AN ABSTRACT OF THE THESIS OF

HOWARD BASIL NOONCHESTER for the MASTER OF SCIENCE

(Name) (Degree)
in MATHEMATICS presented on ,':(,'4 A & 5
(Major) I (Date)

L}

Title: STUDY OF EFFECTIVE ALGORITHMS FOR SOLVING

POLYNOMIAL ALGEBRAIC EQUA??IONS IN ONE UNKNOWN
Redacted for privacy

Harryj E. Goheen

Abstract approved:

This paper makes available practical algorithms and their as-
sociated FORTRAN IV computer programs for finding the roots of
polynomial equations.

The purpose of this paper is to examine effective algorithms
for solving polynomial algebraic equations in one unknown on a digital
computer. The advent of high-speed digital computing systems makes
it practical to examine numerical methods which otherwise would be
too time consuming if not impossible. Algorithms requiring only the
polynomial coefficients are examined since they can be used as sub-
programs to solve polynomial equations which arise in other computer
programs.

The above considerations have lead to the examination of the
following algorithms:

(i). Lehmer's algorithm, (used to find rough approximations to

the roots).

a) The Newton-Raphson algorithm, (used to refine the root
approximations).

Muller's algorithm.

Rutishauser's Quotient-Difference (QD) algorithm, (used to

find rough approximations to the roots).

a) Newton-Raphson's algorithm, (used to refine approxima-
tions to simple roots).

b) Bairstow's algorithm, (used to refine approximations to
two roots i. e. complex conjugates).

The Steepest Descent algorithm.

Study of Effective Algorithms for Solving Polynomial
Algebraic Equations in One Unknown

by

Howard Basil Noonchester

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

June 1969

APPROVED:

Redacted for privacy

Professor/pf Mathematics

in charge of major

Redacted for privacy

Acting Chairman of Department of Méethematics

Redacted for privacy

Dean of Graduate School O

el t

L e ¥ . fv’ . !(
Date thesis is presented [, 11-»4(.\24(L L } i ,{.-\ £y
e 7

Typed by Clover Redfern for Howard Basil Noonchester

TABLE OF CONTENTS
Chapter
I. INTRODUCTION

II. DESCRIPTION OF ALGORITHMS STUDIED

1. Lehmerts Algorithm
Operator Program

2. Mullerts Algorithm
Operator Program

3. The Quotient-Difference (QD) Algorithm
Operator Program

4. The Steepest Descent Algorithm
Operator Program

III. DISCUSSION OF PROGRAM RESULTS

1. Solution of Nine Test Cases
Mullerts Program
The Steepest Descent Program
Lehmerts Program
The QD Program

2. Solution of x™ + x = 1
Mullerts Program
The Steepest Descent Program
Lehmer's Program
The QD Program

IV. COMPUTER PROGRAM TEST RESULTS
1. Solution of Nine Test Cases
2. Solution of 21 +x =1
V. CONCLUSION
BIBLIOGRAPHY

APPENDIX
Operator Programming

Page

26
38
46
53
64
72

85
85
85
86
86
87
89
89
89
90
92

94
94
94
111

114

115

LIST OF FIGURES

Figure

1.

Lehmert's FORTRAN IV program.
Mullerts FORTRAN IV program.

The QD FORTRAN IV program.

The Steepest Descent FORTRAN IV program.

Page
27
47
65

82

Table

10.

11,

12.

LIST OF TABLES

Results from using Muller's f(z) approximations for
starting values.

Results from solution of nine test cases.

. n
Results from solving x +x =1, (n=3,5,...,101).
Mullerts program, solution of nine test cases.

The Steepest Descent program, solutions of nine test
cases.

Lehmert!s program, solution of nine test cases.

The QD program, solution of nine test cases.

21
Muller's program, solution of x + x =1,
. 21
The Steepest Descent program, solution of x + x = 1.
, 21
Lehmerts program, solution of x + x =1,

21
The QD program, solution of x + x = 1.

FElementary operators.

Page

35
88
93

95

97
100
103
108
108
109
110

117

STUDY OF EFFECTIVE ALGORITHMS FOR SOLVING
POLYNOMIAL ALGEBRAIC EQUATIONS IN
ONE UNKNOWN

I. INTRODUCTION

In the study of the stability of airplanes it is necessary to solve
linear differential equations with constant coefficients. The solution
of such differential equations can be obtained by solving the associat-
ed characteristic equations i. e. polynomial equations, using the al-
gorithms and computer programs discussed in this paper.

The eigenvalues of arbitrary complex matrices can be thought
of as the roots of the determinant of the matrix (A-XI). The eigen-
values can be calculated by determining the coefficients of the asso-
ciated characteristic polynomial and finding the roots of the resulting
polynomial equation using the computer programs in this paper.

Of the many algorithms that have been developed for solving
polynomial algebraic equations in one unknown, (hereafter referred
to as polynomial equations) not all are general enough to be suitable
for use as subprograms on a digital computer. The prime require-
ment for an algorithm is that it converge for all roots in a finite
number of steps without special starting values. In terms of the lan-
guage of the theory of algorithms, this requirement is that the com-
puter program will always stop when presented with the description

of the equation and tolerances on its roots and its output will be the

values of the roots to within these tolerances.
We examine gix algorithms which are combined to form four
computer programs. These computer programs and algorithms are;:
i) Lehmer's algorithm (5, 9), (used to find rough approx-
imations to the roots).
a) The Newton-Raphson algorithm (3) (used to find closer
approximations to the roots).
ii) Muller's algorithm (8).
iii) Rutishauser!'s Quotient-Difference (Q. D.) algorithm (2),
(used to find rough approximations to the roots).
a) The Newton-Raphson algorithm, (used to find closer ap-
proximations to simple roots).
b) Bairstow's algorithm (3) (used to find closer approxi-
mations to two roots, i.e., complex conjugates).

vi) The Steepest Descent algorithm (7).

The algorithms are examined and special tests that are re-
quired by the computer program are noted. Next the computer pro-
grams for the associated algorithm or algorithms are described in
the notation of Lyapunov's ""Operator Programming" (see Appendix)
to indicate the flow of the computer program logic.

In Chapter IV the results from solving nine polynomial equa-
tions from Milne's "Numerical Calculus' (6) are examined and com-

pared. These polynomial equations are:

1) 27 -z -4=0 p. 38, no. 1.
4 3 2
2) z~ - 2.0379z" - 15.4245z + 15. 66962z + 35.4936 = 0 p. 40,
no. 4.
3 2
3 z" - 2z - 4z - 4z+4 =0 p. 41, no. 1.
4 2
4) 4z - 242:3 + 44z - 24z + 3 =0 p. 41, no. 4.
4 , 2
5) 2z +1623+z - 74z + 56 = 0 p. 42, no. 1.
2
6) z7 - 6.0266z + 4.3048z + 15.9533 = 0 p. 44, no. 1.
3 2
7) z +12z° - 9.5z - 6z+ 4.5 =0 p. 44, no. 2.
4 3

2
8) z° - 62° - 1132° + 504z + 2436 = 0 p. 44, no. 3.

2
9) z + 16z3+ 11z - 224z + 286 = 0 p. 44, no. 4.

These particular polynomial equations were given as Exercises
by Milne to illustrate difficulties in the Newton-Raphson method.
They serve to test for weaknesses in the algorithms. Some of these
polynomial equations have very close roots as the results in Chapter
1V indicate.

The polynomial equations X +x =1, (n=3,5,...,99,101) are

also solved and the results from the different methods examined and

compared.

II. DESCRIPTION OF ALGORITHMS STUDIED

1. Lehmer's Algorithm (5, 9)

Lehmer's algorithm is also known as the Lehmer-Schur method
since D.H. Lehmer uses a theorem of L Schur to answer the question:
"Does a given polynomial have a root inside a given circle? '*(5).

Using the notation of (5, 9) we set up a procedure for location,
in the complex plane, the roots of a polynomial f(z). First the
coefficients of auxiliary polynomials Ti(f(z)) for successive natural
numbers i are computed, (5). By the method of construction the
degree of Ti(f(z)) is decreasing. Let k be the sma llest value of
i for which Ti(f(z)) vanishes identically. For each auxiliary poly-
nomial Ti(f(z)), the value at the origin is computed. If for every
i in the interval 1< 1< k, Ti(f(O)) is positive and Tk_l(f(z)) is
a constant then there is no root of £(z) inside the unit circle. The
polynomial f(z) 1is transformed by replacing z by 2z and the
same process applied to the new unit circle. After recursive use of
this replacing, one gets to an arbitrarily large circle. One knows
that there is a root of f(z) in an annulus r< lz] < 2r but no root
inside the circle]zl — r. On the other hand if for some 1 in the
interval 1< 1< Kk, Ti(f(O)) is negative, then there is a root of

f(z) inside the unit circle. An annulus can be determined in a fash-

ion similar to the above, such that there is no root inside the circle

|Z| = r but there is a root in the annulus r < |z| < 2r.
. . k

The procedure tells us nothing in the case when T (f{z)) van-
. k-1 n : . .
ishes but T (f(z)) 1is not a constant. This case is handled in the
algorithm by choosing a new radius. If the radius was being doubled
then in place of 2r we use 1.5r. If the radius was being halved
then in place of 0.5r weuse 0.75r. The radius is repeatedly
modified in this manner until the original procedure of locating a root
can be applied. It is assumed by both Lehmer (5) and Ralston
(9) that one may avoid this difficulty in a manner similar to the
above, but the authors give no proof of this statement. The polyno-

. . 4 3 2 _
mial equation f(z) = 6z - 35z° + 62z -35z + 6 dueto Lehmer is
a case in point. For this example T(f(z)) vanishes identically but
f(z) certainly is not a constant. The above procedure worked for
this example as the computer output on the following page indicates.

The annulus can be completely covered by eight overlapping

circles each of radius .8r with centers, i at

2wik
™ /8/2 cos /8, k=0,1,...,7; i=N-1, (Ref. 9). The polyno-

3r
mial f(z) is transformed by replacing =z by .8z + i to get

f (z), k=0,1,...,7. The above process of checking circles for roots
is applied to successive fk(z) until a circle is found that contains a
root. Then an annulus is determined such that there is no root inside

the circle |z| = r* but there is a roet in the annulus r*<|z| < 2r*

where r* 1is a new radius determined using the preceeding

procedure.
Case 1, 5 Coefficients

6. 000000000000E+00 O.
-3.500000000000E+01 oO.

6. 200000000000E+01 O.
-3.500000000000E+01 oO.

6. 000000000000E+00 0.

4 Roots Remainders

3.333333333333E-01 O. NI= 5 5,68434189E-14 O,
5. 000000000000E-01 O. NI= 5 -8.52651283E-14 0.
3. 000000000000E+00 O. NI= 0 -7.02016223E_-12 O.
2. 000000000000E+00 O. NI= 0 -1.33582034E-12 0.

2 Roots Found by Lehmers Method.

3.044228062500E-01 O. NI= 27

4. 058970750000E-01 O. NI= 18
Execution Time = . 040 seconds
Total Execution Time = . 044 seconds

It should be noted that part of each of these circles falls outside
the annulus. This allows the possibility that the process will converge

to a root of fk(z)‘ outside the current annulus. We know that for

some k there is a root of fk(z) which is inside the current annu-

lus so in either case we will converge on a root of fk(z). Since any

root of fk(z) corresponds to a root of f(z), when the above pro-
cess is applied recursively, fhe root of f(z) is ultimately deter-
mined to within an arbitrarily fine tolerance.

Once a root is found to within the tolerance it is refined in the

Newton-Raphson method (3). This is done for the sake of economy

since LLehmer's method is only linearly convergent whereas Newton-

Raphson's method is quadratically convergent, (see Chapter V). The
degree of {f(z) is rnow depressed by synthetic division. This leads
to an accumulation of round-off error, but must be done to guarantee
convergence by Lehmer's method and the Newton-Raphson method on
a new root. If the depressed equation is only used in getting the root
approximation by Lehmer's method, and then the approximation is re-
fined in the Newton-Raphson method using the original polynomial we
may not converge on a new root but on one previously found.

This is exactly what happened in Case 5, of the nine test cases,
in Chapter IV when the original polynomial was used in a test run.
Looking at this case on page 102 we see that the polynomial has two
very close roots, 1.123105625615 and 1.121320343563. Lehmer's
method found 1. 623588300 as the approximation to the first root using
the original equation and the same approximation for the second root
using the reduced equation. Since the roots are so close together we
would expect the root approximations to be the same for the approxi-
mations are circle centers and the pattern of obtaining them is the
same. Since these root approximations are the same we see that
Newton-Raphson's method will, (and did) converge on the same root
when the original polynomial is used.

We could try to get better approximations from Lehmer's meth-
od and then use Newton-Raphson's method with the original polynomi-

al. This will workup to a point even though it is expensive, computer

time wise, since Lehmer's method is linearly convergent. The point
is that if the tolerance is too small the accuracy is unattainable by
Lehmer's method due to round-off errors that result from the computer
operations. This is discussed in detail starting on page 90 . To
change the tolerance only when roots are close and avoid excessive
iterations when the roots are well separated requires a fore know-
ledge of the root distribution which is not always available.

Although the roots found using Newton-Raphson's method and
the reduced equation were correct (had remainders with magnitude of
10_13) we were not able to maintain this accuracy, (see Chapter III,
Table 3). It should be noted that the remainders were computed using
the original polynomial equation f(z).

The desirability of a faster method that does not have to resort
to depressing the degree of £(2) by synthetic division is apparent.
Muller's method, which is discussed later in this paper, fulfills both

of these requirements.

Operator Program

On the following pages are described the operator programs
which go together to form Lehmer's program. Each of the operators
is first defined and then the program 1is documented as a string of
operators. A discussion of operator programming 1s given in the

Appendix. Note that Lehmer's computer program includes Lehmer's

algorithm and the Newton-Raphson algorithm.

Lehmer's Program--Operator Programming Definitions:

3 Input the program and input data into the memory of the
computer,

Comment: NC = the degree of the polynomial equation plus one.

KC 0 if the coefficients are all real.

A(I) = the complex coefficients of the polynomial equation
(I=1,...,NC).
A1 Translate the input data into binary.
Comment: LRTS = the number of roots found by Lehmer's algorithm.
NR = the total number of roots found, i.e., complex con-
jugates are not iterated for by Lehmer's algorithm.
NRTS = the number of roots that the original polynomial
equation has, (the degree).
N = the degree of the reduced polynomial equation. The

degree of the polynomial equation is reduced as the

roots are found.

LRTS = 0;
32 R

NR = 0;

NRTS = N;
A, N = NC - 1;

Comment: AR(I) = the complex coefficients of the reduced polynomial

%

Comment:

FE

Comment:

Comment:

P
-

Comment:

10
equation. At this point the degree has not been re-
duced.

AR(I) = A(I), (I=1,...,NC);

L is a flag which is equal to one if complex conjugates
have not been formed and equal to two if they have been
formed.

L =1;

If the degree of the reduced polynomial equation is two,
solve the equation using the quadratic formula.

N = 27;

If the degree of the reduced polynomial equation is one,
divide to find the root. Note that the degree of the re-
duced polynomial can go from three to one when a root
and its complex conjugate are found.

N =17;

IT = the number of iterations performed to find a root.

E_(LEHMER) CALL LEHMER (AR, N, IT, Z);

8

Comment:

10

11

N is set to zero if Lehmer's algorithm can not find a root
to within a specified tolerance. This is possible due
to round-off errors made by the computer.

N £ 07 ;

Write: All the roots could not be found.

NR = NR + 1;

Comment:

212

Comment:

P
13

A

14
D1

Comment:

11

NI{NR, 1) is an array in which are stored the number of
iterations required by Lehmer's algorithm to find each
root.

RTZ(NR, 1) is an array in which are stored the root ap-
proximations found by Lehmer's algorithm.

NI(NR, 1) = IT;

RTZ(NR, 1) = Z;

Test to see if z = 0 is a root. If it is, decrease the de-
bree of the reduced polynomial equation and store the
number of iterations, the root and the remainder.

NI(NR, 2) is an array in which are stored the number of
iterations required to refine the root.

RTZ(NR, 2) is an array in which are stored the refined
root approximations.

REM(NR) is an array in which are stored the remainders

from evaluating the polynomial f(z) at the refined root

approximation.
2] # 05
N =N-1;

NI(NR, 2) = NI(NR, 1);
RTZ(NR, 2) = RTZ(NR, 1);
REM(NR) = 0;

If the reduced equation is linear then the number of roots

16

317

Comment:

E18(QUAD)
Comment:
E19(ZO’ 22)

A
20

21

E,,(POLY)

Comment:

EZ3

Joa

12
found is increased by one and the root is solved for and
stored.

NR = NR +1

Z = -AR(2)/AR(1);

NI(NR, 1) = 0;

RTZ(NR, 1) = Z;

IT = 0;

If the reduced equation is quadratic then it is solved by
the quadratic formula in the form of a subprogram.

CALL QUAD(AR(1), AR(2), AR(3), Z(1), Z(2));

Store the roots and compute and store the remainders.

(I:]w Z);
NR = NR + 1;
NI(NR, 1) = 1;

RTZ(NR, 1) = Z(1);

NI(NR, 2) = 0;

RTZ(NR, 2) = Z(I);

REM (NR)= POLY(A, NRTS, Z(I));

Use the Newton-Raphson method to refine the root approx-

imations found by Lehmer's method.

(NEWTON) CALL NEWTON(AR, N, IT, Z, REM(NR));

NI(NR, 2) = IT;

RTZ(NR, 2) = Z;

Comment:

EZS(POLY)

Comment:

P

Comment:

PZ7

Comment:

A8

Asg

Comment:

P3O

Comment:

P3l

Comment:

P3Z

P33

Comment:

13

Find the remainder using the coefficients of the original
polynomial.

REM(NR) = POLY(A, NRTS, Z);

If all the roots have been found go and print out the re-
sults.

NR > NRTS?;

If the absolute value of the remainder just found is great-
er than or equal to one stop the procedure and print
out the results found. Since the equation must be de-
flated using the root just found, the root must not have
a large error.

|REM(NR)| > 17 ;

Calculate the coefficients for the reduced equation.

AR(I) = AR(I) + Z - AR(I-1), (I=2,...,N);

N=N-1;

Have the complex conjugates been found?

L =22

Are the coefficients all real?

KC # 09

Is the imaginary part of the root zero?

Imaginary Z = 07 ;
_real 2 > 1007 ;
imaginary Z

Set L = 2 since we are computing the complex conjugate.

14

L o= 2
IT = 0;
Z _Z;

Output the coefficients, roots and remainders.

Stop the machine.

Combining the above operators, the logical scheme of the pro-

gram has the form:

30 15,31, 32, 33 18 16
Ty A 32 A3W4——|§5]Pél_ P7[_-
11 36 9,35
Eg P9[— Hlol—’ la 11212 '_A14}15l_
7 24 36
]A16}17r—;|E1 20221 220 3
13 17 36 36 5 6
_|E23 224 Pze’m P27|— Ayg By P e
6 6 11 10, 22, 26, 27
P32rp33|— 34 A35|— ; jn%“é?

E(LEHMER) SUBROUTINE LEHMER(A, N, IT, Z)

Comment:

A(I) = the complex coefficients of the polynomial equation
(I=1,...,N+1).

N = the degree of the polynomial equation.

IT = the number of iterations to find the root.

Z = the root approximation.

7

Comment:

IRT =1 if there is a root inside the circle with radius
RDS, otherwise IRT = O.
IRDS = 0 when starting the iteration procedure.

IRDS

1 if the radius is being halved.

IRDS = 2 if the radius is being doubled.

K = the number of the circle center being tested.

15

ITIME =1 if this is the initial circle being tested, other-

wise ITIME = 2.
NC = the number of coefficients.
CENTER = the center of the previous annulus.
RDS = the radius of the circle we are working with.
IRT = 0;

IRDS = 0;

ITIME = 1;
CENTER = 0;
RDS = 1;

NC = N + 1;

Test if z = 01is a root. If it is store it and return to the

calling program.

|A(NC)|# 07 ;

73

Comment:

Comment:

Comment:

10

Comment:

11

16

Z = (0.,0.);

The three T arrays are used to store the coefficients of
tne original polynomial and the coefficients of the de-
flated polynomials that result from applying Lehmer's
algorithm.

T(I) = A(I), (I=1,...,NC};

T(I, 3) = A(I);

NCT = the number of coefficients of the deflated polyno-
mial.

NCT = NC;

T(I, 1) = T(I, 2), (I=1,...,NCT);

NCT = NCT - 1;

IT = IT + 1;

Construct the T polynomials, see discussion of method.

NX =NCT +1 - I, (I=1,...,NCT);

T(L, 2) = T(NCT+I, 1) - T(I+1, 1) - T(1,1) - T(NX, 1);

The bars above denote complex conjugates. If T(NCT, 2)
is not zero we will divide the other coefficients T(I, 2)
by it.

T(NCT, 2) = 0.7 ;

T(I, 2) = T(I, 2)/| T(NCT, 2)|, (I=1,...,NCT);

If ITIME =1 this is the initial circle we are testing.

