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Hop downy mildew is a devastating disease affecting hop requiring expensive 

fungicide applications throughout the growing season.  Plant resistance is highly 

desirable and theorized as being decidedly quantitative with dominance and epistasis 

involved in resistance.  An association mapping approach using a mixed-model was 

used to identify AFLP markers associated with the hop downy mildew resistant 

phenotype.  New protocols for the extraction, isolation and recovery of oospores from 

plant tissue and soil were developed to aid in the study of the hop downy mildew 

oospore.  In addition, logic regression was used in a mathematical model in order to 

test the statistical procedure’s potential for modeling epistasis.  Our results suggest the 

hop downy mildew resistant phenotype has a broad-sense heritability of 76% with an 

estimated narrow-sense heritability of 49%.  Mixed-model results revealed 9% of the 

AFLP markers to be associated with the hop downy mildew resistant phenotype.  The 

association mapping results suggest resistance to hop downy mildew is quantitatively 

inherited with moderate heritability, which can be successfully investigated using 

mixed-models.  The concentration of soil-borne oospores was 14 oospores/g soil.  

Germination of oospores occurred between two and eight weeks after preparation of 

the slides.  Observations of the oospore suggested the sexual stage of this disease may 

play a role in over-wintering as oospores were capable of in vitro germination.  In 



 
 
addition, MTT as a stain for downy mildew spore viability comes into question due to 

the possibility of a chemical reduction in the presence of NADH.  Logic regression 

correctly identified the model which best describes the epistatic interaction of VRN-H1 

and VRN-H2 and the model was synonymous with the hypothesized genetic model for 

vernalization in barley.  The mathematical simulation using logic regression software 

suggested Boolean logic may be more robust when compared to general linear 

modeling for the identification and modeling of epistasis. 
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GENERAL INTRODUCTION 

 

Discovery of hop downy mildew in the United States 

Downy mildew [(Pseudoperonospora humuli Miyabe and Tak. (Wil.))] of hop 

was first observed in North America in Wisconsin (Davis 1910).  The first 

authentication of downy mildew of hop in Oregon was April 10, 1930 when infected 

‘spikes’ were found at Mount Angel in Marion County (Hoerner 1939).  Hop downy 

mildew is now problematic in all areas where hops are grown in the United States. 

 

Disease importance and breeding for resistance 

 Hop downy mildew is a disease of major importance in the hop industry.  

Plants infected with the disease have inferior cones with reduced yields and, 

depending on the level of resistance, can die within a few years.  Prior attempts at 

breeding for increased levels of resistance have not revealed a discernable pattern of 

inheritance (Kenny 1991; Klein 1995).  Partial resistance to downy mildew has been 

identified in cultivars like ‘Cascade’ (Neve 1991) and ‘Newport’ (Henning and 

Haunold. 2003), while appreciable levels of resistance have existed for decades in 

cultivars coming out of the Hop Breeding Program at Wye College in Britain.  

Cultivars such as ‘Yeoman’ (Neve 1991; Neve and Darby 1983) are highly prized for 

their strong resistance to this disease.  Although breeding for resistance has shown 

some success, resistant varieties are not grown in large acreage due to their limited 

demand by the brewing industry.  Therefore, it is a continuing goal of hop breeding 

programs to use these resistant cultivars as breeding stock in developing new cultivars.  

One breeding technique that has become increasingly popular is marker-assisted 

selection. 

 

Marker-assisted selection 

 Sax (1923) first described the theory of quantitative trait loci mapping (QTL 

mapping) when he observed that the complex trait of bean size was associated with the 
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simple trait of seed coat color.  Thoday (1961) suggested that that it might be possible 

to map and characterize all QTLs involved in complex traits if the segregation of 

simply inherited monogenes could be used to detect linked QTLs.  Modern QTL 

mapping uses that premise with the innovation that defined sequences of DNA act as 

the linked monogenic markers (Young 1996).  In a QTL analysis, scientists attempt to 

identify associations between quantitative traits and marker alleles within a 

segregating population (Lander and Bostein 1989; Weller et al. 1990) to identify the 

genomic locations of loci contributing to complex traits, the contribution of each and 

the interaction between loci. 

 Many economically important characters in plants are controlled by 

quantitative trait loci (QTL).  Quantitative traits show continuous distributions and are 

assumed to be controlled by many minor genes that exert varying effects.  However, 

since the expression of these genes is strongly influenced by the environment and 

many quantitative traits have a low heritability, high individual performance is no 

guarantee that the selection has desirable genes at the relevant QTL.  Therefore, 

marker-assisted selection is useful in improving the efficiency of selection early in the 

breeding cycle helping to improve characters with low heritability.  By studying the 

segregation of each marker locus, researchers can estimate the effect of the linked 

polygene and learn more about genetic control of the trait.  Factors that affect the 

ability to detect a QTL include the heritability of the trait, the number of individuals in 

the experimental population, the accepted significance level for type I errors (false-

positives), experimental design, method of statistical analysis, genome size, 

phenotypic effects of the QTL and genetic distance between the QTL and the marker 

loci (Beavis 1998; Darvasi et al. 1993; Lander and Botstein 1989; Weller 1992). 

Linkage mapping involves the ordered assembly of genetic markers within 

linkage groups based on the recombination (Lander et al. 1987; Ritter et al. 1990).  If 

two markers are close together, recombination between the markers will be rare.  

When the markers are very close together, they never recombine and are assumed to 
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be linked.  For QTL analysis, it is not necessary to produce an overly dense linkage 

map.  Modeling and empirical evidence have shown that marker densities of less than  

20cM offer little improvement in the precision of QTL identification and location 

(Darvasi et al. 1993; Kearsey and Farquhar 1998). 

In the simplest form, QTL identification is associations between individual 

molecular markers and a phenotype by linear regression analysis (Kearsey and Hyne 

1994; Hyne and Kearsey 1995).  When a particular marker is associated with a 

statistically significant phenotypic mean, it is reasonable to conclude that there is a 

QTL for that trait associated with that marker (Lander and Botstein 1989).  For a 

simple dominant marker, comparisons are made between the mean phenotypic scores 

for all individuals with the marker and the mean scores of those individuals without 

the marker.  Darvasi et al. (1993) reported that in cases where marker density is low, 

associations between markers and QTL can be identified using simple linear 

regression or least squares.  However, these tests are limited to identifying QTL with 

reasonably tight linkage to the marker (van Ooijen 1992).  In addition, simple 

association cannot identify the position of the QTL relative to the marker so it is 

impossible to differentiate a QTL with a large effect that is poorly linked to a marker 

from a QTL with a small effect that is tightly linked to a marker (Lander and Botstein 

1989; Weller 1992). 

Interval mapping overcomes some of the shortcomings of simple linear 

regression and provides greater statistical power.  Interval mapping requires a linkage 

map with markers spaced at 1 to 20cM intervals (Darvasi et al. 1993; Darvasi and 

Soller 1994; Darvasi and Soller 1997).  Interval mapping examines the effect of a QTL 

located in the interval between two markers for every interval in the genome (Lander 

and Botstein 1989; Luo and Kearsey 1992).  The advantages of interval mapping are 

that it indicates the presence of a QTL, the effect of that QTL on the trait and its 

approximate location (confidence interval) (Knott and Haley 1992; Lander and 

Botstein 1989).  The presence of the QTL is reported as an odds ratio and is based on 

the likelihood of the presence of the genotypic data with no linked QTL.  If the odds 
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ratio is larger than an accepted threshold, it is assumed that there is a QTL in that 

interval.  The threshold level is normally determined empirically (Lander and  

Kruglyak 1995) and is dependent upon the acceptable rate of type I errors, the number 

of individuals in the analysis and the number of markers in the linkage map (Lander 

and Botstein 1989; van Ooijen 1992).  An estimation of the effect of the QTL on the 

trait of interest can be estimated as a proportion of phenotypic variance or as a 

proportion of the genotypic variance when the heritability is known (Lande and 

Thompson 1990; Lander and Botstein 1989; Melchinger et al. 1998; Weller 1992).  

Composite interval mapping (CIM) is an extension of interval mapping and is used to 

detect more than one QTL on a chromosome where the effect for a likely QTL is fixed 

and the data is used to map the likelihood of another QTL (Chmielewicz and Manly 

2002; Haley and Knott 1992; Knapp 1991; Lander and Botstein 1989).  Linkage 

mapping is an iterative process that uses all the available information and will yield 

sensible estimates that can be applied to both linear and non-linear models.  However, 

the method is parametric so the type of data distribution needs to be known (Staub et 

al. 1992; Weller 1992). 

Although QTL analysis may appear to be a panacea, there are some drawbacks.  

It can be very time-consuming, expensive and the information gained may be limited.  

In a typical QTL study, only one cross is made to form a recombinant population and 

therefore, extrapolations to other populations and individuals may be spurious 

(Verhoeven et al. 2006).  In addition, although the degree of dominance can be 

estimated in the F2 progenies (for clonal crops use F1 seedlings), replication of the F2 

means that the cross needs to be cloned and until quite recently (Ruczinski et al. 2003) 

epistatic interactions could not be realistically studied.  Finally, Hyne and Kearsey 

(1995) showed that it is difficult to locate more than 12 QTLs in a population at one 

time and bias may creep into the analysis.  Therefore, only significant effects are 

reported resulting in an underestimation of the true number of QTLs and exaggerating 

their additive and dominance effects (Kearsey and Farquhar 1998). 
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Linkage analysis vs. association analysis 

 During the last few decades linkage analysis has been a popular experimental 

design to study the genetic basis of inherited diseases in humans (Carlson et al. 2004).  

