
AN ABSTRACT OF THE THESIS OF

RICHARD EARL MCALISTER for the degree of MASTER OF SCIENCE

in Computer Science presented on January 31, 1980

Title: Knots: A Measure of Program Complexity

Abstract approved:

Redacted for Privacy

Dr. Paul Cull

Most measures of program complexity gauge either textual or

control flow attributes of a program. A recent addition to the field

of complexity measures, the knot metric, is a function of both these

attributes. A knot measurement reflects the degree of control-flow

tangle in a program's listing. This thesis discusses and proves four

functional properties of the knot measure.

1. Calculation of a program's knot content is fast with respect

to the number of branches in a program. A worst-case optimal algo-

rithm for computing knots is quadratic in time and linear in space.

2. The complexity of a program can be reduced by rearranging

groups of statements in a manner that retains the program's function

yet lowers its knot content. The problem of finding an arrangement with

the fewest knots for any arrangement of a program is probably difficult

or NP-complete, but approximation methods are fast and often find

the minimum knot arrangement.

3. A direct relationship exists between the types of knots in a

program text and the structuredness of that program. This leads to an

easily testable, sufficient condition for unstucturedness. Thus

unstuctured programs may be detected without graphically reducing the

control structure to structured programming conventions.

4. An empirical investigation of a set of FORTRAN programs,

testing for their knot content, rearrangement characteristics, cyclo-

matic number, and program length, demonstrates the practicality of the

knot measure. Most programs benefited from rearrangement, and a fast,

heuristic algorithm was effective in finding a program text ordering

with minimal knot content. Furthermore, the knot content of a program

is dissassociated from two other measures of complexity, cyclomatic

number and program length. Knots must measure some aspect of complex-

ity missed by those measures.

Overall, the knot metric is an effective, and efficient means

for detecting, reducing, and controlling some attributes of software

complexity.

Knots: A Measure

of Program Complexity

by

Richard Earl McAlister

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed January, 1980

Commencement June, 1980

APPROVED:

Redacted for Privacy

Professor of Computer Science
in charge of major

Redacted for Privacy

Chairman of Computer Science

Redacted for Privacy

Ian of the Gradlate School

Date thesis is presented January 31, 1980

Typed by Richard McAlister

TABLE OF CONTENTS

Page

Introduction 1

Section 1: Program Knots 2

Section 2: Algorithms for Computing Knot Number 12

Section 3: Statement Rearrangement for Minimum Knot Number . . 28

Section 4: Knots and Structured Programming 44

Section 5: Empirical Results 59

Conclusions 72

References
74

LIST OF FIGURES

Figure Page

1 Drawing control flow paths to find knots 3

2 Program blocks in a program 6

3 A maximally knotted program type 17

4 Knots in single and multiple statement blocks 19

5 Three types of edge configurations for upper bound
knots in program blocks of a flow graph 21

6 Lower bound knot locations on adjacency matrix for
flow graph representation 23

7 Upper bound knot locations on adjacency matrix for
flow graph representation 23

8 A program and its overlap graph 26

9 A rearrangement of a program for fewer knots 29

10 Elementary segments in DO-loop 32

11 Elementary segments in nested DO-loops 33

12 Minimum knot rearrangement of program with a
relative minimum ordering 38

13 Two formats for FORTRAN IF-THEN-ELSE 47

14 Textually non-modular statement in knot graph 50

15 Exit and entrance from knot-graph loop 51

16 Backwards branches in knot graphs 53

17 Four unstructured subgraphs 55

18 Structured and unstructured knot graphs with
same positive knot 57

LIST OF TABLES

Table Page

1 Program data from knot testing system 66

2 Program data correlations 70

3 Correlation accuracy probability 71

KNOTS: A MEASURE

OF PROGRAM COMPLEXITY

INTRODUCTION

A number of measures of program complexity have been proposed.

In this thesis, I will investigate the knot metric recently proposed by

Woodward, Hennel, and Hedley. (30) I will discuss algorithms for com-

puting the number of knot in a program and give an algorithm which is

worst-case optimal in both space and time. I will specify the rear-

rangements of program statements which preserve functionality and yield

the smallest number of knots. I will argue that the problem of finding

this rearrangement is probably NP-complete by showing that a slight

generalization of the problem is NP-complete. I will discuss and prove

theorems about the relationship between knots and structured programming.

Finally, I will report on some empirical studies which indicate the

number of knots is independent of other measures of program complexity,

and that finding the rearrangement which gives the fewest knots was easy

for the programs studied. In general, I will build a functional and

empirical justification for the use of knots as a program complexity

measure.

2

PROGRAM KNOTS

The knot metric originates in a technique used by programmers

to display control flow on program listings. Some programmers draw

lines in the left-hand margin of a program listing between state-

ment branches and entries. (Figure 1) The resultant path diagram

graphs the flow of the control flow in a program, outside of im-

plied statement sequencing. Woodward et al. (30) observed that

the code is less difficult to follow when the control paths do not

cross on the listings. They suggested that the number of these

crossings or "knots" is a good measure of program complexity.

A more precise definition of the crossing of two control flow

paths requires an association of statement position in the program

listing and statement branching. The definition of a knot graph to

represent a program best combines these attributes of statement lo-

cation and succession for analysis. The knot graph is a directed

graph in which each node corresponds to a statement in the program.

Every node is labeled with the line number of that statement. The

directed edges of the knot graph represent transfer of control

from statement to statement during program operation.

A knot graph, G(N,E,L), of a program P.{pi,p2,p3,...,pm} where

pi is a statement, consists of a set of nodes N={nl,n2,...,nm},

a set of edges E.{ei,e2,...,es} such that e.(ni,ni) is in E

when pi-o-pj is a transfer of control in P,_and a one-to-one func-

tion L:L(N)441,2,...,ml such that if pi is on line number j,

L(ni).j.

3

Flow Line number Text

1 LOGICAL FEM(8), MALE(8)
2 READ(5,6) IGIRL,(FEM(I),I=1,8)
3 9 READ(5,6) IBOY,(MALE(I),I=1,8)
4 DO 8 1=1,8
5 IF(FEM(I)) GO TO 7
6 IF(.NOT. MALE(I)) GO TO 8
7 TO 9
8 7 IGOF(.NOT. MALE(I)) GO TO 9
9 8 CONTINUE

10 WRITE(2,10) IBOY
11 6 FORMAT(10X,I5,8L1)
12 10 FORMAT(10X,I5)
13 GO TO 9
14 STOP
15 END

Figure 1: Control flow paths producing knots.
Program is from (19).

4

In the program text, a path drawn in the left-hand margin con-

nects the line of a statement which jumps to the line of the state-

ment to which the jump goes. Two such paths cross or knot if each

path has exactly one end-point between the end-points of the other

path.

In the knot graph, two labeled nodes represent the line-numbered

end-points of a jump between statements in the program text. If,

for any two jumps, exactly one of the node labels of each of the

representative knot-graph edges is exclusively between the two node

labels of the other path, a knot occurs.

Given a knot graph, G(N,E,L), a pair of edges from E, e=(na,nc)

and e'=(nb,nd), with labeling function, L, such that L(na)=a,

L(nb)=b, L(nc)=c, and L(nd)=d, are knotted if and only if

a<b<c<d or d<c<b<a

or c<b<a<d or d<a<b<c

or a<d<c<b or b<c<d<a

or c<d<a<b or b<a<d<c.

The knot number or knot count of a program is the number of

knots in the program's knot graph. That is, if every edge in a pro-

gram is compared to every edge once, the number of these pairs that

knot is the knot number of a program.

For two edges, e=(na,nc) and e'=(nb,nd) from a knot graph

G(N,E,L), the knot function over e and e' is X(e,e'):

X(e,e1). 1 if e and e' knot,

= 0 otherwise.

5

The knot number of a program P with knot graph G(N,E,L) where

E={e e
2'

e
3' ... ' s

1 is a summation of the knot function over the

set of edge pairs from E. The knot number is designated KNOT(P)

such that
s-1 s

KNOT(P)= E E X(e
i
,e

j
).

i=1 j=i+1

The knot may be defined in terms of two other graph represen-

tations: the labeled flow graph, and the overlap graph.

The flow graph is similar to the knot graph in that nodes rep-

resent statements and edges represent control flow of a program.

Each node in a flow graph can, however, represent more than one

statement from a program. The sets of statements which make up a

flow graph node are program blocks in the program text. A program

block is a sequence of textually adjacent statements of which the

first statement is the only statement where some entry to that state-

ment is by jump, and the last statement is the only statement which

is a jump. Control transfer from statement to statement inside a

program block is only by natural succession. Figure 2 shows a pro-

gram split into program blocks and the representative flow graph.

The order or labeling of program blocks as nodes in a labeled

flow graph is a function of their position in the program text. With

this labeling, a labeled flow graph is a directed graph representa-

tion of a program text from which knots in the program may be com-

puted using the knot function previously defined over the labeled

edges.

6

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

IF(ITEM1.LE.ITEM2) GOTO 3

ITEM=ITEM1
GOTO 4

3 IHIGH1=ITEM 2

4 IF(IHIGH1.GE.ITEM3) GOTO 5

IHIGH2=ITEM3
GOTO 6

5 IHIGH2=IHIGH1

6

Figure 2: A program fragment partitioned into program blocks.
Program taken from (19).

7

A labeled flow graph, Gf(N,E,L), of a program P={101,b2,...,bm}

whereeachb.is a program block in P, consists of a set of nodes

N = {n ,n ,...,nm}, a set of edges E.{e1,e2,...,es} where, if bi.4-bj

is a program block sequence of control, then e.-(ni,nj) is in E,

and a one-to-one function L:L(N).+{1,2,...,m} where if bi is

ordered in the program text as the jth program block, then

L(ni).j.

Woodward et al., in the original knot paper (30), used the labeled

flow graph as the knot function basis. In Section 2, I will discuss

use of that graph for computing knots. One reason for the selection

of the flow graph as representation for computing knots was that McCabe

based the cyclomatic number on the flow graph.(23) The cyclomatic

number is another complexity measure which will be mentioned often.

As an aid to later references, I will define the cyclomatic number

here.

The cyclomatic number of a program is the number of linearly

independent circuits in its flow graph model. This number is

one more than the number of branchings in a program.

The third useful type of graph is the overlap graph. (3) This

type differs from the previous two in that its nodes represent con-

trol flow edges. An edge in a knot graph can be represented as an

ordered pair of labels, those of the nodes incident upon it:

(L(ni),L(nj)). In the overlap graph, this ordered pair is the label

for a node. In this sense, the overlap graph is a labeled edge-graph

of a knot graph. The edges of the overlap graph do not correspond

to an edge-graph, however. An edge between two nodes of an overlap

8

graph exists only if the edges represented by the two nodes knot.

