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Let E2
be the set of ordered pairs of nonnegative real num-

bers and m2 be the two-dimensional Lebesgue measure. If

x = (xi, x2) and y = (yi, y2) are in E2, then we write x24 y if

x. < y. (i = 1, 2). For x E E2 we let L(x) = {y E E21y x}. A
1 - 1

bounded nonempty set F E2 is called fundamental if x E F

implies L(x)C F. Let F be fundamental and Cl(F) be the

closure of F. Then F* is the set of elements x E Cl(F) such

that y Cl(F) if x y and x

Let A be a measurable subset of E2. We define the density

a of A by

a = glb m (Arr-F)
m2(F)

where F ranges over all fundamental sets with positive measure.

If A and B are subsets of E2 the sum set C = A + B is
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defined to be the set of all a + b such that a E A and b E B.

In this thesis we prove that if A and B are open subsets of

E2, 0 E A B, A satisfies a restriction R described in the

thesis, F C and F* C C), then

m2(Cr F ) > am2(F) + m2 (Br\ F) This is a continuous analogue of an

extension to two dimensions of Mann's Second Theorem. Further-

more, a continuous analogue is obtained for Mann's ar3 Theorem

where, in this case, the extension to two dimensions is unknown. We

also obtain the Landau-Schnirelmann Inequality without the restriction

R on A.

Furthermore, we obtain a one-dimensional continuous analogue

of Mann's al3 Theorem for measurable sets A and B where

OEA(Th B.
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CONTINUOUS ANALOGUES OF DENSITY THEOREMS

1.. INTRODUCTION

In this chapter we will give a brief introduction to density

theory, giving some of the major results concerned with subsets of

nonnegative integers and extensions of these results to subsets of

n-dimensional lattice points whose coordinates are nonnegative inte-

gers. We will then define the analogous concepts for subsets of non-

negative real numbers and extend these to certain subsets of ordered

pairs of nonnegative real numbers. We will be mainly concerned with

sets that are measurable and our proofs are strongly dependent on

this assumption. The purpose of the thesis is to obtain results that

concern real numbers that analogue the results obtained for integers.

Thus, we obtain continuous results that analogue known discrete

results.

1.1. Some Density Theorems for Subsets of Nonnegative Integers

Let A be a set of nonnegative integers. For n >0 let

A(n) denote the number of positive integers in A that are less

than or equal to n. In 1930 Schnirelmann [16] introduced the concept

of density for A. He defined the density a of the set A to be

a = glb {A(n) . n > Erdos [4] defined another density a1 of A



A(n)to be al = glb n+1
n >k

missing from A.

where k is the smallest positive integer

2

> a + p - aP (Landau [10], Schnirelmann [16]),

> provided a + p < 1 (Schur [17]),
1-a

>min{1,a+3} (Mann [12]).

Another theorem of Mann's [13] is

(1.4) C(n) > a1(n+1) + B(n) for n >0 and n C.

1.2. Extensions to n-Dimensions of Density Theorems for Subsets
of Nonnegative Integers

Let In
be the set of all vectors (x1 n, ,x) such that x.

3

is a nonnegative integer for j = 1, ,n. A partial orderirig

is defined on In by x y if and only if x. < y. for i = 1,...,n

where x= (x1, ...,x) and y = (yi, , yn). If x .-Ky and

xk
< yk

for some k, then we may write x.{ y. For r E In

let L(r) = {x E In: X r}.

For any two sets of nonnegative integers A and B, the sum

set C = A + B is defined by C = A + B = {a + b:a E A, b E 13}.

The density of B and C are denoted respectively by p and

We will now give a list of some of the theorems that relate the density

of the sum set C to the densities of A and B if 0 E A rThB:



(2. 1) y > a + 13 - af3 (Kvarda [7])

3

A nonempty finite subset F of In
that does not consist only

of the origin is called fundamental if whenever r E F, then

L(r) C F. For A and T subsets of In with T finite, let

A(T) denote the number of non-zero vectors in A n T. Then the

(Kvarda) density of A is

A(F)a = gib (F)

where F ranges over all fundamental sets of In.
This is an exten-

sion of Schnirelmann density.

For n-dimensional space there is also a useful extension of the

one-dimensional ErdOs density. If A is any proper subset of In

let
A(F)al = gib

In(F)+1

where F ranges over all fundamental sets such that A(F) < In(F).

Let A and B be subsets of In. Then the sum set

C = A + B is defined by C = { a + b: a E A, b E B} where addition

of vectors is done coordinatewise. Let p and y be the respective

densities of B and C. Then the following two extensions to

n-dimensions have been made relating y to a and p if

0EAn B.



and

(2.2) if a + (3 < 1 (Freedman [5]).

A large open question remaining in additive number theory is whether

Mann's af3 Theorem (inequality 3, Section 1.1) can be extended to

n-dimensions using Kvarda density.

Although Mann's ai3 Theorem has not been extended to

n-dimensions, Kvarda [8] has extended Mann's Second Theorem

(inequality 1.4) to n-dimensions. A theorem that satisfies the

hypothesis of Kvarda's extension and has the same conclusion is as

follows. If A and B are subsets of In,
0 E A B, F is any

fundamental set such that C(F) < In(F), and the maximal points of

F are contained in the complement of C, then

(2.3) C(F) >ai(In(F)+1) + B(F).

For n = 1 it can be shown that this result implies 1.4.

1.3. Continuous One-Dimensional Analogues

In 1961 A.M. Macbeath [11] proved a continuous analogue to

Mann's a13 Theorem. In the proof he assumed Dyson's [3] inequality

for subsets of positive integers. To this author's knowledge Macbeath

has been the only person to obtain a continuous al3 theorem. His

paper led us to ask if we could obtain continuous analogues of density

4
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theorems and, if possible, obtain them without assuming the results

true in the integer setting. We succeeded in doing so in many cases

and were able to extend our results with certain restrictions to two

dimensions. We will now define the required terms so we can list

in this section the main one-dimensional continuous analogues that we

obtain in Chapter 3.

Let El be the set of nonnegative real numbers and m be

the one-dimensional Lebesgue measure. Let m* be the inner

measure.

Definition 1. 1. Let K be any subset of El. Then

K(t) = m*(K(m [0, t])

We note K(t) also equals m*(Kr [0, t))

We notice that if K is measurable then K(t) = m(Krm[0,t]).

Definition 1.2. Let K be any subset of El. Then the

density of K, denoted by d.(K), is defined by

d(K) = .t > 01.

We notice that K(t) > t(d(K)) for all t > 0.

Definition 1. 3. Let A and B be subsets of E1. Then the

sum set C A + B is defined by C = {a + b: a E A, b B}.

In Chapter 3, A and B will always be subsets of Ei with



o E A B. Hence Av BC C. We denote the densities of A, B,

and C by a, P, and y respectively.

In Chapter 3 we prove that if A and B are measurable subsets

of El and 0 E A B then

(3.1) y > a + 13 - al3

(3. 2)if a + 13 < 1)
-12--a

(3.3) >min{1, + 13})

(3.4) if x E E1 C, C(x) > ax + B(x).

We note that if x E E1 C, then x C and x >0 since

0 E C.

We see that (3.1), (3. 2), (3. 3), and (3.4) are analogous to (1.1),

(1. 2), (1. 3), and (1.4) of Section 1.1. We notice that for work with

subsets of the reals we have not introduced a separate density

analogous to the density of Erdiis given in Section 1.1. Since the

measure of a point is zero it turns out that the analogue of ErdOs

density that interests us is just Schnirelmann density in the continuous

setting.

1.4. Continuous Two-Dimensional Analogues

Let E2
be the set of ordered pairs of nonnegative real num-

bers. Let m2 be the two-dimensional Lebesgue measure.

6



Definition 1. 4. For x and y in E2 we write x y if

and only if x. < y. (i = 1, 2) where x = (x1, x2) and-
If xk < yk for either k = 1 or k = 2, we write x y.

Definition 1.5. For x E E2 let L(x) = {y E2 x}. We-

call L(x) the lower set of x.

Definition 1.6. A nonempty bounded subset F of E2 is

called a fundamental set provided that x E F implies L(x) C F.

In Chapter 2 we show that any fundamental set is measurable.

In Chapter 4 and Chapter 5 we will let,../1 be the family of all

fundamental sets. We denote by I" the sub-family of `,7" that

consists of the fundamental sets with positive measure; that is,

F E7 + implies F E g" and m2(F) >0.

Definition 1. 7. Let K be a measurable subset of E2. For

any bounded measurable set S we let K(S) = m2(KrThS).

Definition 1. 8. Let A be a measurable subset of E2. Then

the density a of A is given by

a= glb{ A2(F) .F E "..1j1 +}.

m(F)

0-1 +We note that if F E , then from Definition 1. 8 we have

A(F) > am(F) and if F E ow but m2(F) = 0 we still have

(YrY2)

7



0-)
A(F) > aM2(F). Hence we have A(F) > am(F) for all F E .

0-)Definition 1. 9. Let F be a member of . Then

F*= {x E Cl(F) x y and x y implies y Cl(F)} where

Cl(F) is the closure of F.

Definition 1. 10. If A and B are subsets of E2, then

C = A + B = + b: a E A, b E B} where addition is vector addition.

In Chapters 4 and 5 A and B will be subsets of E2 with

0 E A B. Therefore A j B C.

When 0 E A rm B, A satisfies a certain restriction defined

in Chapter 4 and A and B are open, then we show

(4.1) y > a + p - aP

(4. 2) if a + P < 1

(4.3) y > min{1, a + 13}

and

(4.4) if F C si and F* C C), then

C(F) > am2 (F) + B(F).

We see (4.1), (4.2), and (4.4) are continuous analogues of

results for lattice points, but (4.3) has no counterpart in the discrete

case.

Milner [14] has done some work in this area in a more general

8
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setting. He considers any locally compact abelian group and uses

the Haar measure. However, the only inequalities he obtains that are

the same as the ones considered in this thesis are the Schur Inequality

and the Landau-Schnirelmann Inequality. However, when he obtains

these inequalities he is in the special case where his locally compact

abelian group is the set of n-tuples of integers and his Harr measure

is the counting measure. Thus, his results are different than the

results of this thesis.

Other than Macbeath and Muller the author does not know of any

other work that is closely related to the work in this thesis. In

Chapter 6 we will suggest a few other ideas one can consider in this

area.

In Chapter 2 we will state or prove some results that are

needed from topology or measure theory. In Chapter 3 we will obtain

our one-dimensional results and in Chapters 4 and 5 we will obtain

our two-dimensional extensions.

1.5. Comparison of Theorems

In Section 1. 1 we listed four density theorems. The four

theorems are not all incomparable however. The aP Theorem

implies both the Landau-Schnirelmann Inequality and the Schur

Inequality, but on the other hand Lim [19] showed that the aP

Theorem and Mann's Second Theorem are incomparable. Since the



10

validity of the aP Theorem is not known in n-dimensions, the above

comparisons can not be made at this time in n-dimensions.

In the continuous setting in both one dimension and two dimen-

sions we obtain the corresponding four inequalities. However, since

in the continuous setting the analogue of ErdOs density we use is the

continuous Schnirelmann density, we are able to show that Mann's

Second Theorem implies the aP Theorem. As in the one-dimensional

discrete case the aP Theorem implies both the Landau-Schnirelmann

and the Schur Inequality.

The style and organization of this thesis is motivated by not

only the results we establish, but also by the desire to emphasize the

extent to which the theory for the discrete case may be carried over

to analogous theory for the continuous case.



2. TOPOLOGICAL AND MEASURE THEORETIC PROPERTIES

In this chapter we state several results from real analysis that

are topological or measure theoretic in nature and which are needed

as tools in our development. The proof is included whenever the

author has been unable to find the result in a standard textbook. Also

some well known results are not stated here, but are used later in the

thesis. These results either can be found in almost any standard text

on real analysis; for example, Royden [15] or Asplund and Bungart

[1], or if harder to locate will be referenced.

Some of the theorems will be stated or proved for n-dimensional

space. However in the thesis we use these theorems only when n = 1

or n = 2. The proofs of these theorems are no more complicated

for arbitrary n and this lets us avoid stating or proving these

theorems separately for n = 1 and n = 2.

2. 1. Topological Properties

Theorem 2. 1. Every open set of real numbers is the union of

a countable collection of disjoint open intervals.

Definition 2. 1. Let a = (al a2) and b = (by b2) be points

of E2 such that a. < b. (i = 1, 2). Then the open rectangle

11

{x= (x1 ,x2):a <x <b i= 1,2}
i

bis denoted by Ia.



12

Definition 2. 2. Let a = (al a2) and b = (b1,b2) be points of

E such that a < b (i = 1,2) and either a < b or a2 < b2.
2 i i 1 1

Then the set {x = (x1, x2): ai < xi <bi, i 1, 2} is a closed

rectangle of E2.

We see that a closed line segment may be a closed rectangle of

In Definitions 2. 1 and 2. 2 we say the points (al , a2) and

(b1, b2) determine the defined rectangles.

Definition 2. 3. The vertices of the rectangle determined by

, a2) and (b1,b2) are the points (al, a2), (al , b2), (hi , a2), and

(a2, b2).

Definition 2.4. If T is an open rectangle of E2 or if T

is a closed rectangle of E2 and K is any subset of E2, then

T rm K will be called a rectangle of K.

We notice that T m K may not have vertices.

Theorem 2. 2. Any open set of E2 can be written as a count-

able union of open rectangles.

Lemma 2. 3. If a
is an open rectangle contained in A

and 1 is an open rectangle contained in B, then

b+d .+=1a -c I a+c
is an open rectangle contained in C.



b1--Proof: Clearly I + lc

aK x b and y Er implies c y 4,d. Hence
b+d

a + c + b + d. Therefore x+y a+c.

b+d
a+c

On the other hand, suppose f = (f1,f2) E

b. .since x El la implies

a + c f b + d. Hence al + cl < fl < bl + dl and

a2 + c2 < f2 < b2 + d2. We see al + cl < fl < bl + dl implies

fl = (al+cl) kbl+d1)-(al+cldt

for some t such that 0 < t < 1. Let

a1 + (b1-a1)txl =

and

= c1 + (d1-c1)t.