Linkage analyses search for regions in the genome that have a higher than expected 

number of shared alleles within affected individuals within a family (Carlson et al. 

2004).  Because closely related individuals tend to share large regions of the genome, 

fewer polymorphic markers need to be genotyped to detect linked regions.  However, 

because there are few recombination events within most families, it is often difficult to 

narrow the region of interest below several megabases (Carlson et al. 2001). 

 Alternatively, association mapping (AM) attempts to find a statistical 

association between the genetic markers and the quantitative trait.  Unlike traditional 

QTL mapping, AM is performed at the population level where a collection of 

genotypic molecular markers and the corresponding phenotypic trait are determined in 

a set of unrelated or distantly-related individuals.  AM relies on linkage disequilibrium 

between the molecular markers and the causative polymorphism in the linked gene.  

Linkage disequilibrium focuses on population-based differences in alleles, whereas 

linkage focuses on differences at a single locus.  Therefore, AM looks for ancestral 

recombination events viewed as a measure of co-segregation within a population.  It is 

these population-based recombination events and their statistical associations with a 

phenotype which are the basis for AM analysis. 

 Linkage disequilibrium (LD) usually extends only short distances in out-

crossing species (less than 1500bp in maize) (Gaut and Long 2003), whereas in 

inbreeding species like Arabidopsis, LD can range from 1 to 50cM or more (Nordborg 

et al. 2002).  Therefore, success in association mapping requires the candidate gene to 

have a measurable effect on the phenotype and candidate markers must fall within or 

directly upstream/downstream of the candidate gene.  The markers which are 

identified as associated with the trait are broad-based rather than cross-specific.  

Presently, linkage analysis is more powerful than association analysis for identifying 

rare high-risk alleles, but association analysis is expected to be more powerful for 
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detection of common disease alleles that confer modest disease risk (Carlson et al. 

2001). 

One advantage of association mapping is that it is easier to recruit large 

numbers of unrelated affected individuals than to collect large amounts of pedigree 

information.  Unfortunately, because the region around the marker shared identical by 

decent in unrelated, affected individuals will be much smaller than the shared region 

for related individuals, marker density needs to be much higher than for traditional 

linkage analysis (Carlson et al. 2001). 

 

Association mapping and population structure 

Association analysis has been investigated as a possible tool for identification 

of population-wide polymorphisms associated with specific phenotypic traits (Cardon 

and Bell 2001).  However, population structure/stratification may lead to spurious 

associations (associations without linkage) between a candidate marker and phenotype 

(Lander and Schork 1994; Bacanu et al. 2000; Pritchard et al. 2000a and 2000b; 

Devlin et al. 2001; Yu et al. 2006).  Transmission/disequilibrium test (TDT) (Spielman 

et al. 1993) using family-based tests of association has been implemented to deal with 

problems associated with population structure.  Although this method has been used 

successfully to identify QTL by association, the analysis comes at a considerable cost 

as the DNA needs to be collected from close relatives of affected individuals. 

 

Genomic control 

Other statistical controls have been implemented to help adjust for sources of 

experimental error.  One such method, genomic control (GC) (Bacanu et al. 2000; 

Devlin et al. 2001) touts the robustness of family-based designs on population data.  

Devlin et al. (2001) reported GC exploits population substructure generated 

‘overdispersion’ of statistics to assess association.  By testing multiple polymorphisms 

throughout the genome, only some of which are pertinent to the disease of interest, the 

degree of overdispersion generated by population substructure can be estimated and  
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taken into account (Devlin et al. 2001).  With GC, random markers are used to 

estimate and adjust for inflation of the test statistics generated by population structure 

(Yu et al. 2006). 

 

Structured association 

In response to GC, Pritchard et al. (2000a) proposed an alternative method 

called structured association (SA).  Structure association uses prior information and 

Bayesian clustering to form a posterior probabilistic distribution.  In SA, X denotes 

genotypes of sampled individuals and Z denotes the (unknown) populations of origin 

of the individuals and P denotes the (unknown) allele frequencies in all populations 

(Pritchard et al. 2000a).  Using Hardy-Weinberg equilibrium within populations along 

with complete linkage equilibrium among loci within populations as model 

assumptions, each allele at each locus is independent within a frequency distribution 

giving us the probabilistic distribution Pr(X/Z, P) (Pritchard et al. 2000a).  Since Z and 

P are inferred quantities, Bayesian statistics is used to specify model posterior 

probabilities.  These inferred quantities are in essence random probabilities since the 

‘unknown’ populations are assumed to be in Hardy-Weinberg equilibrium with 

complete linkage equilibrium.  Structured association uses marker loci unlinked to the 

candidate genes under study to estimate population structure (Yu et al. 2006).  It then 

incorporates this information into further statistical analysis such as modeling through 

association analysis.  The use of random unlinked markers to estimate population 

structure using Markov chain Monte Carlo (MCMC) methods is a non-parametric 

randomization test resulting in a frequency distribution used to estimate the percentage 

of random error (Pritchard et al. 2000a).  The resulting p-value is the proportion of 

randomized unlinked markers associated with the phenotype by chance.  If the 

proportion is low, the chance of incorporating random markers in the model is low.  A 

large p-value suggests a large amount of random error being incorporated in the data 

set (possibly resulting from population structure) which may lead to a high proportion 

of type I errors (false-positives).  However, populations showing high levels of linkage 
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disequilibrium may cause invalid results as the model assumptions are violated, 

because structured association assumes the population is in linkage equilibrium. 

 

Mixed-models 

Recently, Yu et al. (2006), developed a unified mixed-model method of data 

analysis which can simultaneously account for multiple levels of gross population 

structure (Q) and finer scale relative kinship (K).  This new software provides a 

powerful complement to the current methods for association mapping.  Yu et al. (2006) 

suggest this software is superior due to a novel method that controls both type I and 

type II error rates.  The use of pedigree structure in genetic models has shown some 

promise in identifying molecular markers associated with phenotypes in both humans 

(Morley et al. 2004) and plants (Thornsberry et al. 2001; Yu et al. 2006).  In addition, 

using kinship estimates in a mixed-model format, reasonable estimates of narrow-

sense heritability (h2) can be obtained.  However, the use of a mixed-model within the 

software TASSEL© requires knowledge of population structure and kinship estimates.  

Therefore, researchers must obtain this information prior to running the analysis. 

 

F-Statistic theory on kinship estimates with dominant markers 

Although many pair-wise marker-based estimates of kinship have been 

developed for co-dominant markers (Queller and Goodnight 1989; Loiselle et al. 1995; 

Ritland 1996; Lynch and Ritland 1999), a similar estimator for use with dominant 

markers has only recently been developed (Hardy 2003).  Kinship coefficients are also 

called co-ancestry coefficients and are based on the probability of identity of alleles 

for two homologous loci sampled in a particular way (Hardy and Vekemans 2006).  In 

the case of a kinship coefficient between two individuals, two loci are randomly 

sampled between each of the two individuals. (Hardy and Vekemans 2006).  The 

kinship coefficient between two individuals (Fij) has often been defined as the identity 

by descent (IBD or Θ) of the loci being compared (Hardy 2003).  However, estimators 

based on genetic markers actually estimate the ‘relative kinship’ (Rousset 2002; Hardy 
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2003).  Therefore, it is best to define kinship in individuals from a population under 

isolation-by-distance, as a ratio of differences of probabilities of identity-in-state (IIS) 

between homologous loci (Rousset 2002).  These definitions result in the following 

model: QQQF ijij −−= 1/  (where Fij are the pair-wise kinship coefficients, Qij is the 

probability of IIS of random loci i and j and Q  is the probability of IIS between 

random loci from the reference population or reference sample) (Hardy 2003).  When 

relatedness is assessed from genetic markers, the reference population is usually a 

sample of individuals from the marker population (Q ).  Alternatively, IBD can be 

defined in terms of IIS by assuming mutation rates are negligible or by redefining the 

equation as a ratio of differences of probabilities of IBD, replacing Q by Θ which 

results in an approximation of IBD: )1/( Θ−Θ−Θ= ijijF . 

Hardy (2003) reported the stepwise derivation of kinship estimates for 

dominant markers.  The derivation was a 15 equation process that resulted in the 

estimation of Fdij (the kinship coefficient for dominant markers).  Kinship can now be 

estimated for dominant markers by identifying all the possible differences in alleles 

and mining for differences that are identified within the marker data set.  In order to 

obtain reliable estimates of kinship from dominant markers, researchers must have 

access to an ‘assumed’ inbreeding coefficient since departures from Hardy-Weinberg 

equilibrium must be known.  Hardy (2003) suggested using Bayesian inference where 

the inbreeding coefficient would be given uniform prior probabilities between 0 and 1.  

Holsinger et al. (2002) used Bayesian prior probability statistics to estimate the 

inbreeding coefficient (FIS) in AFLP data and it is now possible to obtain reliable 

estimates of kinship from dominant molecular markers. 

 

Bayesian inference and F-statistics 

 Bayesian inference (a statistical inference where prior observations are used to 

update a newly inferred probability in which a hypothesis may be true) has been 

developed for use in population genetics (Beaumont et al. 2002; Holsinger et al 2002; 
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Pritchard et al. 2000a).  Since biological diversity is inherently hierarchical (eg. 

closely related species are part of a genus, closely related genera groups to a family 

etc), re-sampling and updating the likelihood based on a prior probability for an 

expected allele frequency may increase the precision of the likelihood for a given 

allele frequency.  The fixation index Fst is the correlation between random gametes 

within subpopulations (s) relative gametes in the total sample (t), the ‘relative’ nature 

of the statistic makes the value a probability (Wright 1969) for which Bayesian 

inference is well-suited using updated likelihood estimates to converge at the most 

likely probability for a given allele frequency. 