ITIME = 2?7 ;

17

Comment: We now test T(NCT, 2) to see if there is a root in the unit
circle.

If T(NCT, 2) < 0.0 then there is a root inside the circle.

If T(NCT, 2) > 0. 0 we must continue construction of the
reduced T polynomials.

If T(NCT, 2) = 0.0 then we must test to see if the reduced
T polynomial with coefficients T(I, 1), (I=1,...,NCT+1)
is a constant. It is a constant if T(I,1) = 0. 0,
(I=1,...,NCT).

If we have a constant polynomial then there is no root in-
side the unit circle.

If we do not have a constant polynomial then we must
choose a new radius, one that is not so large
(RDS=.75RDS) or not so small (RDS=1.5RDS) depend-
ing on whether the radius was being doubled or halved.

T(NCT, 2) = 0. 0% ;

PlZ
P13 T(NCT, 2)< 0.07?;
Comment: IRT =1 if there is a root inside the circle with radius
2RDS.
If NCT = 1 then our current reduced polynomial T is a
constant and the next reduced polynomial T, if it were

constructed would be zero. In this case there is no

root inside the circle with radius RDS.

P14

P
15

P16

P
17

A18

Comment:

£t

Comment:

PZO

321

AZZ

Comment:

A23

Comment:

P24

Comment:

18

IRT = 1 and NCT = 17;

NCT == 17

T(,1) # 0.0, (I=1,...,NCT)?;
IRT = 17;

RDS = 2RDS;

Set the flag to indicate the radius is being doubled.

IRDS = 2;

If we reach this point in the program we know that f(z)
does have a zero inside the unit circle. We now halve
the radius until we find a circle inside which there is
no zero.

IRT =1 if there is a root inside the circle with radius

RDS.

IRDS = 2 if the radius was being doubled.

IRDS = 27 ;
IRT = 1;
IRDS = 1;

RDS = RDS/2.;

Transform the coefficients for the new radius.

NC-I
T(I, 1) = T(I, 3) - RDS(ITIME) , (I=1,...,N);
IRDS = 2 if radius was being doubled.
IRDS = 27

When we reach this point in the program we know the

AZS

Comment;:

A6

Comment;

AZ?

Comment;

28
29

30

331

19
radius was being halved so we want to try a radius not
so small.

RDS = 1. 5RDS;

When we reach this point in the program we know the ra-
dius was being doubled so we want to try a radius not
so large.

RDS = .75RDS;

Halve the radius since we were doubling.

RDS = RDS/2.;

There is a root in the annulus RDS-2RDS. This annulus

can be completely covered by eight overlapping circles

of radius 0. 8RDS.

CT(1), (I=1,..., 8) are the eight

circle centers. CTland CTR are used for temporary
storage of computed values.

CT1 = 1. 6235883 - RDS(ITIME);

CT(l) = CT1 + CENTER;

CTR = 0.7853981634 - (I-1),

(I=2,...,8);

CT() =CT1 (cos(CTR), sin(CTR)) + CENTER;
RDS(2) = 0. 8 - RDS(ITIME);

RDS(1) = RDS(2);

ITIME = 2;

IRT = 0;

IRDS = 0;

932

Comment:

33

34

Comment:

Comment:

A35

A3

P37

g

Comment;

P9

P
40

Comment:

41

Comment:

20
K = 0;
T(I, 3) = A(I), (I=1,...,NC);

Have all eight circles been tried?

K = 87;
K=K+ 1;
NP1 =N + 1;

NP1 is temporary storage.

Transform the coefficients of the polynomial equations for
the new circle center.

T(I,3)=T(,3)+ CT(K)-T(I-1, 3), (I=2,...,NP1);

NP1 = NP1 - 1;

NP1 > 27 ;

T(NC, 1) = T(NC, 3);

Test for a root inside the circle.

T(NCT, 2)< 0?;

T(NCT, 2) = 0?;

IRT =1 if there is a root inside the circle with radius
2RDS. If NCT =1 then the T polynomial is a constant.
In this case there is no root inside the circle with ra-
dius RDS and we have found an annulus which contains
a root of f(z).

IRT =1 and NCT = 17;

If IRT £ 1 and NCT = 1 then there is no root inside the

p42

Comment:

Comment:

P
43

Comment;:

P44

Comment;

P
45

Comment:

J46

47

Comment;:

21
circle. In this case we try the next of the eight circles.
NCT =172
If NCT # 1 then we perform the transformation on the T

polynomial again.

Test to see if the reduced T polynomial with coefficient

T(I, 1), (I=l,...,NCT+1) is a constant. It is a constant
if T(I,1) = 0.0 for (I=1, ..., NCT).
T(I, 1) £ 02, (I=1,...,NCT);

If IRT = 1 there is a root inside the circle with radius
RDS.

IRT = 17?;

IRDS = 32 indicates the radius was multiplied by 3/2. Go
back to the previous radius since we are going to try
a new circle.

If IRDS = 32 then set RDS(2) = RDS(1);

Try a larger radius since we do not get a valid test with
this radius, (the reduced T polynomial is not a con-
stant).

IRDS = 32;

RDS(2) = 1. 5RDS(2);

IRT = 1 indicates there is a root inside the circle with
radius RDS.

IRDS =1 indicates the radius is being halved.

Jas

Comment:

P49

ASO

Comment:

P
51

Comment:

352

Comment:

7553

Comment:

22
IRT = 1;
IRDS = 1;
. . -3
If the radius is less than 10 = accept the center of the
circle as a root approximation.
-3
RDS(2) < 1. 0x10 "2
RDS(2) = RDS(2)/2.;
When we reach this point we know there is a root in the
annulus RDS-2RDS. If the distance between annulus

centers is within the tolerance accept the annulus cen-

ter as a root approximation.

CT(K)-CENTER
CT(K)

< 20. 07

If the annulus center is not accepted as a root, store the
center and start going around the annulus with over-
lapping circles.

CENTER = CT(K);

At this point we have accepted the annulus center as a
root approximation. Store it and return to the calling
program.

Z = CT(K);

If we reach this point in the program no root could be
found in any of the eight overlapping circles due to

Set the indicator N = 0, and return to

rounding error.

the calling program.

23

354 N =0

H55 Transfer to calling program.

Combining the above operators, the logical scheme of subrou-

tine LEHMER has the form;:

55 2 27 7 5
3,4, .0 3,1 7112,4 S0 I_S’_Azé A, A
1] 9 39 16 20 28 18
P9 A O—IPII PlZ P P14'_P15[:6 ’

20 14,17, 52

jA27 lA) 30331_—1332_]1333(“—A

23 11 51

37 35
Claggag P37|—238[— —|P39|_— P4o|— P41|_

32 4 46 51 33 43 23 39
P42 z P43 r— P44 45r_ _‘}46 A47 ——1348

53 23 41, 44 28 49, 51 55 33
P49|—— A r_- lpSlr— }52'_ l}53’__]254 H

E(NEWTON) SUBROUTINE NEWTON(A, N, IT, Z1, PZ)
Comment: A(I) = the complex coefficients of the polynomial equation
(I-1,...,N+1).

N = the degree of the polynomial equation.

Comment:

A3

Comment:

Comment:

39

Comment:

1T = the number of iterations performed for the root.

Z1 = the independent variable.

PZ = the value of the polynomial equation at Z1.

DPZ = the derivative of the polynomial equation at Z1.

IT = 0;
IT = IT + 1;
PZ = A(1);
DPZ = A(1);

Using iterated synthetic division form PZ and DPZ.

PZ = A(l) + Z1-PZ, (I=2,...,N);
DPZ = PZ + Z1+DPZ;

PZ = A(N+1) + Z1-PZ;
72=21-PZ/DPZ;

Test for convergence.

|Pz| < 1.0x 107 %%
|z1] = 0.9;
’—Z—é% < l.OXlO_lO?;

Have we exceeded the iteration limit of 3007?

IT = 3007 ;

Store the new root approximation and iterate again.

Z1 =22

24

When we reach this point we have accepted Z2 as a root

so we store it and return to the calling program.

25

71 = 72
310 ' ’
j

11 Transfer to the calling program.

Combining the preceding operators, the logical scheme of sub-

routine NEWTON has the form:

5,7,8
|210H 11

E(POLY) FUNCTION POLY(A, N, Z)

Comment: A(I) = the complex coefficients of the polynomial equation

(I=1,...,N+1).
N = the degree of the polynomial equation.
7 = the value at which the polynomial equation is evalu-

ated.

POLY = the value of the polynomial equation evaluated

at Z.
20 POLY = A(1);
A1 POLY = Z *POLY + A(I+1), (I=1,...,N);
HZ Transfer to the calling program.

Combining the above operators, the logical scheme of subpro-

gram POLY has the form:

E(QUAD) SUBROUTINE QUAD(A, B,C, Z1, Z2)

Comment: Solution using the quadratic f>rmula.
A, B and C = the coefficients of the quadratic equaticn.
Z1 and Z2 = the roots of the quadratic equation.

A DISC = (BZ_4AC)1/Z;
Z1 = (=B+DISC)/2A;

Z2 = (-B-DISC)/2A;

I Transfer to the calling program.

26

Combining the above operators, the logical scheme of subrou-

ting QUAD has the form:

The FORTRAN subprograms which go together to form Leh-

mer's computer program are listed in Figure 1.

2. Muller's Algorithm

Muller's algorithm (8), an iterative procedure, uses the La-
grange interpolaticn formula to fit a quadratic polynomial L through
three distinct points (ZI’ fl), (ZZ, fz), and (z3, f3), fi = f(Zi)’

(i=1, 2, 3) where

Lz

14
15

15

()

ie

19

[aNA!

20
21

Figure 1. Lehmer's FORTRAN IV program,

PROG™EM TOUTCINPUT O ZUTE LT TLS
TIMENCICON A(TE) e AR {IEY NI (15
v 2102)

TOMPLEX A9 AkePOLY#fcZ "9xTZsZ

“C=0 IF ALL COEFFICIENTS =Ko REALS
TALL SECONOH(TIVEL)
SEAD(5 e ICONINCASES
-0 1 n TCASES=1 yNCASS
CALL STCOMT(ITSTART)
FRITE(6959G)

Vi

N

TS =

Ne2Qe2)GT TO 1lec
‘.".EQQI)GO TO 17
L LEHMER (AR 9N ITeZ)

M o~ o~y

=0 0br LEAMekS METHOD C0ULe NOT FIND THE NEXT R0UT.

IF{neNE8Q)IC0 TO 16
HRITE(S911020)

0 TG 50

MR=NR+1

LRTS=NK

NI(MRY1)=IT
RTZIMRy 1) =7
IF(CABS(Z)eNZa0e)CO TO <0
N=N=1
NI{NRe2)=NI{NR1)
RTZINR92)=RTZINR L)
REMINRY=06

GO TO 15

NR=NP+1
L==AR (2} /AR (1}
NI(NRs$1)=D
PTZINRy1)=7
1T=0

GO TO 21

CALL QUADI(AR(L) 9AR(Z2) 0AR(3)92Z(1)92(2))
CO 19 I=192

NR=NR+1

NI(iNRol)=1

RTZ{NR1L)=21(1)

NI(NR92)=0

RTZINRpZ)=2(])
REM(NR)=POLY{ASNRTSsZ2(1}))

GO TC B0

USE NEWTONS METHCD TC GET CLOSER ROOTSe
CALL NEWTON(AR SN IToZpREMINRY))
NI(NR2)=1IT

RTZ{NR92)=2

(a8
-~}

YA ANANANGNANaNAY

<Ec) =LY (A kTl)
TF{N=eGEe\RTSICO T 50
TE(IATSHREM{MR) Yot o1 aC)T TS s¢C
LC,LeTZ COCFFICILATE o T collos LTl e
SO0 I=2y
SUIN=4n (T +2% AR I=1)

TF(LebQe2)GC TC 16

[F (K eNEWQ]GO TC 1

IF(ATACLZ) e GaColl TC 15
i~

TF (A S (REGLLZ) /A1 0 CIZ)) eiT e a0Ec) GO TO 15
2=0000G(2)
17=0
SO T0 16
80 CONTINUE
SRITE (6910100 ICASESyColrlllplzlanC)
CRITE (691020)NR IRTZ(Io 2 aNT (1921 s3M 1) sl=100R)
LRIT- (691015) LRTSe(RTZ{Isd)oNICIol)soI=1sLRTS)

CALL SETOSMOITEND)
TSEI=TENOG=TETART
wITE(691300)TSEC
1.0 CONTINwuE
CALL SEUCNO(TINMEZ)
TTIVE=TIMEZ2=TIMEL
wrITu (o9 13L0)TTIME
CALL EXIT
29 FORMAT(1HL)
10CC FORMAT(2I5/(8FL0eC))
C1O FORMAT(LIHO//////1HQw 14X *CAS*y[39¥%y %)y [3y
1% COCFFICIENTS®// (1 914X92E20412))
101> FORVATLLIHO//1HOw1laXe13
1% ROSTS FOUND &Y LEHAZRS HeTHODe*//
2 {1k #14X92E206el29% NI= *9lb})
1020 FORMAT(1HO/L1HO#28X9i39%* ROOTS*939Xy
1%REMATINDERS®//(1H 914X9282Cel29% NI= %¥y[342E1748))
1100 FORMAT (1l
IHCZHYMERS METHOD COuULD NOT FIND ALL THE ROOTSe*)
13CC FORMAT(1A09/ /915X *¥EXECUTION TIME=%3F1043
1% SECONDS*)
1310 FORMAT(1-0p14Xs*TOTAL EXECUTION TIME=*9F10e3
I SECONDS*)
END

SUARCUTINE LzHAEx (A ITed)
SIVENOSION A016)9CT(8)9RDS{2I9T(1693)
COMPLEX A9CENTERSCT 9T ol

A=COEFFICILNTS CF PCLYNOMIALS

IT=NGCe OF ITERATIUNSS

N= CEGREE OF THE EGQUATICNG

NC= THE NUMSER OF COEFFICIENTS.

NCT=TEMPORARY NUes OF COEFFICIENTS

[RT=1 IF ROCT INSIDE CIAILE WITH RAODIUS KOS
ROS= KAULIUS OF CIRCLE BEING TESTED FOR A ROCT.
CENTLR= THE CENTZR OF TrHz ANNULUS THAT JONTAINS A ROO1
IRT=G

IRDS=0

IT=0

K=U

ITIVE=1

NC=N+1

CENTER=0.
ROS=1e

aNa

i

[AS]

e

32

n

OO Y OOYO YYD
W
s

(AN aN AN WaNal

w
\n

[aNaNe)

45
50

[aNal

n

(@]

55

OO OVND

o
O

TEST FOR Z2=0 A RUCT.,
IF(CACSIAINC)) oNZe0a)GT T 20
2={Ca9ls)

GG TC 600

GO 25 I=19NC
T(I)=40(1)
Tils2)=41(1)

G

DO 28 I=19NCT
TiIe1)=T(1e2)
NOT=N0T-1

IT=17T~+1

CO 30 I=1e%CT
NX=NCT+1-1
T(192)=CONJG(T (NC

T+1
IF(T(NCT92)efWe0e)CO TO 34

NORMALIZE COEFFICIENTS OF TJU(F(Z))

00 32 I=1eNCT
TI921=T{I92)/CALSITINCT9Z))

COES F(Z) HAVE A ROCOT In&ic:z
EST FOR ROOT INSIDE CIRCLES
IF T(NIT9Jd)eLTe0e0 THEN ROOT

Tric CIRCLL e

InslIoz

CIRCLE

IF T(NCT9J)eGTe0e0 CONTINUE ITERATINGS
T{vCTeJ=1}
oD ROUT TS

IF TUNCT9J)ecQe0e0 THEN TEST
IF TUNCT 9J=1) et QeCONSTANT THE

IF TUNCT9Jd=1)enE«CONSTANT THE

NOT SC LARGE (RDS=0e75RDS)
OR NOT SO SMALL (RCS=1e35RDE)

ne
9

DEPENDING ON THE PREVIOUS ADIUS.

IF(ITIME«EQe2)GC TC 155
TFIT(NCT92)160945935

CHOC:

I
S A SAD

[RT=1 IF ROOT INSIDEL PRcVIOUS CIRCLE.
IF NCT=ly T(F(Z)) 15 A CORSTANT ARD

TCF(C)Y)=09 IN THIS CASE THERE
INSIDE THE CIRCLZ

IS NO

[F{IRTeEQeleANDeNCTSEGe1)GC TO 100

IFINCT«EQe1}GO TO 55
GO TO 27

IF T{I1yJ=1)=CONSTANT THEN NO

DO 50 I=19NCT
IF(T(I+1)eNEsOs)GO TO 75

ROCTS

THE NEXT

RCOT

INSIDE CIRCLE.
TEST IF T(lgd=1)eNEeCse (IF TU=1(Z)eNE+CONSTANT),

[RT=1 IF ROOT INSIDE PREVIOUS CIRCLE,

[F(IRTeEQe1)GO TO 100

IRDS=2 IF RADIUS IS BEING DOUBLED.

RDS=2e#RDS

"IRDS=2

GO TO 64

F(z) DOES HAVE A ZERO INSIDE THE UNIT CIRCLE,
HALVZ THE RADIUS UNTIL WE FIND A CIRCLE

WHICH THERE IS NO ZERO.

IRDS=1 IF RADIUS IS BEING HALVED,

IRT=1 IF ROOT INSIDE CIRCLE WITH RADIUS

IF(IRDSeEQeZ2)GO TO 90

INSIDE

RDSe

1)V RT I +L i =T (Ll *CONJCIT XL
T

N Oy

(AN ANNa

50

[aNal

S0

(AN aNANGNANS]

100

119
120

© 155

aXaNaNANA!

160

TRANSFORM COEFFICIENTS FOR NEW RADIUS,
0C 35 I=1sN
TiIs1)=T(193)%¥RDS{ITIME) ®#*(NC=T)

GO TC 26

[F 1R0S=2 THE RAUIUS WAS BTING DOuBLzD.
IF(IRDS«E0e2) GO TO 80

RADIUS WAS BEING HALVED)»
TRY A RADIUS NOT SO SMALL
MULTIPLY BY 145
RDS=1e5%#R0S

GO TC 64

THE RADIUS WAS BEING DOUBLED)»
TRY A RADIUS NCT SO LARGES
MULTIPLY BY #75

RDS=s75%RES

GO TO 64

HALVE RADIUS SINCE WERE DOUBLING
RDS=RDS/ 2

THERE IS A ROOT IN ANNULUS RDS=-2RDS.

THIS ANNULUS CAN BE COMPLETLY COVERED BY
EIGHT OVERLAPPING CIRCLESS

CT{I)=THE EIGHT CIRCLE CENTERS)

EACH CIRCLE IS OF RADIUS «8RDS.
CT1=RDS(ITIME)#1462358830
CT(1)=CT1+CENTER

DO 110 I=2s8

CTR=(I=1)%0e7853981€34
CT(I)=CT1*CMPLX(COSICTR)#SIN(CTR))I+CENTER

RDS(2)=¢ 8¥RDS({ITIME)
RDS(1})=RDS(2)
ITIME=2

IRT=0

IRDS=0

K=0

DO 120 I=1sNC
T(Is3)=A(I1)

HAVE ALL 8 CIRCLES BEEN TRIED.
IF(KeEQe8)GO TO 550

K=K+1

NP1=N+1

TRANSFORM COEFFICIENTS FOR NEW CENTERS
DO 130 I=2eNP1

T(le3)= T{Ie3)+CT(K)*XT{I=193)
NP1=NP1=-1

IF(NP14GE$2)1GO TO 129

T(NC91}=T(NCs»3)

GO TO 64

IF(T(NCT$2))18091709160

IRT=1 IF ROOT INSIDE CIRCLE WITH RADIUS 2RDS,
IF NCT=ls T(F({2Z)) IS A CONSTANT AND THE NEXT

TUF(0))=00 _
IN THIS CASE THERE IS NO ROOT INSIDE THE CIRCLEs

IF(IRT+EQe1eANDeNCT4EQe1)GO TO 200

30

[ARANS!

N

175

180

[

ANANaNa]

200

300

550
600

[N AN WaNaNal

10

NO ROOT IN THIS CIRCLE TrY TH: NUXT {T{),
TRANSFORM CRIGINAL CLEFFICIaNTS TO NEu O
IF(NCTecQeal)GO TC 116

TicY AGAINy A CONSTANT C% 0 I5 wfcobc FOF TiFL. 1))
SEFORE GOING TO Tht NEXT CI-JLCe
G0 TO 27

IF T(Isd=1)=CONSTANT THul #u KUCTS TASIDE T1%CLi e
SO 171 T=1eNCT
[F(T(Isl)eNEsOeICC TC 175

T(IyJ=1)=COMNSTANT,

NO ROOT IN THIS CIRCLcsTRY THE H:
IS THEREZ A RCOT IM THE ANLLUS,.
[F(IRT4EQa1)IGO TG 200
IF(IRDSeEGCa32)RDS(2)=RUS(1)

GO TO 128

TRY A LARGER RADIUS.

