers

in the frequency domain to transmit data in parallel over the channel. Each

OFDM symbol is associated with a certain number of orthogonal carriers in the

frequency domain. The total throughput of the system then becomes the sum of

the throughput of all subcarriers.

One of the main advantages of OFDM is its ability to convert dispersive

broadband channels into parallel narrowband subcarriers, thus significantly simpli-

fying the channel equalization at the receiver end. Another important property of

OFDM is its flexibility in allocating different power levels among different subcar-

riers. This capability is particularly important for broadband frequency-selective

channels; if one subcarrier is faded more severely than others, it might either be

discarded, or in some cases, a higher power can be allocated to that specific sub-
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carrier. It should be noted, however, that subcarrier-based power adjustment is

less feasible than neglecting significantly-faded subcarriers.

Some subcarriers of an OFDM symbol are reserved for pilot carriers, which

are used for many different purposes, including channel estimation. In Chapters 3

and 4, these pilot carriers are actively used both to estimate the maximum Doppler

frequency and to suppress the phase noise introduced by the local oscillator. Also,

to avoid adjacent channel interference, the subcarriers at the beginning and end

of the OFDM spectrum are non-active carriers and do not carry any information

bits.

Another strong point of OFDM is its property to easily cope with inter-

symbol interference (ISI), which is the interference of the previously sent symbol

onto the current symbol due to multipath channels. Generally, the effects of ISI

are corrected at the receiver. However, if the system is immune to ISI, as in the

case for OFDM, it would be possible to reduce the receiver cost. OFDM uses a

cyclic prefix to successfully cope with ISI.

The basic idea behind a cyclic prefix is to add a prefix to the beginning of

an OFDM symbol in the time domain, which is discarded at the receiver. This

discarded cyclic prefix is the part that is most effected by ISI. The length of the

cyclic prefix is a design parameter. It should not be less than the channel memory

(i.e. channel delay spread), however, as it is not used to carry any data, a very

long cyclic prefix would cause significant decrease in the system throughput.

It is also important to note why this prefix is made cyclic. If instead of a

cyclic prefix, a zero-padding prefix was used, as in Fig. 2.1 [13], the integrity of

the signal could not have been maintained. To be able to analyze the relationship

between the transmitted and received signals, the perfectly accurate linear model

can be used for multipath channels, which can be written in continuous time as



22

Previous

symbol

Current

symbol

Next

symbol

Guard

period

Guard

period

ISI-free portion

FIGURE 2.1. Figure depicting the zero-padding prefix option for OFDM guard

interval.

y(t) = h(t) ∗ x(t) =

∫ ∞

−∞
h(t)x(t− τ)dτ (2.1)

where, h(t) can be considered as the channel response and x(t) can be considered

as the transmitted signal. If x(t) is considered to be a complex exponential in

the form of x(t) = sejwt (where s is the magnitude of x(t)), than the received

signal y(t) = sH(jw)ejwt would be a scaled version of the input (where H(jw)

is the continuous-time Fourier transform of h(t)), as complex exponentials are

eigenfunctions of linear systems. This is generally true for infinitely long expo-

nentials, but also if the channel impulse response can be modeled as finite-impulse

response (FIR). So, from the perspective of OFDM systems, if the prefix is made

to be cyclic as in Fig. 2.2 [13], linear convolution can be considered as a circular
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convolution as long as the channel delay spread is less than the allocated guard

interval [14].

Previous

symbol

Current

symbol

Next

symbol

Guard

period

Guard

period

ISI-free portion

FIGURE 2.2. Figure depicting the cyclic prefix option for OFDM guard interval,

which turns linear convolution into circular convolution.

Before discussing further the advantages and drawbacks of OFDM systems,

a very simplistic representation of OFDM scheme is depicted in Fig 2.3. In this

schematic, the pilot carriers, the active data carriers, and inactive carriers are

demonstrated. Furthermore, the use of inverse fast Fourier transform (IFFT) to

obtain the time domain signal to be transmitted, as well as, the creation of the

cyclic prefix is illustrated. In the transmitter, a serial-to-parallel converter is used

to obtain data for each active carrier before obtaining the time-domain signal.

When the signal is received at the receiver, channel equalization and

time/frequency synchronization is initially performed. Then, the cyclic prefix

of the OFDM symbol is discarded, and the received signal is converted back to
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the frequency-domain via the use of a block FFT. After these steps, the data that

is carried by each subcarrier can be obtained, and a parallel-to-serial converter

can be employed to reconstruct the exact sequence that was sent.

IFFT

FREQUENCY 

DOMAIN

TIME 

DOMAIN

Time-domain signal 

Insert “Cyclic Prefix” guard interval 

against inter-symbol interference

Active CarriersPilot Carriers

Non-Active Carriers

FIGURE 2.3. Figure showing a very simplistic representation of the OFDM

scheme and its carriers.

Of course, in all realistic systems, channel coding/decoding blocks, inter-

leaving/deinterleaving blocks, and transmit/receive filters are employed to im-

prove the system performance. Radio frequency (RF) modulator/demodulator

and RF amplifiers are also used to convert the baseband signal to the appropri-

ate frequency band imposed by the standard [15]. In much of the simulations in

this thesis, the OFDM signal is processed at the baseband, as the effects of RF

modulation and demodulation are clearly documented in the literature and they

are beyond the scope of this thesis.
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TABLE 2.1. Advantages and drawbacks of OFDM systems.

Main Advantages Main Drawbacks

High Spectral Efficiency Sensitivity to ICI

Simple Implementation High Peak-to-Average Power Ratio

Resistance to frequency-selective fading Sensitivity to phase noise

2.1.1. Advantages and Drawbacks of OFDM systems

Table 2.1 provides the main advantages and drawbacks of OFDM systems.

Of course, as it is with many other communication systems, the most appropriate

system should be chosen depending on the application. OFDM provides some

major advantages and the effects of some of its drawbacks can be reduced. For

example, Chapter 4 of this thesis focuses on suppressing the phase noise in order

to improve the overall system performance.

2.1.1.1. Advantages of OFDM systems

High spectral efficiency: OFDM is a highly efficient modulation scheme

which has been shown to approach the information theoretical capacity when

water-filling is applied across its subcarriers. Especially adaptive coded modula-

tion, which is coding different OFDM subchannels (each subchannel is composed

of a group of subcarriers), has been implemented in some IEEE standards [13].

Simple implementation: OFDM can be easily implemented via the use of

FFT and IFFT blocks. As these blocks are easily available and their complexity

and hence power consumption is relatively lower, the implementation simplicity

of OFDM is definitely a major plus.
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Resistance to fading and interference: As described before, OFDM is im-

mune to multipath effects due to the use of a cyclic prefix. This is definitely

an advantage of OFDM systems, as it greatly simplifies the design of receiver

structure.

2.1.1.2. Drawbacks of OFDM systems

The two main disadvantages of OFDM systems are their sensitivity to

time/frequency synchronization and the very high peak-to-average power ratio.

The most important characteristic of OFDM systems is that individual carriers

of an OFDM symbol in the frequency-domain are orthogonal to each other at the

center of a subcarrier as shown in Fig 2.4. However, while estimating the carrier

frequency, if a small error of δf is committed, the orthogonality of individual

carriers will not hold true anymore. Furthermore, since the maximum of the sinc

function does not occur at fn + δf but at fn, there will also be a decrease in the

magnitude of the sample of carrier n. This fact is shown in Fig. 2.5.

As this effect is caused by the interference of neighboring subcarriers, it

is called intercarrier interference (ICI). Considering the number of subcarriers is

large enough, this interference can be modeled as a Gaussian random process

through the central limit theorem. Another important point to mention here is

that those carriers that are closest to the center of the allocated frequency band

of the system will be effected more by ICI.

ICI is not only caused by frequency synchronization errors; time-varying

fading environments, as well as phase noise, might also cause ICI as will be inves-

tigated in Chapter 4.
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FIGURE 2.4. Figure showing the orthogonality among different OFDM carriers

when ∆f = 10kHz.

The second important problem of an OFDM system is the high peak-to-

average power ratio, as mentioned before. An OFDM signal can be considered

as a superposition of many sinusoidal signals, hence its mean power is very small

compared to the peak power. This creates a difficulty when the signal needs to be

amplified for transmission, or for processing at the receiver side. If the transmit

or receive amplifier does not have a large dynamic range, then the signal will be

clipped, which will cause a significant data loss. A similar problem will occur

if the power amplifier is not linear [16]. Thus, OFDM systems generally require

expensive power amplifiers, which drive the unit costs up.
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FIGURE 2.5. The loss of orthogonality due to the intercarrier interference is

shown when ∆f = 10kHz.

2.2. Channel Model

In this section, the channel model is described. Basically, the channel

model can be divided into two categories. The first category captures the large-

scale propagation effects, which mainly characterize the channel behavior over

large transmitter-receiver separation distances. This category is used to define, for

example, the coverage area of a certain transmitter. Main large-scale propagation

effects considered in this thesis are path loss and shadowing. This type of channel

characterization is used in Chapter 5.