Holsinger (1999) reported that allele frequencies in samples may be different 

than actual frequencies in those populations.  In addition, a second source of error 

comes from the possibility that the population in the study represent only a portion of 

the total population.  Attempts to correct this sampling error have been implemented 

(Nei and Chesser 1983; Weir and Cockerman 1984).  Using fixed effects models, Nei 

and Chesser (1983) implemented a bias correction resulting in Gst, while Weir and 

Cockerman (1984) created a set of indicator variables (1, 0: for 1= allele Ai and 0 ≠ 

allele Ai).  By running an analysis of variance on the indicator variables partitioned 

into within population and among populations, the model became a function of the co-

ancestry coefficients (θ) which are equivalent to Wright’s statistics (Holsinger 1999).  

However, Gst and θ show little difference when the population sample is very large. 

It would be useful to have a statistical method to partition the within and 

among population components that does not depend on any evolutionary model 

(Holsinger 1999).  Most likelihood estimates (Barton et al. 1983; Wehrhahn and 

Powell 1987; Slatkin and Barton 1989; Wehrhahn 1989; Rannala and Hartigan 1995) 

can be used without making any inference as to an evolutionary model.  However, 

these models are implicitly random-effects models of population sampling.  Holsinger 

(1999) extends the existing Bayesian approach to F-statistics to allow for likelihood 

estimates for multiple levels within the population sampling hierarchy and allowing 

for both fixed and random effects.  Many statisticians have used the Bayesian 
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inference approach for the analysis of hierarchical data and there is a comprehensive 

review on Bayesian methods for analysis of complex data consisting of multiple levels 

of order (Goldstein 1995). 

In the Bayesian approach, when given two alleles A1 and A2 at locus I, with 

individuals (i) from populations (k), where aik is the number of A1 alleles and nik is the 

sample size, the following model can be formed: 

aiknikaik
ik

I

i

K

k

nik
aikikikik pikppnaL −

= =

−=∏∏ )1()(),(
1 1

(Holsinger 1999).  The maximum 

likelihood estimates of for pik are those values which maximize ),( ikikik pnaL .  

Because Bayesian estimates for pik also depend on the prior probability of pik [(Φ(pik)], 

this must be taken into account as a multiple of the likelihood equation: 

)()1()(),(
1 1

ik
aiknik

ik
aik
ik

I

i

K

k

nik
aikikikik ppppnpP φ−

= =

−∞∏∏ .  In the absence of any prior 

information about allele frequencies, a uniform distribution based on (0,1) should be 

chosen assuming that any allele frequency is equally likely.  If the mean of the 

posterior distribution is used as the point estimate for pik, then )2/)1(ˆ ++= ikikik nap . 

Going one step further, a hierarchical component can be added to the equation 

such as partitioning between and among populations.  By defining the allele frequency 

distribution of pik in all populations (including those not sampled) as a beta 

distribution with parameters ai and bi, Be(ai, bi), defines ii xa )/1( θθ−=  and 

)1)(/1( ii xb −−= θθ , where xi corresponds to the mean allele frequency at locus i 

(averaged across all populations) and θ corresponds to Fst (calculated from the 

frequency distribution of alleles across all populations) (Holsinger 1999).  By defining 

X(xi) as the prior distribution for xi and T(θ) as the prior distribution of θ, the posterior 

probability distribution for pik and θ is given by the following equation: 

).()(),()1()(),,(
1 1

θθ TxXbaBeppanpP iii
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∏∏   The Bayesian 

methods outlined above have been recently extended to incorporate dominant markers 



 
 

 

12

such as AFLPs so that estimates of the hierarchical inbreeding coefficient (Fis) can be 

determined for this class of molecular markers (Holsinger et al. 2002). 

 

Spurious association revisited 

Cardon and Bell (2001) suggested the effects of population structure may be 

overstated.  For example, there are few examples to support the assumption that 

differences in allele frequencies among populations lead to spurious association, 

suggesting the problem is overemphasized and that other factors may be playing more 

important roles in the spurious associations.  It is believed that over-interpreting 

marginal findings and the publication bias has been underemphasized and attempts to 

reduce effects of population stratification will not lower this type of error (Cardon and 

Bell 2001), while another source of error involves the small effects of many genetic 

factors that contribute to disease such as environmental risks in which the relative 

affect of many, small impact genetic factors contribute to the disease.  Also, modest 

sample size tends to overestimate the size of the genetic effect (Cardon and Bell 2001).  

In genome-wide association analysis studies, sampling concerns shift from statistical 

power to the inflation of false-positives caused by the testing of very large numbers of 

markers (Cardon and Bell 2001).  Fine mapping of suggestive linkage peaks by 

association makes sense only when simulations show clear suggestive evidence for an 

excess of suggestive linkage across the genome or when the ‘cost’ of doing so is 

acceptable without compelling evidence of linkage (Carlson et al. 2004).  Therefore, 

although most researchers agree that population structure and relatedness leads to 

spurious association, there are other factors which may play a greater role in spurious 

associations. 

 

Problems inherent in the statistical modeling of epistasis 

Box (1979) stated, “All models are wrong but some are useful.”  Are the 

problems inherent in the model design or are the problems inherently due to the fact 

that our current model paradigm cannot correctly model living systems?  For example, 
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interval mapping and CIM have been used successfully to identify QTL associated 

with specific phenotypes which has eventually led to the identification of statistically 

significant interactions among QTL (epistasis).  However, the use of linear modeling 

to test for statistically significant interaction between QTL makes the assumption that 

all genetic marker interactions are the result of an interaction of additive genetic 

effects.  This assumption may or may not be true depending on the system.  Is there 

another way to statistically model by association which can identify potential epistasis 

and/or additive genetic effects and identify the correct model without the implicit 

assumptions of linear modeling? 

 

Alternative modeling approach 

A recently discovered statistical technique entitled logic regression is a tree-

based model system which creates Boolean (binary) expressions in the form of logic 

models.  These tree-based logic models consist of Boolean combinations of binary 

covariates (Ruczinski et al. 2003).  Logic regression may allow scientists to identify 

dominant and dominant/suppression forms of epistasis in dominantly scored genetic 

data sets. 

 

Tree-building algorithms 

There are many search algorithms (i.e. CART, MARS, Logic Regression) used 

in predicting continuous variables or categorical variables from a set of continuous 

predictors and/or categorical factor effects.  Two of these algorithms (CART and 

Logic Regression) use tree-based logic to determine a set of ‘if-then’, ‘yes-no’, ‘on-

off’ logical conditions that permit accurate prediction or classification within a system 

(Ruczinski et al. 2003). 

Tree classification can produce accurate predictions or predicted classifications 

based on few logical operators and have a number of advantages over many other 

modeling techniques.  One advantage is that the interpretation of results summarized 

in a tree is very simple.  Search algorithms like CART and logic regression can often 
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yield much simpler models for explaining the relationship between the predictors and 

the response.  The results of using tree-based methods for classification or regression 

can be summarized in models with very few nodes. 

In using tree-based algorithms, there are no implicit assumptions for the 

underlying relationships between the predictor variables and the dependent variable.  

The model may be linear, non-linear, bimodal etc.  Therefore, tree-based modeling 

methods are particularly well-suited for data mining tasks, where there is often little a 

priori knowledge regarding which variables are related and how (Ruczinski et al. 

2003).  Given this supposition, population and kinship estimates are not required for 

the analysis. 

Preliminary evidence suggests that logic regression may be a better alternative 

for identifying molecular marker associations with a phenotype (Ruczinski et al. 2003).  

A comparison of logic regression with mixed-models, multivariate adaptive regression 

splines (MARS) and classification and regression trees (CART) indicated logic 

regression was more robust in identifying the correct genetic model which best 

described the association of molecular marker data with the disease phenotype without 

the use of pedigree structure (Ruczinski et al. 2003).  However, it remains to be seen 

whether the inclusion of pedigree information into logic models will make them more 

robust. 

 

Logic regression, Boolean expressions and the search space 

Logic regression can be used in the analysis of dominant-scored genetic data 

sets.  The software utilizes a tree-based simulated annealing algorithm which searches 

binary data sets and constructs mathematical models consisting of Boolean 

combinations of binary covariates.  With X1…Xk as binary predictors and Y as the 

response, logic regression will fit regression models in the form g(E[Y]) = 0β + 

∑
=

t

j
jj L

1
β , where jL  is a Boolean expression of the predictors Xi (Ruczinski et al. 

2003).  Logic regression searches for combinations of binary variables that have high 
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predictive power for the response variable.  The software is unique in that it utilizes 

Boolean algebra as a basis for building Boolean expressions called logic models. 

 Boolean algebra uses values of 0 and 1 to represent a specific state (true and 

false, on and off, yes and no,…).  Variables (X1, X2, X3,….) are represented as either 

of these two values.  Logic operators: ∧  (AND), ∨  (OR) and c (NOT or the conjugate 

of X) are used to combine values and variables to build logic (Boolean) expressions 

such as the form: Y = (X1∧X2
c).  By following a set of specified rules for logic trees 

and tree-growing, the logic regression simulated annealing algorithm moves in the 

search space (S) by defining the neighbor of the logic tree to be those trees that can be 

reached by a single move.  Logic regression compares the new state model score with 

the previous state model score.  If the score of the new state is better than the score of 

the old state, the move is accepted.  If the score of the new state is worse than the 

score of the old state, the move is accepted conditioned on a specific probability.  The 

acceptance probability depends on the score of the two states under consideration and 

a parameter that reflects a time point in the annealing chain (this parameter is referred 

to as temperature) (Ruczinski et al. 2003).  For any pair of scores, the further ahead in 

the annealing scheme, the lower the acceptance probability, if the proposed state has a 

score worse than the score of the old state.  As a result, when the search algorithm 

reaches the end of state space, the result is generally a good scoring state (Ruczinski et 

al. 2003). 

