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STUDY OF EFFECTIVE ALGORITHMS FOR SOLVING 
POLYNOMIAL ALGEBRAIC EQUATIONS IN 

ONE UNKNOWN 

I. INTRODUCTION 

In the study of the stability of airplanes it is necessary to solve 

linear differential equations with constant coefficients. The solution 

of such differential equations can be obtained by solving the associat- 

ed characteristic equations i. e. polynomial equations, using the al- 

gorithms and computer programs discussed in this paper. 

The eigenvalues of arbitrary complex matrices can be thought 

of as the roots of the determinant of the matrix (A -)I). The eigen- 

values can be calculated by determining the coefficients of the asso- 

ciated characteristic polynomial and finding the roots of the resulting 

polynomial equation using the computer programs in this paper. 

Of the many algorithms that have been developed for solving 

polynomial algebraic equations in one unknown, (hereafter referred 

to as polynomial equations) not all are general enough to be suitable 

for use as subprograms on a digital computer. The prime require- 

ment for an algorithm is that it converge for all roots in a finite 

number of steps without special starting values. In terms of the lan- 

guage of the theory of algorithms, this requirement is that the com- 

puter program will always stop when presented with the description 

of the equation and tolerances on its roots and its output will be the 
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values of the roots to within these tolerances. 

We examine six algorithms which are combined to form four 

computer programs. These computer programs and algorithms are: 

i) Lehmer's algorithm (5, 9), (used to find rough approx- 

imations to the roots). 

a) The Newton -Raphson algorithm (3) (used to find closer 

approximations to the roots). 

ii) Muller's algorithm (8). 

iii) Rutishauser's Quotient -Difference (Q. D. ) algorithm (2), 

(used to find rough approximations to the roots). 

a) The Newton -Raphson algorithm, (used to find closer ap- 

proximations to simple roots). 

b) Bairstow's algorithm (3) (used to find closer approxi- 

mations to two roots, i, e. , complex conjugates). 

vi) The Steepest Descent algorithm (7). 

The algorithms are examined and special tests that are re- 

quired by the computer program are noted. Next the computer pro- 

grams for the associated algorithm or algorithms are described in 

the notation of Lyapunov's "Operator Programming" (see Appendix) 

to indicate the flow of the computer program logic. 

In Chapter IV the results from solving nine polynomial equa- 

tions from Milne's "Numerical Calculus" (6) are examined and com- 

pared. These polynomial equations are: 
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1) z3 - z - 4 = 0 p. 38, no. 1. 

2) z4 - 2. 0379z3 - 15. 4245z2 + 15. 6696z + 35. 4936 -- 0 p. 40, 

no. 4. 

3) z4 - 2z3 - 4z2 - 4z + 4 = 0 p. 41, no. 1. 

4) 4z4 - 24z3 + 44z - 24z + 3 = 0 p. 41, no. 4. 

5) 2z4 + 16z3 + z2 - 74z + 56 = 0 p. 42, no. 1. 

3 2 
6) z3 - 6. 0266z + 4. 3048z + 15. 9533 = 0 p. 44, no. 1. 

7) z4 + 12z3 - 9. 5z - 6z + 4. 5 = 0 p. 44, no. 2. 

8) z4 - 6z3 - 113z2 + 504z + 2436 = 0 p. 44, no. 3. 

4 3 2 
9) z4 + 16z3 + l l z - 224z + 286 = 0 p. 44, no. 4. 

These particular polynomial equations were given as Exercises 

by Milne to illustrate difficulties in the Newton -Raphson method. 

They serve to test for weaknesses in the algorithms. Some of these 

polynomial equations have very close roots as the results in Chapter 

lv indicate. 

The polynomial equations x + x = 1, (n =3, 5, ... , 99, 101) are 

also solved and the results from the different methods examined and 

compared. 
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II. DESCRIPTION OF ALGORITHMS STUDIED 

1. Lehmer's Algorithm (5, 9) 

Lehmer's algorithm is also known as the Lehmer -Schur method 

since D. H. Lehmer uses a theorem of I. Schur to answer the question: 

"Does a given polynomial have a root inside a given circle? 11(5). 

Using the notation of (5, 9) we set up a procedure for location, 

in the complex plane, the roots of a polynomial f(z ). First the 

coefficients of auxiliary polynomials 

numbers 

Ti(f(z)) for successive natural 

i are computed, (5). By the method of construction the 

degree of T1(f(z)) is decreasing. Let k be the smallest value of 

i for which T1(f(z)) vanishes identically. For each auxiliary poly- 

nomial T1(f(z)), the value at the origin is computed. If for every 

i in the interval 1 < i < k, T1(f(0)) is positive and Tk- 1(f(z)) is 

a constant then there is no root of f(z) inside the unit circle. The 

polynomial f(z) is transformed by replacing z by 2z and the 

same process applied to the new unit circle. After recursive use of 

this replacing, one gets to an arbitrarily large circle. One knows 

that there is a root of f(z) in an annulus r < I < 2r but no root 

inside the circle z = r. On the other hand if for some i in the 

interval 1 < i < k, T1(f(0)) is negative, then there is a root of 

f(z) inside the unit circle. An annulus can be determined in a fash- 

ion similar to the above, such that there is no root inside the circle 

I I 
r 



z 
I 

,r but there is a root in the annulus r < z < 2r. 

The procedure tells us nothing in the case when Tk(f(z)) 

5 

van- 

ishes but Tk 1(f(z)) is not a constant. This case is handled in the 

algorithm by choosing a new radius. If the radius was being doubled 

then in place of 2r we use 1. 5r. If the radius was being halved 

then in place of O. 5r we use 0.75r. The radius is repeatedly 

modified in this manner until the original procedure of locating a root 

can be applied. It is assumed by both Lehmer (5) and Ralston 

(9) that one may avoid this difficulty in a manner similar to the 

above, but the authors give no proof of this statement. The polyno- 

mial equation f(z) = 6z4 - 35z3 + 62z2 - 35z + 6 due to Lehmer is 

a case in point. For this example T(f(z)) vanishes identically but 

f(z) certainly is not a constant. The above procedure worked for 

this example as the computer output on the following page indicates. 

The annulus can be completely covered by eight overlapping 

circles each of radius . 8r with centers, ck at 

2trik /8 
3r e /2 cos 7/8, k =0, 1, ... , 7; i =4-1, (Ref. 9). The polyno- 

mial f(z) is transformed by replacing z by . 8z + ck to get 

fk(z), k =0, 1, ... , 7. The above process of checking circles for roots 

is applied to successive fk(z) until a circle is found that contains a 

root. Then an annulus is determined such that there is no root inside 

the circle 
I 

z 
I 

= r* but there is a root in the annulus 

where 

r>a < IzI < Zr* 

r* is a new radius determined using the preceeding 

1 1 
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procedure. 

Case 1, 5 Coefficients 

6. 000000000000E +00 0. 

-3. 500000000000E +01 0. 

6. 200000000000E +01 0. 

-3.500000000000E +0.1 0. 
6. 000000000000E +00 0. 

4 Roots Remainders 

3. 333333333333E-01 0. NI= 5 5. 68434189E-14 0. 

5. 000000000000E-01 0. NI= 5 -8. 52651283E-14 0. 
3. 000000000000E +00 O. NI=: 0 -7. 02016223E-12 0. 
2. 000000000000E +00 0. NI= 0 -1. 33582034E-12 0. 

2 Roots Found by Lehmers Method. 

3. 044228062500E-01 
4. 058970750000E-01 

0. 

0. 

NI= 
NI= 

27 

18 

Execution Time = . 040 seconds 
Total Execution Time = . 044 seconds 

It should be noted that part of each of these circles falls outside 

the annulus. This allows the possibility that the process will converge 

to a root of fk(z) outside the current annulus. 

some k there is a root of fk(z) 

We know that for 

which is inside the current annu- 

lus so in either case we will converge on a root of fk(z). Since any 

root of fk(z) corresponds to a root of f(z), when the above pro- 

cess is applied recursively, the root of f(z) is ultimately deter- 

mined to within an arbitrarily fine tolerance. 

Once a root is found to within the tolerance it is refined in the 

Newton -Raphson method (3). This is done for the sake of economy 

since Lehmer's method is only linearly convergent whereas Newton- 
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Raphson's method is quadratically convergent, (see Chapter V). The 

degree of f(z) is now depressed by synthetic. division. This leads 

to an accumulation of round -off error, but must be done to guarantee 

convergence by Lehmer's method and the Newton -Raphson method on 

a new root. If the depressed equation is only used in getting the root 

approximation by Lehmer's method, and then the approximation is re- 

fined in the Newton -Raphson method using the original polynomial we 

may not converge on a new root but on one previously found. 

This is exactly what happened in Case 5, of the nine test cases, 

in Chapter IV when the original polynomial was used in a test run. 

Looking at this case on page 102 we see that the polynomial has two 

very close roots, 1.123105625615 and 1.121320343563. Lehmer's 

method found 1. 623588300 as the approximation to the first root using 

the original equation and the same approximation for the second root 

using the reduced equation. Since the roots are so close together we 

would expect the root approximations to be the same for the approxi- 

mations are circle centers and the pattern of obtaining them is the 

same. Since these root approximations are the same we see that 

Newton- Raphson's method will, ( and did ) converge on the same root 

when the original polynomial is used. 

We could try to get better approximations from Lehmer's meth- 

od and then use Newton -Raphson's method with the original polynomi- 

al. This will work up to a point even though it is expensive, computer 
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time wise, since Lehmer's method is linearly convergent. The point 

is that if the tolerance is too small the accuracy is unattainable by 

Lehmer's method due to round -off errors that result from the computer 

operations. This is discussed in detail starting on page 90 . To 

change the tolerance only when roots are close and avoid excessive 

iterations when the roots are well separated requires a fore know- 

ledge of the root distribution which is not always available. 

Although the roots found using Newton -Raphson's method and 

the reduced equation were correct (had remainders with magnitude of 

10 -13) we were not able to maintain this accuracy, (see Chapter III, 

Table 3). It should be noted that the remainders were computed using 

the original polynomial equation f(z). 

The desirability of a faster method that does not have to resort 

to depressing the degree of f(z) by synthetic division is apparent. 

Muller's method, which is discussed later in this paper, fulfills both 

of these requirements. 

Operator Program 

On the following pages are described the operator programs 

which go together to form Lehmer's program. Each of the operators 

is first defined and then the program is documented as a string of 

operators. A discussion of operator programming is given in the 

Appendix. Note that Lehmer's computer program includes Lehmer's 
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algorithm and the Newton -Raphson algorithm. 

Lehmer's Program -- Operator Programming Definitions: 

IIO Input the program and input data into the memory of the 

computer. 

Comment: NC = the degree of the polynomial equation plus one. 

KC = 0 if the coefficients are all real. 

A(I) = the complex coefficients of the polynomial equation 

(I = 1, ... , NC). 

Al Translate the input data into binary. 

Comment: LRTS = the number of roots found by Lehmer's algorithm. 

NR = the total number of roots found, i. e. , complex con- 

jugates are not iterated for by Lehmer's algorithm. 

NRTS = the number of roots that the original polynomial 

equation has, (the degree). 

N = the degree of the reduced polynomial equation. The 

degree of the polynomial equation is reduced as the 

roots are found. 

2 
LRTS = 0; 

NR =0; 

NRTS = N; 

A3 N = NC - 1; 

Comment: AR(I) = the complex coefficients of the reduced polynomial 

3 



10 

equation. At this point the degree has not been re- 

duced. 

-Lida 
AR(I) = A(I), (I = 1, ... , NC); 

Comment: L is a flag which is equal to one if complex conjugates 

have not been formed and equal to two if they have been 

formed. 

L 1; 

Comment: If the degree of the reduced polynomial equation is two, 

solve the equation using the quadratic formula. 

P6 N =2 ?; 

Comment: If the degree of the reduced polynomial equation is one, 

divide to find the root. Note that the degree of the re- 

duced polynomial can go from three to one when a root 

and its complex conjugate are found. 

P7 N = 1 ?; 

Comment: IT = the number of iterations performed to find a root. 

E8(LEHMER) CALL LEHMER (AR, N, IT, Z); 

Comment: N is set to zero if Lehmer's algorithm can not find a root 

to within a specified tolerance. This is possible due 

to round -off errors made by the computer. 

P9 N A 0 ?; 

il10 
Write: All the roots could not be found. 

A11 NR = NR + 1; 
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Comment: NI(NR, 1) is an array in which are stored the number of 

iterations required by Lehmer's algorithm to find each 

root. 

RTZ(NR, 1) is an array in which are stored the root ap- 

proximations found by Lehmer's algorithm. 

3 12 
NI(NR, 1) = IT; 

RTZ(NR, 1) = Z; 

Comment: Test to see if z = 0 is a root. If it is, decrease the de- 

bree of the reduced polynomial equation and store the 

number of iterations, the root and the remainder. 

NI(NR, 2) is an array in which are stored the number of 

iterations required to refine the root. 

RTZ(NR, 2) is an array in which are stored the refined 

root approximations. 

REM(NR) is an array in which are stored the remainders 

from evaluating the polynomial f(z) at the refined root 

approximation. 

P13 IZI 0; 

A14 N = N - 1; 

15 NI(NR, 2) = NI(NR, 1); 

RTZ(NR, 2) = RTZ(NR, 1); 

REM(NR) = 0; 

Comment: If the reduced equation is linear then the number of roots 
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found is increased by one and the root is solved for and 

stored. 

A16 NR =NR+ 1 

317 

Z = -AR(2) /AR(1); 

NI(NR, 1) = 0; 

RTZ(NR, 1) = Z; 

IT = 0; 

Comment: If the reduced equation is quadratic then it is solved by 

the quadratic formula in the form of a subprogram. 

E18(QUAD) CALL QUAD(AR(1), AR(2), AR(3), Z(1), Z(2)); 

Comment: Store the roots and compute and store the remainders. 

E19(20, 22) (I= 1, 2); 

A20 NR =NR+ 1; 

NI(NR, 1) = 1; 

RTZ(NR, 1) = Z(I); 

NI(NR, 2) = 0; 

RTZ(NR, 2) = Z (I); 

E22(POLY) REM(NR)= POLY(A, NRTS, Z(I)); 

Comment: Use the Newton -Raphson method to refine the root approx- 

imations found by Lehmer's method. 

EZ3(NEWTON) CALL NEWTON(AR, N, IT, Z, REM(NR)); 

24 
NI(NR, 2) = IT; 

RTZ(NR, 2) = Z; 

j21 
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Comment: Find the remainder using the coefficients of the original 

polynomial. 

E25(POLY) REM(NR) = POLY(A, NRTS, Z); 

Comment: If all the roots have been found go and print out the re- 

sults. 

P26 NR > NRTS ?; 

Comment: If the absolute value of the remainder just found is great- 

er than or equal to one stop the procedure and print 

out the results found. Since the equation must be de- 

flated using the root just found, the root must not have 

a large error. 

P27 I REM(NR)1 > 1 ?; 

Comment; Calculate the coefficients for the reduced equation. 

A28 AR(I) = AR(I) + Z °AR(I -1), (I =2, ... , N); 

A29 N = N - 1; 

Comment: Have the complex conjugates been found? 

P30 L =2 ?; 

Comment: Are the coefficients all real? 

P31 KC 0? ; 

Comment: Is the imaginary part of the root zero? 

P32 Imaginary Z = 0? ; 

P33 
real Z 

imaginary Z 
> 100? ; 

Comment: Set L = 2 since we are computing the complex conjugate. 
I 
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A35 

n36 

)63 7 

14 

L = 2; 

IT - 0; 

Z = Z; 

Output the coefficients, roots and remainders. 

Stop the machine. 

Combining the above operators, the logical scheme of the pro- 

gram has the form: 

30 15,31,32,33 18 16 

H0 Al 2 
A3 4 5 

IP6 P7I-- 

11 36 9, 35 23 

E8 P9F n10T -lA 11 P 13 ' l 2 A14 

7 

^ÌA 
1 

24 6 36 7 
E 19 A 20 E 22 17 ' E18 21 

6 

ST; 

13 17 36 36 5 6 

-1E23 E25 P26T P27 A28 A29 P30FP31 
6 6 11 10, 22, 26, 27 

P32rP33n 34 A 351 ' tn36 37 ' 

E(LEHMER) SUBROUTINE LEHMER(A,N, IT, Z) 

Comment: A(I) = the complex coefficients of the polynomial equation 

(1,1, ,N+1). 

N = the degree of the polynomial equation. 

IT _ the number of iterations to find the root. 

Z - the root approximation. 

,( 
`" 

r 

--U24 
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IRT = 1 if there is a root inside the circle with radius 

RDS, otherwise IRT = O. 

IRDS = 0 when starting the iteration procedure. 

IRDS = 1 if the radius is being halved. 

IRDS = 2 if the radius is being doubled. 

K = the number of the circle center being tested. 

ITIME = 1 if this is the initial circle being tested, other- 

wise ITIME = 2. 

NC = the number of coefficients. 

CENTER = the center of the previous annulus. 

RDS = the radius of the circle we are working with. 

IRT = 0; 

IRDS = 0; 

IT = O; 

K = 0; 

ITIME = 1; 

CENTER = 0; 

RDS = 1; 

Al NC =N+ 1; 

Comment: Test if z = 0 is a root. If it is store it and return to the 

calling program. 

P2 IA NC) I 0?; 
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Z = (O. , O. ); 

Comment: The three T arrays are used to store the coefficients of 

the original polynomial and the coefficients of the de- 

flated polynomials that result from applying Lehmer's 

algorithm. 

4 
T(I) = A(I), (I =1, ... , NC); 

0 T(I, 3) = A(I); 

Comment: NCT = the number of coefficients of the deflated polyno- 

mial. 

35 
NCT = NC; 

j6 
T (I, 1) = T(I, 2), (I =1, ... , NCT); 

A7 NCT = NCT - 1; 

IT = 1; 

Comment: Construct the T polynomials, see discussion of method. 

A8 NX = NCT + 1 - I, (I -1, ... ,NCT); 

T(I, 2) = T(NCT+1, 1)T(I +1, 1) - T(1, 1) T(NX, 1); 

Comment: The bars above denote complex conjugates. If T(NCT, 2) 

is not zero we will divide the other coefficients T(I, 2) 

by it. 

P9 T(NCT, 2) = O.? ; 

A10 T(I, 2) = T(I, 2)/ I T(NCT, 2)I, (I= 1,..., NCT); 

Comment: If ITIME = 1 this is the initial circle we are testing. 

P11 'TIME = 2? ; 

'194 
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Comment: We now test T(NCT, 2) to see if there is a root in the unit 

circle. 

If T(NCT, 2) < O. 0 then there is a root inside the circle. 

If T(NCT, 2) > O. 0 we must continue construction of the 

reduced T polynomials. 

If T(NCT, 2) = O. 0 then we must test to see if the reduced 

T polynomial with coefficients T(I, 1), (I= 1,...,NCT +1) 

is a constant. It is a constant if T(I, 1) = 0. 0, 

(I =1, ... , NCT). 

If we have a constant polynomial then there is no root in- 

side the unit circle. 

If we do not have a constant polynomial then we must 

choose a new radius, one that is not so large 

(RDS = . 7 5RDS) or not so small (RDS =1. 5RDS) depend- 

ing on whether the radius was being doubled or halved. 

P12 T(NCT, 2) = 0. 0? ; 

P13 
T(NCT, 2) < 0. 0? ; 

Comment: IRT = 1 if there is a root inside the circle with radius 

¿RDS. 

If NCT = 1 then our current reduced polynomial T is a 

constant and the next reduced polynomial T, if it were 

constructed would be zero. In this case there is no 

root inside the circle with radius RDS. 
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P14 

P15 

IRT = 1 and NCT = 1? ; 

NCT := 

P16 T(I, 1) 0. 0, (I=1, . . . , NCT)? ; 

P17 IRT = 1? ; 

A18 RDS = 2RDS; 

Comment: Set the flag to indicate the radius is being doubled. 

319 IRDS = 2; 

Comment: If we reach this point in the program we know that f(z) 

does have a zero inside the unit circle. We now halve 

the radius until we find a circle inside which there is 

no zero. 

IRT = 1 if there is a root inside the circle with radius 

RDS. 

IRDS = 2 if the radius was being doubled. 

P20 IRDS 2? ; 

21 IRT = 1; 

IRDS = 1; 

A22 RDS = RDS/ 2. ; 

Comment: Transform the coefficients for the new radius. 

A23 T(I, 1) :: T(I, 3) ° RDS(ITIME) 
NC -I 

, (I =1, ... , N); 

Comment: IRDS = 2 if radius was being doubled. 

P24 IRDS = 2? ; 

Comment: When we reach this point in the program we know the 

# 

_ 
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radius was being halved so we want to try a radius not 

so small. 

A25 RDS = 1. 5RDS; 

Comment: When we reach this point in the program we know the ra- 

dius was being doubled so we want to try a radius not 

so large. 

A26 RDS = . 7 5RDS; 

Comment: Halve the radius since we were doubling. 

A27 RDS = RDS/ 2. ; 

Comment: There is a root in the annulus RDS -2RDS. This annulus 

can be completely covered by eight overlapping circles 

of radius 0. 8RDS. CT(I), (I =1, ... , 8) are the eight 

circle centers. CT1 and CTR are used for temporary 

storage of computed values. 

A28 
CT1 = 1. 6235883 RDS(ITIME); 

GT(1 ) = CTI + CENTER; 

A29 CTR = 0. 7853981634 , (I-1), (I =2, ... , 8); 

A30 

331 

CT(I) = CT1 (cos(CTR), sin(CTR)) + CENTER; 

RDS(2) = 0. 8 RDS(ITIME); 

RDS(1) = RDS(2); 

ITIME = 2; 

IRT = 0; 

IRDS = 0; 
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K = 0; 

32 
T(I, 3) = A(I), (I =1, ... , NC); 

Comment: Have all eight circles been tried? 

P33 K= 8 ?; 

A34 K =K +1; 

NP1 = N + 1; 

Comment: NP1 is temporary storage. 