IRUS=32 INDICATES MULTIPLYING 705 ©VY 3/2.
IRDS=32

RD5(2)=1e5*%RD3(2)

GO TO 64

IRDS=1 IF RADIUS IS REING HALVED,.

[RT=1 IF ROOT INSIDE CIRCLE wlTH RADIUE RDZ.
IRT=1

IRDS=1

IF(RDS{2)eLTeleQ0E=3)CO TO 300
RDS(2)=RDS(2)/24

USE TRANSFORMED COEFFICIENTS
GO TO &4

THERE IS A ROCT IN THE ANNULUS RDS=2RDS,

IF WITHIN TOLERANCE RETLRN AND CALL

SUBROUTINE NEWTON
IF(CABS(CT(K)=CENTER)/CT{K)}oLT42040)GC TO 3200
CENTER=CT(K)

GO TO 100

STORE APPROXIVATION TC %Q0UT.
2=CT(K)

GO T2 6C0O

N=0

RETURN

END

SUBROUTINE NEWTON(AsNsITs219P2)
DIMENSION A(16)
COMPLEX AsDPZyP2921472

A=COEFFICIENTS

N=DEGREE OF POLYNOMIAL.

IT=NOs OF ITERATIONS.

Z1=INDEPENDENT VARIABLES.

Pz=THE VALUE OF THE POLYNOMIAL AT 2=2Z1.
JPZ=THE DERIVATIVE OF PZ.

iT=0C

IT=1T+1
PZ=A(1)
bPzZ=A(1)

20 10 I=2N
PZ=A(1)+21*P2Z
DPZ=PZ2+Z1%DPZ

P

PI=u(N+L)+Z1%PZ

lemll= =P2/oPL
IF{CADS(PZ)elTeleQE=20)C0 TC 10C
1F CABSIZL)eEQele) sl T2 2

15 (< ABQ‘(Z)_LI‘//I)OLT.L.C:_Lv)vV
IFITelHe200)C0 TC 100

2=l

G0 IC ¢

Ji=Z2

CETURN

ZND

COMPLEX FUNCTION POLY(2pisdl)
DIMUNSTON A(L6?
COMPLEX Asl

AsCOEFFICIENTS CF POLYNC IAL
L=DEGREE OF POLYNGHMIabLs

=VALUE AT WHICH POLYNOMIAL IS
POLY=POLYNCMIAL EVALUATED AT 7.

POLY=4a(1)

30 22 I=1aN
POLY=Z#POLY+A(I+1)
RETURN

TN

SUBROUTINE GUACIAByCydlnic)
COMPLEX AsBsCHDISCollolc
DISC=CSAURT (%=L exAx(C)
21={=B+DI5C) /(2 e¥*A)

2= l===0a0)/ L2 eRA)

<TTURN

=HND

00

EVALUATED

33

is the polynomial whose zer~s are desired. The coefficients

ao, al, e an are complex numbers and aO £ 0. The rcot of the
quadratic polynomial equation closest to z3 is taken as z4.
f4 = f(z4) is computed and if
2 . <
(2) £, <8,
or
- <
247251/ 1250 < 8
where 6 and § are tolerance constants, then =z is accepted

1 2 4

as a root to (1). If the tests fail, z, is dropped and the points

(z_,f.), (z_,f

» i 3 3), and (z ,f,) become the new points (z_,f),

4 4 1”1

(ZZ’fZ)’ and (z3,f3),

A new quadratic polynomial is fitted through the new set of

f), and (z,,f_). The root of the quadratic

points (z_,f), (5 s

zZ_,
171 2
polynomial equation closest to z3 is taken as Zy f4 = f(z4) is

computed and tested in Iquation (2) as described above. The itera-
tions continue until either convergence occurs or a fixed number of

iterations are performed.

The iterative procedure is started by letting z) = -1., z, = l.
and Z, = 0. 01 and evaluating f(zl): f(zz) and f(z3). Z, = 0. 01
is used instead of z3 = 0.0 since there could be a zero root. This

allows the starting values to be changed to values different from the

roots that have been found. More is said about this a little later.

Muller (8) suggests using z, = -1., z, = 1.. zZy = 0.0 and
a -a 4 + a_ for f(zl)
+
a ta + a5 for f(ZZ)’
f f
an or (z3),

to save evaluating the functicn explicitly. This was tried with the re-
sult that more iterations and time were required for convergence on
a root than when the functions f(Zi)’ (i=1, 2, 3) are evaluated ex-
plicitly.

The results from solving the nine exercises from Milne (6)
and using Muller's suggestion are presented on the following pages.
These results should be compared with the results from solving the
nine exercises using explicit values for f(Zi)’ (i=1, 2, 3), (see p.
95).

To avoid re-calculation of zeros already found synthetic divi-
sion may be used to reduce the degree of the polynomial equation.
This can lead to a serious accumulation of rounding errors. Rather
than use synthetic division to extract linear factors from the polyno-
mial equation implicit division was performed on the value of the
function and a deflated value of the function was obtained. If nr

Zeros, r., (i=l,...,nr) have been found then the deflated values of
1

the function fnr(z), (k=1,2,3) are formed where

35

Table 1. Results from using Muller's f(z} approximatiens for starting values.
Case 1, 4 Coctiicients

1. 000000000000E+00 -0.
-0. -0.
-1, 000000000000E+00 -0.
-4. 000000000000E+00 -0.

3 Roots

~8.981609516297E~01 1.191670795605E+00
~8.981609516297E~01 -1.191670795605E+00
1.796321903259E+00 1.899500362956E-16

Execution time = . 024 seconds

Case 2, 5 Coefficients

1. 000000000000E+00 ~O.
~2.037900000000E+00 -O.
-1.542450000000E+01 ~O.

1.566960000000E+01 -O0.

3.549360000000E+01 -0.

4 Roots

-1.201998596673E+00
2.124387030181E+00
-3.211994374397E+00
4. 327505940890E+00

eLeo

Execution time = . 030 seconds

Case 3, 5 Coefficients

1. 000000000000E+00 -0.
-2. 000000000000E+00 -O0.
-4. 000000000000E+00 -0.
-4, 000000000000E+00 0.

4. 000000000000E+00 -0.

4 Roots
5.857864376269E-01 O.
-1. 000000000000E+00 1. 00000000000OE+00
-1. 000000000000E+00 -1. 000000000000E+00
3.414213562373E+00 1.211690350419E~27

Execution time =:.026 seconds

Case 4, 5 Coefficients

4. 000000000000E+00 -0.
-2. 400000000000E+01 -0.
4, 400000000000E+01 ~0.
~2. 400000000000E+01 ~0.
3. 000000000000E+00 -0.

NI=
NI
NI=

NI=
NI=
NI=
NI=

NI=
NI:=
NI=
NI=

9
0
2

A AN O

O N »

Remainders

0.
0.
-8.52651283E-14

Remainders

2.27373675E-13
2.27373675E-13
-9.09494702E-13
-2.27373675E-13

Remainders

2.84217094E-14
0.
0.
6.53699317E-13

-2.13162821E-14

2.13162821E~14
1.64882656E-15

cooo

0.
0.
0.
7.02067027E-26

(Continued)

NN Oy

Case 5,

- = o

Case 6,

Case 7,

1.
1.
-9.

-6.
4.

4 Roots

. 771243444677E.-01
. 339745962156E-01
. 366025403785E+00
. 822875655532E+00

0.
0.
8.271806125530E~25
2.520315928873E~-25

Execution time = . 030 seconds

. 000000000000E+00
. 600000000000E+01
. 00000000000CE+00
. 400000000000E+01
. 600000000000E+01

4 Roots

.121320343562E+00
.123105625617E+00
.121320343560E+00
. 12310562561 8E+00

S Coefficients

coewo

Execution time = . 032 seconds

. 000000000000E+00
. 026600000000E+00
. 304800000000E+00
.595330000000E+01

3 Roots

. 2163995181 72E+00
. 61259015551 2E+00
.630409362659E+00

4 Coefficients

0.
0.
0.
0.

0.
5.027707160674E-24
6. 720842476993E-25

Exe-ution time = . 024 seconds

000000000000E+00
200000000000E+01
500000000000E+00
000000000000E+00
500000000000E+00

4 Roots

.071067811872E~01
.071067811865E-01
.082039325014E-01
. 270820393250E+01

5 Coefficients

~1.225741041988E-20
-3.032780167743E-23
~2.300938973373E-31

Execution time == . 034 seconds

NI-= 5
NI= 7
NI= 4
NI= 4
NI= 11
NI= 6
NI= 4
NI= 5
NI= 6
NI= 4
NI= 4
NI= 11

NI= 7
NI= 4

NI= 5

36

Remainders

0.

1.42108547E-14
~7.38964445E~13

9.23705556E~13

Remainders

-2.27373675E-13
0.
2.04636308E-12
2.04636308E~12

Remainders

-5.68434189E-14
5.68434189E-14
-5.68434189E-14

Remainders

0.

0.

5.68434189E-14
-1.18831167E-10

0.

0.
-5.73087539E-24

2.66725167E~-24

oL

0.
-4. 32628004E-25
5.80454240E-26

0.
-2.94432992E-19
-6.31823110E-25

4.97007612E~-28

(Continued)

Case 8,

Case 9,

. 000000000000E+00
. 000000000000E+00
. 130000000000E+02
. 040000000000E+02
. 436000000000E+03

4 Roots

.164414002969E+00
. 164414003060E+00
. 16515138991 2E+00
.165151389726E+00

5 Coefficients

cooo

Execution time = . 032 seconds

. 000000000000E+00
. 600000000000E+01
. 100000000000E+01
. 240000000000E+02
. 860000000000E~+02

4 Roots

. 841821538748E+00
. 841821538748E+00
. 726958892481E+00
.395668427502E+01

5 Coefficients

-4, 311068539088E-01
4. 311068539088E-01
1.419949629398E~-23

-7.754818242685E-25

Execution time = . 030 seconds

Total execution time = . 292 seconds

NI= 6
NI=12
NI= 4
NI= 4
NI= 8
NI= O
NI= 4
NI= 4

Remainders

0.
1.45519152E-11

-2.91038305E-11
0.

Remainders

-1.81898940E-12
-1.81898949E-12

9. 09494702E-12
-3.81987775E-11

37

cooo

1.13686838E-12
-1.13686838E-12
6.71609424E-24
1.59408790E-21

38

) = f(zk)/.n (z, -7.), (Ref. 1)

This procedure directs the values of the function away from previous-

ly found zeros and avoids the accumulation of rounding errors.

If z, =T, for some i, (1 <i<nr), where Z (k=1, 2, 3)
are the starting guesses, then zy must be modified to avoid divi-
sion by zero. When this cccurred in the computer program z, ~was
replaced by . SZk and satisfactory results were obtained. If during
the iteration to a new root z. = ri, (j=1,2,...), for some i,
(1 <i<nr), then the iteration procedure is stopped and the roots

that have been found are printed out. This never happened during any

of the test cases.

Operator Program

On the following pages are described the operator programs
which go together to form Muller's program. FEach of the operators
is first defined and then the program is documented as a string of

operators.

Muller's Program--Operator Programming Definitions:

I Input the program and input data into the memory of the

machine.

39
Comment: A{I) = the complex coefficients of the polynomial equation
(I=1,...,NC).
NC = the degree of the polynomial equation plus one.
N = the degree of the polynomial equation.
KC = 0 if the coefficients are all real.
NI(I) = the number of iterations per root, (I=1,...,N).
NR = the number of roots found.
RTZ(I) = the complex roots of the polynomial equation,
(I=1,...,N).

REM(I) = the complex remainders of the polynomial equa-

tion, (I=1,...,N).
Al Translate the input data into binary.
A2 N = NC - 1;

E3(MULLER) CALL MULLER(A, N, KC, NI, NR, RTZ, REM);

H4 Output the coefficients, roots and remainders.

\/%5 Stop the machine.

Combining the above operators, the logical scheme of the pro-

gram has the form:

A E)
T 1A2 3“4"%5

EMULLER) SUBROUTINE MULLER(A, N, KC, NI, NR, RTZ, REM);

Comment: A(I) = the complex coefficients of the polynomial equation,

20

A
1

Comment:

J4

Comment:

P
5

Comment:

40

(I=1, ..., N+1).

N = the degree of the polynomial equation.

KC = 0 if the coefficients are all real.

NI(I) = the number of iterations per root, (I=1,...,N).

NR = the number of roots found.

RTZ(I) = the complex roots of the polynomial equation,
(I=1,...,N).

REM(I) = the complex remainders of the polynomial equa-
tion, (I=1,...,N).

NR = 0;

NS = N;

I =N+ 1;

Test to see if Z = 0 is a root, which is the case if the
constant term of the polynomial equation is zero.

lAM] # 02;

NR = NR + 1;

I=1I-1;

NI(NR) = 0;

RTZ(NR) = 0.;

REM(NR) = 0. ;

Have all the roots been found?

NR-N = 0?;

L = 2 when complex conjugate roots have been found,

Je

Comment:

Comment:

POLY
E.of)

Comment:

11

41
L =1 otherwise.

Store the starting values.

IT = 0;
L=1;
Z1 =-1.0;
Z2=1.0;
Z3 = 0.01;

If any roots have been found we must make sure that none
of them equal the starting values, Z1, Z2 and Z3.

NR = 0?;

(I=1, 2, 3);

If Z(I) = RTZ(J) then set Z(I) = .8Z(I), (J=1,...,NR).

For Z1, Z2 and Z3 compute the values PZ1, PZ2, and
PZ3 of the polynomial and the values PRZ1, PRZZ2 and
PRZ3 of the reduced polynomial.

(i=1, 2, 3);

CALL POLY(A,N, RTZ,NR, Zi, PZi, PRZi);

Compute the new root approximation using Muller's al-
gorithm.

L3 =(Z23-22)/(22-21);

B = PRZ1 "L3‘2 - PrRZ2: (L3+l)‘2 + PRZ3+(2.-L3+1.);

SRT = [13‘2_4.° PRZ3eL3«(L3+1)

1/2
(PRZ1°L3-PRZ2(L3+1.)+PRZ3)] / ;

PlZ

A13

Comment:

314
A

15

Comment:

42

DEN

maximum (|B+SRT|, ‘B-SRT|);
DEN = 0?;

L4 =-2°PRZ3+(L3+1.)/DEN;

If DEN = 0 we set L4 = 1.;

L4

1.;

Z4 =723 + L4 (Z23-2Z2);

For Z4 compute the value PZ4 of the polynomial and the

value PRZ4 of the reduced polynomial.

E. (POLY) CALL POLY(A,N,RTZ,NR, Z4, PZ4, PRZ4);

16

Comment:

P
17

Comment:

P18

Al9

Comm ent:

PZO

Comment:

PZl

PZZ

Comment:

Subroutine POLY returns N = 0 if the denominator used in
dividing out the roots is zero. If this is the case stop
iterating and print out the results found so far.

N = 0?;

If |PZ4/PZ3| > 10 then our increment L4 is too large so
try L4/2.

|Pz4/Pz3| < 107 ;

.4 = 1.4/ 2.;

Test for convergence.

|Pz4| < 107%% ;

If Z3 = 0 iterate again.

Z3 =0?;

10

| (z4-24)/23] < 107" "2

Has the iteration limit been reached?

P23

Comment:

A24

225

Comment:

26

Comment:

P
27

Comment:

28

Comment:

43
IT > 997 ;

Store values and iterate again.

IT = IT + 1;
Z1 =272

Z2 =173;

Z3 = 724;
PRZ1 = PRZZ;
PRZ2 = PRZ3;
PRZ3 = PRZ4;

At this point we have accepted Z4 as a root. Store the
root and associated values.

NR = NR + 1;

NI(NR) = IT + 1;

RTZ(NR) = Z4;

REM(NR) = PZ4;

Have all the roots been found?

NR > N7 ;

If L = 2 the complex conjugate of the root has already been
found.

L =27

If the polynomial coefficients are not all real, iterate
again.

KC #£ 07

44
Comment: Isthe imaginary part of the root zero? If so iterate for
the next root.

P3O Imaginary RTZ(NR) = 07 ;

Comment: If the imaginary part of the root is small in comparison to

the real part iterate for the next root.

real RTZ(NR)

. : > 1007 ;
imaginary RTZ(NR)

P
31

Comment: We are now ready to form the complex conjugate of the

root.

332 Lo=2
IT = -1;
74 = 74;

Comment: Evaluate the polynomial at the new Z4.

E3 (POLY) CALL POLY(A,N, RTZ,NR, Z4,PZ4, PRZ4);

3

Comment: Subroutine POLY returns N = 0 if the denominator used

in dividing out the roots is zero.

Pla N # 07 ;
935 N = NS;
H36 Transfer to the calling program.

If we combine the operators, the logical scheme of subroutine

MULLER has the form:

45

36 2,28,29,30,31 10

6
Jo ™ _S_JPZI—Az 34 Py

2
7

25
EgPy 1B, 1A P, SHE 214 a5

35 20 15 18 24 26 26

E16P17'_P18|—A19|_;“|P20 P Pzzrpzz[—

11 20,22,23,33,34 36

21 1 6 6
_IAZ4 325'— IAZé PZ? PZ8[__PZ9[_P3Or

5, 27

6 26 26
P3ll_-332 E33|_ P34'—— 335 H36'

E(POLY) SUBROUTINE POLY(A,N, RTZ,NR, Z, PZ, PRZ);
Comment: This subroutine evaluates a polynomial equation at a given
complex number Z.
A(I) = the degree of the polynomial equation.
RTZ(I) = the roots of the polynomial equation, (I=1,...,N).
NR = the number of roots that have been found.
Z = the complex number at which the polynomial equation
is evaluated.
PZ = the value of the polynomial function at Z.
PRZ = the quoctient of the value of the polynomial functionat
Z divided by (Z-RTZ(I)), (I=1,...,NR). The polyno-
mial function is evaluated at Z using iterated synthetic

division.

Comment:

P
1

Comment:

Y7z = Z(1);
Pz =7-P7Z + A(I+1), (I=1,...,N);
PRZ = PZ;

If NR = 0 there are no root values to divide out.

NR = 0?;

Is the denominator zero? If so set N = 0 and return to
the calling program.

(I=1,...,NR);

Z - RTZ(I) = 07 ;

PRZ = PRZ/(Z-RTZ(1));

N = 0;

Transfer to the calling program.

Combining the preceding operators, the logical scheme of the

subroutine has the form:

6 5 6 3 1,4
Ao Pll— Ez P3[_A4|— 195_!%'

46

The FORTRAN subprograms which go together to form Muller's

computer program are listed in Figure 2.

The Quotient-Difference (QD) Algorithm (2)

Given the polynomial equation

47

Figure 2, Muller's FORTRAN IV program.