The second category encompasses the propagation models that are used to

characterize rapid fluctuations of the channel. This category is generally addressed
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as small-scale propagation effects, or fading models [17]. In this category, the

channels can be distinguished based on their time-variance properties (fast or

slow), or based on their multipath time delay spread properties (flat or frequency-

selective). This type of channel characterization is employed in Chapters 3 and

4.

2.2.1. Large-scale Propagation Effects

As wireless signals are transmitted, they become reflected, scattered and

diffracted by the surrounding environment. Even if there are no obstacles between

the transmitter and the receiver (i.e. in a line-of-sight (LOS) environment), there

will be a difference between the received signal power, Pr, and the transmitted

signal power, Pt, which is called the free-space path loss [17]. Free-space path loss

is inversely proportional to the square of the distance between the transmitter

and the receiver, d, and is proportional to the wavelength of the carrier, λ

Pr

Pt

=

[
Gλ

4πd

]2

, (2.2)

where G is the product gain of the transmit and receive antenna field radiation

patterns in the LOS direction [8].

However, considering that most wireless systems operate in dense-urban,

urban, or suburban areas, it is expected that the actual path loss will be very dif-

ferent and more complex than the assumption of Eq. 2.2. For a specific situation,

it is possible to calculate the exact path loss model using ray tracing. However,

this is not feasible as it is impossible to perform ray tracing for an infinite number

possible scenarios for each wireless system. To solve this problem, a number of

empirical path loss models have been developed for a variety of environments.
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Even so, these models might not fit perfectly the nature of a specific environment,

as they are based on approximations [8].

It should be clear at this point that due to the complexity of the path loss

mechanism, it is impossible to obtain a single model that clearly represents path

loss in different environments. However, as presented in [8] and [17] for a basic

tradeoff calculation, a simplified path loss model can be derived, which captures

the essence of signal propagation and prevents the need to resort to complicated

path loss models. Such a model is presented in Eq. 2.3.

Pr = PtK

[
d0

d

]γ

, (2.3)

where d0 is the reference distance, K is a unitless constant that is based on the

antenna characteristics (at a known distance d0) as given in Eq. 2.4 in dB, and

γ is the path loss exponent, which is ranges from 1.5 to 6, depending on the

environment.

K = 20 log
λ

4πd0

. (2.4)

The constant K can be replaced by accurate measurement results, if such results

are available at a specific d0.

Another important notion to consider regarding large-scale propagation

effects is shadowing, which is caused by the blockage created by natural or urban

obstacles and results in variations in the received power level. This blockage effect

is called shadowing, and it degrades the actual received power level. The combined

path loss and shadowing effect is depicted in Fig. 2.6 [8].

The shadowing effect is modeled randomly, and the i-th obstacle is con-

sidered to have a depth of di and an attenuation constant of α. The attenuation

effect caused by the i-th obstacle can then be modeled as
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FIGURE 2.6. Figure showing the combined effect of path loss with random and

average shadowing.

si = e−αdi (2.5)

where it is assumed that all the obstacles have the same attenuation constant.

Considering there are a total of D such obstacles, their combined shadowing effect,

s, can be written as in Eq. 2.6.

s = e−α
Pi=D−1

i=0 di = e−αdt (2.6)

where, dt =
∑i=D−1

i=0 di. Assuming the number of obstacles, D, is large, the central

limit theorem can be used to approximate dt as a Gaussian random variable. This

fact would allow us to consider the shadowing effect, when expressed in dB, to be

a Gaussian random variable with mean µs and standard deviation σs [8].
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2.2.2. Small-Scale Propagation Effects (Fading Models)

The propagation models that characterize the rapid fluctuations of the

received signal power level over short distances or short time durations are called

small-scale propagation effects or fading models [17]. Such channels have two

different categories. They can be categorized as either flat-fading or frequency-

selective, depending on the coherence bandwidth, and fast or slow time-varying,

depending on the coherence time. A channel model that is both frequency-selective

and fast time-varying is considered to be a doubly-selective channel.

2.2.2.1. Flat or Frequency-Selective Channels

The multipath effect is the result of the reflections from the surrounding

natural or urban structures. Due to the presence of these structures, a signal sent

from the transmitter will arrive at the receiver following many different paths,

hence the name multipath. Each of these signals arrive at the receiver at different

times, depending on the amount of time it takes them to travel their specific path.

If it is not factored into the receiver processing, the multipath effect can

degrade the signal performance. However, these multipath signals can also be

used for extra diversity, as each of them are copies of the same transmitted signal.

To be able to use this diversity, different multipath signal should be temporally

resolvable, i.e. their difference in arrival time to the receiver should be greater

than the inverse of the signal bandwidth.

To be able to define whether a channel is flat or frequency-selective, one

can make use of the rms (root-mean-square) delay spread. The rms delay spread

is basically the standard deviation of the delay of different multipath signals,

weighted with respect to their energy. The inverse of the rms delay spread is
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proportional to the coherence bandwidth. If the bandwidth of the transmitted

signal is less than the coherence bandwidth, the channel can be considered flat.

On the other hand, if the signal bandwidth is larger than this value, then the signal

components at different frequencies will be faded differently, hence the name,

frequency-selective. From the perspective of time-domain effects in frequency-

selective channels, the transmitted symbols are spread in time, which introduces

intersymbol interference, or ISI.

2.2.2.2. Fast or Slow Time-varying Channels

A channel can be characterized as fast time-varying, if the symbol duration

of a signal is greater than the coherence time of the channel. Otherwise, it is

considered to be slow time-varying. The coherence time can be considered as the

inverse of the Doppler spread, which is the width of the Doppler spectrum; and

the Doppler spectrum is the Fourier transform of the autocorrelation function of

the received signal.

The relative motion between the transmitter and the receiver creates dif-

ferent Doppler shifts. These shifts will be positive if the two are moving towards

each other, and it will be negative if they are moving away from each other. Fur-

thermore, in a multipath channel, the surrounding objects that are in motion can

also change the nature of the Doppler shifts, especially if they are moving at a

speed comparable or greater than the relative speed of the transmitter and the

receiver. In case these Doppler shifts result in a wider Doppler spread, the channel

coherence time will decrease, and the channel can be considered to be even faster

time-varying.
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3. A ML MAXIMUM DOPPLER FREQUENCY ESTIMATOR FOR
OFDM SYSTEMS

3.1. System Description

We consider an OFDM system with K active subcarriers and FFT length

N , where K ≤ N . Let NG denote the length of the guard interval, or cyclic prefix,

and dk, k = 1, 2, . . . , K, represent the data transmitted over the kth data subcar-

rier. The transmitted OFDM signal in the time domain can then be expressed

as

x(n) =

√
Es

N

∑

kεK
dke

j2πnk/N , −NG ≤ n ≤ N − 1 (3.1)

where Es is the symbol energy per subcarrier, K represents the set of active

subcarriers, or subcarriers carrying information data, and E{|dk|2} = 1. Without

loss of generality, we assume that the active subcarriers are from 0 to K−1. Then

Eq. (4.3) can be rewritten as

x(n) =

√
Es

N

K−1∑

k=0

dke
j2πnk/N , −NG ≤ n ≤ N − 1. (3.2)

We consider a time-varying Rayleigh fading channel with a maximum delay

of Td and an rms delay spread τrms. The channel is described using a tapped

delay line model with an exponentially decaying tap power. We assume that

Td ≤ NG, and that the autocorrelation of the inverse Fourier transform of the

Doppler spectrum can be modeled by a zeroth-order Bessel function of the first

kind. The channel coefficient of the l-th tap (0 ≤ l ≤ Td− 1) at time n is denoted

as hl(n). By stacking vertically all the Td channel coefficients at time n, we obtain

h(n) = [h0(n) h1(n) · · · hTd−1(n)]T (3.3)

where [·]T stands for transpose.
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We further assume that the channel taps (i.e., elements of h(n)) are in-

dependent and identically distributed (i.i.d.), zero-mean, circularly symmetric

complex Gaussian random variables. The channel autocorrelation function is ex-

pressed as

E{h(n + ∆n)hH(n)} = cJ0

(
2πfdT∆n

N

)
E (3.4)

where (·)H denotes complex conjugate transpose, c is a scaling factor which is used

to normalize the channel power, T is the duration of N samples, J0(·) represents

the zeroth-order Bessel function of the first kind, and E is a diagonal Td×Td matrix

whose l-th diagonal entry is e−l/τrms , 0 ≤ l ≤ Td − 1. The earlier assumption

that the guard interval NG is not less than the multipath spread ensures ISI-

free operations. Our objective is to accurately estimate the normalized maximum

Doppler frequency fdT based on the received signal using pilot subcarriers.
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3.2. ML Maximum Doppler Frequency Estimator

The received signal through a time-varying multipath channel can be writ-

ten as

y(n) =

Td−1∑

l=0

hl(n)x(n− l) + ω(n) (3.5)

where ω(n) is the additive white Gaussian noise (AWGN) with zero-mean and

variance σ2
ω. We assume without loss of generality that Es = 1; thus the variance of

the AWGN equals the inverse of the signal-to-noise ratio (SNR), i.e., σ2
ω = 1/SNR.