Comment: Transform the coefficients of the polynomial equations for 

the new circle center. 

A35 T(I, 3) = T(I, 3) + CT(K) T(I -1, 3), (I =2, ... , NP1); 

A36 NP1 = NP1 - 1; 

P37 NP1 > 2? ; 

538 
T(NC, 1) = T(NC, 3); 

Comment: Test for a root inside the circle. 

P39 T(NCT, 2) < 0? ; 

P40 T(NCT, 2) = 0? ; 

Comment: IRT = 1 if there is a root inside the circle with radius 

2RDS. If NCT = 1 then the T polynomial is a constant. 

In this case there is no root inside the circle with ra- 

dius RDS and we have found an annulus which contains 

a root of f(z). 

Poi IRT = 1 and NCT = 1? ; 

Comment: If IRT 1 and NCT = 1 then there is no root inside the k 
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circle. In this case we try the next of the eight circles. 

P42 NCT = 1? ; 

Comment: If NCT 1 then we perform the transformation on the T 

polynomial again. 

Comment: Test to see if the reduced T polynomial with coefficient 

T(I, 1), (I =1, ... , NCT +1) is a constant. It is a constant 

if T(I, 1) = O. 0 for (I =1, ... , NCT). 

P43 T(I, 1) 0? , (I =1, ...,NCT); 

Comment: If IRT = 1 there is a root inside the circle with radius 

RDS. 

P44 IRT = 1 ?; 

Comment: IRDS = 32 indicates the radius was multiplied by 3/2. Go 

back to the previous radius since we are going to try 

a new circle. 

P45 If IRDS = 32 then set RDS(2) = RDS(1); 

Comment; Try a larger radius since we do not get a valid test with 

this radius, (the reduced T polynomial is not a con- 

stant). 

j46 IRDS = 32; 

A47 RDS(2) = 1. 5RDS(2); 

Comment: IRT = 1 indicates there is a root inside the circle with 

radius RDS. 

IRDS = 1 indicates the radius is being halved. 

# 

# 



j48 IRT = 1; 

IRDS - 1; 

Comment: If the radius is less than 10-3 accept the center of the 

P49 

A50 

circle as a root approximation. 

RDS(2) < 1. 0x10 3? ; 

RDS(2) = RDS(2)/ 2. ; 

22 

Comment: When we reach this point we know there is a root in the 

annulus RDS -2RDS. If the distance between annulus 

centers is within the tolerance accept the annulus cen- 

ter as a root approximation. 

P51 
CT(K)- CENTER 

CT(K) 
< 20. 0 ?; 

Comment: If the annulus center is not accepted as a root, store the 

center and start going around the annulus with over- 

lapping circles. 

CENTER = CT(K); 352 
Comment: At this point we have accepted the annulus center as a 

root approximation. Store it and return to the calling 

program. 

53 
Z = CT(K); 

Comment: If we reach this point in the program no root could be 

found in any of the eight overlapping circles due to 

rounding error. Set the indicator N = 0, and return to 

the calling program. 
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q55 
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N = 0; 

Transfer to calling program. 

Combining the above operators, the logical scheme of subrou- 

tine LEHMER has the form: 

4 55 2 27 7 

30 Al P2T 33F 1-1/24 51- 
15, 42 

11 9 39 11°6 20 28 18 
13 9T 

7 9 A10 IP11 P 
12 I P137 P14E P15 J 

( 

6 

12 P P 24 28 15 T 7A 161718 23 19 ' 

13 27 

P 20I-21 A22 

19, 25, 26, 38, 47, 50 5 16 26 23 24 23 
IA P A 

T 23, 2425 A 26 
20 14, 17, 52 42 45 54 

A27 IA28 
A29 A30 31 -g32 P33F A34 

37 
¡3-5 

23 11 48 43 51 

-1A35 
A36 P37I 38T P39T P 

F PF 4041 
32 40 46 51 33 43 23 39 

P42 
6 

' TP43 P44 P45E 46 A47 48 
53 23 41, 44 53 28 49, 51 55 33 3,53 

P491 
¡ 

A50n 52E 53 73 54p55 

E(NEWTON) SUBROUTINE NEWTON(A, N, IT, Z1, PZ) 

Comment: A(I) = the complex coefficients of the polynomial equation 

(I -1, ... , N +1). 

N = the degree of the polynomial equation. 

5 _J6 -1A7 
A8 

' 

-1P-1P511- P51 
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== the number of iterations performed for the root. 

Z1 = the independent variable. 

PZ = the value of the polynomial equation at Z 1. 

DPZ = the derivative of the polynomial equation at Z 1. 

IT =0; 

Al IT =IT +1; 

PZ = A(1); 

DPZ = A(1); 

Comment: Using iterated synthetic division form PZ and DPZ. 

A3 PZ = A(I) + Z1 ^ PZ, (1 =2, ... , N); 

DPZ = PZ + Zl DPZ; 

A4 PZ = A(N +1) + Z 1 PZ ; 

Z2 = Z1 - PZ /DPZ; 

Comment: Test for convergence. 

P5 < 1.Ox 10 
-2°? 

P6 z1I =0. 

z2_z1 
?; 

10?; 
P7 < 1.0x 10 

Z1 

Comment: Have we exceeded the iteration limit of 300? 

P8 IT = ; 

Comment: Store the new root approximation and iterate again. 

Z1 = Z2; 

Comment: When we reach this point we have accepted Z2 as a root 

so we store it and return to the calling program. 

11 

? , 

DO 



j10 

25 

Z1 = Z2; 

Transfer to the calling program. 

Combining the preceding operators, the logical scheme of sub- 

routine NEWTON has the form: 

9 10 10 10 6 1 

)0 7 
A1 2 A3 

A4 
P51 
° 

P6 P7F P8 Dj 

5,7,8 
---110 n 

11 
. 

E(POLY) FUNCTION POLY(A, N, Z) 

Comment: A(I) = the complex coefficients of the polynomial equation 

(I =1, ... , N +1). 

N = the degree of the polynomial equation. 

Z = the value at which the polynomial equation is evalu- 

ated. 

POLY = the value of the polynomial equation evaluated 

at Z. 

0 POLY = A(1); 

Al POLY = Z POLY + A(I +1), (I =1, ... , N); 

112 Transfer to the calling program. 

Combining the above operators, the logical scheme of subpro- 

gram POLY has the form: 

A1h2 0 

till 



E(QUAD) SUBROUTINE QUAD(A, B, C, Z1, Z2) 

Comment; Solution using the quadratic formula. 

A, B and C = the coefficients of the quadratic equation. 

AO 

Z1 and Z2 the roots of the quadratic equation. 

DISC = (B 2 -4AC) 1 / 2; 

Z1 = ( -B +DISC) / 2A; 

Z 2 = ( -B / 2A; 

II1 Transfer to the calling program. 

Combining the above operators, the logical scheme of subrou- 

ting QUAD has the form: 

AOII1 . 

The FORTRAN subprograms which go together to form Leh- 

mer's computer program are listed in Figure 1. 

2. Muller's Algorithm 

Muller's algorithm (8), an iterative procedure, uses the La- 

grange interpolation formula to fit a quadratic polynomial L through 

three distinct points (z1, f1), (z2, f2), and (z3, f3), fi = f(z.), 

(i =1, 2, 3) where 

(1) aOzn alzn-1 a2zn 2 + . . . + an-lz + an 

26 

_ 
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Figure 1. Lehmer's FORTRAN IV program. 

PPOG`A'l I .OUT(INPUT.CUTF.JT,T4.P25=INPJT.TA,'E6..T -) 
'-.('61,7('_(.)t+`.I(15t-:l,RL(15).?TZ(15.-, 

IIZ(2) 
OMPL_X AtAFtPOLYtE,t,-,TZtZ 

C=0 IF ALL COEFFICIENTS REAL. 
LL 2EC0Nfl(TIvE1) 
E(-D(511100^)1CASE5 
J ]. r ICASES=I,NCL._,, 

2ALL '::=COì::C(TçTeRT) 

L.TS=0 

tO)As1000)iNC,AC,CR)I )11i =1sNC) 

NRTS=;N 

I=1,\C 

14 L=1 
15 IF(N.E0.2)02) TO ìc 

IF(H.E0.1)G0 TO 17 
CALL LEHmEd(aR,N,IT,Z) 

=r, ir LEHciìS C'v'.:L.; NOT FINO THE NEXT 
IFNE.0)GO TO 16 

r+'RITE(6,1100) 
GC TO 50 

15 FIR=0.R+1 

LRTS=NR 
NI(NR,11=IT 
RTZ(MRt1)=2 
IF(CAdS(Z).NE.0.)GO TO 2 
N=N-1 
NIIN;R.21=NI(NR,1) 
?TZ(NR,2)=RTZ(NRt1) 

GO TO 15 

C 

17 

19 

NR=V:"+1 
Z=-AR(2)/AR(1) 
NI(NR.i)=G 
2TZ(NR,1 )=7 
I1=0 
GO TO 21 

CALL QUAD(AR(1),AR(2),AR(3)tZ(1),Z(2)) 
50 lï I=1t2 
NR=NR+1 
NI(ivR,1)=i 
RTZINRtl)=ZIII 
NI(NRt2)=0 
RTZ(NR,2)=Z(I) 
REM(NR)=POLY(A,NRTS,Z(I)) 
GO TO 90 

C USE NEWTONS METHOD TC GET CLOSER ROOTS. 
20 CALL NEWTON(AR,NtIT,Z,REhi(iNR)) 
21 NI(NR,2) =IT 

OTZ(NRs2) =Z 

%I"c"IC^: 

:'11L(6,99) 

. 

)`,` 1% 

=k(I)=f.(I) 

V'tTÜG') '?OLT. 

E4(NR)=0. 

1£' 

C 

-160 
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(N,1==OLY(A94KT:).1) 
IF(N=:.GE.NRTS)Gv T., . 

C 

L ,LAT1 CGEFFICIL,TS E. _.U- 
C, 3 I=2rN 

:a'(I)=4E(I)+Z*AR(I-1) 

?F(c.EC.2)GO TC 14 
IF('f::_.N"c.0)G0 TO 15 

iF(TIA'<(Z).O.C.I:iC 25 

IF( O(EAL(Z)/AI:"'.CIZ)).GT.1.CE2)GO TO 15 

7 =CC'vJG ( Z ) 

I'=0 
CO T,i1 T.1 16 

CONTINUE 
; RITE( 6. 1010)ICASE(.C,(4(I),I= 1r(+C) 
RITF( 6,1023)NR.IRTZ(Ir<)iNI(IO2C,2E m(I)íi =14R1 
RIT_(6111015) LRTS .(RTZ(I.1).NI(I.1),I= 1,L.RTS) 

CALL 2EC:(TEND) 
TSFC= TEPID- TST=.RT 
v11ITE(6.13001TOEC 

1 ZCOTIOuZ 
CALL SECON3ITIME21 
TTI'1E= TIME2 -TIME1 
7 R,I T E (5 r 1310 C 

T T I ME 
CALL EXIT 

992 FCROAT(1H1) 
1000 FORMAT(2I5 /(8F:0.C)) 
1010 O MAT(1H0 / / / / / /1HOt14X. *CASE *íI3í *9 *0í39 

1" COEFFICIENTS*//(1H r14Xt2E2C.12)) 
1 215 FORMAT(1H0 / /1H0.14X.I3r 

1" ROOTS FOUND EY LEH^ERS *.ETHOO. *// 
2 (1H t1+X.2E20.12t* NI= *,I4)) 

1020 FORMAT(1H0 /1HC28Xti.* ROOTS *939X. 
1'*REMAINDERE,* / /(1H .14Xt2E20.12r* NI= *,I392E17.e)) 

111'0 FORMAT (1HC. 
1 LEHICRS METHOD COULD NOT FIND ALL THE ROOTS. *) 

1300 FORAT(1H09 / /015Xr *EXECUTION TIME = *íF10.3, 
1* SECONDS *) 

1310 FORMAT(1HOt14X. *TOTAL EXECUTION TIME = *.F10.311 
SECONDS F ) 

END 

SUOUTINE LEHME'rt(Ar(\rITtZ) 
DPEN.2ION A(16)tCTl8198DS(2).T(16t3) 
COMPLEX AtCENTER.CT.T.Z 

C 

C A= COEFFICIENTS CF POLYNOMIAL. 
C I1 =00. OF ITERATIONS. 
C N= DEGREE OF THE EQUATION. 

NC= THE NUM3ER OF COEFFICIENTS. 
C NCT= TEMPORARY NU. OF COEFFICIENTS. 

IRT =1 IF ROOT INSIDE CI " -,CLE WITH RADIUS RDS. 
RDS= RADIUS OF CIRCLE SEING TESTED FOR A ROOT. 

C CENTER= THE CENTER OF THE ANNULUS THAT CONTAINS A R001 

IRT =G 
IEEE, 
I1=0 

ITI E=1 
NC=N+1 
CENTER=O. 
ROS=1. 

._. 

TF(CA2S(_.t(ç11.G(..1.C1C. T` 

TC 

5( 

. 

C 

C 

C 

K 
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TEST FOR Z=0 A ROOT. 
5 IF(CAúS(A(NC)).N-.O.)GO T 20 

Z=(G..-). ) 

GO TC 600 

D0 25 I=1.NC 
T(I)=4(i) 
T(I.3)=A(I) 

j NCT=i;C 

GO 29 

27 DO 2Ä I=1.NCT 
r T(I.1)=T(I.2) 
.29 NCT=C.T-1 

IT=IT-1 
DO 3a I=1.VCT 
NX=NCT+1-I 

30 T(I.2)=CONJG(T(NCT-1.1))(T+1.:)-T(1.1)*CCPvJC(T(NX.1)) 
IF(T(CT.2).EtI.O.)CO TO 34 

32 

C 

NOR;,tALIZE COEFFICIENTS OF TJ(F(Z)) 
DO 32 I=1.NCT 
T(I.2)=T(I.2)/CA5S(T(NCT.z)) 

DOES F(Z) HAVE A ROOT INSIDE THE CIRCLL. 
TEST FOR ROOT INSIDE CIRCLE. 

C IF T(NCT.J).LT.0.0 THEN ROOT I:y_;ID_ CIRCLE. 
C IF T(NCT.J).GT.0.0 CONTINUE ITERATING. 
C IF T(NCT.J).EQ.0.0 THEN TEST TACT0J -1). 
C IF T(NCT.J- 1).EQ.COSTAT THE', NO ROOT INSIDE CIRCLE. 
C IF T(NCT.J- 1).NE.CCSTA'JT THEN CHOCSE A - ,ADIDS 
C NOT 50 LARGE (RDS= 0.75'2D5) 

OR NOT SO SHALL (RCS= 1.5Rô5) . 

C DEPENDING ON THE PREVIOUS A.DIUS. 

34 IF(ITIME.EQ.2)GO TC 155 
IF(T(NOT.2))60.45.35 

C 

C IRT =1 IF ROOT INSIDE PREVIOUS CIRCLE. 
C IF NCT =1, T(F(Z)) IS A CONSTANT AND THE NEXT 
C T(F(C)) =00 IN THIS CASE THERE IS NO ROOT 
C INSIDE THE CIRCLE. 
C 

35 IF(IRT.E0.1.AND.NCT.E0.1)GC TO 100 
IF(NCT.E0.1)G0 TO 55 
GO TO 27 

C IF T(I.J- 1)= CONSTANT THEN NO ROOTS INSIDE CIRCLE. 
C TEST IF T(I.J1).NE.O. (IF TJ- 1(Z).NE.CONSTANT) 
45 DO 50 I=1.NCT 
50 IF(T(I.1).NE.O.)G0 TO 75 

C 

C IRT =1 IF ROOT INSIDE PREVIOUS CIRCLE. 
IF(IRT.EQ.1)GO TO 100 

C 

C IRD5 =2 IF RADIUS IS BEING DOUBLED. 
55 RDS =2. *RDS 

'IRD5 =2 
GO TO 64 

C 

C F(Z) DOES HAVE A ZERO INSIDE THE UNIT CIRCLE. 
C HALVE THE RADIUS UNTIL WE FIND A CIRCLE INSIDE 
C WHICH THERE IS NO ZERO. 
C IRD5 =1 IF RADIUS 15 BEING HALVED. 
C IRT =1 IF ROOT INSIDE CIRCLE WITH RADIUS RDS. 
60 IF(IRDS.EQ.2)G0 TO 90 

27, 

T 

C 

C 

r 

C 
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IRT=1 
IR^S=1 
RDS=ZDS/2. 

C TRANSFORM COEFFICIENTS FOR NEW RADIUS. 
64 00 65 I =1,N 
65 T (I,1)= T(I.3) *RDS(ITIME) * *(NC -I) 

GO TO 26 

IF I: US=2 THE RADIUS WAS BEING DOUBLED. 
75 IF(1,RûS.EC.2) GO TO 80 

RADIUS WAS BEING HALVED, 
TORY A RADIUS NOT 50 SMALL, 
MULTIPLY by 1.5 
RD5=1.5 *RDS 
GO TO 64 

C THE RADIUS WAS BEING DOUBLED, 

C TRY A RADIUS NOT SO LARGE, 

C MULTIPLY BY .75 
80 RDS =.75 *RDS 

GO TO 64 

C 

C HALVE RADIUS SINCE WERE DOUBLING. 
90 RDS = RDS /2. 

C 

C THERE IS A ROOT IN ANNULUS RDS -2RD5. 
C THIS ANNULUS CAN BE COMPLETLY COVERED BY 

C EIGHT OVERLAPPING CIRCLES. 
C CT(I) =THE EIGHT CIRCLE CENTERS, 
C EACH CIRCLE IS OF RADIUS .8RDS. 
100 CT1= RDS(ITIME) *1.62358830 

CT(1) =CT1 +CENTER 
DO 110 I =2,8 
CTR= (I- 1)'0.7853981634 

110 CT( I)= CT1 *CMPLX(C05(CTR),SIN(CTR)) +CENTER 

RDS(2)=.8*RDS(ITIME) 
RDS(1)=RDS(2) 
ITIME=2 

IRT=O 
IRDS=O 
K=0 

119 DO 120 I=1,NC 
120 T(I3)=A(I) 

C HAVE ALL 8 CIRCLES BEEN TRIED. 
128 IF(K.EQ.8)GO TO 550 

K =K +1 
NP1 =N +1 

C TRANSFORM COEFFICIENTS FOR NEW CENTER. 
129 DO 130 I=2,NP1 
130 T(I,3)= T(I.3) +CT(K) *T(I -1,3) 

NP1 =NP1-1 
IF(NP1.GE.2)GO TO 129 

T(NC,1)= T(NC,3) 
GO TO 64 

155 IF(T(NCT,2))180,170,160 
C 

C IRT =1 IF ROOT INSIDE CIRCLE WITH RADIUS 2RD5. 

C IF NCT =1, T(F(Z)) IS A CONSTANT AND THE NEXT 

C T(F(0)) =0, 
C IN THIS CASE THERE IS NO ROOT INSIDE THE CIRCLE. 

160 IF(IRT.EQ.1.AND.NCT.E0.1)G0 TO 200 

C 

C 

C 

C 
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C NO ROOT IN THIS CIRCLE. Ti-Y TH; Ni_xT CT( :). 
TRANSFORM ORIGINAL CCEFFICI.-',TS TG `:_ 
IF(NCT.E0.1)G0 TO 119 

TRY AGAIN. A CONSTAT 0'< 0 1.S FO- T( F (- 
bEFORE GOING TO THE tEXT 
GO TO 27 

IF T(I.J-1)=CONSTANT THLi, ;:u kUUTS 
17,7 2,0 171 I=1.NCT 
171 IF(T(I.1).NE.0.)CC TC 175 

T(I,J -1)= CONSTANT. 
NO ROOT IN THIS CI1CL:,TRY THE NEXT CT(K). 
IS THERE A ROOT I^ THE A:\HULUS. 
IF(IRT.E0.1)GO TO 200 
IF(IBDS.EC.32)ROS(2)= RD5(1) 
GO TO 128 

TRY A LARGER RADIUS. 
C IRDS =32 INDICATES MULTIPLYING R,_J5 _-Y 3/2. 
175 IRDS =32 

RDG(2)= 1.5 *RDS(2) 
GO TO 64 

C 

IRDS =1 IF RADIUS IS BEING HALVED. 
IRT =1 IF ROOT INSIDE CIRCLE WITH RADIUS POS. 

180 IRT =1 
IRDS =1 
IF(RDS(2).LT.1.OE-3)C0 TO 300 
RDS(2)= RDS(2) /2. 

USE TRANSFORMED COEFFICIENTS. 
GO TO 64 

C 

C THERE IS A ROOT IN THE ANNULUS RDS -2RDS. 
C IF WITHIN TOLERANCE PETERS AND CALL 
C SUBROUTINE NEWTON. 
200 IF(CABS((CT(K)- CENTER) /CT(K)).LT.20.0)GC TO 300 

CENTER =CT(K) 
GO TO 100 

C STORE APPROXI,IATION TO <OOT. 
300 Z =CT(K) 

GO TO 600 
EEL) 'i = 0 

600 RETURN 
END 

SUBROUTINE NEWTON(A.N,IT.Z1,PZ) 
DIMENSION A(16) 
COMPLEX A, DPZ,PZ,Z1,Z2 

C A= COEFFICIENTS. 
C N= DEGREE OF POLYNOMIAL. 
C IT =NO. OF ITERATIONS. 
C Z1= INDEPENDENT VARIABLE. 
C PZ =THE. VALUE OF THE POLYNOMIAL AT Z =Z1. 
C .>PZ =THE DERIVATIVE OF PZ. 

IT=0 
5 IT=IT+1 

PZ=A(1) 
DPZ=A111 
DO 10 I=2,N 
P7_=A(I)+Z1*PZ 

10 DPZ=PZ+Z1*DPZ 

:,cEEZ; )) 

: 

C 

C 

i 

C 

1N1,101. . 