PROGRAM INOUT(INPUT»QUTPUT»TAPES=INPUT» TAPEG=0UTPUT)
DIMENSION A{16)9NI(15)9REM{15)yRTZ(15)
COMPLEX AWPREMORTZ

KC=0 FOR REAL COEFFICIENTS

[ANAN A

CALL SECOND(TIMEL)
READ(591000)NCASES
DO 100 ICASES=1sNCASES
CALL SECOND(TSTART)
READ(591000)INCHyKCy (ALTI)9 I=19NC)
N=NC=1
CALL MULLER(AgN9KCoyNIyNR9RTZ9yREM)
WRITE(691010)ICASESYNCy(A(I) pI=19NC)
WRITE(691020INR9(RTZ(I)sNI(T)}9REM(I) 9I=19sNR)
CALL SECONDITEND)
TSEC=TEND-TSTART
WRITLC(691300)TSEC
100 CONTINUVE
CALL SECOND(TIME2)
TTIME=TIME2=TIME1
WRITE(6s1310) TTIME
1000 FORMAT(215/(8F1040))
1010 FORMATU(LIHL/////7//1HO» 14X s *CASE*9 I3 9%y %413
1% COEFFICIENTS*//(1H »14X92E20412))
1020 FORMAT(1HO/1HO#28X9I39% ROOTS#*,39Xy*REMAINDERS*//
1(1H 914X92E204129% NIz %*91392E1748))
1300 FORMAT(1HO9//915X9*EXECUTION TIME=%yF1043
1% SECONDS*]
1310 FORMAT{1HO 914X 9#TOTAL EXECUTION TIME=%*9F1043»
1# 3ECONDS*)
END

SUBROUTINE MULLER{AWNKCINI9NRYRTZ»REM)
DIMENSION A{(16)sNI{15)9REMI15)RTZ(15) »
COMPLEX A»ByDENIL39L4yPZ19oP229PZ39PZ49PRZ1IPRZ 2
1PRZ34PRZ4IREMIRTZISRT921922023924
NR=0
NS=zN
I=N+1
5 IF({CABS{A{I))eNEeQe1GO TO 20
NR=zNR+1
NI(NR)=0

I=1=1
RTZ(NR)={04e904)
REM{NR}=(0s904}
IF(NR=N)59100045
20 I1T=0
k=l . _ ———

Zlm(=14904)

Z2=(1le90e)y
23=0401900)
IF{NRsEQe0}IGO TO 27
DO 25 I=1sNR

. IF(Z1eEQeRTZ(I))Z1=e8%21
IF(Z2eEQeRTZ(1))22248%22
IF(Z34EQeRTZ(1))23=48%23 _

25 CONTINUE

48

27 CALL POLY(AWNSRTZ9NR9Z19PZ19PRZ1)
CALL POLY(AWNSRTZyNR9Z29PL29PRL2)
CALL POLY(AWNIRTZ9NR9239PL39PRZ3)

30 L3=(z23=22)/t22=71)

A NA]

CCMPUTE B=Pl#L3#L3=P2%¥(L3+1e)*(L3+1e)+P3%(2e*L3+1s)
B=PR21#L3*L3=PRZ2%#(L3+1e)*(L3+14)+PRZ3*(24%L3+10)

¢

¢ SRT=CSQRT (B%B=4 ¢ ¥P3¥L3% (L3+14) ¥ (P1%L3-P2%(L3+14)+P3))
SRT=CSQ?T(B*B-4|*PRZ3*L3*(L3+1.)*(PRZI*L3-PR12*
1(L3+1«)+PRZ3))

¢ DETERMINE MAX(G+SRT9B8=SRT) e

DEN=B+8RT
IF(CABS(DEN) oL T« CABS(E=SRT) IDEN=B=SRT
IF{DENGEQeCe)GO TO 35

La==24%P3(L3+14)/DEN
Lu==2e¥PRZ3*(L3+14)/DEN
GO TO 490

Y

35 L4=(1e9004)
40 24=23+L4%(23=22)

CALL RQLY(A’NQRTZQNRQZ49PZ49PRZ4)
IFINeEQe0)IGO TO 900

IF(CABS(PZ4/PZ3)4LT4e1041GO TO 50
La=L4/2
GO TO 40

50 IF(CABS(PZ4) 4L Te1ls0E=201GO TO 100
IF(Z34EGe0e)GO TO 65
IF(CABS((24-23)/23)4LTele0E=10)GO TO 100
IF({ITeGES99)GO TO 100

6% IT=1T7T+1
21=22
22=23
23=24
PRZ1=PRZ2
PRZ2=PRZ3
PRZ3=PRZ4&

GO TO 30
100 NR=NR+1
NI(NR)=IT+1
RTZ(NR)=Z4
REMINR)=PZ4
IF(NRsGEWNIGO TO 1000
" TTF{LWEQe21GD TO 20
IF(KCeNES0IGO TO 20
IF{AIMAG(RTZ(NR))eEQeQe)GO TO 20 S
IF{ABS{REAL(RTZ(NR))/AIMAG(RTZ(NR)))eGTele0E2)
160 TO 20
110 L=2
T IT=-
24=CONJG(Z4)
CALL POLY(AINSIRTZINR9Z49PZ49PRZG)
IF{NaNEWs0)GO TO 100
900 N=NS
1000 RETURN
TTTT T END

'
'

SUBROUTINE POLY(AyNsRTZsNRyZ9yPZ9PRZ)
DIMENSION A{16)sRTZ(15)
COMPLEX ASPZsPRZIRTLs2Z

c A=COEFFICIENTS OF POLYNOMIALS,
C N=DEGREE OF POLYNOMIALe
C RTZ=ROOTS OF POLYNOMIAL e
< NR=NOs OF ROOTS THAT HAVE BEEN FOUND.
< Z=VALUE AT WHICH POLYNOMIAL IS EVALUATED.
_C__P2=POLYNOMIAL EVALUATED AT Z.
C PRZ=VALUE OF POLYNOMIAL WITH ROOTS DIVIDED OUTs
PZ=Al1)
¢
DO 20 I=1sN
20 PZ=2¥PZ+AlI+1)
~
PRZ=PZ
IF(NR+EQe0}GO TO 100
40 00 50 I=1yNR
o IF(Z=RTZ{1}¢EQe0e)GO TO 60
50 PRZ=PRZ/(I=-RTZI{T)))
GO TO 100
60 N=0
100 RETURN

END

49

50

n n-1
z +a.z +... +a z+a =20

f(z) = a0 1 n-1 n

where a, are complex numbers. If all a are not different from
zero, transform the equation to eliminate any zero coefficients. Use
for a new center ct =1. and transform the equation. If this does
not eliminate all zero coefficients try ¢t =1/2 then 1/4,...,1/128.
The zero coefficients in equations x" + 1 = 1, n=3 to 101 were

successfully eliminated using this procedure. The required equation

n-1
(Z>,<+ct)n +...+a =0,

n

f(z>,<+ct) = ao(z>,<+ct)n +)

where 1z = z_ + ct, after expanding by the binomial theorem and col-

lecting terms, reduces to the form

n n-1
F = z +cCc.z ... +¢C z +¢ =0
(Z*) CO sk l >k + n_l sk n ?
he - a_, =ncta_+ a etc.
where c0 0 c1 0 1

This transformation can be accomplished using synthetic divi-

sion and by noting that if z =z _ + ct, then =z =12z - ct and

f(z) = f(z*+ct) = ¢>(z*) = d(z-ct)
so that

n
-ct -ct =z a ... ta zZ + a
co(z ct) + +cn_1(z ct) + <, oZ + 01 u

and using synthetic division to divide f(z) by =z - ct we obtain
c as the remainder. If again the quotients thus obtained are divid-

n

ed by z - ct and so on, the successive remainders will be

51

., Cl’ and the final quotient will be ¢ ..

(1) 1 (k)
= - ’ =) :Z’ >)
qO 3 ql_k 0 k 3 n
0
a
k
R L 2 N |
(1-k) ak

Consider the elements thus generated as the first two rows of a QD

scheme, and generate successive rows by

(k) (k) (k-1) (k)

w178 sy)Y
(k+1)

0 %)

i+l (k) i
g1

where
e(o):e(n): 0, 1i=1,2,

If the zeros zk are distinct then

'hm qi =2
1— 00
and
(k)
lim e, =0
1—00 !
If some of the zeros, zk have the same modulus then the co-

efficients of the polynomial equation with these zeros can be

52

k
constructed from the qi(). Distinct zeros or groups of zeros with
k) k -
equal moduli will be separated by small e,() (e,()< .5 x 10 : was

1 1

used in the computer program).
Suppose the polynomial equation has m =zeros

Zk+l’ ak+2, e Zk+m with the same modulus. Consider the polyno-

mials where

K
lim PE tm) _

1—>c0

(z-z

(k+m)

that is, the coefficients of P, tend for 1i—+w to the coeffi-
1

cients of the polynomial equation with zeros =z and

k+1’ “k+2” "km
leading coefficient 1.

k
The polynomials P_(+m) are constructed from the recur-

1

rence relations

Pi {z) = 1, i=0,1,
k+¢ k4g-1 k+ ¢ k+g-1
P-()() P.()(Z) - qF)P.()(z),
1 1+1 1 1
2:172’ ,m;l:O,l,
So
P4k+1%2):z_(ﬁk+1)
and for m =2 we have
(k+2) B (k+1) (k+2) k+1
P.l (z) = Z(Z—qu) - q; (Z—q.1)
2 (k+1) (k+2) (k+1) (k+2)
=z - (qu +q,)z +q; q, :

53
This gives a convenient means of obtaining approximations to coeffi-

2 .
cients of quadratic equations 2z + bz + ¢ =0 with zeros =z

k+1
and Zk+2’
i (k+1) (k+2),
.hm (qiJrl +q.)=Db
i— 00
k k+2
lim qg H)qi +e) =cC

1=~ 00

These coefficients can readily be refined using Bairstow's algorithm
(3) and then the roots can be obtained using the quadratic formula.

Most frequently the quadratic equation occurs in connection with
complex conjugate zeros of real polynomials.

The coefficients of polynomial equations of higher degree can
be obtained in a similar way. These coefficients would be only ap-
proximate so the roots from the resulting polynomial equations would
be in error. There is no convenient way to solve polynomial equations,
whose zeros have equal moduli, for degree greater then two unless
we consider a method such as Muller's as presented in this paper.
This is not done since more accurate results would be obtained by us-

ing Muller's algorithm on the original polynomial equation.

Operator Program

On the following pages are described the operator programs

which go together to form the QD program. FEach of the operators is

54
first defined and then the program is documented as a string of oper-

ators.

Rutishauser's Quotient-Difference (QD) Program--Operator

Programming Definitions:

I Input the program and input data into the memory of the
machine.

Comment: NC = the degree of the pelynomial equation plus one.

KC 0 is all the coefficients are real.

A(I) = the complex coefficients of the polynomial equation,
(I,1,...,NC).

A1 Translate the input data into binary.

Comment: CT is the new origin to be used if any of the coefficients
are zero. Note that the QD algorithm requires that all
the coefficients be non zero.

ICT is the number of times we have changed origins.

NR is the number of roots that have been found.

NTYPE] is the number of simple roots.

NTYPE? is the number of approximations for quadratic
equations.

32 CT = 2.;

ICT = 0;

NR = 0;

A3

Comment:

Ja

Comment:

P
5

Comment:

e

L

Comment:

Ay

Comment:

Aq

P
10

A
11

Comment:

NTYPEL = 0;

NTYPEZ = 0;

ONE = (1.,0.);

N = NC - 1;

Store the coefficients in a new array since they may be
transformed to eliminate any zero terms.

AT(I) = A(I), (I=1,...,NC);

Test for zero coefficients.

|AT ()| = 0.2, (I=1,...,NC);

55

If we have a zero coefficient and have not transformed the

coefficients eight times, transform them again.
ICT < 8?3
Write: zero coefficients after eight transformations.
CT is the new origin.

CT =CT/2.;

NP1l =N + 1;

Transform the coefficients to eliminate any zero terms.

AT(I) = AT(I) + CT - AT(I-1), (I=2,...,NPI1);
NP1 = NP1 - 1;
NP1 > 27;

ICT = ICT + 1;

Solve the polynomial using the QD algorithm.

E1 2(QDIFF) CALL QDIFF(AT,NC,IT,Z,B,NTYPE], NTYPEZ2);

56

Hl3 Write: Output from QD algorithm, ... iterations.

Comment: Have any simple roots been found? ;
P NTYPEL = 0?;
14 1 :

Comment: If the coefficients have been transformed, transform the

roots back.

P T = 0?2

15 I1C :

A16 Z(1) = Z(I)+ CT, (I=1,...,NTYPE]l);

Hl7 Write: Approximations to simple roots: ...

Comment: Have any approximations for quadratic equations been
found?
P NTYPE2 = 07 ;
18
Comment: Use Bairstow'!s algorithm to refine the approximations to
the quadratic equations.

B(l,I) and B(2,1) are the coefficients of the quadratic

equation. The leading coefficient is one.

Elg(ZO, 35) (I=1,...,NTYPE2);
220 P = B(1, 1)

Q = B(2,1);
EZl(BAIRST) CALL BAIRST(AT, NC,IT, P, Q);
H22 Write: Quadratic approximations: .
A23 NR = NR + 1;

Comment: IT is the number of iterations performed. Store this

number in NI(NR) and print out later.

D

Comment:

EZS

(QUAD)

Comment:

Poe

AZ?

Comment:

Eog

(POLY)

Comment:

229

A3O

331

P3Z

A33

E34

(POLY)

2%5

Comment:

36
37

A3g

(38, 41)

57

NI(NR) = IT;

Solve the quadratic equation using the quadratic formula.

CALL QUAD(ONE, P, Q, Z1, Z2);

If the coefficients have been transformed, transform the
roots back.

ICT = 07 ;

Z1 =721+ CT;

Evaluate the polynomial at Z1, (find the remainder).

REM(NR) = POLY(A,N, Z1);

Store the first root from the quadratic formula and go on
to the second root.

RTZ(NR) = Z1;

NR = NR + 1;

NI(NR) = IT;

ICT = 07?;

Z2 =22+ CT;

REM(NR) = POLY(A, N, Z2);

RTZ(NR) = Z 2;

If any simple roots were found use the Newton Raphson
algorithm to refine them.

NTYPE]L = 0?;

(I=1,...,NTYPE1);

NR = NR + 1;

58

E39(NEWTON) CALL NEWTON(A, N, IT, Z(I), REM(NR));
340 NI(NR) = IT;

341 RTZ(NR) = Z(I);

H42 Output the coefficients, roots and remainders.
\/613 Stop the machine.

Combining the preceding operators, the logical scheme of the

QD program has the form:

11 8 43 6
nOAl 22 A324 —|P5 Pél— n? —IA8 A9 1310[_—

12

17 15 14 36

5 18
A11[_ gJEl.Z ma Pl Pl s, I, _'P18I_

28 26
E19 220 EZl HZZ A23 ;24 EZS PZ()’__ AZ? _IEZ8 229

34 32 18 42
P E
A3O 331 32[——A33_—' 34}35_'1336'_—}:37 A38 E39

36 7
240 241—“142 —l/f43)

E(QDIFF) SUBROUTINE QDIFF(A,NC,IT,Z, B,NTYPE]l, NTYPE2);
Comment: Solution of the polynomial equation using the QD algorithm.
A(I) = the complex coefficients of the polynomial equation,
(I=1,...,NC).
NC = the degree of the polynomial equation plus one.

IT = the number of iterations for the roots.

Comment:

A5

£r

7

Comment:

E (9,3
g(9:31)

79

59

Z(I) = approximations to simple roots, (I=1,2,...).

B(I) = approximations to the coefficients of a quadratic

equation, the leading coefficient is one, (I=1,2,...).
NTYPE!]l = the number of simple root approximations.
NTYPEZ2 = the number of quadratic equation approxima-
tions.
IT = 0y

Set up the iteration limit.

LIMIT = 3-NC;

If LIMIT < 20 set LIMIT = 20;

If LIMIT > 100 set LIMIT = 100;

N:NC-l;

Compute the initial quotient and difference terms.

Q(1,2) = - A(2)/A ();

Q(1,K+1) = 0., (K=2,..
E(l, K) = A(K+1)/A(K), (K=2,...

Compute the quotient and difference terms until we

.» N);
, N);

reach

the limit.

(I=2,...,101);

NTYPEL!

NTYPE2

0;

0;

E(I-1,1) = (0., 0.);

E(I-1,NC) = (0., 0.);

A10

A
11

AIZ

Comment:

p13

Comment;

gy

A15

Comment:

Ple

Comment:

Pl?

Comment:

P
18

419

Comment:

D

Comment:

P
21

Comment:

PZZ

(I, NC) = (0., 0.);

Q(I, K) = E(I-1,K) - E(I-1,K-1) + Q(I-1, K), (K=2, ..
E(, K) = Q(I, K+1)/Q(I, K) - E(I-1, K), (K=2,...,N);
IT =IT + 1;

60

., NC);

Iterate again if the number of iterations, (IT)is less than

the limit.
IT < LIMIT? ;
Test for convergence.
K=1;

K

1

K+ 1;

Are the roots separated by a small E(I, K)?

|E(L, K)| > 5. x 10'2?;

We can not have division by zero.

1Q(I, K)| =0.2;

Are successive root approximations close enough?
(@, K) - Q(I, K-1))/Q(L, K)| > 1.0 x 10'2?;
NTYPE]l = NTYPE] + 1;

Store the root approximation.

Z(NTYPEL) = Q(I, K);

Have all E(I, K) been tested?

K < NC?;

Do we have approximations to a quadratic term?

| E(I, K+1)] > 5. x 107%;

Start by testing for simple roots.

Comment:

AZ3

24

25

Poe

AZ?

Comment:

928

Ao

Comment:

P
30

n31

32

A33

Comment:

P34

Comment:

61

Have these quadratic approximations converged?

Pl = -Q(I-1,K) - Q(I-1, K+1);

P2 = -Q(,K) - Q(I, K+1);

|(PZ'P1)/PZ| >1. x 10_2?;

Q1 = Q(I-2,K)-Q(I-1, K+1);

Q2 =0Q(-1,K)-Q(I, K+1);

|(QZ-Q1)/QZ| > 1. x 10—2?;

NTYPEZ2 = NTYPEZ2 + 1;

Store the quadratic term approximations.

B(l1,NTYPE2) = PZ;

B(2, NTYPEZ2) = Q2;

K=K+ 1;

Have all E(I, K) been tested? ;

K< NC?;

Write: Limit of 100 iterations reached, any roots found

will be printed.

Write; Three or more roots with equal moduli, the QD
program can not find such roots, any other roots will
be found.

K=K+ 2

Have all E(I, K) been tested? ;

K > N7 ;

Do we have the roots separated? ;

62

-2
P I, < b, ?;
35 | E(IL,K)| < 5. x 10 ¢
K=K+ 1;
A36 +
H37 Transfer to the calling program.

Combining the preceding operators, the logical scheme of sub-

routine QDIFF has the form:

31
A P P A A A_E A A A _P
20 1 2 374 526_ 7 859 10 711 712 13’_

21,30, 35 22 31 31 1

214 A15P16'—P17|—P18|_ A9 920 Pl

3

U1

-

32 31 15

16
—]P PZ4I—_ A PZé[_ AZ? 928 AZ9 P3O

37
13,17,18,24,26 37 22 34 21,30,3!

[R LY 33_| 4l_ 36|_ - I

E(BAIRST) SUBROUTINE BAIRST (A, NC, IT, P, Q), (Ref. 3)
Comment: A(I) = the complex coefficients of the polynomial equation,
(I=1, ..., NC).
NC = the degree of the polynomial equation plus one.
IT = the number of iterations performed.
P and Q = the approximations to the quadratic term
ZZ +PZ + Q.
B(I) and C(I) are arrays used for storing terms generated

by the iteration scheme.

2 IT = 0;

Comment:

P
7

Comment:

63
B(1) = A(1);
IT = IT + 1;
B(2) = A(2) - P+B(1);

B(I) = A(I) - P*B(I-1) - Q«B(I-2), (I=3,...,NC);

N2 = NC - 2;
C(I) = B(I) - P+C(I-1) - Q+C(I-2), (I-3,...,N2);
C(NC-1) = -P+C(NC-2) - Q*C(NC-3);

D = (C(NC-2))% - C(NC.1)+C(NC-3);

DP = B(NC-1)¢C(NC-2) - B(NC)+C(NC-3);

1

DQ = B(NC)+*C(NC-2) - B(NC-1)*C(NC-1);

1

DELP = DP/D;
DEI_Q = DQ/D,

P - P + DELP;

Q =0Q + DELQ;

Have we reached the iteration limit?
IT > 1007 ;
2
Have the coefficients of the quadratic term Z +PZ +Q

comverged?

8

- D
>1.0x 10 and ELO

>1.0x 10'8?;

DELP
b

Transfer to the calling program.

64
Combining the above operators, the logical scheme of subrou-

tine BAIRST has the form:

9 1

8 7
2’0 —IAI A, 93 Ay By By P?'— Psr—ln(9'

E(NEWTON) SUBROUTINE NEWTON(A, N, IT, 21, PZ):
See operator programming definition for subroutine Newton of
Lehmer's program, page 23.

E(POLY) FUNCTION POLY(A, N, Z2):
See operator programming definitions for function Poly of l.eh-
mer's program, page 25.

E(QUAD) SUBROUTINE QUAD(A, B,C, 41, Z2):

See operator programming definitions for subroutine Quad of

Lehmer's program, page 26.

The FORTRAN subprograms which go together to form the QD
computer program are listed in Figure 3. Note that this program in-

cludes the QD algorithm, Bairstow's algorithm and the Newton-

Raphson algorithm.

4, The Steepest Descent Algorithm

The Steepest Descent algorithm with éiljak functions (7) is used
to minimize a nonnegative function, the minimal values of which are

zero and correspond to the zeros of the polynomial equation under

Figure 3. The QD FORTRAN IV program.

PROGRAM INOUT(INPUT »OUTPUT yTAPES=INPUTyTAPESE=0UTPLT)
DIMENSION A(26)9AT(16)9B(29T)sNI(15)9REM(15)
IRTZ(15)s2(16}

COMPLEX A2ATsBoONEWPsPOLYsPZyQsREMIRTZ9Z921922

NCaNOe OF COEFFICIENTS.
KC=Q IF ALL COEFFICIENTS ARE REAL.

aXaXaXal

CALL SECONDITIMEL)
READ(591000}INCASES

“DD 100 ICASES=1.NCASES
CALL SECONDITSTART)
WRITE(691050)ICASES
READIS 91000 INCHKCo{A(TI) s I=1oNC)

CT=2

- ITT=0
N=NCe=1
NR=(C
NTYPE1=Q
NTYPE2=0
ONE={1s90)

DO 5 I=1NC
5 AT(I)y=AL1)

C
C " TEST FOR Z2ERO COEFFICIENTSS
8 DO 10 I=1sNC
TTI0 T TF{CABSTATIT)}4EQe04)GO TO 12 T
GO TO 25
¢ >
C IF THE ZERQO COEFFICIENTS ARt NOT ELIMINATED AFTER
C ETGHT TRANSFORMATIONSy GO TO THE NEXT CTASEe
C

T T2 TFUICTWLEs8T GO TO 15
WRITE({691005) ICASES
GC TO 100

C
< NEW CENTER,
15 CT=CT/2s
NPiaN+T T T
¢ 7 "TRANSFORM EQUATION TO ELIMINATE Z2ERO COEFFICIENTS.