An overlap graph, Go(N,E,L), defined in terms of a knot graph,

G(N,E,L), and a knot function X(evei) consists of a set of nodes

N={ni,n2,...,Em} such that for each ei in R, there is one ni in

N where the labeling L(ni)=0.(ni),L(nk)) for each ei=(nj,nk), and

the edge e=(n1.,n.) is in E if and only if X(n.1 ,n.J)=1, that is

the labels of the two nodes knot.

Cook's (13) discovery of the relationship of overlap graphs to the

knot concepts will be discussed in Section 2 in conjunction with the

knot counting algorithms based on this graph.

Within these many formal representations of a knot, the intui-

tive feel for the association of a knot in a program and the complex-

ity of a program gets lost. I do not wish to omit the intuitive

aspects of the knot measure. After all, the knot itself developed

from practice, not theory.

A working rule used by the drafters of electrical schematics

is a basic example of this association. A schematic is more diffi-

cult to read when lines interconnecting components cross. When

lines do not cross, components can be visually grouped and the design

studied in a modular fashion. Intersection connections also inhibit

rapid tracing of individual connections. Minimization of crossovers

leads to the most useful and readable schematics.

The knot metric is an application of this concept to program

text. A knot indicates a crossover in control flow in the program

text. The greater the number of crossovers, the less the program

can be visually modularized. When tracing control paths through the

9

program, a knot indicates that some other path branches around the

one being currently traced. The crossing path must be remembered

until it can be checked. The crossovers defined as knots in programs

reflect the same type of complexity as crossovers in schematics.

The nature of the knot measure is further revealed by the soft-

ware attributes from which it derives. The primary attribute upon

which knots depend is control flow. Knots are created by branching

within a program, but knots relate more to the quality of control flow

than to the quantity. A program with three properly nested DO-loops

has three branches and no knots. An added branch from outside the

nest into the deepest loop only increases the branch count by one, but

causes three knots. The number of knots is unaffected by well-ordered

branches in any quantity, but grows quite rapidly when a tangle de-

velops. Knots depend on the interweave rather than the amount of

control flow.

The knot concept allows a quantification of control flow tangle

because of its "text space" (8) dependency, the other software basis.

Knots depend on the relative position in the program text of state-

ments which branch. In Section 3, for example, I describe methods

for reordering statements thereby altering a program's knot count

without altering the program's function. Ultimately, the knot count

depends on how that branching is distributed in the program's text,

irrespective of the control flow characteristics of a program.

The knot metric, then, combines two software bases: control flow

and program text. Control flow, evaluated from its textual repre-

sentation produces program knots. The measure combines the intentions

10

of previous complexity measures. McCabe (23), Gilb (13), Myers (25),

and Dijsktra (8) each conjectured that the prime constituent of com-

plexity is program branching. Each defined or suggested a different

measure of that attribute. Halstead (16) and Gordon (14,15) assumed

complexity to be a textual factor. Measures of operator, operand,

and program length were specified. Hansen (17) applied some textual

basis to control flow by combining the branch count with the number

of operators in a program. Whether by argument or data, each of the

measures demonstrated some ability to reflect the complexity of a

program. (4,9,10,11,22) If the results of each of these types is

reliable, clearly complexity is based in both control flow and text-

ual attributes of software. (17) Not only do knots use this base,

but the algorithmic independence of the measure in that use implies

the property of software complexity which differentiates it from

computational complexity. (14) Thus knot number appears very jus-

tifiable as a measure of program complexity.

Although well supported, the measure requires the empirical

evidence necessary for proof of an association with complexity.

(14,15,22,34) As a means to that end, this paper covers the ground-

work for implementation of the knot metric in software development

systems. The second section examines the algorithmic complexities

of determining the number of knots in a program. The third section

analyzes the metric in its use as a tool for reducing the complexity

of a program. The result that the knot can be used to create

clearer programs, without semantic or syntactic prograrq modification,

emphasizes the relationship of the measure with complexity. The

11

fourth section covers the relationship of knots and structuredness in

programs. The results detail the association between the modularity of

a program and the complexity measure. The fifth section examines data

gathered on existent programs for their knot content. The knottedness

of these programs is compared with other program attributes, including

another complexity measure, the cyclomatic number. The results estab-

lish the independence of the knot metric from other complexity measures

based on either textual or control flow properties. All four sections

build the foundation for the implementation of the knot metric as a

software quality tool.

12

ALGORITHMS FOR COMPUTING KNOT NUMBER

The best algorithm for computing knots is the one which uses the

least space, i.e. fewest memory locations, and the least time, i.e. ex-

ecutes the fewest instructions. Other desirable properties of an algo-

rithm are generality and portability. That is, an algorithm should

work for all input programs and no special feature of a programming

language should be used.

In this section, I will present an algorithm which meets these

criteria based on the knot graph representation of a program. As a

means of comparison, I will then analyze the original algorithm by

Woodward et al. (30), based on a flow graph representation of a program.

Lastly, I will demonstrate that Cook's algorithm (3) based on an over-

lap graph representation of a program is equivalent to that based on the

knot graph, with minor modification.

As a basis for proof of an worst-case optimal algorithm in compu-

tational complexity, an input attribute must be chosen to gauge the

algorithm. Computational complexity is normally assessed as a function

of the "size" of the input to the algorithm. In evaluation of algo-

rithms which use a graph representation of program flow as input, two

candidates arise: Number of program statements or graph nodes, and

number of program branches or graph edges.

Only one of these choices is adequate for measuring knot num-

bering algorithms, the number of branches. The choice was not made

simply because the knot is defined in terms of the control flow edges.

If the number of statements in a program text would provide a measure

13

of program size, the number of statements must force an upper bound on

the number of edges in a program. However, the amount of branching in

a program is independent of the number of statements within it. A com-

puted GOTO may have any number of repetitions of destination labels in

the FORTRAN programming language. A program's knot graph may, there-

fore, have parallel edges. In any graph allowed to have parallel edges,

the number of edges is independent of the number of nodes. The knot

function is edge dependent, and, as the number of edges in the knot

graph are not bound by the number of nodes, the "size" of a program

input to a knot counting algorithm must be measured by the amount of

branching of the program, that is, the number of edges in its repre-

sentative knot graph.

The size of a program input to a knot counting algorithm is the

number of possible statement-to-statement successions of control,

either implied or explicit, in a program as inferred from its

text. From the program's knot graph representation, G(N,E,L),

the size of a program is measured by the variable e = lEt.

The knot-graph edge, or program branching, is also the basis for

the space usage measure and time usage measure for the knot-graph

algorithms. The unit of space use or cell is the storage of a single

knot-graph edge. The space complexity of the knot algorithm is, then,

the number of knot graph edges stored during computation as a function

of the number of knot-graph edges in the program text input for that

computation.

The basic operation upon which time complexity is judged is

the comparison of two knot graph edges and their associated node

14

labelings. An incremental operation of a knot counting routine is ac-

cess and comparison of the end-point line numbers of two control flow

edges from a program. Time complexity is the number of comparisons on

knot-graph edges as a function to the size of the program input.

The following is an algorithm for computing the knot number of

a program:

Problem:

Compute the knot number of a program from its knot graph repre-

sentation.

Class of Algorithms:

Algorithms which compute knot numbers from knot graphs.

Basic Operation:

Comparison on two knot-graph edges

Space Cell:

A knot-graph edge, e=(ni,nj).

Algorithm:

Input - Program control flow edges and labelings represented

by a knot graph, G(N,E,L).

Output- Knot number of the program input, K.

A: Store for B only edges e=(ni,nj) from E such that

1 < IL(ni)-L(nj)1 < IN1-1.

B: Input from A the values el,e2,e3,e4,...,es as labeled edges.

1. k=0; i=0;

2. while i <s-1 do

3. j=i+1;

4. while j < s do

5. k=k+X(ei,ej); /* X(ei,ej) is the knot function */

6. j=j+1;

7. end;

8. i=i+1;

9 end;

15

Space usage

The storage of the algorithm is e', the set of edges whose in-

cident node labels differ by at least two and at most INI-2. This set

of edges will be referred to as E'. The size of E' is e'. For e' to

be the minimal storage requirement of all knot counting algorithms,

every edge in E' must be capable of causing a knot and every edge from

the knot graph which is not in E', (E-E'), must be incapable of causing

a knot.

The latter claim is immediately obvious from the definition of a

knot. An edge e=(ni,nj) can knot with another edge es.(nii,nj') only

if L(ni') or L(nj') is an integer value exclusively between L(ni) and

L(n.),IfthereisnointegervaluebetweenL(n.)and L(n.), then

the edge e cannot be knotted by any other edge. The other edges not

containedinParethosewhere0 nj INI-1. The maximum

labeling of the nodes of the knot graph is INI, so these edges are

those between the first statement line and the last statement line.

No edge can branch to or from any node outside this range, so no edge

can knot this type of edge. Therefore, no edges in the set E-E' can

cause a knot.

In consequence of the previous discussion, the first claim is

also true. A knot graph, G(N,E,L), for any edge e=(ni,nj) such that

1 < ,L(ni)-L(nj)1 < INI-1, must have at least one node ni' such that:

L(ni) < L(ni') < L(nj) or L(nj) < L(ni') < L(ni),

and at least one node nj' such that:

L(nj') < L(ni) and L(nj') < L(nj),

or L(n.) < L(n.') and L(n.) < L(n.').
1

16

ForanyedgeeinthesetP,anedgebetweenn.land n ' would

knot it. Obviously, that edge would also be in E'. The argument im-

plies that every edge in E' can cause a knot and can be knotted. There-

fore, at least all the edges in E' must be evaluated for the knot count.

The difference in size between E and E' is significant because a pro-

gram usually will have many more non-branching statements than branching

ones. The edges between textually adjacent statements will greatly

outnumber those between textually non-adjacent statements.

The result of these two claims is that the knot-graph algorithm

is space optimal. The order of space complexity of this algorithm is

0(e').

Time complexity

The upper bound on the number of knot functions or basic oper-

ations of the knot algorithm is 1E11(1E11-1)/2 or el(e'-1)/2. The

value is the number of operations the algorithm will make in terms of

the edge set of a knot graph, which is the size reference of the input

program. This function of e' is a result of the iterations of the

nested DO-loops.

The lower bound of the algorithm is the greatest number of

operations the algorithm must perform for any input set size. The

program in Figure 3 has a knot-graph representation with e'(e'-l)/2

knots. The generic type of graph with this knot number is a knot

graph in which, for every ni in N, there is an edge e.(ni,ni+m) in E

such that 1.(n0=i for all 1 <i <I NI , for m>2, and IN1= 2m. All edges

e are in E' and each knots every other edge in E'. The total knot

17

IF () GOTO 1

IF () GOTO 2

IF () GOTO 3

CONTINUE

CONTINUE

CONTINUE

Figure 3: A maximally knotted program form.