Z=4(N+1)+Z1 PZ 

,_c=2.1-PZ;PZ 
IF(CAE5(PZ).LT.1.0E-20)GO TC 1=0 

IF;CAEsS(Z1).E0.11)C TO 

IF(CAE3S((Z2-Z1)//1).LT.1.CE-i:)OÜ T. 100 

IF, r T .CO."'00)GO -iC 106 

GO TO : 

71.Z2 
_TU2 ti 

END 

COMPLEX FUNCTION POLY(...'.Z) 
DIMLNNION A(16) 
COMPLEX A.Z 

.COEFfICIENTS OF POLYi10''iAL. 

:=-.DEGREE OF POLYNOItiL. 
Z=VALUE AT IrUICH POLYNOMIAL EVALUATED. 

C POL"=PO'`YNCVIAL EVALUATED AT Z. 

>DLY =A(1) 
DO ;2D 

I =1.% 
POLY =Z *POLY +A(I +1) 
RETURN 

SUBROUTINE OUAD(A.B.C.li.Z2) 
COMPLEX A.B.C.DISC.Z1.ZC 
DISC- C5ORT(-; *b -4. *AB=C ) 

Z1=( -( +DISC) /(2. *A) 

_TURN 

i: _ 

:A 

., 

r°?=t- -;ìl_1/tZA) 
=: tJD 

CI 



is the polynomial whose zer -.s are desired. The coefficients 

a0, al, ... , an are complex numbers and a0 0. The root of the 

quadratic polynomial equation closest to z3 is taken as z4. 

f4 = f(z4) is computed and if 

(2) 

or 

iz4-z3+1 1z3i < 62 

33 

where 6 and 62 are tolerance constants, then z4 is accepted 

as a root to (1). If the tests fail, z 
1 

is dropped and the points 

(z2, f2), (z3, f3), and (z4, f4) become the new points (z1, fl), 

(z2, f2), and (z3, f3). 

A new quadratic polynomial is fitted through the new set of 

points (z1, f1), (z2, f2), and (z3, f3). The root of the quadratic 

polynomial equation closest to z3 is taken as z4, f4 = f(z4) is 

computed and tested in Equation_ (2) as described above. The itera- 

tions continue until either convergence occurs or a fixed number of 

iterations are performed. 

The iterative procedure is started by letting z1 = -1., z2 = 1. 

and z3 = 0. 01 and evaluating f(z1), f(z2) and f(z3). z3 = 0. 01 

is used instead of z3 - O. 0 since there could be a zero root. This 

allows the starting values to be changed to values different from the 

roots that have been found. More is said about this a little later. 

¢ 

If4I < 61 



34 

Muller (8) suggests using z1 = -1. , z2 - 1. ; z3 - O. 0 and 

an - 
an-1 

-1 
± an -2 for f(zl), 

an ± an-1 + an 2 
for f(z2), 

an for f(z3), 

to save evaluating the function explicitly. This was tried with the re- 

sult that more iterations and time were required for convergence on 

a root than when the functions f(z.), (i =1, 2, 3) are evaluated ex- 

plicitly. 

The results from solving the nine exercises from Milne (6) 

and using Muller's suggestion are presented on the following pages. 

These results should be compared with the results from solving the 

nine exercises using explicit values for f(z.), (i =1, 2, 3), 

95). 

(see p. 

To avoid re- calculation of zeros already found synthetic divi- 

sion may be used to reduce the degree of the polynomial equation. 

This can lead to a serious accumulation of rounding errors. Rather 

than use synthetic division to extract linear factors from the polyno- 

mial equation implicit division was performed on the value of the 

function and a deflated value of the function was obtained. If nr 

zeros, r., (i =1, ... , nr) have been found then the deflated values of 
i 

the function fnr(zk), (k =1, 2, 3) are formed where 

n 
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Table 1. Results from using Muller's f(z) approximations for starting values. 

Case 1, 4 Coefficients 

1.000000000000E +00 -0. 

-0. -0. 

-1.000000000000E +00 -0. 

-4.000000000000E +00 -0. 

3 Roots Remainders 

-8.981609516297E-01 1.191670795605E+00 NI= 9 0. -2. 13162821E -14 

-8.981609516297E-01 -1.191670795605E+00 N1- 0 0. 2. 1316282.1E -14 

1.796321903259E+00 1.899500362956E-16 NI= 2 -8.52651283E -14 1.64882656E -15 

Execution time 

Case 2, 5 Coefficients 

. 024 seconds 

1.000000000000E +00 -0. 

-2.037900000000E +00 -0. 

-1.542450000000E +01 -0. 

1.566960000000E +01 -0. 

3.549360000000E +01 -0. 

4 Roots Remainders 

-1.201998596673E +00 0. NI= 6 2.27373675E-13 0. 

2.124387030181E +00 0. NI= 7 2.27373675E-13 0. 

-3.211994374397E +00 0. NI= 4 -9. 09494702E -13 0. 

4.327505940890E +00 0. NI= 4 -2.27373675E-13 0. 

Execution time = . 030 seconds 

Case 3, 5 Coefficients 

1.000000000000E +00 

-2.000000000000E +00 

-4.000000000000E +00 

-4.000000000000E +00 

4.000000000000E +00 

4 Roots 

-0. 

-0. 

-0. 

-0. 

-0. 

0. 

1.000000000000E +00 

-1.000000000000E +00 

1.211690350419E -27 

NI-= 

NI = 

NI= 

NI= 

5 

7 

0 

4 

Remainders 

0. 

0. 

0. 

7.02067027E -26 

5.857864376269E -01 

-1.000000000000E +00 

-1.000000000000E +00 

3.414213562373E400 

2.84217094E -14 

0. 

0. 

6.53699317E -13 

Execution time ==. 026 seconds 

Case 4, 5 Coefficients 

4.000000000000E+00 -0. 

-2.400000000000E +01 -0. 

4.400000000000E +01 -0. 

-2.400000000000E +01 -0. 

3.000000000000E +00 -0. 
(Continued) 
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4 Roots Remainders 

1.771243444677E-01 0. NI -= 5 0. 0. 

6.339745962156E-01 0. NI-= 7 1. 42 ?.08547E -14 0. 

2.366025403785E+00 8.271806125530E-25 NI-= 4 -7.38964445E-13 -5.73087539E-24 

2.822875655532E+00 2.520315928873E-25 NI= 4 9.23705556E-13 2.66725167E-24 

Execution time = 

Case 5 5 Coefficients 

. 030 seconds 

2.000000000000E +00 -0. 
1.600000000000E +01 -0. 
1.000000000000E +00 -0. 

-7.400000000000E+01 -0. 
5.600000000000E +01 -0. 

4 Roots Remainders 

1.121320343562E +00 0. NI== 11 -2. 27373675E-13 0. 

1.123105625617E+00 0. NI= 6 0. 0. 

-3.121320343560E +00 0. NI= 4 2.04636308E-12 0. 

-7.123105625618E+00 0. NI= 5 2.04636308E-12 0. 

Execution time = . 032 seconds 

Case 6, 4 Coefficients 

1.000000000000E +00 -0. 
-6.026600000000E +00 -0. 
4.304800000000E +00 -0. 
1.595330000000E +01 -0. 

3 Roots Remainders 

-1.216399518172E +00 0. NI-, 6 -5.68434189E -14 0. 

3.612590155512E +00 5.027707160674E -24 NI- 4 5.68434189E -14 -4.32628004E -25 

3.630409362659E +00 6.720842476993E -25 NI= 4 -5. 68434189E-14 5.80454240E -26 

Execution time = . 024 seconds 

Case 7 5 Coefficients 

1.000000000000E +00 -0. 
1.200000000000E +01 -0. 

-9.500000000000E +00 -0. 
-6.000000000000E +00 -0. 
4.500000000000E +00 -0. 

4 Roots Remainders 

7.071067811872E -01 0. NI== 11 0. 0. 

-7.071067811865E -01 -1. 225741041988E -20 NI= 7 0. -2.94432992E -19 

7.082039325014E -01 -3. 032780167743E-23 NI= 4 5.68434189E -14 -6.31823110E -25 

-1.270820393250E +01 -2.300938973373E -31 NI-= 5 -1.18831167E -10 4.97007612E -28 

Execution time r= . 034 seconds 

(Continued) 
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Case 8, 5 Coefficients 

1.000000000000E +00 -0. 
-6.000000000000E +00 -0. 

-1.130000000000E +02 -0. 

5.040000000000E +02 -0. 
2. 436000000000E +03 -0. 

4 Roots Remainders 

-3.164414002969E +00 0. NI= 6 0. 0. 

9.164414003060E +00 0. NI= 12 1. 45519152E -11 0. 

-9.165151389912E +00 0. NI= 4 -2. 91038305E -11 0. 

9.165151389726E +00 0. NI= 4 0. 0. 

Execution time = . 032 seconds 

Case 9, S Coefficients 

1.000000000000E +00 -0. 

1.600000000000E +01 -0. 
1.100000000000E +01 -0. 

-2. 240000000000E +02 -0. 
2.860000000000E +02 -0. 

4 Roots Remainders 

1.841821538748E +00 -4.311068539088E -01 NI= 8 -1.81898940E -12 1. 13686838E -12 

1.841821538748E +00 4.311068539088E -01 NI= 0 -1.81898949E -12 -1.13686838E-1 2 

-5.726958892481E +00 1.419949629398E -23 NI= 4 9.09494702E -12 6. 71609424E-24 

-1.395668427502E +01 -7.754818242685E -25 NI= 4 -3.81987775E -11 1.59408790E -21 

Execution time = . 030 seconds 
Total execution time = . 292 seconds 
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This procedure directs the values of the function away from previous- 

ly found zeros and avoids the accumulation of rounding errors. 

If zk = ri for some i, (1 < i < nr), where zk, (k =1, 2, 3) 

are the starting guesses, then zk must be modified to avoid divi- 

sion by zero. When this occurred in the computer program 

replaced by 8zk 

zk was 

and satisfactory results were obtained. If during 

the iteration to a new root z. = r., (j =1, 2, ... ), for some i, 

(1 < i < nr), then the iteration procedure is stopped and the roots 

that have been found are printed out. This never happened during any 

of the test cases. 

Operator Program 

On the following pages are described the operator programs 

which go together to form Muller's program. Each of the operators 

is first defined and then the program is documented as a string of 

operators. 

Muller's Program -- Operator Programming Definitions: 

110 Input the program and input data into the memory of the 

machine. 

i 
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Comment: A(I) = the complex coefficients of the polynomial equation 

(I 1,...,NC). 

NC = the degree of the polynomial equation plus one. 

N = the degree of the polynomial equation. 

KC = 0 if the coefficients are all real. 

NI(I) = the number of iterations per root, (I =1, ... , N). 

NR = the number of roots found. 

RTZ(I) the complex roots of the polynomial equation, 

(I =1, ... , N). 

REM(I) = the complex remainders of the polynomial equa- 

tion, (I =1, ... , N). 

Al Translate the input data into binary. 

A2 N = NC - 1; 

E3(MULLER) CALL MULLER (A, N, KC, NI, NR, RTZ, REM); 

h4 
Output the coefficients, roots and remainders. 

Stop the machine. 

Combining the above operators, the logical scheme of the pro- 

gram has the form: 

II0 A1 A2 E3 II4 

E(MULLER) SUBROUTINE MULLER(A, N, KC, NI, NR, RTZ, REM); 

Comment: A(I) = the complex coefficients of the polynomial equation, 

ñ 

4-5 
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(I =1, ... , N +l). 

N = the degree of the polynomial equation. 

KC = 0 if the coefficients are all real. 

NI(I) = the number of iterations per root, (I =1, ... , N). 

NR = the number of roots found. 

RTZ(I) = the complex roots of the polynomial equation, 

(I =1, ... , N). 

REM(I) = the complex remainders of the polynomial equa- 

tion, (I =1, ... , N). 

NR = 0; 

NS = N; 

Al I = N + 1; 

Comment: Test to see if Z = 0 is a root, which is the case if the 

constant term of the polynomial equation is zero. 

P2 IA(I)I 0? ; 

A3 NR = NR + 1; 

I =I- 1; 

34 NI(NR) = 0; 

RTZ(NR) = O.; 

REM (NR) = O. ; 

Comment: Have all the roots been found? 

P5 NR-N = 0? ; 

Comment: L = 2 when complex conjugate roots have been found, 

# 
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L = 1 otherwise. 

Store the starting values. 

IT = 0; 

L = 1; 

Z1 = -1. 0; 

Z2 =1.0; 

Z3 = 0. 01; 

Comment: If any roots have been found we must make sure that none 

of them equal the starting values, Z1, Z2 and Z3. 

P7 NR = 0? ; 

E8(9, 9) (I=1, 2, 3); 

P9 If Z(I) = RTZ(J) then set Z(I) = . 8Z(I), (J =1, ... , NR). 

Comment: For Z1, Z2 and Z3 compute the values PZ 1, PZ 2, and 

PZ3 of the polynomial and the values PRZ1, PRZ2 and 

PRZ3 of the reduced polynomial. 

E10(POLY) (i=1, 2, 3); 

CALL POLY(A, N, RTZ, NR, Zi, PZi, PRZi); 

Comment: Compute the new root approximation using Muller's al- 

gorithm. 

All L3 = (Z3- Z2) /(Z2 -Z1); 

B = PRZ1 °L32 - PRZ2° (L3+1)2 + PRZ3 (2.L3+1. ); 

SRT = [B2-4.° PRZ3 L3 (L3+1.) 

(PRZ1 L3-PRZ2 (L3+1. )+PRZ3)]1 /2; 

e 
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DEN = maximum (I B +SRT I, I B -SRT I ); 

P DEN = 0? ; 

A13 L4 = - 2 PRZ3 e +1. ) /DEN; 

Comment: If DEN = 0 we set L4 = 1.; 

j14 
L4 = 1. ; 

A15 Z4 = Z3 + L4 a(Z3 -Z2); 

Comment: For Z4 compute the value PZ4 of the polynomial and the 

value PRZ4 of the reduced polynomial. 

E16(POLY) CALL POLY(A, N, RTZ, NR, Z4, PZ4, PRZ4); 

Comment: Subroutine POLY returns N = 0 if the denominator used in 

dividing out the roots is zero. If this is the case stop 

iterating and print out the results found so far. 

P17 N = 0 ?; 

Comment: If I PZ4 /PZ3I > 10 then our increment L4 is too large so 

try L4/2. . 

P18 IPZ4 /PZ3I < 10? ; 

Ai9 L4 = L4/2.; 

Comment: Test for convergence. 

P20 
IPZ4 < 10 -20? 

Comment: If Z3 = 0 iterate again. 

P21 Z3 =0 ?; 

P22 I (Z4- Z4) /Z3I < 10-10? 

Comment: Has the iteration limit been reached? 

; 
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P23 1T > 99? ; 

Comment: Store values and iterate again. 

A24 IT =IT +1; 

325 Z1 = Z2; 

Z2 =Z3; 

Z3 = Z4; 

PRZ1 = PRZ 2; 

PR Z 2 = PRZ 3; 

PRZ3 = PRZ4; 

Comment: At this point we have accepted Z4 as a root. Store the 

root and associated values. 

NR = NR + 1; 

NI(NR) = IT + 1; 

RTZ(NR) = Z4; 

REM(NR) = PZ4; 

Comment: Have all the roots been found? 

P27 NR > N? ; 

Comment: If L = 2 the complex conjugate of the root has already been 

found. 

P28 L = ; 

Comment: If the polynomial coefficients are not all real, iterate 

again. 

P 9 KC O? ; 

A6 

# 
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Comment: Is the imaginary part of the root zero? If so iterate for 

the next root. 

P30 Imaginary RTZ(NR) = 0? ; 

Comment: If the imaginary part of the root is small in comparison to 

P31 

the real part iterate 
real RTZ(NR) 

for the next root. 

> 100? ; 

imaginary RTZ(NR) 

Comment: We are now ready to form the complex conjugate of the 

root. 

32 L = 2; 

IT = -1; 

Z4 = Z4; 

Comment: Evaluate the polynomial at the new Z4. 

E33(POLY) CALL POLY(A, N, RTZ, NR, Z4, PZ4, PRZ4); 

Comment: Subroutine POLY returns N = 0 if the denominator used 

in dividing out the roots is zero. 

P34 N# 0 ?; 

35 N =NS; 

n36 Transfer to the calling program. 

If we combine the operators, the logical scheme of subroutine 

MULLER has the form: 



6 36 2, 28, 29, 3 0, 31 10 

JO Al 
5 

P2A3 P5 136 P7 

7 25 14 15 12 13,19 

E8 P9 
-7E10 TA11 P12 A137 ' 14 -1A15 

35 20 15 18 ¡24 
26 

¡26 
E16 P17I P18F A19I 

E P20 P21I 
- 

P22 P237 
- 

21 

-IA24 
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11 20,22,23,33,34 36 6 6 6 

5r IA26 
P277 P28 I P29 

r r P30E 

6 26 26 5, 27 

P31 32 E33I- P34 
3 

E(POLY) SUBROUTINE POLY(A, N, RTZ, NR, Z, PZ, PRZ); 

Comment: This subroutine evaluates a polynomial equation at a given 

complex number Z. 

A(I) = the degree of the polynomial equation. 

RTZ(I) = the roots of the polynomial equation, (I= 1,...,N). 

NR = the number of roots that have been found. 

Z = the complex number at which the polynomial equation 

is evaluated. 

PZ = the value of the polynomial function at Z. 

PRZ = the quotient of the value of the polynomial function at 

Z divided by (Z- RTZ(I)), (I =1, ... , NR). The polyno- 

mial function is evaluated at Z using iterated synthetic 

division. 

' 



46 

AO PZ = Z(1); 

PZ = Z a PZ + A(I +1 ), (I =1, ... , N); 

PRZ = PZ; 

Comment: If NR = 0 there are no root values to divide out. 

P1 NR =O?; 

Comment: Is the denominator zero? If so set N = 0 and return to 

the calling program. 

E2(3, 4) (I =1, ... , NR); 

P3 Z - RTZ(I) = 0? ; 

A4 PRZ = PRZ /(Z- RTZ(I)); 

J5 
N = 0, 

n6 Transfer to the calling program. 

Combining the preceding operators, the logical scheme of the 

subroutine has the form: 

6 r5 6 3 1,4 
AO P1 E P31 A4 l -1116 . 

The FORTRAN subprograms which go together to form Muller's 

computer program are listed in Figure 2. 

3. The Quotient- Difference (QD) Algorithm (2) 

Given the polynomial equation 
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Figure 2. Muller's FORTRAN IV program. 

PROGRAM INOUT( INPUT,OUTPUT,TAPE5= INPUT.TAPE6= OUTPUT) 
DIMENSION A(16).NI(15),REM(15),RTZ(15) 
COMPLEX A.REM,RTZ 

C 

:C =O FOR REAL COEFFICIENTS 
C 

CALL SECOND(TIME1) 
READ(5,1000)NCASES 
00 100 ICASES= 1,NCASES 
CALL SECOND(TSTART) 
READ(5,1000)NC,KC,(A(I),I =1,NC) 
N =NC -1 
CALL MULLER(A,N,KC,NI,NR,RTZ,REM) 
WRITE (6,1010)ICASES,NC.(A(I),I =1,NC) 
WRITE(6, 1020) NR,(RTZ(I),NI(I),REM(I),I =1,NR) 
CALL SECOND(TEND) 
TSEC =TEND- TSTART 
NRITL(6.1300)TSEC 

100 CONTINUE 
CALL SECOND(TIME2) 
TTIME= TIME2 -TIME1 
WRITE(611131041TIME 

1000 FÖRMAT(2S5 /(8F10.0)) 
1010 FORMAT (1H1 / / / / / / /1H0,14X, *CASE *,I3, *, *,I3, 

1* COEFFICIENTS * / /(1H ,14)02E20.12)) 
1020 FORMAT(1H0 /1H0,28X,I3,* ROOTS *,39X, *REMAINDERS * // 

1(1H ,14(,2E20.12,* NI= *11I3,2E17.8)) 
1300 FORM,AT(1H010/.15X, *EXECUTION TIME = *,F10.3, 

1* SECONDS *) 
1310 FORMAT(1H01114X, *TOTAL EXECUTION TIME= *,F10.3, 

1* SECONDS *) 
END 

SUBROUTINE MULLER(A,N,KC.NINR,RTZ,REM) 
DIMENSION A(16),NI(15).REM(15),RTZ(15) 
COMPLEX A,B,DEN,L3,L40PZ1,PZ2,PZ3,PZ4,PRZI.PRZ211 
1PRZ3,PRZ4,REM,RTZ.SRTZ1.Z2,Z3,Z4 - - -_ - ---- - 

NR=0 
NS=N 
I=N+1 

5 IF(CABS(A(I)).NE.O.)G0 TO 20 
NR=NR+1 
NI(NR)=0 
1=I-1 
RTZ(NR)=(0..01 
REMlNR)=(0..0.) 
IF(NR-N)5.1000,5 

20 IT=0 
L1. - 
Z1-(1.,0.) 
Z2=(1..0.1 
13=1.01.0.1 
IF(NR.E0.0)G0 TO 27 
DO 25 I=1.NR 
IF(Z1.EO.RTZ(I))Z1=.8*Z1 
IF(Z2.E0.RTZ(I))12 =.8 *Z2 
IF(Z3.EQ.RTZ(I1)Z3 =.8 *Z3 

25 CONTINUE 
C 

. 
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27 CALL POLY(A.N RTZ NRZ1PZ1PRZ1) 
CALL POLY(AN RTZ NR Z20P42 0PRZ2) 
CALL POLY(A.NRTZNR.Z3PZ3.PRZ3) 

30 L3= (Z3-Z2)/(Z2 -7.1) 

C COMPUTE CGMPUTE B=P1*L3*L3-P2*(L3+1.)*(L3+1.)+P3*(2.*L3+1.) 
B=PRZ1*L3*L3-PRZ2*(L3+1.)*(L3+1.)+PRZ3*(2.*L3+1.) 