 

The null model test 

 The null test in logic regression is used to provide information concerning 

strength of signal to the researcher.  In evaluating models of varying sizes, logic 

regression looks for signal vs. noise in the data set.  In statistical modeling, signal is 

identified by asking whether the slope (b) is equal to zero or not.  Therefore, is X 

associated with Y?  This is considered ‘signal’.  When additional covariates are added 

to the model and have no relationship with Y, this is considered ‘noise’.  By 

evaluating models of various sizes for signal vs. noise, researchers can determine the 
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level of ‘over-fitting’ (noise) in each ‘model-size’ class.  In doing so, search 

parameters can be set to identify the correct model in a search space containing the 

least amount of noise.  In addition, potentially troublesome data sets with 

‘unacceptable’ levels of noise are quickly identified so that no further time is wasted 

in the analysis of potentially problematic data. 

 

Logic regression and identification of QTL interaction 

The authors of logic regression have created a search algorithm that appears to 

have the ability to identify dominant and dominant/recessive genetic interactions in 

binary genetic data and present the interaction(s) in a regression format.  The use of 

logic operators may allow scientists to predict the precise genetic model governing the 

interaction because the logic operators account for the dominant and recessive 

condition in binary data sets.  The inclusion of the null model test allows researchers 

to identify potentially troublesome data sets where the levels of statistical signal are 

very low.  Therefore, given all these attributes, logic regression may be useful in 

identifying and modeling dominant, dominant/suppression as well as additive forms of 

genetic epistasis associated with specific phenotypic traits. 

 

VRN-H1/VRN-H2 and epistasis in barley 

In order to test logic regression to see if it can correctly identify dominant 

and/or dominant suppression epistasis, a model system with a known statistical 

interaction is needed.  The epistatic interaction of alleles at the VRN-H1, VRN-H2 and 

VRN-H3 locus is the hypothesized determinant for vernalization-sensitivity in 

cultivated barley (Hordeum vulgare subsp. vulgare) (Takahashi and Yasuda 1971).  

There is no allelic variation at VRN-H3 in most cultivated barley genotypes, reducing 

the genetic model to a two-locus epistatic model (Takahashi and Yasuda 1971).  VRN-

H2 encodes a dominant flowering repressor (ZCCT-H) down-regulated by 

vernalization (Yan et al. 2004).  VRN-H1 is a MADS-box floral meristem identity 

gene (HvBM5A) (Danyluk et al. 2003; Yan et al. 2003) and large deletions within the 
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first intron result in a dominant VRN-H1 allele and spring growth habit (Fu et al. 2005; 

von Zitzewitz et al. 2005).  A molecular model has been recently proposed to explain 

the VRN-H2/VRN-H1 epistatic interaction where dominant VRN-H2 inhibits the 

expression of recessive VRN-H1 alleles (Yan et al. 2004).  Based on this model, 

genotypes with VRN-H2_/vrn-H1vrn-H1/vrn-H3vrn-H3 allelic architecture flower late 

in the absence of vernalization (vernalization-sensitive) and all other allelic 

configurations lead to a lack of significant vernalization-sensitivity.  This well 

validated epistatic interaction (reviewed in Szűcs et al. 2007) was used as a model 

system to test the ability of logic regression in identifying epistasis in binary molecular 

data. 

 

Hop downy mildew epidemiology 

Ware (1926) studied hop downy mildew and the mycelial invasion of the host 

plant.  The early observations by Ware (1926 and 1929), followed by the work of 

Coley-Smith (1960), has led British researchers to believe that zoospores, originating 

from asexual zoosporangia, produce mycelium which over-winters in the crown of the 

hop plant.  Thus, it was concluded that the pathogen over-winters as mycelium in the 

dormant crown buds and oospores do not play a significant role in the disease 

epidemiology (Ware 1929).  These conclusions were later confirmed by Skotland 

(1961).  However, Skotland and Johnson (1983) reported that the over-wintering role 

of oospores remained unclear and in wet environments, where resistant cultivars are 

grown, the germinating oospore may be an important source of primary inoculum.  

Royle and Kremheller (1981) agreed with Ware (1929) and suggested that the 

importance of oospores seems to have been exaggerated and imply that this belief is at 

least in part due to repeated failures in England and Poland to induce germination 

under laboratory conditions. 

Recent research indicates that downy mildew may over-winter as living 

mycelium in onion, wild sorghum and rose (Populer 1981; Ryley 2001; Aegerter 

2002).  However, oospores have been documented in all these species and molecular 
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research suggests that oospores may be the primary over-wintering in Peronospora 

sparsa (syn. P. rubi) (Lindqvist-Kreuze et al. 2002).  In addition, other research 

suggests oospores may play a significant role in disease epidemiology (Rooms of Diaz 

and Polanco 1984; Gowda and Bhat 1986; Kennelly et al. 2007). 

Although conclusive evidence showing downy mildew mycelium within the 

‘dormant’ crown tissue in hop is to date lacking, it has been accepted that hop downy 

mildew over-winters within the dormant buds of the hop crown and that oospores play 

no role in the disease cycle (Royle and Kremheller 1981), despite overwhelming 

evidence suggesting oospores play a major role in the epidemiology in most downy 

mildews (Populer 1981).  Interestingly, oospores have been detected within the pith 

and parenchyma tissue in dormant buds, stems, leaves and cones of infected hop plants, 

(Royle and Kremheller 1981) making it difficult to assess their potential role in 

pathogenesis. 

 

The hop downy mildew oospore 

Arens (1929) completed extensive observations of hop downy mildew.  He 

outlined a detailed life cycle of the pathogen and provided researchers with pertinent 

information needed to study the fungus in depth.  Most importantly, he provided 

researchers with detailed environmental factors necessary for propagation of the 

fungus under laboratory conditions.  In addition, Arens (1929) was the first researcher 

to germinate the oospore of hop downy mildew in the laboratory.  Jones (1932b) 

successfully produced oospores of hop downy mildew in abundance by sowing ‘Late 

Cluster’ seedlings and inoculating the cotyledons with minute portions of infected 

leaves obtained from basal spikes.  Bressman and Nichols (1933) reported they were 

able to get oospores of hop downy mildew to germinate in their laboratory.  They used 

inoculum from two-year old herbarium specimens but were unable to confirm whether 

or not a dormancy period was involved in the oospore lifecycle.  Unfortunately, none 

of these studies included a visual record to show that oospore germination had 

occurred. 
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Controversy concerning over-wintering 

Research by Ware (1926 and 1929), Arens (1929), Hoerner (1949) and Coley-

Smith (1960) suggest there were differences in opinion among American, Continental 

Europe and British hop researchers concerning the over-wintering mechanism in hop 

downy mildew.  Arens (1929) reported that he was able to get hop downy mildew 

oospores to germinate in his laboratory in Germany and he believed that the oospore 

was the main over-wintering mechanism.  In addition, Hoerner (1949) believed that 

hop downy mildew over-wintered as oospores.  He reported there was ample inoculum 

in the form of infected leaves and shattered cones bearing innumerable oospores and 

these winter spores are capable of initiating the disease the following spring.  

Although the work by Ware (1929) and Coley-Smith (1960) substantiated mycelium 

in the non-dormant crown, researchers have never been able to provide visual 

evidence of downy mildew in the crown being connected to mycelium in the basal 

spikes.  Furthermore, the timing and methods of observation were not adequate to rule 

out the potential contribution of the oospore.  Therefore, the over-wintering mycelium 

hypothesis is only supported by circumstantial evidence by suggesting the over-

wintering mycelium enter the dormant bud thereby being the primary source of 

inoculum from year to year. 

Clearly, more work needs to be done to learn more about the ‘potential’ role of 

the hop downy mildew oospore in the disease cycle.  Although some research has been 

done detailing the germination of oospores (Morgan 1978; Gowda and Bhat 1986; 

Van der Gaag and Frinking 1996; Spring and Zipper 2000), very little is known about 

oospore germination in oomycetes.  A major factor contributing to this lack of 

information is that it is very difficult to collect the number of oospores required for 

observational studies on germination.  In many infected plant tissues, oospore 

production is rare or non-existent.  By investigating the oospore of hop downy mildew, 

we will gain further knowledge about sexual stage of this disease and hopefully gain 

some important information about its potential role in pathogenesis in hop. 
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Dissertation goal 

 The goal of this dissertation was to use the new F-statistics and Bayesian 

inference developed for dominant markers to help identify AFLP markers associated 

with the hop downy mildew resistant phenotype.  Logic regression was a new 

statistical method which needed a well documented epistatic interaction in order to test 

the statistical procedure’s ability to identify complex genetic interaction.  These 

statistical analyses together with the observations of the hop downy mildew oospore 

will provide hop researchers and breeders with preliminary heritability values for the 

hop downy mildew resistant phenotype along with valuable information concerning 

the downy mildew oospore.  It is hoped that this work will help increase our 

understanding of hop downy mildew as well as suggest some novel approaches to 

statistical modeling that can be used to learn more about this devastating disease. 
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Association Mapping Analysis in Humulus lupulus L. to Identify AFLP Markers 

Associated with the Hop Downy Mildew Resistant Phenotype 
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ABSTRACT 

 

Little is known about plant resistance to downy mildew [Pseudoperonospora 

humuli Miyabe and Tak.(Wil.)] in hop (Humulus lupulus L.), although previous 

research suggests a quantitative rather than a qualitative basis.  The objective of our 

research was to use association mapping to identify potential molecular markers for 

future use in marker-assisted selection and to estimate heritability for this trait.  We 

describe an association mapping approach using a population of 99 elite hop 

genotypes with varying levels of susceptibility to hop downy mildew.  Plants were 

inoculated with sporangia for use in a leaf sampling assay for phenotype.  In total, 492 

AFLP markers were used in the analysis.  Three subpopulations were identified within 

our data set.  This population structure data was used to obtain an average estimate of 

the inbreeding coefficient for the three subpopulations as well as kinship estimates.  