18 DO 20 I=2)NP1
T207 AT(1)=ATII)+CT*AT(I=1)
NP1=NPl=1

[] [] 18-
ICT=1CT+1
GO To 8

7 AT=COEFFTICIENTS OF TRANSFORMED EQUATION.
IT=NOs OF ITERATIONS.

O Ny

NCaNG. OF COEFFICIENTS.
Z=APPROXIMATIONS FOR SIMPLE ROOTS.
B=APPROXIMATIONS FOR QUADRATIC TERM.

NTYPE1=NOs OF SIMPLE ROOTSs)
NTYPE2=NOs OF APPROXINATIONS FOR QUADRATIC TERMS.

25 CALL QDIFF(ATy)NCs1Ts2sBaNTYPELWNTYPE2)

WRITE(69102011T
IF(NTYPEL#EQs0)GO TO 35
C
C_ I1F THE EQUATION HAS BEEN TRANSFORMED)

¢~ TRANSFORM THE ROOTS BACK.
28 IF(ICTWEQe0}GO TO 31

DO 30 I=1sNTYPEL
CZUIy=Z(1eCT

20 CONTINUVE
31 WRITE(691025) {Z(1)seI=1eNTYPEL)

35 IF(NTYPE24EQe0)GO TO 45

[aNaNARAXA!

DO 40 I=1sNTYPE2

P=8(1s1])

Q=R{291)

USE BAIRSTOWS ALGORITHM TO GET CLOSER
APPROXIMATIONS TO THE ROOTS.

N USE COEFFICIENTS OF TRANSFORMED EQUATION SINCE
QUADRATIC APPROXIMATIONS ARE FOR THIS EGUATION.
CALL BAIRST(ATsNCoeIToePsQ)

WRITE(691030) PsQ
NR=NR+1

_ NI(ARy=IT
CALL QUAD(ONEsP+Q921922)
IF{ICT«EQe0)IGO TO 37
21=Z21+CT

37 REMINR) =POLY (ApiN9Z1)
RTZ(NR)=Z1

_ NR=NR*+1
NI(NR)=IT
IF({ICT+EQeQ)GO TO 39
22=Z22+CT

39 REM{NRJ=POLY(AsNsZ2)

[a¥aXa¥aY

C

T T TSECETEND-TSTART

T JITIMESTIMEZ=TIMEI ~ T T

1000 FORMAT({ZIS/T8ELQ.01))

40 RTZ(NR)=Z2
45 IF(NTYPE1sEQe0)GO TO 50

USE NEWTONS METHOD TO GET CLOSER ROOTS,
USE ORIGINAL COEFFICIENTS SINCE ROOTS WERE
TRANSFORMED BACK.

DO 49 I=1yNTYPEL

NR=NR*+1

66

CALLU NEWTON{ASNSITIZ(I)9REMINR))
) NI{NR)=IT B o

RTZINR)=Z{1)
49 CONTINUE

50 WRITE{691010)ICASESINCo{A(T)pI=19NC)

CALL SECOND(TEND)

WRITE(691015INRy(RTZ{I)sNI(TYVyREMTTIT#I=19NR}

WRITE(691300)TSEC

"100 ~ CONTINUE
CALL SECONDI(TIMEZ2}

WRITE(691310)TTIME

1005 FORMAT{6HOCASE 13,

1010 FORMATI{1HLY//////7/1HO9s14Xs%CASE*y][39%y %9139

T 1%y ZERO COEFFIQIENTS AFTER '8 TRANSFORMATIONSe¥*T

T# COEFFICTERTS*//7T1IH »14X92EZ0412Y0)

1015 FORMAT(1HO/1HO0928XsI39% ROOTS*939Xy*REMAINDERS*//

T1TIH 9T14X92E20el29% NIw #y1342E1768))
1020 FORMAT{1HO»14Xy*OUTPUT FROM QD ALGORITHM.*:

T 1% TTERATIONS %)
1025 FORMAT(1HO»14X9*APPROXIMATIONS TO SIMPLE ROOTS%*//

T4y

TUTH +18X32E20.12))

T TIA » 14Xy 2EZ0e127]
1030 FORMAT(1HO914X9*QUADRATIC APPROXIMATIONS*//

1050 FORMAT(1HL///////71HQs 14X *CASE*913)

1300 FORMATUIHO#// 915Xy *EXECUTION TIME=¥43FI0s3)

1% SECONDS*)

T310 FORMATT{IHOy IGX s ¥TOTAL EXECUTION TIME=¥,FI0«3)

1% SECONDS¥)

~ 7 ERD

AR ANANANANANANAEA!

<

30

T NTYPEZ=NTYPEZ+L

- 4D

]
[aNaNa)

67

SUBROUTINE QDIFF(AINCeITsZeBaNTYPELyNTYPEZ)
DIMENSION A{16)9B{2s7)9E(100916)sQ(100s16)92(16)
COMPLEX AsBSEsPLIP2sQsC1eG292

A=CCEFFICIENTS «

NC=NOs OF COEFFICIENTS

[T=NCs OF ITERATIONS

2=APPROXIMATIONS FOR SIMPLE ROOTSe

BaAPPROX IMATIONS FOR BAIRSTOWS QUADRAIIC TERM
NTYPE1=NOe OF SIMPLE ROOTS

NTYPEZ2=2NOes OF APPROXINATICNS FOR QUADRATIC TERMS

1T=0

N=NC=1

LIMIT=3%NC
IF(LIMIToLTs20)LIMIT=20
IF(LIMITeGTe90)LIMIT=90
QUle2)==A(2/AL1)

DO 5 K=24N
Gll9k+1)=(0e900)
E{1sK)=A(K+1)/A(K)

DO 40 I=24101

NTYPE1=0

NTYPE2=0
E(I=1911=(0e904)
E(I=19NC)=(0es0s)
CE(IsNC)={0a90s)

DO 15 K=29NC
QUIsK)=E(1=19K)=E(I=19K=1)+Q(I=19K)
DO 16 K=2sN
E(IsK)I=Q(I9K+1)/QUIsK)I*E(I=19K)
IT=ITHL e
ITERATE AGAIN IF LESS THAN LIMIT.

IF(ITeLT4LIMITIGO TO 40

- K=1

K=K+1

CIF(CABSIE(IsK))eGEaSe0E=2)GO TO 30
IF{CABS(Q(IsK)) sEGe0e)GO TO 40 -
IF (CABS((Q(IsK)=Q(I=14K))/Q(IsK))sGTs1le0E=2)GO TO 40
NTYPE1=NTYPELl+1 -
ZINTYPEL)=Q(I9K)
IF{KaLTeNCIGO TO 20

_GC_TO 400 _ . - R
IF(CABS(E(IsK+1})eGEW540E=21G0 TO 350
Pla=Q(I=19K)=Q(I~19K+1)
P2a=Q(1sK)=Q(I9sK+1)
IF(CABS((P2=P1)/P2)sGTeleQE=2)G0 TO 40
Q1eQ(I=2sK)#Q(I=19K+1)

oz Q(I=19K)*Q(I9K+1)
IF(CABS((QZ-QI)/QZ).GT 1s0E=2)GO TO 40

B{lsNTYPE2)=P2
T B{29NTYPE2)=Q2
K=eK+1

TTTTFKGLTWNOIGO TO 20 T T

GO TO 400
" CONTINUVE

LIMIT OF 100 ITERATIONS REACHED)
ANY ROOTS FOUND WILL BE PRINTEDS
TWRITET€91015) T
GO TO 400

68

THREE OR MORE ROOTS WITH EQUAL MODULTI
THE QD ALGORITHM CAN NOT FIND sSUCH ROOTS»
ANY OTHER ROOTS WILL BE FCUNDs

350 WRITE(6+1030)
K=K+2

260 IF(KeGTeN)GO TO 400
IF(CABS(E(I#K)) oL Te540E=21G0 TO 20
Ka2K+1
GO TO 360

[aNa¥al

40C RETURN

1015 FORMAT{1HO914X9*LIMIT OF 100 ITERATIONS REACHED#*/
115X9*#ANY ROOTS FOUND wILL BE PRINTED*)

1030 FORMAT{1HOpl4Xy
1*THREE OR MORE ROOTS WITH EQUAL MODULI«*/15Xy
2%THE QD PROGRAM CAN NOT FIND SUCH ROOTSs*/15X,
3%ANY OTHER ROOTS WILL BE FOUNDe#)
END

SUBROUTINE BAIRST{AINCYITHPQ)

DIMENSION A(16)9B(16)sC(15)
COMPLEX A9BosCoP9sQsD9DP9DQIDELPHDELQ

C
c SUBROUTINE BAIRST REFINES THE APPROXIMATIONS TO A
c QWUADRATIC POLYNOMIALy SEE HILDEBRANDs Pe&72~4754
<

1T=0

Bl1)=A(1)
5 IT=IT+1

B(2)=A{2)=P*B (1)
DO 10 1=34NC
10 BUI)=A(1)=P#B(I-11=Q%B(1=2)

Ct1)1=B(1)
C(2)=B{2)=P*C(1)
N2=NC=2

DO 20 I=34N2
20 CUI)=BlI)~P*#C({I=1)=Q¥*C({I~2)

C NOTE C{NC=1) HAS BI(NC=1) SUBTRACTED FROM IT.
CUNC=1)==P*C{NC=2)=Q¥*C(NC=3)
D=C{NC=2)#CINC=2)=C(NC=1)*C{NC=3)

DP=B({NC~1V#C{NC~2)=B(NC)*¥C(NC=3)
DQ=B(NC)*#C(NC=2)~B{NC=1)*C(NC=1)
DELP=DP/D

DELQ=DQ/D

p=p+DELP

Q=Q+DELQ

T U IF(TTeGEC100160 TO 400
IF{CABS(DELP/P)eGTele0E=8
1eOReCABSIDELQ/Q}eGTs140E=81GO TO 5
400 RETURN
END

" SUBROUTINE NEWTON{AsNyITeZ19PZ) ' T
DIMENSION A(16)
T TCOMPLEX AWDPZePZ921922

T T AECOEFFITIENTS
N=DEGREE OF POLYNOMIAL.
T 7 "IT=NOe. OF ITERATIONS.
21=INDEPENDENT VARIABLES
PZ=THE VALUE OF THE POLYNOMIAL AT ZaZle
DPZ=THE DERIVATIVE OF PZs

a¥aNakala!

10

20

100

la¥a¥aXaXats

20

IT=0

IT=1T+1

PZ=A(1)
CRZ=A(1)

DC 10 I=2sN
PZ=ATI}+ZI*PZ
DPz2=pPZ+21%DPZ
PZ=A(N+1)+21%P2

IF(DPZ+EQe04)GO TO 20
22=21-PZ2/0PZ
IF(CABSTPZTeLTo1e0E=20)G0 TO 100

TEST FOR 04 DENOMINATOR,
IF(Z14EQe0e)GO TO 20

TEST FOR CONVERGENCES
TTFUCABS{{Z2=21)/721) «LTs1eQE-10)G0 TO 100
IF{ITsEQel00)GO0 TC 100

21=22

GO TO 5

21=22

RETURN

CERD

COMPLEX FUNCTION POLY(AsN92Z)
DIMENSION A(16)
COMPLEX AsZ

" TA=COEFFICTIENTS OF POLYNOMIAL.

N=DEGREE OF POLYNOMIAL,

Z=VALUE AT WHICH POLYNOMIAL IS EVALUATED.,

POLY=POLYNOMIAL EVALUATED AT 2Z,

DO 20 I=1N
POLY=Z2%POLY+A(I+1)
RETURN

END

) SUBROUTTNE QUADTAsByTr21922)

COMPLEX AsBeCoeDISCe21422

T T DTISU=TSORT(BAB=4, #A%()

T T T ZZaT=B=DISCI/(24%A)

21n(=B+D]SC)/(24%A)

RETURN
END

69

_POLY=A(1) S o

investigation.

We are concerned with the equaticn
(1) f(z) =u + iv = 0,

where f(z) 1is an entire function of the complex variable =,
where

(2) z = x + 1y.
Now we form the function

2 2
(3) F(x,y) =u +v

F = F(x,y) 1is a function having the property that the zeros of F
are the zeros of f(z). In factthese zeros are the only minima of
F, (10). Alsonote that F >0 for all =z and that aF/ox and
0F /0y exist.

The level lines of the function F(x,y) are the intersections of
the surface w = F(x,y) with the planes parallel to the x, y-plane
(w 1is the altitude above the x, y-plane). At an arbitrary point

P(x,y) the gradient of F has the components
(4) F =—, F =—.

The gradient vector VvF is orthogonal to the level line through P

and points in the direction of increasing values of F. We must

71
move in the opposite direction, the direction of steepest descent. The
differential equations of the orthogonal trajectory O to the level

lines of F(x,y) are

Here p is a proportionality factor and t is a parameter along the
curve ©O. The function p(t) must be positive and is chosen to
minimize the function F along the direction of steepest descent.
We will now consider the calculation of p(t).

In the neighborhood of a zero of f(z), the higher order terms

of a series expansion for u and v are negligible so we have:

_ du au . ov av
(6) -u—BXAx+ayay, 'V_BXAX+8yAY’

where ax and ay are thedistances in the x and vy direc-
tions from a point in the neighborhood of the zero of f(z) to the
zero of f(z). Using the Cauchy-Riemann equations and solving

Equation (6) for ax and ay yield

gdu ov L v _,ou
(7) Ax = ox X Ay = ox 0x

(Buy2, 2y (222, (Avy2

ox ox ox ox

From these equations we see€ that

72

0.5

(8) p(t) = T v O
(_

ox +_8_;

2 2
If F=u +v in Equation (3) is greater than the value pre-
viously calculated, replace the current ax and ay values by

.75Aax%x and .75Ay until a value of F is found that is smaller

than for the preceding iteration.

Operator Program

On the following pages are described the operator programs
which go together to form the Steepest Descent program. FEach of
the operators is first defined and then the program is documented as

a string of operators.

The Steepest Descent Program--Operator Programming Definitions:
HO Input the program and data into the memory of the ma-
chine.
Comment: A(I) = the complex coefficients of the polynomial equation,
(I=1, ..., N+1).
N = the degree of the polynomial equation.

NC = the degree of the polynomial equation plus aone,

I

KC = 0 if the coefficients are all real.
NI(I) = the number of iterations per root, (I=1,..., N).

NR = the number of roots found.

73
RTZ(1) = the roots of the polynomial equation,
(I=1,....NR).

REM(I) = the remainders from evaluating the polynomial

equation at the roots, (I=1,...,NR).
Al Translate the input data into binary.
A‘2 N = NC - 1;

E3(STEDES) CALL STEDES{(A, N, KC, NI, NR, RTZ, REM);
Il Output the coefficients, roots and remainders.

4

/%5 Stop the machine.

Combining the above operators, the logical scheme of the pro-
gram has the form:
HOA1 AZ E3H4 ‘é
E(STEDES) SUBROUTINE STEDES(A, N, KC, NI, NR,RTZ, REM};
Comment; A(I) = the complex coefficients of the polynomial equation,
(I=1, ..., N+1).

N = the degree of the polynomial equation.

KC = 0 if the coefficients are all real.

NI(I) = the number of iterations per root, (I=1,...,NR).

NR = the number of roots found.

RTZ(I) = the roots of the polynomial equation,

(I=1,...,NR).

7o

A
1

Comment:

2

Comment:

P
3

Comment:

A4
25
26
£T

Comment:

P
8

Comment:

74
REM(I) = the remainders from evaluating the polynemial
equations at the roots, (I=1,...,NR}.
DZ is the correction to the root.

We now initialize some of the terms.

DZ = 0.;
NR = 0;
NC = N + 1;

B(I) is used for storing the coefficients of the reduced
polynomial (polynomial with the roots found removed).

., NC);

Test if z = 0 is a root.

| A(NC)| #0.2;

z = 0 is a root, store it and test again.

NR = NR + 1;

NI(NR) = 0;

NC = NC - 1;

RTZ(NR) = 0. ;

REM(NR) = 0.;

Have all the roots been found?

NR - N = 07;

Initialize starting values. IT is the number of iterations

L =1 if the complex conjugate has not

for the root.

been found. L = 2 if the complex conjugate has been

EL

Comment:

AlO

911

Comment;

212

Comment:

13

214

75

found.
IT = 0;
L =1;
Z =(l.,1.%
ZN = Z;
ZR =1.;
Zi=1.;

This is the start of the iteration loop.

IT = IT + 1;
X(1) = 1.;
Z(2) = ZR;
Y(1) = 0.;
Y(2) = ZT;

Split the coefficients into their real and imaginary parts.

AR(l) = Real B(I), (I=1,...,NC);

AI(I) = Imaginary B(I});

Calculate the real and imaginary parts of f(z) and their
partial derivatives in terms of the éiljak functions
X(I) and Y{I), (see Reference 7).

U = AR(NC) + AR(NC-1) 2R - AI(NC-1) *ZI;

V = AI(NC) + AR(NC-1)+ZI + AI{NC-1)*2ZR;

PU = AR(NC-1);

i

PV = AI(NC-1);

15

E. (17,18)

16

Al7

P
18

Comment:

219

A
20

Comment:

P
21

Comment:

22

Comment:

23

76
ZR2 = ZR + ZR;
2 2
28 = ZR™ + Z17;
(I=3, ..., NC);

X(I) = ZR2*X(I-1) - ZS+*X(I-2);

=
—_
—
~
I

ZR2.Y(I-1) - ZS-Y(I-2);

J=NC +1-1

U =U+ AR(J) -X(I) - AL{J) - Y(I);

V =V + AR(J) «Y(I) + AI(T) - X(I);

PU = PU + (I-1)« (AR(J) - X(I-1)-AI(J) - Y(I-1));

PV = PV + (I-1) * (AR(J) - Y(I-1)+AL(J) - X(I-1));

I< NC?;

Store the value of the polynomial f(z) evaluated at the new
root approximation, =z.

Pz = (U,V);

Ps = PUZ + PVZ;

FN - U° + VZ;

Is the square of the value of the polynomial zero?

FN = 07

Is this the first iteration performed?

IT =12

F is the square of the value of the polynomial at the pre-

vious root approximation.

FN< F?;

Comment:

24

Comment:

J2s

Comment:

P26

Comment:

A27

Comment:

s

Comment:

29

}30

Comment:

7
At this point in the program we have FN > F which means
the delta z increment for z was too large. Try a
smaller delta z.
DZR = .75 DZR;
DZI = .75 DZI;

Set 1T 1 to indicate that delta z has been altered.

11

IJ = 1;

Set IJ = 0 to indicate that delta z has not been altered.
1T = 0;

Compute the delta z values.

DZR = -(U -PU+V - PV)/PS;

DZI = (U-PV-V «-PU)/PS;

Save the previous iteration's values.

ZRS = ZR;
Z1S = Z1;
F = FN;

Compute the new z terms. ZN is the new root approxi-

mation.
ZR = ZRS + DZR;
Z1 =271S+ DzZI;

DZ = (DZR, DZI);

ZN

i

(ZR, Z1);

If this is the first iteration do not test for convergence.

P
31

Comment:

P
32

Comment:

P
33

P
34

P
35

Comment:

P

Comment:

s

Comment:

38

Elg

o

Comment:

(POLY)

T =12;

If delta z has been altered do not test for convergence
yet, iterate once.

IJ=1%;

Test for convergence.

|PZ| < 1.0x 107%%

Z = 07 ;

|IDz/z| <1.0x 107'%,

Have we reached the maximum number of iterations? ;

IT > 2007 ;

Store the new root approximation and iterate again.

Z = ZN;

We have a new root, store it and compute the value of the
polynomial at the new root.

NR = NR + 1;

REM(NR) = POLY(A, N, ZN});

NI{NR) = IT;

RTZ(NR) = ZN;

If the remainder when evaluating the polynomial at this
new root is greater than or equal to one we print out
the results found and stop the program. The program

is stopped since succeeding roots are found using the

coefficients of the reduced polynomial (the root is

P41

Comment:

P4Z

Comment:

A43

A44

Comment:

P
45

Comment:

Py

Comment:

P47

Comment:

P48

Comment:

79

divided ocut using synthetic division). These coeffi-
cients would have too much error to yield reasonably
correct roots.

|REM(NR)| > 1.2;

Have we found all the roots?

NR > N?;

Calculate the coefficients of the reduced polynomial using
synthetic division.

NC = NC - 1;

B(I) = B(I) + ZN - B(I-1), (I=2,...,NC);

If we have a linear equation transfer and solve directly
for the root.

NC = 2?;

If the complex conjugate has been found transfer and iter-
ate for the next root.

L= 27

If the coefficients are not all real iterate for the next root.

KC # 0?;

If the imaginary part of the root is zero transfer and iter-
ate for the next root.