Then

x1 + y1 = (ai+ci) + [(bi+di.)-(al+ci)It = fl

al < xl <b1

c1 <
y1

< d1.

In the same way we can write f2 = x2 + y2 where a2 < x2 < b2

and c2 < y2 < d2. Therefore f = (f 1 , f2) = (xi , x2) + (y1 y2) where

(xi, x2) El d b d b+d
and (yi, y2) 7 . Hence I-1 + LIi a a c = D a+c

Since every element of [ I

b+d can be expressed as the sum of
a+c

13

b+d Then
a+c

and

and



an element from A and an element from B we have

Corollary 2.4. If A and B are open subsets of E2, then

A + B = C is open.

Proof: Corollary 2.4 follows immediately from Theorem 2.2

and Lemma 2.3.

Lemma 2.5. If A and B are closed subsets of El, then

C = A + B is closed.

Proof: Let c be a limit point of C. Then there is an

infinite sequance <c.> such that c. c and each c. E C.
1 1 1

T and <b.> with
1. 1

a. E A and b. E B such that a. + b. = c.. Since <c.> is a
1 1 1 1 1 1

b is a bounded1- 1 1

sequence. Therefore <a.> has a convergent subsequence <aj>.

Suppose aj a. Then a E A since A is closed. Let <cj>

be the corresponding subsequence of c.>. Then c3 c. Thus

lirn bi = lim(ci-a3) = c - a. Since B is closed we have c - a E B.

Hence c = a + (c-a) E C. Therefore any limit point of C is in C.

Thus C is closed.

2.2. Measure Theoretic Properties

Theorem 2. 6. Let {A.} be a countable collection of

1 I

b+d C C.a+c

14



iterated integrals ( fdml)dm2 and ( fdm2)dml exist

E1 E1 El El

and are equal to fdm2.

E2

Lemma 2.11. Let S E2 be a measurable set such that

m2(S) < DO Let Tc = {(c ,x ):x >0} and T_ = {(x1, c2): x1 0}.
1 2 2

1 e2
Let g(c ) = m(T nS) and h(c2) = m(Tc ,-S). Then

1
c1 2

15

rnn
measurable sets. Then mn( c.'_)° A.) = lim mn( i A.), where

j=1 J N-00 j = 1

is the n-dimensional Lebesgue measure.

Theorem 2.7. Let {A.} be a countable collection of meas-iurable sets iniE1.If m(A1) < 00 and A.+1C A., = 1,2,...,
co

then m( A.) = lim m(A ).
i= 1 N co

Theorem 2. 8. If K Ei is measurable, then for any E > 0

there is a closed set H K such that m(K*N-H) < E .

Theorem 2.9. Let H and K be disjoint sets of real

numbers. Then

m(H) + m(K) < m*(HvK) < m*(H) + m*(K)

where m* is the Lebesgue outer measure.

Theorem 2.10. Suppose the function f on E2 is Lebesgue

integrable and m2 = ml x m2 where ml = m2 = m. Then the



m2(S) g(x)dm = h(x)dm.
E

1 El

Proof: Let x be the characteristic function of S. Then

2(s)
S ,x2 )dm2

E1X E1X (x1

= X s(xl , x2)dm2)dm

El El

by Theorem 2.10. However xS(x1,x2)dm2 g(x1) since

xs(xi,x2)dm2 m(T (-NS). Hence m2(S) = g(x1)dm. An

El xl "EI
exactly similar argument shows m2(S) =S6 h(x)dm.

El

Theorem 2.12. (Royden [15]). Let f be a nonnegative

integrable function on (-c0,00), and let m2 be two-dimensional

Lebesgue measure on the set of ordered pairs of real numbers. Then

m2{(x, y): 0 < y <f(x)} = m2{(x, y): 0 < y < f(x)} = 5f(x)dm.

Lemma 2.13. If F E then F is measurable and

2 2(F) = m (Cl(F)).

Proof: For (x1, x2) in F let f(xi) = sup{y: (xi, y) E

where aF is the boundary of F. Then f(x) is a nonincreasing

16



17

function. To see this suppose ti < and f(t2) >f(). Then

there exist open disks Di and D, about centers ( 1,f(ti))

and (t2,f(t2)) respectively such that (a1,a2) E Di and

(b1, b2) E
D2

implies al < b1 and a2 < b2. Since (t2, f( t2)) is

a boundary point of F there exists a point f = (f1,f2) E D2 (--) F.

Since (t1,f(t1)) is a boundary point of F there exists a point

g = (gi, g2) E F. But g E L(F) from the way we chose D1

and D2. Therefore L(f) F. This contradicts that F is

fundamental. Hence f is nonincreasing.

Since f is nonincreasing it has at most a countable number of

discontinuities and therefore f is a nonnegative measurable func-

tion. Now Cl(F) = {(x, y): 0 <y < f(x)}. Since Cl(F) is bounded

we see f is a nonnegative integrable function. Therefore from

Theorem 2.12 we have Sfdm = m2(Cl(F)).

Let T = {(xi , x2): x2 0) and let g(x1) = m(Tx F).
xi

1

Suppose1 is not a discontinuity of f(x). Then {(x1, y) :(x1,y) E aF}

is a singleton. To see this suppose (x1, y1) E aF and (xi , y2) E aF

and y1 < y2. Then f(x1) > y2 and lim f(x) < y1 < y2. Hence

lim f(x) f(x1) and f would not be continuous at x = xl. Hence
xxl
if x1 is a point of continuity of f, we have g(xi) = f(x1). Thus

f = g almost everywhere. Therefore Sfdm = gdm We have



S. gdm m2{(x, y): 0 < y < g(x)} = m2{(x, y): 0 < y < g(x)}.

However

{(x, y): 0 <y < g(x)} F {(x, y): 0 <y < g(x)}.

Therefore Sgdm = m2(F). Thus m2(Cl(F)) = m2(F).

Theorem 2. 14. Lebesgue measure is translation invariant.

Theorem 2.15. (Asplund [1]). Suppose 9 is a linear trans-

formation of Rn, the set of n-tuples of real numbers, with

det 0 and mn is the n-dimensional Lebesgue measure. If f

is an integrable function on Rn, then f .9 is also integrable and

1
cpdmn =

1de t
Sfdmn.

91

Definition 2. 3. The set a + K = {a + k: k E K}.

Theorem 2.16. If T C Rn is measurable and mn(T) < 00

and g E Rn, then mn(T) n cg_t t: t E

Proof: Let H = {g-t: t E T}. Then H = g + ( -T) where

-T = {-t:t E T}. From Theorem 2.14 we see mn(H) = mn(-T).

Therefore to finish the proof it suffices to show mn(T) = m'1(-T).

Let X T
and x -T be the characteristic functions of T

and -T respectively. Let p be the linear transformation

18



-1 0

defined by cp (t) = -t. Then 9 is given by ( . ) and hence
0 -1

Idet 91 = 1 51 0.

We see that XT = X-T ° 9 since

(X _T °(p)(x) =

Hence mn(T) = mn(-T).

SX _T ° (pdmn -

(1 if XET

0 if x V T

1
X dmdet c:

n
-T

1

Idet 91 m(-T)

= mn(-T).

19

and

1 if XET
XT =

0 if x V T
Thus

m(T) = Tdmn = S*X -T (Pdmn .

However by Theorem 2. 15 we have



3. ONE-DIMENSIONAL CONTINUOUS ANALOGUES OF
DENSITY THEOREMS

In this chapter we will develop continuous one-dimensional

analogues of density theorems concerning sum sets of nonnegative

integers. The set E1 will be considered as the universal set.

3. 1. The Landau-Schnirelmann Inequality

Before proving the Landau-Schnirelmann inequality in the case

where A and B are measurable subsets of El, we will first

prove a series of lemmas. We first obtain an inequality for open sub-

sets A and B of El, then one for closed subsets of El by

taking intersections of certain open sets, and finally one for meas-

urable sets using the fact that every measurable set contains a closed

subset of nearly equal measure.

Lemma 3. 1. If A and B are open subsets of Er

E A rm B, and x is a positive real number, then

C(x) > (1-13)A(x) + px.

Proof: Suppose x > 0 is fixed. Since A is open,

A [0, x] can be written as a disjoint union of open intervals in the

relative topology. Since m(An [0, x]) < 00, then for any e >0

there exists a finite number of disjoint open intervals contained in
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a. < a .

k n
E E

Let
AE

= [
...) (a2i,a2j+1)1 L) [An(x,°0)1 and let C = A + B.
J=0

Then AE C A and A(x) >AE(x) > A(x) - E. We see also that

CE C. Let h1 = a2 - al, ... ,hn =a 2n - a2n-1, and n+1

hn+1 = x - a2n+1. Then x - AE(x) = x - m(AEn[ 0, x]) = h..
j=1

For each i, 0 < i < n, the numbers a2.+1
+ b, where

b E B and a21+1 a21+1
+b < a2i+1

+ hi+i, are in C but not in

AE. That a2i+1 + b .AE follows from the fact that

(a2i, a2i+ 1) and (a2i+2, a2i4.3) are two consecutive intervals of AC.

Thata2i+1
+ b E

CE follows from the fact that B is open. Thus

b E B implies that there exists 6 such that 0 < 8 < (a -a .)
21+1 21

and b E B if b E (b -6, b+6). Then

6 6

a21
+ b = (a - + (b+) E AC B = CE.

+1 21+1 2 2

The set of all such real numbers b is B [0,hi+1]

Therefore,

21

At [0,x], say [0,ai) = [ao, al), (a2,a3), ,(azn,a2n+1), such

that m(An [0, x]) - < m( v (a ., a )) where j < k implies
j0 2j 23+1

=



i=0

i=0

n+1

i=1

ai+l +13(m[0,hi+12

(B 0 1)
1+1

h.
1.

= .Ac(x) + [3(x -AE(x))

> A(x) + 13(x-A(x)) - c.

However C(x) > C (x). Hence

C(x) > A(x) + 13(x-A(x)) -c .

Letting c tend to zero we obtain

C(x) > A(x) + 13(x-A(x))

= (1-13)A(x) + 13x.

Now given any set A C El we will construct an open set

from A.

Definition 3.1. Let N be the set of positive integers. For a

given set A C EI and for given h and k in N let

h
A,/1( = {x E El: lx-al < for some a E A}.

ti
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Lemma 3.2. If 0 E A B, then A +B CC
1 /k 11k 2/k.

Lemma 3.3. If a set K C El is closed, then

K n[0,x] = [(Kh 11([ x]): h E N is fixed}.
k EN

Proof: We have K [0,x] C Khik for all k E N. There-

fore K n [0,x] C (Th (K, h_rm[0 x]) Assume that
k EN '1'

(K, A
rm

[0, x]) K [0, x]. Choose y E (Th (K n [0, xJ)
k EN niK keN h/k

such that yfiK(Th [0,x]. Then we have two possibilities

there exists k E N such that {z: I z-yl <} n (Kim [0,x])=d

or otherwise

for all k E N we have {z: I z-yj <} n (Kr-N[0,x')

If (1) is true, then y (K(m[0,x])hik C 1<h/it rm [0,x], which

is a contradiction. If (2) is true, then y is a boundary point of

K [0, x], but since K r-N [0, x] is closed y E K [0,x].

Hence we again have a contradiction. Therefore

n (K. n [0, x]) = K n [0, x].
k EN

Lemma 3.4. If 0 E A n B, A and B are closed subsets of

b' E Blik.
for some

Therefore

23

Proof: Let x = a' + b' where a' E Al& and

Then l a-al I < for some a E A and I b -b I

<
1

b E B. Hence I (al+bI) - (a+b)I < la'-al + Ib'-b1
<

2

a' +13' E C2/k. Hence A + B C
C1/lc Bilk /k.



k---'" co we have C(x) > (1- p )A(x) + 13x.

Likewise m(Cn [0, xi) = lim m(C2/kn[0'x])k-- 00

Therefore, as
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El, and x is a positive real number, then C(x) > (1 -13)A(x) + Px.

Proof: Define
Al 11c

and B1 /k
as in Definition 3. 1. Then

A1 11K
+ B1 1k(- C2/k . Therefore from Lemma 3. 1 we have

.---

C2/k(x) -> (Al /k+Bl /k)(x)

> (1-Pi ik)Ai ik(x) + 131 ikx

= A1 /1(
(x) + p1 /k (x-A1/k (x))

> A1 /k (x) + P(x-A1 /k (x))-
= (1-13)A1 ik(x) + Px

where

B1 /k(y)
p1 11c

= gib
Yy >0

and hence P1 /k ->
p .

However Arm [0, x] = rm (Ai ikrm [0, x]) and
k EN

(A1 ik+ 1(--
[0, xi) C Ai /lc rm [0, x]. Since m(A1 /1n [0, x]) < c° we

have by Theorem Z. 7

m(Ar-- [0, x]) = m( rm (AI ikn [0i xin
k E N

= lim m(Al ikn [0, x])
k-' co



Lemma 3.5. If p and q are real and p >1 and q < 1

and B E1
is measurable, then there exists a closed set B'

contained in B such that for all t > 0 we have B1(t) >a Pt.13

n n+1
Proof: Let Jn denote the interval (p p ) for all inte-

gers n. By Theorem 2.8 we can choose a closed set B' C B with

0 E B' such that m(Blr-\Jn) > qm(Br\Jn) for all n. If t is such

that pr < t < p r + 1 for some integer r, we have
r+1

B'(t) > B'(pr) >qB(pr) > qPpr = qP > q . Hence for all t >0

we have BI(t) >a Pt.13

Theorem 3.6. If A and B are measurable subsets of El

and 0 E A B, then -y > a + 13 - a P .