C 

C SRT=CSORTIB*3-4.*P3*L3*(L3+1.)*(P1*03-P2*(L3+1.)+P3)) 
SRT=C002T(B*B-4.*PRZ3*L3-f(L3+1.)*(PR7_1*L3-PRZ2j` 
1(L3+1.1+PRZ3)) 

C DETERMINE MAX(B+SRTB-SRT). 
DEI:=B+SRT 
IF(CABS(DEN).LT.CABS(E-SRT))DEN=B-SRT 
IF(DcN.E0.0.)G0 TO 35 

C L4=-2.*P3(L3+1.)/DEN 
L4=-2.*PRZ3*(L3+1.)/DEN 
GO TO 40 

35 L4=(1..0.) 
40 Z4=Z3+L4*(Z3-Z2) 

CALL POLY(A N RTZ.NRZ4 PZ4 PRZ4) 
IT(N.EQ.0)GO TO 900 

IF(CABS(PZ4/PZ3).LT.10.)GO TO 50 

L4=L4/2. 
GO TO 40 

50 IF(CABS(PZ4).LT.1.0E-20)G0 TO 100 
IF(Z3.E0.0.)G0 TO 65 

IF(CABS((Z4-Z3)/Z3).LT.1.0E-10)G0 TO 100 

IF(IT.GE.99)G0 TO 100 
65 IT=IT+1 

Z1=Z2 
22=23 
Z3=Z4 
PRZ1=PRZ2 
PRZ2=PRZ3 
PRZ3=PRZ4 
GO TO 30 

100 NR=NR+1 
NI(NR)=IT+1 
RTZ(NR)=Z4 
REM(NR)=P24 
IF(NR.GE.N)G0 TO 1000 
IF7L.EQ.2IG-0 TO 20 
IF(KC.NE.0)G0 TO 20 

IF(AIMAG(RTZ(NR)).EQ.0.)G0 TO 20 

IF(ABS(REAL(RTZ(NR))/AIMAG(RTZ(NR)).GT.1.0E2) 
1G0 TO 20 

110 L=2 
ZT=_i 

Z4=CONJG(Z4) 
CALL POLY(A.N.RTZ.NR024.P249PRZ4) 
IF(N.NE.0)G0 TO 100 

900 N=NS 
1000 RETURN - -- END - -- 

- 

.. 
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SUBROUTINE POLY( A,N,RTZ,NR.Z,PZ,PRZ) 
DIMENSION A(16),RTZ(15) 
COMPLEX A.PZ.PRZ,RTZ.Z 

C A =COEFFICIENTS OF POLYNOMIAL. 
C N= DEGREE OF POLYNOMIAL. 
C RTZ =ROOTS OF POLYNOMIAL, 

NR NO. OF ROOTS THAT HAVE BEEN FOUND. 
C Z =VALUE AT WHICH POLYNOMIAL IS EVALUATED. 
C PZ= POLYNOMIAL EVALUATED AT Z. 
C PRZ =VALUE OF POLYNOMIAL WITH ROOTS DIVIDED OUT. 

PZ=A(1) 

DO 20 I=1.N 
20 PZ=Z*PZ+A(I+1) 

PRZ=PZ 
IF(NR.EQ.0)GO TO 100 

'40 DO 50 I=11NR 
IF(Z-RTZ(I).EQ.O.1G0 TO 60 

50 PRZ=PRZ/(Z-RT2(I)) 
GO TO 100 

60 N=0 
100 RETURN 

END 

C 

C 

- 
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n n-1 
f(z) = +alz +... + an-lz + an = 0 

where a. are complex numbers. If all a. are not different from 

zero, transform the equation to eliminate any zero coefficients. Use 

for a new center ct = 1. and transform the equation. If this does 

not eliminate all zero coefficients try ct = 1/2 then 1/4,..., 1/ 1 28. 

The zero coefficients in equations xn + n = 1, n =3 to 101 were 

successfully eliminated using this procedure. The required equation 

f(z ,+ct) = a ;+ct)n + al (z ;+ct)n- 1+. . . + an = 0, 

where z = z + ct, after expanding by the binomial theorem and col- 

lecting terms, reduces to the form 

F(z ) - cOzn + clzn-1 + . .. + cn-lz + c = 0, 

where c0 = a0, cl = ncta0 + al etc. 

This transformation can be accomplished using synthetic divi- 

sion and by noting that if z = z + ct, then z = z - ct and 

so that 

f(z) = f(z ,+ct) _ (z ,) = cio(z-ct) 

n n 
c0(z-ct) +. . . + cn-1(z-ct) + cn = a0z +. . . +an-lz + an 

and using synthetic division to divide f(z) by z ct we obtain 

c n as the remainder. If again the quotients thus obtained are divid- 

ed by z - ct and so on, the successive remainders will be 

1 

- 
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en -l' en - 2, . '' , 
cl, and the final quotient will be c0. 

Form the quotients 

(1) al (k) 
q0 

= 
a0 ' ql -k 

(k) ak+l 

0, k= 2,3,...,n 

k = 1, 2,...,n-1 e(1-k) = , 

Consider the elements thus generated as the first two rows of a QD 

scheme, and generate successive rows by 

where 

q 
(k) 

= 
(e(k) e(k- 1 ) (k) 

i i+l ) + qi i+1 

(k+1) 
(k) qi (k) 

ei+1 (k) ei 
qi+1 

e ( 0 ) 
= e ( n ) 

= 0, i = 1, 2 , . . . 

If the zeros zk are distinct then 

and 

lim gik) - zk 

(k) 
lim e. = 0 i 
1-'00 

If some of the zeros, zk have the same modulus then the co- 

efficients of the polynomial equation with these zeros can be 

= 

k 

i i 

1-.00 

_ 
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constructed from the q) 
. Distinct zeros or groups of zeros with 

(k) 
equal moduli will be separated by small e(k) (e(k) < . 5 x 10_2 was 

used in the computer program). 

Suppose the polynomial equation has m zeros 

zk+1' ak+2' ' zk+m 

mials where 

with the same modulus. Consider the polyno- 

lim P(k+m) 
= (z_Zk+1 )(z-zk+2) (z zk+m)' 

that is, the coefficients of P(k +m) tend for i--oo to the coeffi- 

cients of the polynomial equation with zeros zk 
+1' 

zk +2'.. zk +m 
and 

leading coefficient 1. 

The polynomials p(k +m) are constructed from the recur- 
s 

rence relations 

So 

Pk)(z) = 1, i = 0, 1, .. 

P(k+f )(Z) 
__ zPl+1 1)(Z) 

- 
qik+e)Plk+f 1>(Z) 

= 1 , 2 , , m ; i = 0, 1, . . . 

P(k+l)(z) 
z 

(k+1) 

and for m = 2 we have 

P(k+2)(z) - z(z-q. )) q(k+2)(z-gk+1) 
i+1 i i 

2 (k+1) (k+2) (k+1) (k+2) 
= z - (gi+1 +q. 

)z + 
q. gï 

i--on 

i 

. 

. . . 

, 

1 

lo+m 

it -1 
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This gives a convenient means of obtaining approximations to coeffi- 

cients of quadratic equations z2 + bz + c = 0 with zeros zk 
+1 

and zk +2' 

lim -(gç+11)+g(k+2)) = b i- 00 

lim (k+1) (k+2) 
qi qi 

= 

These coefficients can readily be refined using Bairstow's algorithm 

(3) and then the roots can be obtained using the quadratic formula. 

Most frequently the quadratic equation occurs in connection with 

complex conjugate zeros of real polynomials. 

The coefficients of polynomial equations of higher degree can 

be obtained in a similar way. These coefficients would be only ap- 

proximate so the roots from the resulting polynomial equations would 

be in error. There is no convenient way to solve polynomial equations, 

whose zeros have equal moduli, for degree greater then two unless 

we consider a method such as Muller's as presented in this paper. 

This is not done since more accurate results would be obtained by us- 

ing Muller's algorithm on the original polynomial equation. 

Operator Program 

On the following pages are described the operator programs 

which go together to form the QD program. Each of the operators is 
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first defined and then the program is documented as a string of oper- 

ators. 

Rutishauser's Quotient -Difference (QD) Program -- Operator 
Programming Definitions: 

IIO Input the program and input data into the memory of the 

machine. 

Comment: NC = the degree of the polynomial equation plus one. 

KG = 0 is all the coefficients are real. 

A(I) = the complex coefficients of the polynomial equation, 

(I, 1,...,NC). 

Al Translate the input data into binary. 

Comment: CT is the new origin to be used if any of the coefficients 

are zero. Note that the QD algorithm requires that all 

the coefficients be non zero. 

ICT is the number of times we have changed origins. 

NR is the number of roots that have been found. 

NTYPE1 is the number of simple roots. 

NTYPE2 is the number of approximations for quadratic 

equations. 

CT =2.; 

ICT = 0; 

NR =O; 
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NTYPE1 = 0; 

NTYPE2 = 0; 

ONE = (1. , O. ); 

A3 N = NC - 1; 

Comment: Store the coefficients in a new array since they may be 

transformed to eliminate any zero terms. 

AT(I) = A(I), (I =1, ... , NC); 

Comment: Test for zero coefficients. 

P5 IAT(I)I = 0. ?, (I=1, . . . , NC); 

Comment: If we have a zero coefficient and have not transformed the 

coefficients eight times, transform them again. 

P6 ICT < 8? ; 

H7 Write: zero coefficients after eight transformations. 

Comment: CT is the new origin. 

A8 CT = CT /2. ; 

NP1 = N + 1; 

Comment: Transform the coefficients to eliminate any zero terms. 

A9 AT(I) = AT(I) + CT AT(I -1), (I =2, ... , NP1); 

NP1 = NP1 - 1; 

P10 NP1 > 2? ; 

All ICT = ICT + 1; 

Comment: Solve the polynomial using the QD algorithm. 

E12 (QDIFF) CALL QDIFF(AT, NC, IT, Z, B, NTYPE1, NTYPE2); 

4 
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h13 Write: Output from QD algorithm, ... iterations. 

Comment: Have any simple roots been found? ; 

P14 NTYPE1 = 0? ; 

Comment: If the coefficients have been transformed, transform the 

roots back. 

P15 ICT = 0? ; 

A 
16 

Z (I) = Z (I) + CT, (I =1, ... , NTYPE1 ); 

n17 Write: Approximations to simple roots: ... 

Comment: Have any approximations for quadratic equations been 

found? 

P18 NTYPE2 = 0? ; 

Comment: Use Bairstowis algorithm to refine the approximations to 

the quadratic equations. 

B(1, I) and B(2, I) are the coefficients of the quadratic 

equation. The leading coefficient is one. 

E19(20, 35) (I =1, ... , NTYPE2); 

20 P = B(1, I); 

Q = B(2, I); 

E21(BAIRST) CALL BAIRST(AT, NC, IT, P, Q); 

n22 

A23 

Write: Quadratic approximations: ... 

NR = NR + 1; 

Comment: IT is the number of iterations performed. Store this 

number in NI(NR) and print out later. 
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Comment: Solve the quadratic equation using the quadratic formula. 

NI(NR) = IT; 
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E25(QUAD) CALL QUAD(ONE, P, Q, Z1, Z2); 

Comment: If the coefficients have been transformed, transform the 

roots back. 

ICT = 0? ; 

A27 Z1 = Z1 +CT; 

Comment: Evaluate the polynomial at Z1, (find the remainder). 

E28(POLY) REM (NR) = POLY(A, N, Z1); 

Comment: Store the first root from the quadratic formula and go on 

to the second root. 

329 RTZ(NR) = Z1; 

A30 NR =NR+ 1; 

331 NI(NR) = IT; 

P32 ICT = 0? ; 

A33 Z2 = Z 2 + CT; 

E34(POLY) REM(NR) = POLY(A, N, Z 2); 

35 
RTZ(NR) = Z2; 

Comment: If any simple roots were found use the Newton Raphson 

algorithm to refine them. 

P36 NTYPE1 = 0? ; 

E37(38, 41) (I=1, . . . , NTYPE1); 

A38 NR = NR + 1; 

P26 
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E (NEWTON) 
39 

CALL NEWTON(A,N, IT, Z(I), REM(NR)); 

40 

341 

n42 

NI(NR) = IT; 

RTZ(NR) = Z(I); 

Output the coefficients, roots and remainders. 

Stop the machine. 

Combining the preceding operators, the logical scheme of the 

QD program has the form: 

11 8 43 6 10 9 

110 Al 2 A34 --1PS P6r- h71 
r -1A 

8 
TA9 P10T 

5 
II 

18 17 15 14 36 

A11 5 E12 1113 P14r P15r- A16 
-11117 -1P18F 

28 26 

E19 20 E21 
1122 A23 24 E25 P267 A27 E28 29 

34 32 18 42 

A30 
331 P321- A33 

-1E34 
35 

-1P36 
E37 A38 E39 

36 7 

40 341 1142 1 43 

E(QDIFF) SUBROUTINE QDIFF(A, NC, IT, Z, B, NTYPE1, NTYPE2); 

Comment: Solution of the polynomial equation using the QD algorithm. 

A(I) = the complex coefficients of the polynomial equation, 

(I= ... , NC ). 

NC = the degree of the polynomial equation plus one. 

IT = the number of iterations for the roots. 

-`43 
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Z (I) = approximations to simple roots, (I =1, 2, ... ). 

B(I) = approximations to the coefficients of a quadratic 

equation, the leading coefficient is one, (I=1,2,... ). 

NTYPE1 = the number of simple root approximations. 

NTYPE2 = the number of quadratic equation approxima- 

tions. 

)0 IT =0; 

Comment: Set up the iteration limit. 

Al LIMIT = 3 NC; 

P2 If LIMIT < 20 set LIMIT = 20; 

P3 If LIMIT > 100 set LIMIT = 100; 

A4 N = NC - l; 

Comment: Compute the initial quotient and difference terms. 

A5 Q(1,2) = - A(2) /A (1); 

36 Q(1, K +1) = 0., (K= 2, ... ,N); 

A7 E(1, K) = A(K +1) /A(K), (K =2, ... , N); 

Comment: Compute the quotient and difference terms until we reach 

the limit. 

E8(9, 31) (I=2, . . . , 101); 

NTYPE1 = 0; 

NTYPE2 = 0; 

E(I-1, 1) = (0. , 0. ); 

E(I-1, NC) = (0. , 0. ); 
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E(I, NC) = ( 0. , O. ); 

A10 Q(I, K) = E(I- 1, K) - E(I- 1, K-1) + Q(I-1, K), (K=2, , NC); 

A11 E(I, K) = Q(I, K+l )/Q(I, K) E(I- 1, K), (K=2, . . . , N); 

Al2 IT = IT + 1; 

Comment: Iterate again if the number of iterations, (IT) is less than 

the limit. 

P13 IT < LIMIT? ; 

Comment: Test for convergence. Start by testing for simple roots. 

14 
K = 1; 

A15 K =K +1; 

Comment: Are the roots separated by a small E(I, K)? 

P16 E(I, K)I I > 5. x 10_2? ; 

Comment: We can not have division by zero. 

P17 IQ(I,K)I = 0. ?; 

Comment: Are successive root approximations close enough? 

P K) - Q (I, K- 1)) /Q (I, K) I > 1. 0 x 10-2? ; 

A19 NTYPE1 = NTYPE1 + 1; 

Comment: Store the root approximation. 

20 
Z(NTYPE1) = Q(I, K); 

Comment: Have all E(I, K) been tested? 

P21 K< NC ?; 

Comment: Do we have approximations to a quadratic term? 

P22 I E(I, K +1) I > 5. x 10 2? ; 
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Comment: Have these quadratic approximations converged? 

A23 P1 = -Q(I -1, K) - Q(I -1, K +l); 

P2 = -Q(I, K) - Q(I, K+1); 

P24 
I 

(P2-P1)/P2I > 1. x 10-2? ; 

A25 Q1 = Q(I- 2, K) Q(I -1, K +1); 

Q2 = Q(I -1, K) Q(I, K +1); 

P26 I (Q2- Q1) /Q2I > 1. x 10-2? ; 

A27 NTYPE2 = NTYPE2 + 1; 

Comment: Store the quadratic term approximations. 

J28 B(1, NTYPE2) = P2; 

B(2, NTYPE2) = Q2; 

A29 K =K +1; 

Comment: Have all E(I, K) been tested? ; 

P30 K < NC? ; 

1131 Write: Limit of 100 iterations reached, any roots found 

will be printed. 

1132 
Write: Three or more roots with equal moduli, the QD 

program can not find such roots, any other roots will 

be found. 

A33 K = K + 2; 

Comment: Have all E(I, K) been tested? ; 

P34 K N ?; 

Comment: Do we have the roots separated? ; 
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P35 IE(I,K)I < 5. x 10 2 ?; 

A36 K =K +I; 

1137 Transfer to the calling program. 

Combining the preceding operators, the logical scheme of sub- 

routine QDIFF has the form; 

Al P2 A5 
j6 

31 

E8 39 A10 A11 Al2 P131- 

21, 30, 35 22 31 31 15 

314 IA15 P16T P17 P18r- A 
A19 2,0 P21'37 

16 32 31 31 15 

-1P22F- A23 P24 A25 P26 A27 28 A29 P30 ' 

13,17,18,24,26 37 22 36 37 15 34 21 30,3'_,34 

1 1131E' 71132 A33P34nP35VA361-- 11137. 

E(BAIRST) SUBROUTINE BAIRST(A, NC, IT, P, Q), (Ref. 3) 

Comment: A(I) = the complex coefficients of the polynomial equation, 

( I = 1 , , NC). 

NC = the degree of the polynomial equation plus one. 

IT = the number of iterations performed. 

P and Q = the approximations to the quadratic term 

Z2 +PZ 

B(I) and C(I) are arrays used for storing terms generated 

by the iteration scheme. 

IT = 0; 

j0 A7 

' 

j 
/l0 
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Al 

A 
2 

33 
A4 

A5 

A6 

B(1) = A(1); 

IT = IT + 1; 

B(2) = A(2) - P B(1); 

B(I) = A(I) - P B(I-1) - Q B(I- 2), (I=3, . . . , NC); 

C(1) = B(1); 

C(2) = B(2) - PC(1); 

N2 = NC - 2; 

C(I) = B(I) - P C(I-1) - Q C(I-2), (I-3, . . . , N2); 

C(NC-1) = -PC(NC-2) - QC(NC-3); 

D = (C(NC-2))2 - C (NC -1)C (NC -3); 

DP = B(NC- 1)C(NC -2) - B(NC)C(NC -3); 

DQ = B(NC)C(NC -2) - B(NC- 1)C(NC -1); 

DELP = DP /D; 

DEIQ = DQ /D; 

P = P + DELP; 

Q = Q + DELQ; 

Comment: 

P7 

Comment: 

P 
8 

n9 

Have we 

IT > 100? 

Have the 

comverged? 

DELP 

reached the iteration 

; 

coefficients of the 

>1.0x 10 
-8 

and 

to the calling program. 

limit? 

quadratic 

DELQ 

term Z2 +PZ +Q 

> 1.0x 10 8 ?; P 

Transfer 
Q 
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Combining the above operators, the logical scheme of subrou- 

tine BAIRST has the form: 

8 9 1 7 

J0 
1 Al A2 3 

A4 A5 A6 P7 F P8 
I 

711 
9 

. 

E(NEWTON) SUBROUTINE NEWTON(A, N, IT, Z1, PZ): 

See operator programming definition for subroutine Newton of 

Lehmer's program, page 23. 

E(POLY) FUNCTION POLY(A, N, Z): 

See operator programming definitions for function Poly of Leh - 

mer's program, page 25. 

E(QUAD) SUBROUTINE QUAD(A, B, C, Z1, Z2): 

See operator programming definitions for subroutine Quad of 

Lehmer's program, page 26. 

The FORTRAN subprograms which go together to form the QD 

computer program are listed in Figure 3. Note that this program in- 

cludes the QD algorithm, Bairstow's algorithm and the Newton - 

Raphson algorithm. 

4. The Steepest Descent Algorithm 

The Steepest Descent algorithm with Siljak functions (7) is used 

to minimize a nonnegative function, the minimal values of which are 

zero and correspond to the zeros of the polynomial equation under 
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Figure 3. The QD FORTRAN IV program. 

PROGRAM INOUTIINPUT. OUTPUT .TARE5=INFET.TAPE6 =OUTPUT) 
DIMENSION A( 16 ).AT(16).B(2.7).MI(15).REMl15) 
1RTZ(15),Z(16) 
COMPLEX A. AT. BI ONE.P.POLY.PZ.Q.REM.RTZ.Z.Z1.Z2 

C NC =NO. OF COEFFICIENTS. 
C KC =0 IF ALL COEFFICIENTS ARE REAL. 
C 

CALL SECOND(TIME1) 
READ) 5,1000)NCASES 

-DO 100 1.NCASES 
CALL SECOND(TSTART) 
WRITE(6.1050)ICASES 
READ(5.1000)NC.KC.(A(I),I =1.NC) 

C 

CT =2. 
rCT =O 
N =NC -1 
NR =0 
NTYPE1 0 
NTYPE2=0 
ONE =(1.00.) 

C 

DO 5 I=1.NC 
5 AT(I) =A(I) 

C 

C TEST FOR ZERO COEFFICIENTS. 
8 DO 10 I =1.NC 
10 -IF(CAB-STATZT))EO.0.)GO TO 12 

GO TO 25 
C 

C IF THE ZERO COEFFICIENTS ARE NOT ELIMINATED AFTER 
C EIGHT TRANSFORMATIONS. GO TO THE NEXT CASE. 
C 2 iFZ TC7.LE -.87 GO TO 15 

WRITE(6,1005) ¡CASES 
GO TO 100 

C 

NEW CENTER. 
15 CT =CT /2. 

NP1WN+ 

C TRANSFORM EQUATION TO ELIMINATE ZERO COEFFICIENTS. 
18 DO 20 I=2.NP1 
20 =A1(I)+CT *AT(I -1) 

NP1 =NP1 -1 
IF(NP1.GE.2)GO TO 18 

ICT=ICT+1 
G0 TO 8 

C AT COEFFICIENTS OF TRANSFORMED EQUATION. 
C IT =NO. OF ITERATIONS. 
C NC-NO. OF COEFFICIENTS. 
C Z APPROXIMATIONS FOR SIMPLE ROOTS. 