These kinship and population estimates were subsequently used in a mixed-model 

approach for association mapping.  Hop downy mildew resistant phenotype has a 

broad-sense heritability of 76% with an estimated narrow-sense heritability of 49%.  

Mixed-model results revealed 9% of the AFLP markers to be associated with the hop 

downy mildew resistant phenotype.  The amount of phenotypic variation explained by 

the individual markers ranged from 4% to 11%.  AFLP markers A2, D75 and E44 

were the only three ‘diagnostic’ markers associated with the most susceptible 

genotypes.  Our results suggest that fixation indices coupled with Bayesian inference 

can be valuable tools for use in association mapping within dioecious, clonal species 

like hop. 

 

AFLP, association mapping, Bayesian, F-statistics, heritability, hop, Humulus, kinship, 

mixed-model, null allele, Pseudoperonospora and QTL 

Abbreviations: AM for association mapping 
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INTRODUCTION 

 

 Modern QTL analysis and linkage mapping involves segregating populations 

derived from crosses with parents of contrasting phenotypes.  Recombination 

frequencies between the markers and the genes of interest are estimated from co-

segregation patterns.  Although this method of analysis has a good track record for 

success, there are some limitations.  QTL mapping can be costly and time-consuming 

because mapping requires a recombinant population and this population needs to be 

large to achieve high-resolution mapping.  Furthermore, in a typical QTL study, only 

one cross from a population is made to form a recombinant population and therefore 

extrapolations to other populations and individuals may be spurious (Verhoeven et al. 

2006). 

 Association mapping (AM) is utilized to find a statistical association between 

molecular markers and a quantitative trait.  AM differs from QTL analysis in that it is 

performed at the population level where a collection of genotypic molecular markers 

and the corresponding phenotypic trait are determined in a set of unrelated or 

distantly-related individuals sampled from a population.  The theory behind AM 

presumes that populations have had sufficient time to break most gene linkages and 

only those genes that are tightly linked remain present in the population.  Therefore, 

AM relies on linkage disequilibrium between the molecular markers and the QTLs 

responsible for expression of the phenotypic trait. 

 In natural out-crossing populations like maize, linkage disequilibrium extends 

from a few hundred to less than 2000bp (Palaisa et al. 2001; Remington et al. 2001; 

Tenaillon et al. 2001; Gaut and Long 2003).  Therefore, success in association 

mapping requires the candidate gene to have a measurable effect on the phenotype and 

candidate markers must fall within or directly upstream/downstream of the candidate 

gene.  Markers identified as being in association with the trait are broad-based rather 

than cross-specific.  In addition, some scientists believe that population 

structure/stratification can lead to spurious associations (associations without linkage) 
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between a candidate marker and phenotype (Lander and Schork 1994; Bacanu et al. 

2000; Pritchard et al. 2000a and 2000b; Devlin et al. 2001; Yu et al. 2006) and that 

this type of structure needs to be accounted for in the data analysis.  This is because 

individual subpopulations can have different allele frequencies than that of the whole 

population.  Therefore, it is believed that unidentified population structure may lead to 

spurious association due to these unaccounted-for differences in allele frequencies 

leading to false association. 

 AM has been used in a number of plant species to identify molecular markers 

and genetic loci associated with phenotypic characters ranging from salt tolerance and 

eco-geographical traits in barley (Pakniyat et al. 1997; Ivandic et al. 2002; Ivandic et 

al. 2003) to cold tolerance in perennial ryegrass and morphological traits in rice (Virk 

et al. 1996).  With an accurate phenotype and high numbers of polymorphic loci, AM 

has been shown to work.  Unfortunately, generating high levels of polymorphic loci 

can be costly and time-consuming especially with co-dominant markers. 

Until recently, dominant molecular markers (AFLP and RAPD) have been 

deemed less informative when compared to their co-dominant counterparts, due in 

large part, to the null allele.  Heterozygote genotypes possessing the expressed band 

cannot be directly distinguished from homozygotes possessing the same band.  Multi-

locus dominant DNA markers, such as AFLP, pose a problem in the estimation of 

frequencies of null alleles.  Recent advances in Bayesian statistical methods and F-

statistics in population genetics have given researchers the statistical tools necessary 

for satisfactory estimates of allele frequencies leading to expected heterozygosities, 

genetic distances and F-statistics (Zhivotovsky 1999; Krauss 2000; Hardy and 

Vekemans 2002; Holsinger et al. 2002; Falush et al. 2007).  These techniques were 

developed by population geneticists studying randomly sampled natural populations.  

However, it follows that these techniques can be extended for use in crop species.  

These statistical methods have been made available in software packages and many of 

the analysis techniques can be used for AM using dominant markers such as AFLP. 
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Trait analysis by association, evolution and linkage (TASSEL) has 

implemented a mixed-model approach in their AM software (Yu et al. 2006).  Their 

model includes population and kinship estimates which are included to help reduce 

type I and type II errors.  The use of AFLP data in programs such as TASSEL shows 

promise in a cost to benefit ratio where hundreds of dominant markers can be 

generated relative to the cost of co-dominant markers and, with recently added 

statistical procedures, have relatively equal informative value. 

Hop downy mildew is one of the most economically important diseases in all 

but a few of the worlds hop producing regions (Neve 1991).  In severe cases, complete 

yield loss and plant death can occur.  Management of hop downy mildew requires 

numerous applications of fungicides throughout the growing season and often at times 

when soil moisture makes tractor movement in the field difficult.  Effective 

management is further hindered by the development of fungicide resistance (Nelson et 

al. 2004).  Therefore, development of resistant varieties is a major component of the 

U.S. public research and breeding facilities. 

 Partial resistance to downy mildew has been identified in some American 

cultivars including ‘Cascade’ (Neve 1991) and more recently ‘Newport’ (Henning and 

Haunold 2003), while partial levels of resistance are present in cultivars from the Hop 

Breeding Program at Wye College, England.  Cultivars such as ‘Yeoman’ (Neve 1991; 

Neve and Darby 1984b) were initially used for production due to their strong 

resistance to this disease.  Nevertheless, plant resistance to downy mildew in England 

eventually succumbed as new strains of the pathogen evolved.  Despite decades of 

partial success in breeding for downy mildew resistance in both England and USA, no 

discernable pattern of inheritance for the hop downy mildew resistant phenotype has 

yet been identified. 

 The two objectives of this research were to determine the heritability of 

resistance to downy mildew in hop and to identify potential molecular markers 

associated with resistance using AFLP in AM format. 
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MATERIAL AND METHODS 

 

Plant population 

 Ninety nine hop accessions representing a broad range of genetic backgrounds 

were evaluated.  The accessions are part of the USDA-ARS hop breeding and genetics 

program’s collection.  The test population consisted of male (N=73) and female (N=26) 

individuals from wild American and European ancestry (Table 2.1). 

 

Plant material 

 The male and female genotypes were growing in the USDA-ARS hop breeding 

and genetics research yard near Corvallis, OR.  All plants received the same cultural 

practices and were grown under the same soil, Chehalis silty clay loam fertilized with 

urea at a rate of 168 kg ha-1 with regular irrigation applications.  The fields were 

managed using practices similar to those used in commercial hop yards in the Pacific 

Northwest. 

 

Hop downy mildew resistant phenotype 

 All genotypes were inoculated with a sporangial suspension (20,000 

sporangia/ml) prepared for use in a backpack sprayer.  Determination of sporangia 

concentrations were made prior to inoculation using a haemacytometer.  Genotypes 

were inoculated in late April and early May on overcast days with light, misting rain.  

Multiple leaf samples per genotype were harvested following a six day incubation 

period.  The samples were placed in separately labeled plastic bags containing a moist 

paper towel to induce sporulation.  Upon sporulation, five leaf samples/genotype/year 

were selected arbitrarily for phenotypic analysis. 

 Each leaf was scanned into digital form and opened into GNU Image 

Manipulation Program (GIMP v 1.2©) (Free Software Foundation, Boston MA).  The 

images were set to a blue background and the percent leaf area was determined using 

ASSESS© (APS Press, St. Paul, MO).  Resulting percent leaf area infection 
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distributions exhibited a non-normal distribution.  As a result, the percent leaf area 

diseased was normalized with an arcsine/square root transformation prior to running 

the ANOVA.  The mean/year phenotypic values were used in the ANOVA and a three 

year mean was used in the AM analysis. 

 

AFLP analysis 

 AFLP DNA fingerprints for all 99 individuals was performed by Townsend 

and Henning (2005).  Approximately 100 to 600g of freeze dried leaf tissue was used 

in the DNA extraction protocol of Kidwell and Osborn (1992).  The primer pair 

sequences for selective amplification and PCR conditions are described in Townsend 

and Henning (2005).  Fluorescently labeled AFLP bands were detected on an ABI 377 

DNA sequencer (Applied Biosystems, Foster City, CA). 

 

Data analysis 

 AFLP gels were scored using Genographer© software (Benham et al. 1999).  A 

binary data matrix was created based on the scored gel.  The AFLP analysis of the 99 

genotypes of Humulus lupulus L. resulted in the detection of 571 fragments with six 

primer combinations of which 492 were found to be polymorphic.  The 79 

monomorphic markers were removed from the data set for all subsequent analyses.  