Proof: Choose real p > 1 and real q < 1. Then by Lemma

3.5 there exists a closed set B' C B such thai BIM > Pt for
P

all t >0. Then PI >a P where p, is the density of B'. Let
P

x > 0 be fixed and choose a closed set A' C A such that

m(A'n [0, x]) > qm(Arm [0 , x]). Then let C = A' + B'. Then C' is

closed. Now by Lemma 3.4 we have

C'(x) > (1 -PI)Al(x) + p'(x) (1-P)qA(x) + a Px. However C(x) > C '(x).

Therefore as we let 1 (and hence q ---*" 1) we obtain

C(x) > (1-P)A(x) + f3x. Hence
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C(x) A(x)
> (1-13) + p

> (1 -(21)a + (3.

= a + 13 -

Therefore

y = gib C(x) > a + 13 - a13 .
xx >0

3.2. The Schur Inequality

In this section we proceed as in Section 3.1 to prove a series of

lemmas that enable us to establish the Schur Inequality for measurable

sets.

Lemma 3.7. If A and B are open subsets of El and

E A B, then (1-a)C(y) > B(y) for y E E1---- C.

Proof: Let y E El C be fixed. Since 0 E C we see

y >0. Since A is open than A [0,y] can be written as a

countable union of disjoint open intervals. Since m(Arm [0, yi) < 09

then given any E > 0 there exists a finite number of these disjoint

open intervals of A rm [0, y], say [0, a1), (a2n,a2n+i) such

that m(Arm [0, y]) < m([0 ,a1)
j=1

(a23 ., a 23+1)) +E where j < k

implies a. < ak . Similarly B .-m[0, y] is a countable union of dis
3

joint open intervals and for c > 0 there exists a finite number of
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them, say [O, b1), (b2t,b2t+1), such that

m(l3tm [0, y]) < m([0,bi) v (b2k,b2k+1))
k= 1

Let AE = [0,a1) k..)[ _1.
(a23 ., a2.0-1

)] v (Arm (y,00))
j=1

BE = [0,b1 ) (b2k,b2k+1)] (Brm(y,00)) Let CE = + BE.
k= 1

Then CE C C = A + B. We note that A(x) > AE(x) > A(x) - s and

B(x) > BE(x) > B(x) - C for all x > 0.

Let a be the density of AC. Then urn a = a . This is so
E-4' 0 E

since

a = glb{A(x)

equal [c0, c1) v (c2,c3) v

r AC (X): X > a > 0} > a = .x > a > 0}
E X - 1

and

r A(x)-E> glbt .x > a > 0} > a -
x 1 al

Thus as 0 we have a -- a.

Since A and B are open sets we see C is open.

Furthermore CE rm [0, y] is the union of a finite number of open

intervals since an open interval of AE added to an open interval of

BE is an open interval of CC. Let CE (Th [0, y] where 0 = c0 '

) where(C2s, c2s-ri i <

implies c. < c..
1 3

If aEAc and 0<a<ci+l-c ,0<i<s, then
2 2i

a V BC and c2i < c.+1 - a < c2i+1. This is so, for if
c2i+1
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c2i+1 - a E BE thenc2i+1 = a + (c2i+1-a) E AE + BE = CE contrary

to c2i+1
CE. Also a > 0 impliesc2i+1 - a < c and

a < c2i+1 - c2i impliescc2i<2i+1 - a.

Therefore

(c2i+l-c2i) - m(B (c2i ,c2i+1 )) > m({c2i+1-a: a E AErTh [0,c21+1-c2i)} )

n1(2; rTh[°'c2i+l-c2i))

> aE(c 2i -c
+ 12i).

E

Hence (1-ae)(c2i+l-c2i)>m(Bn(c2i,c2i+1)) Therefore

>
2i+1 21

m(BEn (c2i, c2i+1))
i=0 i=0

However

(c -c 2i) = m( (c2i, c2i+1)) =2i+1
m(Cn [0, y1),

i=0i=0
S

and since B5 C CE we also have / m(BEn (c2i, c2i+1)) = BE (y).

i=
Hence (1-a )CE(y) >BE(y) Therefor0e

£

(1-a£)C(y)> (1-ac)CE(y)

>B£ (y)

> B(y) -C.

Letting E tend to zero we obtain (1-a)C(y) > B(y).
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Lemma 3.8. If A and B are closed subsets of El and

0EArB, then (l-a)C(y) > B(y) for y E El.., C.

Proof: By Lemma 2.5 we know that C is closed. Therefore

El C is open. Since E C is open and y E E1\ C there
1

must exist 5 > 0 such that (y-5, y+5) C C. Choose k E N

2such that 0 < < 5. Define Al /k and Bl /k as before. Having

2
chosen < 5 we see y I Al /k + Bilk. Since 0 E A (- B we

have A1 /1 Bl /k Therefore from Lemma 3.7 we have

(1-al /OA' /k+B1 /k)(Y) B1 /(y)

> B(y)

where al /k is the density of A1 /lc Since al /lc a and

Ai /k + Bi C2 /lc., then (1 -a)C2 ik(y) B(y) As before, letting

k co we have (1-a)C(y) > B(y).

Lemma 3.9. If A and B are measurable subsets of El

and 0 E A rTh B, then (1-a)C(y) > B(y) for y E E1 C.

Proof: Choose p > 1 and q < 1. Then as before there

exists a closed set A' C A with 0 E A' such that a' > 2 a .
P

Choose a closed set B' C B such that 0 E B' and

m(B [0 , y]) > qm(Brm [0 , yl) Then let C' = A' + B'. Now by Lemma

3. 8 we have
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positive reals, then gib{
C(x).

x

(1-0Ct(y) >13'(y)

Hence

(1- aa)C(y) > (1-a')CT(y) > Bi(y) > qB(y)

Thus letting a 1 and hence letting 1 we obtain

(1-a)C(y) >B(y).

Lemma 3.10. If 0 E A (Th B and C does not contain all the

E C).

Proof: Clearly y < glb{C(xx) .x E E1 C). On the other hand,

y = glb{C(z) : z >

= glb{
C(z) .z > 0 ther exists x where

0 < x < z and x a

Let z E C and x I C be such that 0 < x < z. Let

s = sup{y: y E C and y < z}. Then C(z) = C(s) + (z-s). This

is so since C(z) = m*(Cr- [0, z]) and

m*(Cn[0,$)) + m*(Cr[s,z]) < m (Cn[0,z]),
< m (cr,[0, s)) +m*(Crm[s,zb

However m*(C,---,[s,z1) m*(CrTh[s,z]) = z - s. Therefore

C(z) = C(s) + (z-s).
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C(z) C(s)+(z-s) C(s)
Now . Howevers+(z-s) s

C(s) C(y)> gib{ . y E

point of elements in E1---.
C. If s V C the inequality is immediate.

If s is a limit point of El---- C, then there exists a sequence
C(y) c(s)

<yk> of elements in E1 '. C such that Hence
Yk s

C(z)
> glb{-C--- .y E1 ----- C}. Therefore y > glb{-C--(Yj . y E E1-' C}.

z ' Y

Finally y = glb{C--(Y-)y :y E Ei--- c}.

Theorem 3.11. If A and B are measurable subsets of

0 E A n B, and a + p < 1, then y > .

Proof: If C(x) = x for all x > 0, then y = 1 and we are

done since 1 >JL . Assume C(x) < x for some x. Then there
1-a

y= glb
YEE1 C

C(y) P

y 1 -o.

3.3. Mann's Second Theorem

In this section we will obtain a continuous analogue of Mann's

Second Theorem for measurable sets.

Lemma 3.12. If A and B are open subsets of Er

E A r B, and x E E1 C, then C(x) > ax + B(x).

E1--- CI since either s C or s is a limit

31

Hence

exists some y in E1-. C. From Lemma 3.9 we have

(1-a)C(y) > B(y) for all y E E1 C. Therefore

(1-a)C(y) > B(y) > Py for y E E1 C . Hence C(y)
Y 1 -a
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Proof: Suppose x E C is fixed. Since A and B are

open, then given any c > 0 we can find a finite number of open

intervals of A rTh [0, x] and B n [0, x], say

[0, al), (aZ, a3), . . . , (a2n, aZn+ 1
) and [0 b 1) , (b2, b3), (b2r b2r+ 1)

respectively, such that

m([0,ai) (a
2j' 2j+1)))

A(x) -s
j.1

and

m([0,b1 ) k0 2k( (b ,b2k+1 ))) > B(x) -5

Let A = [0, a) v ( V (a ., a )) v (An (x, co))
1 j=1 2j 2j+1

B = [0,b1) ( (b2k, b2k+1)) (Bn (X, CO)). Let CE = A + BE.

k= 1

Then Cc C, CE is open, and Cc (Th [0, x] is the union of a

finite number of disjoint open intervals. Hence C(x) > Ce(x),

B(x) > B(x) - e, and if aE
is the density of A5, then

lim a a These follow as in Section 3. 2.
0

If K is a set and I is an interval such that K C El and

I C E1 K, then we call I an interval gap of K. We can write

[0, x] and [0, x] as the union of a finite number of dis-

joint closed intervals (a point is considered a closed interval here).

Let [cl' c2] be the first interval gap of CC. It must be con-

tained in some interval gap [b2m-1,132m] of BE since B5C CE.

Let c be the largest element of El-- Cc such that

and



b <c<b . If c<x, then let S1={tEE:0<t<b }.
2m-1 2m 1 2m

If c > x, then let S1 = {t E E1:0 <t < X}. (Note: If [ci , cz]

is contained in an interval gap of B of the form [b2 00), then

c > x and S1 ={tEE1:0<t<x}.)

Case I. S1 = {t E E1
:0 <t <

Let (b2k,b2k+1)
be one of the finite number of open intervals

contained in B n S1. Then (x-b2k+1,x-b2k) is an interval gap

of A n S1. This is so since x > x - b2k and if there exists

a e AE such that x - b2k+1 < a < xb2k then there would exist
'

b e (b2k,b2k+1) such that x = a + b Hence x would be in C

and hence in C, which would be a contradiction. If (b .,b )
Zi 2j+1

and (b2k,b2k+1)
are two of the finite open disjoint intervals whose

union is BE n Si, then (x-b2j+i, x-b2j) and (x-b2k+1,x-b2k) are

disjoint intervals of S1.

Let GI, 5
= -b + 6:d E Sl CC} where

2m - 1

We note that b2m-l= sup{b:b E Be nS1}.0 < < b2m-1 - bZm-2.

We see that Gl, 6
is a union of interval gaps of Ac in S1.

This

is so since if d - b2m-1 +6 were in AC, then

d = (d-b2m-1+ 6) + (b2m-1- 5) E AE + BE CE. This contradicts

d c S1
C. Also GI, 6

is disjoint from (x-b2k+11x-b2k) where

(b2k, b2k+1) C BC r\ S1 and b2k+1 <b2m-2 and

m(G1, 6em (x-b2m-1,x-b2m-2)) 6. This is so since the largest
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Letting E -''' 0 we obtain

C(x) > ax +

34

element of Gl, 5 is x - b2m-1 +6 and

x - b2m-1 + 5 < x - b2m-1 + (b2m-l-b2m-2) = x - b2m-2 and all the

other intervals (x-b2j+1,x-b2i) are such that x- b2m_2 < x -b2j+1.

We also have m(Gi, 6) = m(S1--- Cc).

Thus,

m-1

m(S1-- Ac) > m( .._, (x-b2k+1 ,x-b2k )) + m(G1, 5)
k=0

- m(G1, 6n (x-b2m_ 1 , x-b2m-2))

m-1
> m( v (x-b2k+1,x-b2k)) + m(G1, 5) -6

k=0

= m(BcnSi) + m(S1-.. CC)
6.

Letting 6 --- 0 we obtain m(S1 -- Ac) >m(BcnS1 ) + m(S1 --- Cc).

Hence m(S1) - m(AcnS1 ) > m(S1 ) - m(CEnS1 ) + m(BnS1 ) and thus

m(CEn S1) >m(AErmS1
) + m(BcnS1 ). However S1 = [0,x] and so

we have



Therefore if S1 = {t:0 <t < x} we are done.

Case II. S1 = ft: 0 < t < b 12m

Recall that c is the largest element in CC such that

b < c < b . If we go through the same argument as we did in
2m-1 2m

Case I considering the intervals (c-b2k+1, c-b2k) instead of the

kintervals (x-b2k+l'x-132k) where (bL_.b2k+i) \
BC

S1

we willr--

arrive at the inequality

(1) Cc(S ) > a rn(S ) + BE(S ).1 E 1 1

We now form a new set S2. Let [el , e2] be the next interval

gap of CC after c; that is, el = inf{z E E1---CC :z > c}. As

before [e1,e2] C [b2 1,b2] where [b2p-1, b2p1
is an interval

gap of BC. Let e be the largest element not in
CE such that

b2p-1 <e<b . If x<e welet S2
={tEE :b <t<x}. If

2p 1 2m
x > e, we let S2 = {t E E :b < t < b }. We now let1 2m 2p

s ' = {t - b2m: t E S2}.2

We now consider the subcase where e > x. Then_

S2 = {t EE1 :b2 <t< x}. The intervals (x-b ,x-b23.) where
m 23+1

(b2j,b2j+1) C BC
S2

are disjoint and are interval gaps of

AC S. That they are disjoint and are interval gaps of AE follows
2

as before. We see that they are in S12 by observing that b2. > b2 .

Let G2,6 = {d-b2p-1 + 6 : d E S2 CC) where
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0 < 6 < (b2p_1-b2p_2). Recall that (b2p_2,b2p_i) C BE. By a simi-

lar argument to the one used above we have G2, 5
disjoint from

(x-b2j+1, x-b 2j) for (b2i, b2j+1) BC n S2 such that

b2j+1 < b2p-2 and m(G2, 5 n (x-b2p-1 ,x-b2p-2 )) < 5. Also as

before G2,5 is the union of interval gaps of
Ac

in ST and
2

m(G2, 6) = m(S2'--. Cc).