Once an OFDM symbol is received, the guard interval (the first NG samples) is

discarded, leaving the ISI-free data portion. The received signal during the data

portion is expressed as

y(n) =
1√
N

K−1∑

k=0

dke
j2πnk/NHk(n) + ω(n) (3.6)

where Hk(n) =
∑Td−1

l=0 hl(n)e−j2πlk/N . The data signal on the k-th subcarrier of

an OFDM symbol at the FFT output is expressed as [24]

Yk =
1√
N

N−1∑
n=0

y(n)e−j2πnk/N

= dkHk + αk + Wk (3.7)

where

Hk =
1

N

N−1∑
n=0

Hk(n) (3.8)

αk =
1

N

K−1∑

m=0,m6=k

dm

N−1∑
n=0

Hm(n)ej2πn(m−k)/N (3.9)

Wk =
1√
N

N−1∑
n=0

w(n)e−j2πnk/N . (3.10)
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The term αk represents the ICI component. The power of ICI may be

negligible when the maximum normalized Doppler frequency fdT is small (e.g.,

fdT < 0.02) [24], but ICI should be considered for the general case. Although

the ICI power is guaranteed to be small enough in most applications in OFDM

systems, the Doppler frequency information can be extracted from the ICI com-

ponent. Thus, we will include the ICI term in the ML formulation. To allow

the use of more than one OFDM symbols to estimate the maximum Doppler fre-

quency, we assume that certain amount of latency is acceptable. When multiple

OFDM symbols are considered, we can rewrite Eq. (3.7) by including the index

n denoting the n-th OFDM symbol as

Yk,n = dk,nHk,n + αk,n + Wk,n. (3.11)

Let P represent the set of pilot subcarriers. Since the values dk,n, k ∈ P ,

are known, the noisy estimate of the channel can be obtained as

H̃k,n =
Yk,n

dk,n

= Hk,n + αk,n/dk,n + Wk,n/dk,n. (3.12)

This process can be done for all pilot subcarriers in the M consecutive OFDM

symbols. From now on, we refer to a set of M consecutive OFDM symbols as an

“estimation group.”.

As illustrated in Fig. 3.1, using the specific pilot carrier k′ of one estimation

group, the vector Hk′ can be obtained as

H̃k′ =
[
H̃k′,0 H̃k′,1, · · · , H̃k′,M−1

]T

. (3.13)

The probability density function (pdf) of the ICI component αk,n is a weighted

Gaussian mixture pdf. However, through the central limit theorem, ICI can be
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FIGURE 3.1. Detailed block diagram of H̃k′ , k′ ∈ P .

approximated as a complex Gaussian random variable. Furthermore, as the ICI

power is small enough compared to power of Hk,n, this Gaussian approximation

would even hold if we could not have used the central limit theorem. In addition,

when all subcarriers are pilot like in pre-amble and mid-amble, the ICI is a complex

Gaussian random variable. Overall, it is safe to assume H̃k as a zero-mean,

circularly symmetric, complex Gaussian vector with the following pdf

p(H̃k) =
[
πM det(R)

]−1
exp

(
−H̃

H

k R−1H̃k

)
(3.14)

where R is the autocorrelation matrix of vector H̃k. The correlation of Hk,n and

Hk,n+∆n was given in [24] as

E{Hk,n+∆nH∗
k,n} =

1

N2

N−1∑

l1=0

N−1∑

l2=0

J0

(
2πfdT (l1 + ∆nN ′ − l2)

N

)
(3.15)
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where N ′ = N + NG. It is important to note that the above equation does not

require the delay information. The correlation of the ICI term αk,n in R can be

derived as

E{αk,n+∆nα
∗
k,n} =

1

N2

K−1∑
m1 6=k
m1=0

K−1∑
m2 6=k
m2=0

E{dm1,n+∆nd
∗
m2,n}

N−1∑

l1=0

N−1∑

l2=0

E{Hm1(l1 + ∆nN ′)H∗
m2

(l2)}

ej2π(l1+∆nN ′)(m1−k)/Ne−j2πl2(m2−k)/N . (3.16)

The correlation term E{Hm1(l1 + ∆nN ′)H∗
m2

(l2)} in Eq. (3.16) is given by [24]

E{Hm1(l1 + ∆nN ′)H∗
m2

(l2)} =

rf (m1 −m2)J0

(
2πfdT (l1 + ∆nN ′ − l2)

N

)
. (3.17)

where rf (m1 −m2) represents the frequency-domain correlation

rf (m1 −m2) = c

Td−1∑

l=0

e−l/τrmse−j2πl(m1−m2)/N . (3.18)

Finally, the correlation between the channel and the ICI component in R is given

by

E{Hk,n+∆nα
∗
k,n} =

1

N2

K−1∑
m6=k
m=0

E{d∗m,n}
N−1∑

l1=0

N−1∑

l2=0

E{Hk(l1 + ∆nN ′)H∗
m(l2)}

e−j2πl2(m−k)/N . (3.19)

From Eqs. (3.14)∼(3.19), the log-likelihood function can be obtained as

L(H̃k) = ln(p(H̃k)) = Ω− ln(det(R))− H̃
H

k R−1H̃k (3.20)

where Ω is a constant term independent of the Doppler frequency. Maximizing

the log-likelihood function is equivalent to minimizing the following cost-function
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Λk(fdT ) = ln(det(R)) + H̃
H

k R−1H̃k. (3.21)

Hence, the maximum-likelihood estimate (MLE) of the normalized Doppler fre-

quency can be obtained as

f̂dT = arg min
fdT

Λk(fdT ). (3.22)

The MSE of an unbiased estimator is lower bounded by the Cramér-Rao

bound [25], which can be found to be

CRB =
1

<
{

tr
[

∂R
∂fdT

R−1 ∂R
∂fdT

R−1
]} (3.23)

where <{·} denotes the real part and tr[·] represents the matrix trace.

Exact calculation of the MLE requires the knowledge of delay profile. Since

accurate delay profile may not be available in practical implementations, there

might be a mismatch between the assumed R and actual R; and the worst mis-

match case occurs if the receiver assumes flat fading, i.e., rf (m1 −m2) = 1. To

better demonstrate the efficiency of the estimator, we also assume this worst case

mismatch scenario throughout this chapter. However, for the theoretical Cramér-

Rao bounds, we assume the delay profile is known and we employ the actual

R.

In order to improve the accuracy of the estimator, the MLE over multiple

pilot subcarriers can be formulated. This requires the knowledge of statistics such

as the channel delay spread and delay profile. Instead, we sum the cost function

over pilot subcarriers as

Λ(fdT ) =
∑

k∈P
Λk(fdT ). (3.24)

Further reduction in the MSE can be achieved in the time-domain by summing the

cost function over more than one estimation groups at the expense of an increased
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latency. Although such time- and frequency-domain averaging of the cost function

is not optimum, the performance of the estimator can be significantly improved.

For a specific estimation algorithm, the number of OFDM symbols in one

estimation group, M , will be fixed. Thus, in order to significantly reduce the over-

all complexity of the system, the terms ln(det(R)) and R−1 can be pre-calculated

and stored in the memory for a certain range of normalized Doppler frequency

values. The complexity can be further reduced since H̃
H

k R−1H̃k can be evaluated

using a filter bank via Cholesky factorization and through low-rank approxima-

tion.

The main design parameters of the estimator are P , the number of pi-

lot subcarriers from each OFDM symbol; M , the number of OFDM symbols in

one estimation group; and G, the number of estimation groups. By choosing

appropriate values for specific communications scenarios, we can achieve flexible

performance-complexity tradeoffs. The performance, complexity, and the latency

aspects under different parameters will be investigated by using simulations in the

next section.
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3.3. Simulation Results

−5 0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR

N
M

S
E

M=32, G=1, P=1
M=64, G=1, P=1
M=128, G=1, P=1

FIGURE 3.2. NMSE vs. SNR for different M when G = P = 1 (Solid: Simula-

tion, Dashed: Cramér-Rao lower bound).

The time-varying channel is obtained by an FIR filter whose spectrum is

the same as the one used in [24]. Each simulation is based on the observation of

50000×G×M OFDM symbols. Without loss of generality, an OFDM symbol is

assumed to have 32 subcarriers excluding the guard interval. The total length of

an OFDM symbol including the guard interval is 112.5µs, and the length of the

guard interval is 12.5µs. The maximum number of channel taps is assumed not

to exceed the sample length of the guard interval, NG = 4. The search range of

the ML estimator is set to be 0 ∼ 0.04 with a step size of 0.001 (in terms of fdT ).

We assume every one in four carriers is a pilot.

We define the normalized MSE (NMSE) as
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FIGURE 3.3. NMSE vs. SNR for different number of pilot subcarriers for

fdT = 0.024.

NMSE ≡ MSE

(fdT )2
=

E{|f̂dT − fdT |2}
(fdT )2

. (3.25)

Fig. 3.2 compares the NMSE with CRB for different values of M when P = G = 1

where the solid curves depict the simulated NMSE results and the dashed curves

represent the Cramér-Rao bounds. The maximum normalized Doppler Frequency

fdT is chosen to be 0.024. The number of channel taps (Td) equals the sample

length of the guard interval and the rms delay spread of the channel is τrms = Td/4.

