
AN ABSTRACT OF THE THESIS OF

HOWARD BASIL NOONCHESTER for the MASTER OF SCIENCE
(Name) (Degree)

in MATHEMATICS presented on yf, i.

(Major) f (Date)

Title: STUDY OF EFFECTIVE ALGORITHMS FOR SOLVING

POLYNOMIAL ALGEBRAIC EQUATIONS IN ONE UNKNOWN

Abstract approved:
Redacted for privacy

Harry/ E. Goheen

This paper makes available practical algorithms and their as-

sociated FORTRAN IV computer programs for finding the roots of

polynomial equations.

The purpose of this paper is to examine effective algorithms

for solving polynomial algebraic equations in one unknown on a digital

computer. The advent of high-speed digital computing systems makes

it practical to examine numerical methods which otherwise would be

too time consuming if not impossible. Algorithms requiring only the

polynomial coefficients are examined since they can be used as sub-

programs to solve polynomial equations which arise in other computer

programs.

The above considerations have lead to the examination of the

following algorithms:

(i). Lehmerts algorithm, (used to find rough approximations to

i ;. !
.

' ; .'

f

the roots).

a) The Newton- Raphson algorithm, (used to refine the root

approximations).

(ii). Muller Is algorithm.

(iii). Rutishauserts Quotient - Difference (QD) algorithm, (used to

find rough approximations to the roots).

a) Newton- Raphsonts algorithm, (used to refine approxima-

tions to simple roots).

b) Bairstow's algorithm, (used to refine approximations to

two roots i. e. complex conjugates).

(iv). The Steepest Descent algorithm.

Study of Effective Algorithms for Solving Polynomial
Algebraic Equations in One Unknown

by

Howard Basil Noonchester

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

June 1969

APPROVED:

Redacted for privacy
Professor. bf Mathematics

in charge of major

Redacted for privacy
Acting Chairman of Department of Mathematics

Redacted for privacy
Dean of Graduate School b

Date thesis is presented t

Typed by Clover Redfern for Howard Basil Noonchester

,
Z

' '1..l'44' ,

,
L

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

Page

1

II. DESCRIPTION OF ALGORITHMS STUDIED 4
1. Lehmer's Algorithm 4

Operator Program 8

2. Muller's Algorithm 26
Operator Program 38

3. The Quotient- Difference (QD) Algorithm 46
Operator Program 53

4. The Steepest Descent Algorithm 64
Operator Program 72

III. DISCUSSION OF PROGRAM RESULTS 85
1. Solution of Nine Test Cases 85

Muller's Program 85
The Steepest Descent Program 86
Lehmer's Program 86
The QD Program 87

2. Solution of xn + x = 1 89
Muller's Program 89
The Steepest Descent Program 89
Lehmer's Program 90
The QD Program 92

IV. COMPUTER PROGRAM TEST RESULTS 94
1. Solution of Nine Test Cases 94
2. Solution of x21 + x = 1 94

V. CONCLUSION 111

BIBLIOGRAPHY 114

APPENDIX 115
Operator Programming

LIST OF FIGURES

Figure Page

1. Lehmerts FORTRAN IV program. 27

2. Muller's FORTRAN IV program. 47

3. The QD FORTRAN IV program. 65

4. The Steepest Descent FORTRAN IV program. 82

LIST OF TABLES

Table

1.

2.

Results from using Muller's f(z) approximations for
starting values.

Results from solution of nine test cases.

Page

35

88

3. Results from solving x
n

+ x = 1, (n =3, 5, ... , 1 01). 93

4. Muller's program, solution of nine test cases. 95

5. The Steepest Descent program, solutions of nine test
cases. 97

6. Lehmeros program, solution of nine test cases. 100

7. The QD program, solution of nine test cases. 103

21
8. Muller's program, solution of x + x = 1. 108

9. The Steepest Descent program, solution of x21 + x = 1. 108

10. Lehmere s program, solution of x
21

+ x = 1. 109

21
11. The QD program, solution of x + x = 1. 110

12. Elementary operators. 117

STUDY OF EFFECTIVE ALGORITHMS FOR SOLVING
POLYNOMIAL ALGEBRAIC EQUATIONS IN

ONE UNKNOWN

I. INTRODUCTION

In the study of the stability of airplanes it is necessary to solve

linear differential equations with constant coefficients. The solution

of such differential equations can be obtained by solving the associat-

ed characteristic equations i. e. polynomial equations, using the al-

gorithms and computer programs discussed in this paper.

The eigenvalues of arbitrary complex matrices can be thought

of as the roots of the determinant of the matrix (A -)I). The eigen-

values can be calculated by determining the coefficients of the asso-

ciated characteristic polynomial and finding the roots of the resulting

polynomial equation using the computer programs in this paper.

Of the many algorithms that have been developed for solving

polynomial algebraic equations in one unknown, (hereafter referred

to as polynomial equations) not all are general enough to be suitable

for use as subprograms on a digital computer. The prime require-

ment for an algorithm is that it converge for all roots in a finite

number of steps without special starting values. In terms of the lan-

guage of the theory of algorithms, this requirement is that the com-

puter program will always stop when presented with the description

of the equation and tolerances on its roots and its output will be the

2

values of the roots to within these tolerances.

We examine six algorithms which are combined to form four

computer programs. These computer programs and algorithms are:

i) Lehmer's algorithm (5, 9), (used to find rough approx-

imations to the roots).

a) The Newton -Raphson algorithm (3) (used to find closer

approximations to the roots).

ii) Muller's algorithm (8).

iii) Rutishauser's Quotient -Difference (Q. D.) algorithm (2),

(used to find rough approximations to the roots).

a) The Newton -Raphson algorithm, (used to find closer ap-

proximations to simple roots).

b) Bairstow's algorithm (3) (used to find closer approxi-

mations to two roots, i, e. , complex conjugates).

vi) The Steepest Descent algorithm (7).

The algorithms are examined and special tests that are re-

quired by the computer program are noted. Next the computer pro-

grams for the associated algorithm or algorithms are described in

the notation of Lyapunov's "Operator Programming" (see Appendix)

to indicate the flow of the computer program logic.

In Chapter IV the results from solving nine polynomial equa-

tions from Milne's "Numerical Calculus" (6) are examined and com-

pared. These polynomial equations are:

3

1) z3 - z - 4 = 0 p. 38, no. 1.

2) z4 - 2. 0379z3 - 15. 4245z2 + 15. 6696z + 35. 4936 -- 0 p. 40,

no. 4.

3) z4 - 2z3 - 4z2 - 4z + 4 = 0 p. 41, no. 1.

4) 4z4 - 24z3 + 44z - 24z + 3 = 0 p. 41, no. 4.

5) 2z4 + 16z3 + z2 - 74z + 56 = 0 p. 42, no. 1.

3 2
6) z3 - 6. 0266z + 4. 3048z + 15. 9533 = 0 p. 44, no. 1.

7) z4 + 12z3 - 9. 5z - 6z + 4. 5 = 0 p. 44, no. 2.

8) z4 - 6z3 - 113z2 + 504z + 2436 = 0 p. 44, no. 3.

4 3 2
9) z4 + 16z3 + l l z - 224z + 286 = 0 p. 44, no. 4.

These particular polynomial equations were given as Exercises

by Milne to illustrate difficulties in the Newton -Raphson method.

They serve to test for weaknesses in the algorithms. Some of these

polynomial equations have very close roots as the results in Chapter

lv indicate.

The polynomial equations x + x = 1, (n =3, 5, ... , 99, 101) are

also solved and the results from the different methods examined and

compared.

4

II. DESCRIPTION OF ALGORITHMS STUDIED

1. Lehmer's Algorithm (5, 9)

Lehmer's algorithm is also known as the Lehmer -Schur method

since D. H. Lehmer uses a theorem of I. Schur to answer the question:

"Does a given polynomial have a root inside a given circle? 11(5).

Using the notation of (5, 9) we set up a procedure for location,

in the complex plane, the roots of a polynomial f(z). First the

coefficients of auxiliary polynomials

numbers

Ti(f(z)) for successive natural

i are computed, (5). By the method of construction the

degree of T1(f(z)) is decreasing. Let k be the smallest value of

i for which T1(f(z)) vanishes identically. For each auxiliary poly-

nomial T1(f(z)), the value at the origin is computed. If for every

i in the interval 1 < i < k, T1(f(0)) is positive and Tk- 1(f(z)) is

a constant then there is no root of f(z) inside the unit circle. The

polynomial f(z) is transformed by replacing z by 2z and the

same process applied to the new unit circle. After recursive use of

this replacing, one gets to an arbitrarily large circle. One knows

that there is a root of f(z) in an annulus r < I < 2r but no root

inside the circle z = r. On the other hand if for some i in the

interval 1 < i < k, T1(f(0)) is negative, then there is a root of

f(z) inside the unit circle. An annulus can be determined in a fash-

ion similar to the above, such that there is no root inside the circle

I I
r

z
I

,r but there is a root in the annulus r < z < 2r.

The procedure tells us nothing in the case when Tk(f(z))

5

van-

ishes but Tk 1(f(z)) is not a constant. This case is handled in the

algorithm by choosing a new radius. If the radius was being doubled

then in place of 2r we use 1. 5r. If the radius was being halved

then in place of O. 5r we use 0.75r. The radius is repeatedly

modified in this manner until the original procedure of locating a root

can be applied. It is assumed by both Lehmer (5) and Ralston

(9) that one may avoid this difficulty in a manner similar to the

above, but the authors give no proof of this statement. The polyno-

mial equation f(z) = 6z4 - 35z3 + 62z2 - 35z + 6 due to Lehmer is

a case in point. For this example T(f(z)) vanishes identically but

f(z) certainly is not a constant. The above procedure worked for

this example as the computer output on the following page indicates.

The annulus can be completely covered by eight overlapping

circles each of radius . 8r with centers, ck at

2trik /8
3r e /2 cos 7/8, k =0, 1, ... , 7; i =4-1, (Ref. 9). The polyno-

mial f(z) is transformed by replacing z by . 8z + ck to get

fk(z), k =0, 1, ... , 7. The above process of checking circles for roots

is applied to successive fk(z) until a circle is found that contains a

root. Then an annulus is determined such that there is no root inside

the circle
I

z
I

= r* but there is a root in the annulus

where

r>a < IzI < Zr*

r* is a new radius determined using the preceeding

1 1

6

procedure.

Case 1, 5 Coefficients

6. 000000000000E +00 0.

-3. 500000000000E +01 0.

6. 200000000000E +01 0.

-3.500000000000E +0.1 0.
6. 000000000000E +00 0.

4 Roots Remainders

3. 333333333333E-01 0. NI= 5 5. 68434189E-14 0.

5. 000000000000E-01 0. NI= 5 -8. 52651283E-14 0.
3. 000000000000E +00 O. NI=: 0 -7. 02016223E-12 0.
2. 000000000000E +00 0. NI= 0 -1. 33582034E-12 0.

2 Roots Found by Lehmers Method.

3. 044228062500E-01
4. 058970750000E-01

0.

0.

NI=
NI=

27

18

Execution Time = . 040 seconds
Total Execution Time = . 044 seconds

It should be noted that part of each of these circles falls outside

the annulus. This allows the possibility that the process will converge

to a root of fk(z) outside the current annulus.

some k there is a root of fk(z)

We know that for

which is inside the current annu-

lus so in either case we will converge on a root of fk(z). Since any

root of fk(z) corresponds to a root of f(z), when the above pro-

cess is applied recursively, the root of f(z) is ultimately deter-

mined to within an arbitrarily fine tolerance.

Once a root is found to within the tolerance it is refined in the

Newton -Raphson method (3). This is done for the sake of economy

since Lehmer's method is only linearly convergent whereas Newton-

7

Raphson's method is quadratically convergent, (see Chapter V). The

degree of f(z) is now depressed by synthetic. division. This leads

to an accumulation of round -off error, but must be done to guarantee

convergence by Lehmer's method and the Newton -Raphson method on

a new root. If the depressed equation is only used in getting the root

approximation by Lehmer's method, and then the approximation is re-

fined in the Newton -Raphson method using the original polynomial we

may not converge on a new root but on one previously found.

This is exactly what happened in Case 5, of the nine test cases,

in Chapter IV when the original polynomial was used in a test run.

Looking at this case on page 102 we see that the polynomial has two

very close roots, 1.123105625615 and 1.121320343563. Lehmer's

method found 1. 623588300 as the approximation to the first root using

the original equation and the same approximation for the second root

using the reduced equation. Since the roots are so close together we

would expect the root approximations to be the same for the approxi-

mations are circle centers and the pattern of obtaining them is the

same. Since these root approximations are the same we see that

Newton- Raphson's method will, (and did) converge on the same root

when the original polynomial is used.

We could try to get better approximations from Lehmer's meth-

od and then use Newton -Raphson's method with the original polynomi-

al. This will work up to a point even though it is expensive, computer

8

time wise, since Lehmer's method is linearly convergent. The point

is that if the tolerance is too small the accuracy is unattainable by

Lehmer's method due to round -off errors that result from the computer

operations. This is discussed in detail starting on page 90 . To

change the tolerance only when roots are close and avoid excessive

iterations when the roots are well separated requires a fore know-

ledge of the root distribution which is not always available.

Although the roots found using Newton -Raphson's method and

the reduced equation were correct (had remainders with magnitude of

10 -13) we were not able to maintain this accuracy, (see Chapter III,

Table 3). It should be noted that the remainders were computed using

the original polynomial equation f(z).

The desirability of a faster method that does not have to resort

to depressing the degree of f(z) by synthetic division is apparent.

Muller's method, which is discussed later in this paper, fulfills both

of these requirements.

Operator Program

On the following pages are described the operator programs

which go together to form Lehmer's program. Each of the operators

is first defined and then the program is documented as a string of

operators. A discussion of operator programming is given in the

Appendix. Note that Lehmer's computer program includes Lehmer's

9

algorithm and the Newton -Raphson algorithm.

Lehmer's Program -- Operator Programming Definitions:

IIO Input the program and input data into the memory of the

computer.

Comment: NC = the degree of the polynomial equation plus one.

KC = 0 if the coefficients are all real.

A(I) = the complex coefficients of the polynomial equation

(I = 1, ... , NC).

Al Translate the input data into binary.

Comment: LRTS = the number of roots found by Lehmer's algorithm.

NR = the total number of roots found, i. e. , complex con-

jugates are not iterated for by Lehmer's algorithm.

NRTS = the number of roots that the original polynomial

equation has, (the degree).

N = the degree of the reduced polynomial equation. The

degree of the polynomial equation is reduced as the

roots are found.

2
LRTS = 0;

NR =0;

NRTS = N;

A3 N = NC - 1;

Comment: AR(I) = the complex coefficients of the reduced polynomial

3

10

equation. At this point the degree has not been re-

duced.

-Lida
AR(I) = A(I), (I = 1, ... , NC);

Comment: L is a flag which is equal to one if complex conjugates

have not been formed and equal to two if they have been

formed.

L 1;

Comment: If the degree of the reduced polynomial equation is two,

solve the equation using the quadratic formula.

P6 N =2 ?;

Comment: If the degree of the reduced polynomial equation is one,

divide to find the root. Note that the degree of the re-

duced polynomial can go from three to one when a root

and its complex conjugate are found.

P7 N = 1 ?;

Comment: IT = the number of iterations performed to find a root.

E8(LEHMER) CALL LEHMER (AR, N, IT, Z);

Comment: N is set to zero if Lehmer's algorithm can not find a root

to within a specified tolerance. This is possible due

to round -off errors made by the computer.

P9 N A 0 ?;

il10
Write: All the roots could not be found.

A11 NR = NR + 1;

11

Comment: NI(NR, 1) is an array in which are stored the number of

iterations required by Lehmer's algorithm to find each

root.

RTZ(NR, 1) is an array in which are stored the root ap-

proximations found by Lehmer's algorithm.

3 12
NI(NR, 1) = IT;

RTZ(NR, 1) = Z;

Comment: Test to see if z = 0 is a root. If it is, decrease the de-

bree of the reduced polynomial equation and store the

number of iterations, the root and the remainder.

NI(NR, 2) is an array in which are stored the number of

iterations required to refine the root.

RTZ(NR, 2) is an array in which are stored the refined

root approximations.

REM(NR) is an array in which are stored the remainders

from evaluating the polynomial f(z) at the refined root

approximation.

P13 IZI 0;

A14 N = N - 1;

15 NI(NR, 2) = NI(NR, 1);

RTZ(NR, 2) = RTZ(NR, 1);

REM(NR) = 0;

Comment: If the reduced equation is linear then the number of roots

12

found is increased by one and the root is solved for and

stored.

A16 NR =NR+ 1

317

Z = -AR(2) /AR(1);

NI(NR, 1) = 0;

RTZ(NR, 1) = Z;

IT = 0;

Comment: If the reduced equation is quadratic then it is solved by

the quadratic formula in the form of a subprogram.

E18(QUAD) CALL QUAD(AR(1), AR(2), AR(3), Z(1), Z(2));

Comment: Store the roots and compute and store the remainders.

E19(20, 22) (I= 1, 2);

A20 NR =NR+ 1;

NI(NR, 1) = 1;

RTZ(NR, 1) = Z(I);

NI(NR, 2) = 0;

RTZ(NR, 2) = Z (I);

E22(POLY) REM(NR)= POLY(A, NRTS, Z(I));

Comment: Use the Newton -Raphson method to refine the root approx-

imations found by Lehmer's method.

EZ3(NEWTON) CALL NEWTON(AR, N, IT, Z, REM(NR));

24
NI(NR, 2) = IT;

RTZ(NR, 2) = Z;

j21

13

Comment: Find the remainder using the coefficients of the original

polynomial.

E25(POLY) REM(NR) = POLY(A, NRTS, Z);

Comment: If all the roots have been found go and print out the re-

sults.

P26 NR > NRTS ?;

Comment: If the absolute value of the remainder just found is great-

er than or equal to one stop the procedure and print

out the results found. Since the equation must be de-

flated using the root just found, the root must not have

a large error.

P27 I REM(NR)1 > 1 ?;

Comment; Calculate the coefficients for the reduced equation.

A28 AR(I) = AR(I) + Z °AR(I -1), (I =2, ... , N);

A29 N = N - 1;

Comment: Have the complex conjugates been found?

P30 L =2 ?;

Comment: Are the coefficients all real?

P31 KC 0? ;

Comment: Is the imaginary part of the root zero?

P32 Imaginary Z = 0? ;

P33
real Z

imaginary Z
> 100? ;

Comment: Set L = 2 since we are computing the complex conjugate.
I

j34

A35

n36

)63 7

14

L = 2;

IT - 0;

Z = Z;

Output the coefficients, roots and remainders.

Stop the machine.

Combining the above operators, the logical scheme of the pro-

gram has the form:

30 15,31,32,33 18 16

H0 Al 2
A3 4 5

IP6 P7I--

11 36 9, 35 23

E8 P9F n10T -lA 11 P 13 ' l 2 A14

7

^ÌA
1

24 6 36 7
E 19 A 20 E 22 17 ' E18 21

6

ST;

13 17 36 36 5 6

-1E23 E25 P26T P27 A28 A29 P30FP31
6 6 11 10, 22, 26, 27

P32rP33n 34 A 351 ' tn36 37 '

E(LEHMER) SUBROUTINE LEHMER(A,N, IT, Z)

Comment: A(I) = the complex coefficients of the polynomial equation

(1,1, ,N+1).

N = the degree of the polynomial equation.

IT _ the number of iterations to find the root.

Z - the root approximation.

,(
`"

r

--U24

15

IRT = 1 if there is a root inside the circle with radius

RDS, otherwise IRT = O.

IRDS = 0 when starting the iteration procedure.

IRDS = 1 if the radius is being halved.

IRDS = 2 if the radius is being doubled.

K = the number of the circle center being tested.

ITIME = 1 if this is the initial circle being tested, other-

wise ITIME = 2.

NC = the number of coefficients.

CENTER = the center of the previous annulus.

RDS = the radius of the circle we are working with.

IRT = 0;

IRDS = 0;

IT = O;

K = 0;

ITIME = 1;

CENTER = 0;

RDS = 1;

Al NC =N+ 1;

Comment: Test if z = 0 is a root. If it is store it and return to the

calling program.

P2 IA NC) I 0?;

16

Z = (O. , O.);

Comment: The three T arrays are used to store the coefficients of

the original polynomial and the coefficients of the de-

flated polynomials that result from applying Lehmer's

algorithm.

4
T(I) = A(I), (I =1, ... , NC);

0 T(I, 3) = A(I);

Comment: NCT = the number of coefficients of the deflated polyno-

mial.

35
NCT = NC;

j6
T (I, 1) = T(I, 2), (I =1, ... , NCT);

A7 NCT = NCT - 1;

IT = 1;

Comment: Construct the T polynomials, see discussion of method.

A8 NX = NCT + 1 - I, (I -1, ... ,NCT);

T(I, 2) = T(NCT+1, 1)T(I +1, 1) - T(1, 1) T(NX, 1);

Comment: The bars above denote complex conjugates. If T(NCT, 2)

is not zero we will divide the other coefficients T(I, 2)

by it.

P9 T(NCT, 2) = O.? ;

A10 T(I, 2) = T(I, 2)/ I T(NCT, 2)I, (I= 1,..., NCT);

Comment: If ITIME = 1 this is the initial circle we are testing.

P11 'TIME = 2? ;

'194

17

Comment: We now test T(NCT, 2) to see if there is a root in the unit

circle.

If T(NCT, 2) < O. 0 then there is a root inside the circle.