18

count is thus e(e-1)/2.

The existence of a knot graph with this knot number indicates that

a knot counting algorithm must compute at least e(e-1)/2 knot functions

or edge comparisons. The upper bound on the knot counting algorithm

states that the algorithm always computes at most that many edge com-

parisons. The algorithm is therefore optimal at e'(e1-1)/2 operations.

The above results suffice as proof for the knot counting theorem.

Theorem: The given knot number algorithm correctly computes the knot

number of any program using 0(e) space and 0(e2) time.

This algorithm is worst-case optimal in both space and time.

Other algorithms

Woodward et al. (30) produced the first knot enumeration algorithm.

The computation was based on the flow graph representation of a program

with labeling to define the text locations. Nodes of the labeled flow

graph indicate sets of statements as program blocks with labels loca-

ting blocks in the program text. The edges of the flow graph repre-

sent control flow transfer between program blocks.

The choice of a labeled flow graph representation of a program

for computation of the knot number results in the need for an upper

and lower bound on the knot number for a program. A program block

may contain one or several statements. Figure 4 shows the difference

in the possibilities for knots between the different size program

blocks. In Figure 4 (I), the control flow is knotted; In Figure 4 (II),

the control flow is not knotted. As the node labelings in the labeled

flow graph cannot distinguish between these two program block types,

19

6 CONTINUE
IF () GOTO 8

IF () GOTO 6

1

2

3

4 8 CONTINUE

(A)

1 6 IF () GOTO 8

2 IF () GOTO 6

8 CONTINUE3

(B)

Figure 4: Examples of the possible different knot contents
between single (B) and multiple (A) statement
program blocks.

20

an upper and lower bound on the knot number of a program is defined.

The result is an upper bound knot function and a lower bound knot

function. The upper bound function assumes all program blocks are

multiple statement. The lower bound function assumes all program

blocks are single statement.

Given a labeled flow graph, Gf(N,E,L), and two edges e=(ni,nj)

and e'=(ni1,nj1) from E, the edges produce a knot in the lower

bound if, for L(ni)=a, L(nj)=c, L(ni1)=b, and L(nj1)=d,

a<b<c<d or d<c<a<b

or c<b<a<d or d<a<b<c

or a<d<c<b or b<c<d<a

or c<d<a<b or b<a<d<c.

The lower bound knot is equivalent to the knot-graph knot defini-

tion. The lower bound knot number is the number of unique edge pairs

from E which are knotted under this definition.

Under the same labeled flow graph specifications as above, the

edges produce a knot in the upper bound if

a<b<c<d or d<c<a<b

or c<b<a<d or d<a<b<c

or a<d<c<b or b<c<d<a

or c<d<a<b or b<a<d<c.

The upper bound knot is defined with the same conditions as the lower

bound knot with some added equalities. The multiple statement program

blocks must have edges in the form shown in Figure 5 to create the up-

per bound knots. The upper bound knot number is the number of unique

21

Figure 5: Three types of edge configurations for upper bound knots in
the program blocks of a flow graph.

22

edge pairs from E which knot under the definition of an upper bound

knot.

The procedure outlined in (30) computes the knot numbers of a pro-

gram with the adjacency matrix representation of the labeled flow graph.

Both the rows and columns of the matrix are ordered in the program

block ordering of the program. The indices of the matrix are thus the

labeling function. In the adjacency matrix, and edge in the flow

graph of a program with adjacent nodes p and q as labels, is represented

by a 1 entered in location (p,q). For an edge (p,q), the lower bound

on the number of knotted edges to (p,q) is a summation of the shaded

entries in Figure 6. The upper bound is the lower bound added to the

number of entries in the shaded areas of Figure 7. Figure 6 shades

those nodes exclusively between p and q with possible adjacency to

nodes exclusively outside of the p-q interval. Figure 7 adds those

nodes with possible adjacencies corresponding to the "equals" con-

ditions in the upper bound definition. When these areas are checked

for every edge in a flow graph, the resulting knot number is twice the

number of knots in the program represented by the flow graph, in both

upper and lower bound numbers.

The Woodward et al. algorithm has two basic faults. The first is

the loss of accuracy with the upper/lower bound count. The output

pair does not enumerate the knots, but sets an error range in which the

actual knot number occurs. In (30), the pair of values are favorably

compared with the Myers extension to the cyclomatic number.(25) The

comparison is ill-advised. The Myers extension actually adds informa-

tion about the cyclomatic number. It details the number of extra

23

P

P

Figure 6: Lower bound knot locations on adjacency matrix for
the flow graph representation.

S.

P 9_

//77

Figure 7: Upper bound knot additions on adjacency matrix for
the flow graph representation.

24

predicates in the conditionals for branching of the program. The upper/

lower knot number bounds, on the other hand, introduce an uncertainty

into the number of knots in the program. The difference in the infor-

mation content is also apparent in the relationship between the mem-

bers of each pair. The integral difference between the members of an

ordered Myers' extension is the number of extra conditions found in

the program that cause branching. The difference between the upper and

lower knot number bounds carries only the level of inaccuracy of both.

The only remaining similarity between the two types of measure is that

they are both based on the flow graph; the relationship does not imply

any innate worth in the upper/lower knot number bounds.

The inaccuracy of the upper/lower bounds on the knot number causes

another problem. By specifying a degree of vagueness to the algorithm's

output, refinement of knot type is effectively disabled. If the knot

number produced by the procedure is in doubt, extension to a specific

knot characteristic is not warranted. Refinements are necessary for

structuredness determination. (Section 5)

The second inadequacy of the flow graph method is inefficiency.

The algorithm is a least twice as complex in time usage as necessary;

the procedure computes twice the number of knots found in a program.

The more efficient algorithm computes only the minimum number of knots

for any program. The space usage of the algorithm is also somewhat

inefficient. Although the adjacency matrix is rather sparse for the

average program and efficient means exist for storage of a sparse

matrix (29), more space than necessary is used. The only edges nec-

essary for knot computation are those between non-adjacent statements.

25

In the flow graph representation, information must also be retained

about edges between adjacent program blocks, as they result in upper

bound knots. An optimal algorithm does not require storage of these

edges.

Although the flow graph representation is unsuitable for cal-

culation of program knots, the third program representation, the over-

lap graph, works quite well. The algorithm for computing knot number

due to Cook (3) based on the overlap graph representation (with a

slight modification by myself) is entirely equivalent to the knot graph

based algorithm.

As previously described, each node in an overlap graph corresponds

to a branch in a program. The node label is an ordered pair of line

numbers for the exit and entrance of that branch. As the edges of an

overlap graph indicate that the nodes incident on the edge knot, a knot

numbering algorithm based on this graph builds and enumerates the edge

set from the node set. That is, a knot counting routine actually

creates the overlap graph of a program from the labeled edges of the

program.

Figure 8 shows a program and its overlap graph. The number of

edges in the graph is the knot number of the program. Cook's knot

number algorithm produces these edges from the labeled statements of

the program text, the line numbers. In general, the procedure com-

pares the label set of each node of the overlap graph to every

other node in the node set. If the pair of labels knot as defined by

the knot function, an edge is created between those two nodes. The

number of edges created is the knot number of the program represented

26

1 10 READ(5) EMPID,HOURS,SRATE,ORATE
2 IF(EMPID.EQ.77777.0) GOTO 60
3 IF(HOURS.GT.40.0) GOTO 50
4 WAGE=SRATE * HOURS
5 IEMPID=EMPID
6 30 WRITE(6) IEMPID,WAGE
7 GOTO 10
8 50 A=ORATE * (HOURS-40.0)
9 B=SRATE * 40.0

10 WAGE=A + B
11 GOTO 30
12 60 STOP
13 END

Figure 8: Program and representative overlap graph.

27

by the overlap graph.

Clearly, in time complexity, the overlap algorithm is equivalent

to the knot-graph algorithm. The node set of the overlap graph is the

same as the edge set of the knot graph in both size and labeling. The

label comparison of the overlap graph nodes is identical to the label

comparison of the knot graph edges. The two algorithms must perform

the same number of basic operations for every input program, and are,

therefore, equivalent algorithms.

The space complexity of the overlap algorithm is slightly greater

than the knot graph algorithm. All branches of the program are stored

in the label node set. The size of the node set of the overlap graph

usually will be larger than the edge set of the knot graph algorithm.

However, if the storage is modified to match the edge storage of the

knot-graph algorithm, the two space complexities are the same. Then,

the stored node set of the overlap graph contains only those state-

ment-to-statement transfers of control which cover at least two lines

but not those between the first and last statements. The labels of

those nodes stored and compared are the only labels which can knot,

so the set is sufficient and equivalent to the edge set for the knot

graph algorithm.

In general, the computational complexities of a knot numbering

algorithm is limited by the necessity of comparing the end-point labels

of each branch to the end-point labels of every other branch. This

implies that the input set of a knot numbering algorithm may as well

be a set of unique edge pairs as the edge set of a knot graph. This

idea gives rise to the generalization of rearrangement in the next

section.

28

STATEMENT REARRANGEMENT

FOR MINIMUM KNOT NUMBER

Knots are not only a useful measure of program complexity, but

also may be used to reduce complexity in many programs. The technique

of complexity improvement is called "rearrangement" (3) or reordering.

Rearrangement of a program is the process of interchanging sets of

statements to produce a lower knot number. For example, in Figure 9,

interchanging the set of statements in A produces a lower knot count in

B. The content of the program is unaltered, semantically or syntac-

tically. In (30), Woodward et al. briefly described the prospects of

rearranging a program text, but Cook (3) properly defined the problem.

Most of the terminology defined here is taken from (3) with only slight

modification. I have extended Cook's descriptions to strict defini-

tions for analyses of the concepts of rearrangement.

A program text, P, is an ordered set of statements, {pl,p2,...,Pm},

such that, if i<j, pi precedes pj in the listing of program P.

The program text in Figure 9 is split into groups of statements

called segments.

A partition over a program text, P={131,p2,...,pm}, produces an

ordered segment set, S=1,s2,...,sml, such that

where t>0 and for all 2<k<m,

sc{pj,...} implies skx{...,pj_1}.