It is observed that a larger M reduces both the NMSE and CRB. However, the

system complexity and the memory required to store ln(det(R)) and R−1 increases

proportional to M .
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FIGURE 3.4. NMSE and CRB vs. fdT for SNR = 30dB.

In Fig. 3.3, the NMSE values of the estimator for different values of P, M ,

and G are depicted when fdT is set to 0.024. The product M×G is kept constant

to maintain a fixed estimation latency of 28.8 ms. As expected, this figure clearly

demonstrates that the system performance improves when more pilot subcarriers

per OFDM symbol are used. Employing more than one pilot carriers does not

increase the latency since they belong to the same estimation group and the

increase in the complexity of the algorithm is negligible.

Fig. 3.4 depicts the performance of the estimator as fdT changes with

different values of M (32 and 128) when P = 1, G = 1 and the SNR is 20dB.

The theoretical CRB lower bound values are also provided. The increase in MSE

is expected at higher values of fdT , however, since the proposed algorithm takes
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ICI into account, the performance of the estimator does not deteriorate at higher

values of fdT , as the NMSE reduces when fdT increases.

We also compare the performance of our scheme with a scheme analogous

to [22] and [23], when accurate delay profile information is not available. From now

on, we will refer to this method as autocorrelation method or ACM. Considering

the number of pilot subcarriers, Q, to be greater or equal to the delay spread Td,

and that there is equal pilot spacing between the pilot subcarriers, a time domain

channel estimate can be obtained by applying a Q-point IFFT.

In ACM method, the autocorrelation of the channel estimates and the

actual theoretical channel autocorrelation can be compared to obtain an estimate

of the maximum Doppler frequency. This can be done using the frequency-domain

or time-domain channel estimates. However, the time-domain is applied as in [23],

it is suggested that time-domain method outperforms the frequency-domain case.

For the ACM method, unlike the proposed method, the channel delay profile needs

to be known.

In Fig. 3.5, the NMSE of the ACM is depicted together with the NMSE

of the proposed estimator when the delay spread information at the receiver side

is incorrect. In this figure, fdT = 0.024, M is set to 128, G is equal to 2 and P is

chosen to be 8. Td represents the delay spread of the channel, while T ′
d represents

the assumed delay spread at the receiver. As shown in the figure, the proposed

method performs better, as the delay spread information is not required.
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FIGURE 3.5. Performance of ACM and proposed methods when the delay spread

information at the receiver is not accurate (Td: actual channel delay spread, T ′
d:

erroneous delay spread information at the receiver).

3.4. Conclusion

We have derived an ML algorithm to estimate the maximum Doppler fre-

quency for OFDM systems in time-varying Rayleigh fading channels. The al-

gorithm requires no extra overheads since it employs the already-existing pilot

subcarriers. The proposed algorithm takes the effects of ICI into consideration,

which results in superior performance even in very fast fading environments. The

proposed estimator can be implemented via a filter bank whose coefficients can

be stored in the system memory for low-complexity implementation. The esti-

mator works well even when the delay profile information is not available at the
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receiver side. Many design parameters associated with the proposed algorithm

are adjustable to meet various performance requirements. It is shown that the

performance can be significantly improved if more pilot carriers from each OFDM

symbol is employed. Further improvements in the performance can be obtained at

the expense of system complexity by increasing the number of OFDM symbols in

one estimation group, or at the expense of latency by summing the cost function

over many estimation groups. We have also given the Cramér-Rao bound for the

MSE of the Doppler estimates. Simulation results verified the accuracy of the

proposed algorithm.
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4. PHASE NOISE SUPPRESSION FOR OFDM SYSTEMS OVER
FAST TIME-VARYING CHANNELS

4.1. System Description

A doubly-selective channel is considered with a maximum delay of Td, an

rms delay spread of τrms, and a maximum Doppler frequency fd. Furthermore,

a tapped delay line channel model is adopted with exponentially decaying tap

power. The channel coefficient of the l-th tap (0 ≤ l ≤ Td − 1) at time n is

denoted as hl(n), and the channel taps are independent identically distributed

(i.i.d.), zero-mean, circularly symmetric complex Gaussian random variables. It

is further assumed that the autocorrelation of the channel can be modeled by a

zeroth-order Bessel function of the first kind [35]. Thus, for the l-th tap at time

n, the autocorrelation is expressed as

E
{
hl(n + ∆n)hH

l (n)
}

= αe
−l

τrms J0

(
2πfdT∆n

N

)
(4.1)

where (·)H denotes complex conjugate transpose, T is the total duration of N

samples, fd, as mentioned earlier, is the maximum Doppler frequency, J0(·) rep-

resents the zeroth-order Bessel function of the first kind, and α is a scaling factor

which is used to normalize the channel power and is given by

α =

(
Td−1∑

l=0

e
−l

τrms

)−1

. (4.2)

In this chapter, an OFDM system with N subcarriers is considered. All

the subcarriers are assumed to be active. A subset of the subcarriers are reserved

for pilot signals used for many purposes such as channel estimation. As com-

monly adopted, each OFDM symbol is extended by a cyclic prefix of length G,

which is not less than the duration of the channel memory (i.e., the maximum
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delay Td). This ensures that the received signal is demodulated from channel’s

steady-state response rather than the transient one. If the received signal is de-

modulated from the channel’s steady-state response, ISI can greatly degrade the

system performance.

By defining the data of the k-th subcarrier as dk, the time-domain signal

can be represented as

x(n) =

√
Es

N

N−1∑

k=0

dke
j2πnk/N , −G ≤ n ≤ N − 1 (4.3)

where Es is the symbol energy per subcarrier and dk is the data symbol carried

by the k-th subcarrier. The average signal energy is normalized to unity, that

is, E {|dk|2} = 1. This signal then propagates through a time-varying multipath

channel, and the received signal can be expressed as

y(n) =

Td−1∑

l=0

hl(n)x(n− l). (4.4)

After the received signal is down-converted to a lower frequency, typically

through a mixer with a local oscillator and some filtering, the effect of phase noise

can be modeled by introducing a multiplicative term θ(n) to the received signal

as [36]

r(n) = y(n)θ(n) + ω(n) (4.5)

where ω(n) is the zero-mean additive white Gaussian noise (AWGN) with variance

σ2
ω . It is generally accepted that phase noise is dominated by the receiver and the

phase noise introduced by the transmitter can be neglected. The basic reasoning

for this is the fact that the cost of a local oscillator that does not introduce

significant phase noise is much higher. While such a local oscillator can be used

at the transmitter side, it might not be feasible for the manufacturers to utilize

one at the receiver side, due to cost concerns.
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The phase noise process φ(n) is a time-varying process which is related

to the multiplicative disturbance as θ(n) = ejφ(n). In the rest of this thesis,

the variable φ(n) will be referred to as “phase noise”, and θ(n) as “phase noise

disturbance”.

After discarding the cyclic prefix in (4.5), the ISI-free data part of the

received signal can be obtained as

r(n) =
1√
N

N−1∑
m=0

dmej2πnm/Nejφ(n)Hm(n) + ω(n) (4.6)

where

Hm(n) =

Td−1∑

l=0

hl(n)e−j2πlm/N .

From (4.6), the signal on the k-th subcarrier can be expressed as

Rk =
1√
N

N−1∑
n=0

r(n)e−j2πkn/N

= dk
1

N

N−1∑
n=0

Hk(n)ejφ(n) + αk + Wk (4.7)

where the second and the third term represent, respectively, the ICI and noise

components, and are expressed as

αk =
1

N

N−1∑

m=0,m6=k

dm

N−1∑
n=0

Hm(n)ejφ(n)ej2π(m−k)n/N (4.8)

Wk =
1√
N

N−1∑
n=0

ω(n)e−j2πkn/N . (4.9)

Note that the ICI term has two originating factors: the time-varying fading and

the phase noise. In most of the previous work, the channel is considered to be

time-invariant or quasi-static, i.e., Hk(n), n = 0, 1, · · · , N−1, is the same for each

sample in one symbol; thus allowing to be simply denoted as Hk. This assumption

greatly simplifies the effect of phase noise and hence its suppression.
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If such an assumption is made, the first term of Eq. (4.7) becomes Hk

times the common phase error (CPE), which can be denoted as 1
N

∑N−1
n=0 ejφ(n)

[31]. However, for fast time-varying channels with a high normalized maximum

Doppler frequency (fdT ), such an approximation becomes unrealistic and it is

impossible separate the common phase error term, as such a term does not exist.

Thus, suppression algorithms assuming a quasi-static channel are expected to

suffer from a significant performance degradation if the channel cannot be assumed

as such. Hence, for fast time-varying channels, a more appropriate algorithm is

needed to suppress the phase noise.