If T(NCT, 2) > O. 0 we must continue construction of the

reduced T polynomials.

If T(NCT, 2) = O. 0 then we must test to see if the reduced

T polynomial with coefficients T(I, 1), (I= 1,...,NCT +1)

is a constant. It is a constant if T(I, 1) = 0. 0,

(I =1, ... , NCT).

If we have a constant polynomial then there is no root in-

side the unit circle.

If we do not have a constant polynomial then we must

choose a new radius, one that is not so large

(RDS = . 7 5RDS) or not so small (RDS =1. 5RDS) depend-

ing on whether the radius was being doubled or halved.

P12 T(NCT, 2) = 0. 0? ;

P13
T(NCT, 2) < 0. 0? ;

Comment: IRT = 1 if there is a root inside the circle with radius

¿RDS.

If NCT = 1 then our current reduced polynomial T is a

constant and the next reduced polynomial T, if it were

constructed would be zero. In this case there is no

root inside the circle with radius RDS.

18

P14

P15

IRT = 1 and NCT = 1? ;

NCT :=

P16 T(I, 1) 0. 0, (I=1, . . . , NCT)? ;

P17 IRT = 1? ;

A18 RDS = 2RDS;

Comment: Set the flag to indicate the radius is being doubled.

319 IRDS = 2;

Comment: If we reach this point in the program we know that f(z)

does have a zero inside the unit circle. We now halve

the radius until we find a circle inside which there is

no zero.

IRT = 1 if there is a root inside the circle with radius

RDS.

IRDS = 2 if the radius was being doubled.

P20 IRDS 2? ;

21 IRT = 1;

IRDS = 1;

A22 RDS = RDS/ 2. ;

Comment: Transform the coefficients for the new radius.

A23 T(I, 1) :: T(I, 3) ° RDS(ITIME)
NC -I

, (I =1, ... , N);

Comment: IRDS = 2 if radius was being doubled.

P24 IRDS = 2? ;

Comment: When we reach this point in the program we know the

_

19

radius was being halved so we want to try a radius not

so small.

A25 RDS = 1. 5RDS;

Comment: When we reach this point in the program we know the ra-

dius was being doubled so we want to try a radius not

so large.

A26 RDS = . 7 5RDS;

Comment: Halve the radius since we were doubling.

A27 RDS = RDS/ 2. ;

Comment: There is a root in the annulus RDS -2RDS. This annulus

can be completely covered by eight overlapping circles

of radius 0. 8RDS. CT(I), (I =1, ... , 8) are the eight

circle centers. CT1 and CTR are used for temporary

storage of computed values.

A28
CT1 = 1. 6235883 RDS(ITIME);

GT(1) = CTI + CENTER;

A29 CTR = 0. 7853981634 , (I-1), (I =2, ... , 8);

A30

331

CT(I) = CT1 (cos(CTR), sin(CTR)) + CENTER;

RDS(2) = 0. 8 RDS(ITIME);

RDS(1) = RDS(2);

ITIME = 2;

IRT = 0;

IRDS = 0;

20

K = 0;

32
T(I, 3) = A(I), (I =1, ... , NC);

Comment: Have all eight circles been tried?

P33 K= 8 ?;

A34 K =K +1;

NP1 = N + 1;

Comment: NP1 is temporary storage.

Comment: Transform the coefficients of the polynomial equations for

the new circle center.

A35 T(I, 3) = T(I, 3) + CT(K) T(I -1, 3), (I =2, ... , NP1);

A36 NP1 = NP1 - 1;

P37 NP1 > 2? ;

538
T(NC, 1) = T(NC, 3);

Comment: Test for a root inside the circle.

P39 T(NCT, 2) < 0? ;

P40 T(NCT, 2) = 0? ;

Comment: IRT = 1 if there is a root inside the circle with radius

2RDS. If NCT = 1 then the T polynomial is a constant.

In this case there is no root inside the circle with ra-

dius RDS and we have found an annulus which contains

a root of f(z).

Poi IRT = 1 and NCT = 1? ;

Comment: If IRT 1 and NCT = 1 then there is no root inside the k

21

circle. In this case we try the next of the eight circles.

P42 NCT = 1? ;

Comment: If NCT 1 then we perform the transformation on the T

polynomial again.

Comment: Test to see if the reduced T polynomial with coefficient

T(I, 1), (I =1, ... , NCT +1) is a constant. It is a constant

if T(I, 1) = O. 0 for (I =1, ... , NCT).

P43 T(I, 1) 0? , (I =1, ...,NCT);

Comment: If IRT = 1 there is a root inside the circle with radius

RDS.

P44 IRT = 1 ?;

Comment: IRDS = 32 indicates the radius was multiplied by 3/2. Go

back to the previous radius since we are going to try

a new circle.

P45 If IRDS = 32 then set RDS(2) = RDS(1);

Comment; Try a larger radius since we do not get a valid test with

this radius, (the reduced T polynomial is not a con-

stant).

j46 IRDS = 32;

A47 RDS(2) = 1. 5RDS(2);

Comment: IRT = 1 indicates there is a root inside the circle with

radius RDS.

IRDS = 1 indicates the radius is being halved.

j48 IRT = 1;

IRDS - 1;

Comment: If the radius is less than 10-3 accept the center of the

P49

A50

circle as a root approximation.

RDS(2) < 1. 0x10 3? ;

RDS(2) = RDS(2)/ 2. ;

22

Comment: When we reach this point we know there is a root in the

annulus RDS -2RDS. If the distance between annulus

centers is within the tolerance accept the annulus cen-

ter as a root approximation.

P51
CT(K)- CENTER

CT(K)
< 20. 0 ?;

Comment: If the annulus center is not accepted as a root, store the

center and start going around the annulus with over-

lapping circles.

CENTER = CT(K); 352
Comment: At this point we have accepted the annulus center as a

root approximation. Store it and return to the calling

program.

53
Z = CT(K);

Comment: If we reach this point in the program no root could be

found in any of the eight overlapping circles due to

rounding error. Set the indicator N = 0, and return to

the calling program.

54

q55

23

N = 0;

Transfer to calling program.

Combining the above operators, the logical scheme of subrou-

tine LEHMER has the form:

4 55 2 27 7

30 Al P2T 33F 1-1/24 51-
15, 42

11 9 39 11°6 20 28 18
13 9T

7 9 A10 IP11 P
12 I P137 P14E P15 J

(

6

12 P P 24 28 15 T 7A 161718 23 19 '

13 27

P 20I-21 A22

19, 25, 26, 38, 47, 50 5 16 26 23 24 23
IA P A

T 23, 2425 A 26
20 14, 17, 52 42 45 54

A27 IA28
A29 A30 31 -g32 P33F A34

37
¡3-5

23 11 48 43 51

-1A35
A36 P37I 38T P39T P

F PF 4041
32 40 46 51 33 43 23 39

P42
6

' TP43 P44 P45E 46 A47 48
53 23 41, 44 53 28 49, 51 55 33 3,53

P491
¡

A50n 52E 53 73 54p55

E(NEWTON) SUBROUTINE NEWTON(A, N, IT, Z1, PZ)

Comment: A(I) = the complex coefficients of the polynomial equation

(I -1, ... , N +1).

N = the degree of the polynomial equation.

5 _J6 -1A7
A8

'

-1P-1P511- P51

24

== the number of iterations performed for the root.

Z1 = the independent variable.

PZ = the value of the polynomial equation at Z 1.

DPZ = the derivative of the polynomial equation at Z 1.

IT =0;

Al IT =IT +1;

PZ = A(1);

DPZ = A(1);

Comment: Using iterated synthetic division form PZ and DPZ.

A3 PZ = A(I) + Z1 ^ PZ, (1 =2, ... , N);

DPZ = PZ + Zl DPZ;

A4 PZ = A(N +1) + Z 1 PZ ;

Z2 = Z1 - PZ /DPZ;

Comment: Test for convergence.

P5 < 1.Ox 10
-2°?

P6 z1I =0.

z2_z1
?;

10?;
P7 < 1.0x 10

Z1

Comment: Have we exceeded the iteration limit of 300?

P8 IT = ;

Comment: Store the new root approximation and iterate again.

Z1 = Z2;

Comment: When we reach this point we have accepted Z2 as a root

so we store it and return to the calling program.

11

? ,

DO

j10

25

Z1 = Z2;

Transfer to the calling program.

Combining the preceding operators, the logical scheme of sub-

routine NEWTON has the form:

9 10 10 10 6 1

)0 7
A1 2 A3

A4
P51
°

P6 P7F P8 Dj

5,7,8
---110 n

11
.

E(POLY) FUNCTION POLY(A, N, Z)

Comment: A(I) = the complex coefficients of the polynomial equation

(I =1, ... , N +1).

N = the degree of the polynomial equation.

Z = the value at which the polynomial equation is evalu-

ated.

POLY = the value of the polynomial equation evaluated

at Z.

0 POLY = A(1);

Al POLY = Z POLY + A(I +1), (I =1, ... , N);

112 Transfer to the calling program.

Combining the above operators, the logical scheme of subpro-

gram POLY has the form:

A1h2 0

till

E(QUAD) SUBROUTINE QUAD(A, B, C, Z1, Z2)

Comment; Solution using the quadratic formula.

A, B and C = the coefficients of the quadratic equation.

AO

Z1 and Z2 the roots of the quadratic equation.

DISC = (B 2 -4AC) 1 / 2;

Z1 = (-B +DISC) / 2A;

Z 2 = (-B / 2A;

II1 Transfer to the calling program.

Combining the above operators, the logical scheme of subrou-

ting QUAD has the form:

AOII1 .

The FORTRAN subprograms which go together to form Leh-

mer's computer program are listed in Figure 1.

2. Muller's Algorithm

Muller's algorithm (8), an iterative procedure, uses the La-

grange interpolation formula to fit a quadratic polynomial L through

three distinct points (z1, f1), (z2, f2), and (z3, f3), fi = f(z.),

(i =1, 2, 3) where

(1) aOzn alzn-1 a2zn 2 + . . . + an-lz + an

26

_

27

Figure 1. Lehmer's FORTRAN IV program.

PPOG`A'l I .OUT(INPUT.CUTF.JT,T4.P25=INPJT.TA,'E6..T -)
'-.('61,7('_(.)t+`.I(15t-:l,RL(15).?TZ(15.-,

IIZ(2)
OMPL_X AtAFtPOLYtE,t,-,TZtZ

C=0 IF ALL COEFFICIENTS REAL.
LL 2EC0Nfl(TIvE1)
E(-D(511100^)1CASE5
J]. r ICASES=I,NCL._,,

2ALL '::=COì::C(TçTeRT)

L.TS=0

tO)As1000)iNC,AC,CR)I)11i =1sNC)

NRTS=;N

I=1,\C

14 L=1
15 IF(N.E0.2)02) TO ìc

IF(H.E0.1)G0 TO 17
CALL LEHmEd(aR,N,IT,Z)

=r, ir LEHciìS C'v'.:L.; NOT FINO THE NEXT
IFNE.0)GO TO 16

r+'RITE(6,1100)
GC TO 50

15 FIR=0.R+1

LRTS=NR
NI(NR,11=IT
RTZ(MRt1)=2
IF(CAdS(Z).NE.0.)GO TO 2
N=N-1
NIIN;R.21=NI(NR,1)
?TZ(NR,2)=RTZ(NRt1)

GO TO 15

C

17

19

NR=V:"+1
Z=-AR(2)/AR(1)
NI(NR.i)=G
2TZ(NR,1)=7
I1=0
GO TO 21

CALL QUAD(AR(1),AR(2),AR(3)tZ(1),Z(2))
50 lï I=1t2
NR=NR+1
NI(ivR,1)=i
RTZINRtl)=ZIII
NI(NRt2)=0
RTZ(NR,2)=Z(I)
REM(NR)=POLY(A,NRTS,Z(I))
GO TO 90

C USE NEWTONS METHOD TC GET CLOSER ROOTS.
20 CALL NEWTON(AR,NtIT,Z,REhi(iNR))
21 NI(NR,2) =IT

OTZ(NRs2) =Z

%I"c"IC^:

:'11L(6,99)

.

)`,` 1%

=k(I)=f.(I)

V'tTÜG') '?OLT.

E4(NR)=0.

1£'

C

-160

'8

(N,1==OLY(A94KT:).1)
IF(N=:.GE.NRTS)Gv T., .

C

L ,LAT1 CGEFFICIL,TS E. _.U-
C, 3 I=2rN

:a'(I)=4E(I)+Z*AR(I-1)

?F(c.EC.2)GO TC 14
IF('f::_.N"c.0)G0 TO 15

iF(TIA'<(Z).O.C.I:iC 25

IF(O(EAL(Z)/AI:"'.CIZ)).GT.1.CE2)GO TO 15

7 =CC'vJG (Z)

I'=0
CO T,i1 T.1 16

CONTINUE
; RITE(6. 1010)ICASE(.C,(4(I),I= 1r(+C)
RITF(6,1023)NR.IRTZ(Ir<)iNI(IO2C,2E m(I)íi =14R1
RIT_(6111015) LRTS .(RTZ(I.1).NI(I.1),I= 1,L.RTS)

CALL 2EC:(TEND)
TSFC= TEPID- TST=.RT
v11ITE(6.13001TOEC

1 ZCOTIOuZ
CALL SECON3ITIME21
TTI'1E= TIME2 -TIME1
7 R,I T E (5 r 1310 C

T T I ME
CALL EXIT

992 FCROAT(1H1)
1000 FORMAT(2I5 /(8F:0.C))
1010 O MAT(1H0 / / / / / /1HOt14X. *CASE *íI3í *9 *0í39

1" COEFFICIENTS*//(1H r14Xt2E2C.12))
1 215 FORMAT(1H0 / /1H0.14X.I3r

1" ROOTS FOUND EY LEH^ERS *.ETHOO. *//
2 (1H t1+X.2E20.12t* NI= *,I4))

1020 FORMAT(1H0 /1HC28Xti.* ROOTS *939X.
1'*REMAINDERE,* / /(1H .14Xt2E20.12r* NI= *,I392E17.e))

111'0 FORMAT (1HC.
1 LEHICRS METHOD COULD NOT FIND ALL THE ROOTS. *)

1300 FORAT(1H09 / /015Xr *EXECUTION TIME = *íF10.3,
1* SECONDS *)

1310 FORMAT(1HOt14X. *TOTAL EXECUTION TIME = *.F10.311
SECONDS F)

END

SUOUTINE LEHME'rt(Ar(\rITtZ)
DPEN.2ION A(16)tCTl8198DS(2).T(16t3)
COMPLEX AtCENTER.CT.T.Z

C

C A= COEFFICIENTS CF POLYNOMIAL.
C I1 =00. OF ITERATIONS.
C N= DEGREE OF THE EQUATION.

NC= THE NUM3ER OF COEFFICIENTS.
C NCT= TEMPORARY NU. OF COEFFICIENTS.

IRT =1 IF ROOT INSIDE CI " -,CLE WITH RADIUS RDS.
RDS= RADIUS OF CIRCLE SEING TESTED FOR A ROOT.

C CENTER= THE CENTER OF THE ANNULUS THAT CONTAINS A R001

IRT =G
IEEE,
I1=0

ITI E=1
NC=N+1
CENTER=O.
ROS=1.

._.

TF(CA2S(_.t(ç11.G(..1.C1C. T`

TC

5(

.

C

C

C

K

29

TEST FOR Z=0 A ROOT.
5 IF(CAúS(A(NC)).N-.O.)GO T 20

Z=(G..-).)

GO TC 600

D0 25 I=1.NC
T(I)=4(i)
T(I.3)=A(I)

j NCT=i;C

GO 29

27 DO 2Ä I=1.NCT
r T(I.1)=T(I.2)
.29 NCT=C.T-1

IT=IT-1
DO 3a I=1.VCT
NX=NCT+1-I

30 T(I.2)=CONJG(T(NCT-1.1))(T+1.:)-T(1.1)*CCPvJC(T(NX.1))
IF(T(CT.2).EtI.O.)CO TO 34

32

C

NOR;,tALIZE COEFFICIENTS OF TJ(F(Z))
DO 32 I=1.NCT
T(I.2)=T(I.2)/CA5S(T(NCT.z))

DOES F(Z) HAVE A ROOT INSIDE THE CIRCLL.
TEST FOR ROOT INSIDE CIRCLE.

C IF T(NCT.J).LT.0.0 THEN ROOT I:y_;ID_ CIRCLE.
C IF T(NCT.J).GT.0.0 CONTINUE ITERATING.
C IF T(NCT.J).EQ.0.0 THEN TEST TACT0J -1).
C IF T(NCT.J- 1).EQ.COSTAT THE', NO ROOT INSIDE CIRCLE.
C IF T(NCT.J- 1).NE.CCSTA'JT THEN CHOCSE A - ,ADIDS
C NOT 50 LARGE (RDS= 0.75'2D5)

OR NOT SO SHALL (RCS= 1.5Rô5) .

C DEPENDING ON THE PREVIOUS A.DIUS.

34 IF(ITIME.EQ.2)GO TC 155
IF(T(NOT.2))60.45.35

C

C IRT =1 IF ROOT INSIDE PREVIOUS CIRCLE.
C IF NCT =1, T(F(Z)) IS A CONSTANT AND THE NEXT
C T(F(C)) =00 IN THIS CASE THERE IS NO ROOT
C INSIDE THE CIRCLE.
C

35 IF(IRT.E0.1.AND.NCT.E0.1)GC TO 100
IF(NCT.E0.1)G0 TO 55
GO TO 27

C IF T(I.J- 1)= CONSTANT THEN NO ROOTS INSIDE CIRCLE.
C TEST IF T(I.J1).NE.O. (IF TJ- 1(Z).NE.CONSTANT)
45 DO 50 I=1.NCT
50 IF(T(I.1).NE.O.)G0 TO 75

C

C IRT =1 IF ROOT INSIDE PREVIOUS CIRCLE.
IF(IRT.EQ.1)GO TO 100

C

C IRD5 =2 IF RADIUS IS BEING DOUBLED.
55 RDS =2. *RDS

'IRD5 =2
GO TO 64

C

C F(Z) DOES HAVE A ZERO INSIDE THE UNIT CIRCLE.
C HALVE THE RADIUS UNTIL WE FIND A CIRCLE INSIDE
C WHICH THERE IS NO ZERO.
C IRD5 =1 IF RADIUS 15 BEING HALVED.
C IRT =1 IF ROOT INSIDE CIRCLE WITH RADIUS RDS.
60 IF(IRDS.EQ.2)G0 TO 90

27,

T

C

C

r

C

30

IRT=1
IR^S=1
RDS=ZDS/2.

C TRANSFORM COEFFICIENTS FOR NEW RADIUS.
64 00 65 I =1,N
65 T (I,1)= T(I.3) *RDS(ITIME) * *(NC -I)

GO TO 26

IF I: US=2 THE RADIUS WAS BEING DOUBLED.
75 IF(1,RûS.EC.2) GO TO 80

RADIUS WAS BEING HALVED,
TORY A RADIUS NOT 50 SMALL,
MULTIPLY by 1.5
RD5=1.5 *RDS
GO TO 64

C THE RADIUS WAS BEING DOUBLED,

C TRY A RADIUS NOT SO LARGE,

C MULTIPLY BY .75
80 RDS =.75 *RDS

GO TO 64

C

C HALVE RADIUS SINCE WERE DOUBLING.
90 RDS = RDS /2.

C

C THERE IS A ROOT IN ANNULUS RDS -2RD5.
C THIS ANNULUS CAN BE COMPLETLY COVERED BY

C EIGHT OVERLAPPING CIRCLES.
C CT(I) =THE EIGHT CIRCLE CENTERS,
C EACH CIRCLE IS OF RADIUS .8RDS.
100 CT1= RDS(ITIME) *1.62358830

CT(1) =CT1 +CENTER
DO 110 I =2,8
CTR= (I- 1)'0.7853981634

110 CT(I)= CT1 *CMPLX(C05(CTR),SIN(CTR)) +CENTER

RDS(2)=.8*RDS(ITIME)
RDS(1)=RDS(2)
ITIME=2

IRT=O
IRDS=O
K=0

119 DO 120 I=1,NC
120 T(I3)=A(I)

C HAVE ALL 8 CIRCLES BEEN TRIED.
128 IF(K.EQ.8)GO TO 550

K =K +1
NP1 =N +1

C TRANSFORM COEFFICIENTS FOR NEW CENTER.
129 DO 130 I=2,NP1
130 T(I,3)= T(I.3) +CT(K) *T(I -1,3)

NP1 =NP1-1
IF(NP1.GE.2)GO TO 129

T(NC,1)= T(NC,3)
GO TO 64

155 IF(T(NCT,2))180,170,160
C

C IRT =1 IF ROOT INSIDE CIRCLE WITH RADIUS 2RD5.

C IF NCT =1, T(F(Z)) IS A CONSTANT AND THE NEXT

C T(F(0)) =0,
C IN THIS CASE THERE IS NO ROOT INSIDE THE CIRCLE.