Thus we have

p-1
m(S' ----Ac) > m( L) (x-b . ,x-b )) + m(G2, 5)

2 23+1 23
i'm

- m(G2, 8 n (x-b2p-1,x-b2p-2))

> m(BEnS2) + m(G2, 5)
- 6

>
m(BE

nS2 ) + m(S2 --- Cc) - 5.

Letting 8 --- 0 we obtain m(S12--, AC) > B6(S2) + m(S2-.... Cc).

Therefore we have

m(SI
) - m(Acr\S') >m(Bc S2)

+ m(S2 ) - m(CcnS2)2 2

However m(SI
) = m(S2). Hence we have

2

E
M(CE/ThS2 ) > m(A rS ) + m(BE (mS2)

> a m(S.;) + m(BEnS2)- E G

= a.cm(S2) + B6(S2).



Therefore since S1 v S2 = [0, x] and m(S1emS2) = 0 we

have

CE(x) = C6(S1vS2'

= CE(S1 ) + CE(S2)

a m(S) + B(S1) + CE(S1 2)

a m(S ) + B(S1) + am(S2) + BE(S2)
E 1

= a(m(S)+m(S)) + BE(S) + 13E(S1 2 1 2)

= am(S vS) + 13E(SvS
E l 2 l 2)

= a x + Bc(x).

Hence

C(x) > CE(x)

a x + BE(x)

x + B(x) - E.

Letting E we obtain

C(x) > ax + B(x).

Thus if S2 = {t E E :b < t < x} we are done.
1 2m

If e < x then we are in the other subcase and

S2 = E :b < t < b }. Recall that e is the largest element1 2m 2p

in El-- CC such that b2p-1 < e <b2. . Then going through

exactly the same arguments as we did above, considering the intervals

37



(e-b2j+1'e-b2j) in place of the intervals (x-b2j+1,x-b2j) where

(b2j,b2j+1) C BE
S2,

we arrive at the following inequality,

(2) m(CcnS ) > a m(5 ) + m(BEnS2).
2 E 2

We use the same process a^s before to construct a new set 53

and arrive at the corresponding inequalities. If we continue in this

manner, we obtain after a finite number r of steps a finite set of

intervals {S.: 1 <j r} where [0, x] = 6 S. and m(5.,-m ) = 0
J 3

j k

for j k. That only a finite number of steps are required follows

from the fact that there are a finite number of interval gaps of B

contained in [0, x].

Since for each we have

m(CEnS.) = Cc (S .)
3

> a m(S.) + m(B rmS.)- E

it then follows that

C (X) = m(CcC n [0, x])

r
= m(C-n L.) S.)

j=1

r
= m( LI (C nS.))

j=1

/m(CS) >
J

i= 1
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>
1(a m(S.) + m(B rmS.))

s 3 3

j= I

r
= a M.( S rn B rTh S

j=1 :1=1

= a x + B (x).

However

C(x) > CE(x)

ax + B (x)
E

a x + B(x) - c.

Letting e 0 we obtain

C(x) > ax + B(x).

Lemma 3.13. If A and B are closed subsets of El,

e A B, and if there exists a positive number x not in C,

then C(x) > ax + B(x).

Proof: By Lemma 2.5 we know C is a closed set. There-

fore Er- C is open. Since x E E1-- C and E1 is open,

there must exist 5 >0 such that (x-5, x+5) E C. Choose
1

k E N such that 0 < < 8. Define Al /k and
B1 1k

as before.
k

2
Having chosen < 5 we see x di C2/k. Since Ai /k + BIN. CI_ C2 ik

k

we see that x .1 Al
11(

+ B1 /k.
Since A C. A1 1kwe have

A1 /lc
(t) > A(t) > at for t > O. Hence a > a. Therefore from_ 11k
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Lemma 3.12 we have

C2 ik (x) > (A1 ik +B1 ik
)(x)

ikx Bl/k(x)

> ax + B1 ik(x).

But as in Lemma 3.4 we have

m(A(Th[0,x}) = lim m(Alikr-[0'xl)
k co

and

m(CrTh[0,x1) = lim m(C2./kr-)[0'x]).
co

Therefore as we let k co we obtain

C(x) > ax + B(x).

Theorem 3.14. If A and B are measurable subsets of

E 0 E A B, and if there exists x E

E1
C, then

1

C(x) > ax + B(x).

Proof: Choose two positive constants p > 1 and q < 1.

Then as before there exists a closed set A' C A such that

a' > a a and 0 E A'. Choose a closed set B' C B such that
P

na(B [0, xl) > qm(BrTh [0, xl) and 0 E B'. Then C' C C and

hence x C'. Now we apply Lemma 3.13 to obtain
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C'(x) > afx + Bf(x) > ax + qB(x). However C(x) > C'(x). Hence
P

P.as we let 1 we have C(x) > ax + B(x).

3.4. The a13 Theorem

In this section we will obtain a continuous analogue of Mann's

aP Theorem. The aP Theorem follows from Theorem 3.14. Since

in the discrete case the proof of Mann's Second Theorem is simpler

than the proof of the aP Theorem, our method of proving the 0.13

Theorem is inherently easier than the methods needed to prove the

aP Theorem in the discrete case. It also does not assume anything as

powerful as Dyson's Inequality which Macbeath used.

Theorem 3. 15. If A and B are measurable subsets of

El and 0 e A r-N B, then y > min{1, a+13}.

Proof: If C = E1, then y = 1. Suppose C El. Let

x E El-, C. From Theorem 3.14 we have C(x) > ax + B(x). We

have B(x) > Px. Hence C(x) > ax + I3x = (a+13)x. Therefore,

C(x) > a + 13 . Thus y = glb{ C(x) x E E C} > a + 13 .

3.5. Other Continuous Analogues

In this section we get continuous analogues of other interesting

results known in the discrete case.
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Corollary 3.16. If a + 13>1, then y = 1.

Proof: This corollary is an immediate consequence of

Theorem 3.15.

For subsets of non-negative integers it has been shown that

a + P > 1 implies that C is the set of all nonnegative integers.

We have shown a + 13 > 1 implies y = 1, but by example we will

show a + 13 = 1 does not imply C =

1Example 3.1. Let A = [0,1) LI (1, 00) and B = [0,7) \__) (1,00).

1
Then a = P = 7 and hence a + p = 1. However C = [0,1) (1,00)

and hence 1 V C.

Theorem 3.17. If A and B are measurable subsets of

El, 0 E A B, and a+ 13 > 1, then C = Ei.

Proof: Assume there exists x E E C. Let H = A rm [0, x]

and G = {x - b:b E B n [0,x]}. Then H G = d. To see this

suppose x-b EHn G. Then x = (x-b) + b E C. Hence

m(H) + m(G) = m(Hv G) < x. However m(H) = A(x) and

m(G) = B(x). Therefore A(x) + B(x) <x and a + 13 < A(x)+B(x)

This contradicts a + p > 1. Hence C =
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Definition 3.2. Let n > 1 and A1,. ,An be subsets of E1



such that 0 E A..
j=1 3

Lemma 3.18. Let 0 E rm A.
j=1

Then Al + ...+A = {a1+ ...+a : a. E A., j = 1 , ...,n}.
n n 3

and let d(A1+... +An) be the

density of A1+. .. +An and let a. be the density of A.,
1 1

i = 1, ... ,n. If Al, ... , An are open subsets of E1 or if

Al, ... ,An are closed subsets of El, then

1 - d(A1+. . . +An) < (1-a1). . . (1-an).

Proof: If n = 1, then 1 - d(A1) = 1 - al < 1 - al . Since

the sum of any two open sets is open and the sum of any two closed

sets is closed we have that any finite sum of open sets is open and any

finite sum of closed sets is closed.

Assume that for some integer k > 1 we have

1 - d(Ai+...+Ak) < (1-a1) ...(1-ak).

Then

1 - d(A1+...+Ak+Ak+1) = 1 - d([A1+.. .+Ak]+Ak+1).

However by Theorem 3.6

d([A +...+Ak]+Ak+1) d(A1+. . . +Ak) + ak+1 - d(A1+. .. +A )a
1 k k+1'

or

1 - d([Al+...+Ak]+Ak+i) < 1 - d(A1+...+Ak) - ak+1+d(A1+ +Ak)ak+1

= (1-d(A1+...+Ak))(1-ak+i)

< (1-al) (1-cik)(1-cik+1).
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Hence the lemma is true by induction.

Definition 3.3. Let k be a positive integer. We call A a

basic set of El of order k if Al + + Ak = El, where each

A. = A, j = 1, . k, and k is minimal. We write

Al + +
Ak

as kA.

Theorem 3.19. If 0 E A, A is open or A is closed, and

d(A) > 0, then A is a basic set of El.

Proof: If d(A) > 0, then there exists a positive integer

1such that (1-d(A))n < 2. Then by Lemma 3.18 we have

1 1(1-d(nA)) < (1)n < . Hence d(nA) > . Thus d(nA) + d(nA) > 1

and from Theorem 3.17 we have nA + nA = 2nA = El. Thus the

order of A is less than or equal to 2n.

The results of Lemma 3.18 and Theorem 3.19 follow exactly

as the corresponding results for subsets of nonnegative integers. In

the integer case there are subsets which have density zero, but are

nevertheless basic. For instance, if A = {k2:k is an integer} then

d(A) = 0, but A is basic of order 4.

We will now show by example that there are sets in El with

density zero, but basic of order k for any k > 2.
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an integer greater than or equal to 1. Then d(A) = 0, clearly

(k+1)A = E1, and also h < k+1 implies hA El since there
h - 1

exists 5 >0 such that 2 - 8 1 hA. Any 5 where 5 < (1-

will suffice.

The final result we will show in this chapter is that the aP

Theorem is in a sense best possible.

Theorem 3.20. Given a >0 and p > 0 such that

+ p < 1, then there exist sets A and B such that d(A) = a,

d(B) = p , and d(A+B) = a + 3.

Proof: Let A = [0,a] [1 , co) and B = [0, pi 1/4._) [1,00). Then

A + B = [0, a +13] [1,00) and we see that d(A) = a, d(B) = p, and

d(A+B) = a + P.



4. TWO-DIMENSIONAL CONTINUOUS ANALOGUES
OF THEOREMS OF MANN

In this chapter we prove two major theorems of the thesis. We

first obtain a continuous analogue of the two-dimensional extension of

Mann's Second Theorem using a method of Kvarda [9]. We then

obtain an a13 theorem for two dimensions. In this chapter A and

will always be open sets with 0 = (0,0) E A r-, B and E2 will

be the universal set.

4. 1. Preliminary Notation and Lemmas

Definition 4. 1. Let S = F' F" where E and

d. Let "min"S = {s: s E Cl(S), 0 4.,t 4\s implies t Cl(S)}.

jWelet "min"S = {6.: E C2} where C2 is the index set.

Definition 4.2. For each j E 2 let S. {s:s Cl(S), ô. s}.
3

Lemma 4. 1. i S. = Cl(S).
jE23

Proof: We see that i S. C Cl(S) since by definition each
j

C.C l(S). On the other hand, for each s E Cl(S) we have either

s E "min"S or s I "min" S. If s E "min"S, then s = 6. for
3

some j E 2 and hence s E S.. Therefore s E j S.. If
3

s = (si, s2)I "mini's, let s1 = min{x: (x, s2) E Cl(S)}. Then since
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Cl(S) is closed, (s1, s2) = s(1) E Cl(S) and s(1)-K s. Since

is fundamental there does not exist t = (t1, t2) E Cl(S) such that

t < s and
t1

< sI. If s(1) E "min" S, then s(1) = 5 for_
2 2 3

(1)j EvS-2,and 5 = s < . Hence s E S. C S..
3 J J

If s(1) ii "min" S let s2 = min{x: (s-1,x) E Cl(S)}. Then

-7 (S , S ) E Cl(S) and s.<(2) s(1)./\ s. Furthermore(2)
1 2

s(2) E "min" S since if t = (t1, t2) is in Cl(S) and t < s(2) then

t1
<s and t2 < s with strict inequality holding in at least one

s(1)case, and we would contradict the way and s(2) were con-

structed. Thus s(2) = 5 for some j E and thus

.6 s(2) s(1)1\ s. Hence s E SJ )5. Therefore

Cl(S) Li S..
j ES-2 3

Definition 4.3. S! = {s - 5.: s E S.}

4.2. Fundamental Theorems for the Set S'

Lemma 4. 2. SE3.

Proof: First we observe S! is bounded since S! C Cl(F')
J J

and also that S! is nonempty by definition. Next suppose x E S!
J J

and 0 .4r Kx. Since x E S! we have x = s -6. for some
J J

E .....S S Thus 5. 4,r + 5. 1x + 5. = s. Hence r + 6. E S.. There-
3 J J J J J

fore r = (r+5.) - 6. ES!, and we see that L(x) C Si. Thus S! E .1'.
3 3 3 3

some
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Definition 4.4. S' = j S.
j ES-2 J

Lemma 4.3. Let ID C E2 be a bounded set. Let be a

family of fundamental sets such that G E 4j implies G C D.

Then v GE.
G

Proof: We see that v G is bounded since it is a subset of
GE

D. Suppose x E v,.....G. Then there exists H E 't such that
GE ri

X E H. Since H is fundamental we have L(x) H. Hence

L(x) C v G. Therefore
G E

We define

Lemma 4.4. S' E di

Proof: The lemma follows immediately from Definition 4.4 and

Lemmas 4.2 and 4.3.

Lemma 4.5. m2(5') < m2(5).