In this thesis, a frequency-domain approach is employed which exploits the

pilot subcarriers. Consider the pilot subcarriers to belong to a set K. For clarity

and simplicity of notation, if a certain subcarrier k is a member of K, the data

carried on this subcarrier will be referred to as pk, instead of dk. The estimate of

the channel for the k-th pilot (pk) can be obtained as

H̃k =
1

N

N−1∑
n=0

Hk(n)ejφ(n) + p−1
k (αk + Wk) . (4.10)

Because of the doubly-selective characteristics of the channel, phase noise

estimation for each time instant n becomes extremely complex, if not impossible,

even if the channel state information is available. To make the estimation and

suppression of the phase noise tractable, a simplified, yet accurate model of the

system given in Eq. (4.10) is required. The phase noise process can thus be

considered to be quasi-static, i.e., the phase noise to be constant over each OFDM

symbol and changes from symbol to symbol. With this simplification, (4.10) can

be rewritten as

H̃k =
ejφ

N

(
N−1∑
n=0

Hk(n)

)
+ Wk +
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ejφ

N

(
N−1∑

m=0,m6=n

dm

N−1∑
n=0

Hm(n)ej2π(m−k)n/N

)

(4.11)

where the phase noise disturbance ejφ is the same for all subcarriers in a specific

OFDM symbol, which is considered to be equal to ejφ(N/2+1). Without loss of

generality, the pilot symbols are assumed to be equal to unity. In the next section,

the accuracy of the above approximation will be justified with different types of

local oscillators and provide the range over which such an approximation is valid.
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4.2. Phase Noise Characterization

In this section, the accuracy of the approximation made in (4.11) is justified

for both phase-locked and free-running local oscillators. Let us define the mean-

square error of the phase noise process due to the quasi-static approximation, as

a function of time index n, as

eMS(n) ≡ E
{|(θ(N/2 + 1)− θ(n))|2} . (4.12)

4.2.1. Phase-Locked Oscillators

For phase-locked oscillators, θ(n) can be approximated as θ(n) ≈ 1 +

jφ(n) since φ(n) ¿ 1 [32]. The autocorrelation function of θ(n) is obtained as

Rθ = 1 + Rφ, since φ(n) is real, zero-mean and stationary. To calculate Rφ, one

can make use of the power spectral density (PSD) function of the phase noise

process. Following the work in [29] (one other PSD function is provided in [28]),

the following expression can be obtained

Pφ(f) = 10−c + 10−a, |f | ≤ f1

= 10−c + 10
−(f−f1) b

f2−f1
−a

, f > f1

= 10−c + 10
(f+f1) b

f2−f1
−a

, f < −f1 (4.13)

where a = 6.5, b = 4, c = 10.5, f1 = 1 KHz and f2 = 10 KHz are a typical set

of parameters. The parameter c defines the error floor, and a and f1 are the

characteristics of the phase-locked oscillator. The autocorrelation function of φ

is obtained by taking the inverse Fourier transform of the PSD, by taking into

account the sampling frequency.



54

With the approximation θ(n) ≈ 1 + jφ(n) and noting that φ(n) is zero-

mean, real, and stationary [29], (4.12) can be rewritten as

eMS(n) = E
{
(φ(N/2 + 1)− φ(n))2

}

= E
{
φ2(N/2 + 1)

}

− 2E {φ(N/2 + 1)φ(n)}+ E
{
φ2(n)

}
(4.14)

where E {φ2(N/2 + 1)} and E {φ2(n)} are simply equal to the variance of φ, and

E {φ(N/2 + 1)φ(n)} is the autocorrelation function of φ.

The normalized mean-square error is further defined as eMS(n)/σ2
φ, which

is expressed as

eNMS(n) = 2− 2Rφ(n−N/2 + 1))/σ2
φ (4.15)

n = 0, 1, · · · , N − 1.

With a = 6.5 in (4.13), the average normalized error over one OFDM symbol is

obtained to be 8.8×10−4, if T = 10µs, and 3.5×10−3, if T = 20µs. If a is selected

to be 1, the corresponding error values are similar to those obtained for a = 6.5.

The normalized error as a consequence of approximating φ(n) as a quasi-static

process, increases proportional to the duration of the OFDM symbol; an OFDM

symbol shorter than 50µs will have negligible error which would allow us to use

(4.11) for accurate phase noise estimation and suppression.

4.2.2. Free-Running Oscillators

Let us denote the carrier frequency as fc, and the actual frequency seen by

the receiver is fc +fdev, where fdev is the deviation from fc and is assumed to be

a zero-mean, white Gaussian process. The process φ(t) in the free-running case is
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obtained by integrating fdev(t) as
∫ t

0
fdev(t)dt and is modeled as a nonstationary

Wiener process with infinite power [36]. In order to obtain the autocorrelation

of the phase-noise disturbance, θ(t), which is assumed to be stationary, one can

continue to work in the continuous-time domain. The autocorrelation of θ(t) can

be defined as Rθ(t1, t2) = E {θ(t1)θ∗(t2)} ((·)∗ denotes complex conjugate), which

can be written as a function of fdev as

Rθ(t1, t2) = E
{
ej(φ(t1)−φ(t2))

}

= E

{
e

j
R t1

t2
fdev(u)du

}
(4.16)

where
∫ t1

t2
fdev(u)du is a Gaussian process with variance 2πβ|t1 − t2| [26] and

β represents the two-sided, 3-dB bandwidth of the Lorentzian PSD of the free-

running oscillator. For the simplicity of expression, from now on the zero-mean

Gaussian variable
∫ t1

t2
fdev(u)du will be referred to as α (zero-mean and with

variance σ2
α = 2πβ|t1 − t2|), and Eq. 4.16 can be expressed as

Rθ(t1, t2) = E
{
ejα

}

=
1√
2πσ2

α

∫ ∞

−∞
ejαe−

1
2(

α
σα

)
2

dα (4.17)

For any Gaussian random variable with zero-mean, the characteristic func-

tion can be expressed as in the following equation [37].

Φ(ω) =
1√
2πσ2

α

∫ ∞

−∞
ejωαe−

1
2(

α
σα

)
2

dα

= e−σ2ω2/2 (4.18)

Using Eq.4.18 it can be shown that the expression in Eq. 4.17 equals Φ(1)

and can be written as:

E
{
ejα

}
= Φ(1) = e−σ2

α/2 (4.19)
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The autocorrelation function can then be obtained using Eq. 4.19 as

Rθ(t1, t2) = e−πβ|t1−t2| = e−πβ∆t (4.20)

where Rθ(t1, t2) is dependent only on the time difference since the process θ is

assumed to be stationary.

Since the PSD of free-running oscillators obeys the Lorentzian/Cauchy dis-

tribution, the Fourier transform of (4.20) should give us the Lorentzian distribu-

tion. This can be easily verified as the above function is the characteristic function

(i.e., the inverse Fourier transform) of a zero-median Lorentzian distribution.

The mean-square error given in (4.12) for the case of free-running oscillators

can now be expressed as

eMS(n) = E
{|θ(N/2 + 1)|2} + E

{|θ(n)|2}−

E {θ(n)θ∗(N/2 + 1)} − E {θ(N/2 + 1)θ∗(n)}

(4.21)

where E {|θ(N/2 + 1)|2} and E {|θ(n)|2} are equal to the variance of θ, and the

two remaining terms are equal to Rθ(|N/2 + 1− k|). With the normalized mean-

square error given in (4.15), one can rewrite (4.21) as

eNMS(n) = 2− 2e−πβ|N/2+1−n|/σ2
θ . (4.22)

By quantitatively evaluating the above expression, the range over which

(4.11) is valid can be determined for any specific value of β. As suggested in [38],

the variance of φ for one OFDM symbol (2πβT ) is expected to be much less than

1. For σ2
φ values of 10−4 and 10−3, average normalized mean-square error values

of 2.4 10−4 and 2.5 10−3 are observed, respectively. When the values of σ2
φ are

below 10−2, (4.11) can be considered to be valid.
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4.3. Maximum Likelihood Scheme For Phase Noise Suppression

The proposed phase noise suppression method is an ML approach which

exploits the pilot symbols. As shown in the previous section, under almost all

practical scenarios, H̃k can be calculated using (4.11). Let subscript u represent

the index of the u-th OFDM symbol. Estimating φu, the phase noise process of

the u-th OFDM symbol, is not necessary for phase noise suppression; instead, the

estimate of the respective phase noise distortion θu is sufficient for this purpose.

The proposed approach works as follows. First, the initial phase noise

distortion, θ1, is estimated using the preamble of OFDM symbols. For 802.11a,

both the short and the long preambles sent by the transmitter are known to the

user, which allows us to correctly estimate θ1. However, the only information that

is available in the data part is the pilot subcarriers in the frequency domain. Once

θ1 is estimated, the column vector Hu can be obtained by vertically stacking H̃k,u

for all pilot subcarriers of the u-th OFDM symbol. Eq. (4.11) can be rewritten as

H̃k,u = θuHk,u + θuαk,u + Wk,u (4.23)

where Hk,u = 1
N

∑N−1
n=0 Hk,u(n). Although αk,u is a weighted Gaussian variable,

through the central limit theorem, H̃k,u can be approximated as a zero-mean,

circularly symmetric, complex Gaussian random variable.

