Why do Swedish fishermen leave the sector?

Johan Blomquist & Staffan Waldo
Employment and salary in Nordic fisheries

• Project for the Nordic Council of Ministers

• Aim of the project:
 1. Identify the level of income in Nordic fisheries, both from fishing activities and other sources
 2. Analyse why fishermen exit the sector
Employment and salary in Nordic fisheries

- Project for the Nordic Council of Ministers

- Aim of the project:
 1. Identify the level of income in Nordic fisheries, both from fishing activities and other sources
 2. Analyse why fishermen exit the sector
Background

• Understanding entry and exit decisions is important for
 – fisheries management
 – coastal policy

• Empirical studies on entry and exit of vessels (e.g. Pradhan & Leung 2004, Tidd et al. 2011)
 – Entry and exit depends on revenue potential, stock size, size of the fleet, fuel costs, etc.
 – Supports the theoretical predictions
Background

• What about the effects of other (socioeconomic) factors?
 – Local labour market conditions, multiple job holdings, individuals characteristics (education etc.)

• Very little empirical evidence
 – Studies using survey data (mainly in developing countries)
Aim of the study

• What factors affect the exit decision?

• Special focus on:
 – Alternative employment opportunities
 • Are fishermen faced with a lack of alternative employment opportunities more likely to stay in the sector?
 – Income from other sources
 • Does income from other sources affect the exit decision?

• Other socioeconomic factors (education, age etc.)
Data

- Statistics Sweden: Longitudinal integration database for health insurance and labour market studies (LISA)
 - Employment (fishing and other), income, education, age, etc.
 - Panel data (before/after exit from fisheries)
 - 2005-2012
Fisherman for 3 years in the period 2005-2008?

- Yes (N=1,355)
- No

Retirement benefits in 2009-2012?

- Yes (N=328)
- No (N=1,027)

Fisherman in the period 2009-2012?

- Yes (N=867)
- No (N=160)

Excluded
Fisherman for 3 years in the period 2005-2008?

- Yes (N=1,355)
- No

 Retirement benefits in 2009-2012?

 - Yes (N=328)
 - No (N=1,027)

 Fisherman in the period 2009-2012?

 - Yes (N=867)
 - No (N=160)

Excluded
Empirical model

• Dependent variable, $Exit_i$

\[Exit_i = \begin{cases}
0 & \text{if fisherman in the period 2009 - 2012} \\
1 & \text{otherwise.}
\end{cases} \]

• Variables (X_i):
 – Average income from fisheries (2005-2008)
 – Average income from other sources (during years of fishing)
 – Unemployment rate in municipality
 – Dummy for rural area (far away from a city)
 – Individual characteristics (age, gender, marital status, years of schooling)
 – Fishery specific (gear type, coastal area)
Empirical model

Dummy definition:
• Municipality with at least 50% of the population in rural areas

Variables (X_i):
– Average income from fisheries (2003-2007)
– Average income from other sources (during years of fishing)
– Unemployment rate in municipality
– **Dummy for rural area (far away from a city)**
– Individual characteristics (age, gender, marital status, years of schooling)
– Fishery specific (gear type, fishing area, vessel owner)
Empirical model

Dummy definition:
- Municipality with at least 50% of the population in rural areas

Definition of rural area (Eurostat):
- Less than 300 inhabitants per km²
- No more than 5,000 inhabitants

Variables (X_i):
- Average income from fishing
- Average income from other sources (excluding years of fishing)
- Unemployment rate in municipality
- Dummy for rural area (far away from a city)
- Individual characteristics (age, gender, marital status, years of schooling)
- Fishery specific (gear type, fishing area, vessel owner)
Empirical model

Dummy definition:
• Municipality with at least 50% of the population in rural areas

Definition of rural area (Eurostat):
• Less than 300 inhabitants per km²
• No more than 5 000 inhabitants

Definition of far away from a city:
• Over 50% of the population in the municipality have more than 45 minutes travel by car to a city with at least 50 000 inhabitants

Variables (X_i):
- Average income from farming
- Average income from other sources (during years of fishing)
- Unemployment rate in municipality
- Dummy for rural area (far away from a city)
- Individual characteristics (age, gender, marital status, years of schooling)
Empirical model

- Discrete choice model

\[\text{Prob}(\text{Exit}_i = 1 \mid \mathbf{X}_i) = F(\mathbf{X}_i \mathbf{\beta}), \]

- F normal dist. (probit model)
- Interaction terms
 - Income from fisheries and other income
 - Income from fisheries and rural dummy
Summary statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Variable</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit</td>
<td>0.16</td>
<td>Years of schooling</td>
<td>10.74</td>
</tr>
<tr>
<td>Income from fisheries</td>
<td>171.08</td>
<td>Age</td>
<td>43.89</td>
</tr>
<tr>
<td>Other incomes</td>
<td>40.79</td>
<td>Unemployment rate</td>
<td>4.70</td>
</tr>
<tr>
<td>Rural area</td>
<td>0.17</td>
<td>Male</td>
<td>0.96</td>
</tr>
<tr>
<td>Self employed</td>
<td>0.64</td>
<td>Married</td>
<td>0.51</td>
</tr>
<tr>
<td>Passive gear</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Variable</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit</td>
<td>0.16</td>
<td>Years of schooling</td>
<td>10.74</td>
</tr>
<tr>
<td>Income from fisheries</td>
<td>171.08</td>
<td>Age</td>
<td>43.89</td>
</tr>
<tr>
<td>Other incomes</td>
<td>40.79 (95.13)</td>
<td>Unemployment rate</td>
<td>4.70</td>
</tr>
<tr>
<td>Rural area</td>
<td>0.17</td>
<td>Male</td>
<td>0.96</td>
</tr>
<tr>
<td>Self employed</td>
<td>0.64</td>
<td>Married</td>
<td>0.51</td>
</tr>
<tr>
<td>Passive gear</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results – income from fisheries

- Income negatively related to probability of exit?
 If income increases 30%, from 170 TSEK to 220 TSEK, Pr(Exit) decreases from 16 to 13%
Results – income from fisheries

- Income negatively related to probability of exit?
 - Not always!

![Graph showing predictive margins with 95% CIs (Other inc=150)]
Results – income from fisheries

- Effect of fisheries income depends on the level of other incomes
Results – income from fisheries

- Effect of fisheries income in urban areas (or rural areas close to a city)
Results – income from fisheries

- Effect of fisheries income in remote rural areas
Results – income from fisheries

- Effect of fisheries income depends on the area of residence
Results

- Other variables related to probability of exit
 - Education: One more year of schooling increases the probability of exit by 1.3 percentage points
 - Unemployment rate not significant
Conclusions

• Higher income from fisheries lowers the probability of exit
Conclusions

• Higher income from fisheries lowers the probability of exit

But...
Conclusions

• Higher income from fisheries lowers the probability of exit

But...

• This effect is small:
 – In remote rural areas
 – If income from other sources is high
Thank you for your attention!