Imaginary RTZ(NR) = 0? ;

If the imaginary part of the root is small compared to the

real part transfer and iterate for the next root.

80

real RTZ(NR)
49 imagainary RTZ(NR)

‘ 2
P >1.0x1072;

Comment: Compute the complex conjugate.

250 Lo=2

IT:O;

ZN = ZN;

Comment: Solve the linear equation.

351 IT = 0;

A, ZN = _B(2)/B (1);

H53 Transfer to the calling program.

Combining the above operators, the logical scheme for subrou-

tine STEDES has the form:

53 3,46,47,48,49

9
20A12’z S—JP3FA4}5A6 27P8|;; |§9
16
STRT 312 13 ;’14 —IE 17 Prs T Fi9 220

29 22,23

38 26 26
PZI’— PZZI— P23r‘ AZ4 }ZS l_ 926 AZ? 2‘28

38 31,32,34 3

29230 [_Paz'—P '_P P l_ |

lO 21, 33, 35, 36,51, 52 53 53

}37 38 E39 940 P4lr_ P4Z|_

50 9

9 9 9 38
P P46l_ P47[_ P48r- P49[_ QSOI—— ,

A43 A44 45

81
38 8,41, 42

351 Agol |H53 '

E(POLY) FUNCTION POLY(A, N, Z);

See operator programming definitions for function Poly of Leh-

mer's program, page 25.

The FORTRAN subprograms which go together to form the

Steepest Descent computer program are listed in Figure 4.

Figure 4. The Steepest Descent FORTRAN IV pregram.

PROGRAM INOUT{INPUTsOQUTPUT»TAPES=INPUT»TAPE6=0UTPUT)
DIMENSION A(16)sNI(15)9REMI15)9RTZ(15)
COMPLEX A»REMRTZ

C KC=0 IF THE COEFFICIENTS ARE ALL REAL.

CALL SECOND{TIMEL)
READ{591000)NCASES
DO 100 ICASES=1y9NCASES
CALL SECONDI{TSTART)
READ(591000)INCoKCotA(TI) oI=1sNC)
NaNCel
CALL STEDES(AsN»KCHNI9NRIRTZHREM)
WRITE(6s1010)ICASESHINCH{A(I)sI=1sNC)
WRITE(691020INRO(RTZ(I)sNI(I)9»REM(I)sI=1sNR)
CALL SECOND(TEND)
TSEC=TEND~TSTART
WRITE(691300)TSEC

100 CONTINUE
CALL SECONDI(TIME2)
TTIME=TIME2~-TIMEL
WRITE(691310)TTIME

1000 FORMATIZTI5/7(8FI0.0)}

1C10 FORMAT(1HLY/////7/7/1HO»14Xs*#CASE*9[39%y %93
1* COEFFICIENTS*#//{1H 914X92E20412))

1020 FORMATI(1HO/1HO#28XsI39% ROOTS* 39Xy *REMAINDERS*//
1(IH »14X92E20e129% NI=m %*9[392E1748))

1300 FORMAT(1HO»//915X9*EXECUTION TIME=%yF1Qe3 9% SECONDS*)

T13T0 FORMATTIHUO 12X 2 *TOTAL EXECUTION TIMEZ¥,FI10e3
1* SECONDS*)
T END

SUBROUTINE STEDES(AsNsKCeNIsNRIRTZyREM)

DIMENSION A(16)sNT{15)9REM{15)sRTZ(15)
19AR(15) sAI(15)9B(16)9X(16)sY(16)
 COMPLEX A#ByDZsPZyRTZyREMsZ sZN

lyPOLY

DZ=04
NC=N+1
NR=0

DO 2 1=1sNC
 B{I)I=A(I)

5 IF(CABS(A(NC))eNE4Os)GO TO 10
NR=NR+1
NI{NR)=0
NC=NC=1

N

RTZ(NR)={0e900s)
 REM{NR)=(0ss0s)
IF(NR=N)59100095
10 IT=0
L=l
_Z={lesle)
IN=Z
_ZR=1s
ZIalse
20 IT=IT+1
X{1)=1ls
X(2)=ZR
Y(1)=0e
Y{2)=21

DO 28 I=1pNt
AR{I)=REAL{B(I))

28 AT(1)=ATMAGI{B{]))
NCMY=nNC=1
UzAR{NC)+AR(NCML) #ZR=AT (NCHL)% 2]
VAL ANC)IHAR(NIMYL) *ZT+AT (el pwys s
PU=AR(NCM1)
PV=AT (NCM1)
ZR2=ZR+ZR
Z5=ZR¥ZR+ZI¥Z1

30 DO 35 I=34NC
X(1)=ZR2¥X(I=1)=2S%#X(1=2)
Y1) =2R2*¥Y(1=1})=25%Y([~2)
J=NC+1l=]
UsU+AR(J)#X{T)=AT LI sy (1)
VaV+AR ()XY LT +AT () %X T)
PUSPU+(T=1) % (AR (J)*X{I=1)=AL(J)sv1 . -
35 PVePV4(I=1)%{AR{I)*Y{I=1)+AL{J) a1
PZ=CMPLX{UsY)

PSaPU*PU+PY*PY
T FNeURU+VRY
IF(FNeEQsQe)GO TO 100
IF{ITWEQ1}GO TO 40
IF(FNsLT4FIGO TO 40
DIR=475%#D2R
DZ1a475%D21
TJ=l
GO TO 45
40 1J=0
DZRa=m (U*PU+V*PV) /PS
D21= (U*PV=V¥PU)/P$
ZR$=ZR
A LTTAS
F=FN
45 ZR=ZRS+DZR
21=2158+D21
D2aCMPLX{DZRDZ1)
ZN=CMPLX{ZR21)
T TTTFIITYEGWLIGO TO 7O
IF{IJeEQel)GO TO 70
50 IF{CABS(PZ)aLTe1le0E=20)C0 TC 100
IF{Z +EQe0s)GO TO 70
TFTCABSIDZ/Z)eLT4140E=10)GO TO 100
70 IF{ITeGE4200)6G0 TO 100
EIN T T
GO TO 20

o
100 NR=NR+1
o REMINR) =POLY(AsN9ZIN)
NI(NR)=IT
T RTIURRYEINT
IF(CABS(REM{NR)}eGEe14)}GO TO 1000
7T TTTTIFINRWGEWNIGO TO 1000
NC=aNC=-1

CALCULATE COEFFICIENTS OF REDUCE. LQUATIOMNSs
DU I05 T1=2eNC ~
105 B(l)=B(I)+ZN¥B(I-1)
"TTFINCeEQe21G0 TO 110
IF{LeEQe21GO TO 10
TTTTIFIRCeNES0IGO TO 10
IF(AIMAG(RTZ(NR))+EQeQe)}GO TO 10
- TFTABSTREACTRTZINRY) /AIMAGIRTZINR) V) oGTWd 0L 20
1GO0 TO 10
ey
1T=0

(AN aNaNaANANS!

20

ZN=CONJG(ZN)
GO TC 1leCoe
1T=0
IN==B(2)/B(1)
GO TC 100

RETURN
ZND

COMPLEX FUNCTION POLY(A#N»Z)}
DIMENSION A(16)
COMPLEX A2

A=COEFFICIENTS OF POLYNOMIAL

N=DEGREE OF POLYNOMIAL.

Z=VALUE AT WHICH POLYNOMIAL IS EVALUATED.
POLY=POLYNOMIAL EVALUATED AT Z,.

POLY=A{1)

DO 20 I=1yN
POLY=Z*#POLY+A{1+1)
RETURN

END

84

85

1I. DISCUSSION OF PROGRAM RESULTS

The four computer programs, (Lehmer's, Muller's, Rutishaus-
er's QD and the Steepest Descent) were used to solve numerous poly-
nomial equations. The results from solving the nine test cases from
Milne's "Numerical Calculus'" (6) which are listed in the Introduction
and again in Chapter IV are discussed first. Chapter IV also contains
results {computer output) from solving these nine polynomial equa-
tions using the four computer programs. Results from solving the
polynomial equation xn +x=1(n=3,5,...,101) will be discussed
second. When discussing xn +x =1, the case number is n + 1,

i. e, x3 +x =1 1is referred to as Case 4.

The execution times were significantly different as well as the

number of roots that could be found by the different methods. The

methods will be discussed in order of results, the most satisfactory

first.

1. Solution of Nine Test Cases

Muller's Program

Muller!s program converged in all nine cases, finding the 34
roots in 0. 275 seconds. Of the 34 roots found three were complex
conjugates and were accepted as roots without iterating, so 31 dis-

tinct roots were found. This gives an average time of 0. 00887

86
seconds for each root. The roots found by Muller's program had re-
. . -10
mainders whose absclute values varied from 10 to 0. These roots
were used as a check on the roots found by the other programs since
their remainders are as small as or smaller than those found by the

other methods.

Muller's program required 101 FORTRAN IV statements.

The Steepest Descent Program

The Steepest Descent program converged in all nine cases,
finding the 34 roots in 0. 308 seconds. When a root was found, the
degree of the equation was reduced using synthetic division, linear
equations that resulted were solved explicitly. The occurrence of
linear equations and complex conjugate roots made it necessary to
iterate for only 23 roots. This gives an average time of 0. 01339
seconds for a root. These roots agreed with those from Muller's
program in all 13 places in some caseé and in only 8 places in other

10 to O.

cases. The absolute values of the remainders varied from 10
The Steepest Descent program required 128 FORTRAN IV state-

ments.

Lehmer's Program

Lehmer's program is discussed next since it found more roots

than the QD program although it is slower than the QD program and

87
the preceding programs.

Lehmer's program converged in all nine cases, finding the 34
roots in 0. 361 seconds. Sixteen of these were distinct roots which
gives an average time of 0. 02256 seconds for each root. These roots
agreed with those from Muller's program in all 13 places in some
cases and in 10 places in other cases. The absolute values of the re-

-10
1toO.

mainders varied from 10
The 16 roots mentioned in the preceding paragraph refer to the
number of roots iterated on by Lehmer's scheme. When a root was
found, the degree of the equation was reduced using synthetic division.
Whenever the reduced equation was of degree two or one, Lehmer's
iteration scheme was stopped. The remaining roots were obtained by
using the quadratic formula or by solving the linear equation for the
root. The linear equation occurred whenever a root and its complex

conjugate were removed from a third degree equation.

Lehmer's program required 223 FORTRAN IV statements.

The QD Program

Rutishauser's QD algorithm is restricted in that there is no sim-
ple method for solving the equation that results when three or more
roots have equal moduli (see p. 53). When only two roots have equal
moduli, the quadratic factor that is found by the QD program is con-

veniently refined in Bairstow's method and solved by the quadratic

88
formula. Simple roots are refined by Newton's algorithm with the
derivative, {'(z), c¢omputed by iterated synthetic division.

Rutishauser's QD program found all the roots in seven of the
nine cases. In the remaining two cases the algorithm was only able
to separate out one root in each case. In Case 7 three roots vary by
only one unit in the third digit so could not be separated out. In Case
8 three roots were the same to three digits and could not be separated
out. The remaining 28 roots were found in 0. 314 seconds which gives
an average time of 0. 01121 seconds for each root. These roots agreed
with those from Muller's program in all 13 places in some cases and
in 11 places in other cases. The absolute values of the remainders
varied from 10 to 0.

The QD program requires 208 FORTRAN IV statements.

Table 2. Results from solution of the nine test cases.

No. of places of

agreement with

Number of Average time Muller's program Absolute values of
Program roots found seconds/root max. of 13 the remainders
-10
Muller's 34 . 00887 —-— 10 to O
Steepest -10
Descent 34 .01339 8tol3 10 to O
~10
Lehmer's 34 . 02256 10to 13 10 to O

-9
QD 28 .01121 11 to 13 10 to O

89

2. Solution of x + x = 1

Muller's Program

Muller's program converged in all cases, finding the 2, 600
roots in 60. 368 seconds. This gives an average time of , 02321 sec-
onds for each root. Complex conjugates were accepted as roots with-
out iterating since the coefficients are all real. Since about half of
the roots are complex conjugates, the above time should be doubled
for arbitrary equations with no complex conjugate roots. The roots
from Muller's program had the smallest remainders, (the absolute

12

values varied from 10 to 0) so were used as a check on the roots

found by the other programs.

The Steepest Descent Program

The Steepest Descent program also converged in all cases,
finding the 2, 600 roots in 159. 144 seconds, an average of . 06121 sec-
onds for each root. As in the discussion of the results from Muller's
algorithm, this time should be doubled for arbitrary equations with
no complex conjugate roots. These roots agreed with those from
Muller's algorithm in all 13 places for some roots and in only 9
places for other roots. The absolute values of the remainders varied
from 10_8 to 0. As would be expected the error increases as the de-

gree of the polynomial equation increases.

90

Lehmer's Program

Lehmer's program converged on the roots in Cases 4 to 52 in
64. 589 seconds. There are 675 roots and hence an average time for
each root is . 09569 seconds. As in the discussion of the previous
programs, about half of the roots are complex conjugates so the above
time should be doubled for arbitrary equations with no complex conju-
gate roots. These roots agreed with those from Muller's method in
all 13 places for some roots and in only 6 places for other roots. The
absolute values of the remainders varied from 10-6 to 0.

Since the time required to find these roots was relatively high,
the next cases investigated were Cases 72 and 102. In Case 72 all 71
roots were found and in Case 102 only 78 roots were found. The solu-
tion time was 133. 402 seconds for an average of . 89531 seconds for
each root, about 40 times longer than required by Muller's program.
This time should be doubled for the general case since about half the
roots are complex conjugates. These roots agreed with those from
Muller's program in all 13 places for some roots and in only one place
for other roots. The absolute values of the remainders varied from
1. 67 to 10717,
A root that is found approximately by Lehmer's algorithm is re-

fined in Newton's method since Newton's method converges more

rapidly. If after this refinement a root still had a remainder greater

91
than or equai to one the solution of the problem was stopped. A root
not found to a high degree of accuracy caused all subsequent roots to
be in error since they were found from the reduced equation. The
reduced equation was used to avoid converging on the same root when
the roots were close.

In Case 102 the root approximations found by L.ehmer's algo-
rithm were not accurate enough for Newton's method to converge so
the solution of the problem was stopped. The number of iterations
allowed in Newton's method was increased from 100 to 300 but con-
vergence still could not be obtained.

The convergence criterion in LLehmer's algorithm is the dis-
tance between annulus centers, (the centers being the root approxi-

mations).

-CT
CTCO

—_— <
CT ¢

where CT is the center of the current annulus that contains a root
and CTO is the center of the previous annulus that contained a root.
For e=1.2 all the roots were found in Cases 4 through 12 but only
two roots were found in Cases 14 through 52. ¢ = 1.0 was small
enough to force convergence of all roots in Cases 4 through 52. ¢ was
varied from 0. 17 to 0. 05 for Cases 72 and 102. With € =0.17 only

four roots were found in Cases 72 and 102. With € = 0.15, 71 roots

92

were found in Case 72 and 78 rosts were found in Case 102. With
e = 0.12, 36 ronts were found in Case 72 and 30 roots were found in
Case 102. With € = 0. 05, 46 roots were found in Case 72 and 24
roots were found in Case 102.

These results indicate that if ¢ is not small enough then the
roots will not be accurate and the succeeding roots will be in error
and if ¢ is too small the accuracy is unatttainable due to rounding

errors that result in the computer operations.

The QD Program

The QD program is restricted in that there is no simple method
for solving the equation that results when three or more roots have
equal moduli, (see p. 53).

The QD program found all the roots in Cases 4 through 14.

Three or more roots with equal moduli were detected in Cases 16, 18,
24, 26, 28, 30, 32 and 34 so the particular roots could not be found.
As a result only 257 roots were found out of a possible 288. The ex-
ecution time was 7. 886 seconds, an average time of . 03068 seconds
for each root. The finding of complex conjugates is included in this
time.

These roots agreed with those from Muller's program in all 13
places for some roots. In a few instances there was no agreement

since Bairstow's subprogram did not converge. This can be

23
attributed to the initial approximations for the QD subprogram not be-
ing good enough. More iterations by the QD subprogram helped in
some cases. This lack of agreement was apparent in the large abso-

9 15

lute values of the remainders, 105 to 10 as compared to 10 ~to 10

for good roots.
e 322 .

An infinite operand (operand > 10) was generated in subrou-
tine BAIRST during the solution of Case 36 and stopped the program,
Scaling was added to subroutine BAIRST which increased the number
of cases solved from 32 to the present value of 34 before the infinite
operand was generated, The infinite operand can be attributed to the
many multiplications that are necessary to perform during the iter-

ated synthetic division.

Table 3. Results from solving X+ x = 1, (n=3,5,...,101).

No. of places of
agreement with

Number of Average time Muller's program Absolute values of
Program roots found seconds/root max. of 13 the remainders
-1
Muller's 2, 600 . 04642 - 10 2 to O
Steepest 8
Descent 2, 600 . 12242 9to 13 10 to 0
-6
Lehmer's 675 .19137 6tol3 10 to 0
5
QD 257 . 03068* Oto13 10 to O

* This small time does not mean that the method is the fastest. It occurred because of
the low degree of the equations that were solved as compared to the other methods.

94

IV. COMPUTER PROGRAM TEST RESULTS

1. Solution of Nine Test Cases

NI on the output refers to the number of iterations. For Mul-
ler's program NI is the number of iterations performed by the pro-
gram for the particular root. This is also the case for the Steepest
Descent program. The iterations performed by Lehmer's subpro-
gram are listed separately. For Lehmer's program NI refers to the
number of iterations performed by Newton's subprogram in refining
the roots found by Lehmer's subprogram. The QD subprogram per-
formed a minimum of 20 iterations before turning the root approxima-

tions over to Newton's or Baistow's subprogram for final refinement.

2
2. Solution of x 1 +x =1

NI on the output refers to the number of iterations. For Mul-
ler's program NI is the number of iterations performed by the pro-
gram for the particular root. This is also the case for the Steepest
Descent program. The iterations performed by Lehmer's subpro-
gram are listed separately. For Lehmer's program NI re-
fers to the number of iterations performed by Newton's subprogram
in refining the roots found by Lehmer's subprogram. The QD subpro-
gram performed 78 iterations before turning the root approximations

over to Newton's or Bairstow's subprogram for final refinement.

95

Table 4. Muller's program, solution of nine test cases.

Case 1, 4 Coefficients

1. 000000000000E+00 0.
~0. -0.
~1. 000000000000E+00 -0.
~4. 00000000000CE+00 -0.

3 Roots Remainders

1.796321903259E+00 O. NI= 7 -2.84217094E-14 0.
-8.981609516297E~-01 -1.191670795605E+00 NI= 0. 2.13162821E-14
-8.981609516297E-01 1.191670795605E+00 NI= O 0. -2.13162821E-14

[\V]

Execution time = . 022 seconds
Case 2, 5 Coefficients

1. 000000000000E+00 -0.
~2.037900000000E+00 -0.
-1.542450000000E+01 -0.

1.566960000000E+01 -0.

3.549360000000E+01 -0.

4 Roots Remainders

2.27373675E-13
2.27373675E-13
=9.09494702E-13
-2.50111043E-12

~1.201998596673E+00
2.1243870301 81 E+00
-3.211994374397E+00
4. 327505 940890E+00

eeee

eLee
Z
—
I
[\ NS o I o))

Execution time = . 028 seconds
Case 3, 5 Coefficients

1.00000000000QE+00 -0.
~2. 000000000000E+00 -0.
-4. 000000000000E+00 ~0.
-4. 000000000000E+00 -0.

4. 000000000000E+00 -0.

4 Roots Remainders

2.84217094E-14 0.

0. 0.

0. 0.
~3.97903932E-13 -2.34022342E-26

5.857864376269E-01 O. NI=
-1. 000000000000E+00 1.000000000000E+00 NI=
-1. 000000000000E+00 -1.000000000000E+00 NI=
3.414213562373E+00 ~4.038967834732E-28 NI=

N O NG

Execution time = . 028 seconds
Case 4, 5 Coefficients

4, 000000000000E+00
-2. 400000000000E+01
4., 400000000000E+01
-2.400000000000E+01
3. 000000000000E+00

0.
0.
0.
0.
0.

(Continued)

4 Roots

1.771243444677E-01
6.339745962156E-01
2. 366025403785E+00
2.822875655532E+00

LoeP

Execution time = , 028 seconds

Cage 5,

2. 000000000000E+00
1. 600000000000E+01
1. 000000000000E+00
-7. 400000000000E+01
5. 600000000000E+01

4 Roots

1.121320343558E+00
1.123105625620E+00
-3.121320343560E+00
-7.123105625618E+00

5 Coefficients

~0.
-0,
-0.

cpo9

Execution time = , 032 seconds

Case 6,

1. 000000000000E+00
-6. 026600000000E+00
4. 304800000000E+00
1.595330000000E+01

3 Roots

-1.216399518172E+00
3.61259015551 2E+00
3.630409362660E+00

4 Coefficients

0.
0.
0.
0.