The cross-correlation function between Hu+∆u and Hu can be derived as

E{Hu+∆uH
∗
u} = R∆u

(
θu+∆uθ

−1
u

)
(4.24)

where the identity θ∗ = θ−1 is used. From (4.23), R∆u can be defined as

R∆u = R
|H|2
∆u + RαH∗

∆u + RHα∗
∆u + R

|α|2
∆u + δ(∆u)σ2

ωI (4.25)

where the correlation matrices R
|H|2
∆u , RαH∗

∆u , RHα∗
∆u , and R

|α|2
∆u can be found in

Chapter 3 and [45] for the same channel model used in this chapter. It is important
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to note that these correlation matrices do not depend on u, but rather on ∆u.

Thus, if the channel delay profile and the maximum Doppler frequency are known,

these correlation matrices can be conveniently stored in the system memory, which

greatly reduces the system complexity and makes it implementable for practical

applications.

Next, the vector H ′
u is defined as

H ′
u = [Hu−1 Hu]

T (4.26)

whose correlation matrix R′
u can be obtained as

R′
u =




R0 R−1θu−1θ
−1
u

R1θuθ
−1
u−1 R0


 . (4.27)

Once R−1, R0, and R1 are calculated and the estimate of θu−1 is obtained, para-

meter θu can be estimated using the following cost function

Λu(θu) = ln(det(R′
u)) + H̃ ′

1

H
[R′

u]
−1

H̃ ′
u (4.28)

where H̃ ′
u is the estimate of H ′

u. Minimizing this cost function is equivalent to

maximizing the log-likelihood function of H ′
u, which is the logarithm of the com-

plex Gaussian vector pdf, as H ′
u can be considered Gaussian. The ML estimate

of the phase noise distortion, θ̂u, can be obtained as

θ̂u = arg min
θ

(Λu(θ)) (4.29)

where the search range for θ = ejφ equals − π ≤ φ ≤ π. Once θ̂u becomes

available, the phase noise correction can be easily done by multiplying Hu by

θ̂−1
u .



59

4.4. Simulation Results

In the simulations, the OFDM system is assumed to have 512 subcarriers,

and every one out of four subcarriers as a pilot subcarrier. The channel coefficients

are generated to obey the autocorrelation function given in (4.1). The guard

interval has a length of 4 samples (G = 4), which also equals the number of

channel taps (Td). In obtaining the bit-error-rate (BER) curves, 1000 OFDM

symbols are used, and one in 500 symbols is designated as the OFDM preamble.

Channel estimates for data symbols are obtained by exploiting the pilot subcarrier

through interpolation.

In Fig. 4.1, free-running oscillators are considered for βT values of 10−2,

10−3, and 10−4. The search range to determine the ML estimate of the phase noise

distortion in this case was from −π to π, with a step size of 0.04. The dashed

lines correspond to the case with fdT = 0.01, while the solid lines are for the case

of fdT = 0.04. The OFDM symbol duration T is chosen to be 100µs; thus, the

corresponding values of β (two-sided 3dB bandwidth of the Lorentzian PSD) are

1592, 159.2, and 15.92. The phase noise suppression algorithm proposed in this

chapter has comparable performances to the ideal case − phase noise free − even

when the channel exhibits very fast fading. The error floor when fdT = 0.04 is

due to the severe ICI caused by fast fading. Employing more complex channel

estimation and data detection schemes can reduce or eliminate the error floor,

which is beyond the scope of this thesis. Furthermore, lowering the value of β

increases the performance slightly, which is expected.

In Fig. 4.2, the performance of the algorithm for phase-locked oscillators

is provided for a = 1 and T = 20µs. The dashed and solid lines represent the

cases with fdT = 0.01 and fdT = 0.04, respectively. Unlike the case of free-
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FIGURE 4.1. BER vs. SNR for free-running oscillators (βT = 10−2, 10−3, and

10−4; dashed lines: fdT = 0.01, solid lines: fdT = 0.04).

running oscillators, the effect of the phase noise on the system performance is

much milder in this case. The algorithm presented in this chapter still increases

the performance of the system, but the improvement is less than the free-running

case.
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FIGURE 4.2. BER vs. SNR for phase-locked oscillators (T = 20µs, a = 1;

dashed lines: fdT = 0.01, solid lines: fdT = 0.04).

4.5. Conclusion

In this chapter, an algorithm to suppress phase noise for OFDM systems

over doubly-selective channels is developed, especially those with a high normal-

ized maximum Doppler frequency, for which a quasi-static fading model is un-

acceptable and a simple common phase error (CPE) term does not exist. This

method is applicable to both phase-locked and free-running local oscillators. The

algorithm is a maximum likelihood approach that exploits the pilot subcarriers,

whose coefficients can be stored in the system memory to reduce the complexity.

With typical sets of system and channel parameters, the performance improve-



62

ment due to phase noise suppression is found to be more significant for the case

with free-running oscillators than with phase-locked oscillators.
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5. MOBILE DIRECTION ASSISTED PREDICTIVE BASE
STATION SWITCHING FOR BROADBAND WIRELESS SYSTEMS

5.1. Predictive Base Station Switching

Broadband wireless systems such as those designed according to the IEEE

802.16e standard are expected to support hard handover (HHO), fast base sta-

tion switching (FBSS), and soft handover or macro diversity handover (MDHO)

schemes. In FBSS, the MS transmits to and receives from only one BS called

the anchor BS, which is similar to HHO; however, a faster method to perform

handover operations is provided. In MDHO, the MS can transmit to/receive from

one or more BSs. The initial-ranging/handover-ranging codes are also provided

in the IEEE 802.16e standard to ensure that the MS can sort the BSs based on

their signal strength.

In the proposed PBSS, the selection of the new serving/anchor BS is based

on the current direction and the speed of the mobile. The target/diversity-list BSs

are selected via the MS direction information, and in case the signal level from

the serving/anchor BS drops below a certain level, a step to predict the future

behavior of the MS is introduced. In this prediction step, a decision metric λBS

is calculated for each BS. This decision metric is the ratio of the expected time

period that the MS will be connected to a certain BS, PBS, and the average MS-

BS distance while it is connected to a certain BS, dBS. The minimum length of

the prediction step is proportional to the speed of the MS and it does not end

until the MS exits the effective range of each neighboring/diversity-list BS.

To avoid ping-pong effects and to ensure seamless handover, two signal

threshold levels defining the effective and maximum ranges of a certain BS are

employed. The first threshold, T1, is employed to define the effective BS range
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RBS, and to decide whether a handover is required. If the signal level obtained

from the handover-ranging codes is below T1, the prediction step starts and de-

cision metrics for each neighboring/diversity-list BS are obtained. The second

threshold, T2, defines the maximum range of a certain BS. Even if a BS has the

highest decision metric, it is not selected as the new serving/anchor BS if the

MS will be outside the maximum range of the serving/anchor BS at the time of

handover.

As mentioned earlier, direction and speed information of the MS are used

in PBSS. The speed information can be obtained using the estimated maximum

doppler frequency as in [45]. However, this method might not be employed to

estimate the direction of the MS. If the MS is equipped with GPS, the MS should

continuously notify the anchor/serving BS of its coordinates. On the other hand,

if the MS is provided with the exact coordinates of the neighboring/diversity-

list BSs, the MS can also help in the decision process of selecting its new serv-

ing/anchor BS. This will distribute the handover decision-making process among

the network and the mobile stations. Since GPS is based on the information from

the satellites, it will not properly operate in dense urban areas or in indoor envi-

ronments. In this case, other location-estimation schemes such as those based on

propagation delay times [46], path loss, angles of arrival and power delay profile

[47], [48] could be employed. Once the location information is available, by taking

samples at different time instants, necessary speed and direction information can

be obtained. While the estimation of the speed and direction of the MS is out

of the scope of this work, it is shown that even when the direction information

is not precise, PBSS still outperforms classical approaches that are based only on

the signal levels and the current distance to the serving BS.
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FIGURE 5.1. An example of a handover scenario where d1 > d3 > d2 and t2 > t1.

To better explain our motivation, let us consider a hard handover case

for the scenario shown in Fig. 5.1. Suppose that initially the MS is at point

A and the serving BS is BS2. After a certain time, it will arrive at point B.

Under normal fading and shadowing conditions, the signal level measured using

handover-ranging codes will likely to be less than T1, and it will thus enter the

hysteresis mode. A classical algorithm making use of only the signal level and

current distance to the serving BS will likely choose BS1 as the new serving BS

if there are no significant shadowing effects. When the MS arrives at point C, it

will be in hysteresis again and it will need to switch to another BS, which is most

likely to be BS3. However, at point B, the MS was already in RBS3
. The main

aim of the proposed algorithm is to avoid the unnecessary handover to BS1. Of

course, under some extreme fading and shadowing conditions, it might be needed

to handover to BS1; but this is in general not absolutely necessary.
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The decision metric λBS is obtained by predicting the future behavior of

the MS, which is shown by dotted lines in Fig. 5.1. Naturally, the decision metric

is proportional to PBS, as selecting the BS that ensures a longer connection will

reduce the number of handovers. However, if there are two BSs with comparable

PBS values, it is preferable to pick the one that would ensure a higher expected

signal level, and hence a smaller dBS value. If the MS were to completely cross the

effective range of all BSs in the target/diversity BS list during the prediction step,

then either PBS or 1/dBS could have been interchangeably used as the decision

metric. For the scenario shown in Fig. 5.1, the time spent in BS1 is t1 and the

time spent in BS3 is t2, where t2 > t1. Since the average distance of the MS to BS1

from point B to C and to BS3 from point B to D are comparable, the decision

metric of the proposed algorithm would suggest a handover to BS3, instead of BS1

at point B.