160 IF(IRT.EQ.1.AND.NCT.E0.1)G0 TO 200

C

C

C

C

il

C NO ROOT IN THIS CIRCLE. Ti-Y TH; Ni_xT CT(:).
TRANSFORM ORIGINAL CCEFFICI.-',TS TG `:_
IF(NCT.E0.1)G0 TO 119

TRY AGAIN. A CONSTAT 0'< 0 1.S FO- T(F (-
bEFORE GOING TO THE tEXT
GO TO 27

IF T(I.J-1)=CONSTANT THLi, ;:u kUUTS
17,7 2,0 171 I=1.NCT
171 IF(T(I.1).NE.0.)CC TC 175

T(I,J -1)= CONSTANT.
NO ROOT IN THIS CI1CL:,TRY THE NEXT CT(K).
IS THERE A ROOT I^ THE A:\HULUS.
IF(IRT.E0.1)GO TO 200
IF(IBDS.EC.32)ROS(2)= RD5(1)
GO TO 128

TRY A LARGER RADIUS.
C IRDS =32 INDICATES MULTIPLYING R,_J5 _-Y 3/2.
175 IRDS =32

RDG(2)= 1.5 *RDS(2)
GO TO 64

C

IRDS =1 IF RADIUS IS BEING HALVED.
IRT =1 IF ROOT INSIDE CIRCLE WITH RADIUS POS.

180 IRT =1
IRDS =1
IF(RDS(2).LT.1.OE-3)C0 TO 300
RDS(2)= RDS(2) /2.

USE TRANSFORMED COEFFICIENTS.
GO TO 64

C

C THERE IS A ROOT IN THE ANNULUS RDS -2RDS.
C IF WITHIN TOLERANCE PETERS AND CALL
C SUBROUTINE NEWTON.
200 IF(CABS((CT(K)- CENTER) /CT(K)).LT.20.0)GC TO 300

CENTER =CT(K)
GO TO 100

C STORE APPROXI,IATION TO <OOT.
300 Z =CT(K)

GO TO 600
EEL) 'i = 0

600 RETURN
END

SUBROUTINE NEWTON(A.N,IT.Z1,PZ)
DIMENSION A(16)
COMPLEX A, DPZ,PZ,Z1,Z2

C A= COEFFICIENTS.
C N= DEGREE OF POLYNOMIAL.
C IT =NO. OF ITERATIONS.
C Z1= INDEPENDENT VARIABLE.
C PZ =THE. VALUE OF THE POLYNOMIAL AT Z =Z1.
C .>PZ =THE DERIVATIVE OF PZ.

IT=0
5 IT=IT+1

PZ=A(1)
DPZ=A111
DO 10 I=2,N
P7_=A(I)+Z1*PZ

10 DPZ=PZ+Z1*DPZ

:,cEEZ;))

:

C

C

i

C

1N1,101. .

Z=4(N+1)+Z1 PZ

,_c=2.1-PZ;PZ
IF(CAE5(PZ).LT.1.0E-20)GO TC 1=0

IF;CAEsS(Z1).E0.11)C TO

IF(CAE3S((Z2-Z1)//1).LT.1.CE-i:)OÜ T. 100

IF, r T .CO."'00)GO -iC 106

GO TO :

71.Z2
_TU2 ti

END

COMPLEX FUNCTION POLY(...'.Z)
DIMLNNION A(16)
COMPLEX A.Z

.COEFfICIENTS OF POLYi10''iAL.

:=-.DEGREE OF POLYNOItiL.
Z=VALUE AT IrUICH POLYNOMIAL EVALUATED.

C POL"=PO'`YNCVIAL EVALUATED AT Z.

>DLY =A(1)
DO ;2D

I =1.%
POLY =Z *POLY +A(I +1)
RETURN

SUBROUTINE OUAD(A.B.C.li.Z2)
COMPLEX A.B.C.DISC.Z1.ZC
DISC- C5ORT(-; *b -4. *AB=C)

Z1=(-(+DISC) /(2. *A)

_TURN

i: _

:A

.,

r°?=t- -;ìl_1/tZA)
=: tJD

CI

is the polynomial whose zer -.s are desired. The coefficients

a0, al, ... , an are complex numbers and a0 0. The root of the

quadratic polynomial equation closest to z3 is taken as z4.

f4 = f(z4) is computed and if

(2)

or

iz4-z3+1 1z3i < 62

33

where 6 and 62 are tolerance constants, then z4 is accepted

as a root to (1). If the tests fail, z
1

is dropped and the points

(z2, f2), (z3, f3), and (z4, f4) become the new points (z1, fl),

(z2, f2), and (z3, f3).

A new quadratic polynomial is fitted through the new set of

points (z1, f1), (z2, f2), and (z3, f3). The root of the quadratic

polynomial equation closest to z3 is taken as z4, f4 = f(z4) is

computed and tested in Equation_ (2) as described above. The itera-

tions continue until either convergence occurs or a fixed number of

iterations are performed.

The iterative procedure is started by letting z1 = -1., z2 = 1.

and z3 = 0. 01 and evaluating f(z1), f(z2) and f(z3). z3 = 0. 01

is used instead of z3 - O. 0 since there could be a zero root. This

allows the starting values to be changed to values different from the

roots that have been found. More is said about this a little later.

¢

If4I < 61

34

Muller (8) suggests using z1 = -1. , z2 - 1. ; z3 - O. 0 and

an -
an-1

-1
± an -2 for f(zl),

an ± an-1 + an 2
for f(z2),

an for f(z3),

to save evaluating the function explicitly. This was tried with the re-

sult that more iterations and time were required for convergence on

a root than when the functions f(z.), (i =1, 2, 3) are evaluated ex-

plicitly.

The results from solving the nine exercises from Milne (6)

and using Muller's suggestion are presented on the following pages.

These results should be compared with the results from solving the

nine exercises using explicit values for f(z.), (i =1, 2, 3),

95).

(see p.

To avoid re- calculation of zeros already found synthetic divi-

sion may be used to reduce the degree of the polynomial equation.

This can lead to a serious accumulation of rounding errors. Rather

than use synthetic division to extract linear factors from the polyno-

mial equation implicit division was performed on the value of the

function and a deflated value of the function was obtained. If nr

zeros, r., (i =1, ... , nr) have been found then the deflated values of
i

the function fnr(zk), (k =1, 2, 3) are formed where

n

35

Table 1. Results from using Muller's f(z) approximations for starting values.

Case 1, 4 Coefficients

1.000000000000E +00 -0.

-0. -0.

-1.000000000000E +00 -0.

-4.000000000000E +00 -0.

3 Roots Remainders

-8.981609516297E-01 1.191670795605E+00 NI= 9 0. -2. 13162821E -14

-8.981609516297E-01 -1.191670795605E+00 N1- 0 0. 2. 1316282.1E -14

1.796321903259E+00 1.899500362956E-16 NI= 2 -8.52651283E -14 1.64882656E -15

Execution time

Case 2, 5 Coefficients

. 024 seconds

1.000000000000E +00 -0.

-2.037900000000E +00 -0.

-1.542450000000E +01 -0.

1.566960000000E +01 -0.

3.549360000000E +01 -0.

4 Roots Remainders

-1.201998596673E +00 0. NI= 6 2.27373675E-13 0.

2.124387030181E +00 0. NI= 7 2.27373675E-13 0.

-3.211994374397E +00 0. NI= 4 -9. 09494702E -13 0.

4.327505940890E +00 0. NI= 4 -2.27373675E-13 0.

Execution time = . 030 seconds

Case 3, 5 Coefficients

1.000000000000E +00

-2.000000000000E +00

-4.000000000000E +00

-4.000000000000E +00

4.000000000000E +00

4 Roots

-0.

-0.

-0.

-0.

-0.

0.

1.000000000000E +00

-1.000000000000E +00

1.211690350419E -27

NI-=

NI =

NI=

NI=

5

7

0

4

Remainders

0.

0.

0.

7.02067027E -26

5.857864376269E -01

-1.000000000000E +00

-1.000000000000E +00

3.414213562373E400

2.84217094E -14

0.

0.

6.53699317E -13

Execution time ==. 026 seconds

Case 4, 5 Coefficients

4.000000000000E+00 -0.

-2.400000000000E +01 -0.

4.400000000000E +01 -0.

-2.400000000000E +01 -0.

3.000000000000E +00 -0.
(Continued)

36

4 Roots Remainders

1.771243444677E-01 0. NI -= 5 0. 0.

6.339745962156E-01 0. NI-= 7 1. 42 ?.08547E -14 0.

2.366025403785E+00 8.271806125530E-25 NI-= 4 -7.38964445E-13 -5.73087539E-24

2.822875655532E+00 2.520315928873E-25 NI= 4 9.23705556E-13 2.66725167E-24

Execution time =

Case 5 5 Coefficients

. 030 seconds

2.000000000000E +00 -0.
1.600000000000E +01 -0.
1.000000000000E +00 -0.

-7.400000000000E+01 -0.
5.600000000000E +01 -0.

4 Roots Remainders

1.121320343562E +00 0. NI== 11 -2. 27373675E-13 0.

1.123105625617E+00 0. NI= 6 0. 0.

-3.121320343560E +00 0. NI= 4 2.04636308E-12 0.

-7.123105625618E+00 0. NI= 5 2.04636308E-12 0.

Execution time = . 032 seconds

Case 6, 4 Coefficients

1.000000000000E +00 -0.
-6.026600000000E +00 -0.
4.304800000000E +00 -0.
1.595330000000E +01 -0.

3 Roots Remainders

-1.216399518172E +00 0. NI-, 6 -5.68434189E -14 0.

3.612590155512E +00 5.027707160674E -24 NI- 4 5.68434189E -14 -4.32628004E -25

3.630409362659E +00 6.720842476993E -25 NI= 4 -5. 68434189E-14 5.80454240E -26

Execution time = . 024 seconds

Case 7 5 Coefficients

1.000000000000E +00 -0.
1.200000000000E +01 -0.

-9.500000000000E +00 -0.
-6.000000000000E +00 -0.
4.500000000000E +00 -0.

4 Roots Remainders

7.071067811872E -01 0. NI== 11 0. 0.

-7.071067811865E -01 -1. 225741041988E -20 NI= 7 0. -2.94432992E -19

7.082039325014E -01 -3. 032780167743E-23 NI= 4 5.68434189E -14 -6.31823110E -25

-1.270820393250E +01 -2.300938973373E -31 NI-= 5 -1.18831167E -10 4.97007612E -28

Execution time r= . 034 seconds

(Continued)

37

Case 8, 5 Coefficients

1.000000000000E +00 -0.
-6.000000000000E +00 -0.

-1.130000000000E +02 -0.

5.040000000000E +02 -0.
2. 436000000000E +03 -0.

4 Roots Remainders

-3.164414002969E +00 0. NI= 6 0. 0.

9.164414003060E +00 0. NI= 12 1. 45519152E -11 0.

-9.165151389912E +00 0. NI= 4 -2. 91038305E -11 0.

9.165151389726E +00 0. NI= 4 0. 0.

Execution time = . 032 seconds

Case 9, S Coefficients

1.000000000000E +00 -0.

1.600000000000E +01 -0.
1.100000000000E +01 -0.

-2. 240000000000E +02 -0.
2.860000000000E +02 -0.

4 Roots Remainders

1.841821538748E +00 -4.311068539088E -01 NI= 8 -1.81898940E -12 1. 13686838E -12

1.841821538748E +00 4.311068539088E -01 NI= 0 -1.81898949E -12 -1.13686838E-1 2

-5.726958892481E +00 1.419949629398E -23 NI= 4 9.09494702E -12 6. 71609424E-24

-1.395668427502E +01 -7.754818242685E -25 NI= 4 -3.81987775E -11 1.59408790E -21

Execution time = . 030 seconds
Total execution time = . 292 seconds

nr
fnr(zk) = f(zk)/ TI (z

i=I
(Ref. 1)

38

This procedure directs the values of the function away from previous-

ly found zeros and avoids the accumulation of rounding errors.

If zk = ri for some i, (1 < i < nr), where zk, (k =1, 2, 3)

are the starting guesses, then zk must be modified to avoid divi-

sion by zero. When this occurred in the computer program

replaced by 8zk

zk was

and satisfactory results were obtained. If during

the iteration to a new root z. = r., (j =1, 2, ...), for some i,

(1 < i < nr), then the iteration procedure is stopped and the roots

that have been found are printed out. This never happened during any

of the test cases.

Operator Program

On the following pages are described the operator programs

which go together to form Muller's program. Each of the operators

is first defined and then the program is documented as a string of

operators.

Muller's Program -- Operator Programming Definitions:

110 Input the program and input data into the memory of the

machine.

i

39

Comment: A(I) = the complex coefficients of the polynomial equation

(I 1,...,NC).

NC = the degree of the polynomial equation plus one.

N = the degree of the polynomial equation.

KC = 0 if the coefficients are all real.

NI(I) = the number of iterations per root, (I =1, ... , N).

NR = the number of roots found.

RTZ(I) the complex roots of the polynomial equation,

(I =1, ... , N).

REM(I) = the complex remainders of the polynomial equa-

tion, (I =1, ... , N).

Al Translate the input data into binary.

A2 N = NC - 1;

E3(MULLER) CALL MULLER (A, N, KC, NI, NR, RTZ, REM);

h4
Output the coefficients, roots and remainders.

Stop the machine.

Combining the above operators, the logical scheme of the pro-

gram has the form:

II0 A1 A2 E3 II4

E(MULLER) SUBROUTINE MULLER(A, N, KC, NI, NR, RTZ, REM);

Comment: A(I) = the complex coefficients of the polynomial equation,

ñ

4-5

40

(I =1, ... , N +l).

N = the degree of the polynomial equation.

KC = 0 if the coefficients are all real.

NI(I) = the number of iterations per root, (I =1, ... , N).

NR = the number of roots found.

RTZ(I) = the complex roots of the polynomial equation,

(I =1, ... , N).

REM(I) = the complex remainders of the polynomial equa-

tion, (I =1, ... , N).

NR = 0;

NS = N;

Al I = N + 1;

Comment: Test to see if Z = 0 is a root, which is the case if the

constant term of the polynomial equation is zero.

P2 IA(I)I 0? ;

A3 NR = NR + 1;

I =I- 1;

34 NI(NR) = 0;

RTZ(NR) = O.;

REM (NR) = O. ;

Comment: Have all the roots been found?

P5 NR-N = 0? ;

Comment: L = 2 when complex conjugate roots have been found,

41

L = 1 otherwise.

Store the starting values.

IT = 0;

L = 1;

Z1 = -1. 0;

Z2 =1.0;

Z3 = 0. 01;

Comment: If any roots have been found we must make sure that none

of them equal the starting values, Z1, Z2 and Z3.

P7 NR = 0? ;

E8(9, 9) (I=1, 2, 3);

P9 If Z(I) = RTZ(J) then set Z(I) = . 8Z(I), (J =1, ... , NR).

Comment: For Z1, Z2 and Z3 compute the values PZ 1, PZ 2, and

PZ3 of the polynomial and the values PRZ1, PRZ2 and

PRZ3 of the reduced polynomial.

E10(POLY) (i=1, 2, 3);

CALL POLY(A, N, RTZ, NR, Zi, PZi, PRZi);

Comment: Compute the new root approximation using Muller's al-

gorithm.

All L3 = (Z3- Z2) /(Z2 -Z1);

B = PRZ1 °L32 - PRZ2° (L3+1)2 + PRZ3 (2.L3+1.);

SRT = [B2-4.° PRZ3 L3 (L3+1.)

(PRZ1 L3-PRZ2 (L3+1.)+PRZ3)]1 /2;

e

42

DEN = maximum (I B +SRT I, I B -SRT I);

P DEN = 0? ;

A13 L4 = - 2 PRZ3 e +1.) /DEN;

Comment: If DEN = 0 we set L4 = 1.;

j14
L4 = 1. ;

A15 Z4 = Z3 + L4 a(Z3 -Z2);

Comment: For Z4 compute the value PZ4 of the polynomial and the

value PRZ4 of the reduced polynomial.

E16(POLY) CALL POLY(A, N, RTZ, NR, Z4, PZ4, PRZ4);

Comment: Subroutine POLY returns N = 0 if the denominator used in

dividing out the roots is zero. If this is the case stop

iterating and print out the results found so far.

P17 N = 0 ?;

Comment: If I PZ4 /PZ3I > 10 then our increment L4 is too large so

try L4/2. .

P18 IPZ4 /PZ3I < 10? ;

Ai9 L4 = L4/2.;

Comment: Test for convergence.

P20
IPZ4 < 10 -20?

Comment: If Z3 = 0 iterate again.

P21 Z3 =0 ?;

P22 I (Z4- Z4) /Z3I < 10-10?

Comment: Has the iteration limit been reached?

;

43

P23 1T > 99? ;

Comment: Store values and iterate again.

A24 IT =IT +1;

325 Z1 = Z2;

Z2 =Z3;

Z3 = Z4;

PRZ1 = PRZ 2;

PR Z 2 = PRZ 3;

PRZ3 = PRZ4;

Comment: At this point we have accepted Z4 as a root. Store the

root and associated values.

NR = NR + 1;

NI(NR) = IT + 1;

RTZ(NR) = Z4;

REM(NR) = PZ4;

Comment: Have all the roots been found?

P27 NR > N? ;

Comment: If L = 2 the complex conjugate of the root has already been

found.

P28 L = ;

Comment: If the polynomial coefficients are not all real, iterate

again.

P 9 KC O? ;

A6

44

Comment: Is the imaginary part of the root zero? If so iterate for

the next root.

P30 Imaginary RTZ(NR) = 0? ;

Comment: If the imaginary part of the root is small in comparison to

P31

the real part iterate
real RTZ(NR)

for the next root.

> 100? ;

imaginary RTZ(NR)

Comment: We are now ready to form the complex conjugate of the

root.

32 L = 2;

IT = -1;

Z4 = Z4;

Comment: Evaluate the polynomial at the new Z4.

E33(POLY) CALL POLY(A, N, RTZ, NR, Z4, PZ4, PRZ4);

Comment: Subroutine POLY returns N = 0 if the denominator used

in dividing out the roots is zero.

P34 N# 0 ?;

35 N =NS;

n36 Transfer to the calling program.

If we combine the operators, the logical scheme of subroutine

MULLER has the form:

6 36 2, 28, 29, 3 0, 31 10

JO Al
5

P2A3 P5 136 P7

7 25 14 15 12 13,19

E8 P9
-7E10 TA11 P12 A137 ' 14 -1A15

35 20 15 18 ¡24
26

¡26
E16 P17I P18F A19I

E P20 P21I
-

P22 P237
-

21

-IA24

45

11 20,22,23,33,34 36 6 6 6

5r IA26
P277 P28 I P29

r r P30E

6 26 26 5, 27

P31 32 E33I- P34
3

E(POLY) SUBROUTINE POLY(A, N, RTZ, NR, Z, PZ, PRZ);

Comment: This subroutine evaluates a polynomial equation at a given

complex number Z.

A(I) = the degree of the polynomial equation.

RTZ(I) = the roots of the polynomial equation, (I= 1,...,N).

NR = the number of roots that have been found.

Z = the complex number at which the polynomial equation

is evaluated.

PZ = the value of the polynomial function at Z.

PRZ = the quotient of the value of the polynomial function at

Z divided by (Z- RTZ(I)), (I =1, ... , NR). The polyno-

mial function is evaluated at Z using iterated synthetic

division.

'

46

AO PZ = Z(1);

PZ = Z a PZ + A(I +1), (I =1, ... , N);

PRZ = PZ;

Comment: If NR = 0 there are no root values to divide out.

P1 NR =O?;

Comment: Is the denominator zero? If so set N = 0 and return to

the calling program.

E2(3, 4) (I =1, ... , NR);

P3 Z - RTZ(I) = 0? ;

A4 PRZ = PRZ /(Z- RTZ(I));

J5
N = 0,

n6 Transfer to the calling program.

Combining the preceding operators, the logical scheme of the

subroutine has the form:

6 r5 6 3 1,4
AO P1 E P31 A4 l -1116 .

The FORTRAN subprograms which go together to form Muller's

computer program are listed in Figure 2.

3. The Quotient- Difference (QD) Algorithm (2)

Given the polynomial equation

47

Figure 2. Muller's FORTRAN IV program.

PROGRAM INOUT(INPUT,OUTPUT,TAPE5= INPUT.TAPE6= OUTPUT)
DIMENSION A(16).NI(15),REM(15),RTZ(15)
COMPLEX A.REM,RTZ

C

:C =O FOR REAL COEFFICIENTS
C

CALL SECOND(TIME1)
READ(5,1000)NCASES
00 100 ICASES= 1,NCASES
CALL SECOND(TSTART)
READ(5,1000)NC,KC,(A(I),I =1,NC)
N =NC -1
CALL MULLER(A,N,KC,NI,NR,RTZ,REM)
WRITE (6,1010)ICASES,NC.(A(I),I =1,NC)
WRITE(6, 1020) NR,(RTZ(I),NI(I),REM(I),I =1,NR)
CALL SECOND(TEND)
TSEC =TEND- TSTART
NRITL(6.1300)TSEC

100 CONTINUE
CALL SECOND(TIME2)
TTIME= TIME2 -TIME1
WRITE(611131041TIME

1000 FÖRMAT(2S5 /(8F10.0))
1010 FORMAT (1H1 / / / / / / /1H0,14X, *CASE *,I3, *, *,I3,

1* COEFFICIENTS * / /(1H ,14)02E20.12))
1020 FORMAT(1H0 /1H0,28X,I3,* ROOTS *,39X, *REMAINDERS * //

1(1H ,14(,2E20.12,* NI= *11I3,2E17.8))
1300 FORM,AT(1H010/.15X, *EXECUTION TIME = *,F10.3,

1* SECONDS *)
1310 FORMAT(1H01114X, *TOTAL EXECUTION TIME= *,F10.3,

1* SECONDS *)
END

SUBROUTINE MULLER(A,N,KC.NINR,RTZ,REM)
DIMENSION A(16),NI(15).REM(15),RTZ(15)
COMPLEX A,B,DEN,L3,L40PZ1,PZ2,PZ3,PZ4,PRZI.PRZ211
1PRZ3,PRZ4,REM,RTZ.SRTZ1.Z2,Z3,Z4 - - -_ - ---- -

NR=0
NS=N
I=N+1

5 IF(CABS(A(I)).NE.O.)G0 TO 20
NR=NR+1
NI(NR)=0
1=I-1
RTZ(NR)=(0..01
REMlNR)=(0..0.)
IF(NR-N)5.1000,5

20 IT=0
L1. -
Z1-(1.,0.)
Z2=(1..0.1
13=1.01.0.1
IF(NR.E0.0)G0 TO 27
DO 25 I=1.NR
IF(Z1.EO.RTZ(I))Z1=.8*Z1
IF(Z2.E0.RTZ(I))12 =.8 *Z2
IF(Z3.EQ.RTZ(I1)Z3 =.8 *Z3

25 CONTINUE
C

.