B APPROXIMATIONS FOR QUADRATIC TERM. 
C NTYPE1=N0. OF SIMPLE ROOTS. 
C NTYPE2 N0. OF APPROXINATIONS FOR QUADRATIC TERMS. 
25 CALL QDIFF (AT.NC,IT.Z.B.NTYPE1.NTYPE2) 

WRITE(6.1020)IT 
IF(NTYPE1.EQ.0)GO TO 35 

C 

C IF THE EQUATION HAS BEEN TRANSFORMED, 
C TRANSFORM THE ROOTS BACK. 
28 IF(ICT.EQ.0)G0 TO 31 

DO 30 I=1.NTYPE1 
Z)I)= Z(I) +CT 

_ 

N_ 
- 

.. .. -.- 

C 

-- - 

C 



C 

30 CONTINUE 
31 WRITE16.1025) (Z(I),I =1,NTYPE1) 

35 IFINTYPE2.EQ.0)GO TO 45 

DO 40 I=1INTYPE2 
P=B(1.I) 
0=B(2.I) 

C 

C USE BAIRSTOWS ALGORITHM TO GET CLOSER 
C APPROXIMATIONS TO THE ROOTS. 
C USE COEFFICIENTS OF TRANSFORMED EQUATION SINCE 
C QUADRATIC APPROXIMATIONS ARE FOR THIS EQUATION. 

CALL BAIRST(AT.NCIT.P.Q) 
WRITE(6.1030) P.Q 
NR =NR +1 
NI(NR) =IT 
CALL QUAD(ONE.P.Q.Z1.Z2) 
IF(ICT.EQ.0)GO TO 37 

Z1 =Z1 +CT 
37 REM(NR) =POLY(A0N.Z1) 

RTZ(NR) =Z1 
NR =NR +1 
NI(NR)=IT 
IF(ICT.EQ.0)GO TO 39 
Z2Z2 +CT 

39 REM(NR)= POLY(A.N.Z2) 
40 RTZ(NR) =Z2 
45 IF(NTYPEI.EQ.0)G0 TO 50 

C 

C USE NEWTONS METHOD TO GET CLOSER ROOTS. 
C USE ORIGINAL COEFFICIENTS SINCE ROOTS WERE 
C TRANSFORMED BACK. 

DO 49 I= 1.NTYPE1 
NR =NR +1 
CALL NEWTON(A.N.IT,Z(I).REM(NR)) 
NI(NR) =IT 
RTZ(NR) =Z(I) 

49 CONTINUE 
C 
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50 WRITE (6.1010)ICASES.NC.(A(I),I =1.NC) 
WRITE(6. 1015) NR.(RTZ(I)¡NI(I).REM(I),I =1.NR) 
CALL SECOND(TEND) 
TSEC =TEND -(START 
WRITE(6.1300)TSEC 

IOC- CONTINUE 
CALL SECOND(TIME2) 
TfIME= TIME2-TIME1 
WRITE(6.1310)TTIME 

1000- FORMATÇZI37T8EI0.0)) 
1005 FORMAT(6HOCASE 23, 

I *, LEN LUEFFICIENT3 AFTER S TRANSFUKMATIUNS. *) 
1010 fORMAT (1H1 / / / / / / /1M0.14X. *CASE *.I3. *. *.I3. 

1* COEFFICIENTS* / /(1H ,14X.2E20.121) 
1015 FORMAT(1H0 /1H0.28X.13.* ROOTS *,39X, *REMAINDERS * // 

-11-IH 0I4X.2- E20.12.* NI= *,1302E1748) ) 

1020 FORMAT(1H0014X. *OUTPUT FROM OD ALGORITHM. *.I4. 
3 *_ ITERATIONS.*) 

1025 FORMAT(1H0.14X. *APPROXIMATIONS TO SIMPLE ROOTS * // 
1 (1H .14)02E2- 0.11)) 

1030 FORMAT(1H0.14X. *QUADRATIC APPROXIMATIONS * // 
I1IT1 .14X0E20.12) ) 

1050 FORMAT(1H1 / / / / / / /1H0.14X. *CASE *,I3) 
1300 FORMATITH047- /.I5X. *EXECUTIOlf TTME= *,F10.3. 

1* SECONDS *) 
1310 FORMAT(1HOt14Xt *TOTAL EXECUTION TIMES *.F10.3. 

1* SECONDS *) 
END 

_ 

. 

-- - 

. 

- 

-- 

------ " 

-. 

- 

- - 

- - 

__ 
-- 
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SUBROUTINE QDIFF (A,NC.IT.Z.6.NTYPE1,NTYPE2) 
DIMENSION A( 16), B (2.7).E(100,16).Q(100.16),Z(16) 
COMPLEX A,B,E,P102.0Q1.Q2.Z 

C A =COEFFICIENTS. 
NC =NO. OF COEFFICIENTS. 
IT =NO. OF ITERATIONS. 

C Z =APPROXIMATIONS FOR SIMPLE ROOTS. 
B =APPROXIMATIONS FOR BAIRSTO'WS QUADRATIC TERM. 

C NTYPEI.NO. OF SIMPLE ROOTS. 
NTYPE2 =NO. OF APPROXINATIONS FOR QUADRATIC TERMS. 

C 

IT0 
N=NC-1 
LIMIT=3*NC 
IF(LIMIT.LT.20)LIMIT=20 
IF(LIMIT.GT.90)LIMIT=90 
0(1.2)= -A(2)/A(1) 
DO 5 K=2.N 
Q(1.K+1)=(0.,0.) 

5 E(10K)=A(K+1)/A(K) 

12 DO 40 1=2.101 
NTYPE1.0 
NTYPE2.0 
E(I-111)=(0..0.] 
E(I-1,NC)=(0.,0.) 
E(I,NC1=(0..0.) 
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DO 15 K=2NC 
15 Q(I.K)=E(I-1.K1-E(I-1.K-1)+Q(I-1,K) 

DO 16 K=20 
16 E(ItK)Q(I,K+11/Q(ItK)*E(I-1,K) 

IT=IT+1 
- - _- - ----- - --- C----- --- 
C ITERATE AGAIN IF LESS THAN LIMIT. 

IF(IT.LT.LIMIT)G0 TO 40 

K=1 
20 K=K+1 

IF(CABS(E(I,K)1.GE.5.OE 2)G0 TO 30 __--------- _. -_ -- _---- - - 
22 IFICABS(Q(ItK).EQ.O.)G0 TO 40 

IFICABSI(Q(I.K1-Q(I-1.K))/Q(I,K)).GT.1.OE-2)GO TO 40 

NTYPEINTYPE1+1 
Z(NTYPE1)=Q(ItK) 
IF(K.LT.NC)G0 TO 20 
GC TO 400 

30 IF(CABS(E(I.K+1)).GE.5.0E-2)G0 TO 350 
P1=-Q(I-111K)-Q(I-1,K+1) 
P2=-Q(I0K)mQ(IK+1) 
IF(CABS((P2.*P1)/P2).GT.1.0E-2)GO TO 40 

-Q1Q(I-20K)*Q(I-1K+1) 
02=Q(I-1.K)*O(I,K+1) 
IF (CABS(102.01)/02).GT.1.OE -2)G0 TO 40 -- - 
N YP(:2 TY E2+1 
B(1NTYPE21=P2 

K=K+1 --- - (riLT.NC)GÒ -TO 20 
GO TO 400 

40 CONTINUE 
C 

C- LIMIT OF 100 ITERATIONS REACHED, 
C ANY ROOTS FOUND WILL BE PRINTED. 

WRÌTE(601015) 
GO TO 400 

C 

=02 

--- 

-_--- 

..._._.-_ 

- 



C THREE OR MORE ROOTS WITH EQUAL MODULI, 
C THE OD ALGORITHM CAN NOT FIND SUCH ROOTS, 
C ANY OTHER ROOTS WILL BE FOUND. 
350 WRITE(501030) 

K =K +2 
360 IF(K,GT.N)G0 TO 400 

IF( CABS( E( I,K))LT.5.0E -2)GO TO 20 
K K +1 
GO TO 360 

400 RETURN 
1015 FORMAT(1H0,14X, *LIMIT OF 100 ITERATIONS REACHED * / 

115X. *ANY ROOTS FOUND WILL BE PRINTED. *) 
1030 FORMAT 11H0.14X. 

1 *THREE OR MORE ROOTS WITH EQUAL MODULI.* /15X. 
2 *THE OD PROGRAM CAN NOT FIND SUCH ROOTS,* /15X, 
3 *ANY OTHER ROOTS WILL BE FOUND.") 
END 

SUBROUTINE BAIRST(A,NC,IT,P,Q) 
DIMENSION A(16).0(16),C(15) 
COMPLEX A,B,C,P,O,D,DP,DOrDELP,DELQ 

C 

C SUBROUTINE BAIRST REFINES THE APPROXIMATIONS TO Ä 
C QUADRATIC POLYNOMIAL, SEE HILDEBRAND, P.472 -475. 

IT=0 
B(1)=A(1) 

5 IT=IT+1 
B(2)=Á(2)-P*B(1) 
DO 10 I=3,NC 

10 B(I)=A(I)-P*B(I-1)-Q*B(I-2) 
C(1)=B(1) 
C(2)=B(2)-P*C(1) 
N2NC-2 
DO 20 I=30)2 

20 C(I)=B(I)-P*C(I-1)-Q*C(I-2) 

C NOTE CINC -1) HAS B(NC -1) SUBTRACTED FROM IT. 

C(NC -1) =-P *CINC -2)-Q *C(NC -3) 
D= CINC- 2) *C(NC -2)- CINC -11 *C(NC -3) 
DP :BINC -11 *C(NC -2) B(NC) *C(NC -3) 
DO- B(NC) *C(NC2)- BiNC -1) *C(NC -11 
DELP =DP /D 
DELQ =DO /D 
P =P +DELP 
QsQ +DELO 
IF(IT.GE.100)G0 TO 400 
IFCCABS(DELP /P).GT.1.0E -8 

1-.OR.CABS(DELQ /Q).GT.1.0E -81G0 TO 5 

400 RETURN 
END 

-SUBROUTINE NEWTON(A,N.IT.Z10Z) 
DIMENSION A(16) 

- 

--COMPLEX A,6PZ,PZ,Z1,Z2 

T =COE'FIZFENTS. 
C N =DEGREE OF POLYNOMIAL. 
C IT=NO. OF ITERATIONS. 
C Z1 INDEPENDENT VARIABLE. 
C FZ =THE VALUE OF THE POLYNOMIAL AT Z=Z1. 
C DPZ -THE DERIVATIVE OF PZ. 
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IT=0 
5 IT=IT+1 

PZ=A(1) 
CP2=A(1) 
DC 10 I=2.N 
PZ=A7I)+ZI*PZ 

10 DPZ=PZ+Z1*DPZ 
PZ=A(N+1)+Z1*PZ 

IF(DPZ.EQ.O.)GO TO 20 
Z2=Z1-PZ/DPZ 
IF(CABSiPZ).LT.1.0E-20)G0 TO 100 

C TEST FOR 0. DENOMINATOR. 
IF(Z1.EQ.0.1G0 TO 20 

TEST FOR CONVERGENCE. 
TF` TCAB- G((Z2- Z1)/Z1).LT.1.0E -10)G0 TO 100 
IF(IT.EQ.100)GO TO 100 

20 Z1 =Z2 
GO TO 5 

100 Z1 =22 
RETURN 

- 

COMPLEX FUNCTION POLY(A.N.Z) 
DIMENSION A(16) 
COMPLEX A.Z. 

C 

C A= COEFFICIENTS OF POLYNOMIAL. 
C N =DEGREE OF POLYNOMIAL. 
C Z =VALUE AT WHICH POLYNOMIAL IS EVALUATED. 
C POLY =POLYNOMIAL EVALUATED AT Z. 
C 

POLY =A(1) 
DO 20 I =1.N 

20 POLY =Z *POLY +A(I+1) 
RETURN 
END 

SUBROUTINE- OUAD(A.B4-C4Z1,Z2) 
COMPLEX A.B.C.DISC.ZI.Z2 
DISC =CSORT(B *B -4. *A *C) 
Z1 +DISC)/(2. *A) =( -B 

TE.T -B= DISC) % (2. *A) 
RETURN 
END 
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. 



investigation. 

We are concerned with the equation 

(1) 1(z) = u + iv = 0, 

where f(z) is an entire function of the complex variable z, 

where 

(2) z = x + iy. 

Now we form the function 

(3) 
2 2 F(x,y) = u + v . 

70 

F = F(x, y) is a function having the property that the zeros of F 

are the zeros of f(z). In fact these zeros are the only minima of 

F, (10). Also note that F > 0 for all z and that aF /ax and 

aF /ay exist. 

The level lines of the function F(x, y) are the intersect ions 

the surface w = F(x, y) with the planes parallel to the x, y- plane 

(w is the altitude above the x, y- plane). At an arbitrary point 

P(x, y) the gradient of F has the components 

(4) F aF F a F 
x ax ' y ay 

The gradient vector of is orthogonal to the level line through P 

and points in the direction of increasing values of F. We must 

of 

= 
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move in the opposite direction, the direction of steepest descent. The 

differential equations of the orthogonal trajectory O to the level 

lines of F(x, y) are 

(5) 
dx 

= -p(t) aF 
dy 

= -p(t) aF 
dt ax dt -ay 

Here p is a proportionality factor and t is a parameter along the 

curve O. The function p(t) must be positive and is chosen to 

minimize the function F along the direction of steepest descent. 

We will now consider the calculation of p(t). 

In the neighborhood of a zero of f(z), the higher order terms 

of a series expansion for u and v are negligible so we have: 

(6) 
au au 

-u = ax p x+ p y, 
Y 

av av 
-v = axpx+ py, 

Y 

where px and py are the distances in the x and y direc- 

tions from a point in the neighborhood of the zero of f(z) to the 

zero of f(z). Using the Cauchy- Riemann equations and solving 

Equation (6) for px and py yield 

(7) P 
au 8v -u- -v - 
ax ax 

au 2 av 2 ' 

(ax) +() 8x 

From these equations we see that 

u 
av au - -v- 
ax ax 

py _ 
au 2 av 2 

(ax) +(aX) 

- 
' 

- 



(8) 
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O. 5 
p(t) _ `> O. 

( X )2+( a 

If F = u + v 
2 

in Equation (3) is greater than the value pre- 

viously calculated, replace the current Ax and `y values by 

. 75ox and .75vy until a value of F is found that is smaller 

than for the preceding iteration. 

Operator Program 

On the following pages are described the operator programs 

which go together to form the Steepest Descent program. Each of 

the operators is first defined and then the program is documented as 

a string of operators. 

The Steepest Descent Program -- Operator Programming Definitions: 

II0 Input the program and data into the memory of the ma- 

chine. 

Comment: A(I) = the complex coefficients of the polynomial equation, 

(I=1, ...,N+1). 

N = the degree of the polynomial equation. 

NC = the degree of the polynomial equation plus one. 

KC = 0 if the coefficients are all real. 

NI(I) = the number of iterations per root, (I =1, ... , N). 

NR = the number of roots found. 
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.TZ (I) = the roots of the polynomial equation, 

(I =1, ... NR). 

REM(I) = the remainders from evaluating the polynomial 

equation at the roots, (I =1, ... , NR). 

Al Translate the input data into binary. 

A2 N = NC - 1; 

E3(STEDES) CALL STEDES(A, N, KC, NI, NR, RTZ, REM); 

5 
Output the coefficients, roots and remainders. 

Stop the machine. 

Combining the above operators, the logical scheme of the pro- 

gram has the form: 

II0 Al A2 E3 II 

E(STEDES) SUBROUTINE STEDES(A, N, KC, NI, NR, RTZ, REM); 

Comment: A(I) = the complex coefficients of the polynomial equation, 

(I =1, ... , 

N = the degree of the polynomial equation. 

KC = 0 if the coefficients are all real. 

NI(I) = the number of iterations per root, (I -1, ... ,NR). 

NR = the number of roots found. 

RTZ (I) = the roots of the polynomial equation, 

(I ... , NR). 

, 

. L5 

n4 

/2 
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RFM(I) = the remainders from evaluating the polynomial 

equations at the roots, (I =1, ... NR). 

DZ is the correction to the root. 

We now initialize some of the terms. 

0 
DZ 

=- 

O.; 

NR =O; 

Al NC = N + 1; 

Comment: B(I) is used for storing the coefficients of the reduced 

polynomial (polynomial with the roots found removed). 

B (I) = A(I), (I =1, ... , NC); 

Comment: Test if z = 0 is a root. 

P3 IA(NC)I 1. O. ?; 

Comment: z = 0 is a root, store it and test again. 

A4 NR = NR ± 1; 

NI(NR) = 0; 

A6 NC = NC - l; 

RTZ(NR) = O.; 

REM(NR) = O.; 

Comment: Have all the roots been found? 

P8 NR - N - 0?; 

Comment: Initialize starting values. IT is the number of iterations 

for the root. L = 1 if the complex conjugate has not 

been found. L = 2 if the complex conjugate has been 

7 
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found. 

IT = 0; 

L = 1; 

Z = (1. , 1.); 

ZN = Z; 

ZR =1.; 

ZI = 1.; 

Comment: This is the start of the iteration loop. 

A10 IT =IT +1; 

dl 1 
X(1) = 1.; 

Z(2) = ZR; 

Y(1) = 0.; 

Y(2) = ZI; 

Comment: Split the coefficients into their real and imaginary parts. 

12 
AR(I) = Real B(I), (I =1, ... NC); 

AI(I) Imaginary B(I); 

Comment: Calculate the real and imaginary parts of f(z) and their 

partial derivatives in terms of the Siljak functions 

X(I) and Y(I), (see Reference 7). 

U = AR(NC) + AR (NC - 1) ° ZR - AI (NC -1) ZI; 

V = AI(NC) + AR(NC -1) ° ZI + AI(NC -1) ZR; 

PU = AR(NC -1); 

PV - AI(NC -1); 

A13 

314 

, 

= 



A15 
ZR2=ZR+ZR; 

2 
ZS = ZR + Z1-; 

E16(17, 18) (I=3, . . . NC); 

A17 X(I) = ZR2 X(I-1) - ZS X(I-2); 

P18 

Y(I) = ZR2 Y(I- 1) - ZS Y(I- 2); 

J=NC+1 - I; 

U = U + AR(J) X(I) - AI(J) Y(I); 

V = V + AR(J) Y(I) + AI(J) X(I); 

PU = PU + (I-1) (AR(J) X(I-1)-AI(J) Y(I-1)); 

PV = PV + (I-1) (AR(J) Y(I-1)+AI(J) X(I-1)); 

I<NC?; 
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Comment: Store the value of the polynomial f(z) evaluated at the new 

root approximation, z. 

l 19 
PZ = (U, V); 

A20 PS = PU2 + PV2; 

FN U2+V2; 

Comment: Is the square of the value of the polynomial zero? 

P21 FN ; 

Comment: Is this the first iteration performed? 

P22 IT = 1? ; 

Comment: F is the square of the value of the polynomial at the pre- 

vious root approximation. 

P23 FN < F? ; 

, 

= 
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Comment: At this point in the program we have FN > F which means 

the delta z increment for z was too large. Try a 

smaller delta z. 

A24 
DZR = .75 DZR; 

DZI =.75 DZI; 

Comment: Set IJ = 1 to indicate that delta z has been altered. 

25 
IJ = l; 

Comment: Set IJ = 0 to indicate that delta z has not been altered. 

26 IJ = 0, 

Comment: Compute the delta z values. 

A27 DZR = -(U °PU +V PV) /PS; 

DZI = (U °PV -V PU) /PS; 

Comment: Save the previous iteration's values. 

28 
ZRS = ZR; 

ZIS = ZI; 

F FN; 

Comment: Compute the new z terms. ZN is the new root approxi- 

mation. 

A29 ZR _ ZRS + DZR; 

ZI = ZIS + DZI; 

30 DZ = (DZR, DZI); 

ZN = (ZR, ZI); 

Comment: If this is the first iteration do not test for convergence. 



P31 

Comment: If delta z has been altered do not test for convergence 

P32 

Comment: 

yet, iterate once. 

IJ = 1? 

Test for convergence. 

P33 I PZ I< 1. 0 x 1 0 
20? 

P34 Z == 0? ; 

P35 DZ /Z < 1.0 x 10 
10?; 

Comment: Have we reached the maximum number of iterations? 
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P36 IT > 200? ; 

Comment: Store the new root approximation and iterate again. 

37 
Z = ZN; 

Comment: We have a new root, store it and compute the value of the 

polynomial at the new root. 

A38 NR = NR + 1; 

E39(POLY) REM(NR) POLY(A, N, ZN); 

40 NI(NR) = IT; 

RTZ(NR) = ZN; 

Comment: If the remainder when evaluating the polynomial at this 

new root is greater than or equal to one we print out 

the results found and stop the program. The program 

is stopped since succeeding roots are found using the 

coefficients of the reduced polynomial (the root is 

= 1? ; 

; 

_ 

; 
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divided out using synthetic division). These coeffi- 

cients would have too much error to yield reasonably 

correct roots. 

P41 I REM (NR) I > 1 . ? ; 

Comment: Have we found all the roots? 

P42 NR > ; 

Comment: Calculate the coefficients of the reduced polynomial using 

synthetic division. 

A43 NC = NC - 1; 

A44 B(I) = B(I) + ZN B(I -1), (I =2, ... , NC); 

Comment: If we have a linear equation transfer and solve directly 

for the root. 

P45 NC = 2? ; 

Comment: If the complex conjugate has been found transfer and iter- 

ate for the next root. 

P46 L = 2? ; 

Comment: If the coefficients are not all real iterate for the next root. 

P47 KC 0? ; 

Comment: If the imaginary part of the root is zero transfer and iter- 

ate for the next root. 

P48 Imaginary RTZ(NR) = 0? ; 

Comment: If the imaginary part of the root is small compared to the 

real part transfer and iterate for the next root. 

# 
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real RTZ(NR) 
imagainary RTZ(NR) > 1. Ox 102 ?; 

Comment: Compute the complex conjugate. 