Identification of population structure was made using a Jaccard’s distance matrix with 

Ward’s clustering in R© (R Foundation for Statistical Computing, Vienna, Austria).  

The cluster analysis was used for identification of population substructure and to 

identify hierarchical associations among sub-populations.  In the course of our 

investigation, we analyzed population structure using other clustering methods such as 

UPGMA and Structure v 2.1© (Pritchard et al. 2000a).  However, UPGMA produced a 

cluster plot that did not match well with prior cluster data (data not shown).  Structure 

was unable to identify the three hop subpopulations currently accepted by hop 

researchers.  In the few runs where Structure identified three clusters, the clusters did 

not match those identified using Ward’s method (data not shown).  Based on the three 
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published cluster analyses (Murakami 2000; Seefelder et al. 2000; Jakse et al. 2001) 

coupled with inconsistencies in the Structure analyses, we decided to use the Jaccard’s 

distance/Ward’s cluster results for use as binary covariates in the mixed linear model 

AM analysis.  Using the population cluster information, an average estimate of the 

coefficient of inbreeding (FIS) was obtained using the software Hickory v1.0© 

(Holsinger et al. 2002).  The full model was chosen for the estimate of FIS based on the 

Deviance Information Criterion (DIC).  Estimates for kinship coefficients were 

obtained using the software Spagedi v1.2© (Hardy and Vekemans 2002) using the 

methods developed by Hardy (2003).  The kinship estimates were normalized 

(negative values set to zero) and sorted for ANOVA in SAS Version 9.1© (SAS 

Institute, Cary, NC).  The ANOVA was used in the calculation of estimates of 

phenotypic additive, environmental and g * e variance components, which were 

subsequently used to determine broad-sense heritability (H) and narrow-sense 

heritability (h2) for the downy mildew resistant phenotype.  The model for H was a 

type III random effects model with years treated as environments and genotypes and 

years as random effects.  The model for h2 was a type III random effects model with 

years treated as environments and populations and years as random effects.  Kinship 

estimates obtained from Spagedi were sorted by population and used to calculate 

average coefficients of co-ancestry for each population.  The average coefficient of co-

ancestry was used in combination with estimated variance components to determine 

the additive variance and the resulting estimate of h2.  The kinship and population 

cluster matrices were used in an AM format using the mixed-model method in the 

software TASSEL© (Yu et al. 2006).  The mixed-model computed the R2 values for 

the individual markers to determine the amount of phenotypic variation explained by 

those markers found to be significantly associated with the hop downy mildew 

resistance phenotype. 



 
 

 

29

RESULTS 

 

 The percent leaf area diseased showed a strong right tail (Figure 2.1A), so we 

normalized the data set with an arcsine/square root transformation (Figure 2.1B). 

Jaccard’s distance and Ward’s clustering showed two large subpopulations which 

were further divided into three smaller subpopulations containing n=35, n=28 and 

n=36 individuals, respectively (Figure 2.2).  The cluster analysis showed that the 

genotypes were grouped according to their region of origin with one group primarily 

Continental European, the second group primarily English/American/European 

hybrids (A) and the third cluster, Brewers Gold/wild American/European hybrids (B) 

(Table 2.1).  A small cluster of resistant female genotypes was revealed within the 

European cluster (Figure 2.2).  Running the AFLP marker data according to 

subpopulation divisions resulted in a mean estimation for the coefficient of inbreeding 

(FIS) of 0.2014.  The DIC was 6153 units for the full model, 6182 units for the f = 0 

model and 9105 units for the ΘB = 0 model. 

 The ANOVA for broad-sense heritability revealed statistically significant 

differences in the means for all the variables tested (Table 2.2).  There was also a 

statistically significant interaction among genotypes*years (Table 2.2).  The ANOVA 

used to generate estimates of genetic variances for narrow-sense heritability revealed 

statistically significant differences in means among populations and also years with no 

significant interaction among population*years (Table 2.3).  The ANOVA used to 

generate estimates of overall population variance resulted in significant differences 

among the individuals in the population.  Broad-sense heritability estimate of the 

downy mildew resistance phenotype was 76% and a narrow sense-heritability of the 

phenotype equaled 49%. 

 The mixed linear modeling analysis in TASSEL revealed 43 AFLP markers 

(9% of the total) associated with the hop downy mildew resistant phenotype with p-

values < 0.05 (Table 2.4A and B).  The amount of phenotypic variation explained by 

the individual markers ranged from 4% to 11% (Table 2.4A and B).  Only three of the 
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forty-three markers were diagnostic with the most susceptible genotypes.  Markers A2, 

D75 and E44 were absent in 7 highly resistant genotypes (Perle, Yeoman, Challenger, 

Omega, Orion and Wye Viking and M64037) while present in 7 highly susceptible 

genotypes (Comet, Galena VF, Wye Target, M21420, M21329, M21313 and M21339). 
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DISCUSSION 

 

We observed strong evidence suggestive of population structure based upon 

hierarchical clustering (Figure 2.2).  Our results suggesting three subpopulation 

clusters in hop agree with those previously reported (Murakami 2000; Seefelder et al. 

2000; Jakse et al. 2001).  Analysis of our data in Hickory revealed a large difference in 

the DIC between the full and the ΘB = 0 model which suggest there is compelling 

evidence for genetic differences among the populations (a difference of 2952 units) 

(Spiegelhalter et al. 2002).  In addition, the 29 unit difference in DICs between the full 

and the f = 0 model, suggest there is some level of inbreeding within subpopulations.  

The data showed a moderately high level of inbreeding within the subpopulations with 

a mean FIS = 0.2014.  The high level of inbreeding within populations may be due to 

the narrow genetic base of cultivated hop since many cultivars share kinship amongst 

three or four cultivars (Henning et al. 2004).  These results suggest our data set 

deviated from Hardy-Weinberg equilibrium and this deviation needed to be accounted 

for when deriving kinship estimates using the model proposed by Hardy (2003). 

 

Variance components and heritability 

The variance among genotypes was significant (Table 2.2) suggesting that 

there is genetic variation for resistance to hop downy mildew among genotypes 

present in the population under observation.  Certainly, the distribution of resistance 

scores (Figure 2.1B) implies quantitative control over the expression of resistance.  

The ANOVA for broad-sense heritability also showed that there was significant 

interaction among genotypes*years demonstrating that multiple environments must be 

utilized when examining this trait in order to effectively identify genotypes possessing 

resistance (Table 2.2). 

Variance components estimated from the ANOVA for narrow-sense 

heritability also showed significant (p<0.05) variation among populations (Table 2.3).  

This demonstrates that there are true differences in levels of resistance among the 
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populations and that these differences in populations should prove responsive to 

selection.  We did not observe any significant interaction for population*year and 

therefore the variance component for this interaction was not estimated (Table 2.3).  It 

was interesting that the genotype*year interaction proved significant but the 

population*year was not significant.  Causes for this difference in significance may lie 

in the different genetic components estimated by these two tests.  In the case of 

genotypes*year, the genetic component estimated from the ANOVA consists of both 

additive and dominance genetic components.  In the case of the population*year 

interaction, the genetic component of population should theoretically consist of 

additive genetic variance.  Thus, the difference between both estimates of interaction 

may lie in the presence of a strong dominance effect upon this trait. 

Our estimates of broad-sense (H2 = 76%) and narrow-sense heritability (h2 = 

49%) for the downy mildew resistant phenotype also suggest a means whereby 

estimates of dominance or epistasis are possible.  Theoretically, broad-sense 

heritability represents total genetic variation relative to phenotypic variation.  As a 

result, the estimate of variance components for total genetic variance consists of 

additive, or selectable variation, and dominance/epistasis, or non-selectable deviations 

from expectations.  On the other hand, narrow-sense heritability estimates represent 

the ratio of selectable genetic variation, or additive genetic variance, relative to total 

phenotypic variation.  Thus, comparing between the two estimates of heritability 

suggests, but does not prove, the presence of a strong dominance component.  If true 

in this case, the presence of significant dominance variation could prove deleterious to 

response to selection if phenotypic or mass selection was the primary mode of 

selection—as it has proven to be in hop (Henning 2006).  The only means to overcome 

this effect would be the use of some means of genotypic recurrent selection or by 

means of molecular markers linked to downy mildew resistance or susceptibility.  As 

genotypic recurrent selection for this particular trait would prove highly time-

consuming and space-consuming, use of marker-assisted selection should prove highly 

advantageous. 
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Association mapping using mixed linear models 

 Analysis of the mixed-model results from TASSEL showed a large number of 

AFLP markers (43) associated with the downy mildew resistant phenotype.  The 

percentage of phenotypic variation explained by the individual markers was quite low 

ranging from 4% to 11% of the total variation (Table 2.4A and B).  These low 

estimates suggest some of the variation was a result of environmental variance.  

Repeated study on the incidence of hop downy mildew have shown that prevailing 

weather conditions conducive to its development and spread may play a large role in 

year to year variation in the disease (Hoerner 1939; Pejml and Petrlik 1964; Pejml and 

Petrlik 1967; Royle 1970; Royle 1973; Skotland and Johnson 1983; Skotland and 

Romanko 1964).  After reexamining the phenotype between years, it became apparent 

that this could be one explanation for the low R2 values. 