The segment definition is the complex way to state that a pro-

gram can be broken into sequential groups of statements. For rear-

29

1 10 READ(5,END=60) X
2 IF(X.GE.0.0) GOTO 20
3 WRITE(6) X
4 GOTO 10

5 30 B=1.0
6 40 A=B

7 B=(X/A+A)/2.0
8 IF(ABS((X/B)/B-1.0).GE.1.0E-5) GOTO 40
9 50 WRITE(6) X,B

10 GOTO 10

11 20 IF(X.GT.0.0) GOTO 30
12 B=0.0
13 GOTO 50

14 60 STOP
15 END

(A)

1 10 READ(5,END=60) X
2 IF(X.GE.0.0) GOTO 20
3 WRITE(6) X
4 GOTO 10

20 IF(X.GT.0.0) GOTO 30
12 B=0.0
13 GOTO 50

5 30 B=1.0

I--
6 40 A=B
7 B=(X/A+A)/2.0

11-- 8 IF(ABS((X/B)/B-1.0).GE.1.0I-5) GOTO 40
9 50 WRITE(6) X,B

10 GOTO 10

14

15

60 STOP
END

(B)

Figure 9: A rearrangement of a program for fewer knots.

30

rangement, the sequences of statements must be self-contained with re-

spect to implied control flow. The flow of control in a program is

passed by natural succession (next sequential statement) or explicit

branching (labeled jumps). If a program text is rearranged, splitting

statements linked by natural succession, the function of the program is

disrupted. When rearranging, the natural succession of text must be

preserved.

In Figure 9, the statements which allow a valid segmentation of

the program are 4, 10, and 13. This type of statement is an explicit

branching statement. The special property of the statement is that

the statement specifies every succession of control flow explicitly.

Such statements are arithmetic IF's and computed and unconditional

GOTO's. A segmentation based on explicit branching statements pro-

duces independent segments.

The segments, sk=(pi,pill,...,pi+t) of the segment set S, are

independent if, for all 1<k<m, each pi+t in each sk is an ex-

plicit branching statement, or pil.t is the last statement of the

program. If k=1, then 1=1 and sk is the initial segment. If

k=m, then pil.t is the last statement of the program and sk is the

final segment.

If the segments are independent, the definition requires that pi is the

first statement of a program or that it immediately follows an explicit

branching statement and is labeled for entry. Thus, independent seg-

ments result from a split in a program, immediately following an ex-

plicit branching statement.

In (3), every independent, initial, or final segment which does

31

not properly contain an independent, initial, or final segment is an

elementary segment. The set of elementary segments is the finest inde-

pendent-segment partition of program text.

Independent segment is an elementary seg-

ment if, for all 0<s<t, pi+s is not an explicit branching state-

ment.

Hereafter, in the interests of brevity, a segment is assumed elemen-

tary unless otherwise specified.

Rearrangement is a reordering of the segments, other than the in-

itial and final, of a program. For most programs, the designation of

elementary segment type is sufficient to allow valid rearrangement,

preserving the functional integrity of the program. A reordering of

these segments plainly retains the syntactic and semantic structure

of a program. But, in some cases, reordering of elementary segments

can cause a change in the syntactic structure. An example is shown

in Figure 10.

Elementary segments A and C (in Figure 10) cannot change their

relative order without disrupting the program. Segment C must follow

A. Together, A and C may be rearranged in the program, segment B

relocated, or segment D entered between A and C, but the order of A

and C must be maintained. The section is not represented as a common

FORTRAN construction. In fact, it would be difficult for even a nov-

ice to write such tangled code. But a standard FORTRAN compiler

would accept it, so the construction is valid.

A simple restriction of DO-loops within relocatable segments is

not sufficient either. The program section in Figure 11 has a single

32

DO 20 1=1,10
IRMX=I/2 Segment A
GOTO 30

10 IRMX=IRMX/4
GOTO 40

Segment B

20 CONTINUE
30 IRMX=IRMX+256 Segment C

GOTO 10

40 CONTINUE
Segment D

Figure 10: Elementary segments inside a DO-loop.

33

DO 50 I=1,10
DO 40 J=1,10
IF(I-J) 20,60,20

20 IDATA(I,J)=0
40 CONTINUE

GOTO 50

60 IDATA(I,J)=1
GOTO 40

50 CONTINUE

Segment A

Segment B

Segment C

Segment 0

Figure 11: Elementary segments in nested DO-loops.

34

elementary segment containing the entrance to two DO-loops. Both seg-

ment C and segment D must follow segment A, with the added stipulation

that C follows B. Segments may be relocated between A and B, B and C,

or A and C, but the order of A, B, and C must be preserved. Rearrange-

ment must maintain the order of some subset of elementary segments of

a program.

The ordering restriction are, therefore, a set of ordered pairs

of segments, (spy, such that for any valid ordering of a program,

segment i must precede segment j in the text. One subset of these

ordered pairs defines the initial segment. That is, if sI is the ini-

tial segment, for every other segment, sk, there is a restriction

(si,sk) so that every segment k follows the initial segment. A sim-

ilar subset of ordered pairs exists for the final segment.

The rearrangement restriction set, R, is a set of ordered pairs,

(s1.,s.), of members of the elementary segment set of a program,

such that s. precedes s. for any valid rearrangement of the pro-
.'

gram. The initial segment restriction is a subset of R, RI, such

that for some s. in S, (s. s.) is in R
I
for every j # i. The

final segment restriction is a subset of R, RF, such that for

some s. inS, (s.,$) is in R
F

for all i j. The set of restric-

tions not initial or final are the DO-loop restrictions.

In terms of the preceding definitions, rearrangement is a trans-

formation on the order of the segment set of a program, which preserves

the rearrangement restrictions. To specify the transformation func-

tionally, a variable zi is associated with each segment in the segment

set. That is,

35

For every segment sk of a segment set S, there corresponds a var-

iable z
k
from an ordering set Z. Any one-to-one function f:f(Z)

0,2,3,...,1Z11 specifies an order on the segment set such that

if z.<z
k'

Si precedes s
k
in the program text for this ordering

function.

In the original ordering of a program, z1 =1, z2=2, z3=3, and so on.

Rearrangement changes the order of the segments and, thus, the values

of Z.

A rearrangement of a program is a one-to-one function f over the

ordering set Z of the segments S of a program:

f:f(Z)-441,2,3,...,1Z11

such that for every ri=(si,si) in the program's rearrangement

restriction set R, z.<z
j*

A rearrangement f of a program P

is designated as Pf.

The purpose of rearrangement is minimization of the number of

knots in a program. In order to count the knots in a program effic-

iently after reordering, a modification of the previous knot function

is necessary. When rearranged, the line numbers of a program change

relative to the statement content. In computing knots, a program

should not be rebuilt from the segment set to determine the new line

numbers of the entrances and exits of branches from which knots are

determined. The solution is to specify the branches of a program in

terms of the position of the corresponding entrances and exits within

each segment. Although the segment ordering may change, the internal

position of the statements will not. Therefore, each statement pass-

ing or receiving control flow is specified positionally by an offset

36

in lines from the beginning of the segment in which it is contained.

That is, if a statement is on line 45 of a program and the third segment

contains lines 40 through 48, the position of the statement is segment 3,

offset 5.

Each statement in the knot graph is thus represented by a pair:

(z.,o.), where z. is the ordering variable for segment i and of is the

offset in lines of this statement from the first statement in segment

i. Each control flow edge is a 4-tuple: (zi,opzi,oj), where (zi,oi)

is the position of the statement which jumps to a statement at posi-

tion (zJ .,o.). When using this representation, although the value of

z may change due to rearrangement functions, the value of each o is

constant.

A knot is determined directly from this edge representation,

bypassing a reconstruction of the program text for each ordering.

A knot exists between two knot-graph edges e=(z
a
,o

a
,z

c
,o

c
) and

e'=(z
b
,o

b'
z
d
,o

d
)

when,

s=z
a
* INI + o

a

t=z
b
* INI +

°b

u=z
c

* INI + o
c

v=z
d

* INI + o
d

if and only if

s<t<u<v or v<u<t<s

or u<t<s<v or v<s<t<u

or s<v<u<t or t<u<v<s

or u<v<s<t or t<s<v<u.

Each z is multiplied by INI to insure that for any za<zb, s<t. This

follows because both and d o
b
must be less than INI.

37

As in section II, the knot count or knot number of a program is

the number of pairs of control flow edges in the knot graph which

knot. The knot count for some program P is represented as KNOT(P).

Finally, the rearrangement which produces the minmum knot count

in a program can be defined.

A number k is the minimum knot number for some program P, if

there is a rearrangement fm for P such that for every other rear-

rangement f of P, KNOT(Pf) < KNOT(Pf) and KNOT(Pf) = k.
im

The rearrangement of a program which has a minimum knot number is

a knot reordering minimum for that program.

Figure 12 is the reordering minimum result for a small program.

The rearranged program is much clearer than the original. Although the

knot-based reordering is demonstrably successful, the amount of com-

putational effort to produce a less-tangled program code is question-

able. Cook (3) suggests that rearrangement for minimum knot number

is probably NP-complete, but leaves the question open. If knot reor-

dering minimization is NP-complete, rearrangement of programs to

produce minumum knot count would be prohibitive for any large programs.

This paper will show a more general problem in rearrangement to be

NP-complete on the size of the program to be rearranged for a knot

minimum. The specific problem for knot graphs remains open, but fast

algorithms are shown to approach the minimum solution for many programs.

The reordering algorithm can be converted to a decision problem

for K, the number of knots in a program. The decision problem addresses

the question of whether a particular solution exists, that is, whether

38

1 SUBROUTINE RDISK(J,ISEC,LENGTH,NSEC,ISN)
2 IF(ISN) 3,4,4

Segment A

3 2 LENGTH= 31
4 1 CALL READRW(1,ISTART,J,LENGTH,IER)
5 RETURN

6 3 ISC =O

7 GOTO 5

8 4 ISC=ISEC(J)*ISCMX+1+ISC
9 5 ISTART=(J-1)*ISCMX

10 LENGTH=ISCMX-ISC
11 IF(LENGTH-NSEC) 6,6,7

12 7 LENGTH=NSEC
13 6 CONTINUE
14 IF(LENGTH-32) 1,1,2

15 END

(I)

Segment B

Segment C

Segment D

Segment E

Segment F

1 SUBROUTINE RDISK(J,ISEC,LENGTH,NSEC,ISN)
Segment A

2 IF(ISN) 3,4,4

8 4 ISC=ISEC(J)*ISCMX+1+ISC
9 5 ISTART=(J-1)*ISCMX
10 LENGTH=ISCMX-ISC
11 IF(LENGTH-NSEC) 6,6,7

12 7 LENGTH=NSEC
13 6 CONTINUE

1_14

it
IF(LENGTH-32) 1,1,2

3 2 LENGTH=31
4 1 CALL READRW(1,ISTART,J,LENGTH,IER)
5 RETURN

6 3 ISC =O

7 GOTO 5

15 END

Segment D

Segment E

Segment B

Segment C

Segment D

Figure 12: Program II is a minimum rearrangement of program I. The
relative minimum of program I has a knot count greater
than that of program II.

39

any rearrangement fuction can produce a specified number of knots for

a program rearrangement.