350 L - 2; 

IT = 0; 

ZN - ZN; 

Comment: Solve the linear equation. 

O51 

A52 

n53 

IT =0; 

ZN = - B(2) /B (1); 

Transfer to the calling program. 

Combining the above operators, the logical scheme for subrou- 

tine STEDES has the form: 

A 
9 

30 A1 g P3 I 

53 
A4 

5 
A6 

7 P8 ' Ç 

37 

A10 11 12 A13 314 A15 

38 26 26 

P217 1322 P 23 A24 

3, 46, 47, 48, 49 

I9 

18 16 
7E16 

A17 P18 19 A20 

29 22, 23 

------1j26 A27 328 

25 

A29 30 

36 

P311- 
36 38 36 38 

P34I-P35 T P321- P33 

/-37 
10 21, 33, 35, 36, 51, 52 

IA38 
E39 

31 32 34 38 

IP36 
53 53 

40 P411- P42 r 
50 9 9 9 9 

A43 A44 P457 P46T P47F P48n P49n 
38 ' 

I 

1- -1.9 ïï, 

25 
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38 8,41, 42 

,51 A527 
; In 53 

E(POLY) FUNCTION POLY(A, N, Z); 

See operator programming definitions for function Poly of Leh - 

mer's program, page 25. 

The FORTRAN subprograms which go together to form the 

Steepest Descent computer program are listed in Figure 4. 

)51 
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Figure 4. The Steepest Descent FORTRAN IV program. 

PROGRAM INOUT( INPUT,OUTPUT.TAPE5= INPUT,TAPE6= OUTPUT) 
DIMENSION A(16).NI(15).REM(15).RTZ(15) 
COMPLEX A.REM.RTZ 

C KC =O IF THE COEFFICIENTS ARE ALL REAL. 
C 

CALL SECOND(TIME1) 
READ(5t1000)NCASES 
DO 100 ICASES =1,NCASES 
CALL SECOND(TSTART) 
READ(5t1000)NC.KCt(A(I),I =1.NC) 
N =NC 1 
CALL STEDES(AtN.KC.NI,NR.RTZ.REM) 
WRITE (6,1010)ICASES,NC,(A(I),I =1.NC) 
WRITE(6t 1020)NS,(RTZ(I),NI(I),REM(I),I =1.NR) 
CALL SECOND(TEND) 
TSEC =TEND- TSTART 
WRITE(6.1300)TSEC 

100 CONTINUE 
CALL SECOND(TIME2) 
TTIME= TIME2 -TIME1 
WRITE(6.1310)TTIME 

1006 FORMfATTZT57-(8FT0.0) 1 

1010 FORMATI1H1 / / / / / / /1H0,14Xt *CASE *,I3t *, *.I3. 
1* COEFFICIENTS * / /(1H .14)02E20.12)) 

1020 FORMAT(1H0 /1H0.28X.I3r* ROOTS *039X. *REMAINDERS * // 
1(IH *14X.2E20.121* NI= *,13,2E17.8)) 

1300 FORMAT(1H0./ /t15Xt *EXECUTION TIME = *,F10.3.* SECONDS *) 
- ITIÓ--FORMAT(1H001 -4X *TOTAL EXECUTION TIME = *,FIO -3j 

1* SECONDS *) 
- --END 

- 

SUBROUTINE STEDES(A.N.KCaNI,NR,RTZ,REM) 
DIMENSION A(16),NI(15),REM(15),RTZ(15) 

1. AR(15)AI(15),B(16)tX(16).Y(16) 
COMPLEX A.B.DZ.PZ.RTZ,REM.Z.ZN 

1.POLY 
- - -- __ - -- 

DZ=O. 
NC=N+1 
NR0 

C 
DO 2 I=10C 
B(I)=A(I) 
IF(CABS(A(NC)).NE.O.)GO TO 10 

NR=NR+1 
NI(NR)=0 
NC=NC-1 
RTI(NR)=(0.0.) 
REM(NR)=(0..0.) 
IF(NR-N)5.1000.5 

10 IT=0 
L=1 
Z=(1..1.) 
ZNZ 
ZR1. 
ZI=1. 

20 IT=IT+1 
X(1)=1. 
X(2)=ZR 
Y(1)=0. 
Y(2)=ZI 

- - 

_ 

- 

5 



DJ 28 
AR(I)=REAL(G(II) 

2E AI(1)°AIMAG(E_s(I)) 
NCM1-NC-1 
U=AR ( NC )+AR ( NCP11 ) *ZR-A I ( Ní.ó11 ) 1,':' 1 

V=AI(NC1+AR(NCM1)*ZI+AI(NCM1)x2-. 
PU=ARiNCM1) 
PV=AI(NCM1) 
ZR2=ZR+ZR 
ZS=ZR*ZR+ZI*ZI 

C 

30 DO 35 I=3.NC 
X(I)=ZR2*X(I-1)-ZS*X(I-2) 
Y(I)=ZR2*Y(I-1)-Z5Y(I--2) 
J=NC+1-I 
U=U+AR(J)*X(I1-AI(J) Y(I) 
V=V+.AR(J)*Y(I)+AI(J)*X(I1 
PU=PU+(I-1)*(AR(J)*X(I-1)-AI(J)=='' 

35 PV=PV+(I-1)*(A.R(J)*Y(I-1)+4I(J)+,,, 
PZ=CMPLX(U.V) 

C 

PS=PU*PU+PV*PV 
FÑ=U*U+V*V 
IF(FN.EQ.O.)GO TO 100 
IFiI7.EQ.11GO TO 40 
IF(FN.LT.FIGO TO 40 
DZR=.75*DIR 
DZI=.75*DZI ---- 
GO TO 45 

40 IJ=0 
DZR=-(U*PU+V*PV)/PS 
DZI= (U*PV-V*PU)/P5 
ZjTRS=ZR .__ 

- 

F=FN 
45 ZRZRS+DZR 

ZI=ZIS+DZI 
DZ=CMPLX(DZR.DZI) 
ZN=CMPLX(ZR.ZII 

----TF1ïT. EC5.1 ) G0 TO 70 

IF(IJ.EQ.1)G0 TO 70 
50 IF(CABS(PZ).LT.1.0E-20)G0 TO 100 

IF(Z .E0.0.)G0 TO 70 
ZFïCABSiDZ/Z).LT1.0E-101G0 TO 100 

70 IF(IT.GE.200)G0 TO 100 
Z =ZN- 
GO TO 20 

100 NR=NR+1 
REM(NRI=POLY(A.N.ZN) 
NI(NR)=IT 
RTZ(NR)ZN 
IF(CABS(REM(NR)).GE.1.1G0 TO 1000 
Z F(NR.GE.N1G0 TO 1000 
NCNC-1 

CALCULATE COEFFICIENTS OF REDUCE'. LOUAÏIUNa 
DO 1-051=2i-1W 

105 B(I1 =B(I) +ZN *B(I -1) 
TFINC.EQ.2)G0 TO 110 
IF(L.EQ.2)GO TO 10 
TF(KC.NE.0)G0 TO 10 

IF(AIMAGIRTZ(NR)1.EQ.0.)GO TO 10 

IFIAdS(kEAIrïRTZ(NR1)/AIMAG(RTZ(NR))l.Gi+1 ..i)L:' 
1G0 TO 10 
L=2 
IT=0 

I=1.Nt: 

. 

-flit 
_. 

ZTZI - 

C 
. ... 

- 

. 
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ZN=CONJG(ZN) 
00 TO 100 

110 il`=0 

ZN=-B(2)/B(1) 
GO TC 100 

1000 RETURN 
END 

COMPLEX FUNCTION POLY(A,N.Z) 
DIMENSION A(16) 
COMPLEX A,Z 

C 

C A =COEFFICIENTS OF POLYNOMIAL. 
C N= DEGREE OF POLYNOMIAL. 
C Z =VALUE AT WHICH POLYNOMIAL IS EVALUATED. 
C POLY = POLYNOMIAL EVALUATED AT Z. 
C 

POLY =A(1) 
DO 20 I =1,N 

20 POLY =Z *POLY +A(I +1) 
RETURN 
END 
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M. DISCUSSION OF PROGRAM RESULTS 

The four computer programs, (Lehmer's, Muller's, Rutishaus- 

errs QD and the Steepest Descent) were used to solve numerous poly- 

nomial equations. The results from solving the nine test cases from 

Milne's "Numerical Calculus" (6) which are listed in the Introduction 

and again in Chapter IV are discussed first. Chapter IV also contains 

results (computer output) from solving these nine polynomial equa- 

tions using the four computer programs. Results from solving the 

polynomial equation x 
n 

+ x = 1 (n =3, 5, ... , 101) will be discussed 

second. When discussing xn + x = 1, the case number is n + 1, 

i. e. x3 + x = 1 is referred to as Case 4. 

The execution times were significantly different as well as the 

number of roots that could be found by the different methods. The 

methods will be discussed in order of results, the most satisfactory 

first. 

1. Solution of Nine Test Cases 

Muller's Program 

Muller's program converged in all nine cases, finding the 34 

roots in 0. 275 seconds. Of the 34 roots found three were complex 

conjugates and were accepted as roots without iterating, so 31 dis- 

tinct roots were found. This gives an average time of 0. 00887 
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seconds for each root. The roots found by Muller's program had re- 

mainders whose absolute values varied from 10 10 to 0. These roots 

were used as a check on the roots found by the other programs since 

their remainders are as small as or smaller than those found by the 

other methods. 

Muller's program required 101 FORTRAN IV statements. 

The Steepest Descent Program 

The Steepest Descent program converged in all nine cases, 

finding the 34 roots in 0. 308 seconds. When a root was found, the 

degree of the equation was reduced using synthetic division, linear 

equations that resulted were solved explicitly. The occurrence of 

linear equations and complex conjugate roots made it necessary to 

iterate for only 23 roots. This gives an average time of 0. 01339 

seconds for a root. These roots agreed with those from Muller's 

program in all 13 places in some cases and in only 8 places in other 

cases. The absolute values of the remainders varied from 10 10 to O. 

The Steepest Descent program required 128 FORTRAN IV state- 

ments. 

Lehmer's Program 

Lehmer's program is discussed next since it found more roots 

than the QD program although it is slower than the QD program and 
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the preceding programs. 

Lehmer's program converged in all nine cases, finding the 34 

roots in 0. 361 seconds. Sixteen of these were distinct roots which 

gives an average time of O. 02256 seconds for each root. These roots 

agreed with those from Muller's program in all 13 places in some 

cases and in 10 places in other cases. The absolute values of the re- 

mainders varied from 10 10 to 0. 

The 16 roots mentioned in the preceding paragraph refer to the 

number of roots iterated on by Lehmer's scheme. When a root was 

found, the degree of the equation was reduced using synthetic division. 

Whenever the reduced equation was of degree two or one, Lehmer's 

iteration scheme was stopped. The remaining roots were obtained by 

using the quadratic formula or by solving the linear equation for the 

root. The linear equation occurred whenever a root and its complex 

conjugate were removed from a third degree equation. 

Lehmer's program required 223 FORTRAN IV statements. 

The QD Program 

Rutishauser's QD algorithm is restricted in that there is no sim- 

ple method for solving the equation that results when three or more 

roots have equal moduli (see p. 53). When only two roots have equal 

moduli, the quadratic factor that is found by the QD program is con- 

veniently refined in Bairstow's method and solved by the quadratic 
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formula. Simple roots are refined by Newton's algorithm with the 

derivative, fl(z), computed by iterated synthetic division. 

Rutishauser's QD program found all the roots in seven of the 

nine cases. In the remaining two cases the algorithm was only able 

to separate out one root in each case. In Case 7 three roots vary by 

only one unit in the third digit so could not be separated out. In Case 

8 three roots were the same to three digits and could not be separated 

out. The remaining 28 roots were found in 0. 314 seconds which gives 

an average time of 0. 01121 seconds for each root. These roots agreed 

with those from Muller's program in all 13 places in some cases and 

in 11 places in other cases. The absolute values of the remainders 

varied from 10- 9 to 0. 

The QD program requires 208 FORTRAN IV statements. 

Table 2. Results from solution of the nine test cases. 

No. of places of 
agreement with 

Number of Average time Muller's program Absolute values of 

Program roots found seconds /root max. of 13 the remainders 

Muller's 

Steepest 
Descent 

Lehmer's 

QD 

-10 
34 .00887 -- 10 to 0 

34 . 01339 8 to 13 10 
-10 

to 0 
-10 

34 .02256 10 to 13 10 to 0 
-9 

28 .01121 11 to 13 10 to 0 



2. Solution of xn + x = 1 

Muller's Program 
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Muller's program converged in all cases, finding the 2, 600 

roots in 60. 368 seconds. This gives an average time of . 02321 sec- 

onds for each root. Complex conjugates were accepted as roots with- 

out iterating since the coefficients are all real. Since about half of 

the roots are complex conjugates, the above time should be doubled 

for arbitrary equations with no complex conjugate roots. The roots 

from Muller's program had the smallest remainders, (the absolute 

values varied from 10-12 to 0) so were used as a check on the roots 

found by the other programs. 

The Steepest Descent Program 

The Steepest Descent program also converged in all cases, 

finding the 2, 600 roots in 159. 144 seconds, an average of . 06121 sec- 

onds for each root. As in the discussion of the results from Muller's 

algorithm, this time should be doubled for arbitrary equations with 

no complex conjugate roots. These roots agreed with those from 

Muller's algorithm in all 13 places for some roots and in only 9 

places for other roots. The absolute values of the remainders varied 

from 10 -8 to 0. As would be expected the error increases as the de- 

gree of the polynomial equation increases. 
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Lehmer's Program 

Lehmer's program converged on the roots in Cases 4 to 52 in 

64. 589 seconds. There are 675 roots and hence an average time for 

each root is . 09569 seconds. As in the discussion of the previous 

programs, about half of the roots are complex conjugates so the above 

time should be doubled for arbitrary equations with no complex conju- 

gate roots. These roots agreed with those from Muller's method in 

all 13 places for some roots and in only 6 places for other roots. The 

absolute values of the remainders varied from 10-6 to 0. 

Since the time required to find these roots was relatively high, 

the next cases investigated were Cases 72 and 102. In Case 72 all 71 

roots were found and in Case 102 only 78 roots were found. The solu- 

tion time was 133. 402 seconds for an average of . 89531 seconds for 

each root, about 40 times longer than required by Muller's program. 

This time should be doubled for the general case since about half the 

roots are complex conjugates. These roots agreed with those from 

Muller's program in all 13 places for some roots and in only one place 

for other roots. The absolute values of the remainders varied from 

1.67 to 10-15. 

A root that is found approximately by Lehmer's algorithm is re- 

fined in Newton's method since Newton's method converges more 

rapidly. If after this refinement a root still had a remainder greater 
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than or equal to one the solution of the problem was stopped. A root 

not found to a high degree of accuracy caused all subsequent roots to 

be in error since they were found from the reduced equation. The 

reduced equation was used to avoid converging on the same root when 

the roots were close. 

In Case 102 the root approximations found by Lehmer's algo- 

rithm were not accurate enough for Newton's method to converge so 

the solution of the problem was stopped. The number of iterations 

allowed in Newton's method was increased from 100 to 300 but con- 

vergence still could not be obtained. 

The convergence criterion in Lehmer's algorithm is the dis- 

tance between annulus centers, (the centers being the root approxi- 

mations). 

CT-CTO 

CT 
< E 

where CT is the center of the current annulus that contains a root 

and CT0 is the center of the previous annulus that contained a root. 

For E = 1. 2 all the roots were found in Cases 4 through 12 but only 

two roots were found in Cases 14 through 52. E = 1. 0 was small 

enough to force convergence of all roots in Cases 4 through 52. E was 

varied from 0. 17 to 0. 05 for Cases 72 and 102. With E = 0. 17 only 

four roots were found in Cases 72 and 102. With E = 0. 15, 71 roots 
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were found in Case 72 and 78 roots were found in Case 102. With 

c = 0. 12, 36 roots were found in Case 72 and 30 roots were found in 

Case 102. With E = 0. 05, 46 roots were found in Case 72 and 24 

roots were found in Case 102. 

These results indicate that if E is not small enough then the 

roots will not be accurate and the succeeding roots will be in error 

and if E is too small the accuracy is unatttainable due to rounding 

errors that result in the computer operations. 

The QD Program 

The QD program is restricted in that there is no simple method 

for solving the equation that results when three or more roots have 

equal moduli, (see p. 53). 

The QD program found all the roots in Cases 4 through 14. 

Three or more roots with equal moduli were detected in Cases 16, 18, 

24, 26, 28, 30, 32 and 34 so the particular roots could not be found. 

As a result only 257 roots were found out of a possible 288. The ex- 

ecution time was 7. 886 seconds, an average time of . 03068 seconds 

for each root. The finding of complex conjugates is included in this 

time. 

These roots agreed with those from Muller's program in all 13 

places for some roots. In a few instances there was no agreement 

since Bairstow's subprogram did not converge. This can be 
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attributed to the initial approximations for the QD subprogram not be- 

ing good enough. More iterations by the QD subprogram helped in 

some cases. This lack of agreement was apparent in the large abso- 

lute values of the remainders, 105 to 10 as compared to 10-9 to 10-15 

for good roots. 

An infinite operand (operand > 10322) was generated in subrou- 

tine BAIRST during the solution of Case 36 and stopped the program. 

Scaling was added to subroutine BAIRST which increased the number 

of cases solved from 32 to the present value of 34 before the infinite 

operand was generated. The infinite operand can be attributed to the 

many multiplications that are necessary to perform during the iter- 

ated synthetic division. 

Table 3. Results from solving xn + x = 1, (n--.3, 5, ... , 101). 

Program 
Number of 

roots found 
Average time 
seconds /root 

Muller's 2, 600 . 04642 

Steepest 
Descent 2, 600 .12242 

Lehmer's 675 .19137 

QD 257 .03068* 

No. of places of 

agreement with 
Muller's program 
max. of 13 

9 to 13 

6 to 13 

0 to 13 

Absolute values of 

the remainders 
-12 

10 to 0 

10-g to 0 

- 6 
10 to 0 

lÓ to 0 

* This small time does not mean that the method is the fastest. It occurred because of 

the low degree of the equations that were solved as compared to the other methods. 
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IV. COMPUTER PROGRAM TEST RESULTS 

1. Solution of Nine Test Cases 

NI on the output refers to the number of iterations. For Mul- 

ler's program NI is the number of iterations performed by the pro- 

gram for the particular root. This is also the case for the Steepest 

Descent program. The iterations performed by Lehmer's subpro- 

gram are listed separately. For Lehmer's program NI refers to the 

number of iterations performed by Newton's subprogram in refining 

the roots found by Lehmer's subprogram. The QD subprogram per- 

formed a minimum of 20 iterations before turning the root approxima- 

tions over to Newton's or Baistow's subprogram for final refinement. 

2. Solution of x21 + x = 1 

NI on the output refers to the number of iterations. For Mul- 

ler's program NI is the number of iterations performed by the pro- 

gram for the particular root. This is also the case for the Steepest 

Descent program. The iterations performed by Lehmer's subpro- 

gram are listed separately. For Lehmer's program NI re- 

fers to the number of iterations performed by Newton's subprogram 

in refining the roots found by Lehmer's subprogram. The QD subpro- 

gram performed 78 iterations before turning the root approximations 

over to Newton's or Bairstow's subprogram for final refinement. 
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Table 4. Muller's program, solution of nine test cases. 

Case 1 4 Coefficients 

NI= 

M= 
M= 

7 

2 

0 

Remainders 

0. 

2.13162821E -14 

-2.13162821E -14 

1.000000000000E +00 

-0. 

-1.000000000000E +00 

-4.000000000000E +00 

3 Roots 

-0. 

-0. 

-0. 

-0. 

0. 

-1.191670795605E +00 

1.191670795605E +00 

1.796321903259E +00 

-8.981609516297E -01 

-8.981609516297E -01 

-2.84217094E -14 

0. 

0. 

Execution time = 

Case 2, 5 Coefficients 

. 022 seconds 

1.000000000000E +00 -0. 

-2. 037900000000E +00 -0. 

-1.542450000000E +01 -0. 

1. 566960000000E+01 -0. 

3.549360000000E +01 -0. 

4 Roots Remainders 

-1.201998596673E +00 0. NI= 6 2. 27373675E -13 0. 

2.124387030181E +00 0. NI= 6 2. 27373675E -13 0. 

-3.211994374397E +00 0. NI= 2 -9. 09494702E -13 0. 

4.327505940890E +00 0. NI= 2 -2. 50111043E -12 0. 

Execution time = . 028 seconds 

Case 3, 5 Coefficients 

NI= 

NI= 

NI= 

NI= 

5 

7 

0 

2 

Remainders 

0. 

0. 

0. 

-2.34022342E -26 

1.000000000000E +00 

-2.000000000000E +00 

-4.000000000000E +00 

-4.000000000000E +00 

4.000000000000E +00 

4 Roots 

-0. 
-0. 
-0. 
-0. 
-0. 

0. 

1.000000000000E +00 

-1.000000000000E +00 

-4.038967834732E -28 

5.857864376269E -01 

-1.000000000000E +00 

-1.000000000000E +00 

3.414213562373E +00 

2. 84217094E -14 

0. 

0. 

-3. 97903932E -13 

Execution time = . 028 seconds 

Case 4, 5 Coefficients 

4.000000000000E +00 -0. 

-2.400000000000E +01 -0. 

4.400000000000E +01 -0. 

-2.400000000000E +01 -0. 

3.000000000000E +00 -0. 

(Continued) 
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4 Roots Remainders 

1.771243444677E -01 0. NI= 6 o. o. 

6.339745962156E -01 0. NI= 6 -1. 42108547E -14 0. 

2.366025403785E +00 0. NI= 2 2. 13162821E -13 0. 

2.822875655532E +00 0. NI= 2 1.44950718E -12 0. 

Execution time = 

Case 5, 5 Coefficients 

. 028 seconds 

2.000000000000E +00 -0. 
1.600000000000E +01 -0. 
1.000000000000E +00 -0. 
-7.400000000000E +01 -0. 
5.600000000000E +01 -0. 