Young (1996) reported that most resistant phenotypes are measured 

quantitatively, so they are known as quantitative resistant characters and the genetic 

loci associated with them are called quantitative resistant loci (QRL).  Although 

polygenic suggests that many minor genes have equal effect on the phenotype, QTL 

mapping suggests this is not true (Young 1996).  It has been shown that for many 

diseases, most often a few QTL are involved in quantitative resistance.  Compared 

with prior work on quantitative resistant loci (QRL), forty-three markers appear to be 

a very large number to be associated with a disease resistance phenotype.  In barley 

powder mildew (Erysiphe graminis) there are two QRL, common bean bacterial blight 

(Xanthomonas campestris) there are seven QRL, Mungbean powdery mildew 

(Erysiphe polygoni) there are three QRL, soybean cyst nematode (Heterodera glycines) 

there are three QRL in addition to many other similar examples (Young 1996). 

However, 43 loci may not be very many loci to be associated with the hop 

downy mildew resistant phenotype if they loci are clustered into few, large QRL or the 

trait itself is truly highly quantitative in nature similar to such traits as ‘yield’.  Recent 

research by Dodds et al. (2006), suggest that the type of host response to pathogen will 

dictate the level of complexity involved in host resistance.  In true ‘gene for gene’ 
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resistance mechanisms such as that observed by Flor (1942), simple R-Avr protein 

interactions should result in qualitatively inherited traits.  In host-pathogen interactions 

such as Arabidopsis and Psuedomonas syringae the mechanism of resistance is more 

complex and the host response is dependent upon detecting modifications of disease 

response proteins (Dodds et al. 2006).  In the latter case, it is quite easy to see how a 

mechanism for resistance could be significantly more quantitative than that for a 

simple R-Avr protein interaction.   Nevertheless, this does not discount the presence of 

multiple overlapping markers found within major regions of association with downy 

mildew resistance nor does it account for prior evidence suggesting few QRL.  

Without actually mapping the location of markers via QTL analysis neither 

explanation can be proven from our data. 

Although the mixed-model analysis may have resulted in type I and/or type II 

errors, there is no way to know for sure as there is no mapping population for the hop 

downy mildew resistant phenotype.  After data mining our results, we discovered three 

AFLP markers (markers A2, D75 and E44) to be ‘diagnostic’ for the most susceptible 

hop genotypes.  However, by definition, ‘all’ 43 markers are QRL.  The data mining 

can only suggest which markers ‘appear’ to have a strong association with the resistant 

or susceptible phenotype, whether they are the true QRL or not.  Currently, we are in 

the process of running bi-parental ‘pseudo testcrosses’ to help determine mapping 

locations and presence of major regions of influence. 

 

Conclusions 

The AFLP analysis of H. lupulus for resistance to hop downy mildew showed 

that association mapping techniques may prove useful in the dissection of complex 

traits in dioecious, clonal crop species like hop and in the identification of useful 

molecular markers of potential use in a marker-assisted selection breeding program.  

Our work suggests that the presence of dominance controlling the expression of 

resistance may be one factor explaining the difficulty breeders have experienced over 

the years when practicing phenotypic or mass selection.  Other factors that must be 
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taken into account are the effects of environment upon screening and the possibility 

that resistance to downy mildew in hop may be controlled by numerous QTL, each 

with minor effects upon expression.  Certainly, our results demonstrate the need for 

further examination over the expression of resistance to downy mildew in hop and that 

either marker-assisted selection or some means of genotypic recurrent selection should 

be practiced if expected genetic gain due to selection is hoped for.  Finally, the 

ANOVA results of hop downy mildew resistance suggest the new methods in 

Bayesian inference used in the derivation of F-statistics for AFLP marker data can be 

applied to dioecious, clonal crop species like hop.  We believe these new methods to 

be robust and applicable to out-crossing crop species like hop making dominant 

markers such as AFLP just as informative as co-dominant markers.  Because AFLP 

markers are less expensive to generate on a ‘per band basis’ in terms of time and 

money, many studies in minor crops can now be realistically investigated. 
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Figure 2.1A and B. Frequency distribution for the hop downy mildew resistant 
phenotype.  The percent leaf area diseased (A) and the arcsine/square root 
transformation (B) for three years of data are displayed for the 99 genotypes of  
Humulus lupulus L. on the x-axis as categorical bins in relation to the frequency 
response (y-axis). 
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Figure 2.2. Phenogram of Ward’s cluster analysis of AFLP molecular marker data from 99 genotypes of Humulus 
lupulus L. with the three subpopulations identified and the corresponding three year mean percent leaf area disease  
listed next to the genotype. 
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Table 2.1. List of hop genotypes arranged by pedigree based on cluster analysis of 
AFLP molecular marker data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Primarily European 

Primarily Wild 
American/European 

Hybrids (A) 

Primarily Wild 
American/European 

Hybrids (B) 
M19007 M19009 M21109 
M19047 M21424 M21313 
M21690 M19172 M21306 
M63011 M19036 M21345 

US Tettnanger M19037 M21329 
Styrian M19061 M21110 

M64034 M19046 M21135 
M64036 M19060 M21303 
M64037 M21058 M21300 
M64101 M21446 M21360 
M64035 M58111 M21466 
M21119 M52047 M21416 
M21009 M21603 M21272 
M21132 M51114 M21415 
M21336 M21076 M21273 
M21335 M21339 M21444 
M21087 M21358 M21417 
M21090 M21462 M21420 
M21268 M21072 M21426 
M21398 M21129 M21428 
M21400 M21461 M21448 

Hallertauer Mittlefruh M21351 M21463 
Saazer 36 M63015 Cascade 
Fuggle N M64102 Wye Target 

Tardif de Bourgogne M64105 M21465 
Spalter Select M21432 Comet 

Perle M21437 M21184 
Yeoman M21435 M21425 

Challenger  M21427 
Omega  Brewer’s Gold 

Northern Brewer  Galena 
Orion  Galena VF 

Wye Viking  Crystal 
Wye Saxon  Kitamidori 

M21089  Magnum 
  M21488 



 

 

 

 

 

 

 

        Table 2.2. Analysis of variance results for broad-sense heritability of the transformed hop downy mildew phenotype. 
        Years were treated as environments in a type III random effects model. 
 

Source DF Type III SS Mean Square F-value p-value Variance Components 

Genotype 98 37.921 0.387 6.81 < 0.001* 0.022 
Year 2 0.936 0.468 8.24  0.0004* 0.0008309 
Error: 
MS(Genotype*Year) 

196 11.140 0.057    

       

Genotype *Year 196 11.140 0.057 2.14 <0.001* 0.0060664 
Error: MS(Error) 1188 31.486 0.027    

                *Significant at the 0.001 level 
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        Table 2.3. Analysis of variance and estimated variance components used in calculating narrow-sense heritability of the 
        transformed hop downy mildew phenotype.  Years were treated as environments in a type III random effects model. 
 

Source DF Type III SS Mean Square F-value p-value Variance Components 

Population 2 4.878 2.439 111.840 0.003* 0.0049118 
Error: MS(Pop*Yr) 4 0.087 0.022    
       
Year 2 0.927 0.463 21.070 0.007* 0.000762 
Error: 
0.993*MS(Pop*Yr) 
+ 0.007*MS(Error) 

4.129 0.091 0.022    

       
Population*Year 4 0.087 0.022 0.022 0.790 -0.0001792 
Error: MS(Error) 1476 72.602 0.051    

               *Significant at the 0.01 level 
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Table 2.4A. Mixed linear model results for primer pairs A-C listing the AFLP markers 
associated with the hop downy mildew resistant phenotype, p-values and marker R2 
values. 
 

Marker p-value R2 
A1 0.0497 0.0365 
A2 0.0057 0.0705 
A6 0.0018 0.0885 
A12 0.0314 0.0438 
A71 0.0236 0.0480 
B11 0.0257 0.0465 
B13 0.0301 0.0445 
B20 0.0370 0.0415 
B21 0.0239 0.0482 
B58 0.0240 0.0480 
B69 0.0151 0.0549 
B70 <0.001 0.1023 
B91 0.0191 0.0522 
C8 0.0386 0.0403 
C18 0.0406 0.0397 
C49 0.0037 0.0785 
C73 0.0240 0.0480 
C75 0.0099 0.0627 
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Table 2.4B. Mixed linear model results for primer pairs D-F listing the AFLP markers 
associated with the hop downy mildew resistant phenotype, p-values and marker R2 
values. 
 

Marker p-value R2 
D17 0.0468 0.0371 
D18 0.0168 0.0532 
D60 0.0303 0.0442 
D75 0.0265 0.0464 
D77 <0.001 0.1083 
D79 0.0128 0.0586 
D92 0.0449 0.0380 
D96 <0.001 0.1037 
E8 0.0224 0.0495 
E28 0.0191 0.0523 
E30 0.0085 0.0641 
E40 0.0392 0.0401 
E44 <0.001 0.0949 
E47 0.0227 0.0485 
E68 0.0440 0.0386 
E79 0.0152 0.0558 
E84 0.0338 0.0425 
E87 0.0274 0.0459 
E91 0.0018 0.0888 
E95 0.0419 0.0389 
E107 0.0049 0.0748 
E111 0.0019 0.0881 
F57 0.0068 0.0688 
F59 0.0071 0.0673 
F83 0.0407 0.0393 
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ABSTRACT 

 

 New protocols were developed to extract, isolate and recover oospores of 

[Pseudoperonospora humuli Miyabe and Tak. (Wil.)] from hopyard soil and cotyledon 

material of hop (Humulus lupulus L.).  Oospores extracted from autoclaved-treated 

and untreated hopyard soil and those generated in situ in cotyledons were used for 

observational studies on germination and MTT staining.  Oospores extracted from soil 

were washed through a series of wet sieves, collected, run through density 

centrifugation with a final wash and placed in de-ionized water.  Oospores were 

produced in cotyledons by inoculating hop seedlings with zoosporangia.  After six 

days of incubation, the cotyledons were collected and air dried.  Oospores were 

extracted from cotyledons by repeatedly grinding wetted plant material in a mortar and 

pestle and processing the material through a series of sieves.  The oospore inoculum 

was given a final wash and placed in de-ionized water.  Oospore counts per g soil were 

calculated and analyzed with a Kruskal-Wallis rank sum test.  There were significant 

differences in mean ranks between autoclaved and non-autoclaved samples and among 

MTT color categories while there was no significant difference in mean ranks among 

the samples.  Germination of oospores occurred two to eight weeks after slide 

preparation.  Our results indicate that oospores of P. humuli can germinate in vitro and, 

therefore, may play a role in the epidemiology of hop downy mildew.  In addition, we 

suggest colored formazan production may result from a chemical reduction of NADH 

and, therefore, the use of MTT as a test for viability of oospores must be reexamined. 
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INTRODUCTION 

 

Pseudoperonospora humuli Miyabe and Tak. (Wil.), the causal agent of hop 

downy mildew, has become a widespread pathogen affecting most of the hop growing 

regions of the world.  It is an obligate pathogen specific to hop.  If left unchecked, 

both cone quality and crop yield are affected and in severe cases, complete yield loss 

and plant death can occur.  Although downy mildew of hop was first discovered in 

North America almost 100 years ago (Davis 1910), there are still numerous 

unanswered questions concerning the epidemiology of this disease. 