48

27 CALL POLY(A.N RTZ NRZ1PZ1PRZ1)
CALL POLY(AN RTZ NR Z20P42 0PRZ2)
CALL POLY(A.NRTZNR.Z3PZ3.PRZ3)

30 L3= (Z3-Z2)/(Z2 -7.1)

C COMPUTE CGMPUTE B=P1*L3*L3-P2*(L3+1.)*(L3+1.)+P3*(2.*L3+1.)
B=PRZ1*L3*L3-PRZ2*(L3+1.)*(L3+1.)+PRZ3*(2.*L3+1.)

C

C SRT=CSORTIB*3-4.*P3*L3*(L3+1.)*(P1*03-P2*(L3+1.)+P3))
SRT=C002T(B*B-4.*PRZ3*L3-f(L3+1.)*(PR7_1*L3-PRZ2j`
1(L3+1.1+PRZ3))

C DETERMINE MAX(B+SRTB-SRT).
DEI:=B+SRT
IF(CABS(DEN).LT.CABS(E-SRT))DEN=B-SRT
IF(DcN.E0.0.)G0 TO 35

C L4=-2.*P3(L3+1.)/DEN
L4=-2.*PRZ3*(L3+1.)/DEN
GO TO 40

35 L4=(1..0.)
40 Z4=Z3+L4*(Z3-Z2)

CALL POLY(A N RTZ.NRZ4 PZ4 PRZ4)
IT(N.EQ.0)GO TO 900

IF(CABS(PZ4/PZ3).LT.10.)GO TO 50

L4=L4/2.
GO TO 40

50 IF(CABS(PZ4).LT.1.0E-20)G0 TO 100
IF(Z3.E0.0.)G0 TO 65

IF(CABS((Z4-Z3)/Z3).LT.1.0E-10)G0 TO 100

IF(IT.GE.99)G0 TO 100
65 IT=IT+1

Z1=Z2
22=23
Z3=Z4
PRZ1=PRZ2
PRZ2=PRZ3
PRZ3=PRZ4
GO TO 30

100 NR=NR+1
NI(NR)=IT+1
RTZ(NR)=Z4
REM(NR)=P24
IF(NR.GE.N)G0 TO 1000
IF7L.EQ.2IG-0 TO 20
IF(KC.NE.0)G0 TO 20

IF(AIMAG(RTZ(NR)).EQ.0.)G0 TO 20

IF(ABS(REAL(RTZ(NR))/AIMAG(RTZ(NR)).GT.1.0E2)
1G0 TO 20

110 L=2
ZT=_i

Z4=CONJG(Z4)
CALL POLY(A.N.RTZ.NR024.P249PRZ4)
IF(N.NE.0)G0 TO 100

900 N=NS
1000 RETURN - -- END - --

-

..

49

SUBROUTINE POLY(A,N,RTZ,NR.Z,PZ,PRZ)
DIMENSION A(16),RTZ(15)
COMPLEX A.PZ.PRZ,RTZ.Z

C A =COEFFICIENTS OF POLYNOMIAL.
C N= DEGREE OF POLYNOMIAL.
C RTZ =ROOTS OF POLYNOMIAL,

NR NO. OF ROOTS THAT HAVE BEEN FOUND.
C Z =VALUE AT WHICH POLYNOMIAL IS EVALUATED.
C PZ= POLYNOMIAL EVALUATED AT Z.
C PRZ =VALUE OF POLYNOMIAL WITH ROOTS DIVIDED OUT.

PZ=A(1)

DO 20 I=1.N
20 PZ=Z*PZ+A(I+1)

PRZ=PZ
IF(NR.EQ.0)GO TO 100

'40 DO 50 I=11NR
IF(Z-RTZ(I).EQ.O.1G0 TO 60

50 PRZ=PRZ/(Z-RT2(I))
GO TO 100

60 N=0
100 RETURN

END

C

C

-

50

n n-1
f(z) = +alz +... + an-lz + an = 0

where a. are complex numbers. If all a. are not different from

zero, transform the equation to eliminate any zero coefficients. Use

for a new center ct = 1. and transform the equation. If this does

not eliminate all zero coefficients try ct = 1/2 then 1/4,..., 1/ 1 28.

The zero coefficients in equations xn + n = 1, n =3 to 101 were

successfully eliminated using this procedure. The required equation

f(z ,+ct) = a ;+ct)n + al (z ;+ct)n- 1+. . . + an = 0,

where z = z + ct, after expanding by the binomial theorem and col-

lecting terms, reduces to the form

F(z) - cOzn + clzn-1 + . .. + cn-lz + c = 0,

where c0 = a0, cl = ncta0 + al etc.

This transformation can be accomplished using synthetic divi-

sion and by noting that if z = z + ct, then z = z - ct and

so that

f(z) = f(z ,+ct) _ (z ,) = cio(z-ct)

n n
c0(z-ct) +. . . + cn-1(z-ct) + cn = a0z +. . . +an-lz + an

and using synthetic division to divide f(z) by z ct we obtain

c n as the remainder. If again the quotients thus obtained are divid-

ed by z - ct and so on, the successive remainders will be

1

-

51

en -l' en - 2, . '' ,
cl, and the final quotient will be c0.

Form the quotients

(1) al (k)
q0

=
a0 ' ql -k

(k) ak+l

0, k= 2,3,...,n

k = 1, 2,...,n-1 e(1-k) = ,

Consider the elements thus generated as the first two rows of a QD

scheme, and generate successive rows by

where

q
(k)

=
(e(k) e(k- 1) (k)

i i+l) + qi i+1

(k+1)
(k) qi (k)

ei+1 (k) ei
qi+1

e (0)
= e (n)

= 0, i = 1, 2 , . . .

If the zeros zk are distinct then

and

lim gik) - zk

(k)
lim e. = 0 i
1-'00

If some of the zeros, zk have the same modulus then the co-

efficients of the polynomial equation with these zeros can be

=

k

i i

1-.00

_

52

constructed from the q)
. Distinct zeros or groups of zeros with

(k)
equal moduli will be separated by small e(k) (e(k) < . 5 x 10_2 was

used in the computer program).

Suppose the polynomial equation has m zeros

zk+1' ak+2' ' zk+m

mials where

with the same modulus. Consider the polyno-

lim P(k+m)
= (z_Zk+1)(z-zk+2) (z zk+m)'

that is, the coefficients of P(k +m) tend for i--oo to the coeffi-

cients of the polynomial equation with zeros zk
+1'

zk +2'.. zk +m
and

leading coefficient 1.

The polynomials p(k +m) are constructed from the recur-
s

rence relations

So

Pk)(z) = 1, i = 0, 1, ..

P(k+f)(Z)
__ zPl+1 1)(Z)

-
qik+e)Plk+f 1>(Z)

= 1 , 2 , , m ; i = 0, 1, . . .

P(k+l)(z)
z

(k+1)

and for m = 2 we have

P(k+2)(z) - z(z-q.)) q(k+2)(z-gk+1)
i+1 i i

2 (k+1) (k+2) (k+1) (k+2)
= z - (gi+1 +q.

)z +
q. gï

i--on

i

.

. . .

,

1

lo+m

it -1

53

This gives a convenient means of obtaining approximations to coeffi-

cients of quadratic equations z2 + bz + c = 0 with zeros zk
+1

and zk +2'

lim -(gç+11)+g(k+2)) = b i- 00

lim (k+1) (k+2)
qi qi

=

These coefficients can readily be refined using Bairstow's algorithm

(3) and then the roots can be obtained using the quadratic formula.

Most frequently the quadratic equation occurs in connection with

complex conjugate zeros of real polynomials.

The coefficients of polynomial equations of higher degree can

be obtained in a similar way. These coefficients would be only ap-

proximate so the roots from the resulting polynomial equations would

be in error. There is no convenient way to solve polynomial equations,

whose zeros have equal moduli, for degree greater then two unless

we consider a method such as Muller's as presented in this paper.

This is not done since more accurate results would be obtained by us-

ing Muller's algorithm on the original polynomial equation.

Operator Program

On the following pages are described the operator programs

which go together to form the QD program. Each of the operators is

54

first defined and then the program is documented as a string of oper-

ators.

Rutishauser's Quotient -Difference (QD) Program -- Operator
Programming Definitions:

IIO Input the program and input data into the memory of the

machine.

Comment: NC = the degree of the polynomial equation plus one.

KG = 0 is all the coefficients are real.

A(I) = the complex coefficients of the polynomial equation,

(I, 1,...,NC).

Al Translate the input data into binary.

Comment: CT is the new origin to be used if any of the coefficients

are zero. Note that the QD algorithm requires that all

the coefficients be non zero.

ICT is the number of times we have changed origins.

NR is the number of roots that have been found.

NTYPE1 is the number of simple roots.

NTYPE2 is the number of approximations for quadratic

equations.

CT =2.;

ICT = 0;

NR =O;

55

NTYPE1 = 0;

NTYPE2 = 0;

ONE = (1. , O.);

A3 N = NC - 1;

Comment: Store the coefficients in a new array since they may be

transformed to eliminate any zero terms.

AT(I) = A(I), (I =1, ... , NC);

Comment: Test for zero coefficients.

P5 IAT(I)I = 0. ?, (I=1, . . . , NC);

Comment: If we have a zero coefficient and have not transformed the

coefficients eight times, transform them again.

P6 ICT < 8? ;

H7 Write: zero coefficients after eight transformations.

Comment: CT is the new origin.

A8 CT = CT /2. ;

NP1 = N + 1;

Comment: Transform the coefficients to eliminate any zero terms.

A9 AT(I) = AT(I) + CT AT(I -1), (I =2, ... , NP1);

NP1 = NP1 - 1;

P10 NP1 > 2? ;

All ICT = ICT + 1;

Comment: Solve the polynomial using the QD algorithm.

E12 (QDIFF) CALL QDIFF(AT, NC, IT, Z, B, NTYPE1, NTYPE2);

4

56

h13 Write: Output from QD algorithm, ... iterations.

Comment: Have any simple roots been found? ;

P14 NTYPE1 = 0? ;

Comment: If the coefficients have been transformed, transform the

roots back.

P15 ICT = 0? ;

A
16

Z (I) = Z (I) + CT, (I =1, ... , NTYPE1);

n17 Write: Approximations to simple roots: ...

Comment: Have any approximations for quadratic equations been

found?

P18 NTYPE2 = 0? ;

Comment: Use Bairstowis algorithm to refine the approximations to

the quadratic equations.

B(1, I) and B(2, I) are the coefficients of the quadratic

equation. The leading coefficient is one.

E19(20, 35) (I =1, ... , NTYPE2);

20 P = B(1, I);

Q = B(2, I);

E21(BAIRST) CALL BAIRST(AT, NC, IT, P, Q);

n22

A23

Write: Quadratic approximations: ...

NR = NR + 1;

Comment: IT is the number of iterations performed. Store this

number in NI(NR) and print out later.

24

Comment: Solve the quadratic equation using the quadratic formula.

NI(NR) = IT;

57

E25(QUAD) CALL QUAD(ONE, P, Q, Z1, Z2);

Comment: If the coefficients have been transformed, transform the

roots back.

ICT = 0? ;

A27 Z1 = Z1 +CT;

Comment: Evaluate the polynomial at Z1, (find the remainder).

E28(POLY) REM (NR) = POLY(A, N, Z1);

Comment: Store the first root from the quadratic formula and go on

to the second root.

329 RTZ(NR) = Z1;

A30 NR =NR+ 1;

331 NI(NR) = IT;

P32 ICT = 0? ;

A33 Z2 = Z 2 + CT;

E34(POLY) REM(NR) = POLY(A, N, Z 2);

35
RTZ(NR) = Z2;

Comment: If any simple roots were found use the Newton Raphson

algorithm to refine them.

P36 NTYPE1 = 0? ;

E37(38, 41) (I=1, . . . , NTYPE1);

A38 NR = NR + 1;

P26

58

E (NEWTON)
39

CALL NEWTON(A,N, IT, Z(I), REM(NR));

40

341

n42

NI(NR) = IT;

RTZ(NR) = Z(I);

Output the coefficients, roots and remainders.

Stop the machine.

Combining the preceding operators, the logical scheme of the

QD program has the form:

11 8 43 6 10 9

110 Al 2 A34 --1PS P6r- h71
r -1A

8
TA9 P10T

5
II

18 17 15 14 36

A11 5 E12 1113 P14r P15r- A16
-11117 -1P18F

28 26

E19 20 E21
1122 A23 24 E25 P267 A27 E28 29

34 32 18 42

A30
331 P321- A33

-1E34
35

-1P36
E37 A38 E39

36 7

40 341 1142 1 43

E(QDIFF) SUBROUTINE QDIFF(A, NC, IT, Z, B, NTYPE1, NTYPE2);

Comment: Solution of the polynomial equation using the QD algorithm.

A(I) = the complex coefficients of the polynomial equation,

(I= ... , NC).

NC = the degree of the polynomial equation plus one.

IT = the number of iterations for the roots.

-`43

59

Z (I) = approximations to simple roots, (I =1, 2, ...).

B(I) = approximations to the coefficients of a quadratic

equation, the leading coefficient is one, (I=1,2,...).

NTYPE1 = the number of simple root approximations.

NTYPE2 = the number of quadratic equation approxima-

tions.

)0 IT =0;

Comment: Set up the iteration limit.

Al LIMIT = 3 NC;

P2 If LIMIT < 20 set LIMIT = 20;

P3 If LIMIT > 100 set LIMIT = 100;

A4 N = NC - l;

Comment: Compute the initial quotient and difference terms.

A5 Q(1,2) = - A(2) /A (1);

36 Q(1, K +1) = 0., (K= 2, ... ,N);

A7 E(1, K) = A(K +1) /A(K), (K =2, ... , N);

Comment: Compute the quotient and difference terms until we reach

the limit.

E8(9, 31) (I=2, . . . , 101);

NTYPE1 = 0;

NTYPE2 = 0;

E(I-1, 1) = (0. , 0.);

E(I-1, NC) = (0. , 0.);

60

E(I, NC) = (0. , O.);

A10 Q(I, K) = E(I- 1, K) - E(I- 1, K-1) + Q(I-1, K), (K=2, , NC);

A11 E(I, K) = Q(I, K+l)/Q(I, K) E(I- 1, K), (K=2, . . . , N);

Al2 IT = IT + 1;

Comment: Iterate again if the number of iterations, (IT) is less than

the limit.

P13 IT < LIMIT? ;

Comment: Test for convergence. Start by testing for simple roots.

14
K = 1;

A15 K =K +1;

Comment: Are the roots separated by a small E(I, K)?

P16 E(I, K)I I > 5. x 10_2? ;

Comment: We can not have division by zero.

P17 IQ(I,K)I = 0. ?;

Comment: Are successive root approximations close enough?

P K) - Q (I, K- 1)) /Q (I, K) I > 1. 0 x 10-2? ;

A19 NTYPE1 = NTYPE1 + 1;

Comment: Store the root approximation.

20
Z(NTYPE1) = Q(I, K);

Comment: Have all E(I, K) been tested?

P21 K< NC ?;

Comment: Do we have approximations to a quadratic term?

P22 I E(I, K +1) I > 5. x 10 2? ;

61

Comment: Have these quadratic approximations converged?

A23 P1 = -Q(I -1, K) - Q(I -1, K +l);

P2 = -Q(I, K) - Q(I, K+1);

P24
I

(P2-P1)/P2I > 1. x 10-2? ;

A25 Q1 = Q(I- 2, K) Q(I -1, K +1);

Q2 = Q(I -1, K) Q(I, K +1);

P26 I (Q2- Q1) /Q2I > 1. x 10-2? ;

A27 NTYPE2 = NTYPE2 + 1;

Comment: Store the quadratic term approximations.

J28 B(1, NTYPE2) = P2;

B(2, NTYPE2) = Q2;

A29 K =K +1;

Comment: Have all E(I, K) been tested? ;

P30 K < NC? ;

1131 Write: Limit of 100 iterations reached, any roots found

will be printed.

1132
Write: Three or more roots with equal moduli, the QD

program can not find such roots, any other roots will

be found.

A33 K = K + 2;

Comment: Have all E(I, K) been tested? ;

P34 K N ?;

Comment: Do we have the roots separated? ;

62

P35 IE(I,K)I < 5. x 10 2 ?;

A36 K =K +I;

1137 Transfer to the calling program.

Combining the preceding operators, the logical scheme of sub-

routine QDIFF has the form;

Al P2 A5
j6

31

E8 39 A10 A11 Al2 P131-

21, 30, 35 22 31 31 15

314 IA15 P16T P17 P18r- A
A19 2,0 P21'37

16 32 31 31 15

-1P22F- A23 P24 A25 P26 A27 28 A29 P30 '

13,17,18,24,26 37 22 36 37 15 34 21 30,3'_,34

1 1131E' 71132 A33P34nP35VA361-- 11137.

E(BAIRST) SUBROUTINE BAIRST(A, NC, IT, P, Q), (Ref. 3)

Comment: A(I) = the complex coefficients of the polynomial equation,

(I = 1 , , NC).

NC = the degree of the polynomial equation plus one.

IT = the number of iterations performed.

P and Q = the approximations to the quadratic term

Z2 +PZ

B(I) and C(I) are arrays used for storing terms generated

by the iteration scheme.

IT = 0;

j0 A7

'

j
/l0

63

Al

A
2

33
A4

A5

A6

B(1) = A(1);

IT = IT + 1;

B(2) = A(2) - P B(1);

B(I) = A(I) - P B(I-1) - Q B(I- 2), (I=3, . . . , NC);

C(1) = B(1);

C(2) = B(2) - PC(1);

N2 = NC - 2;

C(I) = B(I) - P C(I-1) - Q C(I-2), (I-3, . . . , N2);

C(NC-1) = -PC(NC-2) - QC(NC-3);

D = (C(NC-2))2 - C (NC -1)C (NC -3);

DP = B(NC- 1)C(NC -2) - B(NC)C(NC -3);

DQ = B(NC)C(NC -2) - B(NC- 1)C(NC -1);

DELP = DP /D;

DEIQ = DQ /D;

P = P + DELP;

Q = Q + DELQ;

Comment:

P7

Comment:

P
8

n9

Have we

IT > 100?

Have the

comverged?

DELP

reached the iteration

;

coefficients of the

>1.0x 10
-8

and

to the calling program.

limit?

quadratic

DELQ

term Z2 +PZ +Q

> 1.0x 10 8 ?; P

Transfer
Q

64

Combining the above operators, the logical scheme of subrou-

tine BAIRST has the form:

8 9 1 7

J0
1 Al A2 3

A4 A5 A6 P7 F P8
I

711
9

.

E(NEWTON) SUBROUTINE NEWTON(A, N, IT, Z1, PZ):

See operator programming definition for subroutine Newton of

Lehmer's program, page 23.

E(POLY) FUNCTION POLY(A, N, Z):

See operator programming definitions for function Poly of Leh -

mer's program, page 25.

E(QUAD) SUBROUTINE QUAD(A, B, C, Z1, Z2):

See operator programming definitions for subroutine Quad of

Lehmer's program, page 26.

The FORTRAN subprograms which go together to form the QD

computer program are listed in Figure 3. Note that this program in-

cludes the QD algorithm, Bairstow's algorithm and the Newton -

Raphson algorithm.

4. The Steepest Descent Algorithm

The Steepest Descent algorithm with Siljak functions (7) is used

to minimize a nonnegative function, the minimal values of which are

zero and correspond to the zeros of the polynomial equation under

65

Figure 3. The QD FORTRAN IV program.

PROGRAM INOUTIINPUT. OUTPUT .TARE5=INFET.TAPE6 =OUTPUT)
DIMENSION A(16).AT(16).B(2.7).MI(15).REMl15)
1RTZ(15),Z(16)
COMPLEX A. AT. BI ONE.P.POLY.PZ.Q.REM.RTZ.Z.Z1.Z2

C NC =NO. OF COEFFICIENTS.
C KC =0 IF ALL COEFFICIENTS ARE REAL.
C

CALL SECOND(TIME1)
READ) 5,1000)NCASES

-DO 100 1.NCASES
CALL SECOND(TSTART)
WRITE(6.1050)ICASES
READ(5.1000)NC.KC.(A(I),I =1.NC)

C

CT =2.
rCT =O
N =NC -1
NR =0
NTYPE1 0
NTYPE2=0
ONE =(1.00.)