4 Roots Remainders 

1.121320343558E +00 0. NI= 9 2. 27373675E -13 0. 

1.123105625620E +00 0. NI= 5 4.54747351E -13 Q. 

-3.121320343560E +00 0. NI= 2 -1. 13686838E -12 0. 

-7.123105625618E +00 0. NI= 3 2.04636308E -12 0. 

Execution time = 

Case 6, 4 Coefficients 

. 032 seconds 

1.000000000000E +00 -0. 

-6.026600000000E +00 -0. 

4. 304800000000E +00 -0. 

1.595330000000E +01 -0. 

3 Roots Remainders 

-1.216399518172E +00 0. NI= 5 -5. 68434189E -14 o. 

3.612590155512E +00 0. NI= 2 -1.70530257E-13 0. 

3.630409362660E +00 0. NI= 2 -5. 68434189E -14 o. 

Execution time = . 022 seconds 

Case 7 5 Coefficients 

1.000000000000E +00 -0. 
1.200000000000E +01 -0. 

-9.500000000000E +00 -0. 
-6.000000000000E +00 -0. 
4.500000000000E +00 -0. 

4 Roots Remainders 

-7.071067811865E -01 0. NI= 7 0. 0. 

7.082039325011E -01 4.90945670725E -19 NI= 8 2.84217094E-14 1.02279363E-20 

7.071067811861E -01 -1.218611372268E -27 NI= 2 0. 2.53657372E -29 

-1.270820393250E +01 1.596373671581E -27 NI= 3 -1.18831167E -10 -3.44820039E -24 

Executiom time = . 030 seconds 

(Continued) 
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Case 8, 5 Coefficients 

1.000000000000E +00 -0. 
-6.000000000000E +00 -O. 

-1.130000000000E +02 -0. 
5.040000000000E +02 -0. 
2.436000000000E +03 -0. 

4 Roots 

0. NI= 6 

Remainders 

0. -3.164414002969E +00 O. 

9.164414003108E +00 0. NI= 12 2.91038305E -11 0. 

9.165151389772E +00 0. NI= 1 0. 0. 

-9.165151389912E +00 0. NI= 2 -2. 91 038305E-11 0. 

Execution time = . 030 seconds 

Case 9 5 Coefficients 

1.000000000000E +00 -0. 
1.600000000000E +01 -0. 
1.100000000000E +01 -0. 

-2.240000000000E +02 -0. 
2.860000000000E +02 -0. 

4 Roots Remainders 

1.841821538748E+00 -4.311068539088E-01 NI= 8 -1.81898940E -12 0. 

1.841821538748E+00 4.311068539088E-01 NI= 0 -1.81898940E -12 0. 

-5.726958802481E+00 2.584939414228E-26 NI= 2 9.09494702E -12 1. 22262764E-23 

-1.395668427502E+01 7.367077330550E-25 NI= 2 -7. 63975549E -11 -1.51438351E -21 

Execution time = . 028 seconds 
Total execution time = . 275 seconds 

Case 1, 

Table 5. The Steepest Descent program, solutions of nine test cases. 

4 Coefficients 

1.000000000000E +00 -0. 
-0. -0. 
-1.000000000000E +00 -0. 
-4.000000000000E+00 -0. 

3 Roots Remainders 

1.796321903259E+00 4.827632850013E-22 NI= 27 0. 4. 19053842E-21 

-8.981609516297E-01 1.191670795605E+00 NI= 7 -2.84217094E -14 -6.39488462E -14 

-8.981609516297E-01 -1.191670795605E+00 NI= 0 2.84217094E -14 -7. 10542736E -14 

Execution time = . 027 seconds 
(Continued 
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Case 2, 5 Coefficients 

1.000000000000E +00 -0. 
-2.037900000000E +00 -0. 
-1.542450000000E +01 -0. 
1.566960000000E +01 -0. 
3.549360000000E +01 -0. 

4 Roots Remainders 

2.12438703M1E+00 1.615587133893E-27 NI= 6 1.13686838E -12 -6.31811871E -26 

-1.201998596673E+00 -4.316848821761E-24 NI= 6 1.59161573E -12 -1.59595558E -22 

4.327505940890E+00 3.801722095294E-21 NI= 12 -2.50111043E -12 3. 49178173E -19 

-3.211994374397E+00 -3.797406862059E-21 NI= 0 -2. 04636308E -12 3.07094262E -19 

Execution time = . 028 seconds 

Case 3 5 Coefficients 

NI= 7 

NI= 10 

NI= 0 

NI= 0 

Remainders 

5.98309727E -35 

0. 

0. 

0. 

1.000000000000E +00 

-2.000000000000E +00 

-4.000000000000E +00 

-4.000000000000E +00 

4.000000000000E +00 

4 Roots 

-0. 
-0. 
-0. 
-0. 
-0. 

-6.018531076210E -36 

-1,000000000000E +00 

1.000000000000E +00 

O. 

5.857864376269E -01 

-1.000000000000E +00 

-1.000000000000E +00 

3.414213562373E +00 

2.84217094E -14 

1.98951966E -13 

1.98951966E -13 

-2.10320650E -12 

Execution time = . 027 seconds 

Case 4, 5 Coefficients 

4.000000000000E +00 

-2.400000000000E +01 

4.400000000000E +01 

-2.400000000000E +01 

3.000000000000E +00 

-0. 
-0. 
-0. 
-0. 
-0. 

4 Roots Remainders 

6.339745962156E -01 0. NI= 7 9.94759830E -14 0. 

2.366025403784E +00 2.603240987229E -29 NI= 9 1.57740487E -12 -1.80357826E -28 

1.771243444677E -01 -1.292469707114E -26 NI= 7 -2. 27373675E -13 1.36782137E -25 

2.822875655532E +00 1.289866466127E -26 NI= 0 7.53175300E -13 1.36506636E -25 

Execution time = . 028 seconds 

Case 5, 5 Coefficients 

2.000000000000E +00 -0. 

1.600000000000E +01 -O. 

1.000000000000E +00 -0. 

-7.400000000000E +01 -0. 

5.600000000000E +01 -0. 

(Continued) 
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4 Roots Remainders 

1.121320343561E +00 6.705418668574E -24 NI= 16 -2. 27373675E-13 -8. 37451008E-25 
1.123105625616E +00 -6.700849586211E -24 NI= 6 0. -8.37413820E-25 

-3.121320343560E +00 -6.423719003118E -27 NI= 7 -1.13686838E-12 -9.25817806E-25 
-7.123105625618E +00 1.854636640078E -27 NI= 0 -3.31965566E-11 -1.00915411E-24 

Execution time = . 033 seconds 

Case 6 4 Coefficients 

1.000000000000E +00 -0. 
-6.026600000000E +00 -0. 
4.304800000000E +00 -0. 
1.595330000000E +01 -0. 

3 Roots Remainders 

3,612590155512E +00 -4.930380657631E -29 NI= 13 1.70530257E -13 4. 24253178E-30 
-1.216399518172E +00 -1.912855166529E -24 NI= 12 3. 41060513E-13 -4. 47707387E-23 
3. 630409362660E+00 1. 912904470335E-24 NI= 0 1. 70530257E-13 1. 65210465E-25 

Executiom time = . 025 seconds 

Case 7, 5 Coefficients 

1.000000000000E +00 -0. 
1.200000000000E +01 -0. 

-9.500000000000E +00 -0. 
-6.000000000000E +00 -0. 
4.500000000000E +00 -0. 

4 Roots Remainders 

7.071067811863E -01 1.860283898083E -25 NI= 19 2.84217094E -14 -3. 87223306E-27 

7. 082039324996E-01 -1. 858714064882E-25 NI= 7 0. -3.87228362E -27 
-7. 071067811865E-01 1.615587133893E -26 NI= 5 5. 68434189E -14 3. 88077201E -25 

-1. 270820393250E+01 -1. 631285465907E-26 NI= 0 -1. 18831167E-10 3.52361059E -23 

Execution time = . 032 seconds 

Case 8, 5 Coefficients 

1.000000000000E +00 -0. 
-6.000000000000E +00 -0. 
-1.130000000000E +02 -0. 
5.040000000000E +02 -0. 
2.436000000000E +03 -0. 

4 Roots Remainders 

-3.164414002969E +00 3.944304526105E -31 NI= 8 1.45519152E -11 3. 59786299E-28 

9.164414002341E +00 -4. 803393640885E-21 NI= 18 1.45519152E -10 8. 00420721E-22 

9.165151390540E +00 4. 803200325787E-21 NI= 12 1.16415322E -10 8.00468580E -22 

-9.165151389912E +00 1.933147035594E -25 NI= 0 -1.89174898E -10 -3.89754659E -22 

Execution time = . 058 seconds 
(Continued) 
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Case 9, 5 Coefficients 

1.000000000000E +00 -0. 

1.600000000000E +01 -0. 

1.100000000000E +01 -0. 

-2.240000000000E +02 -0. 

2.860000000000E +02 -0. 

4 Roots Remainders 

1.841821538748E+00 4.311068539088E-01 NI= 7 3. 63797881E -12 -9.09494702E-13 

1.841821538748E+00 -4.311068539088E-01 NI= 0 3.63797881E -12 0.09494702E-13 

-5.726958802481E+00 -7.951273638166E-22 NI= 6 4. 36557457E -11 -3.76080263E -19 

-1.395668427502E+01 7.951273638166E-22 NI= 0 -7.639755 49E-11 -1.63447146E -18 

Execution time == . 026 

Total execution time = . 308 seconds 

Table 6. Lehmer's program, solution of nine test cases. 

Case 1 4 Coefficients 

1.000000000000E +00 -0. 

-0. -0. 

-1.000000000000E +00 -0. 

-4.000000000000E +00 -0. 

3 Roots Remainders 

1,796321903259E +00 0. NI= 5 0. 0. 

-8.981609516297E -01 1.191670795605E +00 NI= 0 0. O. 

-8.981609516297E -01 -1.191670795605E +00 NI= 0 0. O. 

1 Roots found by Lehmers method. 

1.623588300000E +00 0. 

Execution time = . 024 seconds 

5 Coefficients Case 2 

1.000000000000E +00 -0. 

-2.037900000000E +00 -0. 

-1.542450000000E +01 -0. 

1.566960000000E +01 -0. 

3.549360000000E +01 -0. 

NI= 15 

4 Roots Remainders 

2.124387030181E+00 0. NI= 4 2. 27373675E -13 O. 

-1.201998596673E+00 2.648153673532E-33 NI= 5 4. 54747351E -13 9. 79032577E -32 

4.327505940890E+00 -7.059854738346E-34 NI= 0 -5. 22959454E -12 -6.48429084E-32 

-3.211994374397E+00 -1.942168199698E-33 NI= 0 -2. 04636308E -12 1.57062104E -31 

(Continued) 

. 
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2 Roots found by Lehmers method. 

1.623588300000E+00 0, NI= 14 

-1.623588300000E+00 -1.657167992024E-11 NI== 23 

Execution time = .037 seconds 

Case 3, 5 Coefficients 

1.000000000000E +00 -0. 
-2.000000000000E +00 -0. 

-4. 000000000000E +00 -0. 

-4.000000000000E +00 -0. 

4.000000000000E +00 -0. 

4 Roots Remainders 

5.857864376269E-01 0. NI= 5 0. 0. 

-1.000000000000E+00 1.000000000000E+00 NI= 5 1.13686838E-13 7.10542736E-14 

-1.000000000000E+00 -1.000000000000E+00 NI= 1 0. 2.70006240E-13 

3.414213562373E+00 -7.105427357601E-15 NI= 0 -3.97903932E-13 -4.11696458E-13 

3 Roots found by Lehmers method. 

8.117941500000E-01 0. NI= 15 

-1.148050296794E+00 1.148050296776E+00 NI= 22 

-1.000000000000E+00 -1.000000000000E+00 NI= 0 

Execution time = . 037 

Case 4, 5 Coefficients 

seconds 

4.000000000000E +00 -0. 

-2.400000000000E +01 -0. 

4.400000000000E +01 -0. 

-2.400000000000E +01 -0. 

3.000000000000E +00 -0. 

4 Roots Remainders 

1.771243444677E -01 0. NI= 5 0. 0. 

6.339745962156E -01 0. NI= 5 1. 421 08547E -14 0. 

2.822875655532E +00 0. NI= 0 2.27373675E-13 0. 

2.366025403785E +00 0. NI= 0 9.94759830E-14 0. 

2 Roots found by Lehmers method. 

2.029485375000E -01 0. 

8.117941500000E -01 0. 

Execution time = .036 seconds 

Case 5, 5 Coefficients 

2.000000000000E +00 -0. 

1.600000000000E +01 -0. 

1.000000000000E +00 -0. 

-7.400000000000E +01 -0. 

5.600000000000E +01 -0. 

NI= 23 

NI= 14 

(Continued) 
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1.123105625615E+00 O. M=14 -2.27373675E-13 0. 

1.121320343563E+00 O. NI=- 5 -2.27373675E-13 0. 

-3.121320343560E+00 O. NI= 0 -1.13686838E-12 O. 

-7.123105625618E+00 0. NI= 0 -2.63753464E-11 O. 

2 Roots found by Lehmers method. 

1.623588300000E +00 O. 

1.623588300000E +00 O. 

Execution time = . 035 seconds 

Case 6, 4 Coefficients 

1.000000000000E+00 -0. 

-6.026600000000E +00 -0, 

4.304800000000E+00 -0. 
1.595330000000E +01 -O. 

NI= 13 

NI= 11 
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3 Roots Remainders 

-1.216399518172E+00 -1.053242938337E-35 NI= 5 1.70530257E-13 -2.46513511E-34 

3.630409362660E+00 -2.854279222898E-33 NI= 0 -1.13686838E-13 -2.46513511E-34 

3.612590155512E+00 2.864811652282E-33 NI= 0 1.13686838E-13 -2.46513511E-34 

1 Roots found by Lehmers method. 

-1.623588300000E +00 -1.657167992024E -11 NI= 23 

Execution time = . 027 seconds 

Case 7, 5 Coefficients 

1.000000000000E +00 -O. 

1.200000000000E +01 -O. 

-9.500000000000E +00 -0. 

-6.000000000000E +00 -0. 
4.500000000000E +00 -0. 

4 Roots Remainders 

7.082039325014E -01 0. NI= 12 0. 0. 

7.071067811846E -01 0. NI= 5 2.84217094E-14 O. 

-7.071067811866E -01 0. NI= 0 -5.68434189E-14 0. 

-1.270820393250E +01 0. NI= 0 -1.18831167E-10 O. 

2 Roots found by Lehmers method. 

8. 117941500000E-01 0. 

8.117941500000E -01 0. 

Execution time = .036 seconds 

NI= 15 

NI= 13 

(Continued) 
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Case 8, 5 Coefficients 

1.000000000000E+00 -0. 

-6.000000000000E+00 -0. 

-1.130000000000E+02 -0. 
S.040000000000E+02 -0. 
2.436000000000E+03 -0. 

4 Roots Remainders 

-3. 164414002969E+00 3.081487911020E -33 NI= 3 0. 2.81083046E-30 

9.165151389567E +00 1.686639269562E -29 NI= 18 -4. 36557457E-11 2.81083046E -30 

9.164414003314E +00 -1. 686808003764E-29 NI= 0 -2. 91038305E -11 2.81083046E -30 

-9.165151389912E +00 -1.394145894822E -33 NI= 0 -1.89174898E -10 2.81083046E-30 

2 Roots found by Lehmers method. 

-3. 247176600000E+00 -3. 314335984047E-11 

1.298870640000E +01 0. 

NI= 51 

NI= 18 

Execution time = . 048 seconds 

Case 9. 5 Coefficients 

1.000000000000E +00 -0. 
1.600000000000E +01 -0. 
1.100000000000E +02 -0. 

-2.240000000000E +02 -0. 
2.860000000000E +02 -0. 

4 Roots Remainders 

-5.726958802481E +00 0. NI= 21 9.09494702E -12 O. 

-1.395668427502E +01 0. NI= 42 -3. 81987775E-11 0. 

1.841821538748E +00 4.311068539081E -01 NI= 0 6.54836185E-11 2.95585778E-12 

1.841821538748E +00 -4.311068539081E -01 NI= 0 6.54836185E-11 -2.95585778E-12 

2 Roots found by Lehmers method. 

1.623588300000E +00 0. 

1. 623588300000E+00 0. 

Execution time = . 045 seconds 

Total execution time = . 361 seconds 

NI= 14 

NI 10 

Table 7. The QD program, solution of nine test cases. 

Case 1, 4 Coefficients 

1.000000000000E+00 -0. 

-0. -0. 

-1.000000000000E +00 -0. 

-4. 000000000000E +00 -0. 
(Continued) 
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3 Roots Remainders 

-8.981609516297E -01 1.191670795605E +00 NI= 1 -1. 13686838E -13 1. 42108547E-14 

-8.981609516297E -01 -1.191670795605E +00 NI= 1 -1.131386838E-13 -1. 42108547E-14 

1.796321903259E +00 0. NI= 2 -2. 84217094E -14 0. 

Execution time = . 028 seconds 

Case 1 

Output from QD algorithm, 20 iterations. 

Approximations to simple roots 

1. 796321905156E+00 0. 

Quadratic approximations 

3.796321903259E +00 0. 

5. 023094283389E+00 0. 

Case 2, 5 Coefficients 

1.000000000000E +00 -0. 

-2.037900000000E +00 -0. 

-1.542450000000E +01 -0. 

1.566960000000E +01 -0. 

3.549360000000E +01 -0. 

4 Roots Remainders 

4.327505940890E +00 0. NI= 4 -2.50111043E -12 0. 

-3.211994374397E +00 0. NI= 4 -9. 09494702E -13 0. 

2.124387030181E +00 0. NI= 3 9. 09494702E -13 0. 

-1.201998596673E +00 0. NI= 2 2. 39879228E -10 0. 

Execution time = . 033 seconds 

Case 2 

Output from QD algorithm, 20 iterations. 

Approximations to simple roots 

4.318501853609E +00 

-3.202884132530E +00 

2.124260753894E +00 

-1.201978474973E +00 

0. 

0. 

0. 
0. 

Case 3, 5 Coefficients 

1.000000000000E +00 -0. 

-2.000000000000E +00 -0. 

-4.000000000000E +00 -0. 

-4.000000000000E +00 -0. 

4.000000000000E +00 -0. 

(Continued) 



4 Roots Remainders 

-1.000000000000E +00 1.000000000000E +00 NI= 2 0. O. 

-1.000000000000E +00 -1.000000000000E +00 NI= 2 0. 0. 

3.414213562373E +00 0. NI= 2 -3. 97903932E -13 0. 

5.857864376269E -01 0. NI= 2 0. 0. 

Execution time = . 034 seconds 

Case 3 

Output from QD algorithm, 20 iterations. 

Approximations to simple roots 

3.414213609724E +00 0. 

5. 8578645 46377E-01 O. 

Quadratic approximations 

2.000000000000E +00 0. 

2.000000000000E +00 0. 

Case 4, 5 Coefficients 

4.000000000000E+00-0. 

-2.400000000000E +01 -0. 

4.400000000000E +01 -0. 

-2.400000000000E +01 -0. 

3.000000000000E +00 -0. 

4 Roots Remainders 

2.822875655532E +00 0. NI= 4 8.89599505E -12 O. 

2.366025403785E +00 0. NI= 4 2.84217094E -13 0. 

6.339745962156E -01 0. NI= 1 -5. 92592642E -11 0. 

1.771243444677E -01 0. NI= 1 1. 74082970E-11 0. 

Execution time = . 033 seconds 

Case 4 

Output from QD algorithm, 20 

Approximations to simple roots 

2.835231957845E+00 0. 

2.353669101481E +00 0. 

6. 339745962070E-01 0. 

1.771243444661E -01 0. 

Case 5, 5 Coefficients 

2.000000000000E +00 -O. 

1.600000000000E +01 -0. 

1.000000000000E +00 -0. 

-7.400000000000E +01 -0. 

5.600000000000E +01 -0. 

iterations. 

(Continued) 
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4 Roots Remainders 

-7.123105625618E +00 0. NI= 2 -3. 31965566E-11 0. 
-3.121320343560E +00 0. NI= 2 2. 27373675E-13 0. 
1.123105625616E +00 0. NI= 10 8. 41282599E-12 0. 
1.121320343562E +00 0. NI= 10 4.54747351E-12 0. 

Execution time = . 035 seconds 

Case 5 

Output from QD algorithm, 20 iterations. 

Approximations to simple roots 

-7.123105712232E +00 0. 

-3.121320133747E +00 0. 

1.174656413337E +00 0. 
1.069769432641E +00 0. 

Case 6, 4 Coefficients 

1.000000000000E +00 -0. 

-6.026600000000E +00 -0. 

4.304800000000E +00 -0. 

1.595330000000E +01 -0. 

3 Roots Remainders 

3.630409362660E +00 0. NI= 9 0. O. 

3.612590155513E +00 0. NI= 9 1.70530257E -13 0. 
-1.216399518172E +00 0. NI= 2 -5. 68434189E -14 O. 

Execution time = . 029 seconds 

Case 6 

Output from QD algorithm, 20 iterations. 

Approximations to simple roots 

3.792066694287E +00 0. 

3.450932808651E +00 0. 

-1.216399502938E +00 0. 

Case 7, 5 Coefficients 

1.000000000000E +00 -0. 
1.200000000000E +01 -0. 

-9.500000000000E +00 

-6.000000000000E +00 

4.500000000000E +00 

1 Roots 

-0. 
-0. 
-0. 

0. NI= 1 

Remainders 

0. -1.270820393250E +01 -1.22605570E-09 

Execution time = . 025 seconds 

(Continued) 
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Case 7 

Three or more roots with equal modulus. 
The QD program can not find such roots, any other roots will be found. 

Output from QD algorithm, 20 iterations. 

Approximations to simple roots 

-1.270820393250E +01 0. 