0.
0.
0.

Execution time = . 022 seconds

Case 7

1. 000000000000E+00
1. 200000000000E+01
-9, 500000000000E+00
-6. 000000000000E+00
4, 500000000000E+00

4 Roots

-7.071067811865E-01
7.082039325011E-01
7.071067811861E~01

-1, 270820393250E+01

Executiom time = . 030 seconds

S Coefficients

4.90945670725E-19
-1.218611372268E-27
1.596373671581E-27

NI=
NI=
NI=

NN OY

w N v

5
2
2

w N oo

96

Remainders

0. 0.

-1.42108547E-14 0.
2.13162821E-13 0.
1.44950718E-12 0.

Remainders

2.27373675E-13
4.54747351E-13
-1.13686838E~12
2.04636308E~-12

eeee

Remainders

-5.68434189E-14 0.
-1.70530257E-13 0.
-5.68434189E~14 0.

Remainders
0. 0.
2.84217094E-14 1.02279363E-20
0. 2.53657372E-29

-1.18831167E-10 ~3.44820039E -24

(Continued)

Case 8

1.
-6.
-1.

S.

2.

Case 9,

— =

000000000000E+00
000000000000E+00
130000000000E+02
040000000000E+02
436000000000E+03

4 Roots

. 16441 4002969E+00
. 164414003108E+00
.165151389772E+00
.165151389912E+00

S _Coefficients

LLeee

Execution time = . 030 seconds

. 000000000000E+00
. 600000000000E+01
. 100000000000E+01
. 240000000000E+02
. 860000000000E+02

4 Roots

. 841821538748E+00
. 841821538748E+00
. 726958802481E+00
.395668427502E+01

S Coefficients

-4.311068539088E-01
4.311068539088E-01
2.584939414228E-26
7.367077330550E-25

Execution time = . 028 seconds
Total execution time = . 275 seconds

NI= 6
NI= 12
NI= 1
NI= 2
NI= 8
NI= 0
NI= 2
NI= 2

Remainders

2.91038305E-11

-2.91038305E-11

Remainders

-1.81898940E-12
-1.81898940E-12

9.09494702E-12
-7.63975549E-11

97

eeee

0.

0.

1.22262764E-23
-1.51438351E-21

Table 5. The Steepest Descent program, solutions of nine test cases.

Case 1

1.
-0,
-1.
-4,

1.
-8.
-8.

000000000000E+00

000000000000E+00

000000000000E+00
3 Roots

796321 903259E+00
981609516297E-01
981609516297E-01

4 Coefficients

0.
-0.
0.
0.

4,.827632850013E-22
1.191670795605E+00
~1.191670795605E+00

Execution time = . 027 seconds

NI= 27
NI= 7
NI= 0O

Remainders

0.
-2.84217094E-14
2.84217094E-14

4,19053842E-21
-6.39488462E-14
-7.10542736E-14

(Continued

98

Cage 2, 5 Coefficients

1.000000000000E+00 =0.
-2.037900000000E+00 ~-0.
-1.542450000000E+01 -0,
1.566960000000E+01 -0.
3.549360000000E+01 -0.

4 Roots Remainders

~6.31811871E-26
-1.59595558E-22
3.49178173E-19
3.07094262E-19

2.124387030.81E+00 1.615587133893E-27 NI= 6 1.13686838E-12
-1.201998596673E+00 -4, 316848821761E-24 .59161573E-12
4,327505940890E+00 3.801722095294E-21 NI=12 -2.50111043E-12
-3,211994374397E+00 -3. 797406862059E-21 . 04636308E-12

Executicn time = . 028 seconds

Case 3, S Coefficients

1. 000000000000E+00 -0.
~2. 000000000000E+00 -0,
-4, 000000000000E+00 =0,
-4, 000000000000E+00 -0.

4, 000000000000E+00 -O.

4 Roots Remainders

5.857864376269E-01 -6.018531076210E-36 NI= 7 2.84217094E-14 5.98309727E-35
-1. 000000000000E+00 -1. 000000000000E+00 .98951966E-13 0.
-1.000000000000E+00 1, 000000000000E+00 NI= O 1.98951966E-13 0.

3.414213562373E+00 O. .10320650E-12 0.

Execution time = , 027 seconds

5 Coefficients

Case 4,

4, 000000000000E+00 -0.
-2.400000000000E+01 -0.
4, 400000000000E+01 -0.
-2. 400000000000E+01 -0.
3. 000000000000E+00 -0.

Case 5,

4 Roots Remainders
6.339745962156E-01 O, NI= 7 9.94759830E-14 0.
2.366025403784E+00 2,603240987229E-29 NI= 9 1.57740487E-12 . -1.80357826E-28
1.771243444677E-01 -1.292469707114E-26 NI= 7 -2.27373675E-13 1.36782137E-25
2.822875655532E+00 1.289866466127E-26 NI= O 7.53175300E-13 1.36506636E-25

Execution time = . 028 seconds

2. 000000000000E+00
1. 600000000000E+01
1. 000000000000E+00
-7. 400000000000E+01
5. 600000000000E+01

5 Coefficients

0.
0.
0.
0.
0.

1

(Continued)

4 Roots

1.121320343561E+00 6.705418668574E-24
1.123105625616E+00 -6. 700849586211E-24
-3.121320343560E+00 -6.423719003118E~-27
-7.123105625618E+00 1.854636640078E~27

Execution time = . Q33 seconds

Case 6, 4 Coefficients

1. 000000000000E+00
~6. 026600000000E+00
4, 304800000000E+00
1.595330000000E+01

0.
0.
0.
0.

3 Roots

3, 61259015551 2E+00 -4, 930380657631E~29
-1.216399518172E+00 -1.912855166529E-24
3.630409362660E+00 1.912904470335E-24

Executiom time = . 025 seconds

Case 7, S Coefficients

1. 000000000000E+00 -0.
1. 200000000000E+01 -0,
~9. 500000000000E+00 -0.
~-6. 000000000000E+00 ~0.
4, 500000000000E+00 -0.

4 Roots

7.071067811863E-01
7.082039324996E-01
-7.071067811865E-01
-1.270820393250E+01

1.860283898083E-25
-1.858714064882E-25
1.615587133893E-26
-1.631285465907E-26

Execution time = . 032 seconds

Case 8,
1. 000000000000E+00

~6. 000000000000E+00

-1, 130000000000F+02

5. 040000000000E+02

2. 436000000000E+03

4 Roots

-3.164414002969E+00
9.164414002341E+00
9.165151390540E+00

5 Coefficients

-0.
0.
0.
0.
0.

3.944304526105E~31
-4.803393640885E-21
4. 803200325787E~21

-9,165151389912E+00 1.933147035594E~25

Execution time = . 058 seconds

NI= 16
NI= 6
NI= 7
NI= 0
NI=13
NI=12
NI= O
NI=19
NI= 7
NI= 5
NI= O
NI= 8
NI= 18
NI= 12
NI= O

Remainders

~2.27373675E-13
0.

~-1.13686838E~-12

-3.31965566E~-11

Remainders

1.70530257E~13
3.41060513E~13
1.70530257E-13

Remainders

2.84217094E-14

0.

5.68434189E-14
-1.18831167E-10

Remainders

1.45519152E-11
1.45519152E-10
1.16415322E-10

99

-8.37451008E-25
~8. 37413820L-25
-9. 2581 7806E~-25
~-1.00915411E-24

4.24253178E-30
-4.47707387E-23
1.65210465E~25

-3.87223306E~27
-3.87228362E-27
3.88077201E~25
3.52361059E-23

3,59786299E-28
8.00420721E-22
8. 00468580E~22
-3.89754659E-22

~1.89174898E~-10

(Continued)

100

Case 9, 5 Coefficients

1. 000000000000E+00 ~0.
1. 600000000000E+01 ~0.
1.100000000000E+01 -0,
-2, 240000000000E+02 -0,
2. 860000000000E+02 -0.

4 Roots Remainders

3.63797881E-12 ~9.09494702E -1 3
3.63797881E~12 0. 09494702E-13
4. 36557457E-11 ~3.76080263E-19
~7.63975549E~11 -1.63447146E-18

1.841821538748E+00 4.311068539088E-01 NI=
1.841821538748E+00 ~4.311068539088E-01 NI=
-5.726958802481E+00 ~7. 951273638166E-22 NI=
-1.395668427502E+01 7.951273638166E-22 NI=

O O N

Execution time = ., 026
Total execution time = . 308 seconds

Table 6. Lehmer's program, solution of nine test cases.

Case 1, 4 Coefficients

1. 00000000000CE+00 -0,
-0. -0,
~1. 000000000000E+00 ~-0.
-4. 000000000000E+00 ~0.

3 _Roots Remainders

O
o

1.796321903259E+00 0. NI= 5
-8.981609516297E-01 1.191670795605E+00 NI= O . .
-8.981609516297E-01 -1.191670795605E+00 NI= 0 0. 0.

O
O

1 Roots found by Lehmers method. .

1.623588300000E+00 0. NI= 15
Execution time = . 024 seconds

Case 2, 5 Coefficients

1. 00000000000CE+00 ~0.
-2. 037900000000E+00 -0.
-1.542450000000E+01 -O.

1.566960000000E+01 ~O.

3. 549360000000E+01 ~0.

4 Roots Remainders

2.124387030181E+00 0. NI= 4 2.27373675E-13 0.
-1.201998596673E+00 2.648153673532E~33 NI= 5 4.54747351E-13 9.79032577E-32
4, 327505940890E+00 -7.059854738346E~34 NI= 0 ~5.22959454E~12 -6. 48429084E -32
-3.211994374397E+00 -1.942168199698E~33 NI= O -2.04636308E-12 1.57062104E~31
(Continued)

2 Roots found by Lehmers method.

1.623588300000E+00
-1.623588300000E+00

0.
-1.657167992024E-11

Execution time = . 037 seconds

Case 3,

1. 000000000000E+00
=2. 000000000000E+00
-4. 000000000000E+00
-4, 000000000000E+00

4, 000000000000E+00

4 Roots

5.857864376269E-01
-1, 000000000000E+00
-1.000000000000E+00
3.414213562373E+00

S Coefficients

1, 6O0000000000E+00
-1, 000000000000E+00
~7.105427357601E~-15

3 Roots found by Lehmers method.

8.117941500000E~01
-1.148050296794E+00
-1, 000000000000E+00

0.
1.148050296776E+00
-1. 000000000000E+00

Execution time = . 037 seconds

Case 4,

4, 000000000000E+00
-2. 400000000000E+01
4. 400000000000E+01
-2. 400000000000E+01
3. 000000000000E+00

4 Roots

1.771243444677E-01
6.339745962156E~01
2.822875655532E+00
2. 366025403785E+00

5 Coefficients

Lol

2 Roots found by Lehmers method.

2.029485375000E-01
8.117941500000E~01

0.
0.

Execution time = . 036 seconds

Case 5

2. 000000000000E+00
1. 600000000000E+01
1. 000000000000E+00
~7. 400000000000E+01
5. 600000000000E~+01

5 _Coefficients

0.
0.
0.
0.
0.

NI= 14
NI= 23
NI= 5
NI= 5
NI= 1
NI= O
NI=15
NI= 22
NI= O
NI= 5
NI= 5
NI= O
NI= O
NI= 23
NI= 14

Remainders

0.

1.13686838E-13

0.
-3.97903932E-13

Remainders

0.

1,42108547E~14
2.27373675E-13
9.94759830E~14

101

0.

7.10542736E-14

2.70006240E-13
-4.11696458E-13

Leeg

(Continued)

102

4 Roots Remainders

1.123105625615E+00
1.121320343563E+00
-3.121320343560E+00
-7.123105625618E+00

NI= 14 -2.27373675E-13
NI= 5 -2.27373675E-13
NI= O -1.13686838E-12
NI= O -2.63753464E~-11

eLeee
LeeLe

2 Roots found by Lehmers method.

1.623588300000E+00 O. NI=13
1.623588300000E+00 O. NI= 11

Execution time = . 035 seconds

Case 6, 4 Coefficients

1. 000000000000E+00 -0.
-6. 026600000000E+00 -0,
4. 304800000000E+00 -0.
1.595330000000E+01 -0.

3 Roots Remainders

-1.216399518172E+00 ~1.053242938337E-35 NI= 5 1.70530257E-13 -2.46513511E-34
3. 630409362660E+00 ~2.854279222898E~33 NI= -1.13686838E-13 -2.46513511E-34
3.612590155512E+00 2.864811652282E-33 NI= O 1.13686838E-13 ~-2.46513511E-34

o

1 Roots found by Lehmers method.
-1.623588300000E+00 ~1.657167992024E~-11 NI=23

Execution time = . 027 seconds

Case 7, 5 Coefficients

1. 000000000000E+00 -0.
1. 200000000000E+01 ~0.
~9. 500000000000E+00 ~0.
-6. 000000000000E+00 ~O0.
4. 500000000000E+00 ~0.

4 Roots Remainders
7.082039325014E-01 O NI=12 0. 0.
7.071067811846E~01 O NI= 5 2.84217094E-14 0.

-7.071067811866E-01 O NI= O ~-5.68434189E-14 0.
-1.270820393250E+01 O NI= O -1.18831167E-10 0.
2 Roots found by Lehmers method.

8.117941500000E~01 O. NI=15

8.117941500000E-01 O. NI=13

Execution time = . 036 seconds

(Continued)

Case 8, 5 Coefficients

1. 00000000000CE+00 -0.
-6. 000000000000E+00 -0.
~1.130000000000E+02 -0.

5. 040000000000E+02 -0.

2. 436000000000E+03 -0.

4 Roots

-3.164414002969E+00 3,081487911020E-33
9.165151389567E+00 1.686639269562E-29
9.164414003314E+00 -1, 686808003764E-29

-9.165151389912E+00 -1.394145894822E-33

2 Roots found by Lehmers method.

-3.247176600000E+00 -3. 314335984047E-11
1.298870640000E+01 0.

Execution time = . 048 seconds

Case 9, 5 Coefficients

. 000000000000E+00 -0.
. 600000000000E+01 -0,
. 100000000000E+02 -0,
-2. 240000000000E+02 -0.

2. 860000000000E+02 -0.

—_ =
11

4 Roots

-5.726958802481E+00 O.

-1.395668427502E+01 O.
1.841821538748E+00 4. 311068539081E-01
1.841821538748E+00 -4, 311068539081E-01

2 Roots found by Lehmers method.

1.623588300000E+00 O.
1.623588300000E+00 O.

Execution time = . 045 seconds
Total execution time = , 361 seconds

NI= 18
NI= 0O
NI= 0O

NI= 51
NI= 18

NI= 21
NI= 42
NI= O
NI= 0O

NI= 14
NI=10

Remainders

0.
-4,36557457E-11
-2.91038305E-11
-1.89174898E-10

Remainders

9.09494702E-12
-3.81987775E-11
6.54836185E-11
6.54836185E-11

103

2. 81083046E-30
2.81083046E-30
2.81083046E-30
2.81083046E-30

0.

0.

2.95585778E-12
-2.95585778E-12

Table 7. The QD program, solution of nine test cases.

Case 1, 4 Coefficients

1. 000000000000E+00 -0.
-0, -0.
-1, 00000000000CE+00 -0.
-4. 000000000000E+Q0 -0.

(Continued)

3 Roots

-8.981609516297E~01 1.191670795605E+00
-8.981609516297E~01 -1.191670795605E+00
1.796321903259E+00 O.

Execution time = , 028 seconds
Case 1

Output from QD algorithm, 20 iterations.

Approximations to simple roots
1.796321905156E+00 O.
Quadratic approximations

3.796321903259E+00 O.
5.023094283389E+00 O.

Case 2, 5 Coefficients

1. 000000000000CE+00 -0.
~2. 037900000000E+00 ~0.
-1,542450000000E+01 ~0.

1.566960000000E+01 -0.

3. 549360000000E+01 ~-O.

4 Roots

4.327505940890E+00
~3.211994374397E+00
2.124387030181E+00
-1.201998596673E+00

Lo e

Execution time = . 033 seconds
Case 2

Output from QD algorithm, 20 iterations.

Approximations to simple roots

4,318501853609E+00 O.
-3.202884132530E+00 O.
2.124260753894E+00 O.
~1.201978474973E+00 0O

Cage 3, 5 Coefficients

1. 000000000000E+00
~2. 000000000000E+00
~4. 000000000000E+00
~4. 000000000000E+00

4, 000000000000E+00

0.
0.
0.
0.
0.

NI=
NI=
NI=

1
1
2

[CRNTVIN NN

104

Remainders

-1.13686838E~13 1.42108547E-14
~1.12686838E-13 -1.42108547E~14
~2.84217094E-14 0.

Remainders

~2.50111043E-12
-9.09494702E-13
9.09494702E~13
2.39879228E-10

cee e

(Continued)

4 Roots

~1.000000000000E+00 1. C00000000000E+Q0

~1. 000000000000E+00 ~1. 000000000000E+00
3.414213562373E+00 O.
5.857864376269E-01 O.

Execution time = . 034 seconds

Case 3

Output from QD algorithm,
Approximations to simple roots

3.414213609724E+00 O.
5.857864546377E-01 O.

Quadratic approximations

2. 000000000000CE+00 O.
2. 000000000000E+00 0.

Case 4, 5 Coefficients

4. 000000000000E+00
~2. 400000000000E+01
4. 400000000000E+01
~2. 400000000000E+01
3. 000000000000E+00

4 Roots

2. 822875655532E+00
2.366025403785E+00
6.339745962156E-01
1.771243444677E-01

Execution time = . 033 seconds

Case 4

Output from QD algorithm,

Approximations to simple roots

2. 835231957845E+00
2.353669101481E+00
6.339745962070E~01
1.771243444661E-01

Case 5, 5 Coefficients

2, 000000000000E+00
1. 600000000000E+01
1. 000000000000E+00
~7.400000000000E+01
5. 600000000000E+01

ceeP

0.

0.
0.
0

20 iterations.

20 iterations.

0.
0.
0.
0.
0.

NI=
NI=
NI=

N NN

e NS

Remainders

0.

0.
-3,97903932E-13

0.

Remainders

8.89599505E -12
2.84217094E-13
-5.92592642E-11
1.74082970E-11

eeee

eoee

(Continued)

105

4 Roots Remainders

-7.123105625618E+00
-3.121320343560E+00
1.123105625616E+00
1.121320343562E+00

-3.31965566E-11
2.27373675E-13
8.41282599E-12

NI=10 4.54747351E-12

li
NN

T
5

e

Execution time = .035 seconds
Case 5
Output from QD algorithm, 20 iterations.
Approximations to simple roots

-7.123105712232E+00 O.
~3.121320133747E+00 O,
1.174656413337E+00 O.
1.069769432641E+00 0O

Case 6, 4 Coefficients

1. 000000000000E+00 -0,
-6. 026600000000E+00 -0.
4. 304800000000E+00 -0,
1.595330000000E+01 -0.

3 Roots Remainders

3.630409362660E+00 O. NI= 9 0. 0.
3.612590155513E+00 O. NI= 9 1.70530257E~-13 0.
-1.216399518172E+00 O. NI= 2 ~5.68434189E-14 0.

Execution time =, 029 seconds
Case 6
Output from QD algorithm, 20 iterations.
Approximations to simple roots

3.792066694287E+00 O.
3.450932808651E+00 O.
-1.216399502938E+00 O.

Case 7, 5 Coefficients

1. 000000000000E+00
1.200000000000E+01
-9. 500000000000E+00
-6. 00000000000CE+00
4. 500000000000E+00

0.
0.
0.
0.
0.

1

1 Roots Remainders

-1,270820393250E+01 0. NI= 1 -1.22605570E-09 0.

Execution time = , 025 seconds

(Continued)

copo o

106

107

Case 7

Three or more roots with equal modulus.

The QD program can not find such roots, any other roots will be found.
Outpdt from QD algorithm, 20 iterations.
Approximations to simple roots
-1.270820393250E+01 O.
Case 8, S Coefficients

1. 000000000000E~-00 -0.
-6. 000000000000E+00 -0.
-1, 130000000000E+02 ~0.

5. 040000000000E+02 ~0.

2. 436000000000E+03 ~C.

1_Roots Remainders
~3.164414002969E+00 O. NI= 2 0. 0.
Execution time = . 027 seconds
Case 8

Three of more roots with equal modulus.
The QD program can not find such roots, any other roots will be found.

OQutput from QD algorithm, 20 iterations.
Approximations to simple roots
-3.164413979047E+00 O,

Case 9, S Coefficients

1. 600000000000E+00
1.600000000000E+01
1. 100000000000E+01
-2, 240000000000E+02
2. 860000000000E+02

0.
0.
0.
0.
0.

4 Roots Remainders

1.841821538748E+00 4.311068539088E~01 NI=
1.841821538748E+00 -4. 311068539088E-01 NI=
-1.395668427502E+01 O. NI=
~5.726958802481E+00 O. NI=

1.81898940E-12 -6.82121026E~13

1.81898940E~12 6.82121026E-13
-7.63975549E-11 0.
~-3.63797881E-12 0.