C

DO 5 I=1.NC
5 AT(I) =A(I)

C

C TEST FOR ZERO COEFFICIENTS.
8 DO 10 I =1.NC
10 -IF(CAB-STATZT))EO.0.)GO TO 12

GO TO 25
C

C IF THE ZERO COEFFICIENTS ARE NOT ELIMINATED AFTER
C EIGHT TRANSFORMATIONS. GO TO THE NEXT CASE.
C 2 iFZ TC7.LE -.87 GO TO 15

WRITE(6,1005) ¡CASES
GO TO 100

C

NEW CENTER.
15 CT =CT /2.

NP1WN+

C TRANSFORM EQUATION TO ELIMINATE ZERO COEFFICIENTS.
18 DO 20 I=2.NP1
20 =A1(I)+CT *AT(I -1)

NP1 =NP1 -1
IF(NP1.GE.2)GO TO 18

ICT=ICT+1
G0 TO 8

C AT COEFFICIENTS OF TRANSFORMED EQUATION.
C IT =NO. OF ITERATIONS.
C NC-NO. OF COEFFICIENTS.
C Z APPROXIMATIONS FOR SIMPLE ROOTS.

B APPROXIMATIONS FOR QUADRATIC TERM.
C NTYPE1=N0. OF SIMPLE ROOTS.
C NTYPE2 N0. OF APPROXINATIONS FOR QUADRATIC TERMS.
25 CALL QDIFF (AT.NC,IT.Z.B.NTYPE1.NTYPE2)

WRITE(6.1020)IT
IF(NTYPE1.EQ.0)GO TO 35

C

C IF THE EQUATION HAS BEEN TRANSFORMED,
C TRANSFORM THE ROOTS BACK.
28 IF(ICT.EQ.0)G0 TO 31

DO 30 I=1.NTYPE1
Z)I)= Z(I) +CT

_

N_
-

.. .. -.-

C

-- -

C

C

30 CONTINUE
31 WRITE16.1025) (Z(I),I =1,NTYPE1)

35 IFINTYPE2.EQ.0)GO TO 45

DO 40 I=1INTYPE2
P=B(1.I)
0=B(2.I)

C

C USE BAIRSTOWS ALGORITHM TO GET CLOSER
C APPROXIMATIONS TO THE ROOTS.
C USE COEFFICIENTS OF TRANSFORMED EQUATION SINCE
C QUADRATIC APPROXIMATIONS ARE FOR THIS EQUATION.

CALL BAIRST(AT.NCIT.P.Q)
WRITE(6.1030) P.Q
NR =NR +1
NI(NR) =IT
CALL QUAD(ONE.P.Q.Z1.Z2)
IF(ICT.EQ.0)GO TO 37

Z1 =Z1 +CT
37 REM(NR) =POLY(A0N.Z1)

RTZ(NR) =Z1
NR =NR +1
NI(NR)=IT
IF(ICT.EQ.0)GO TO 39
Z2Z2 +CT

39 REM(NR)= POLY(A.N.Z2)
40 RTZ(NR) =Z2
45 IF(NTYPEI.EQ.0)G0 TO 50

C

C USE NEWTONS METHOD TO GET CLOSER ROOTS.
C USE ORIGINAL COEFFICIENTS SINCE ROOTS WERE
C TRANSFORMED BACK.

DO 49 I= 1.NTYPE1
NR =NR +1
CALL NEWTON(A.N.IT,Z(I).REM(NR))
NI(NR) =IT
RTZ(NR) =Z(I)

49 CONTINUE
C

66

50 WRITE (6.1010)ICASES.NC.(A(I),I =1.NC)
WRITE(6. 1015) NR.(RTZ(I)¡NI(I).REM(I),I =1.NR)
CALL SECOND(TEND)
TSEC =TEND -(START
WRITE(6.1300)TSEC

IOC- CONTINUE
CALL SECOND(TIME2)
TfIME= TIME2-TIME1
WRITE(6.1310)TTIME

1000- FORMATÇZI37T8EI0.0))
1005 FORMAT(6HOCASE 23,

I *, LEN LUEFFICIENT3 AFTER S TRANSFUKMATIUNS. *)
1010 fORMAT (1H1 / / / / / / /1M0.14X. *CASE *.I3. *. *.I3.

1* COEFFICIENTS* / /(1H ,14X.2E20.121)
1015 FORMAT(1H0 /1H0.28X.13.* ROOTS *,39X, *REMAINDERS * //

-11-IH 0I4X.2- E20.12.* NI= *,1302E1748))

1020 FORMAT(1H0014X. *OUTPUT FROM OD ALGORITHM. *.I4.
3 *_ ITERATIONS.*)

1025 FORMAT(1H0.14X. *APPROXIMATIONS TO SIMPLE ROOTS * //
1 (1H .14)02E2- 0.11))

1030 FORMAT(1H0.14X. *QUADRATIC APPROXIMATIONS * //
I1IT1 .14X0E20.12))

1050 FORMAT(1H1 / / / / / / /1H0.14X. *CASE *,I3)
1300 FORMATITH047- /.I5X. *EXECUTIOlf TTME= *,F10.3.

1* SECONDS *)
1310 FORMAT(1HOt14Xt *TOTAL EXECUTION TIMES *.F10.3.

1* SECONDS *)
END

_

.

-- -

.

-

--

------ "

-.

-

- -

- -

__
--

fl
 I

I
C

I
C

I
C

l
f

1
Il

SUBROUTINE QDIFF (A,NC.IT.Z.6.NTYPE1,NTYPE2)
DIMENSION A(16), B (2.7).E(100,16).Q(100.16),Z(16)
COMPLEX A,B,E,P102.0Q1.Q2.Z

C A =COEFFICIENTS.
NC =NO. OF COEFFICIENTS.
IT =NO. OF ITERATIONS.

C Z =APPROXIMATIONS FOR SIMPLE ROOTS.
B =APPROXIMATIONS FOR BAIRSTO'WS QUADRATIC TERM.

C NTYPEI.NO. OF SIMPLE ROOTS.
NTYPE2 =NO. OF APPROXINATIONS FOR QUADRATIC TERMS.

C

IT0
N=NC-1
LIMIT=3*NC
IF(LIMIT.LT.20)LIMIT=20
IF(LIMIT.GT.90)LIMIT=90
0(1.2)= -A(2)/A(1)
DO 5 K=2.N
Q(1.K+1)=(0.,0.)

5 E(10K)=A(K+1)/A(K)

12 DO 40 1=2.101
NTYPE1.0
NTYPE2.0
E(I-111)=(0..0.]
E(I-1,NC)=(0.,0.)
E(I,NC1=(0..0.)

67

DO 15 K=2NC
15 Q(I.K)=E(I-1.K1-E(I-1.K-1)+Q(I-1,K)

DO 16 K=20
16 E(ItK)Q(I,K+11/Q(ItK)*E(I-1,K)

IT=IT+1
- - _- - ----- - --- C----- ---
C ITERATE AGAIN IF LESS THAN LIMIT.

IF(IT.LT.LIMIT)G0 TO 40

K=1
20 K=K+1

IF(CABS(E(I,K)1.GE.5.OE 2)G0 TO 30 __--------- _. -_ -- _---- - -
22 IFICABS(Q(ItK).EQ.O.)G0 TO 40

IFICABSI(Q(I.K1-Q(I-1.K))/Q(I,K)).GT.1.OE-2)GO TO 40

NTYPEINTYPE1+1
Z(NTYPE1)=Q(ItK)
IF(K.LT.NC)G0 TO 20
GC TO 400

30 IF(CABS(E(I.K+1)).GE.5.0E-2)G0 TO 350
P1=-Q(I-111K)-Q(I-1,K+1)
P2=-Q(I0K)mQ(IK+1)
IF(CABS((P2.*P1)/P2).GT.1.0E-2)GO TO 40

-Q1Q(I-20K)*Q(I-1K+1)
02=Q(I-1.K)*O(I,K+1)
IF (CABS(102.01)/02).GT.1.OE -2)G0 TO 40 -- -
N YP(:2 TY E2+1
B(1NTYPE21=P2

K=K+1 --- - (riLT.NC)GÒ -TO 20
GO TO 400

40 CONTINUE
C

C- LIMIT OF 100 ITERATIONS REACHED,
C ANY ROOTS FOUND WILL BE PRINTED.

WRÌTE(601015)
GO TO 400

C

=02

-_---

..._._.-_

-

C THREE OR MORE ROOTS WITH EQUAL MODULI,
C THE OD ALGORITHM CAN NOT FIND SUCH ROOTS,
C ANY OTHER ROOTS WILL BE FOUND.
350 WRITE(501030)

K =K +2
360 IF(K,GT.N)G0 TO 400

IF(CABS(E(I,K))LT.5.0E -2)GO TO 20
K K +1
GO TO 360

400 RETURN
1015 FORMAT(1H0,14X, *LIMIT OF 100 ITERATIONS REACHED * /

115X. *ANY ROOTS FOUND WILL BE PRINTED. *)
1030 FORMAT 11H0.14X.

1 *THREE OR MORE ROOTS WITH EQUAL MODULI.* /15X.
2 *THE OD PROGRAM CAN NOT FIND SUCH ROOTS,* /15X,
3 *ANY OTHER ROOTS WILL BE FOUND.")
END

SUBROUTINE BAIRST(A,NC,IT,P,Q)
DIMENSION A(16).0(16),C(15)
COMPLEX A,B,C,P,O,D,DP,DOrDELP,DELQ

C

C SUBROUTINE BAIRST REFINES THE APPROXIMATIONS TO Ä
C QUADRATIC POLYNOMIAL, SEE HILDEBRAND, P.472 -475.

IT=0
B(1)=A(1)

5 IT=IT+1
B(2)=Á(2)-P*B(1)
DO 10 I=3,NC

10 B(I)=A(I)-P*B(I-1)-Q*B(I-2)
C(1)=B(1)
C(2)=B(2)-P*C(1)
N2NC-2
DO 20 I=30)2

20 C(I)=B(I)-P*C(I-1)-Q*C(I-2)

C NOTE CINC -1) HAS B(NC -1) SUBTRACTED FROM IT.

C(NC -1) =-P *CINC -2)-Q *C(NC -3)
D= CINC- 2) *C(NC -2)- CINC -11 *C(NC -3)
DP :BINC -11 *C(NC -2) B(NC) *C(NC -3)
DO- B(NC) *C(NC2)- BiNC -1) *C(NC -11
DELP =DP /D
DELQ =DO /D
P =P +DELP
QsQ +DELO
IF(IT.GE.100)G0 TO 400
IFCCABS(DELP /P).GT.1.0E -8

1-.OR.CABS(DELQ /Q).GT.1.0E -81G0 TO 5

400 RETURN
END

-SUBROUTINE NEWTON(A,N.IT.Z10Z)
DIMENSION A(16)

-

--COMPLEX A,6PZ,PZ,Z1,Z2

T =COE'FIZFENTS.
C N =DEGREE OF POLYNOMIAL.
C IT=NO. OF ITERATIONS.
C Z1 INDEPENDENT VARIABLE.
C FZ =THE VALUE OF THE POLYNOMIAL AT Z=Z1.
C DPZ -THE DERIVATIVE OF PZ.

68

_

"" -

IT=0
5 IT=IT+1

PZ=A(1)
CP2=A(1)
DC 10 I=2.N
PZ=A7I)+ZI*PZ

10 DPZ=PZ+Z1*DPZ
PZ=A(N+1)+Z1*PZ

IF(DPZ.EQ.O.)GO TO 20
Z2=Z1-PZ/DPZ
IF(CABSiPZ).LT.1.0E-20)G0 TO 100

C TEST FOR 0. DENOMINATOR.
IF(Z1.EQ.0.1G0 TO 20

TEST FOR CONVERGENCE.
TF` TCAB- G((Z2- Z1)/Z1).LT.1.0E -10)G0 TO 100
IF(IT.EQ.100)GO TO 100

20 Z1 =Z2
GO TO 5

100 Z1 =22
RETURN

-

COMPLEX FUNCTION POLY(A.N.Z)
DIMENSION A(16)
COMPLEX A.Z.

C

C A= COEFFICIENTS OF POLYNOMIAL.
C N =DEGREE OF POLYNOMIAL.
C Z =VALUE AT WHICH POLYNOMIAL IS EVALUATED.
C POLY =POLYNOMIAL EVALUATED AT Z.
C

POLY =A(1)
DO 20 I =1.N

20 POLY =Z *POLY +A(I+1)
RETURN
END

SUBROUTINE- OUAD(A.B4-C4Z1,Z2)
COMPLEX A.B.C.DISC.ZI.Z2
DISC =CSORT(B *B -4. *A *C)
Z1 +DISC)/(2. *A) =(-B

TE.T -B= DISC) % (2. *A)
RETURN
END

69

C

.

investigation.

We are concerned with the equation

(1) 1(z) = u + iv = 0,

where f(z) is an entire function of the complex variable z,

where

(2) z = x + iy.

Now we form the function

(3)
2 2 F(x,y) = u + v .

70

F = F(x, y) is a function having the property that the zeros of F

are the zeros of f(z). In fact these zeros are the only minima of

F, (10). Also note that F > 0 for all z and that aF /ax and

aF /ay exist.

The level lines of the function F(x, y) are the intersect ions

the surface w = F(x, y) with the planes parallel to the x, y- plane

(w is the altitude above the x, y- plane). At an arbitrary point

P(x, y) the gradient of F has the components

(4) F aF F a F
x ax ' y ay

The gradient vector of is orthogonal to the level line through P

and points in the direction of increasing values of F. We must

of

=

71

move in the opposite direction, the direction of steepest descent. The

differential equations of the orthogonal trajectory O to the level

lines of F(x, y) are

(5)
dx

= -p(t) aF
dy

= -p(t) aF
dt ax dt -ay

Here p is a proportionality factor and t is a parameter along the

curve O. The function p(t) must be positive and is chosen to

minimize the function F along the direction of steepest descent.

We will now consider the calculation of p(t).

In the neighborhood of a zero of f(z), the higher order terms

of a series expansion for u and v are negligible so we have:

(6)
au au

-u = ax p x+ p y,
Y

av av
-v = axpx+ py,

Y

where px and py are the distances in the x and y direc-

tions from a point in the neighborhood of the zero of f(z) to the

zero of f(z). Using the Cauchy- Riemann equations and solving

Equation (6) for px and py yield

(7) P
au 8v -u- -v -
ax ax

au 2 av 2 '

(ax) +() 8x

From these equations we see that

u
av au - -v-
ax ax

py _
au 2 av 2

(ax) +(aX)

-
'

-

(8)

72

O. 5
p(t) _ `> O.

(X)2+(a

If F = u + v
2

in Equation (3) is greater than the value pre-

viously calculated, replace the current Ax and `y values by

. 75ox and .75vy until a value of F is found that is smaller

than for the preceding iteration.

Operator Program

On the following pages are described the operator programs

which go together to form the Steepest Descent program. Each of

the operators is first defined and then the program is documented as

a string of operators.

The Steepest Descent Program -- Operator Programming Definitions:

II0 Input the program and data into the memory of the ma-

chine.

Comment: A(I) = the complex coefficients of the polynomial equation,

(I=1, ...,N+1).

N = the degree of the polynomial equation.

NC = the degree of the polynomial equation plus one.

KC = 0 if the coefficients are all real.

NI(I) = the number of iterations per root, (I =1, ... , N).

NR = the number of roots found.

73

.TZ (I) = the roots of the polynomial equation,

(I =1, ... NR).

REM(I) = the remainders from evaluating the polynomial

equation at the roots, (I =1, ... , NR).

Al Translate the input data into binary.

A2 N = NC - 1;

E3(STEDES) CALL STEDES(A, N, KC, NI, NR, RTZ, REM);

5
Output the coefficients, roots and remainders.

Stop the machine.

Combining the above operators, the logical scheme of the pro-

gram has the form:

II0 Al A2 E3 II

E(STEDES) SUBROUTINE STEDES(A, N, KC, NI, NR, RTZ, REM);

Comment: A(I) = the complex coefficients of the polynomial equation,

(I =1, ... ,

N = the degree of the polynomial equation.

KC = 0 if the coefficients are all real.

NI(I) = the number of iterations per root, (I -1, ... ,NR).

NR = the number of roots found.

RTZ (I) = the roots of the polynomial equation,

(I ... , NR).

,

. L5

n4

/2

74

RFM(I) = the remainders from evaluating the polynomial

equations at the roots, (I =1, ... NR).

DZ is the correction to the root.

We now initialize some of the terms.

0
DZ

=-

O.;

NR =O;

Al NC = N + 1;

Comment: B(I) is used for storing the coefficients of the reduced

polynomial (polynomial with the roots found removed).

B (I) = A(I), (I =1, ... , NC);

Comment: Test if z = 0 is a root.

P3 IA(NC)I 1. O. ?;

Comment: z = 0 is a root, store it and test again.

A4 NR = NR ± 1;

NI(NR) = 0;

A6 NC = NC - l;

RTZ(NR) = O.;

REM(NR) = O.;

Comment: Have all the roots been found?

P8 NR - N - 0?;

Comment: Initialize starting values. IT is the number of iterations

for the root. L = 1 if the complex conjugate has not

been found. L = 2 if the complex conjugate has been

7

75

found.

IT = 0;

L = 1;

Z = (1. , 1.);

ZN = Z;

ZR =1.;

ZI = 1.;

Comment: This is the start of the iteration loop.

A10 IT =IT +1;

dl 1
X(1) = 1.;

Z(2) = ZR;

Y(1) = 0.;

Y(2) = ZI;

Comment: Split the coefficients into their real and imaginary parts.

12
AR(I) = Real B(I), (I =1, ... NC);

AI(I) Imaginary B(I);

Comment: Calculate the real and imaginary parts of f(z) and their

partial derivatives in terms of the Siljak functions

X(I) and Y(I), (see Reference 7).

U = AR(NC) + AR (NC - 1) ° ZR - AI (NC -1) ZI;

V = AI(NC) + AR(NC -1) ° ZI + AI(NC -1) ZR;

PU = AR(NC -1);

PV - AI(NC -1);

A13

314

,

=

A15
ZR2=ZR+ZR;

2
ZS = ZR + Z1-;

E16(17, 18) (I=3, . . . NC);

A17 X(I) = ZR2 X(I-1) - ZS X(I-2);

P18

Y(I) = ZR2 Y(I- 1) - ZS Y(I- 2);

J=NC+1 - I;

U = U + AR(J) X(I) - AI(J) Y(I);

V = V + AR(J) Y(I) + AI(J) X(I);

PU = PU + (I-1) (AR(J) X(I-1)-AI(J) Y(I-1));

PV = PV + (I-1) (AR(J) Y(I-1)+AI(J) X(I-1));

I<NC?;

76

Comment: Store the value of the polynomial f(z) evaluated at the new

root approximation, z.

l 19
PZ = (U, V);

A20 PS = PU2 + PV2;

FN U2+V2;

Comment: Is the square of the value of the polynomial zero?

P21 FN ;

Comment: Is this the first iteration performed?

P22 IT = 1? ;

Comment: F is the square of the value of the polynomial at the pre-

vious root approximation.

P23 FN < F? ;

,

=

77

Comment: At this point in the program we have FN > F which means

the delta z increment for z was too large. Try a

smaller delta z.

A24
DZR = .75 DZR;

DZI =.75 DZI;

Comment: Set IJ = 1 to indicate that delta z has been altered.

25
IJ = l;

Comment: Set IJ = 0 to indicate that delta z has not been altered.

26 IJ = 0,

Comment: Compute the delta z values.

A27 DZR = -(U °PU +V PV) /PS;

DZI = (U °PV -V PU) /PS;

Comment: Save the previous iteration's values.

28
ZRS = ZR;

ZIS = ZI;

F FN;

Comment: Compute the new z terms. ZN is the new root approxi-

mation.

A29 ZR _ ZRS + DZR;

ZI = ZIS + DZI;

30 DZ = (DZR, DZI);

ZN = (ZR, ZI);

Comment: If this is the first iteration do not test for convergence.

P31

Comment: If delta z has been altered do not test for convergence

P32

Comment:

yet, iterate once.

IJ = 1?

Test for convergence.

P33 I PZ I< 1. 0 x 1 0
20?

P34 Z == 0? ;

P35 DZ /Z < 1.0 x 10
10?;

Comment: Have we reached the maximum number of iterations?

78

P36 IT > 200? ;

Comment: Store the new root approximation and iterate again.

37
Z = ZN;

Comment: We have a new root, store it and compute the value of the

polynomial at the new root.

A38 NR = NR + 1;

E39(POLY) REM(NR) POLY(A, N, ZN);

40 NI(NR) = IT;

RTZ(NR) = ZN;

Comment: If the remainder when evaluating the polynomial at this

new root is greater than or equal to one we print out

the results found and stop the program. The program

is stopped since succeeding roots are found using the

coefficients of the reduced polynomial (the root is

= 1? ;

;

_

;

79

divided out using synthetic division). These coeffi-

cients would have too much error to yield reasonably

correct roots.

P41 I REM (NR) I > 1 . ? ;

Comment: Have we found all the roots?

P42 NR > ;

Comment: Calculate the coefficients of the reduced polynomial using

synthetic division.

A43 NC = NC - 1;

A44 B(I) = B(I) + ZN B(I -1), (I =2, ... , NC);

Comment: If we have a linear equation transfer and solve directly

for the root.

P45 NC = 2? ;

Comment: If the complex conjugate has been found transfer and iter-

ate for the next root.

P46 L = 2? ;

Comment: If the coefficients are not all real iterate for the next root.

P47 KC 0? ;

Comment: If the imaginary part of the root is zero transfer and iter-

ate for the next root.