The knot function, KNOT(P), previously specified, is altered

slightly for definition of this problem. The argument of the KNOT

moves from a program to a set of control flow edges found in a program.

That is, KNOT(P) a KNOT(E) where E is the set of edges in the knot

graph of P. The two functions are obviously equivalent, except that

the original has the added hardship of locating the control flow edges

from program text. Both compute the knot number of a program in terms

of a set of control flow edges and text basis.

MINIMAL KNOT REARRANGEMENT

Instance: A finite set B, a collection E of ordered pairs (b,b')

from B, a collection R of ordered pairs (b,b') from B,

and an integer K.

Problem: Is there a one-to-one function f:f(B)-0-{1,2,3,..., B}

such that KNOT(E) = K and, for all (b,b') in R,

f(b)<f(b1)?

The set B is the set of segments in a program, the set E, the edges,

and the set R, the restrictions. The ordered pair of segments used for

the edges does not account for statement offsets. The removal of the

offsets is valid because programs with single-statement segments are

at least as difficult to reorder to minimum knots as those where

statement offset are required, as in multiple-statement segments.

Clearly, any algorithm which can solve rearrangement for programs with

multiple-statement segments and offsets can solve the single-statement,

no offset programs as a special case.

40

The decision problem is obviously in NP. A generator can create

all possible functions f and feed each to a non-deterministic machine.

The machine rearranges a program from the input function f, checks

rearrangement restriction satisfaction, and computes the knot number of

the program. If the knot number matches K, a solution is found.

Generalization comes from the knot computation procedure devel-

oped above. The knot computation is over pairs of edges in the knot

graph representation and therefore generalized to a 4-tuple of adjacent

nodes of the edge pair under comparison for a knot. The set from which

knots are computed is transformed from a set of statement pairs (nodes

adjacent on an edge), where the number of members is lEl, to a set

of statement 4-tuples (nodes adjacent of two edges), one for each unique

edge pair from E, where the size of this set is IEI(IEI -l)/2. The

generalized decision problem uses the 4-tuple representation. KNOT(D)

is the knot count function for the set of 4-tuples. The function is

equivalent to KNOT(E) except that KNOT(D) does not have to form all the

pairs from the set E while computing the knot number of the set. All

pairs are already formed in D.

GENERALIZED KNOT REARRANGEMENT

Instance: A finite set B, a collection D of ordered 4-tuples

from B, a collection R of ordered pairs from B, and an

integer K.

Problem: Is there a one-to-one function f:f(B)÷{1,2,3,..., B}

such that KNOT(D) = K and for all (b,b') in R,

f(b) <f(b')?

41

The generalized problem is in NP for the same reasons as the original

problem. GENERALIZED KNOT REARRANGEMENT is shown NP-complete from a

proven NP-complete problem. The problem chosen for the reduction is

called the BETWEENNESS problem,(12,26)

BETWEENNESS

Instance: A finite set A and collection C of 3-tuples, (a,b,c)

of distinct elements from A.

Problem: Is there a one-to-one function f:X*{1,2,3,...,IAI}

such that for all (a,b,c) in C,

f(a)<f(b)<f(c) or f(a)>f(b)>f(c)?

BETWEENNESS was shown NP-complete from a reduction from SET-SPLITTING.

(12) The reduction to GENERALIZED KNOT REARRANGEMENT uses a polynomial

transformation of the sets A and C. For every 3-tuple in C, a 4-tuple

is created for the set D.

(a,b,c) (a,b,c,z)

where z is not a member of A. The set B of GENERALIZED KNOT REARRANGE-

MENT is created from the set A and the variable z.

B =AUz

The set of restrictions, R, is built from z and all members of A. That

is:

For all a in A, (a,z) is in R, and

for all (a,z) in R, a is in A.

The transformation to these sets is polynomial in the size of A. The

number of 3-tuples in C cannot exceed IAI3. Building the set D is

0(1,413). Building the set B requires IAI+1 operations and the set R,

IAI operations. The transformation is polynomial of order

42

0(IA13+21A1+1)

operations.

To solve BETWEENNESS, GENERALIZED KNOT REARRANGEMENT is run on the

transformed sets B, E, and R. The hit value of K is set to the size of

C. The GENERALIZED KNOT REARRANGEMENT algorithm solves BETWEENNESS by

finding (or not finding) a function f which has K knots. The value

assigned z, f(z), must equal IAI+1 because of the restriction set.

The only conditions for a knot when the last member of the 4-tuple is

greater that any other member are:

f(a)<f(b)<f(c) or f(a)>f(b)>f(c),

where the 4-tuple is (a,b,c,z). If every 4-tuple produces a knot,

the number of knots equals K. Any 4-tuple which does not knot re-

duces the number of knots to less than K: no 4-tuple can contribute

more than one knot. The solution requires that for every (a,b,c) in

C, b is between a and b. BETWEENNESS is polynomially reducible to

GENERALIZED KNOT REARRANGEMENT. A theorem results

Theorem: GENERALIZED KNOT REARRANGEMENT is an NP-complete problem.

The proof that GENERALIZED KNOT REARRANGEMENT is NP-complete does

not suffice for MINIMAL KNOT REARRANGEMENT. The condition for general-

ization from the rearrangement on the knot graph requires all pairs of

edges to be represented as a single set of 4-tuples. GENERALIZED KNOT

REARRANGEMENT and MINIMAL KNOT REARRANGEMENT are equivalent only if

every algorithm which computes the problem the fastest requires compar-

ison of all pairs of explicit edges to compute the knot content of an

ordering of a program. Then,

43

{(a,b),(c,d),(...)}

{(a,b,c,d),(a,b,...,...),(c,d,...,...),(...,...,...,...)}

in terms of any algorithm which reorders to minimum knots in the fastest

time. Such a proof is beyond the scope of this paper and is left as

an open problem.

One indication of the NP-completeness of reordering is the exist-

ence of relative minimums. In general, for some ordering of a program,

exchange of any pair of elementary segments can produce a knot less

than or equal to the knot count for any other exchange on the ordering.

The result may not be the minimum knot count of the program. If for

every program no such relative minimum knot count occurs, then some

algorithm should exist to find a minimum knot number in polynomial time.

An example of a program of this type is knot-graph represented in

Figure 12. Minimization requires a shift of segment E between segment A

and segment B. Every exchange towards that goal produces a greater

knot count than in the original program.

Fast algorithms do exist for approximating the minimum knot number.

Section 5 on empirical data contains results on the use of the rela-

tively slow, relative minimization algorithm for finding the minimum

knot number of programs. The algorithm was originally intended to

find lower knot content orderings for statistical data on programs with

many segments, but unexpectedly found the minimum knot number for a

large number of the programs under test. Faster algorithms should have

comparable success.

44

KNOTS AND

STRUCTURED PROGRAMMING

Modular software construction and structured programming have

shown a remarkable ability to enhance software quality.(1,5,6,27) In

particular, the general areas of testability and maintainability have

prospered. A metric which indicates the degree of modularity and

structuredness of a program should significantly assist software devel-

opment. Knots will be shown to provide such a metric.

Originally, structured programming arose from the concepts of soft-

ware modularity.(7) A program module is a logically self-contained

and discrete part of a larger program. Each module is a program or

routine with a single entry point and single exit point. A complete,

modular program consists of a collection of modules, which are func-

tionally arrayed in a hierarchical fashion. That is, the complete,

modular program has a main module which calls other modules which,

in turn, call other modules. Structured programming extends this con-

cept to the internal format of each module.

Structured programming attempts to create well-organized coding

within programs. Its basis is the single entry-point, single

exit-point rule implied by software modularity. In structured pro-

gramming, the rule applies to sequences of statements within a program.

The rule can be expressed in terms of the flow graph representation of

a program as defined in Section 1.

The program block in a program is a sequence of statements with a

single entrance point and single exit point. Two program blocks are

45

reducible to a single node in the flow graph when they can be combined

(merging self-loops and parallel edges) without affecting the flow edges

to and from any other basic blocks. If two program blocks can be re-

duced, they formed a modular sequence in the program. If the program

flow graph can be iteratively reduced to a single node, the program is

structured.

The flow graph definition captures the modularity of flow, but

does not address the modularity of text, the other requirement of struc-

turedness.(14) For a program to be modular in text, every sequence of

statements which does not branch and is not branched into must be

sequential in the program text. The definition of program structured-

ness is a combination of both the flow modularity and the text modu-

larity.

A program is structured when its flow graph is reducible to a

single node and its text is modular.

Clearly the definition sets severe restrictions for structured

programs. If structured implementations of algorithms are as powerful

in every case as those which are unstructured, the need to bend those

rules (and hence, the need for a metric to measure that variance)

would not be justifiable. However, the need for this flexibility is

pointed up by the current GOTO controversy.

In the process of definition of structured programming, many re-

searchers have amended the original ideas of Dijkstra (7) to include

the removal of GOTO's from programming practices.(2,21,31) The premise

of the restriction is that GOTO's are the major source of control flow

46

tangle in programs. In FORTRAN, this is precisely the case. Expli-

cit edges, other than DO-loops, are caused only by GOTO constructions.

The restriction causes all control flow within a program to fall within

the constructs of the programming language -- IF-THEN-ELSE, DO-WHILE,

FOR, etc. Restriction to these conventions guarantees the program

must be structured.

A more moderate approach was presented by Knuth.(20) While most

programs work well under the GOTO restriction, he found restriction of

some algorithms was both time and space inefficient. In some cases,

removal of GOTO's actually increased the complexity of the program.

Many other arguments have been presented on both sides of the

question, but some middle ground can be found.(18) Techniques which

restrain rather that abolish GOTO's to produce "slightly" unstructured

programs is one solution.

Among other advantages, such restraining techniques allow the

IF-THEN-ELSE construct to appear in FORTRAN programs. Without GOTO's,

FORTRAN is limited to IF-THEN structures. Use of a GOTO terminates

the THEN part of the structure with a branch around the section per-

forming the ELSE. The structure may be formed by using two or three

GOTO's.(24,29,30,33) Figure 13 shows these two forms. The non-GOTO

structure for this code is:

IF (A) CALL THEN ()

IF (.NOT.A) CALL ELSE ()

Such code, however, makes it difficult to understand the purpose and

function of the IF-THEN-ELSE. The processing of the CALL also slows

47

IF () GOTO 1
-THEN SECTION OF CODE-

GOTO 2
1 -ELSE SECTION OF CODE-

.

2 -NEXT SECTION -

(A)

IE () GOTO 1
GOTO 2

-ELSE SECTION OF CODE-

GOTO 3

-THEN SECTION OF CODE-
.

-NEXT SECTION-

(B)

Figure 13: Two formats for FORTRAN IF-THEN-ELSE. Type A has one
knot and type 3 has two knots.