The flow chart of the proposed algorithm is shown in Fig. 5.2, where BS0

is the current serving/anchor BS. Many handover algorithms are composed of

a detection step where a decision metric is checked to see whether a handover

decision is required, and a decision step where the handover is executed. In the

proposed PBSS algorithm, after the decision step, there is a prediction step where

the decision metrics of the neighboring/diversity-list BSs are calculated. The

final step is the execution step where a handover to the optimum BS based on

the decision metrics is performed. The prediction step in PBSS ensures a lower

average number of handovers without degrading the signal level as it will be shown

in the simulation results section.

As depicted in Fig. 5.2, if a handover decision has been made, there will

not be a new prediction step until that handover decision is executed or unless the

direction of the MS changes before the handover execution step. The BS with the
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 FIGURE 5.2. Flow chart of the proposed predictive base station switching algo-

rithm.

highest decision metric will not automatically become the next serving/anchor BS

as the expected signal level of the MS at the time of handover should be greater

than T2 for a handover to take place. If this is not the case, then the BS with the

next highest decision metric is checked.
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The proposed algorithm has a low complexity and requires little message

overhead. The calculation of the critical parameter dBS, as will be shown in the

next section, requires only the MS speed and the time instants at which the MS

enters and leaves the effective range of the BS, RBS.

5.2. Calculation of The Average MS-BS Distance

Calculation of the average MS-BS distance, dBS, is an important part of

the PBSS algorithm. To illustrate how this calculation is performed, Fig. 5.3

can be used. Since the MS speed and direction are considered to be known, the

time spent in the RBS, tBS, is also known. This information can be accurately

obtained by performing prediction in the reverse MS direction until the MS exits

RBS, since the speed of the MS might have been changed after it had entered

RBS.

T is considered to be the sampling period and that there are N sample

points spent in RBS. dP is defined as the line along the trajectory of the MS (dP =

vMStBS, where vMS is the MS speed.) and d⊥ as the line that perpendicularly

crosses dP. At each prediction step i, the distance of the MS to the BS, di, d⊥, and

the line from the current MS location to the intersection point of dP and d⊥ (i.e.,

| dP /2 − vMS(i − 1)T |) form a perpendicular triangle. Using this information,

the following equations can be written:

sin(αi) =
d⊥
di

(5.1)

cos(αi) =
| dP /2− vMS(i− 1)T |

di

(5.2)

Using the trigonometric equality cos2(αi) + sin2(αi) = 1 and Eqs. 5.1 and

5.2, the following expression can be obtained
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 FIGURE 5.3. Calculation of the average BS-MS distance.

d2
i = d2

⊥ +
d2

P

4
+ v2

MS[(i− 1)T ]2 − dP vMS(i− 1)T. (5.3)

Furthermore, considering dR to denote the radius of the effective cell of a certain

BS, Eq. 5.4 can be written.

d2
⊥ = d2

R −
v2

MS[(N − 1)T ]2

4
(5.4)

Substituting Eq. (5.4) into Eq. (5.3) and considering dP = vMStBS =

vMS(N − 1)T , one can obtain

d2
i = d2

R −
v2

MS[(N − 1)T ]2

4
+

v2

MS[(N − 1)T ]2

4
+

v2

MS[(i− 1)T ]2 − v2

MS(i− 1)(N − 1)T 2. (5.5)

By rearranging Eq. (5.5), the following equation can be derived.

di =
√

d2

R + v2

MST 2(i− 1)(i−N). (5.6)
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In Eq. (5.6), the radius of the RBS and MS speed information when the

prediction step starts are required. If these are available, the average distance can

be calculated as

dBS =
1

N

N∑
i=ne

di

=
1

N

N∑
i=ne

√
d2

R + v2

MST 2(i− 1)(i−N) (5.7)

where ne is the effective sampling instant to start the averaging. If the MS enters

RBS during the prediction step, then this value is 1. Otherwise (as in the scenario

in Fig. 5.1), this information can be obtained as tBS and PBS are known.

5.3. Calculation of Cell Outage Probability

In this section, the cell outage probability of the PBSS algorithm is derived,

and the results are compared with a classic BS switching (CBSS) algorithm. From

the point of view of the flow chart in Fig. 5.2, CBSS has a similar detection method

(except that the changes in direction are not monitored), which is followed directly

by the execution step. Before calculating the cell outage probability based on

path loss and shadowing effects, the outage probability of the system at a certain

distance from the BS has to be defined. The outage probability at r (0 ≤ r ≤ R)

is defined as the probability that the received power is less than a predetermined

threshold, P th as presented in the next equation.

Pout(P th, r) = P{P (r) < P th} (5.8)

To be able to define the received power, the log-normally distributed shad-

owing and simplified path loss models presented in [8] can be used. The received

power in dB can then be expressed as:
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P r = P t + 10 log10 K − 10n log10

(
r

r0

)
− υ (5.9)

where n is the path loss exponent, K is a the known/measured value at distance r0,

and υ, representing the shadowing effect in dB, is a Gaussian distributed random

variable with zero-mean and a variance of σ2
υ. Using this equation, and considering

υ is a zero-mean Gaussian random variable, Pout(P th, r) can be written as follows

Pout(P th, r) = 1−Q


P th −

(
P t + 10 log10 K − 10n log10

(
r
r0

))

συ


 (5.10)

.

Using Pout(P th, r), the ratio of the area within the cell that meets or

exceeds the minimum power requirement can be expressed as, PC , which can be

defined as:

PC =
1

πR2

∫ 2π

0

∫ R

0

(
1− Pout(P th, r)

)
rdrdθ. (5.11)

Using Eq. 5.11, the cell outage probability PC
out, can be defined as the

ratio of area of the cell that does not meet the minimum power requirements to

the total area of the cell, and can be represented as

PC
out(R) = 1− PC

= 1− 1

πR2

∫ 2π

0

∫ R

0

(
1− Pout(P th, r)

)
rdrdθ (5.12)

.

In Eq. 5.12, it is considered that all the MS in the cell area are uniformly

distributed. Although it might be reasonable to consider a uniform distribution

over the azimuth angle, θ; the distribution along the radius r (with a probability

density function (pdf) of Pr(r)), might not be uniform. To obtain the pdf of the

users in the total cell area, we can use the following equation
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P (r) =
Pr(r)∫ R

0
2πPr(r)rdr

. (5.13)

If a uniform distribution along r is considered, then P (r) = 1
πR2 is obtained,

which is considered in Eq. 5.11. It is important to note that, Eq. 5.12 considers

that the MS-BS distances are distributed uniformly over the cell area. Although

both CBSS and PBSS use the same cell structure, their cell outage probability

is not exactly the same, as on the average, PBSS might have a higher relative

MS-BS distance. To be able to calculate the cell outage probability for these two

schemes, let’s consider the pdf of the location of the users of PBSS over r to be

Pr(r) = PPBSS(r), and similarly that of CBSS as Pr(r) = PCBSS(r).

Using Eq. 5.12 and Eq. 5.13, the cell outage probability specifically de-

signed to show the difference between PBSS and CBSS schemes can be defined to

be (PPBSS
out and PCBSS

out , respectively) as

PPBSS
out = 1−

∫ 2π

0

∫ R

0

PPBSS(r)
(
1− Pout(P th, r)

)
rdrdθ (5.14)

PCBSS
out = 1−

∫ 2π

0

∫ R

0

PCBSS(r)
(
1− Pout(P th, r)

)
rdrdθ (5.15)

Note that evaluating the above equations analytically might be trouble-

some. However, these equations can be evaluated numerically to obtain the outage

probability for CBSS and PBSS as shown in section 5.4.
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5.4. Simulation Results

For the simulations, a hexagonal cell configuration is considered. In the

IEEE 802.16e standard, the BER target is set to be 10−6 and for QPSK-1/2

the required minimum received power is -90 dBm when all the subchannels are

utilized. It is further assumed that the maximum MS power is 1 watt, or 30 dBm;

thus, the maximum path loss including tolerance to shadowing effect is 120 dB.

The MS-BS distance is determined to be 500 m using the path loss model. We

consider a total of 100 BSs. The speed of each MS in the simulation is different,

ranging from 0 m/s to 16 m/s or about 57 km/h, which is specifically chosen as the

IEEE 802.16e standard is expected to provide mobility up to 60Km/h. The MS

directions along the x-axis and y-axis are assumed independent and can change

at any instant. Since the algorithm is based on the direction information, the

performance of PBSS is evaluated for various probabilities of direction change at

any given instant, ranging from Pdir = 0 to Pdir = 0.2. Both x and y direction

values, dx and dy, can be -1, 0, or 1. When dx = 0 and dy = 0, the MS is considered

stationary. We adopt the simple path loss model given in [8] and include the

lognormal distributed shadowing effects. The model related parameters are: the

path loss exponent is 3.5, the path loss intercept (path loss at 1 km) is 125 dB,

and the shadowing standard deviation is 8 dB.