P48 Imaginary RTZ(NR) = 0? ;

Comment: If the imaginary part of the root is small compared to the

real part transfer and iterate for the next root.

P49

80

real RTZ(NR)
imagainary RTZ(NR) > 1. Ox 102 ?;

Comment: Compute the complex conjugate.

350 L - 2;

IT = 0;

ZN - ZN;

Comment: Solve the linear equation.

O51

A52

n53

IT =0;

ZN = - B(2) /B (1);

Transfer to the calling program.

Combining the above operators, the logical scheme for subrou-

tine STEDES has the form:

A
9

30 A1 g P3 I

53
A4

5
A6

7 P8 ' Ç

37

A10 11 12 A13 314 A15

38 26 26

P217 1322 P 23 A24

3, 46, 47, 48, 49

I9

18 16
7E16

A17 P18 19 A20

29 22, 23

------1j26 A27 328

25

A29 30

36

P311-
36 38 36 38

P34I-P35 T P321- P33

/-37
10 21, 33, 35, 36, 51, 52

IA38
E39

31 32 34 38

IP36
53 53

40 P411- P42 r
50 9 9 9 9

A43 A44 P457 P46T P47F P48n P49n
38 '

I

1- -1.9 ïï,

25

81

38 8,41, 42

,51 A527
; In 53

E(POLY) FUNCTION POLY(A, N, Z);

See operator programming definitions for function Poly of Leh -

mer's program, page 25.

The FORTRAN subprograms which go together to form the

Steepest Descent computer program are listed in Figure 4.

)51

82

Figure 4. The Steepest Descent FORTRAN IV program.

PROGRAM INOUT(INPUT,OUTPUT.TAPE5= INPUT,TAPE6= OUTPUT)
DIMENSION A(16).NI(15).REM(15).RTZ(15)
COMPLEX A.REM.RTZ

C KC =O IF THE COEFFICIENTS ARE ALL REAL.
C

CALL SECOND(TIME1)
READ(5t1000)NCASES
DO 100 ICASES =1,NCASES
CALL SECOND(TSTART)
READ(5t1000)NC.KCt(A(I),I =1.NC)
N =NC 1
CALL STEDES(AtN.KC.NI,NR.RTZ.REM)
WRITE (6,1010)ICASES,NC,(A(I),I =1.NC)
WRITE(6t 1020)NS,(RTZ(I),NI(I),REM(I),I =1.NR)
CALL SECOND(TEND)
TSEC =TEND- TSTART
WRITE(6.1300)TSEC

100 CONTINUE
CALL SECOND(TIME2)
TTIME= TIME2 -TIME1
WRITE(6.1310)TTIME

1006 FORMfATTZT57-(8FT0.0) 1

1010 FORMATI1H1 / / / / / / /1H0,14Xt *CASE *,I3t *, *.I3.
1* COEFFICIENTS * / /(1H .14)02E20.12))

1020 FORMAT(1H0 /1H0.28X.I3r* ROOTS *039X. *REMAINDERS * //
1(IH *14X.2E20.121* NI= *,13,2E17.8))

1300 FORMAT(1H0./ /t15Xt *EXECUTION TIME = *,F10.3.* SECONDS *)
- ITIÓ--FORMAT(1H001 -4X *TOTAL EXECUTION TIME = *,FIO -3j

1* SECONDS *)
- --END

-

SUBROUTINE STEDES(A.N.KCaNI,NR,RTZ,REM)
DIMENSION A(16),NI(15),REM(15),RTZ(15)

1. AR(15)AI(15),B(16)tX(16).Y(16)
COMPLEX A.B.DZ.PZ.RTZ,REM.Z.ZN

1.POLY
- - -- __ - --

DZ=O.
NC=N+1
NR0

C
DO 2 I=10C
B(I)=A(I)
IF(CABS(A(NC)).NE.O.)GO TO 10

NR=NR+1
NI(NR)=0
NC=NC-1
RTI(NR)=(0.0.)
REM(NR)=(0..0.)
IF(NR-N)5.1000.5

10 IT=0
L=1
Z=(1..1.)
ZNZ
ZR1.
ZI=1.

20 IT=IT+1
X(1)=1.
X(2)=ZR
Y(1)=0.
Y(2)=ZI

- -

_

-

5

DJ 28
AR(I)=REAL(G(II)

2E AI(1)°AIMAG(E_s(I))
NCM1-NC-1
U=AR (NC)+AR (NCP11) *ZR-A I (Ní.ó11) 1,':' 1

V=AI(NC1+AR(NCM1)*ZI+AI(NCM1)x2-.
PU=ARiNCM1)
PV=AI(NCM1)
ZR2=ZR+ZR
ZS=ZR*ZR+ZI*ZI

C

30 DO 35 I=3.NC
X(I)=ZR2*X(I-1)-ZS*X(I-2)
Y(I)=ZR2*Y(I-1)-Z5Y(I--2)
J=NC+1-I
U=U+AR(J)*X(I1-AI(J) Y(I)
V=V+.AR(J)*Y(I)+AI(J)*X(I1
PU=PU+(I-1)*(AR(J)*X(I-1)-AI(J)==''

35 PV=PV+(I-1)*(A.R(J)*Y(I-1)+4I(J)+,,,
PZ=CMPLX(U.V)

C

PS=PU*PU+PV*PV
FÑ=U*U+V*V
IF(FN.EQ.O.)GO TO 100
IFiI7.EQ.11GO TO 40
IF(FN.LT.FIGO TO 40
DZR=.75*DIR
DZI=.75*DZI ----
GO TO 45

40 IJ=0
DZR=-(U*PU+V*PV)/PS
DZI= (U*PV-V*PU)/P5
ZjTRS=ZR .__

-

F=FN
45 ZRZRS+DZR

ZI=ZIS+DZI
DZ=CMPLX(DZR.DZI)
ZN=CMPLX(ZR.ZII

----TF1ïT. EC5.1) G0 TO 70

IF(IJ.EQ.1)G0 TO 70
50 IF(CABS(PZ).LT.1.0E-20)G0 TO 100

IF(Z .E0.0.)G0 TO 70
ZFïCABSiDZ/Z).LT1.0E-101G0 TO 100

70 IF(IT.GE.200)G0 TO 100
Z =ZN-
GO TO 20

100 NR=NR+1
REM(NRI=POLY(A.N.ZN)
NI(NR)=IT
RTZ(NR)ZN
IF(CABS(REM(NR)).GE.1.1G0 TO 1000
Z F(NR.GE.N1G0 TO 1000
NCNC-1

CALCULATE COEFFICIENTS OF REDUCE'. LOUAÏIUNa
DO 1-051=2i-1W

105 B(I1 =B(I) +ZN *B(I -1)
TFINC.EQ.2)G0 TO 110
IF(L.EQ.2)GO TO 10
TF(KC.NE.0)G0 TO 10

IF(AIMAGIRTZ(NR)1.EQ.0.)GO TO 10

IFIAdS(kEAIrïRTZ(NR1)/AIMAG(RTZ(NR))l.Gi+1 ..i)L:'
1G0 TO 10
L=2
IT=0

I=1.Nt:

.

-flit
_.

ZTZI -

C
. ...

-

.

C

84

ZN=CONJG(ZN)
00 TO 100

110 il`=0

ZN=-B(2)/B(1)
GO TC 100

1000 RETURN
END

COMPLEX FUNCTION POLY(A,N.Z)
DIMENSION A(16)
COMPLEX A,Z

C

C A =COEFFICIENTS OF POLYNOMIAL.
C N= DEGREE OF POLYNOMIAL.
C Z =VALUE AT WHICH POLYNOMIAL IS EVALUATED.
C POLY = POLYNOMIAL EVALUATED AT Z.
C

POLY =A(1)
DO 20 I =1,N

20 POLY =Z *POLY +A(I +1)
RETURN
END

85

M. DISCUSSION OF PROGRAM RESULTS

The four computer programs, (Lehmer's, Muller's, Rutishaus-

errs QD and the Steepest Descent) were used to solve numerous poly-

nomial equations. The results from solving the nine test cases from

Milne's "Numerical Calculus" (6) which are listed in the Introduction

and again in Chapter IV are discussed first. Chapter IV also contains

results (computer output) from solving these nine polynomial equa-

tions using the four computer programs. Results from solving the

polynomial equation x
n

+ x = 1 (n =3, 5, ... , 101) will be discussed

second. When discussing xn + x = 1, the case number is n + 1,

i. e. x3 + x = 1 is referred to as Case 4.

The execution times were significantly different as well as the

number of roots that could be found by the different methods. The

methods will be discussed in order of results, the most satisfactory

first.

1. Solution of Nine Test Cases

Muller's Program

Muller's program converged in all nine cases, finding the 34

roots in 0. 275 seconds. Of the 34 roots found three were complex

conjugates and were accepted as roots without iterating, so 31 dis-

tinct roots were found. This gives an average time of 0. 00887

86

seconds for each root. The roots found by Muller's program had re-

mainders whose absolute values varied from 10 10 to 0. These roots

were used as a check on the roots found by the other programs since

their remainders are as small as or smaller than those found by the

other methods.

Muller's program required 101 FORTRAN IV statements.

The Steepest Descent Program

The Steepest Descent program converged in all nine cases,

finding the 34 roots in 0. 308 seconds. When a root was found, the

degree of the equation was reduced using synthetic division, linear

equations that resulted were solved explicitly. The occurrence of

linear equations and complex conjugate roots made it necessary to

iterate for only 23 roots. This gives an average time of 0. 01339

seconds for a root. These roots agreed with those from Muller's

program in all 13 places in some cases and in only 8 places in other

cases. The absolute values of the remainders varied from 10 10 to O.

The Steepest Descent program required 128 FORTRAN IV state-

ments.

Lehmer's Program

Lehmer's program is discussed next since it found more roots

than the QD program although it is slower than the QD program and

87

the preceding programs.

Lehmer's program converged in all nine cases, finding the 34

roots in 0. 361 seconds. Sixteen of these were distinct roots which

gives an average time of O. 02256 seconds for each root. These roots

agreed with those from Muller's program in all 13 places in some

cases and in 10 places in other cases. The absolute values of the re-

mainders varied from 10 10 to 0.

The 16 roots mentioned in the preceding paragraph refer to the

number of roots iterated on by Lehmer's scheme. When a root was

found, the degree of the equation was reduced using synthetic division.

Whenever the reduced equation was of degree two or one, Lehmer's

iteration scheme was stopped. The remaining roots were obtained by

using the quadratic formula or by solving the linear equation for the

root. The linear equation occurred whenever a root and its complex

conjugate were removed from a third degree equation.

Lehmer's program required 223 FORTRAN IV statements.

The QD Program

Rutishauser's QD algorithm is restricted in that there is no sim-

ple method for solving the equation that results when three or more

roots have equal moduli (see p. 53). When only two roots have equal

moduli, the quadratic factor that is found by the QD program is con-

veniently refined in Bairstow's method and solved by the quadratic

88

formula. Simple roots are refined by Newton's algorithm with the

derivative, fl(z), computed by iterated synthetic division.

Rutishauser's QD program found all the roots in seven of the

nine cases. In the remaining two cases the algorithm was only able

to separate out one root in each case. In Case 7 three roots vary by

only one unit in the third digit so could not be separated out. In Case

8 three roots were the same to three digits and could not be separated

out. The remaining 28 roots were found in 0. 314 seconds which gives

an average time of 0. 01121 seconds for each root. These roots agreed

with those from Muller's program in all 13 places in some cases and

in 11 places in other cases. The absolute values of the remainders

varied from 10- 9 to 0.

The QD program requires 208 FORTRAN IV statements.

Table 2. Results from solution of the nine test cases.

No. of places of
agreement with

Number of Average time Muller's program Absolute values of

Program roots found seconds /root max. of 13 the remainders

Muller's

Steepest
Descent

Lehmer's

QD

-10
34 .00887 -- 10 to 0

34 . 01339 8 to 13 10
-10

to 0
-10

34 .02256 10 to 13 10 to 0
-9

28 .01121 11 to 13 10 to 0

2. Solution of xn + x = 1

Muller's Program

89

Muller's program converged in all cases, finding the 2, 600

roots in 60. 368 seconds. This gives an average time of . 02321 sec-

onds for each root. Complex conjugates were accepted as roots with-

out iterating since the coefficients are all real. Since about half of

the roots are complex conjugates, the above time should be doubled

for arbitrary equations with no complex conjugate roots. The roots

from Muller's program had the smallest remainders, (the absolute

values varied from 10-12 to 0) so were used as a check on the roots

found by the other programs.

The Steepest Descent Program

The Steepest Descent program also converged in all cases,

finding the 2, 600 roots in 159. 144 seconds, an average of . 06121 sec-

onds for each root. As in the discussion of the results from Muller's

algorithm, this time should be doubled for arbitrary equations with

no complex conjugate roots. These roots agreed with those from

Muller's algorithm in all 13 places for some roots and in only 9

places for other roots. The absolute values of the remainders varied

from 10 -8 to 0. As would be expected the error increases as the de-

gree of the polynomial equation increases.

90

Lehmer's Program

Lehmer's program converged on the roots in Cases 4 to 52 in

64. 589 seconds. There are 675 roots and hence an average time for

each root is . 09569 seconds. As in the discussion of the previous

programs, about half of the roots are complex conjugates so the above

time should be doubled for arbitrary equations with no complex conju-

gate roots. These roots agreed with those from Muller's method in

all 13 places for some roots and in only 6 places for other roots. The

absolute values of the remainders varied from 10-6 to 0.

Since the time required to find these roots was relatively high,

the next cases investigated were Cases 72 and 102. In Case 72 all 71

roots were found and in Case 102 only 78 roots were found. The solu-

tion time was 133. 402 seconds for an average of . 89531 seconds for

each root, about 40 times longer than required by Muller's program.

This time should be doubled for the general case since about half the

roots are complex conjugates. These roots agreed with those from

Muller's program in all 13 places for some roots and in only one place

for other roots. The absolute values of the remainders varied from

1.67 to 10-15.

A root that is found approximately by Lehmer's algorithm is re-

fined in Newton's method since Newton's method converges more

rapidly. If after this refinement a root still had a remainder greater

91

than or equal to one the solution of the problem was stopped. A root

not found to a high degree of accuracy caused all subsequent roots to

be in error since they were found from the reduced equation. The

reduced equation was used to avoid converging on the same root when

the roots were close.

In Case 102 the root approximations found by Lehmer's algo-

rithm were not accurate enough for Newton's method to converge so

the solution of the problem was stopped. The number of iterations

allowed in Newton's method was increased from 100 to 300 but con-

vergence still could not be obtained.

The convergence criterion in Lehmer's algorithm is the dis-

tance between annulus centers, (the centers being the root approxi-

mations).

CT-CTO

CT
< E

where CT is the center of the current annulus that contains a root

and CT0 is the center of the previous annulus that contained a root.

For E = 1. 2 all the roots were found in Cases 4 through 12 but only

two roots were found in Cases 14 through 52. E = 1. 0 was small

enough to force convergence of all roots in Cases 4 through 52. E was

varied from 0. 17 to 0. 05 for Cases 72 and 102. With E = 0. 17 only

four roots were found in Cases 72 and 102. With E = 0. 15, 71 roots

92

were found in Case 72 and 78 roots were found in Case 102. With

c = 0. 12, 36 roots were found in Case 72 and 30 roots were found in

Case 102. With E = 0. 05, 46 roots were found in Case 72 and 24

roots were found in Case 102.

These results indicate that if E is not small enough then the

roots will not be accurate and the succeeding roots will be in error

and if E is too small the accuracy is unatttainable due to rounding

errors that result in the computer operations.

The QD Program

The QD program is restricted in that there is no simple method

for solving the equation that results when three or more roots have

equal moduli, (see p. 53).

The QD program found all the roots in Cases 4 through 14.

Three or more roots with equal moduli were detected in Cases 16, 18,

24, 26, 28, 30, 32 and 34 so the particular roots could not be found.

As a result only 257 roots were found out of a possible 288. The ex-

ecution time was 7. 886 seconds, an average time of . 03068 seconds

for each root. The finding of complex conjugates is included in this

time.

These roots agreed with those from Muller's program in all 13

places for some roots. In a few instances there was no agreement

since Bairstow's subprogram did not converge. This can be

93

attributed to the initial approximations for the QD subprogram not be-

ing good enough. More iterations by the QD subprogram helped in

some cases. This lack of agreement was apparent in the large abso-

lute values of the remainders, 105 to 10 as compared to 10-9 to 10-15

for good roots.

An infinite operand (operand > 10322) was generated in subrou-

tine BAIRST during the solution of Case 36 and stopped the program.

Scaling was added to subroutine BAIRST which increased the number

of cases solved from 32 to the present value of 34 before the infinite

operand was generated. The infinite operand can be attributed to the

many multiplications that are necessary to perform during the iter-

ated synthetic division.

Table 3. Results from solving xn + x = 1, (n--.3, 5, ... , 101).

Program
Number of

roots found
Average time
seconds /root

Muller's 2, 600 . 04642

Steepest
Descent 2, 600 .12242

Lehmer's 675 .19137

QD 257 .03068*

No. of places of

agreement with
Muller's program
max. of 13

9 to 13

6 to 13

0 to 13

Absolute values of

the remainders
-12

10 to 0

10-g to 0

- 6
10 to 0

lÓ to 0

* This small time does not mean that the method is the fastest. It occurred because of

the low degree of the equations that were solved as compared to the other methods.

94

IV. COMPUTER PROGRAM TEST RESULTS

1. Solution of Nine Test Cases

NI on the output refers to the number of iterations. For Mul-

ler's program NI is the number of iterations performed by the pro-

gram for the particular root. This is also the case for the Steepest

Descent program. The iterations performed by Lehmer's subpro-

gram are listed separately. For Lehmer's program NI refers to the

number of iterations performed by Newton's subprogram in refining

the roots found by Lehmer's subprogram. The QD subprogram per-

formed a minimum of 20 iterations before turning the root approxima-

tions over to Newton's or Baistow's subprogram for final refinement.

2. Solution of x21 + x = 1

NI on the output refers to the number of iterations. For Mul-

ler's program NI is the number of iterations performed by the pro-

gram for the particular root. This is also the case for the Steepest

Descent program. The iterations performed by Lehmer's subpro-

gram are listed separately. For Lehmer's program NI re-

fers to the number of iterations performed by Newton's subprogram

in refining the roots found by Lehmer's subprogram. The QD subpro-

gram performed 78 iterations before turning the root approximations

over to Newton's or Bairstow's subprogram for final refinement.

95

Table 4. Muller's program, solution of nine test cases.

Case 1 4 Coefficients

NI=

M=
M=

7

2

0

Remainders

0.

2.13162821E -14

-2.13162821E -14

1.000000000000E +00

-0.

-1.000000000000E +00

-4.000000000000E +00

3 Roots

-0.

-0.

-0.

-0.

0.

-1.191670795605E +00

1.191670795605E +00

1.796321903259E +00

-8.981609516297E -01

-8.981609516297E -01

-2.84217094E -14

0.

0.

Execution time =

Case 2, 5 Coefficients

. 022 seconds

1.000000000000E +00 -0.

-2. 037900000000E +00 -0.

-1.542450000000E +01 -0.

1. 566960000000E+01 -0.

3.549360000000E +01 -0.

4 Roots Remainders

-1.201998596673E +00 0. NI= 6 2. 27373675E -13 0.

2.124387030181E +00 0. NI= 6 2. 27373675E -13 0.

-3.211994374397E +00 0. NI= 2 -9. 09494702E -13 0.

4.327505940890E +00 0. NI= 2 -2. 50111043E -12 0.

Execution time = . 028 seconds

Case 3, 5 Coefficients

NI=

NI=

NI=

NI=

5

7

0

2

Remainders

0.

0.

0.

-2.34022342E -26

1.000000000000E +00

-2.000000000000E +00

-4.000000000000E +00

-4.000000000000E +00

4.000000000000E +00

4 Roots

-0.
-0.
-0.
-0.
-0.

0.

1.000000000000E +00

-1.000000000000E +00

-4.038967834732E -28

5.857864376269E -01

-1.000000000000E +00

-1.000000000000E +00

3.414213562373E +00

2. 84217094E -14

0.

0.

-3. 97903932E -13

Execution time = . 028 seconds

Case 4, 5 Coefficients

4.000000000000E +00 -0.

-2.400000000000E +01 -0.

4.400000000000E +01 -0.

-2.400000000000E +01 -0.

3.000000000000E +00 -0.

(Continued)

96

4 Roots Remainders

1.771243444677E -01 0. NI= 6 o. o.

6.339745962156E -01 0. NI= 6 -1. 42108547E -14 0.

2.366025403785E +00 0. NI= 2 2. 13162821E -13 0.

2.822875655532E +00 0. NI= 2 1.44950718E -12 0.

Execution time =

Case 5, 5 Coefficients

. 028 seconds

2.000000000000E +00 -0.
1.600000000000E +01 -0.
1.000000000000E +00 -0.
-7.400000000000E +01 -0.
5.600000000000E +01 -0.

4 Roots Remainders

1.121320343558E +00 0. NI= 9 2. 27373675E -13 0.

1.123105625620E +00 0. NI= 5 4.54747351E -13 Q.

-3.121320343560E +00 0. NI= 2 -1. 13686838E -12 0.

-7.123105625618E +00 0. NI= 3 2.04636308E -12 0.

Execution time =

Case 6, 4 Coefficients

. 032 seconds

1.000000000000E +00 -0.

-6.026600000000E +00 -0.

4. 304800000000E +00 -0.