48

the procedure.(20,31)

One characteristic immediately apparent in the above code is that

the unconditional GOTO's cause a knot in the structured IF-THEN-ELSE.

The knot number of the first type (A) is one, and the second type (B)

is two. If the above sections are defined as the structured represen-

tations of a FORTRAN IF-THEN-ELSE, then an IF-THEN-ELSE causes a knot.

The result applies to other languages as well, if the restriction of

conversion of single-line, multiple-statement, control functions to

multiple-line, single statement format is specified. That is,

if () then () else; -> if ()

then ()

else ();

The implied edges of this structure, when control flow is drawn, show

a knot.

The examples demonstrate that although a program with zero knots

must be structured, a structured program does not necessarily have

zero knots. The knot relationship as presented by Woodward et al. (30)

was found in the flow reduction of a program. McCabe (23) showed that

a program was structured if its flow graph could be reduced to a single

node. The corresponding result of (30) is that every structured pro-

gram has a labeled flow graph representation which is reducible to a

flow graph with zero knots. One drawback is that the labeled flow

graph must be reduced to determine structuredness. Another drawback

is that the labeled flow graph with its innate deficiencies is used.

The problem is simplified if the structuredness of a program may

49

be determined directly from the knots in the unreduced knot graph. The

solution is to further specify the knot by type, using some character-

istic of each knot in the program indicative of the structuredness of

the edges which caused it. If a program contains unstructured knots,

the program is unstructured. The number of unstructured knots indicates

the degree of unstructuredness of the program. These knots are also

the knots remaining when a reduction is applied to the knot graph.

The most obvious knot formation that breaches modularity is one

which violates a DO-loop structure in FORTRAN. A DO-loop is defined

as any backwards branch in the text. Backwardness is based on the text

rather than the program control flow, even though the branch may not be

a functional iteration. A structured text should reflect the structure

of program operation. If a backwards branch occurs in the text which

is not an iteration loop, the text is not reflecting program operation

and violates the text modularity condition of the definition. Figure 14

shows a program section with this lack of correspondence. Any program

containing a backwards branch which is not a loop is unstructured.

All backwards branches in a structured program must be loops.

Often an unstructured program passes control to or from the inter-

ior of a loop. In its knot graph, an unstructured program with this

type of violation must have a knot on the loop edge. Figure 15 shows

the possible knot subgraphs for this type of unstructuredness. The

knot characteristic for a loop knot is found directly from the edge

representation involved. A knot is positive if neither edge is a loop

(backwards branch). Otherwise a knot is negative.

50

Figure 14: Textually non-modular statement in knot graph.

51

Figure 15: Exit from and entrance to knot graph loop.

52

Given e=(a,c) and e'=(b,d) where a, b, c, and d are line numbers

of a program, and e and e' are control flow edges, (a,c) implies

edge e exits statement a and enters at statement c. If e and e'

knot, the knot is positive if and only if a<b<c<d. The knot is

negative otherwise.

Clearly every entrance (exit) to (from) the inside of a functional

loop will be detected by a negative knot. The edge of a loop, e=(a,c)

must have a>c. The same is true for textual backward branches. Non-

iterative backwards branches occur when a section of the program is

displaced from the text module of code which should properly contain

it. (Figure 16)

In Figure 16, case II, a negative knot is automatically found, so

only cases I, III, and IV need examination. In each of these cases,

the segment of block B must be entered and exited from or to some

other part of the program. If B is entered from any place other than

A, a negative knot occurs. If B is entered from A, the exit may be

to A, C, or some other segment. If B exits to A or B, there are no

violations to program text structuredness: cases. I, III, and IV are

well-defined, structured modules. If B exits to some other section,

then a negative knot occurs, and the program is unstructured. The

result is equivalent if C and D are at lesser line numbers than A and

B. Thus, structured programs cannot contain negative knots.

The result applies if there is a number of segments in the pro-

gram, or a single segment. Unstructuredness conditions when positive

knots occur in a program are not as independent. The framework of the

IF-THEN-ELSE is FORTRAN (or any other language) imposes a positive

53

(I) (III) (IV)

Figure 16: Backwards branches in knot graphs.

54

knot in the program. Nested IF-THEN-ELSE's cause multiple positive

knots. The IF-THEN-ELSE is characterized by the segmentation which

the construction causes. The THEN, the ELSE, or both sections are

contained in different elementary segments. The observation implies

that the unstructuredness of a program is related to the containment

of edges causing knots by elementary segments.

The edge containment of knots is divided into two types. If the

edges causing a knot are contained in at most two segments, the knot

is internal. If the edges are contained in at least three segments,

the knot is external.

Given e=(a,b) and e'=(c,d) where e and e' are control flow edges

in a program and a, b, c, and d are the elementary segments upon

which e and e' are incident, (a,b) implies an edge exits segment

a and enters segment b. If e and e' knot, the knot is internal

if a=b=c or a=b=d or a=c=d or b=c=d. The knot is external if at

most any two members of the set {a,b,c,d} are equal.

The definition relates a knot to McCabe's (23) unstructuredness

results. McCabe showed that the existence of a particular type of

subgraph of the program flow graph, without unconditional GOTO's, was

sufficient and necessary for unstructuredness in the program. In

Figure 17, the graphs represent entrance to a loop, exit from a loop,

entrance to a decision, and exit from a decision. Knots have previously

been shown to detect subgraphs of types II, III, and IV. The remaining

type, I, is a positive knot. The restriction of no unconditional GOTO's

constrains the programs under consideration to a single elementary

segment for the whole program. However, the subgraph result must also

hold for each elementary segment in a program with multiple segments.

55

(I) (Iv)

Figure 17: The four unstructured subgraphs from (23).

56

The GOTO constraint holds within each elementary segment. Internal,

positive knots clearly indicate unstructuredness.

The type of knot remaining, positive and external, is not suffici-

ent to determine unstructuredness or prove structuredness. That is,

a program with positive, external knots may or may not be unstructured

in a FORTRAN program without language constraints. An example is the

two knot subgraphs shown in Figure 18.

The subgraphs in Figure 18-1 and Figure 18-2 each contain two

positive, external knots. However, the subgraph in 1 is unstructured

and in 2 is structured. The knots in both graphs are identical in

every way except for two entrance nodes, e and f. Knot graph spec-

ification of two edges is insufficient to differentiate the two cases.

Absolute unstructuredness must still rely on some reduction of the

program, although a very useful theorem results form the above discus-

sion.

Obviously knots are partitioned into positive and negative knots,

and these sets are further partitioned into internal and external knots.

The partitions containing negative-internal and negative-external knots

are empty if a program is structured. The partition containing

positive-internal knots is empty if the program is structured. The

partition containing positive-external knots is the only one to which

membership does not imply unstructuredness. Therefore, all knots, if

any, in a program must be positive-external if the program is struc-

tured.

Theorem: A structured program may contain only positive-external

knots.

57

(1) -- unstructured (2) -- structured

Figure 18: Structured and unstructured knot graphs with the same
positive knot type.

58

Although the result limits the ability for a knot comparison be-

tween edges to determine structured programs uniquely, the result has

more potential in application than any previous metric. The cyclomatic

number, for instance, indicates nothing about the structuredness of a

program until the flow graph to the program has been reduced. Line

counts, operator counts, GOTO counts, branch counts, or any combination

thereof is even weaker. The association of the knot with structuredness

establishes that if the technique is a major controlling factor of

complexity, the knot provides an equally effective measure of that

control.

59

EMPIRICAL RESULTS

I implemented an automatic system to examine the knot concepts

over a functioning set of programs. I sought several results from the

experiment. The first was a confirmation of the results of a similar

experiment (30) on a larger and less constrained set of programs.

Secondly, I was looking for the degree to which programmers write code

which cannot be rearranged to cause fewer knots. My third objective

was to show that although relative minimums in the knot count of rear-

ranged programs exist, segment exchange quickly creates a reordering

of a program in which the knot count approaches the minimum knot count

for any rearrangement of the program. The fourth aspect of the exper-

iment concerned the ease of implementation of the knot measure. I

needed some indication of the developmental and functional overhead

in automation of the knot measure.

In the first stage of the experiment, I built a routine to compute

the following characteristics of a FORTRAN program.

1. Program length -- the number of statements in a program, not

including non-functional statements.

2. Segments -- the number of elementary segments as specified in

Section 3 in a program.

3. Cyclomatic number -- The number of linearly independent cir-

cuits in the flow graph of a program.

4. Knot count -- the number of knots found in the original order-

ing of the statements of a program.

5. Relative-minimum knot count -- the least knot count for the

rearrangement of a program using segment exchange. The knot

60

count is the lowest when no segment exchange on that ordering

produces an ordering of the segments with a lesser knot count.

6. Relative-minimum exchanges -- the number of exchanges necessary

to find a relative minimum.

7. Absolute-minimum knot count -- the minimum number of knots

found for every rearrangement of a program.

8. Absolute-maximum knot count -- the maximum number of knots

found for any rearrangement of a program.

9. Average knot count -- the average knot count over all rear-

rangements of a program.

10. Reorderings -- the number of possible rearrangements of a

program.

In the second stage of the experiment, I computed correlations

between each of the above characteristics over all the programs tested.

The software for computing these values consisted of a two-pass,

program flow analyzer, a knot calculator, a segment order exchange

routine for relative minimization, and a permutation generator for

creating all rearrangements of a program. The program analyzer con-

verted a FORTRAN program to edge representations of the explicit

branches in the text. The routine stored the segment number and state-

offset on exit and segment number and statement offset on entrance for

each explicit branch in a program. The first pass partitioned a

program into elementary segments and stored the segment/offset values

for each labeled (entry) statement in a table. The second pass found

all explicit branches and stored the segment/offset value of the

branching statement with the jump label value for the table. Thus,

the edge set for a program was stored in the form suggested in Section

3.

The knot calculation routine computed the number of knots in the

61

edge set for any particular ordering of the segments. The routine

maintained a one-dimensional array of length equal to the number of

segments in a program. The segment values in the edge set were indices

to this array. In this way, a program reordering consisted of placing

integers, from one to the number of segments, in some sequence in the

array. The knot calculation routine compared every pair of edges in

the edge set, using the segment value to index the array for the cur-

rent ordering number of that segment. Initially, each array value was

set equal to its index. The knot calculation on that sequence gave

the knot count of the program of the original ordering of the segments.

After the edge set of the program had been compiled and the ori-

ginal knot count computed, the system performed two types of reordering

of the elementary segments. For determination of a relative-minimum

knot count, two segments at a time were exchanged to create a new

ordering of the program. If the new ordering did not produce a lesser

knot count, a new pair of segments were exchanged relative to the

previous ordering. If no exchange of segments on that ordering pro-

duced a lesser knot count, the count was saved as the relative-minimum

knot count and the number of exchanges to that point was stored as the

relative-minimum exchanges. If a new ordering had a lesser knot count

upon segment exchange, the segment exchanges continued with that

ordering as its base.