Case 8, 5 Coefficients 

1.000000000000E +00 -0. 
-6.000000000000E +00 -0. 
-1.130000000000E +02 -0. 
5.040000000000E +02 -0. 
2.436000000000E +03 -0. 

1 Roots 

NI= 2 0. 

Remainders 

-3.164414002969E +00 0. 0. 

Execution time = . 027 seconds 

Case 8 

Three of more roots with equal modulus. 
The QD program can not find such roots, any other roots will be found. 

Output from QD algorithm, 20 iterations. 

Approximations to simple roots 

-3.164413979047E +00 0. 

Case 9, 5 Coefficients 

1.000000000000E +00 -0. 
1.600000000000E +01 -0. 
1.100000000000E +01 -0. 

-2.240000000000E +02 -0. 
2.860000000000E +02 -0. 

4 Roots Remainders 

1.841821538748E +00 4.311068539088E -01 M= 2 1.81898940E -12 -6.82121026E -13 

1.841821538748E +00 -4.311068539088E -01 NI= 2 1.81898940E -12 6.82121026E -13 

-1.395668427502E +01 0. NI= 2 -7.63975549E -11 0. 

-5.726958802481E +00 0. NI= 2 -3.63797881E -12 0. 

Execution time = . 034 seconds 
Total execution time = . 314 seconds 

Case 9 

Output from QD algorithm, 20 iterations. 

Approximations to simple roots Quadratic approximations 

-1.395668432028E +01 0. -3.683643077497E +00 0. 

-5.726958763430E +00 0. 3.578159700084E +00 0. 



108 

21 
Table 8. Muller's program, solution of x + x = 1. 

21 Roots Remainders 

8.972916221835E -01 0. NI= 11 -7.10542736E-15 0. 

-1.940345152168E -01 -1.002778092979E +00 NI= 12 -1.20792265E-13 -1.11910481E -13 

-1.940345152168E -01 1.002778092979E +00 NI= 0 -1.20792265E-13 1.11910481E -13 

-4.901687318868E -01 9.022294492945E -01 NI= 8 -2.84217094E-14 3.19744231E-14 

-4.901687318868E -01 -9.022294492945E -01 N1= 0 -2.84217094E-14 -3.19744231E -14 

8.322780849658E -01 4.978437339585E -01 NI= 12 0. 8.88178420E-15 

8.322780849658E -01 -4.978437339585E -01 NI= 0 0. -8.88178420E -15 

-9.257004498721E -01 4.585575083312E -01 NI= 9 -7.81597009E-14 7.81597009E -14 

-9.257004498721E -01 -4.585575083312E -01 NI= 0 -7.81597009E-14 -7.81597009E -14 

6.584719287059E -01 7.396523993201E -01 NI= 12 -3.55271368E-14 7.10542736E -14 

6.584719287059E -01 -7.396523993201E -01 NI= 0 -3.55271368E-14 -7.10542736E -14 

-1.022118072328E +00 1.579418431937E -01 NI= 10 O. -1.77635684E -14 

-1.022118072328E+00 -1.579418431937E -01 NI= 0 0. 1.77635684E -14 

9.074327090550E -01 2.249415044457E -01 NI= 10 -7.10542736E-15 7.99360578E -15 

9.074327090550E -01 -2.249415044457E -01 NI= 0 -7.10542736E-15 -7.99360578E -15 

1.166759111031E -01 1.007289866987E +00 NI= 9 -1.20792265E-13 1.09245946E -13 

1.166759111031E -01 -1.007289866987E +00 NI= 0 -1.20792265E-13 -1.09245946E -13 

-7.423600687337E -01 7.148739183073E -01 NI= 9 -4.97379915E-14 9.76996262E -14 

-7.423600687337E -01 -7.148739183073E -01 NI= 0 -4.97379915E-14 -9.76996262E-14 

4.108773931162E -01 9.161620708855E -01 NI= 2 #7.10542736E-15 2.84217094E -14 

4.108773931162E -01 -9.161620708855E -01 NI= 0 7.10542736E-15 -2.84217094E-14 

Execution time =_ . 217 seconds 

21 
Table 9. The Steepest Descent program, solution of x + x = 1. 

21 Roots Remainders 

6.584719287059E -01 7.396523993201E -01 NI= 13 -4.97379915E-14 1.42108547E-14 

6.584719287059E -01 -7.396523993201E -01 NI= 0 -4.97379915E-14 -1.42108547E-14 

8.972916221835E -01 -5.422016552177E -15 NI= 16 -6.39488462E -14 -1. 84552565E -14 

-1.022118072328E +00 1.579418431937E -01 NI= 17 -3.12638804E -13 -8.26005930E -14 

-1.022118072328E +00 -1.579418431937E -01 NI= 0 -3.12638804E -13 8.26005930E -14 

8.322780849658E -01 4.978437339585E -01 NI= 23 -9.23705556E-14 2. 13162821E -14 

8.322780849658E -01 -4.978437339585E -01 NI= 0 -9.23705556E -14 -2.13162821E -14 

-1.940345152168E -01 1.002778092979E +00 NI= 16 -9.09494702E -13 6. 19948537E -13 

-1.940345152168E -01 -1.002778092979E +00 NI= 0 -9.09494702E -13 -6. 19948537E -13 

1.166759111030E -01 1.007289866987E +00 NI= 18 5.68434189E -14 6.27053964E-13 

1.166759111030E -01 -1.007289866987E +00 NI= 0 5.68434189E -14 -6.27053964E-13 

-9.257004498720E -01 4.585575083312E -01 NI= 33 -2. 27373675E -13 8.34887715E -14 

-9.257004498720E -01 -4.585575083312E -01 NI= 0 -2. 27373675E -13 -8.34887715E -14 

9.074327090550E -01 -2.249415044456E -01 NI= 17 -1.13686838E -13 -1.03028697E -13 

9.074327090550E -01 2.249415044456E -01 NI= 0 -1.13686838E -13 1.03028697E -13 

4.108773931162E -01 9.161620708855E -01 NI= 8 -9.23705556E -14 6.46593890E -13 

4.108773931162E -01 -9.161620708855E -01 NI= 0 -9.23705556E -14 -6.46593890E -13 

-7.423600687337E -01 7.148739183074E -01 NI= 25 2. 66453526E -12 -3.38040707E -12 

-7.423600687337E -01 -7.148739183074E -01 NI= 0 2. 66453526E -12 3.38040707E -12 

-4.901687318867E -01 9.022294492944E -01 NI= 7 -4.96669372E -12 5.38236122E -13 

-4.901687318867E -01 -9.022294492944E -01 NI- 0 -4.81037432E -12 -9.00612918E -13 

Execution time = . 428 seconds 

-' 
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21 
Table 10. Lehmer's program, solution of x + x = 1. 

21 Roots Remainders 

8.972916221835E-01 -3.549874073495E -30 NI= 11 -7. 142736E -15 -1.20829282E -29 
9.074327090550E-01 2.249415044457E-01 NL= 8 -7.10542736E-15 7. 99360578E -15 
9.074327090550E-01 -2.249415044457E-01 NI= 1 O. -1. 15463195E - -14 

6.584719287059E-01 7.396523993201E-01 NI= 6 -1. 27897692E-13 -1. 95399252E -14 

6.584719287059E-01 -7.396523993201E-01 NI= 1 -1.84741111E-13 -3.55271368E -15 

8.322780849658E-01 4.978437339585E-01 NI= 7 -3.55271368E-14 4. 79616347E -14 

8.322780849658E-01 -4.978437339585E-01 NI= 1 2. 84217094E -14 -9. 05941988E-1 4 

1.166759111027E-01 1.007289866987E+00 NI= 18 7. 73070497E -12 4.865 441 38E-12 

1.166759111027E-01 -1.007289866987E+00 NI= 1 3. 15480975E-1 2 -1.07558407E -11 

4.108773931163E-01 9.161620708856E-01 NI= 9 1.84741111E-13 -1. 05160325E -12 
4.108773931162E-01 -9.161620708855E-01 NI= 1 2.70006240E-13 -1. 39976919E -12 
-4.901687318857E-01 9.022294492952E-01 NI= 8 -1.94120275E-11 -4. 31228386E-11 

-4.901687318869E-01 -9.022294492941E -01 NI= 1 -2.55795385E-12 -1. 20916610E -11 

-7.423600687358E-01 7.148739182994E-01 NI== 12 -3.88240551E-11 3. 01380254E-10 
-7.423600687357E-01 -7.148739183032E-01 NI= 1 1.31166189E-11 -1. 71548109E-10 
-9.257004498632E-01 4.585575083446E-01 NI= 14 -2.16992646E-10 -5.90384630E -10 

-9.257004498569E-01 -4.585575083433E-01 NI= 1 -4. 71601425E-10 5.98845418E -10 

-1.940345152172E-01 1.002778092979E+00 NI= 7 4. 97379915E-14 2.00612860E -11 

-1.940345152159E-01 -1.002778092979E+00 NI= 1 -2.25242047E-11 1.65050196E -11 

-1.022118072328E+00 1.579418431893E-01 N1 = 0 -1.78346227E-11 1.78505211E -10 

-1.022118072349E+00-1.579418431878E-01 NI= 0 8.07510503E-10 -3.01083602E -10 

19 Roots found by Lehmers method 

8.732761359618E-01 3.444150890329E-01 NI= 163 

1.041404209356E+00 2.296100593576E-01 NI= 114 

9.074327090550E-01 -2.249415044457E-01 NI= 0 

6.888301780693E-01 6.888301780728E-01 NI= 136 

6.584719287059E-01 -7.396523993201E-01 NI= 0 

8.987428083911E-01 5.740251483940E-01 N1= 93 

8.322780849658E-01 -4.978437339585E-01 NI= 0 

4.986149767822E-01 1.148050296781E+00 ha= 140 

1.166759111027E-01 -1.007289866987E+00 NI= 0 

4.986149767822E-01 1.148050296781E+00 NI= 121 

4.108773931163E-01 -9.161620708856E-01 NI- 0 

-4.592201187165E-01 1.164368181280E+00 NI==118 

-4.901687318857E-01 -9.022294492952E-01 N1- 0 

-4.592201187165E-01 1.164368181280E+00 NI= 97 

-7.423600687358E-01 -7.148739182994E-01 N1= 0 

-4.592201187165E-01 1.164368181280E+00 NI- 73 

-9.257004498632E-01 -4.585575083446E-01 NI= 0 

-4.592201187165E-01 1.164368181280E+00 N1= 49 

-1.940345152172E-01 -1.002778092979E+00 NI= 0 

Execution time = .851 seconds 
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21 
Table 11. The QD program, solution of x + x = 1. 

21 Roots Remainders 

-1.022118190300E+00 1.579420813749E-01 NI= 9 5.46523736E-06 -9.17729537E-06 

-1.022118190300E+00 -1.579420813749E-01 NI= 9 5.46523736E-06 9.17729537E-06 

-9.257004809081E-01 4.585574955028E-01 NI=17 1.07030931E-06 7.70297616E-07 

-9.257004809081E-01 -4.585574955028E-01 NI= 17 1.07030931E-06 -7.70297616E-07 

-7.423601076346E-01 7.148739698403E-01 NI= 6 2.07735489E-06 -1.23721082E-06 

-7.423601076346E-01 -7.148739698403E-01 NI= 6 2.07735489E-06 1.23721082E-06 

-4.901687147918E-01 9.022294481375E-01 NI= 7 -5.29597926E-07 -2.72783470E-07 

-4.901687147918E-01 -9.022294481375E-01 NI= 7 --5.29597926E-07 2.72783470E-07 

-1.940345158357E-01 1.002778096734E+00 Na. 4 9.05780624E-08 -7.72544890E-08 

-1.940345158357E-01 -1.002778096734E+00 NI= 4 9.05780624E-08 7.72544890E-08 

1.166759086381E-01 1.007289866501E+00 NI= 2 3.34333023E-08 5.92667941E-08 

1.166759086381E-01 -1.007289866501E+00 NI= 2 3.34333023E-08 -5.92667941E-08 

4.108773929941E-01 9.161620709461E-01 NI= 2 2.55249688E-09 1.63799108E-09 

4.108773929941E-01 -9.161620709461E-01 NI= 2 2.55249688E-09 -1.63799108E-09 

6.584719287074E-01 7.396523993143E-01 NI= 1 -1.01437081E-10 9.25304278E-12 

6.584719287074E-01 -7.396523993143E-01 NI= 1 -1.01437081E-10 -9.25304278E-12 

8.322780849658E-01 4.978437339589E-01 NI= 1 3.86535248E-12 -1.28430599E-12 

8.322780849658E-01 -4.978437339589E-01 NI= 1 3.86535248E-12 1.28430599E-12 

9.074327090550E-01 2.249415044457E-01 NI= 1 -2.84217094E-14 8.61533067E-14 

9.074327090550E-01 -2.249415044457E-01 NI= 1 -2.84217094E-14 -8.61533067E-15 

8.972916221835E-01 0. NI= 0 2.13162821E-14 0. 

Execution time = . 244 seconds 
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V. CONCLUSION 

The main reason for the big difference in times for locating 

roots by the various methods is the difference in their rates of con- 

vergence. The different number of computer operations required to 

construct the various computer programs will also affect the times. 

Examination and comparison of the number of computer opera- 

tions per iteration, the number of iterations and the times required 

by the various programs in finding the roots of a given polynomial 

equation shows that the convergence rate is the overriding factor. 

In other words the number of computer operations per iteration, re- 

quired by the various computer programs is relatively the same when 

compared to the large difference in the number of iterations which is 

associated with a large difference in times. Before discussing this 

further we will state some definitions. 

An algorithm is said to be linearly convergent if the errors in 

two successive steps tend to be in a constant ratio. 

An algorithm is said to be quadratically convergent if the error 

in the current step is proportional to the square of the error in the 

previous step. 

Muller's method is slightly less than quadratically convergent 

when the roots are simple. In this case the error in the current step 

is proportional to the error in the previous step raised to the power 
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1. 84. When there is a double root the error in the current step is 

proportional to the error in the previous step raised to the pr ver 

1. 23, (8). 

The solution of x21 + x = 1 (see Chapter IV) by the Steepest 

Descent program required about twice as many iterations as Muller's 

program. Also the execution time for the Steepest Descent program 

is about double that of Muller's program. In Table 3 of Chapter III 

we see that the time per root for the Steepest Descent program is 

more than double the time for Muller's program. From this informa- 

tion we can say that for equations of degree 21 or greater, the rate of 

convergence of the Steepest Descent program is about half that of 

Muller's program. 

The nine test cases and Table 2 of Chapter III indicate that the 

Steepest Descent program converges on a root, for equations of de- 

gree four or less, at approximately the same rate as Muller's pro- 

gram. 

The convergence rate of the QD algorithm is linear, the con_ 

stant ratio between two successive steps depending on the separation 

of the roots (2,3). The QD method is used to find rough approximations 

to the roots. Newton's method or Bairstow's method, both of which 

are quadratically convergent, are used to refine the root approxima- 

tions. 

The convergence rate of Lehmer's method is linear with the 
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ratio being 2/5 (9). This information and the examples and tables 

in Chapter III indicate that Lehmer's program is the slowest of the 

four programs. It should be noted that Lehmer's method was only 

used to find rough approximations to the roots. The approximations 

were then refined in Newton's method. 

Muller's method is recommended as the optimal method since 

it converged, at the highest rate, in all cases tried. It also yielded 

the greatest accuracy. Besides having a high rate of convergence, it 

requires the lowest number of FORTRAN IV computer statements 

which makes it the fastest and easiest of the four methods to code. 

Muller's method can also be used to find the roots of transcen- 

dental equations and to find eigenvalues of arbitrary matrices without 

the computation of the coefficients of the associated characteristic 

equation, (Ref. 1). 
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Operator Programming (4) 

We call a group of commands of a program possessing the fol- 

lowing properties an elementary operator. 

1. The property of effectiveness. An elementary operator 
carries out certain operation with numbers necessary for 
the solution of a problem on the machine. 

2. Operations with numbers we understand to be the obtaining 
of some number or a value of the signal w with the aid of 
one or several numbers. In particular, the transfer of 
numbers from one memory apparatus to another or from 
one part of the memory to another is an operation with 
numbers. 

3. The property of being ordered. The control from outside 
(from another operator) may be obtained by only one com- 
mand of an elementary operator, the first one. Transfer 
of control from command to command in an elementary 
operator comes about in only one definite order, as a rule 
in the order of the numbering of the commands (the num- 
bering of cells holding the commands). Direction to the 
outside (to another operator) only one command of an ele- 
mentary operator can give, the last one. 

4. The property of connectedness. If the first command of an 
elementary operator received control, then each command 
of the elementary operator in order receives control. 

5. The property of autonomy. Conditional transfer of control 
by an elementary operator may arise only depending on the 
value of the signal w worked out by the elementary oper- 
ator itself (and not any other). 

6. The property of simplicity. An elementary operator must 
fulfill the smallest possible set of kinds of work. We al- 
ways try to have an operator fulfill only an arithmetic cal- 
culation, or a verification of the fulfillment of a logical 
condition, or an address modification etc. But sometimes 
in order that an elementary operator fulfill only one defi- 
nite kind of work, there must be introduced into the pro- 
gram supplementary commands useless for getting the 
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solution of the problem. Hence in place of the requirement 
that the elementary operator fulfill only one definite kind of 
work, we put the requirement that it fulfill the smallest 
possible set of kinds of work. 

Of the commands which do not satisfy the above conditions we 

agree to count as elementary operators the stop command (operator 

JC.22) and the command to supply a zone of magnetic tape (designated 

by the symbol). 

The division cf a program into operators is not unique. To aid 

a programs ability to be surveyed, it is necessary to strive to unite 

in each operator the largest set of commands. 

For the most often encountered elementary operators standard 

designations are taken as provided in Table 12 on the following page. 

Rules for Writing the Logical Schemes of Programs. For con- 

venience in describing logical schemes, the operators depicting a 

scheme are written in one line. In doing this the following rules are 

taken: 

1. The ordinal number of an operator in a given scheme is ex- 
pressed by a subscript of the operator. The numbering of 
operators is the obvious one. 

Z. If an operator depends on a parameter, then this parameter 
is expressed by an upper index of the operator (for example 

A2, 
P10, etc. ). 

3. If the signs for two operators stand in order in the scheme, 
then the operator written on the left transfers control to the 
operator written on the right. 

4. If a semicolon stands between two signs for operators in 
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Table 12. Elementary operators. 

No. Name Work done Designation 

1 Arithmetic 
operator 

2 Logical 
operator 

3 Transfer 
operator 

4 Address 
modification 
(with param- 
eter i) 

5 Reestablish- 
ment opera- 
tor (with pa- 
rameter i) 

6 Dispatch 

7 Inverse 
dispatch 

8 Dispatch of 
commands 

9 Appeal 

10 Circulation 
operator 

11 Forming 
operator 

12 Tape feed 

13 Stop 

14 Non- standard 
operator 

Arithmetic calculation A 

Verification of the fulfillment of a P 
logical condition 

Transfer of numbers from one mem- II 

ory device to another or from one 
part of the memory to another 

Address modification F(i) 

Reestablishment of commands by re- 
duction of them to the form corre- 
sponding to the initial value of the 
parameter i 

Introduction of quantities into standard 
cells 

Transfer of a series of values of quan- 
tities from a standard cell into a suc- 
cession of cells 

O(i) 

Entering of new commands before re- K 

peating the work of an operator in 
place of certain of its commands 

Appeal to a group of operators with 
numbers m, m= 1,...,n or to the 
subprogram named 

Circulation of numbers in standard 
cells 
Formation of new commands 

Supplying of a zone of the magnetic 
tape 

Stop the machine 

Any operator distinct from the 
enumerated ones 

E(m, n) 

-?-)4 

above H 

3 

á* 
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order, then from the operator written on the left there is 
no transfer of control to the operator written on the right. 

5. Transfer of control to an operator not directly to the right 
is designated by the signs "I,L. ". Their use will be ex- 
plained in the following paragraphs. 

6. Since in a machine on the branching of a program, transfer 
of control not to the next command in order is accomplished 
by one of the operations of a conditional jump on the basis 
of the value of a signal co, it is convenient that logical 
conditions whose verification is fulfilled by logical opera- 
tors be formulated so that the value of the signal w be 
the truth value of the statement "Condition is fulfilled. 
For example, if for the choice of the direction of the calcu- 
lating process comparison of numbers is made then it must 
be considered that the logical operator tests the truth of 
the statement "The compared numbers do not coincide." 
In the tracing of the schemes of programs it is accepted 
that the symbols answering the signal w = 1 are "r,--1" 
and those answering the signal w = 0 are "L_, J "; ei- 
ther symbol pair may be used when not connected with the 
value of the signal w. 

k 
After the operator transferring control is placed the sign "1 

(where k is the number of the operator to which control is trans- 

ferred). The sign " must be placed before the operator re- 

ceiving control, (.Q is the number of the operator transferring con- 

trol). Similarly there is placed after the operator transferring con- 

trol the sign I, I 

k 
ceiving control). Before the operator receiving control is placed the 

(in which k is the number of the operator re- 

sign 1, , 

ring control). 

k T 

(in which f is the number of the operator transfer- 

In the logical scheme of a program the combination of symbols 

may be encountered. This combination is usually replaced by 

-1 Il 

.1 
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the symbol C . In place of the combination of symbols 
k i 

there often is written the single symbol l 
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or 

i 

Before an operator there may occur the combination of symbols 
i k Q 

or _1 etc. , which are usually replaced by the 
i k Q 

i k f m 
symbols I and I respectively, and so forth. 

i,k,f,m 
In many cases it is convenient for the simplification of the logi- 

cal scheme of a program to unite elementary operators of a single 

type into a group and designate it by a single letter. A group of ele- 

mentary operators may be designated in the logical scheme of a pro- 

gram by one letter only on condition that only one elementary opera- 

tor of it may receive control from the outside (from operators not be- 

longing to the group). Such a group of elementary operators we call 

a generalized operator. A generalized operator may contain elemen- 

tary operators of differing functional significance but of a single type, 

i. e. logical. 

k 

lc 
i 

J 

-1_1 

J7 

, 