1.595330000000E +01 -0.

3 Roots Remainders

-1.216399518172E +00 0. NI= 5 -5. 68434189E -14 o.

3.612590155512E +00 0. NI= 2 -1.70530257E-13 0.

3.630409362660E +00 0. NI= 2 -5. 68434189E -14 o.

Execution time = . 022 seconds

Case 7 5 Coefficients

1.000000000000E +00 -0.
1.200000000000E +01 -0.

-9.500000000000E +00 -0.
-6.000000000000E +00 -0.
4.500000000000E +00 -0.

4 Roots Remainders

-7.071067811865E -01 0. NI= 7 0. 0.

7.082039325011E -01 4.90945670725E -19 NI= 8 2.84217094E-14 1.02279363E-20

7.071067811861E -01 -1.218611372268E -27 NI= 2 0. 2.53657372E -29

-1.270820393250E +01 1.596373671581E -27 NI= 3 -1.18831167E -10 -3.44820039E -24

Executiom time = . 030 seconds

(Continued)

97

Case 8, 5 Coefficients

1.000000000000E +00 -0.
-6.000000000000E +00 -O.

-1.130000000000E +02 -0.
5.040000000000E +02 -0.
2.436000000000E +03 -0.

4 Roots

0. NI= 6

Remainders

0. -3.164414002969E +00 O.

9.164414003108E +00 0. NI= 12 2.91038305E -11 0.

9.165151389772E +00 0. NI= 1 0. 0.

-9.165151389912E +00 0. NI= 2 -2. 91 038305E-11 0.

Execution time = . 030 seconds

Case 9 5 Coefficients

1.000000000000E +00 -0.
1.600000000000E +01 -0.
1.100000000000E +01 -0.

-2.240000000000E +02 -0.
2.860000000000E +02 -0.

4 Roots Remainders

1.841821538748E+00 -4.311068539088E-01 NI= 8 -1.81898940E -12 0.

1.841821538748E+00 4.311068539088E-01 NI= 0 -1.81898940E -12 0.

-5.726958802481E+00 2.584939414228E-26 NI= 2 9.09494702E -12 1. 22262764E-23

-1.395668427502E+01 7.367077330550E-25 NI= 2 -7. 63975549E -11 -1.51438351E -21

Execution time = . 028 seconds
Total execution time = . 275 seconds

Case 1,

Table 5. The Steepest Descent program, solutions of nine test cases.

4 Coefficients

1.000000000000E +00 -0.
-0. -0.
-1.000000000000E +00 -0.
-4.000000000000E+00 -0.

3 Roots Remainders

1.796321903259E+00 4.827632850013E-22 NI= 27 0. 4. 19053842E-21

-8.981609516297E-01 1.191670795605E+00 NI= 7 -2.84217094E -14 -6.39488462E -14

-8.981609516297E-01 -1.191670795605E+00 NI= 0 2.84217094E -14 -7. 10542736E -14

Execution time = . 027 seconds
(Continued

98

Case 2, 5 Coefficients

1.000000000000E +00 -0.
-2.037900000000E +00 -0.
-1.542450000000E +01 -0.
1.566960000000E +01 -0.
3.549360000000E +01 -0.

4 Roots Remainders

2.12438703M1E+00 1.615587133893E-27 NI= 6 1.13686838E -12 -6.31811871E -26

-1.201998596673E+00 -4.316848821761E-24 NI= 6 1.59161573E -12 -1.59595558E -22

4.327505940890E+00 3.801722095294E-21 NI= 12 -2.50111043E -12 3. 49178173E -19

-3.211994374397E+00 -3.797406862059E-21 NI= 0 -2. 04636308E -12 3.07094262E -19

Execution time = . 028 seconds

Case 3 5 Coefficients

NI= 7

NI= 10

NI= 0

NI= 0

Remainders

5.98309727E -35

0.

0.

0.

1.000000000000E +00

-2.000000000000E +00

-4.000000000000E +00

-4.000000000000E +00

4.000000000000E +00

4 Roots

-0.
-0.
-0.
-0.
-0.

-6.018531076210E -36

-1,000000000000E +00

1.000000000000E +00

O.

5.857864376269E -01

-1.000000000000E +00

-1.000000000000E +00

3.414213562373E +00

2.84217094E -14

1.98951966E -13

1.98951966E -13

-2.10320650E -12

Execution time = . 027 seconds

Case 4, 5 Coefficients

4.000000000000E +00

-2.400000000000E +01

4.400000000000E +01

-2.400000000000E +01

3.000000000000E +00

-0.
-0.
-0.
-0.
-0.

4 Roots Remainders

6.339745962156E -01 0. NI= 7 9.94759830E -14 0.

2.366025403784E +00 2.603240987229E -29 NI= 9 1.57740487E -12 -1.80357826E -28

1.771243444677E -01 -1.292469707114E -26 NI= 7 -2. 27373675E -13 1.36782137E -25

2.822875655532E +00 1.289866466127E -26 NI= 0 7.53175300E -13 1.36506636E -25

Execution time = . 028 seconds

Case 5, 5 Coefficients

2.000000000000E +00 -0.

1.600000000000E +01 -O.

1.000000000000E +00 -0.

-7.400000000000E +01 -0.

5.600000000000E +01 -0.

(Continued)

99

4 Roots Remainders

1.121320343561E +00 6.705418668574E -24 NI= 16 -2. 27373675E-13 -8. 37451008E-25
1.123105625616E +00 -6.700849586211E -24 NI= 6 0. -8.37413820E-25

-3.121320343560E +00 -6.423719003118E -27 NI= 7 -1.13686838E-12 -9.25817806E-25
-7.123105625618E +00 1.854636640078E -27 NI= 0 -3.31965566E-11 -1.00915411E-24

Execution time = . 033 seconds

Case 6 4 Coefficients

1.000000000000E +00 -0.
-6.026600000000E +00 -0.
4.304800000000E +00 -0.
1.595330000000E +01 -0.

3 Roots Remainders

3,612590155512E +00 -4.930380657631E -29 NI= 13 1.70530257E -13 4. 24253178E-30
-1.216399518172E +00 -1.912855166529E -24 NI= 12 3. 41060513E-13 -4. 47707387E-23
3. 630409362660E+00 1. 912904470335E-24 NI= 0 1. 70530257E-13 1. 65210465E-25

Executiom time = . 025 seconds

Case 7, 5 Coefficients

1.000000000000E +00 -0.
1.200000000000E +01 -0.

-9.500000000000E +00 -0.
-6.000000000000E +00 -0.
4.500000000000E +00 -0.

4 Roots Remainders

7.071067811863E -01 1.860283898083E -25 NI= 19 2.84217094E -14 -3. 87223306E-27

7. 082039324996E-01 -1. 858714064882E-25 NI= 7 0. -3.87228362E -27
-7. 071067811865E-01 1.615587133893E -26 NI= 5 5. 68434189E -14 3. 88077201E -25

-1. 270820393250E+01 -1. 631285465907E-26 NI= 0 -1. 18831167E-10 3.52361059E -23

Execution time = . 032 seconds

Case 8, 5 Coefficients

1.000000000000E +00 -0.
-6.000000000000E +00 -0.
-1.130000000000E +02 -0.
5.040000000000E +02 -0.
2.436000000000E +03 -0.

4 Roots Remainders

-3.164414002969E +00 3.944304526105E -31 NI= 8 1.45519152E -11 3. 59786299E-28

9.164414002341E +00 -4. 803393640885E-21 NI= 18 1.45519152E -10 8. 00420721E-22

9.165151390540E +00 4. 803200325787E-21 NI= 12 1.16415322E -10 8.00468580E -22

-9.165151389912E +00 1.933147035594E -25 NI= 0 -1.89174898E -10 -3.89754659E -22

Execution time = . 058 seconds
(Continued)

100

Case 9, 5 Coefficients

1.000000000000E +00 -0.

1.600000000000E +01 -0.

1.100000000000E +01 -0.

-2.240000000000E +02 -0.

2.860000000000E +02 -0.

4 Roots Remainders

1.841821538748E+00 4.311068539088E-01 NI= 7 3. 63797881E -12 -9.09494702E-13

1.841821538748E+00 -4.311068539088E-01 NI= 0 3.63797881E -12 0.09494702E-13

-5.726958802481E+00 -7.951273638166E-22 NI= 6 4. 36557457E -11 -3.76080263E -19

-1.395668427502E+01 7.951273638166E-22 NI= 0 -7.639755 49E-11 -1.63447146E -18

Execution time == . 026

Total execution time = . 308 seconds

Table 6. Lehmer's program, solution of nine test cases.

Case 1 4 Coefficients

1.000000000000E +00 -0.

-0. -0.

-1.000000000000E +00 -0.

-4.000000000000E +00 -0.

3 Roots Remainders

1,796321903259E +00 0. NI= 5 0. 0.

-8.981609516297E -01 1.191670795605E +00 NI= 0 0. O.

-8.981609516297E -01 -1.191670795605E +00 NI= 0 0. O.

1 Roots found by Lehmers method.

1.623588300000E +00 0.

Execution time = . 024 seconds

5 Coefficients Case 2

1.000000000000E +00 -0.

-2.037900000000E +00 -0.

-1.542450000000E +01 -0.

1.566960000000E +01 -0.

3.549360000000E +01 -0.

NI= 15

4 Roots Remainders

2.124387030181E+00 0. NI= 4 2. 27373675E -13 O.

-1.201998596673E+00 2.648153673532E-33 NI= 5 4. 54747351E -13 9. 79032577E -32

4.327505940890E+00 -7.059854738346E-34 NI= 0 -5. 22959454E -12 -6.48429084E-32

-3.211994374397E+00 -1.942168199698E-33 NI= 0 -2. 04636308E -12 1.57062104E -31

(Continued)

.

101

2 Roots found by Lehmers method.

1.623588300000E+00 0, NI= 14

-1.623588300000E+00 -1.657167992024E-11 NI== 23

Execution time = .037 seconds

Case 3, 5 Coefficients

1.000000000000E +00 -0.
-2.000000000000E +00 -0.

-4. 000000000000E +00 -0.

-4.000000000000E +00 -0.

4.000000000000E +00 -0.

4 Roots Remainders

5.857864376269E-01 0. NI= 5 0. 0.

-1.000000000000E+00 1.000000000000E+00 NI= 5 1.13686838E-13 7.10542736E-14

-1.000000000000E+00 -1.000000000000E+00 NI= 1 0. 2.70006240E-13

3.414213562373E+00 -7.105427357601E-15 NI= 0 -3.97903932E-13 -4.11696458E-13

3 Roots found by Lehmers method.

8.117941500000E-01 0. NI= 15

-1.148050296794E+00 1.148050296776E+00 NI= 22

-1.000000000000E+00 -1.000000000000E+00 NI= 0

Execution time = . 037

Case 4, 5 Coefficients

seconds

4.000000000000E +00 -0.

-2.400000000000E +01 -0.

4.400000000000E +01 -0.

-2.400000000000E +01 -0.

3.000000000000E +00 -0.

4 Roots Remainders

1.771243444677E -01 0. NI= 5 0. 0.

6.339745962156E -01 0. NI= 5 1. 421 08547E -14 0.

2.822875655532E +00 0. NI= 0 2.27373675E-13 0.

2.366025403785E +00 0. NI= 0 9.94759830E-14 0.

2 Roots found by Lehmers method.

2.029485375000E -01 0.

8.117941500000E -01 0.

Execution time = .036 seconds

Case 5, 5 Coefficients

2.000000000000E +00 -0.

1.600000000000E +01 -0.

1.000000000000E +00 -0.

-7.400000000000E +01 -0.

5.600000000000E +01 -0.

NI= 23

NI= 14

(Continued)

4 Roots Remainders

1.123105625615E+00 O. M=14 -2.27373675E-13 0.

1.121320343563E+00 O. NI=- 5 -2.27373675E-13 0.

-3.121320343560E+00 O. NI= 0 -1.13686838E-12 O.

-7.123105625618E+00 0. NI= 0 -2.63753464E-11 O.

2 Roots found by Lehmers method.

1.623588300000E +00 O.

1.623588300000E +00 O.

Execution time = . 035 seconds

Case 6, 4 Coefficients

1.000000000000E+00 -0.

-6.026600000000E +00 -0,

4.304800000000E+00 -0.
1.595330000000E +01 -O.

NI= 13

NI= 11

102

3 Roots Remainders

-1.216399518172E+00 -1.053242938337E-35 NI= 5 1.70530257E-13 -2.46513511E-34

3.630409362660E+00 -2.854279222898E-33 NI= 0 -1.13686838E-13 -2.46513511E-34

3.612590155512E+00 2.864811652282E-33 NI= 0 1.13686838E-13 -2.46513511E-34

1 Roots found by Lehmers method.

-1.623588300000E +00 -1.657167992024E -11 NI= 23

Execution time = . 027 seconds

Case 7, 5 Coefficients

1.000000000000E +00 -O.

1.200000000000E +01 -O.

-9.500000000000E +00 -0.

-6.000000000000E +00 -0.
4.500000000000E +00 -0.

4 Roots Remainders

7.082039325014E -01 0. NI= 12 0. 0.

7.071067811846E -01 0. NI= 5 2.84217094E-14 O.

-7.071067811866E -01 0. NI= 0 -5.68434189E-14 0.

-1.270820393250E +01 0. NI= 0 -1.18831167E-10 O.

2 Roots found by Lehmers method.

8. 117941500000E-01 0.

8.117941500000E -01 0.

Execution time = .036 seconds

NI= 15

NI= 13

(Continued)

103

Case 8, 5 Coefficients

1.000000000000E+00 -0.

-6.000000000000E+00 -0.

-1.130000000000E+02 -0.
S.040000000000E+02 -0.
2.436000000000E+03 -0.

4 Roots Remainders

-3. 164414002969E+00 3.081487911020E -33 NI= 3 0. 2.81083046E-30

9.165151389567E +00 1.686639269562E -29 NI= 18 -4. 36557457E-11 2.81083046E -30

9.164414003314E +00 -1. 686808003764E-29 NI= 0 -2. 91038305E -11 2.81083046E -30

-9.165151389912E +00 -1.394145894822E -33 NI= 0 -1.89174898E -10 2.81083046E-30

2 Roots found by Lehmers method.

-3. 247176600000E+00 -3. 314335984047E-11

1.298870640000E +01 0.

NI= 51

NI= 18

Execution time = . 048 seconds

Case 9. 5 Coefficients

1.000000000000E +00 -0.
1.600000000000E +01 -0.
1.100000000000E +02 -0.

-2.240000000000E +02 -0.
2.860000000000E +02 -0.

4 Roots Remainders

-5.726958802481E +00 0. NI= 21 9.09494702E -12 O.

-1.395668427502E +01 0. NI= 42 -3. 81987775E-11 0.

1.841821538748E +00 4.311068539081E -01 NI= 0 6.54836185E-11 2.95585778E-12

1.841821538748E +00 -4.311068539081E -01 NI= 0 6.54836185E-11 -2.95585778E-12

2 Roots found by Lehmers method.

1.623588300000E +00 0.

1. 623588300000E+00 0.

Execution time = . 045 seconds

Total execution time = . 361 seconds

NI= 14

NI 10

Table 7. The QD program, solution of nine test cases.

Case 1, 4 Coefficients

1.000000000000E+00 -0.

-0. -0.

-1.000000000000E +00 -0.

-4. 000000000000E +00 -0.
(Continued)

104

3 Roots Remainders

-8.981609516297E -01 1.191670795605E +00 NI= 1 -1. 13686838E -13 1. 42108547E-14

-8.981609516297E -01 -1.191670795605E +00 NI= 1 -1.131386838E-13 -1. 42108547E-14

1.796321903259E +00 0. NI= 2 -2. 84217094E -14 0.

Execution time = . 028 seconds

Case 1

Output from QD algorithm, 20 iterations.

Approximations to simple roots

1. 796321905156E+00 0.

Quadratic approximations

3.796321903259E +00 0.

5. 023094283389E+00 0.

Case 2, 5 Coefficients

1.000000000000E +00 -0.

-2.037900000000E +00 -0.

-1.542450000000E +01 -0.

1.566960000000E +01 -0.

3.549360000000E +01 -0.

4 Roots Remainders

4.327505940890E +00 0. NI= 4 -2.50111043E -12 0.

-3.211994374397E +00 0. NI= 4 -9. 09494702E -13 0.

2.124387030181E +00 0. NI= 3 9. 09494702E -13 0.

-1.201998596673E +00 0. NI= 2 2. 39879228E -10 0.

Execution time = . 033 seconds

Case 2

Output from QD algorithm, 20 iterations.

Approximations to simple roots

4.318501853609E +00

-3.202884132530E +00

2.124260753894E +00

-1.201978474973E +00

0.

0.

0.
0.

Case 3, 5 Coefficients

1.000000000000E +00 -0.

-2.000000000000E +00 -0.

-4.000000000000E +00 -0.

-4.000000000000E +00 -0.

4.000000000000E +00 -0.

(Continued)

4 Roots Remainders

-1.000000000000E +00 1.000000000000E +00 NI= 2 0. O.

-1.000000000000E +00 -1.000000000000E +00 NI= 2 0. 0.

3.414213562373E +00 0. NI= 2 -3. 97903932E -13 0.

5.857864376269E -01 0. NI= 2 0. 0.

Execution time = . 034 seconds

Case 3

Output from QD algorithm, 20 iterations.

Approximations to simple roots

3.414213609724E +00 0.

5. 8578645 46377E-01 O.

Quadratic approximations

2.000000000000E +00 0.

2.000000000000E +00 0.

Case 4, 5 Coefficients

4.000000000000E+00-0.

-2.400000000000E +01 -0.

4.400000000000E +01 -0.

-2.400000000000E +01 -0.

3.000000000000E +00 -0.

4 Roots Remainders

2.822875655532E +00 0. NI= 4 8.89599505E -12 O.

2.366025403785E +00 0. NI= 4 2.84217094E -13 0.

6.339745962156E -01 0. NI= 1 -5. 92592642E -11 0.

1.771243444677E -01 0. NI= 1 1. 74082970E-11 0.

Execution time = . 033 seconds

Case 4

Output from QD algorithm, 20

Approximations to simple roots

2.835231957845E+00 0.

2.353669101481E +00 0.

6. 339745962070E-01 0.

1.771243444661E -01 0.

Case 5, 5 Coefficients

2.000000000000E +00 -O.

1.600000000000E +01 -0.

1.000000000000E +00 -0.

-7.400000000000E +01 -0.

5.600000000000E +01 -0.

iterations.

(Continued)

105

4 Roots Remainders

-7.123105625618E +00 0. NI= 2 -3. 31965566E-11 0.
-3.121320343560E +00 0. NI= 2 2. 27373675E-13 0.
1.123105625616E +00 0. NI= 10 8. 41282599E-12 0.
1.121320343562E +00 0. NI= 10 4.54747351E-12 0.

Execution time = . 035 seconds

Case 5

Output from QD algorithm, 20 iterations.

Approximations to simple roots

-7.123105712232E +00 0.

-3.121320133747E +00 0.

1.174656413337E +00 0.
1.069769432641E +00 0.

Case 6, 4 Coefficients

1.000000000000E +00 -0.

-6.026600000000E +00 -0.

4.304800000000E +00 -0.

1.595330000000E +01 -0.

3 Roots Remainders

3.630409362660E +00 0. NI= 9 0. O.

3.612590155513E +00 0. NI= 9 1.70530257E -13 0.
-1.216399518172E +00 0. NI= 2 -5. 68434189E -14 O.

Execution time = . 029 seconds

Case 6

Output from QD algorithm, 20 iterations.

Approximations to simple roots

3.792066694287E +00 0.

3.450932808651E +00 0.

-1.216399502938E +00 0.

Case 7, 5 Coefficients

1.000000000000E +00 -0.
1.200000000000E +01 -0.

-9.500000000000E +00

-6.000000000000E +00

4.500000000000E +00

1 Roots

-0.
-0.
-0.

0. NI= 1

Remainders

0. -1.270820393250E +01 -1.22605570E-09

Execution time = . 025 seconds

(Continued)

106

107

Case 7

Three or more roots with equal modulus.
The QD program can not find such roots, any other roots will be found.

Output from QD algorithm, 20 iterations.

Approximations to simple roots

-1.270820393250E +01 0.

Case 8, 5 Coefficients

1.000000000000E +00 -0.
-6.000000000000E +00 -0.
-1.130000000000E +02 -0.
5.040000000000E +02 -0.
2.436000000000E +03 -0.

1 Roots

NI= 2 0.

Remainders

-3.164414002969E +00 0. 0.

Execution time = . 027 seconds

Case 8

Three of more roots with equal modulus.
The QD program can not find such roots, any other roots will be found.

Output from QD algorithm, 20 iterations.

Approximations to simple roots

-3.164413979047E +00 0.

Case 9, 5 Coefficients

1.000000000000E +00 -0.
1.600000000000E +01 -0.
1.100000000000E +01 -0.

-2.240000000000E +02 -0.
2.860000000000E +02 -0.

4 Roots Remainders

1.841821538748E +00 4.311068539088E -01 M= 2 1.81898940E -12 -6.82121026E -13

1.841821538748E +00 -4.311068539088E -01 NI= 2 1.81898940E -12 6.82121026E -13

-1.395668427502E +01 0. NI= 2 -7.63975549E -11 0.

-5.726958802481E +00 0. NI= 2 -3.63797881E -12 0.

Execution time = . 034 seconds
Total execution time = . 314 seconds

Case 9

Output from QD algorithm, 20 iterations.