If there were not more than eight segments in a program, the sys-

tem computed the knot count for every rearrangement of the program.

The least and greatest knot counts found were the absolute-minimum

knot count and absolute-maximum knot count for the program. The

62

system did not check for DO-loop restrictions; none of the programs

tested required them. The sum of the absolute-maximum and absolute-

minimum knot counts divided by two gave the mid-range or average

knot count for a program. The reorderings of a program were equal to

the factorial of the number of segments less two -- the initial and

final segments which could not be rearranged.

Once the characteristic values of the set of programs had been

computed and stored, a routine computed the correlations between every

pair of characteristics. The correlation formula implemented was:

r = NExy-(zxEy) (32)

EN E (. X2) - (E X)2 [N E (y2) - (E y)2]1

The system collected and correlated these values for 155 programs

used on the Oregon State University, School of Oceanography, Geophysics

Group computer system. All routines were in the category of scientific,

numerical software and written in FORTRAN. Most programs were small;

on the average, each had less than one hundred lines of code. Large

array processing, serial data processing, plotting, and statistical

routines were the most common in the sample. The spread in knowledge

and experience of the programmers was quite large. The programmers

varied from inexperienced, non-computer science graduate students, to

experienced researchers, to expert programmers. The sample represented

a wide range of scientific software and programmer skill, without

prefiltration by software construction controls.

Table 1 is a compilation of the program data for these routines,

63

sorted with respect to program length. The blank entries under the

last four columns indicate that the program had too many segments for

practical computation of these values. The upper-bound for these

computations was set at eight elementary segments.

The correlations on this data sample are shown in Table 2. Table

3 shows the correlation probability for a sample of this size and is

the correlation base of the sample. That is, there is a 1 percent

probability that a sample base of this size would show a correlation of

greater than .259 randomly. The program number in the table is a number

arbitrarily assigned to each program as it was processed. The cor-

relations with other variables reflects the pseudo-randomness with

which the programs were ordered for analysis. The very low correlations

with all other variables provides an additional basis for judging the

degree of correlation between other variables.

The first result of the experiment shows that the correlation of

the cyclomatic number with the knot count (.569) is approximately the

same as that found in (30), (.600). Moderate correlation may imply

more about the dependence of knots on branching than a direct rela-

tionship between the two metrics. The high correlation (.843) of

cyclomatic number with program length also supports the results of

(30), (.98). The lesser correlation between knots and program length

(.508) further implies a difference in the two measures, at least for

the programs tested.

The second result of the experiment shows a higher correlation

(.914) of the absolute-maximum knot count with the original knot count

than the absolute-minimum knot count with the original knot count (.785).

64

Although both correlations are high, the difference is meaningful

because in the majority of the programs, no reordering was done. The

data list shows that where absolute-minimum and absolute-maximum knot

counts were found, a smaller knot number was found more often than not.

When relative minimization supplied the only knot count minimum data,

a lower value was also found. At least for this sample, programs con-

tain more knots than necessary for the code used, and, in general,

greater than the mid-range of the knot counts possible for any ordering

of the code.

The third result derives from the correlation between the relative

minimum knot count and the absolute-minimum knot count. In only 12 of

the 80 programs where rearrangement was practical or possible, the

relative minimization did not find the absolute-minimum knot count.

In the five programs with greater than ten knots which could not be

practically reordered, only one relative-minimization did not find a

program ordering with significantly fewer knots than the original.

Although finding the ordering of a program with the absolute-minimum

knot number is difficult, relative-minimization succeeds in signifi-

cantly reducing the knot count. In most cases, the reduction is also

to the absolute-minimum knot number.

The efficiency with which knots may be implemented was demonstrated

by the development of the experiment. The software required about two

days to write and debug, and the 155 programs in the data sample took

about four hours, wall-clock time, to test. The basic knot computation

for a program required approximately 1 percent of the average compile

time for the program. Reordering, however, required larger amounts of

65

time and computational effort. In general, a knot measure could be

added effectively to a software development system with minimal devel-

opment and functional overhead.

Table 1: Program data from knot testing routine.

LEN -- Program length
SEG -- Number of segments
CYC Cyclomatic number
KNT -- Knot count
RMK -- Relative minimum knots

66

RX -- Relative minimum exchanges
AMX -- Absolute maximum knots
AMN -- Absolute minimum knots
AVK -- Average knots
PRM -- Segment reorderings

LEN SEG CYC KNT RMK RX AMX AMN AVK PRM

340 25 46 35 35 253

172 6 23 44 41 8 46 41 43 24

168 13 22 26 16 227

140 9 36 16 16 21

130 7 13 11 10 11 23 9 16 120

129 3 24 21 21 0 21 21 21 1

120 2 19 3 3 0 3 3 3 1

115 7 17 37 23 19 55 22 39 120

115 5 23 6 6 3 7 6 7 6

114 12 20 5 4 54

114 14 25 5 5 66

112 5 23 6 6 3 7 6 7 6

111 2 15 2 2 0 2 2 2 1

110 6 26 118 28 18 125 28 77 24

110 10 13 8 6 75

109 8 16 22 17 30 26 17 22 120

108 5 23 6 6 3 7 6 7 6

108 5 17 12 10 4 12 10 11 6

104 1 3 0 0 0 0 0 0 1

103 7 15 5 5 10 19 3 11 120

97 3 12 2 2 0 2 2 2 1

95 4 16 16 16 1 16 16 16 2

94 19 33 8 2 330

88 10 25 1 1 28

86 2 10 2 2 0 2 2 2 1

86 8 14 10 7 21 42 7 25 720

84 3 8 6 6 0 6 6 6 1

81 10 16 6 6 28

77 4 9 4 4 1 12 4 8 2

76 11 13 0 0 36

75 13 26 17 3 239

74 5 11 10 10 3 18 10 14 6

74 2 4 0 0 0 0 0 0 1

72

72

72

14

4

4

23

10

7

32

4

0

19

4

0

245
1

1

10

0

4

0

7

0

2

2

70 5 6 2 1 4 2 1 2 6

67 7 17 24 22 11 66 22 44 120

65 3 3 0 0 0 0 0 0 1

63 2 13 4 4 0 4 4 4 1

67

Table 1: Program data from knot testing routine (cont.)

LEN SEG CYC KNT RMK RX AMX AMN AVK PRM

60 4 13 12 11 2 12 11 12 2

60 5 7 3 2 4 4 2 3 6

57 3 7 0 0 0 0 0 0 1

54 2 8 0 0 0 0 0 0 1

53 12 15 7 4 104

53 8 11 15 5 35 39 4 22 720

52 8 11 15 5 35 39 4 22 720

51 1 4 2 2 0 2 2 2 1

50 6 10 3 0 13 3 0 2 24

50 2 9 0 0 0 0 0 0 1

50 3 6 4 4 0 4 4 4 1

49 1 7 0 0 0 0 0 0 1

49 3 6 4 4 0 4 4 4 1

48 1 9 0 0 0 0 0 0 1

48 3 7 1 1 0 1 1 1 1

48 3 4 1 1 0 1 1 1 1

47 2 5 0 0 0 0 0 0 1

47 3 3 0 0 0 0 0 0 1

46 7 16 3 3 10 11 3 7 120

46 2 8 6 6 0 6 6 6 1

45 2 9 0 0 0 0 0 0 1

45 4 3 0 0 1 0 0 0 2

44 5 12 2 2 3 7 2 5 6

43 2 8 0 0 0 0 0 0 1

43 8 7 4 2 28 24 0 12 720

42 8 7 4 2 28 24 0 12 720

42 2 3 0 0 0 0 0 0 1

41 5 9 1 1 3 1 1 1 6

41 3 8 6 6 0 6 6 6 1

40 2 4 0 0 0 0 0 0 1

40 4 4 1 0 2 1 0 1 2

39 2 14 0 0 0 0 0 0 1

38 6 11 4 3 12 8 3 6 24

38 2 9 0 0 0 0 0 0 1

38 3 8 3 3 0 3 3 3 1

37 6 9 12 1 13 15 0 8 24

36 6 9 12 1 13 15 0 8 24

36 2 2 0 0 0 0 0 0 1

36 2 2 0 0 0 0 0 0 1

34 2 3 0 0 0 0 0 0 1

33 3 5 4 4 0 4 4 4 1

32 7 14 14 4 16 24 3 14 120

32 6 9 9 1 13 13 0 7 24

32 5 7 0 0 3 0 0 0 6

32 3 4 2 2 0 2 2 2 1

Table 1: Program data from knot testing routine (cont.)

LEN SEG CYC KNT RMK RX AMX AMN AVK

68

PRM

31 3 4 2 2 0 2 2 2 1

31 2 3 0 0 0 0 0 0 1

30 2 9 21 21 0 21 21 21 1

30 3 5 0 0 0 0 0 0 1

30 6 5 4 2 12 13 0 7 24

29 1 8 0 0 0 0 0 0 1

28 2 3 1 1 0 1 1 1 1

27 2 10 0 0 0 0 0 0 1

27 2 4 0 0 0 0 0 0 1

26 2 3 0 0 0 0 0 0 1

26 1 2 0 0 0 0 0 0 1

25 6 7 4 0 7 4 0 2 24

25 2 2 0 0 0 0 0 0 1

24 2 5 0 0 0 0 0 0 1

24 3 2 0 0 0 0 0 0 1

24 2 2 0 0 0 0 0 0 1

23 4 5 1 0 2 1 0 1 2

23 4 5 4 3 2 4 3 4 2

23 2 3 0 0 0 0 0 0 1

23 2 2 0 0 0 0 0 0 0

22 5 6 2 2 3 2 2 2 6

22 3 5 1 1 0 1 1 1 1

22 2 3 1 1 0 1 1 1 1

22 1 3 0 0 0 0 0 0 1

22 3 3 1 1 0 1 1 1 1

21 2 3 0 0 0 0 0 0 1

20 2 5 1 1 0 1 1 1 1

20 2 3 0 0 0 0 0 0 1

20 2 1 0 0 0 0 0 0 1

19 4 4 2 0 2 2 0 1 2

18 6 7 2 2 6 13 0 7 24

18 2 1 0 0 0 0 0 0 1

17 4 6 0 0 1 0 0 0 2

17 4 3 2 2 1 3 2 3 2

17 1 1 0 0 0 0 0 0 1

17 1 1 0 0 0 0 0 0 1

15 2 5 1 1 0 1 1 1 1

15 2 3 0 0 0 0 0 0 1

14 4 5 0 0 1 4 0 2 2

14 2 4 1 1 0 1 1 1 1

13 5 7 9 0 9 9 0 5 6

13 2 6 0 0 0 0 0 0 1

13 3 4 1 1 0 1 1 1 1

13 2 4 1 1 0 1 1 1 1

13 2 3 0 0 0 0 0 0 1

Table 1: Program data from knot testing routine (cont.)