Proof: Let (.,). be the unit vector whose ith component is 1.
i

Let 5. = (5. , 5. ) where 5. E "min" S. Suppose 1 < r < 2.
3 31 32 J

..._ _

We now define

r-1-
S. 11 X. = {s - 5. : s E S. n .}

3 i=1 1 3r r 3 i=1 1

and

S. II X. = S..
3i=1 1 3

Gt G E
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and

S ri X. = (S. 11 X.)
1

1=1 jES2 1 1=1

0 0

S fl X. = (S. n X.)
1

i= 1 E 3 1 1=1

2

Since S! = S. II X. we haveJ3.11
2 2

ST. = (S. II X.) = S n
.

jEr2-1 jEo 3i.=1 1 1=1

Let Tr be the ray normal to the axis xr = 0 passing
(ci,c2)

through the point (c 1, c2). Thus if r = 1, then

Tr = {(xc ):x > 0} and if r =2, then
(c11 c2) 1 ' 2 1 -

Tr = {(c
1 , x2): x2 -> 01. We now consider E2 = X1 X X2 where

(cl,c2)
X1 = El and X2 = El. Let the function g:X. El where j r

3

be defined by

g =(x.) m(Tr rm S n
(x1,x2) 1=1

Let the function h: X. -- E where r be defined by

r-1
h(x.) = m(Tr S n X.).

3
(x ,x

1 1=1

Then we have
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and

g =(x m(Tr n s n X.)
(x1 , x2) j=1

= m(T(x )
(Th ( (s. x.)))

1,x 2 jEC2 i=1

= m( v (Tr (Th S . X.))
j E (x1,x2) 3 1

j=1

= sup m(Tr fTh S. n x.)
(x1,x2) 3 i=1 1j E

r-1
= sup m(Tr x) s. n x.)

(x1,2 .
j E S.2 3 1=1

r-1
< m( v (Tr n s. x.))

j C2 (x1, x2) i=1 1

r-1
= m(T(x )

( L.) (s. n x.)))
1,x 2 j E 3 i=1 1

r-1
= m(Tr (Th S )

(x1 , x2)
1

i=1

Therefore g(x.) < h(x.) for j = 1 and j = 2.
3

By applying Lemma 2.11 we have

r
dS4g(x.) m = rn2(S n x.)

1=11
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mental sets.

, r - 1
Sh(x.)dm = m".(S II X..)

X 3 i=1
1

i

for j = 1 and j = 2.

Since g(x.) < h(x.), j = 1,2, it follows that3 3
r r-1

2m (S IIX.) < m2(S n X.).
1 .=11

. 1
1=1

Thus we finally obtain

2 1 o

m2(S') = m2(S n K.) < m2 (s n K.) < m2 (S n x..)
1 1

i=1 i=1 i=1

However

o o

S n K. = Li (s. n x..) = Li S. = ci(s)
i

1
=1 jEc2 .3 i.=1 1 j ES-2 3

and by Theorem 2.13 we have m2(S) = m2(C1(S)). Hence

2(S 2
') < mm (S).

Definition 4.5. If T is a set, then L(T) = {L(t):t E T}.

o--)Lemma 4.6. If S = F' --. F" where F', F" E e ,

P is such that r a ,
1 = {(xrx2)'xi = all hh P

1
m S

S1 = {(x1,x2):x1 <al} rTh s and S2 = {(xl, x2): xi > al} rm S, then

S=S1 vS2 and both S1
and S2

are differences of two funda-
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Proof: The equation S = S1 52
is immediate so we pro-

ceed to establish the second conclusion.

We have

S1 = {(x1,x2):x1 n (F'-.F")

= ({(x1,x2):x1 F"

and

52 = {(x1,x2):x1 >al} n (F' ,F")

= F' ((F'n {(x1,x2):x1 < a1}) j F").

Therefore it suffices to show F' n {(xl' x2 ):x1 < a1
is in

< ad) F" E . Ifdj and (F' r, {(X1,X2):X1

x e F' r {(x1,x2): < and Y = (Yr yz) = x2), then

Since F' is fundamental we see Y E F'. Thus

y E F1 (--N {(x1,x2):x1 < ad. Hence F' n {(x1,x2):x1 <al} is

fundamental. If F' {(x1,x2):x1 < al} is not empty, then the

same argument shows that F' n {(xl,x2):xl < ,
E . Since the

union of two fundamental sets is fundamental we have in both cases

that (F' KM {(X1pX2):X1 < a1}) F" is a fundamental set. There-

fore the lemma is proved.

4.3. The Partition of a Fundamental Set

In this section we show how to partition a fundamental set F

if B n F and C F are finite unions of open rectangles such
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that these rectangles have a maximal vertex with respect to the

partial ordering So we suppose F is a fundamental set

satisfying the above conditions.

Since B F and C F are finite unions of open rectan-

gles they determine a finite number of vertices. For each vertex

(v1, v2)
determined in this manner construct the two lines

X1
=

V"1

and x2 = vz Since there are only a finite number of vertices, we

have constructed only a finite number of lines. Each line x1
=

v1

intersects the boundary of F at one point, say (v1,w2). Construct

the line x2 = w2. Each line x2 v2
intersects the boundary of F

at a point (w1, v2). Construct the line x1
= w1. Again we have con-

structed a finite number of lines. This network of lines determines a

finite union of disjoint open rectangles. We will denote by (3) the

collection of these open rectangles intersected with F and the net-

work of lines intersected with F. The network intersected with F

consists of a finite union of vertical and horizontal line segments.

We see 0 is a partition of F.

Lemma 4.7. (1) If T is an open rectangle in 15) , then

either T B or T E2. B, and either T C C or

T E2-, C.

(2) If U and V are any disjoint open rectangles in and

11if u and v are the minimal vertices with respect to 2." of
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U and V respectively, then u v if and only if L(U) C L(V).

(3) If T is an open rectangle in this partition 9 such that

T E2 C, then the vertices of T belong to E2- C.

Proof: The process we used in constructing g certainly

gives us condition (1).

Let U be an open rectangle in G) with minimal vertex

u = (u1,u2) and V be another open rectangle in G' with minimal

vertex v = (v1, v2). If u v, then u1
<V1 and u <v with

either u1 < v1 or u2 < v2. Suppose u1 < v1. Let (ui , u2) be

the other vertex of U with first coordinate u1 and let (vi, v2)

be the other vertex of V with first coordinate v1. Then since

< v2 we have u2 < v2 . Let x = (x1,x2) be any point of U.
2

Then x1
<

v1
and x2 <U2 < v2 . Hence x E L(V1 v2). There-

fore since (v1, v2)
is a vertex of V and U C L(v1,V2) we have

L(U) C L(V). An exactly similar argument applies if u2 < v2.

Conversely, if L(U) L(V), then u1
<v1 and u2 < v2 .

For suppose u1 > v1. Then if (v1, v2) is the other vertex of V

with second coordinate equal to v2, we have v1
< u1 . Since every

element of L(V) has first coordinate less than or equal to v1
and

every element of U has first coordinate greater than or equal to

u , U L(V). Hence u1 >
v1

is impossible. A similar argument
1

shows u2 < v2 . Therefore u.1., v. However since U i V we have
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u v Thus condition (2) is proved.

To show condition (3) is true we notice that if (tl, t2) is a

vertex of T C Ef.... C, then (ti, t2) is a limit point of T and

hence of E2--. C. Since E2.-... C is closed we have (t1,t2) E E 1.... C.

Whenever a fundamental set F has the property that B n F

and C n F are finite unions of open rectangles with maximal

vertices with respect to u4n we will assume that F has been

partitioned as above.

4.4. Sets of Type 2 and Theorem 4.8

Let F be a fundamental set and suppose that B rm F and

C n F are finite unions of open rectangles that have a maximal

vertex with respect to ". Let 9 be the partition of F as

above.

Definition 4. 6. A set S is of type 2 with respect to B, C,

and F provided

(1) S = F 'N F' where F' E .V

(2) B n S d and S --- C

(3) If T is a rectangle in S,

vertex with respect to " 2."

then T has a minimal

(4) If b E 13 n S and g E S --- C, then b E L(D) where

D is the rectangle of S --, C of which g is an element.



and F, then C(S) > am2(S) + B(S).

Before we prove Theorem 4. 8 we will give an informal discus-

sion of the method of proof we shall use. We shall write S as the

union of three sets in the manner described below and indicated by the

following figure. Let gl be the minimum value taken on by any

first coordinate of a vertex of a rectangle of CY in S C. Let

D denote a rectangle of S C such that its minimal vertex has as

first coordinate gi. Let h1
be the first coordinate of the other

vertex of D that is on the horizontal line that passes through the

minimal vertex of D.

Figure 1.

We now let Si = {(x1,x2):x1 S,

S2 = { ( x1, x2):x1 h1} n S, and S3 -= {(x1 ,x2 ):g1 <x1 < h1 } S.

Since S is of type 2 B n S2 = 4 for otherwise there would be a

bE BnS such that b L(D). We see that B n S3 may be empty or
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S3 may be nonempty. Our method of proof will be to show that if

n S3 = then C(S) > am2 (S) + B(S) and if B n S3 4 d, then

C(5.) > am2(S.) + B(S.)
3 3

that C(S) > am2(5) + B(S).

4.5. Proof of Theorem 4. 8 When B rm 53 Is Empty

Since B rm S3 = we see that for all b = (b1, b2) in B S

we have b1
< g1. Let D be a rectangle of S C with its mini-

mal vertex with respect to " " having g1 as its first coordi-

nate. Let g be the vertex of D with first coordinate g1 and

second coordinate maximal. Then since S is a type 2 with respect

to B, C, and F if bE S, then b ./N g. If this were not

true, then b would not be in L(D). Hence S would not be of

type 2 with respect to B, C, and F.

Let G = - x:x E B m SY We proceed to show that

(5.1) G C Ea;

(5. 2)

(5.3)

(5.4)

for j = 1,2,3. We will then again conclude

A =

C 5';

2(G)
2

= mm (B(mS).

To see that condition (5. 1) is true we recall that we are suppos-

ing that xe BnS implies x g. Hence g-x EE2.
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(5. 5)

To see that condition (5.2) is true we suppose G cm A

Pick g - xE G n A. Then g = (g-x) +x E A+B = C. But this

contradicts g E E2 C. Hence condition (5.2) is true.

To see that (5.3) is true, pick g - x E G. Since xE B cm S

we have x E S, and so x E S. for some j E 2. Again since
3

xE Bn S, we have 5. x g. Hence g E S. since g E S.

Thus g - 6. E S!. We also have OK g - x g - 6j. Since S! is
J J

fundamental by Lemma 4. 2, g - x E S! C S'. Therefore G C S'.

To see that condition (5.4) is true we note that B r-N S is

measurable and m2(Bn S) < 00 . Hence by Theorem 2. 16 we have

m2(G) = m2(BnS).

Let wb1
be the minimum of the set of all first coordinates of

vertices of rectangles in B (m S. Let wb2
be the minimum of the

set of all second coordinates of vertices of rectangles in B cm S

with b* as first coordinate. Let b = (b1w2,b). (The notation
1 w w

suggests that wb is a "lower west" vertex of a rectangle of B rTh S.

Since b is a minimal vertex of a rectangle in B cm S we can

choose an E > 0 as small as we please such that

be = (wb1+E, wb2+E)
is in the rectangle of B n S of which b is

the minimal vertex.

Let H = {y - b :y E S C, b 2 y}. We will show that

H C E2;
e
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(5.6) HA;
(5.7)

and for a positive constant K

(5. 8) m2(H ) > m2(S C) - KC;
E

H C S';
E

(5. 9) m2(Gr\ H ) < Ks .

E

59

To see that condition (5. 5) is true we observe that for y - b
e

to be in H that we must have b 2, y. Hence H C E,.
E c - E - Z.

To see that condition (5.6) is true, suppose H A 4 Pick
E

y-b EHE r\ A. Then g = (g-b ) + bE is in A + B = C. This con-
E E

tradicts g S C.

To see that condition (5.7) is true pick y-bE EHE. Then

b S and hence b ES. for some j E 0. Thus El. y.
J - -

Hence y E Si since y E S. Therefore y - b. E S. Also however,
J J

0 y - b y - 6.- Since S! is fundamental we have

y - b E S! ST.
E

To see that condition (5. 8) is true we observe that

H+b S C and (S--- C) (H +b ) C Fr\{(x1 ,x ): b2- < x2-w< b2 +s}
E E E E 2 w

since S is a set of type 2 with respect to B, C, and F and wb

is a minimal vertex of a rectangle of B m S. Hence

m2((S C) +b )) < Ks where K is the least upper bound of the
E E

lengths of all line segments contained in F. Therefore



2 2 2m (H ) = m (H +b ) >m ((S C)) - KE
E E

To see that condition (5. 9) is true, suppose

Y (Y1' Y2)
E G r, H. Then y1 < gi -b1 since y E G on the

one hand, and y1 g1 - (wb1+E)
on the other hand, since y E H.

Thus g - b -E<y <g - b . Therefore we have
1 w 1 1 1 w 1

G Hs rj {(x 1 , x2): g1 - wbi - E g1 - wbi} r, F.

Hence m2(Gr,H
E
) < KE where K is as defined in the proof of con-

dition (5. 8).

Since the sets G and
He

satisfy conditions (5.2) through

(5.4) and conditions (5.6) through (5.9) we have

2 2
m (St A) >m2(G) + m2(H ) - m (Grmlic)

> m2(G) + m2(H) - KE

> m2(G) + m2(S s-,C) - KE - KE

= m (13r,S) + m2 (SC) - 210E.

Noting that this inequality holds for all sufficiently small E > 0, we

let E 0 to obtain

2rn (SI-. A) >m2(BS) + m2(S C).

Hence we have
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2m (S') - m2(Ar---51) >m2(Br,S) + m2(5) - m2(CrmS)

Thus
2 2 2

m2(CS) >m (ArmS1) + m (S) - m (51) + m (BrmS)

> am2(5') + (m2(S)-m(5')) + m2(BrmS)

Since m2 (5) - m2(5') > 0 by Lemma 4.5, we have

m2(CrmS) > am2(SI) + a(m2(S)-m2(SI)) + m2(BrmS)

am(S) + m(BrmS).