Although an average shadowing condition is used in the modeling of PBSS

(in which case the effective cell boundary becomes a circle whose radius is deter-

mined by the path loss), random shadowing effects, which cause the cell shape to

become irregular, are considered in the simulations. The result of these simula-

tions show the effectiveness of PBSS in practical situations.
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The performance of PBSS is compared with that of a classic BS switching

(CBSS) algorithm, where if the signal level is less than T1 and if the MS is not too

close to the serving/anchor BS, a handover is performed to the BS that has the

strongest signal level. If the MS is close to the serving/anchor BS, but the signal

level is less than T2, a handover is also executed. Basically, CBSS has a similar

detection method as shown in Fig. 5.2, except that changes in direction are not

monitored. The detection is followed directly by the execution step.
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FIGURE 5.4. Average number of handovers and the percentage handover reduc-

tion by PBSS versus Pdir.

Fig. 5.4 shows the average number of handovers versus the percentage of

handover reduction due to the use of PBSS with respect to Pdir. The handover

values are averaged over 1000 MSs for 4000 seconds. It is observed that the perfor-

mance improvement is always above 17%. As expected, the greatest improvement

of 33.5% occurs when the MS does not change its traveling direction.

Note that the number of handovers decreases when the value of Pdir in-

creases from zero, or in other words, when the trajectory of the MS changes from
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fixed to random. This is intuitively simple to understand: if the speed and di-

rection of the MS do not change, the minimum number of handovers occurs only

when the MS travels along a line that crosses multiple BS locations. Otherwise,

the number of handovers is expected to be high as can be seen from Fig. 5.1.

When the MS moves at random directions (large Pdir values), it has a higher

probability compared to the case of Pdir = 0 to stay in the same cell area within

a given amount of time. The effect of Pdir becomes less significant once the MS

starts to move in a random manner.
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FIGURE 5.5. Average signal strength (dBm) of CBSS and PBSS with versus

Pdir.

Fig. 5.5 shows the received signal levels at the BS versus Pdir. It is

observed that the difference between the signal levels with CBSS and the proposed

PBSS for all values of Pdir is within about half a dB. Considering the inherent

advantages of PBSS in reducing the handover delay and in lowering signaling

overhead and network resources, it could be a more attractive practical solution.
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FIGURE 5.6. Performance of PBSS under non-ideal direction information.

In Fig. 5.6, the case where accurate direction information is not available

is considered. The noisy direction information is defined as d′x = dx +1/
√

SNR ωx

and d′y = dy + 1/
√

SNR ωy, where ωx and ωx are zero-mean normal random

variables with unit variance. A simple detection mechanism is employed to obtain

the estimates d̃x and d̃y: d̃x = −1, if d′x is less than -0.33; d̃x = 0, if −0.33 ≤
d′x ≤ 0.33; and d̃x = 1, otherwise. It is also assumed that Pdir = 0.08 and the

speed of each MS is different. Fig. 5.6 shows that even if the direction data

is not accurate, the proposed PBSS algorithm results in significant reduction in

handover probability compared to the CBSS algorithm. PBSS algorithm compares

the expected signal level of the MS to the serving/anchor BS with T2, and in case

this signal level is expected to be less than T2, the handover is not executed and

the same comparison is performed for the BS that has the next highest decision

metric and so on.
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To be able to numerically calculate the outage probabilities for PBSS and

CBSS, PPBSS(r) and PCBSS(r) needs to be obtained. These probability density

functions are depicted in Fig. 5.7, where it can bee seen that PBSS has a slightly

higher mean and standard deviation.
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FIGURE 5.7. Probability density function of MS-BS distance with respect to the

radius r for PBSS and CBSS.

By making use of Eq. 5.14, and numerically calculated PPBSS(r) and

PCBSS(r) functions, the outage probability for CBSS and PBSS schemes are ob-

tained to be 0.0115 and 0.0140, respectively. For these calculations, we have used

the P th value, calculated using Eq. 2.3 at the cell boundary. As shown by the

results provided in this section, while PBSS decreases the number of handovers

and therefore enhances the overall system performance, its outage probability is

almost the same as CBSS.
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5.5. Conclusion

In this chapter, a new handover decision algorithm for broadband wireless

access systems called predictive base station switching is introduced. PBSS makes

use of the mobile speed and direction information to calculate a specific decision

metric for each neighboring/diversity-list base station, which is the ratio of the

expected time period that the mobile station will be connected to a certain base

station, and the average mobile-base distance while it is connected to a certain

base station. A low-complexity method to calculate the mobile-base distance is

also provided. It is demonstrated via simulation that even when the mobile sta-

tion is expected to change direction in one out of every five time instants on the

average, the handover reduction provided by the proposed PBSS is more than 17%

and the degradation in the average signal level is within about half a dB compared

with the existing signal-level based algorithms. Furthermore, even when the di-

rection estimate of the mobile station is noisy, PBSS still performs considerably

better than classical algorithms that are based only on signal level and BS-MS

distance information. It is also shown that both methods have comparable outage

probabilities.
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6. CONCLUSIONS

6.1. Summary

Emerging wireless systems generally require more bandwidth, and higher

data rates to address the requirements of the users. This fact results in the

application of more sophisticated wireless communication schemes. Addressing

the problems of these schemes, and improving their overall performance is thus a

vital issue, and this thesis focuses on this fact.

The work in Chapter 3 focusses on the issue of estimating the maximum

doppler frequency for OFDM systems, and thus for wireless systems (mainly WAN

or WLAN) that utilize OFDM. In this chapter, a ML based algorithm is derived

to estimate the maximum Doppler frequency in fast time-varying Rayleigh fading

channels. To better estimate the maximum Doppler frequency, ICI, which occurs

especially for fast time-varying is also modeled. This novel algorithm requires

no extra overhead, as inherent pilot subcarriers are used for the process. With

the complexity of the algorithm in mind, this approach allows certain coefficients

of the system to be effectively be stored in the system memory. Another main

advantage of the algorithm is that, for a majority of the cases, the delay profile

information is not required to be known at the receiver side. Via many design

parameters, it also possible to tailor this approach to fit the design requirements

of a given system employing this approach. The Cramér-Rao bound for the MSE

of the Doppler estimates are also provided, and simulation results verified the

accuracy of the proposed algorithm.

Chapter 4 also focuses on wireless systems that employ OFDM systems.

The purpose of the work presented in this chapter is to suppress the phase noise

introduced by the local oscillator, which can cause significant performance degra-
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dation due to ICI it creates. The algorithm is designed specifically for doubly-

selective channels, particularly those with a high normalized maximum Doppler

frequency. A quasi-static fading model is unacceptable for this kind of channel

models and thus a simple common phase error (CPE) term does not exist. This

method is applicable to both phase-locked and free-running local oscillators. The

algorithm is a maximum likelihood approach that exploits the pilot subcarriers

as in Chapter 3, whose coefficients can be stored in the system memory to reduce

the complexity.

In Chapter 5, a new handover decision algorithm for broadband wire-

less access systems called is introduced especially for emerging WAN systems.

The proposed algorithm, predictive base station switching (PBSS), uses mobile

speed and direction information to calculate a specific decision metric for each

neighboring/diversity-list base station, which is later used to decide on the most

appropriate handover strategy. The decision metric is the ratio of the expected

time period that the mobile station will be connected to a certain base station,

and the average mobile-base distance while it is connected to a certain base sta-

tion. Furthermore, a low-complexity method to calculate the mobile-base distance

is also provided. It is demonstrated with simulation results that even when the

mobile station changes its direction frequently, the handover reduction provided

by the proposed PBSS is very significant. Additionally, even when the direction

information is not accurate, PBSS still performs considerably better than a clas-

sical algorithm. It is also shown that the two schemes have comparable outage

probabilities.
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6.2. Future Research

6.2.1. Future Research for ML Maximum Doppler Frequency Es-
timation

OFDM systems are specifically designed with a single user in mind. The

multiple access scheme of OFDM, that allows simultaneous use of the channel

by more than one user is called Orthogonal Frequency Division Multiple Access

(OFDMA). Thus, a natural extension of the work presented in Chapter 3 is to

apply this algorithm to OFDMA based systems.

6.2.2. Future Research for ML Phase Noise Suppression

Multiple-input multiple-output (MIMO), is the name of the scheme that

allows the use of multiple antennae both at the transmitter and the receiver to

increase the throughput by exploiting the space domain as these multiple antennae

are considered to be physically separated in space. As the use of MIMO schemes

in flat fading channels requires less complexity on the receiver side, and hence

less power consumption, MIMO schemes are compatible with low-cost OFDM

systems. Hence, future work of Chapter 4 should focus on applying the proposed

algorithm to MIMO-OFDM systems.
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