LEN SEG CYC KNT RMK RX AMX AMN AVK

69

PRM

13 2 3 0 0 0 0 0 0 1

13 2 1 0 0 0 0 0 0 1

13 2 1 0 0 0 0 0 0 1

12 4 4 2 2 1 2 2 2 2

12 3 3 0 0 0 0 0 0 1

12 2 3 0 0 0 0 0 0 1

12 2 2 0 0 0 0 0 0 1

12 2 2 0 0 0 0 0 0 1

12 2 2 0 0 0 0 0 0 1

12 2 2 0 0 0 0 0 0 1

12 2 2 0 0 0 0 0 0 1

12 2 1 0 0 0 0 0 0 1

12 2 1 0 0 0 0 0 0 1

11 2 6 0 0 0 0 0 0 1

11 2 2 0 0 0 0 0 0 1

10 2 3 0 0 0 0 0 0 1

10 2 1 0 0 0 0 0 0 1

9 2 4 0 0 0 0 0 0 1

9 2 1 0 0 0 0 0 0 1

8 2 2 0 0 0 0 0 0 1

7 2 3 0 0 0 0 0 0 1

7 2 2 0 0 0 0 0 0 1

6 2 1 0 0 0 0 0 0 1

5 2 1 0 0 0 0 0 0 1

Table 2: Program data correlations from knot test routine.

PR#

LEN

SEG

CYC

KNT

RMK

RX

AMX

AMN

PRM

BW

AVK

PR# LEN SEG CYC KNT RMK RX AMX AMN PRM BW AVK

Program number

Program length

Number of segments

Cyclomatic number

Knot count

Relative minimum knots

Relative minimum
exchanges

Absolute maximum knots

Absolute minimum knots

Segment reorderings

Knot range in reordering

Knot average in
reordering

.215 .229 .208 .078 .230 .113 .113 .190 .153 .036 .142

.215 .661 .843 .508 .719 .487 .493 .655 .193 .178 .567

.229 .661 .778 .416 .493 .851 .630 .393 .617 .241 .587

.208 .843 .778 .569 .686 .613 .626 .683 .219 .268 .674

.018 .508 .416 .569 .800 .325 .914 .785 .186 .734 .925

.230 .719 .493 .686 .800 .352 .772 .997 .191 .408 .882

.113 .487 .851 .613 .325 .352 .664 .311 .864 .024 .589

.113 .493 .630 .626 .914 .772 .664 .749 .439 .939 .980

.190 .655 .393 .683 .785 .997 .311 .749 .155 .475 .866

.153 .193 .617 .219 .186 .191 .864 .439 .155 .503 .376

.036 .178 .241 .268 .734 .408 .024 .939 .475 .503 .851

.142 .567 .587 .674 .925 .882 .589 .980 .866 .376 .851

71

Table 3: Correlation probabilities (24) for 155 samples.

Correlation Probability

.168 .100

.199 .050

.235 .020

.259 .010

.327 .001

72

CONCLUSIONS

To summarize, I would like to put the findings of this thesis in

the perspective of the goal stated in the intoduction: implementation

of the knot metric as a software development tool.

A brief look at the characteristics of the knot indicates that

the metric is closely related to both program attributes associated

with program complexity: program text structure and control flow. The

representation of those attributes with a knot graph allows a fast

algorithm to enumerate the knots in any program. The optimal algorithm

of that process was found to be O(e') in space and O(e'2) in time for

the number e' of edges in a knot graph with neither text-adjacent or

text-bounding end-points.

Using the knots of a program to reduce its complexity is a val-

uable tool, but, theoretically, that process of minimal rearrangement

is too difficult in computational complexity to implement. Approxi-

mating the minimum rearrangement, however, is fast, and for the most

part, reaches the ordering which has the minimum knot number. Knots,

then, can be used effectively to refashion programs to less complex

textual structures in the practical domain.

Refining the knot to special types depending on the direction and

containment of edges in a segmented knot graph produces a tool for

measuring the structuredness of programs. Structuredness is closely

tied to complexity; therefore, the knot characteristics will provide

a direct control on the creation of almost-structured, yet less complex,

73

programs.

The empirical data which I accumulated justifies the knot metric

from yet another standpoint. The measure is relatively independent of

previous complexity measures and also assesses a different aspect of

that complexity. In addition, it is relatively easy to implement and

operates with low overhead.

This thesis primarily concerns FORTRAN programs and FORTRAN program-

ming, but is extendable to other programming languages, even those

without a GOTO type instruction. Any IF-THEN-ELSE causes a knot, so

the knot measure in other languages detects the density of IF-THEN-ELSE

constructions. Because such constructions often are associated with

program complexity, knots are applicable to other languages than

FORTRAN.

In general, the knot metric appears to be a practical, multi-

purpose software complexity measure and tool.

74

REFERENCES

1. Baker, F. T., "Chief Programmer Team Management of Programming,"
IBM Systems Journal, January 1972, pp. 59-73.

2. Clark, R. L., "A Linguistic Contribution to GOTO-less Program-
ming," Datamation, V. 19, No. 12, December 1973, pp. 62-88.

3. Cook, C. R., "Graph Theoretic Program Complexity Measures,"
Department of Computer Science Technical Report, Oregon State
University, May 1979.

4. Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A., Love, T.,
"Measuring the Psycological Complexity of Software Maintainance
with the Halstead and McCabe Metrics," IEEE Transactions on

Software Engineering, V. SE-5, No. 2, March 1979, pp. 96-104.

5. Curtis, B., Sheppard, S. B., Milliman, P., "Third Time Charm:
Stranger Prediction of Programmer Performance by Software Com-
plexity Metrics," Proceedings of the 4th International Conference
on Software Engineering, Munich, September 1979, pp. 356-360.

6. Dijkstra, E. W., "The structure of 'THE' Multiprogramming System,"
Communications of the ACM, V. 11, No. 5, May 1968, pp. 341-346.

7. Dijkstra, E. W., "Programming Considered as a Human Activity," Pro-
ceedings, IAP Congress 65, North Holland, Amsterdam, 1965, pp. 213-
217.

8. Dijkstra, E. E., "GOTO Statement Considered Harmful," Communications
of the ACM, V. 11, No. 3, March 1968, pp. 147-148.

9. Elshoff, J. L., Marcotty, M., "On the Use of the Cyclomatic Number
to Measure Program Complexity," ACM S1GPLAN Notices, December 1978,
pp. 29-39.

10. Fitzsimmons, A. B., Love, L. T., "A Review and Evaluation of Soft-
ware Science," ACM Computing Surveys, V. 10, 1978, pp. 3-18.

11. Gannon, J. D., Horning, J. J., "Language Design for Programming
Reliability," IEEE Transactions on Software Engineering, V. SE-1,
No. 2, June 1975, pp. 179-191.

12. Garey, M. R., Johnson, D. S., Computers and Intractability, Freeman,
San Francisco, 1979.

13. Gilb, T., Software Metrics, Winthrop, Cambridge, Mass, 1977.

75

14. Gordon, R. D., "Measuring Improvements in Program Clarity," IEEE
Transactions on Software Engineering, V. SE-5, No. 2, January 1979,
pp. 79-90.

15. Gordon, R. D., "A Quantitative Justification for a Measure of Pro-
gram Clarity," IEEE Transactions on Software Engineering, V. SE-5,
No. 2, March 1979, pp. 121-128.

16. Halstead, M. H., "Toward a Theoretical Basis for Estimating Pro-
gramming Effort," Proceedings of the ACM, 2975, ACM, New York,
1975, pp. 222-224.

17. Hansen, W. J., "Measurement of Program Complexity by the Pair,"
ACM SIGPLAN Notices, March 1978, pp. 29-33.

18. Hopkins, M. E., "A Case for the GOTO," Proceedings of the 25th
ACM National Conference, V. 2, 1972, pp. 787-790.

19. Kerrigan, B. W., Plauger, P. J., The Elements of Programming Style,
McGraw-Hill, New York, NY, 1978.

20. Knuth, D. E., "Structured Programming with GOTO Statements,"
Current Trends in Programming Methodologies, Volume I, Prentice
Hall, Englewood Cliff, N. J., 1977, pp. 140-194.

21. Leavenworth, B. M., "Programming With(out) the GOTO," Proceedings
of the ACM 25th National Conference, V. 2, 1972, pp. 782-786.

22. Love, T.,"An Experimental Investigation of the Effect of Program
Structure on Program Understanding," ACM SIGPLAN Notices, Language
Design for Reliable Software, V. 12, March 1977, pp. 3-18.

23. McCabe, T. J., "A Complexity Measure," IEEE Transactions on Soft-
ware Engineering, V. SE-2, No. 4, December 1976, pp. 308-320.

24. Merchant, M. J., Applied FORTRAN Programming with Standard FORTRAN,
WATFOR, WATFIV, and Structured WATFIV, Wadsworth, Belmont, Cal.,
1977.

25. Myers, G. J., "An Extension to the Cyclomatic Number," ACM SIGPLAN
Notices, October 1977, pp. 61-64.

26. Oputiny', J., "Total Ordering Problem," Unpublished manuscript,
1978.

27. Schneidewind, N. G., Hoffman, J. M., "An Experiment in Software
Error Data Collection and Analysis," IEEE Transactions on Software
Engineering, V. SE-5, No. 3, May 1979, pp. 276-286.

28. Tarjan, R. E., Yao, A.
of the ACM, V. 22, No.

29. Tenny, T., "Structured
July 1974, pp. 110-115.

76

C., "Storing a Sparse Table," Communications
11, November 1979, pp. 606-611.

Programming in FORTRAN," Datamation, V. 20,

30. Woodward, M. R., Hennel, M. A., Hedley, D., "A Measure of Control
Flow Complexity in Program Text," IEEE Transactions on Software
Engineering, V. SE-5, No. 1, January 1979, pp. 45-50.

31. Wulf, W. A., "A Case Against the GOTO," Proceedings of the 25th
ACM National Conference, V. 2, 1972, pp. 791-797.

32. Young, H. 0., Statistical Treatment of Experimental Data, McGraw-
Hill, N.Y., 1962.

33. Yourdon, E., Techniques of Program Structure and Design, Prentice
Hall, Englewood Cliffs, N.J., 1975.

34. Zelkowitz, M. V., "Automatic Program Analysis and Design,"
Proceedings of the 2nd International Conference on Software Engi-
neering, San Francisco, 1977, pp. 158-164.