Thus if B cm S3 = d, then Theorem 4.8 follows. We now consider

the other case.

4.6. Proof of Theorem 4. 8 When B tm S3 Part 1

Since B cm 53 4 oS there exists b = (b1,b2) E B cm S such

that b1 > gl and since B cm 52 = d we have g1 < b1 < h1. By

Lemma 4.6 we have that S1, Sz, and S3 are all differences of

two fundamental sets. Furthermore S =1 L., 52 L, S3 and

(S r\S .) = 0, i ij. In this section we will show
1

C(S1
) > am2(51) + B(S1 ).

We notice that SI C d. This is so since g is in Sl C

=

where g is as defined in Section 4.5. Since S is of type 2 with
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respect to B, C, and F we have for all bE B cm S1 that

b < g. We also notice that m C) = 0 since

S1--- C {(x1,x2):x1 = g1} n 5, and so

C(S1
) = m2 (Cr-NS1) = m2 (S1) - m2(CnS1) = m2(S1).

If B S1 = (6 , then

C(S1 ) = m2 (S1
) + B(S1 )

> am2(S ) + B(S )
1 1

and we are through.

If BnS1 we recall that bE BnS implies b g.
1

Let G = {1 - x:x E BnS1}. In exactly the same way as before we

can show that

(6.1) G C E2;

(6.2) G n A =

(6.3) G C Sti;

(6.4) m2 (G) = m2 (BnS1 ).

Therefore,

m2(S' >m(G A)
1

2= m (G) - m2(GnA)

= m2 (G) = m2 (BnS1).
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Hence m2 (S') - m2 (AS) >m2(BnS1 ). Adding nn2(S1 ) to both
1 1

sides and transposing terms we obtain

2 2
m (S1 ) >m (Ar-NS1I) + m2

(S1
) - m2 (S') + m2 (BnS1)

>am2(5') + a(m2
(S1

)-m2 (S' )) + m2(Bn51 )
1

= am (S1 ) + m2 (BnS1 )

However C(S1) = m2(51 ), and hence

C(S1 ) > am2(S1 ) + B(S1 ).

4.7. Proof of Theorem 4.8 When B 53
Part 2

In this section we show that C(S2) > am2 (S2) + B(S2).

If m2(S`- C) = 0, then C(S2) = m2 (S2) >
m2(52) + B(S )

2

since m2(BnS2) = 0. Hence C(S2 ) > am2(S2) + B(S2). Hence we

suppose m2 (SC) 0.

Since B n 53 4 there is a rectangle of B n S3 with a

vertex of the form (h1 ,h 2 ) for some h2. Let eb2 be the mini-

mum of the set of all second coordinates of vertices of rectangles of

B n S3 with h1
as first coordinate. Let eb = (hl,eb2). The

notation suggests eb
is a "lower east" vertex of a rectangle of

B n S3. Since eb
is a vertex of a rectangle of B rm 53, for any

sufficiently small e > 0 we see (h1-E, eb2+E)
is an element of the
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before we have

(7.5)

(7.6)

(7.7)

and for the positive constant K defined in the proof of condition

15 8) we have

(7.8) m2(H ) > m2(S2 (ON C) - KE.
E

We will also show that for the same constant K we have

(7.9) m2(C(mS2 ) >m2(CrmS2(E)) - KE.

That condition (7.9) is true follows from

C S2 (E) C (CnS2 ) ({(x1 ,x21 - E <x1 < h1 S).

Thus

He C E2;

H A =

H C S' (E);
E 2

m(CrThS2 ) ) < m2(CnS2) + RE.
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rectangle of B tm S3 for which h1
is the maximal first coordi-

nate of one of its vertices and eb2
is the minimal second coordinate

of one of its vertices.

Let be = (h1-E,eb2+E) and S2
(E)= {(x1,x2): x1 _>h1 El rm S.

Let H = {y - b :y E (S(E) C),b yl. In the same manner as
E



Therefore from (7.6), (7.7), and (7. 8) we have

m(SI (E) s',A) >m2(H )
2

>m2 (S2(E)
C) - KE.

Hence

2(S))(S' (E)) - m2 (AS(E)) >m2(S2 (E)) - m2(CrS2(E)) - KE,
2 2

which implies

m2 (Cr-S2 (E)) >m2(A(ThSI(E)) + m2(S2(0) - m2(S' (E)) - KE
2

> am2(S' (E)) + a(m2(S2(E)) - m2(Si (E)) - KE
2 2

= am2(S2(E)) - K1 E.

Hence from inequality (7.9) and the fact that am2(S2(E)) >am2(S2)

we have

m(CrThS2) + KE > am2(52) - KE

for all sufficiently small E > 0. If we let E 0 we obtain

2
C(S2) = m (C(mS2)

>am2(S2 )

= am2 (S2) + B(S2),

since B S2 = d
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4. 8. Proof of Theorem 4. 8 When B n53 . Part 3

In this section we show C(53) > am2(S ) + B(53) and finally
3

conclude that if B n S3
d we have C(S) > am2(5) + B(5), thus

proving Theorem 4. 8.

Recall that any rectangle of3 C has at least one vertex

with first coordinate hl. Let h2
be the minimum of the set of all

second coordinates of vertices of rectangles of S3
C such that the

first coordinate is hl. Let -171- (h1,h2). Then since S is of

type 2 with respect to B, C, and F we have for all bEBn 53

that b = (hi, h2).

Let G = - x:x E B 53). As before we have

(8. 1) G C E2;

(8. 2) G n

(8. 3)

(8.4)

G SI;
3

m(G) = 2(Bn53).
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Let wb2
be the minimum of the set of all second coordinates

of vertices of rectangles of B n 53. Let b = (gi, wb2). Then

b is a minimal vertex with respect to " of a rectangle of

B n 53. Therefore we can choose E >0 such that b = (gI+E , b2-i-E)

is an element of the rectangle of which b is the minimal vertex.



(8.5)

(8. 6)

(8. 7)

Then y2
<h2

- wb2 since

have

Let H {y b:y E
S3

C,b 4, y}. As before we have

H C E2;

H n A = QS;

C SI3;

and for the constant K defined in the proof of condition 5.8 of Sec-

tion 4. 5 we have

(8. 8) m2 (H ) >m2 (S3
C) - KE.

E

For the same constant K we also have

(8.9) mZ(Gr\H ) < K.

To see that (8.9) is true, suppose y = (yi, y2) E G n }lc

y E G on the one hand, and

y2 2:h2
- (wb2+E) on the other hand, since y E H. Thus

h2 - wb2 - e y2 < h2 -wb2. Therefore we have

G n C {(X1, X2): h2 - wb2 - E X2 h2 - wh2} ("N F. Hence

m2(GnH ) < KE.E -
Since the sets G and H satisfy the above conditions we
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m2(S' --A) > m2(G) + m2(H ) - m2 (GnH )
3 E E

>m2(G) + m2(S3---. C) - KE - KE

2 2
= m (Br-NS3) + m (S3---.. C) - 2KE.

Since this inequality is true for all sufficiently small E > 0 we

obtain

m2(S' --.. A) >m2(BnS3) + m2(53-, C).
3

Hence

2 2 2 2
m (SI ) - m2(AS) >m (BnS3) + m (S3) - m (CnS3)

3 3

Finally,

C(S3 ) >m2(AS) + m2 (S3) - m2(S) + m2(BnS3)3

>am2(S') + a(m2(S3)-m2 (S')) + m2 (BnS3)3 3

= am2(S3) + B(S3).

Therefore in Sections 4.6, 4.7, and 4.8 we have shown

C(S.) > am2(S.) + B(S.) for j = 1,2, and 3. Thus,
3 3 3

C(S) = C(S1_.) S2L.) S3)

= C(S1 ) + C(S2) + C(S3)

> am2(S1 ) + B(S1 ) + am2 (S2) + B(S2) + am2 (53) + B(S3)

a(m2(S1 )+m2 (S2)+m2 (S3)) + B(S1vS2v S3)

= am2(S) + B(S).
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This completes Theorem 4.8.

4.9. Sets of Type 1 and Theorems 4.9 and 4.10

Definition 4.7. A set F E is of type 1 with respect to

and C provided

B r F and C F are finite unions of open rectangles

that have a maximal vertex with respect to II
it.

F C d.

If bElEirmr and g E F` C, then b E L(D) where

D is the rectangle of the partition Q of Section 4.3 of

which g is an element.

Theorem 4.9. If F is a set of type 1 with respect to B and

C, then C(F) > amz(F) + B(F).

Proof: Let S = F {(0, 0)}. Then S = F F' where

F' = {(o,0)} Ea?, B S i QS since 0 E B and B is open and

hence 0 is not an isolated point, S C Jd since F C

and finally if b E B m S and g E S C, then b E L(D) where

D is the rectangle of F C, and hence of S C, of which g

is an element. Therefore since B F and C F are finite

unions of open rectangles with maximal vertices we see S is of

type 2 with respect to B, C, and F. Therefore by Theorem 4. 8

we have
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C(S) > am2(S) + B(S).

However C(S) = C(F) and am2(S) + B(S) = am2(F) + B(F). There-

fore,

C(F) > am2 (F) + B(F).

Theorem 4.10. If FEe, A n F and B n F are finite

unions of open rectangles, F C 4, and F* C Cl(F C), then

C(F) > am2 (F) + B(F).

Proof: We first observe that since A n F and B cm F are

finite unions of open rectangles that C n F is a finite union of open

rectangles since the sum set of two open rectangles is again an open

rectangle. Since F* C) the open rectangles of B n F

and C n F have a maximal vertex.

This lemma is proved by using induction on the number of

rectangles in F s- C. If F-- C consists only of one rectangle D,

possibly a line segment, then since F* C) we have

F = L(D). To see this is true we note that L(D) C F. Suppose

F L(D). Then there exists cECn F such that c ci L(D).

Either c E F* or c ci F*. If c E F* we contradict that

F* C). If c ci F* and c I L(D), then for all y E F

such that c K y we have y E C. However if this is so then there

is an element of F* that is not a limit point of F C, which
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contradicts F* Cl(F C).

Therefore if b E F, then b E L(D). Hence F is of

type 1 with respect to B and C. Therefore by Theorem 4.9 we

have C(F) > am2(F) + B(F). Thus we suppose that F C consists

of n > 2 rectangles and the conclusion of the lemma holds for any

fundamental set F' satisfying the hypotheses of the lemma with

F' C consisting of less than n rectangles.

Let V = {D1, .. ,D where eachD . (j = 1, 2, ...,n)
J

is a rectangle of F C. Since F* C Cl(F--C) we have as before

F= L(D.)
j=1

Suppose BnFC n L(D.). Then F is of type 1 with
j=1

respect to B and C. Hence the conclusion follows by Lemma 4.9.

Therefore the case remains where there exists an element

bEBrmF and a rectangle Dk E V such that b L(Dk). Thus

n (F L(Dk)) But since

cm (F L(D.)) = d. From the preceding two conditions we see
3

that there must exist a subset P of V such that

(1) B cm (F L(D)) a;
EP

(2) B (F L(D)) = a if K E V P;
E {K}

and
(3)

{Dk
P V.

F = L(D.)
j=1

we have

We now partition F into two parts W and W. Let
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W = i L(D). Then W satisfies the following properties:
D EP

(4) WE;
(5) W* Cl(W C);

W

Both A n W and B rm W are finite unions of open

rectangles;

The set IN C consists of fewer than n rectangles

of the partition 9

That property (4) holds follows from Lemma 4.3.

That property (5) holds follows from the fact that

W* C j DCE C.
D EP 2

That property (6) holds follows from condition (3) above.

That property (7) holds follows from the relation W C F and

the hypothesis that A n F and B n F are finite unions of open

rectangles.

That property (8) holds follows from (3) above. The number of

rectangles of W C is equal to the cardinality of P which is in

turn less than the cardinality n of V.

We have therefore demonstrated that W is a fundamental set

satisfying the hypothesis of the lemma and that W C consists of

less than n rectangles. Hence the inequality
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(9) C(W) > arna(W) + B(W)

holds.

We now show that F W is a set of type 2 with respect to

B, C, and F. First B cm F and C n F are finite unions of

open rectangles that have a maximal vertex with respect to

a-)which we showed above. Next F E ,11 by hypothesis and W E

from (4) above. Also B n and W C from con-

ditions (1) and (6). Furthermore if T is a rectangle of F W,

then T has a minimal vertex since W is the union of lower sets

of rectangles of F by the definition of W. Finally suppose

bE Bn W) and g E W) C. Let K be the rectangle

in V-- P to which g belongs. Then

B cm (F (Wv L(K))) = B cm (F L(D)) 4
D E {K}

from the definition of W and property (2). Therfore b E L(K)

Thus F W is a set of type 2 with respect to B, C, and F.

We now have from Lemma 4.8 that

(10) C(F---.W) > am +

Hence by (9) and (10) we have

C(F) = C(W) + C(FW)

> am2(W) + B(W) + am2W) + W)

= am(F) + B(F).
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4.10. Conditions P and Q

Definition 4.8. An open set A is said to satisfy condition P

if there exists > 0 and > 0 such that both

A.. {(x1,x2):0 <x1 < and A, {(x1,x2): 0 <x2 < are the

union of a finite number of open rectangles.

Lemma 4.11. Let A satisfy condition P and F be a given

fundamental set. For c >0 let AI, A2, ,A be a finite number

of open rectangles of A F, including all those rectangles within

units of the x.-axis (j = 1,2), such that m2((ArThF) A,) < C.
3 3 j=1

Let

AC = ( v A.) v ((E2 F)(---A).
j=1 3

Let

Ac(G) .G Ea = glb{
m2(G)

Then lim a = a.
E 0

Proof: For all G E + such that

G c{(x1, x2): 0 < x1 < {(Xr X 2): 0 < x2 <

we have A
Ac(G)

(G) = A(G). Therefore A(G)> a for all of
m2(G) m2(G)

the se G.