Approximations to simple roots Quadratic approximations

-1.395668432028E +01 0. -3.683643077497E +00 0.

-5.726958763430E +00 0. 3.578159700084E +00 0.

108

21
Table 8. Muller's program, solution of x + x = 1.

21 Roots Remainders

8.972916221835E -01 0. NI= 11 -7.10542736E-15 0.

-1.940345152168E -01 -1.002778092979E +00 NI= 12 -1.20792265E-13 -1.11910481E -13

-1.940345152168E -01 1.002778092979E +00 NI= 0 -1.20792265E-13 1.11910481E -13

-4.901687318868E -01 9.022294492945E -01 NI= 8 -2.84217094E-14 3.19744231E-14

-4.901687318868E -01 -9.022294492945E -01 N1= 0 -2.84217094E-14 -3.19744231E -14

8.322780849658E -01 4.978437339585E -01 NI= 12 0. 8.88178420E-15

8.322780849658E -01 -4.978437339585E -01 NI= 0 0. -8.88178420E -15

-9.257004498721E -01 4.585575083312E -01 NI= 9 -7.81597009E-14 7.81597009E -14

-9.257004498721E -01 -4.585575083312E -01 NI= 0 -7.81597009E-14 -7.81597009E -14

6.584719287059E -01 7.396523993201E -01 NI= 12 -3.55271368E-14 7.10542736E -14

6.584719287059E -01 -7.396523993201E -01 NI= 0 -3.55271368E-14 -7.10542736E -14

-1.022118072328E +00 1.579418431937E -01 NI= 10 O. -1.77635684E -14

-1.022118072328E+00 -1.579418431937E -01 NI= 0 0. 1.77635684E -14

9.074327090550E -01 2.249415044457E -01 NI= 10 -7.10542736E-15 7.99360578E -15

9.074327090550E -01 -2.249415044457E -01 NI= 0 -7.10542736E-15 -7.99360578E -15

1.166759111031E -01 1.007289866987E +00 NI= 9 -1.20792265E-13 1.09245946E -13

1.166759111031E -01 -1.007289866987E +00 NI= 0 -1.20792265E-13 -1.09245946E -13

-7.423600687337E -01 7.148739183073E -01 NI= 9 -4.97379915E-14 9.76996262E -14

-7.423600687337E -01 -7.148739183073E -01 NI= 0 -4.97379915E-14 -9.76996262E-14

4.108773931162E -01 9.161620708855E -01 NI= 2 #7.10542736E-15 2.84217094E -14

4.108773931162E -01 -9.161620708855E -01 NI= 0 7.10542736E-15 -2.84217094E-14

Execution time =_ . 217 seconds

21
Table 9. The Steepest Descent program, solution of x + x = 1.

21 Roots Remainders

6.584719287059E -01 7.396523993201E -01 NI= 13 -4.97379915E-14 1.42108547E-14

6.584719287059E -01 -7.396523993201E -01 NI= 0 -4.97379915E-14 -1.42108547E-14

8.972916221835E -01 -5.422016552177E -15 NI= 16 -6.39488462E -14 -1. 84552565E -14

-1.022118072328E +00 1.579418431937E -01 NI= 17 -3.12638804E -13 -8.26005930E -14

-1.022118072328E +00 -1.579418431937E -01 NI= 0 -3.12638804E -13 8.26005930E -14

8.322780849658E -01 4.978437339585E -01 NI= 23 -9.23705556E-14 2. 13162821E -14

8.322780849658E -01 -4.978437339585E -01 NI= 0 -9.23705556E -14 -2.13162821E -14

-1.940345152168E -01 1.002778092979E +00 NI= 16 -9.09494702E -13 6. 19948537E -13

-1.940345152168E -01 -1.002778092979E +00 NI= 0 -9.09494702E -13 -6. 19948537E -13

1.166759111030E -01 1.007289866987E +00 NI= 18 5.68434189E -14 6.27053964E-13

1.166759111030E -01 -1.007289866987E +00 NI= 0 5.68434189E -14 -6.27053964E-13

-9.257004498720E -01 4.585575083312E -01 NI= 33 -2. 27373675E -13 8.34887715E -14

-9.257004498720E -01 -4.585575083312E -01 NI= 0 -2. 27373675E -13 -8.34887715E -14

9.074327090550E -01 -2.249415044456E -01 NI= 17 -1.13686838E -13 -1.03028697E -13

9.074327090550E -01 2.249415044456E -01 NI= 0 -1.13686838E -13 1.03028697E -13

4.108773931162E -01 9.161620708855E -01 NI= 8 -9.23705556E -14 6.46593890E -13

4.108773931162E -01 -9.161620708855E -01 NI= 0 -9.23705556E -14 -6.46593890E -13

-7.423600687337E -01 7.148739183074E -01 NI= 25 2. 66453526E -12 -3.38040707E -12

-7.423600687337E -01 -7.148739183074E -01 NI= 0 2. 66453526E -12 3.38040707E -12

-4.901687318867E -01 9.022294492944E -01 NI= 7 -4.96669372E -12 5.38236122E -13

-4.901687318867E -01 -9.022294492944E -01 NI- 0 -4.81037432E -12 -9.00612918E -13

Execution time = . 428 seconds

-'

109

21
Table 10. Lehmer's program, solution of x + x = 1.

21 Roots Remainders

8.972916221835E-01 -3.549874073495E -30 NI= 11 -7. 142736E -15 -1.20829282E -29
9.074327090550E-01 2.249415044457E-01 NL= 8 -7.10542736E-15 7. 99360578E -15
9.074327090550E-01 -2.249415044457E-01 NI= 1 O. -1. 15463195E - -14

6.584719287059E-01 7.396523993201E-01 NI= 6 -1. 27897692E-13 -1. 95399252E -14

6.584719287059E-01 -7.396523993201E-01 NI= 1 -1.84741111E-13 -3.55271368E -15

8.322780849658E-01 4.978437339585E-01 NI= 7 -3.55271368E-14 4. 79616347E -14

8.322780849658E-01 -4.978437339585E-01 NI= 1 2. 84217094E -14 -9. 05941988E-1 4

1.166759111027E-01 1.007289866987E+00 NI= 18 7. 73070497E -12 4.865 441 38E-12

1.166759111027E-01 -1.007289866987E+00 NI= 1 3. 15480975E-1 2 -1.07558407E -11

4.108773931163E-01 9.161620708856E-01 NI= 9 1.84741111E-13 -1. 05160325E -12
4.108773931162E-01 -9.161620708855E-01 NI= 1 2.70006240E-13 -1. 39976919E -12
-4.901687318857E-01 9.022294492952E-01 NI= 8 -1.94120275E-11 -4. 31228386E-11

-4.901687318869E-01 -9.022294492941E -01 NI= 1 -2.55795385E-12 -1. 20916610E -11

-7.423600687358E-01 7.148739182994E-01 NI== 12 -3.88240551E-11 3. 01380254E-10
-7.423600687357E-01 -7.148739183032E-01 NI= 1 1.31166189E-11 -1. 71548109E-10
-9.257004498632E-01 4.585575083446E-01 NI= 14 -2.16992646E-10 -5.90384630E -10

-9.257004498569E-01 -4.585575083433E-01 NI= 1 -4. 71601425E-10 5.98845418E -10

-1.940345152172E-01 1.002778092979E+00 NI= 7 4. 97379915E-14 2.00612860E -11

-1.940345152159E-01 -1.002778092979E+00 NI= 1 -2.25242047E-11 1.65050196E -11

-1.022118072328E+00 1.579418431893E-01 N1 = 0 -1.78346227E-11 1.78505211E -10

-1.022118072349E+00-1.579418431878E-01 NI= 0 8.07510503E-10 -3.01083602E -10

19 Roots found by Lehmers method

8.732761359618E-01 3.444150890329E-01 NI= 163

1.041404209356E+00 2.296100593576E-01 NI= 114

9.074327090550E-01 -2.249415044457E-01 NI= 0

6.888301780693E-01 6.888301780728E-01 NI= 136

6.584719287059E-01 -7.396523993201E-01 NI= 0

8.987428083911E-01 5.740251483940E-01 N1= 93

8.322780849658E-01 -4.978437339585E-01 NI= 0

4.986149767822E-01 1.148050296781E+00 ha= 140

1.166759111027E-01 -1.007289866987E+00 NI= 0

4.986149767822E-01 1.148050296781E+00 NI= 121

4.108773931163E-01 -9.161620708856E-01 NI- 0

-4.592201187165E-01 1.164368181280E+00 NI==118

-4.901687318857E-01 -9.022294492952E-01 N1- 0

-4.592201187165E-01 1.164368181280E+00 NI= 97

-7.423600687358E-01 -7.148739182994E-01 N1= 0

-4.592201187165E-01 1.164368181280E+00 NI- 73

-9.257004498632E-01 -4.585575083446E-01 NI= 0

-4.592201187165E-01 1.164368181280E+00 N1= 49

-1.940345152172E-01 -1.002778092979E+00 NI= 0

Execution time = .851 seconds

110

21
Table 11. The QD program, solution of x + x = 1.

21 Roots Remainders

-1.022118190300E+00 1.579420813749E-01 NI= 9 5.46523736E-06 -9.17729537E-06

-1.022118190300E+00 -1.579420813749E-01 NI= 9 5.46523736E-06 9.17729537E-06

-9.257004809081E-01 4.585574955028E-01 NI=17 1.07030931E-06 7.70297616E-07

-9.257004809081E-01 -4.585574955028E-01 NI= 17 1.07030931E-06 -7.70297616E-07

-7.423601076346E-01 7.148739698403E-01 NI= 6 2.07735489E-06 -1.23721082E-06

-7.423601076346E-01 -7.148739698403E-01 NI= 6 2.07735489E-06 1.23721082E-06

-4.901687147918E-01 9.022294481375E-01 NI= 7 -5.29597926E-07 -2.72783470E-07

-4.901687147918E-01 -9.022294481375E-01 NI= 7 --5.29597926E-07 2.72783470E-07

-1.940345158357E-01 1.002778096734E+00 Na. 4 9.05780624E-08 -7.72544890E-08

-1.940345158357E-01 -1.002778096734E+00 NI= 4 9.05780624E-08 7.72544890E-08

1.166759086381E-01 1.007289866501E+00 NI= 2 3.34333023E-08 5.92667941E-08

1.166759086381E-01 -1.007289866501E+00 NI= 2 3.34333023E-08 -5.92667941E-08

4.108773929941E-01 9.161620709461E-01 NI= 2 2.55249688E-09 1.63799108E-09

4.108773929941E-01 -9.161620709461E-01 NI= 2 2.55249688E-09 -1.63799108E-09

6.584719287074E-01 7.396523993143E-01 NI= 1 -1.01437081E-10 9.25304278E-12

6.584719287074E-01 -7.396523993143E-01 NI= 1 -1.01437081E-10 -9.25304278E-12

8.322780849658E-01 4.978437339589E-01 NI= 1 3.86535248E-12 -1.28430599E-12

8.322780849658E-01 -4.978437339589E-01 NI= 1 3.86535248E-12 1.28430599E-12

9.074327090550E-01 2.249415044457E-01 NI= 1 -2.84217094E-14 8.61533067E-14

9.074327090550E-01 -2.249415044457E-01 NI= 1 -2.84217094E-14 -8.61533067E-15

8.972916221835E-01 0. NI= 0 2.13162821E-14 0.

Execution time = . 244 seconds

111

V. CONCLUSION

The main reason for the big difference in times for locating

roots by the various methods is the difference in their rates of con-

vergence. The different number of computer operations required to

construct the various computer programs will also affect the times.

Examination and comparison of the number of computer opera-

tions per iteration, the number of iterations and the times required

by the various programs in finding the roots of a given polynomial

equation shows that the convergence rate is the overriding factor.

In other words the number of computer operations per iteration, re-

quired by the various computer programs is relatively the same when

compared to the large difference in the number of iterations which is

associated with a large difference in times. Before discussing this

further we will state some definitions.

An algorithm is said to be linearly convergent if the errors in

two successive steps tend to be in a constant ratio.

An algorithm is said to be quadratically convergent if the error

in the current step is proportional to the square of the error in the

previous step.

Muller's method is slightly less than quadratically convergent

when the roots are simple. In this case the error in the current step

is proportional to the error in the previous step raised to the power

112

1. 84. When there is a double root the error in the current step is

proportional to the error in the previous step raised to the pr ver

1. 23, (8).

The solution of x21 + x = 1 (see Chapter IV) by the Steepest

Descent program required about twice as many iterations as Muller's

program. Also the execution time for the Steepest Descent program

is about double that of Muller's program. In Table 3 of Chapter III

we see that the time per root for the Steepest Descent program is

more than double the time for Muller's program. From this informa-

tion we can say that for equations of degree 21 or greater, the rate of

convergence of the Steepest Descent program is about half that of

Muller's program.

The nine test cases and Table 2 of Chapter III indicate that the

Steepest Descent program converges on a root, for equations of de-

gree four or less, at approximately the same rate as Muller's pro-

gram.

The convergence rate of the QD algorithm is linear, the con_

stant ratio between two successive steps depending on the separation

of the roots (2,3). The QD method is used to find rough approximations

to the roots. Newton's method or Bairstow's method, both of which

are quadratically convergent, are used to refine the root approxima-

tions.

The convergence rate of Lehmer's method is linear with the

113

ratio being 2/5 (9). This information and the examples and tables

in Chapter III indicate that Lehmer's program is the slowest of the

four programs. It should be noted that Lehmer's method was only

used to find rough approximations to the roots. The approximations

were then refined in Newton's method.

Muller's method is recommended as the optimal method since

it converged, at the highest rate, in all cases tried. It also yielded

the greatest accuracy. Besides having a high rate of convergence, it

requires the lowest number of FORTRAN IV computer statements

which makes it the fastest and easiest of the four methods to code.

Muller's method can also be used to find the roots of transcen-

dental equations and to find eigenvalues of arbitrary matrices without

the computation of the coefficients of the associated characteristic

equation, (Ref. 1).

114

BIBLIOGRAPHY

1. Frank, Werner L. Finding zeros of arbitrary functions. Jour-
nal of the Association for Computing Machinery 5:154 -160.
1958.

2. Henrici, Peter. Elements of numerical analysis. New York,
Wiley, 1964. 328 p.

3. Hildebrand, F. B. Introduction to numerical analysis. New
York, McGraw -Hill, 1956. 511 p.

4. Keetov, A. N. and N. A. Kreeneetskee. Operator programming
(Programrneerovaneeye): Section 32 of Elyektronnye tseefrovye
masheeny, by A. N. Keetov and N. A. Kreeneetskee, trans. by
Harry E. Goheen. Corvallis, Oregon State University, Dept.
of Mathematics, 1962 -63. 11 numb. leaves. (Typescript)

5. Lehmer, D. H. A machine method for solving polynomial equa-
tions. Journal of the Association for Computing Machinery 2:

151 -162. 1961.

6. Milne, William Edmund. Numerical calculus. Princeton, N.J.,
Princeton University Press, 1949. 393 p.

7. Moore, J. B. A convergent algorithm for solving polynomial
equations. Journal of the Association for Computing Machinery
14 :311 -315. 1967.

8. Muller, David E. A method for solving algebraic equations us-
ing an automatic computer. Mathematical Tables and Other
Aids to Computation 10:208-215. 1956.

9. Ralston, Anthony. A first course in numerical analysis. New
York, McGraw -Hill, 1965. 578 p.

10. Ward, James A. The down -hill method of solving f(z) = 0.

Journal of the Association for Computing Machinery 4:148-150.
1 957.

APPENDIX

115

Operator Programming (4)

We call a group of commands of a program possessing the fol-

lowing properties an elementary operator.

1. The property of effectiveness. An elementary operator
carries out certain operation with numbers necessary for
the solution of a problem on the machine.

2. Operations with numbers we understand to be the obtaining
of some number or a value of the signal w with the aid of
one or several numbers. In particular, the transfer of
numbers from one memory apparatus to another or from
one part of the memory to another is an operation with
numbers.

3. The property of being ordered. The control from outside
(from another operator) may be obtained by only one com-
mand of an elementary operator, the first one. Transfer
of control from command to command in an elementary
operator comes about in only one definite order, as a rule
in the order of the numbering of the commands (the num-
bering of cells holding the commands). Direction to the
outside (to another operator) only one command of an ele-
mentary operator can give, the last one.

4. The property of connectedness. If the first command of an
elementary operator received control, then each command
of the elementary operator in order receives control.

5. The property of autonomy. Conditional transfer of control
by an elementary operator may arise only depending on the
value of the signal w worked out by the elementary oper-
ator itself (and not any other).

6. The property of simplicity. An elementary operator must
fulfill the smallest possible set of kinds of work. We al-
ways try to have an operator fulfill only an arithmetic cal-
culation, or a verification of the fulfillment of a logical
condition, or an address modification etc. But sometimes
in order that an elementary operator fulfill only one defi-
nite kind of work, there must be introduced into the pro-
gram supplementary commands useless for getting the

116

solution of the problem. Hence in place of the requirement
that the elementary operator fulfill only one definite kind of
work, we put the requirement that it fulfill the smallest
possible set of kinds of work.

Of the commands which do not satisfy the above conditions we

agree to count as elementary operators the stop command (operator

JC.22) and the command to supply a zone of magnetic tape (designated

by the symbol).

The division cf a program into operators is not unique. To aid

a programs ability to be surveyed, it is necessary to strive to unite

in each operator the largest set of commands.

For the most often encountered elementary operators standard

designations are taken as provided in Table 12 on the following page.

Rules for Writing the Logical Schemes of Programs. For con-

venience in describing logical schemes, the operators depicting a

scheme are written in one line. In doing this the following rules are

taken:

1. The ordinal number of an operator in a given scheme is ex-
pressed by a subscript of the operator. The numbering of
operators is the obvious one.

Z. If an operator depends on a parameter, then this parameter
is expressed by an upper index of the operator (for example

A2,
P10, etc.).

3. If the signs for two operators stand in order in the scheme,
then the operator written on the left transfers control to the
operator written on the right.

4. If a semicolon stands between two signs for operators in

117

Table 12. Elementary operators.

No. Name Work done Designation

1 Arithmetic
operator

2 Logical
operator

3 Transfer
operator

4 Address
modification
(with param-
eter i)

5 Reestablish-
ment opera-
tor (with pa-
rameter i)

6 Dispatch

7 Inverse
dispatch

8 Dispatch of
commands

9 Appeal

10 Circulation
operator

11 Forming
operator

12 Tape feed

13 Stop

14 Non- standard
operator

Arithmetic calculation A

Verification of the fulfillment of a P
logical condition

Transfer of numbers from one mem- II

ory device to another or from one
part of the memory to another

Address modification F(i)

Reestablishment of commands by re-
duction of them to the form corre-
sponding to the initial value of the
parameter i

Introduction of quantities into standard
cells

Transfer of a series of values of quan-
tities from a standard cell into a suc-
cession of cells

O(i)

Entering of new commands before re- K

peating the work of an operator in
place of certain of its commands

Appeal to a group of operators with
numbers m, m= 1,...,n or to the
subprogram named

Circulation of numbers in standard
cells
Formation of new commands

Supplying of a zone of the magnetic
tape

Stop the machine

Any operator distinct from the
enumerated ones

E(m, n)

-?-)4

above H

3

á*

118

order, then from the operator written on the left there is
no transfer of control to the operator written on the right.

5. Transfer of control to an operator not directly to the right
is designated by the signs "I,L. ". Their use will be ex-
plained in the following paragraphs.

6. Since in a machine on the branching of a program, transfer
of control not to the next command in order is accomplished
by one of the operations of a conditional jump on the basis
of the value of a signal co, it is convenient that logical
conditions whose verification is fulfilled by logical opera-
tors be formulated so that the value of the signal w be
the truth value of the statement "Condition is fulfilled.
For example, if for the choice of the direction of the calcu-
lating process comparison of numbers is made then it must
be considered that the logical operator tests the truth of
the statement "The compared numbers do not coincide."
In the tracing of the schemes of programs it is accepted
that the symbols answering the signal w = 1 are "r,--1"
and those answering the signal w = 0 are "L_, J "; ei-
ther symbol pair may be used when not connected with the
value of the signal w.

k
After the operator transferring control is placed the sign "1

(where k is the number of the operator to which control is trans-

ferred). The sign " must be placed before the operator re-

ceiving control, (.Q is the number of the operator transferring con-

trol). Similarly there is placed after the operator transferring con-

trol the sign I, I

k
ceiving control). Before the operator receiving control is placed the

(in which k is the number of the operator re-

sign 1, ,

ring control).

k T

(in which f is the number of the operator transfer-

In the logical scheme of a program the combination of symbols

may be encountered. This combination is usually replaced by

-1 Il

.1

k

the symbol C . In place of the combination of symbols
k i

there often is written the single symbol l
119

or

i

Before an operator there may occur the combination of symbols
i k Q

or _1 etc. , which are usually replaced by the
i k Q

i k f m
symbols I and I respectively, and so forth.

i,k,f,m
In many cases it is convenient for the simplification of the logi-

cal scheme of a program to unite elementary operators of a single

type into a group and designate it by a single letter. A group of ele-

mentary operators may be designated in the logical scheme of a pro-

gram by one letter only on condition that only one elementary opera-

tor of it may receive control from the outside (from operators not be-

longing to the group). Such a group of elementary operators we call

a generalized operator. A generalized operator may contain elemen-

tary operators of differing functional significance but of a single type,

i. e. logical.

k

lc
i

J

-1_1

J7

,