Execution time = . 034 seconds
Total execution time = . 314 seconds

Case 9
Output from QD algorithm, 20 iterations.
Approximations to simple roots Quadratic approximations

-1.395668432028E+01 O. -3.683643077497E+00 0.
-5.726958763430E+00 O. 3,578159700084E+00 O.

108

Table 8. Muller's program, solution of x + x =1,
21 Roots Remainders
8.972916221835E-01 0. NI=11 -7.10542736E~15 0.
-1.940345152168E~-01 -1.002778092979E+00 NI=12 -1.20792265E-13 -1.11910481E-13
-1.940345152168E-01 1.002778092979E+00 NI= 0 -1.20792265E~13 1.11910481E-13
~-4.901687318868E-01 9.022294492945E-01 NI= 8 -2.84217094E-14 3.19744231E-14
-4.901687318868E-01 -9.022294492945E-01 NI= O -2.84217094E-14 -3.19744231E-14
8.322780849658E-01 4.978437339585E-01 NI=12 0. 8.88178420E-15
8.322780849658E-01 -4.978437339585E~-01 NI= 0 0. -8. 88178420E~15
-9.257004498721E-01 4.585575083312E-01 NI= 9 -7.81597009E-14 7.81597009E-14
-9.257004498721E-01 -4.585575083312E-01 NI= O -7.81597009E-14 -7.81597009E-14
6.584719287059E-01 7.396523993201E-01 NI=12 -3.55271368E-14 7.10542736E-14
6.584719287059E-01 -7.396523993201E-01 NI= O -3.55271368E~14 -7.10542736E~14
-1.022118072328E+00 1.579418431937E-01 NI=10 0. -1.77635684E-14
-1.022118072328E+00 ~1.579418431937E-01 NI= O 0. 1.77635684E-14
9.074327090550E~-01 2.249415044457E-01 NI= 10 -7.10542736E~-15 7.99360578E-15
9.074327090550E-01 -2.249415044457E-01 NI= O -7.10542736E-15 -7.99360578E~15
1.166759111031E-01 1.007289866987E+00 NIi= 9 -1.20792265E-13 1.09245946E-13
1.166759111031E-01 -1.007289866987E+00 NI= O -1.20792265E-13 -1.09245946E-13
-7.423600687337E-01 7.148739183073E-01 NI= 9 -4.97379915E-14 9.76996262E-14
-7.423600687337E-01 -7.148739183073E-01 NI= 0 -4.97379915E-14 -9.76996262E-14
4.108773931162E-01 9.161620708855E-01 NI= 2 . 7.10542736E-15 2.84217094E-14
4.108773931162E-01 -9.161620708855E-01 NI= O 7.10542736E-15 -2.84217094E-14
Execution time = . 217 seconds
21
Table 9. The Steepest Descent program, solutionof x + x =1
21 Roots Remainders
6.584719287059E-01 7.396523993201E-0f NI=13 -4.97379915E-14 1.42108547E-14
6.584719287059E-01 -7.396523993201E-01 NI= O -4.97379915E-14 -1.42108547E~14
8.972916221835E-01 -5.422016552177E-15 NI=16 -6.39488462E-14 -1.84552565E-14
-1.022118072328E+00 1.579418431937E-01 NI=17 -3.12638804E-13 -8.26005930E-14
-1.022118072328E+00 -1.579418431937E-01 NI= O -3.12638804E-13 8. 26005930E-14
8.322780849658E-01 4.978437339585E-01 NI=23 -9.23705556E-14 2.13162821E-14
8.322780849658E-01 -4.978437339585E-01 Ni= 0O -9.23705556E~14 -2.13162821E-14
-1.940345152168E-01 1.002778092979E+00 NI=16 -9.09494702E~-13 6.19948537E-13
-1.940345152168E-01 ~1.002778092979E+00 NI= O -9.09494702E-13 -6.19948537E~13
1.166759111030E-01 1.007289866987E+00 NI=18 5.68434189E-14 6.27053964F.-13
1.166759111030E-01 -1.007289866987E+00 NI= O 5.68434189E-14 -6.27053964E-13
-9.257004498720E-01 4.585575083312E~01 NI=33 ~2.27373675E~13 8. 34887715E-14
-9.257004498720E-01 -4.585575083312E-01 NI= O -2.27373675E-13 -8.34887715E-14
9.074327090550E-01 -2.249415044456E-01 NI=17 -1.13686838E-13 -1.03028697E-13
9.074327090550E-01 2. 249415044456E-0f NI= O ~1.13686838E-13 1. 03028697E-13
4.108773931162E-01 9.161620708855E-01 NI= 8 -9.23705556E-14 6.46593890E~13
4.108773931162E-01 -9.161620708855E-01 NI= 0 -9.23705556E-14 -6.46593890E-13
-7.423600687337E-01 7. 148739183074E-01 NI=25 2.66453526E-12 -3.38040707E~-12
-7.423600687337E-01 -7.148739183074E-01 NI= O 2.66453526E-12 3.38040707E~12
-4.901687318867E~-01 9.022294492944E-01 NI= 7 -4.96669372E-12 5.38236122E~13
-4.901687318867E-01 -9.022294492944E-01 NI= O -4.81037432E-12 -9.00612918E~13

Execution time =

. 428 seconds

Table

10. Lehmer's program

solution of x

+x=1.

109

B — = 0000 OOy O WO

21 Roots

. 972916221835E-01
.074327090550E~01
.074327090550E-01
.584719287059E-01
.584719287059E-01
. 322780849658E-01
. 322780849658E-01
.166759111027E~01
.166759111027E-01
.108773931163E-01
.108773931162E-01
. 901687318857E~-01
. 901687318869E-01
. 423600687358E-01
. 423600687357E~01
. 257004498632E-01
. 257004498569E-01
. 940345152172E-01
. 940345152159E-01
.022118072328E+00
.022118072349E+00

. 549874073495E~30
. 249415044457E-01
. 249415044457E-01
. 396523993201E-01
. 396523993201E-01
. 978437339585E-01
. 978437339585E-01
. 007289866987E+00
. 00728986698 7E+00
.161620708856E-01
. 161620708855E-01
. 022294492952E-01
.022294492941E-01
. 1487391 82994E -01
. 148739183032E-01
.585575083446E-01
. 585575083433E-01
.002778092979E+00
-1.
1
-1.

00277809297 9E+00
579418431893E-01
579418431878E-01

Roots found by Lehmers method

B o= b 00 00Oy YO P 0

. 73276135961 8E-01
. 041404209356E+00
.074327090550E-01
. 888301780693E~-01
.584719287059E-01
. 987428083911E-01
. 322780849658E-01
. 986149767822E-01
.166759111027E-01
. 986149767822E-01

.108773931163E~01 -

.592201187165E-01
.901687318857E~01
.592201187165E-01
. 423600687358E-01
.592201187165E~01
. 257004498632E-01
.592201187165E-01
. 940345152172E-01

3
2.
. 249415044457E-01
. 888301780728E~-01
. 396523993201E~01
. 740251483940E-01
. 978437339585E-01
. 148050296781E+00
. 00728986698 7E+00
. 14805029678 1LE+00
.161620708856E-01
. 164368181 280E+00
. 022294492952E-01
. 164368181 280E+00
. 148739182994E-01
. 164368181 280E+00
. 585575083446E-01
. 164368181 280E+00
. 002778092979E+00

444150890329E-01
296100593576E-01

Execution time = . 851 seconds

NI=1

NI= 11
NI= 8§
NI= 1
NI= 6
NI= 1
NI= 7
NI= 1
NI=18
NI= 1
NI= 9
Ni= 1
NI= 8
NI= 1
NI=12
1
4
1
7
1
0
0

NI= 163
NI=114
NI= O
NI= 136
NI= O
NI= 93
NI= O
NI= 140
NI= O
NI= 121
NI= O
NI=118
NI= O
NI= 97
NI= O
NI= 73
NI= O
NI= 49
NI= O

Remainders

. 10542736E-15
.10542736E~15

.27897692E-13
.84741111E-13
.55271368E-14
. 84217094E-14
. 73070497E-12
. 15480975E-12
.84741111E-13
. 70006240E-13
. 94120275E~-11
.55795385E-12
. 88240551E-11
.31166189E-11
. 16992646E-10
. 71601425E~10
.97379915E-14
. 25242047E-11
. 78346227E-11
.07510503E~10

~1.
7
-1.
-1.
-3,
4.
-9
4

208292821 ~29
99360578E-15
15463195E-14
95399252E-14
55271368E~15
79616347E-14

. 05941988E-14

865441 38E-12

. 07558407E-11
.05160325E-12
. 39976919E-12
. 31228386E-11
. 20916610E-11
.01380254E~-10
.71548109E~10
. 90384630E-10
. 98845418E-10
.00612860E-11

1.65050196E-11

.78505211E-10
. 01083602E-10

21
Table 11. The QD program, solution of x + x =1.

CO W YW 0 0 A O P

21 Roots

. 0221181 90300E+00
. 0221181 90300E+00
. 257004809081 E-01
. 257004809081E-01
.423601076346E-01
. 423601076346E-01
.901687147918E-01
. 90168714791 8E-01
. 940345158357E-01
. 940345158357E~01
.166759086381E-01
.166759086381E~01
.108773929941E-01
. 108773929941E-01
.584719287074E~01
.584719287074E-01
. 322780849658E-01
. 322780849658E~01
. 074327090550E~-01
. 074327090550E~-01
.972916221835E-01

. 57942081 3749E-01
.579420813749E-01
.585574955028E~01
. 585574955028E-01
. 148739698403E-01
.148739698403E-01
. 022294481375E~01
.022294481375E-01
. 0027780967 34E+00
. 0027780967 34E+00
. 007289866501E+00
. 007289866501E+00
.161620709461E~01
.161620709461E-01
. 396523993143E-01
. 396523993143E~01
. 978437339589E~01
. 978437339589E~01
. 249415044457E-01
. 249415044457E-01

Execution time = . 244 seconds

Ni=

O P P P P P P NDMDDNDN SR

Remainders

. 46523736E-06
.46523736E-06
.07030931E-06
. 07030931E-06
. 07735489E -06
.07735489E-06
. 29597926E-07
. 29597926E~07
. 05780624E-08
. 05780624E-08
. 34333023E-08
.34333023E-08
.55249688E-09
. 55249688E-09
.01437081E-10
.01437081E~10
.86535248E-12
.86535248E~-12
.84217094E~14
. 84217094E-14
.13162821E-14

.17729537E~06
.17729537E-06
. 70297616E-07
. 7029761 6E~07
. 23721082E-06
.23721082E~-06
. 72783470E-07
. 72783470E~07
. 72544890E~-08
. 72544890E-08
.92667941E~08
. 92667941E-08
. 637991 08E.~-09
.63799108E-09
. 25304278E-12
. 25304278E-12
. 28430599E~-12
. 28430599E-12
.61533067E-14
.61533067E-15

V. CONCLUSION

The main reason for the big difference in times for locating
roots by the various methods is the difference in their rates of con-
vergence. The different number of computer operations required to
construct the various computer programs will also affect the times.

Examination and comparison of the number of computer opera-
tions per iteration, the number of iterations and the times required
by the various programs in finding the roots of a given polynomial
equation shows that the convergence rate is the overriding factor.

In other words the number of computer operations per iteration, re-
quired by the various computer programs is relatively the same when
compared to the large difference in the number of iterations which is
associated with a large difference in times. Before discussing this
further we will state some definitions.

An algorithm is said to be linearly convergent if the errors in
two successive steps tend to be in a constant ratio.

An algorithm is said to be quadratically convergent if the error
in the current step is proportional to the square of the error in the
previous step.

Muller's method is slightly less than quadratically convergent
when the roots are simple. In this case the error in the current step

is proportional to the error in the previous step raised to the power

112
1.84., When there is a double roct the error in the current step is
proportional to the error in the previcus step raised to the power
1. 23, (8).

The solution of x21 +x =1 (see Chapter IV) by the Steepest
Descent pregram required about twice as many iterations as Muller's
program. Also the execution time for the Steepest Descent program
is about double that of Muller's program. In Table 3 of Chapter III
we see that the time per root for the Steepest Descent program is
more than double the time for Muller's program. From this informa-
tion we can say that for equations of degree 21 or greater, the rate of
convergence of the Steepest Descent program is about half that of
Muller's program.

The nine test cases and Table 2 of Chapter IIIl indicate that the
Steepest Descent program converges on a root, for equations of de-
gree four or less, at approximately the same rate as Muller's pro-
gram.

The convergence rate of the QD algorithm is linear, the con-
stant ratio between two successive steps depending on the separation
of the roots (2,3). The QD method is used to find rough approximations
to the roots. Newton's method or Bairstow's method, both of which
are quadratically convergent, are used to refine the root approxima-
tions.

The convergence rate of Lehmer's method is linear with the

113
ratio being 2/5 (9). This information and the examples and tables
in Chapter III indicate that l.ehmer's program is the slowest of the
four programs. It should be noted that LLehmer's method was only
used to find rough approximations to the roots. The approximations
were then refined in Newton's method.

Muller's method is recommended as the optimal method since
it converged, at the highest rate, in all cases tried. It also yielded
the greatest accuracy. Besides having a high rate of convergence, it
requires the lowest number of FORTRAN IV computer statements
which makes it the fastest and easiest of the four methods to code.

Muller's method can also be used to find the roots of transcen-
dental equations and to find eigenvalues of arbitrary matrices without
the computation of the coefficients of the associated characteristic

equation, (Ref. 1).

10.

114

BIBLIOGRAPHY

Frank, Werner L. Finding zercs of arbitrary functions. Jour-
nal of the Association for Computing Machinery 5:154-160.
1958.

Henrici, Peter. Elements of numerical analysis. New York,
Wiley, 1964. 328 p.

Hildebrand, F.B. Introduction to numerical analysis. New
York, McGraw-Hill, 1956. 511 p.

Keetov, A.N. and N. A. Kreeneetskee. Operator programming
(Programmeerovaneeye): Section 32 of Elyektronnye tseefrovye
masheeny, by A.N. Keetov and N. A. Kreeneetskee, trans. by
Harry E. Goheen. Corvallis, Oregon State University, Dept.
of Mathematics, 1962-63. 11 numb. leaves. (Typescript)

Lehmer, D.H. A machine method for solving polynomial equa-
tions. Journal of the Association for Computing Machinery 2:
151-162. 1961.

Milne, William Edmund. Numerical calculus. PFPrinceton, N.J.,
Princeton University Press, 1949. 393 p.

Moore, J.B. A convergent algorithm for solving polynomial
equations. Journal of the Association for Computing Machinery
14:311-315. 1967.

Muller, David E. A method for solving algebraic equations us-
ing an automatic computer. Mathematical Tables and Other
Aids to Computation 10:208-215. 1956.

Ralston, Anthony. A first course in numerical analysis. New
York, McGraw-Hill, 1965. 578 p.

Ward, James A. The down-hill method of solving f(z) = 0.
Journal of the Association for Computing Machinery 4:148-150.
1957.

APPENDIX

115

Operator Programming (4)

We call a group of commands of a program possessing the fol-
lowing properties an elementary operator.

1. The property of effectiveness. An elementary operator
carries out certain operation with numbers necessary for

the solution of a problem on the machine.

2. Operations with numbers we understand to be the obtaining
of some number or a value of the signal , with the aid of
one or several numbers. In particular, the transfer of
numbers from one memory apparatus to another or from
one part of the memory to another is an operation with
numbers,

3. The property of being ordered. The control from outside

(from another operator) may be obtained by only one com-
mand of an elementary operator, the first one. Transfer
of control from command to command in an elementary
operator comes about in only one definite order, as a rule
in the order of the numbering of the commands (the num-
bering of cells holding the commands). Direction to the
outside (to another operator) only one command of an ele-
mentary operator can give, the last one.

4. The property of connectedness. If the first command of an
elementary operator received control, then each command

of the elementary operator in order receives control.

5. The property of autonomy. Conditional transfer of control
by an elementary operator may arise only depending on the
value of the signal « worked out by the elementary oper-
ator itself (and not any other).

6. The property of simplicity. An elementary operator must
fulfill the smallest possible set of kinds of work., We al-
ways try to have an operator fulfill only an arithmetic cal-
culation, or a verification of the fulfillment of a logical
condition, or an address modification etc. But sometimes
in order that an elementary operator fulfill only one defi-
nite kind of work, there must be introduced into the pro-
gram supplementary commands useless for getting the

116
svlution of the problem. Hence in place of the requirement
that the elementary operator fulfill only one definite kind of
work, we put the requirement that it fulfill the smallest
possible set of kinds of work.

Of the commands which do not satisfy the above conditicns we

agree to count as elementary operators the stop command (operator

\/é) and the command to supply a zone of magnetic tape (designated

by the symbol f%)

The division ¢f a program into operators is not unique. To aid
a programs ability to be surveyed, it is necessary to strive to unite
in each operator the largest set of commands.

For the most often encountered elementary operators standard
designations are taken as provided in Table 12 on the following page.

Rules for Writing the Logical Schemes of Programs. F¥or con-
venience in describing logical schemes, the operators depicting a

scheme are written in one line. In doing this the following rules are

taken:

1. The ordinal number of an operator in a given scheme is ex-
pressed by a subscript of the operator. The numbering of
operators is the obvious one.

2. If an operator depends on a parameter, then this parameter
is expressed by an upper index of the operator (for example

i 1
A P, etc.)
2> 10)
3. If the signs for two operators stand in order in the scheme,

then the operator written on the left transfers control to the
operator written on the right.

4. If a semicolon stands between two signs for operators in

Table 12. Elementary operators.
No. Name Work done Designation
1 Arithmetic Arithmetic calculation A
operator
2 Logical Verification of the fulfillment of a P
operator logical condition
3 Transfer Transfer of numbers from one mem- Il

10

11

12

13
14

operator

Address
modification
(with param-
eter 1)

Reestablish-
ment opera-
tor (with pa-
rameter 1)

Dispatch

Inverse
dispatch

Dispatch of
commands

Appeal

Circulation
operator

Forming
operator

Tape feed

Stop

Non- standard
operator

ory device to another or from one
part of the memory to another

Address modification

Reestablishment of commands by re- O(i)
duction of them to the form corre-
sponding to the initial value of the

parameter i

Introduction of quantities into standard 3
cells

Transfer of a series of values of quan- 2
tities from a standard cell into a suc-
cession of cells

Entering of new commands before re- K
peating the work of an operator in
place of certain of its commands

Appeal to a group of operators with E(m, n)

numbers m, m=1,...,n or to the

subprogram named

Yy

Formation of new commands ®

kg
y2

Any operator distinct from the above H

Circulation of numbers in standard
cells

Supplying of a zone of the magnetic
tape

Stop the machine

enumerated ones

118

order, then from the operator written on the left there is
no transfer of control to the operator written on the right.

5. Transfer of control to an operator not directly to the right
is designated by the signs [,L_". Their use will be ex-
plained in the following paragraphs.

6. Since in a machine on the branching of a program, transfer
of control not to the next command in order is accomplished
by one of the operations of a conditional jump on the basis
of the value of a signal , itis convenient that logical
conditions whose verification is fulfilled by logical opera-
tors be formulated so that the value of the signal « be
the truth value of the statement '""Condition is fulfilled. "
For example, if for the choice of the direction of the calcu-
lating process comparison of numbers is made then it must
be considered that the logical operator tests the truth of
the statement "The compared numbers do not coincide. "

In the tracing of the schemes of programs it is accepted
that the symbols answering the signal « =1 are n[e
and those answering the signal w =0 are ”L_, Iy ei-
ther symbol pair may be used when not connected with the

value of the signal .
k

—

After the operator transferring control is placed the sign '"|

(where k is the number of the operator to which control is trans-
J
ferred). The sign ——| " must be placed before the operator re-

ceiving control, (£ 1is the number of the operator transferring con-
trol). Similarly there is placed after the operator transferring con-

trol the sign " L " (in which k is the number of the operator re-
k
ceiving control). Before the operator receiving control is placed the

sign " _J " (in which £ 1is the number of the operator transfer-

L
ring control).

In the logical scheme of a program the combination of symbols
k
l_ L. may be encountered. This combination is usually replaced by
1

119
k

k
the symbol E . In place of the combination of symbols —| ‘_J or
k 1 i
Ik

,—I _I there often is written the single symbol :] .
1
i
Before an operator there may occur the combination of symbols

i k
‘1‘| 1] eor _] _J _J _J etc., which are usually replaced by the
. 1 k £ m
symbols l and l respectively, and so forth.

i,k, 4, m
In many cases it is convenient for the simplification of the logi-

cal scheme of a program to unite elementary operators of a single
type into a group and designate it by a single letter. A group of ele-
mentary operators may be designated in the logical scheme of a pro-
gram by one letter only on condition that only one elementary opera-
tor of it may receive control from the outside (from operators not be-
longing to the group). Such a group of elementary operators we call

a generalized operator. A generalized operator may contain elemen-

tary operators of differing functional significance but of a single type,

i. e., logical.