If G is not in this union, then m2(G) > Hence
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and so

Therefore,

a > a > a -

and as --- 0 we have a a

Definition 4.9. Set A is said to satisfy condition Q if A

is open and for any fundamental set F the following condition is

satisfied. Given any E > 0 there exists a finite number of open

rectangles, say A1, ,Ak, of A n F such that

merr1((Ar-NF)-
A.)) <c and merr2((AnF)--. v A.)) <C where

i=1 j=1

for any S C E2 we define Tri(S) and Tr2(S) by

Tri(S) = {(xl, 0): (xi, x2) E S} and 1r2(S) = {(0, x2): (xi, x2) E Sl.

Lemma 4.12. Let A satisfy condition Q and let F be

any given fundamental set. For C >0 let Al, Az, ,A be open

rectangles of A im F such that m(1((AF)- i A.)) < c and
j=1

merr2((An v A.)) < E. Let AE = ( v A.) ((E2 F)nA). Then
j=1 3 j=1 3

lim a = a.
E 0

Proof: Since a < a, then lima a < a. Since 0 E A and
c

A is open we can assume that there exists a square, say Al, with

side and minimal vertex at the origin contained in A and in

A(G) - AE(G) <A(F) - AE(F) <E

AE(G) A(G) E>A(G)-E > a-
2 2 2

m (G) m (G) m (G) m (G)
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A provided we choose A1, , Ak appropriately. For any funda-

mental set G E which is contained in this square Al we have

A(G) = AE(G) Or

m((ArmG)-

AE(G)

m2(G)
a.

Let K be the least upper bound of the lengths of all line

segments contained in F. Suppose the square Al is contained in

the fundamental set G where G E , then

2
m ((AE rmG) >m2(ArG) - 2KE. This is so since

(A rThG)) < (rn(Tr ((ArmF)-- v A.))K
1

i=1 j

+ (m(72(ArThF)-.. v A.))K
:3=1 j

< EK + EK

= 2KE.

Hence

AE(G) A(G)-2KE 2KE
fr2

m2(G) m2(G)
> a -

The only remaining possibility for a fundamental set G E 5 4-

is A1 G and G Al. Then the boundaries of Al and G

intersect in two points (i 1, t) and (t,i 2) as in Figure 2 below or

in one point C2 1,
or tt 2) as in Figure 3 below.



and (t, I 2) are intersection points of the bound-

aries Al and G, then assume

Then

A(G)-(.1+.2)c

m2(G) m2(G)

a -_

-_

a -_
ZE

g

)E

If 1 < i, then a symmetric argument shows that again we have
1

AE(G) 2E> a
2

(G)

If the boundaries of Al and G intersect in only one point,

say (i1 (it could be a point of the form (,i2) ) we have
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AE(G) A(G)-/
2

m (G) m (G)

1E

If the point of intersection had been /2), then a symmetric

argument shows that again we have

.A! (G) >a - .
2

(G)

Thus

E(G)
urn = glb{A 2 : G E } > a.

m (G)

Finally urn ac = a.
0

4- 11. Mann's Second Theorem

In this section we finally obtain a two-dimensional continuous

analogue for Mann's Second Theorem. This is the main theorem of

the thesis.

Theorem 4. 13. If 0 E A n B, A and B are open, A

cr)
satisfies either condition P or condition Q, FE%/1, F C d,

and F* C Cl(Fs. C), then C(F) > am2(F) + B(F).
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Proof: Since B is open and m2(Br-F) < co we can find

a finite number of open rectangles of B r F, say B1, , Bn, such

n
that m2((BnF)---. v B.) < c. Let BE = ( v B.) v((E F)r-NB).

j=1 j=1 3

Then

BE(F) > B(F) - E.

If A satisfies condition P, let AC be defined as in

Lemma 4.11. If A satisfies condition Q, let AE be defined as

in Lemma 4.12. In either case A rTh F is a finite union of open

rectangles. Let CE

=
AE

+ BE. Then C C C and so both

F CE QS and F* C Cc). Thus by Theorem 4.10 we have

CE(F) > a m2(F) + BE(F)
E

> a m2(F) + B(F) - C.
E

However C(F) > CE(F). Therefore

C(F) > a m2(F) + B(F) - E.
E

By Lemma 4.11 and 4.12 we have lirn ac = a. Hence letting cO
E 0

in the above inequality we obtain

C(F) > am2(F) + B(F).
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4.12. A Continuous Two-Dimensional aP Theorem

In this section we obtain a continuous aP Theorem in two

dimensions. A two-dimensional aP Theorem is not known in the

discrete case.

Lemma 4.14. If C is measurable and E2 C 4, then

C(F)y = glb m2(F)

where F E and F* C Cl(F. C).

Proof : Let y' denote this gib. Clearly -y < Let G

crbe any fundamental set in d/i . If C(G) m2(G), then G.-- C

In this case let F = L(g). Then F is fundamental by
g G-- C

Lemma 4.3. We also know F E since G C must contain a

point g = (g1 ,g2) such that g1g2 0 when C(G) < m2(G)

Furthermore F* C Cl(F-.. C) since if x E F* then x E F'-- C_

or x is a limit point of points of F--, C.

According to the construction of F we also have

C(G F) = m2(G Therefore
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C(G) C(F)+C(G--..F)
2 2

m (G) m (G)

2C(F)+m (G..F)
2

m2(F)+m (G ".., F)

C(F)
2m (F)

>,/.

Hence N > y'. Therefore -y = NI.

Theorem 4.15. If 0 E A n B, A and B are open, and A

satisfies either condition P or condition Q, then

N > min(1, a+13).

Proof: If m2(E2-, C) = 0, then N = 1. Assume

.,-
m2(E2 *--- C) >0. Let F be any set in -' +

di where 1' cid and

F* C Cl(F --- C) Then by Theorem 4.13 we have

C(F) > am2(F) + B(F)

> am2(F) + Pm2(F)

= (a+P)m2 (F),

and so

C(F)
2

> a + (3.
(F)
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Hence by Lemma 4.14 we have

C(F)
Ne = glb{ .FE -,f` , F* C Cl(FC)} > a + P.

m2(F)

Thus in both cases we have N >min(1,a+P).
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5. TWO-DIMENSIONAL CONTINUOUS ANALOGUES OF THE
LANDAU -SCHNIRELMANN INEQUALITY AND THE

SCHUR INEQUALITY

In this chapter we obtain continuous analogues of the Landau-

Schnirelmann and the Schur Inequalities in two dimensions.

5. 1. The Landau -Schnirelmann Inequality

In this section we will use a method of Kvarda [8] to obtain the

Landau-Schnirelmann Inequality.

Theorem 5. 1. If A and B are open subsets of E2 and

OcAr\ B, then y > a + 13 - ar3 .

Proof: It suffices to show that

C(F)
(1) > a + 13 - a13

m2(F)

for all F . If C(F) = m2(F) for all F E +, then (1) holds

since (1-a)(1 >0 implies 1 > a + 13 - ail Therefore we assume

C(F) < m2(F). This implies A(F) < m2(F) and hence F ---. A (4.

Since A F is the union of at most a countable number of

open rectangles and m2(Ar,F) < co, then given e > 0 there exists
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2m ((Ar-F) v A.) <C.
j=1 3

the minimal vertex of A1.
1

(2) Ac(F) > A(F) -C.

Let
CE

=
AE

+ B. Then C C C.

Through each vertex (a1, a2) of a rectangle of A rm F con-

struct the lines x1 = al and xz = az. These finite number of

lines "partition" F into a finite number of rectangles. Let us call

this partition 9.
1.

The interior of each of these rectangles lies

either entirely in A n F or entirely in AC. The rectangles

of AE are closed rectangles where a closed line segment in the

universe F is considered a rectangle. The rectangles in F AE

are measure disjoint.

Let H = F AC. Note that H d. Let us denote the rectan-

gles that are contained in H after the partition &
1

by

...,H For each H. F1 we proceed to determine a unique

element a(3) E F.

We choose A1
such that 0 = (0,0) is

kLet AE

= A. v (An(E F)). Then
j=1 3

For H. C H let

with respect to I!

*
(h. ,h. ) be the minimal vertex of H.

31 32
the partial ordering defined in Definition

1.4. Let U. be the set of vertices (al, a2) of rectangles of

A (---\ F for the partition 9
1

where ak
<h!:` for k 1, 2.

Let the elements of F be ordered so that (xi, x2) > (3q, x) if

I
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x1
>x or if x1

= x' and x2 > x. This is a linear ordering
1 1 2

instead of a partial ordering. Since U. is a finite set it contains a
3

largest vertex in this lexicographic ordering. Let a(i)= (a(j), a(i))
1 2

(1) (s)
be this vector. Let be all the distinct vectors deter-

mined in this manner. Let L. = H, where a(i) is the vertex
1 k E

associated with Hk if and only if k E A..

We now show that

L. H for i = 1, , s;

the sets L! 3c={-aM:xeL.} are fundamental for
1 1

i= 1, s;

m2(L.nL.) = 0 if i j, 1 < i < s, 1 <j < s;
1 j

H = L..
i=1 1

That (1) and (4) are true follows from the definition of the L..

To see that (3) is true, notice that for i j we have that L.r-NL.
1 j

consists of a line segment or is empty.

a fundamental

set. To prove this consider a vector y (Y1' Y2)
such thatxSuppose

J J J
(k)

y E Lk. Since x. > y. >a(.i) (j = 1,2), then x. > a. and so
3 3

a(i) > a(k). Since y. > a( (j = 1,2), then a(k) > a(i). Therefore
J J

(k)
=

(i) and so k = . The only other possibilia a i ty is for y to be

in A . However a(i) fi Ac and the rectangle with a(i) as
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minimal vertex with respect to is a rectangle of H. There-

fore y Ac for if y E A then the minimal vertex a* of the

rectangle of AC F of the partitionto which y belonged
(;) I

would be such that a* > a the minimal vertex h* of the

rectangle of H to which x belongs would be such that a*-Kh*.

However then x L., a contradiction. Hence y E Li. Thus

a< a(i)y - a a(i) and 0 y - x -(i) E L! Therefore x - E L'.

imply y - a(1) E L!. Therefore L! is fundamental since it is a

bounded nonempty subset of E2.

Let b B L!. Then a") b E C L.. This is so since

a(i) is a vertex of a rectangle of A F and hence for any t > 0

there is a point a = (al, a2) E A such that the distance from a(1)

to a is less than t Since B is open there exists a real num-

ber > 0 such that b + 5 E B whenever the distance from b to

b + 8 is less than t . Let a + 5 = a(i) where the distance from

the origin to 6 is less than and a E A6. Then

a b = (a(i)-5) + (b+8) 6 AC B = Cc. Also a(i) + b 6 L. since

b E L!. Hence a(i) +b E CE /Th L..
1

Therefore, we have
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C6(F) >AE(F) + Cc(L.)

1=1

>AE(F) +

= A.E(F) +

>A(F) +

= AE(F) +

1=1

= A(F) + 13m2(H)

= AE(F) + cm2(F) A.E(F))

= (1-13)AE(F) + m2(F).

From (2) and the above inequality we obtain

CE(F) > (1-P)(A(F)-E) + m2(F).

However C(F) > Cc(F). Hence

1=1

1=1

i=1

2 (a(i)m +(Br, L!))
1

B rThLI.)
1

2(L.)

C(F) > (1-P)(A(F)-E) + m2(F).
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Since E is an arbitrary positive real number, we have

C(F) > (1 -)A(F) + m2 (F)

2
> (1 -(3)am2 (F) + (3m (F),

and hence

C(F) > a + 13 - a.
m(F)

5.2. The Schur Inequality

In this section we use a method of Freedman [5] to obtain the

Schur Inequality. We recall that in Section 4.10 we defined conditions

P and Q. In this section we employ these conditions again.

Theorem 5.2. Let A and B be open subsets of E2 such

that A satisfies either condition P or condition Q, and sup-

pose 0 E A r-N B. If F E , F C d, and F* C),

then C(F) > aC(F) + B(F).

Proof: Since B is open and m2(Brm F) < co, then given any

E > 0 we can find a finite number of open rectangles of F, say

B1, . , Bm, such that m2((Br-,F) B.) < E. Let
j=1

E mB = ( B)' (Brm (E2-- F)). Then
j=1

(1) BE(F) > B(F) - E.
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If A satisfies condition P let A be defined as in Lemma

4.11. If A satisfies condition Q let AC be defined as in

Lemma 4.12. In either case A F is a finite union of open

rectangles. Let C = A + BC. Then since C C C we have

F* Cl(F-- CC). Since Ac n F and B n F consist of a finite

number of open rectangles and since the sum of two open rectangles

is an open rectangle we have that C n F consists of a finite

number of open rectangles. Since F* Cl(F CE) then every

rectangle of C n F has a maximal vertex with respect to the

partial ordering

Through every vertex (cl, c2) of a rectangle in C (Th F con-

struct the lines x1 = ci and x2 = c2. Since there are only a

finite number of such vertices then there are only a finite number of

such lines constructed. These lines partition F T into a finite

number of disjoint open rectangles relative to F where T is the

finite union of the line we constructed. We call this partition 2.

Each of these open rectangles of (9 2
is entirely in C or entirely

in F Cc.

Let V be the set of all g* such that g* is a vertex of a

rectangle of
2

in C n F. Since this set is finite it contains

finitely many elements with respect to the partial ordering " ".

Let gT, .. , g be the maximal elements of V with respect to

1.". Then



CcmFCv L(g)
i=1

and letting

= L(g)
i=1

we have

CE(F) = CF')

and F' is a fundamental set. If gt is a maximal element of V,

then gt is also a vertex of a rectangle F CE. Hence g?' is a

limit point of E2 CE . Since E C is closed we must have

p'?:( E E2 C6, and hence CC

From the construction of F' we see that every rectangle of

(532 of F' CC must have a maximal vertex. There are only a

finite number of rectangles (possibly a line segment on boundary of

F') in F' CE. Let us denote them by D1,. ,Dr. Let H be

the set of vertices of the rectangles D., 1 < j < r. Let
3

J = H , 51. Then J is finite.

Let us write j = 1'
,

s
where the indexing is determined

as follows. Let I be any one of the minimal vertices in J with

respect to the partial ordering " Let
2

be in the set of

minimal elements of J
1}

with respect to II I I let I
3

be

in the set of minimal elements of J 02 1,12), and so on. Since J

is finite the set of f. obtained by this process exhausts J. We
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now show that the resulting indexing satisfies the condition that

.e .,e . implies i < j. Let I..< L. Since 1 . i 1 . we have
1 ), 3 1 N. j 1 3

either i < j or j < i. If j < i, then 1 . is in J-- te
1 '

... ,.e
ji

However I. is in the set of minimal elements of J --- ti 1, . .. ,1 i
3

-11.

Thus 12 . 12 .Q. is impossible. Hence we have i < j.
i 3

Define

H1
L(1 )

1

and

H.
j=1 3

for 1 <i < S. Then

the sets H., 1 < i < s, are pairwise disjoint;

H. H. = F';
i=1

if k
is a maximal vertex of a rectangle D., 1 < j < r,

of F' CC, then Hk = D. almost everywhere.
3

Now property (2) follows from the definition of the sets Hi

and property (3) follows since H. = s., L(1.) = F'. To prove
. i=1 1 i= 1 1

pr hen D.
3 3

equals almost everywhere L(/ k) .. ._) L(1
g

) where 1
g

< ik How-

ever 1 g< Ik implies g < k. Suppose j < k but i .4 ik. Then
3

we still know I 4. ' 1 Hence L(k1 ) --- i L(/ g) where 1 g< 1
kk n j

equals L(.1, ) -... L(i.) = Hk.K j <k 3
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and

For each i, 1 < i < s, let

tH. = - x:x E H.}.
1 1 1

Then

tH. is a fundamental set,

m (tH.) = m2 (H.).

To show property (5) is true, let z be an arbitrary element

in tH. and let y E L(z). We must show y E tH-. We have

0-<ii -z. .Qi- yii. Thus 1 ..- y E L(.12.) Since z E tH. we
i i 1

have We
1 1 1 1

i - 1

must have .E. - y E H., for if i. - yci H., then I. - y E v H..
1 1 1 J1 1j1 i=1

However then .i. - z e v H. since 0i. - z Z, ii - y, and hence
1 j=1 3

1

i- 1
I. - z I L(1.) --- ..) H. = H., a contradiction. Thus

1 1 j=1 3 1

y =..ei - Cfry) E tHi. Therefore tH. is a fundamental set since it
1

is a nonempty bounded subset of E2.

Equation (6) follows from Theorem 2.16.

Now for each a E AE r1 tH we have a = 3C where
1 1

X E H.. Furthermore x I BEfor otherwise 1. = a + x E AE BE CE
1 1

which contradicts the fact that CE. Therefore

AC(Th tH. C {.12. - x: X E H. BE). Hence
1 1

2E

In (A rmtH.) <m 2({I. - x:x E H. -- BE}).
1
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However by Theorem 2.16 we have

m2(02. - x: x E H. --- BE)) = m2(H.---. B6).
1 1 1

e
Thus m2 (A£ (---,, tH . ) < m2(H.-... B). Hence we have

i i

2 2 E

M (H.-, BC) > m (A rmtH.)
1 1

a m2(tH.)
E 1

2am (H.)
E 1

from (5) and (6). Therefore22m (H.) - m2
E(BrNH.) > a m (H.)

1 i i

which implies

(7) (1-a )m2(H.)>m 2(Bn}-1.).
E 1 - 1

Let W be the set of all 1k such that Ik is the maximal

vertex of one of the rectangles D., 1 < j < r. Then if ik E W we
J

have Hk = D. a. e. for some j such that 1 < j < s by (4).
j

Hence Be(Hk) = 0 since Be C CE. Therefore from (2) and (7) we

have

2 c
(1-a ) / m2(H.) > / m (B (ThH.).

E 1 - 1

1 J.E W 1 J.E W
1 1
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Since .1k E W implies B(Hk) = 0 we have

m =2(BEr--,11.)
m(BEn H.)

J.EJW EJ
1 1

= BC (F?)

Hence

(1-a) m2(H.) > BE(F').

J.E
1

However,

m2( v H.) = m2(F' -.... H.)
EW

1 1

= m2v D.)
j=1

by (4). But we have m2( v D.) = CC(V) = Cc(F). Therefore
j=1 j

2(1-a )CE(F) > (1-a )m ( v H.)
E 1

EJ--.W
1

(1-a)

>
2m (H.)

)2. EJ.W
1

= BE(Ft)

= 13c(F).

m2(H.)
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However C C C. Hence

(1-a)C(F) > BE(F)

and by (1) we have

(1-aE)C(F) > B(F) -

Since A satisfies either condition P or condition Q, then when

we let E tend to zero we obtain

(1-a)C(F) > B(F),

or equivalently,

C(F) > aC(F) + B(F).

Theorem 5.3. If A and B are open subsets of E2 such

that A satisfies condition P or condition Q, 0 E A B, and

a + 13 < 1, then y > 1-a-

Proof: Since p < 1 - a, then < 1. Hence if y = 1
1-a

we are done. If y 1, then E2 C Now for a set F E Sj4

such that F C E4 and F* C we have from Theorem

5.2 that

C(F) > aC(F) + B(F).

Hence

C(F) C(F) B(F)a
2 2 2m (F) m (F) m (F)

ay + P.
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By Lemma 4.14 we have y > ay + Hence y > sinceea

1 - a >13 >0.

5.3. Other Continuous Analogues

In this section we will define some terms and prove some

results that correspond to the material in Section 3.5 up to Theorem

3.19.

Let E2 = ({(0,x2):x2 0} v {(x1,0):x1>0}). Then E2

is all of E2 except the x1
-axis and the x2-axis.

Theorem 5.4. If A and B are measurable subsets of E2,

0 E A n B, and a + p > 1, then E2 C C.

, E+.--. C. LetProof: Assume there exists r = (r1, r2) E
2

F = L(r). Then F E Ili+ since r1r2 >0. Let H = A n F and

G = {r - b:b E B n F}. Then H n G = d. This is so since suppose

r - b E G n H. Then r = (r-b) + b E A + B = C, a contradiction.

Hence m2(H) + m2(G) = m2(HG) < m2 (F). However

m2(H) = m2(An F) and m2(G) = m2(Bn F) by Theorem 2.16.

Therefore
2 2 2

m2(AF) + m (BnF) < m (F).

This implies
2 2

m (Ar-NF) m (BnF)a + p <
2

m2(F) m (F)
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But this contradicts a + p > 1. Hence if r E E2, then r E C and

it follows that E2 C C.

We can not prove that a + f3 > 1 implies E2 = C as can be

seen by the following example.

Example 5.1. Let A = B = {(0,0)} E. Then a + p = 2 > 1.

We see that any element on either axis with one positive coordinate is

not in A + B.

Definition 5. 1. Let n > 1 and
A1

.. , An be subsets of E2

such that 0 = (0, 0) E A A.. Then
j=1 3

A+...+A = {a +... +a :a. E A., j = 1,..,n}.
l n 1 n 3

Lemma 5.5. If A1, , An are open subsets of E2 such

that 0 E A A., if d(A1+... +An) is the density of Al +. +An,j=13
and i ifa. is the density of A. ( = 1, ,n), then

1 - d(A+...+A ) < (1-a ) ...(1-a).
1 n 1 n

Proof: The proof follows in the same way as that of Lemma

3. 18.

Definition 5. 2. Let k be a positive integer. We call A a

basic set of E2 of order k if E A1
+...+

Ak
where each

2

A. = A, j = 1, . and k is minimal.



Theorem 5. 6. If 0 E A, A is open, and d(A) > 0, then

+
A is a basic set of E.

Proof: The proof follows in the same way as that of Theorem

3. 19.
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6. FURTHER QUESTIONS

In this chapter we present further questions of interest that are

closely related to the topics in this thesis. We also discuss possible

improvements of the results we have obtained for two dimensions.

Finally we will indicate problems we encountered when attempting to

extend our results to n-dimensions.

6. 1. One-Dimensional Problems

In this thesis we have used a method of Kvarda [7] to obtain a

continuous analogue of Mann's Second Theorem. In the continuous

setting we have used this theorem to obtain a continuous analogue of

Mann's aP Theorem. However there are three other methods for

obtaining Mann's Second Theorem, namely one due to Mann [13], one

due to Besicovitch [2], and another by Kvarda [7] which is found in the

same reference as her first listed method. We have not attempted to

see whether or not these methods can be used to obtain the continuous

analogue of Mann's Second Theorem.

There are three known methods to obtain Mann's aP Theorem.

These are due to Mann [12], Dyson [3], and Kvarda [6]. One could

attempt to use these methods to obtain a continuous aP Theorem

directly rather than as a corollary to Mann's Second Theorem in the

continuous setting. The author attempted to use Dyson's method to
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do this, but failed.

The reason the author used Kvarda's first method for proving

the continuous analogue of Mann's Second Theorem is that it is the

only known method to have been extended to n-dimensions. In Chap-

ter 4 the author used Kvarda's extension to n-dimensions and

Stalley's [18] refinement of it to obtain a continuous analogue of

Mann's Second Theorem in two dimensions.

Another one-dimensional problem that has not been settled is as

follows. If A and B are measurable sets of El, 0 E A (--\ B,

and C = A + B, then does it follow that C is measurable? If we

could answer this question in the affirmative we could extend Theorem

3,19 to measurable sets. Proving Theorem 3.19 for measurable sets

without knowing the sum of two measurable sets is measurable is

yet another problem.

6. 2. Two-Dimensional Problems

In Lemma 4.11 and Lemma 4.12 we showed that if A is an

open set that satisfies an additional restriction, then given any funda-

mental set F and any e > 0 we can construct a set A C A such

that the following three conditions hold:

( 1 ) Mz((Arm F) (A n F)) < KE for a positive constant K;

(2) Ac (Th F is a finite union of open rectangles;



(3) lim a = a.
0

The reason for the additional restriction on A is to ensure that

condition (3) holds. There do exist open sets A for which condi-

tions (1) and (2) hold, but condition (3) fails. Below we give such

an example.

Example 6.1. Let A = ( V. H H2) where
j=0 1

1

V0 = {(x,y): 0 < y < 1,x = 1}, V. = {(x,y): 1 < y < 2, x = where

j = 1,2,..., H. = {(x,y): 0 <x < 1, y = j, j = 1,2}. Thus A consists of the

open unit square with minimal vertex at the origin and a countable

number of open rectangles contained in the unit square with minimal

vertex of (0,1); each rectangle in this square being of the form

1 1
{(x, y) t -j+1

< x < 7, 1 < y < 2} where iJ is a positive integer, and
J

everything in E2 that is in the exterior of the closed rectangle with

vertices (0, 0), (1, 0), (0,2) and (1, 2). Then m2(Aim F) = m2(F)

for all F e ..i. since E2 has measure zero. Hence a = 1.

Let F be the fundamental set which is a square with sides of

length 2. Then A cm F is a countable union of disjoint open rec-

tangles. For any E > 0 we can choose a finite number of these

rectangles, say Ai, A2, Ak, such m2 ((An F) A.) < E.
j=1 3

Let A ( A. (E2 F)) = ( A. (E F))) . Then
3=1 j=1 3

since AC contains only a finite number of these rectangles, there
E

must exist 5 >0 such that A cm {(x ,y): 0 < x < 5,1 < y < 2} is
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empty. Let G be the fundamental set {(x, y): 0 <x < 5,0 <y < 2}.

A(G)_ 5 1 1 1

Then Hence a < -i. Thus, since a < for
25 2 e E - 2

m2 (G)
all E > 0, then lirn a < 1. Therefore lim a i a.

E 2 E

E --- 0 E ---" 0
1

A closer study of the above example shows that
aE

= when-

ever 0 < E < 1.

Further research might give conditions that are weaker than

either condition P or condition Q that still ensure that

lim a = a . Such conditions would improve the results of Chap-
E 0

ter 4.

Another interesting problem in two dimensions is the extension

of the Landau-Schnirelmann Inequality to closed sets or even measure-

able sets. A related problem in two dimensions is the extension of

Theorem 5.6 to closed or even to measurable sets.

6.3. n-Dimensional Problems

The author is not able to extend the results of Chapter 4 to

n > 3 dimensions. The main difficulty is that we are unable to con-

struct a partition of rectangles as fine as we did in Chapter 4 for

two dimensions. This problem arises as follows. In two dimensions

if (u1,u2) is a vertex of a certain rectangle contained in a funda-

mental set F we construct the line x1 = u1. If (ui , w2) is the

point where the line=x1
u1

intersects the boundary of F we con-

struct the line x2 =
w2

The analogous construction can not be
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carried out in three dimensions. Suppose (u1,u2,u3) is a vertex of

a corresponding three-dimensional "fundamental" set F. Proceeding

in an analogous manner to that for two dimensions we would construct

the plane x1
= u1.

However in three dimensions the plane x1 = u

will usually intersect the boundary of F in an arc. There is

nothing we can now construct that will correspond to the line X2
=

W2

that we constructed in the two-dimensional case.

Another problem that the author can not solve is the extension

of Condition Q to three dimensions.

A further problem is that of showing that a fundamental set in

n dimensions is a measurable set for n-dimensional Lebesgue

measure. If we solve this problem it appears that we can extend the

Landau-Schnirelmann Inequality to n-dimensions for open sets and,

if set A satisfies condition P, the Schur Inequality to n

dimensions for open sets.
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