Ware (1926) studied hop downy mildew and the mycelial invasion of the host 

plant.  While oospores were observed within the pith of dormant buds (Ware 1929), 

numerous attempts failed to result in any observable germination.  Thus, it was 

concluded that the pathogen over-winters as mycelium in the dormant crown buds 

(Ware 1929) and oospores do not play a significant role in the disease epidemiology.  

These conclusions were later confirmed by Skotland (1961).  However, Skotland and 

Johnson (1983) reported that the over-wintering role of oospores remained unclear and 

in wet environments, where resistant cultivars are grown, the germinating oospore 

may be an important source of primary inoculum.  Royle and Kremheller (1981) 

agreed with Ware (1929) and suggested that the importance of oospores seems to have 

been exaggerated and imply that this belief is at least in part due to repeated failures in 

England and Poland to induce germination under laboratory conditions. 

However, oospores from P. humuli have been reported to germinate in vitro 

(Arens 1929; Bressman and Nichols 1933) and are formed in leaves (Hoerner 1949, 

Royle and Kremheller and 1981), shoots and cones (Royle and Kremheller and 1981), 

and in pith tissue within crown and bud (Ware 1929; Royle and Kremheller and 1981).  

Thus, there is potential that oospores could serve as the inoculum source for basal 

spikes that originate in the spring. 

Unfortunately, very little is known about oospore production and germination 

in P. humuli.  A major factor contributing to this lack of information is that it is very 
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difficult to collect sufficient quantities of oospores from the field for observational 

studies on germination.  In warmer locations such as Washington, USA , oospore 

production is rare or non-existent (Chee et al. 2006).  Oospores of P. humuli have been 

produced in abundance by sowing ‘Late Cluster’ seedlings and inoculating the 

cotyledons with minute portions of infected leaves obtained from basal spikes (Jones 

1932b).  Recently, Chee and Klein (1998) reported on the production of oospores in 

the laboratory as a function of temperature.  Therefore, this information may prove 

useful in future investigations aimed at learning the precise role (if any) that the 

oospore plays in the downy mildew disease cycle. 

Tetrazolium salts have been used for many years in oxidative-reduction 

histochemistry (Altman 1974; Altman 1976).  During this time, tetrazolium salts have 

been used as a vitality assay in seeds (MacKay 1972; Van Waes and Debergh 1986), 

pollen (Binder et al. 1974) and oospores (Sutherland and Cohen 1983; Cohen 1984; 

El-Hamalawi and Erwin 1986; Jiang and Erwin 1990; Van der Gaag 1994).  MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) is reduced within 

the electron transport chain at the Co-enzyme Q/Cytochrome b site in plant tissue 

(Gahan and Kalina 1968).  Within living cells, MTT is reduced to form insoluble 

colored formazans by dehydrogenase enzymes.  The formation of different colored 

formazans is partly dependent on concentrations of chelating ions (copper, cobalt, 

silver and nickel) and solvent polarity, however, the formation of colored formazans 

never indicates a negative reaction (Altman 1974). 

 A major problem with MTT as a viability stain for oospores is that color is 

often seen in the control spores (Sutherland and Cohen 1983; Meier and Charvat 1993; 

Van der Gaag 1994; Medina and Platt 1999).  In addition, the interpretation of color 

varies among researchers.  Sutherland and Cohen (1983) and El-Hamalawi and Erwin 

(1986) reported that rose-colored oospores are dormant, active oospores are blue and 

non-viable oospores are black or unstained.  Bowers et al. (1990) reported red-stained 

oospores were considered viable while black and non-stained were nonviable.   

Similar to Bowers’ report, Van der Gaag and Frinking (1997) make no mention of 
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blue-stained oospores and assume red-stained to be viable with black and clear non-

viable. 

 The objectives of this research were to develop techniques for collection of 

large quantities of oospores and examine the potential for oospore germination.  To 

accomplish these objectives, oospores from several sources were isolated and 

incubated for several weeks under conditions suitable for germination and stained with 

MTT viability stain. 
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MATERIALS AND METHODS 

 

Production of oospores from plant material 

 Oospores used in the studies were obtained by inoculating hop cotyledons as 

described by Jones (1932b) with some modifications.  Hop seeds were stratified 

similar to Haunold and Zimmerman (1972).  The seeds were surface sterilized in 5% 

sodium hypochlorite, washed and stratified in autoclaved moist peat moss for eight 

weeks at 4°C.  Seeds were sown in flats of Sunshine™ BX-Mix and placed on a 

greenhouse bench and watered as needed.  When the first primary leaf was apparent, 

the seedlings were sprayed with a 2 x 104 zoosporangia/ml suspension that was 

obtained by washing sporulating hop leaves collected at the USDA-ARS Hop 

Research Station outside Corvallis OR in de-ionized (DI) water.  Zoosporangia 

concentration was estimated using a haemacytometer.  The flats of seedlings were 

bagged overnight then incubated on a greenhouse bench with the bags removed at 

26°C for 6 days prior to inducing sporulation.  Sporulation was induced by misting the 

flats with DI water and bagging them overnight.  The cotyledons showing signs and 

symptoms of downy mildew were harvested and allowed to air dry for two weeks. 

 

Extraction of oospores from plant tissue 

Dried cotyledon material was wetted with DI water and gently ground using a 

mortar and pestle.  The suspension was passed through a series of sieves (250, 90, 75, 

50, 35 and 25μ mesh) with the oospores being concentrated on the 35μ and 25μ sieves.  

Material remaining on the 250, 90, 75 and 50μ sieves was re-collected, ground and 

passed through the sieve series for further collection.  This process was repeated until 

less than 10% of the original material remained.  Once the grinding and sieving steps 

were complete, the oospore/tissue mixture was suspended in 0.05M citrate buffer pH 

4.6.  An equal volume of a buffered solution of cellulase (4mg/ml in 0.05M citrate 

buffer, pH 4.6) was mixed with the oospore suspension and incubated for 2 hours at 

20°C.  After incubation, the macerated suspension was placed in the 25μ sieve and 
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rinsed with DI water for 5 minutes.  The oospores were collected in a small beaker and 

brought up to 10ml with DI water amended with 200ug/ml ampicillin to inhibit the 

growth of bacteria. 

 

Extraction of oospores from soil 

Eight soil samples were collected from the top 6cm of soil and duff above the 

hop crowns at the USDA Hop Research farm outside Corvallis, OR.  The soil samples 

were dried and 500g were used for subsequent analysis.  The treatment samples (4) 

were autoclaved for 60 minutes allowed to cool and then re-autoclaved an additional 

60 minutes.  The control samples (4) were only air-dried before weighing.  The 

samples were washed through a series of sieves (225, 75, 53 and 25μ).  The material 

remaining in the 25μ sieve was washed into a 500ml centrifuge tube to which 300ml 

of 70% sucrose solution and DI water was added for a final volume of 500ml.  The 

suspension was centrifuged at 3500rpm for 5 minutes.  The resulting supernatant was 

strained through a 25μ sieve and the remaining material was collected with 1mM 

potassium phosphate buffer pH 6.3 to a volume of 10ml.  Viability of the oospore 

populations was estimated using tetrazolium bromide (MTT) (Spring and Zipper 2000; 

Van Der Gaag and Frinking 1997).  Number of oospores/g soil was calculated by 

counting the number of oospores in four 75μl subsamples/soil sample. 

 

MTT stain of oospores 

Viability of oospores was estimated with 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-2H-tetrazolium bromide (MTT) according to Van der Gaag (1994).  

Oospores extracted from soil were allowed to incubate for two weeks in DI water 

containing ampicillin prior to staining with MTT in an attempt to catch and stain a 

germination event in progress.  After the initial incubation period, both the control and 

treatment oospores were incubated for 36h in a 0.1% MTT solution in a 1mM 

potassium phosphate buffer (pH 6.3) at 37°C.  The MTT oospore suspensions were 

vortexed and a 50ul sample was transferred to a microscope slide, covered with a 
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coverslip, and edges sealed with nail polish to prevent evaporation.  Violet/blue, red, 

chestnut-brown, clear and black soil-borne oospores were counted.  Clear oospores 

were considered non-viable and chestnut-brown oospores were considered viable but 

dormant while violet/blue and red-stained oospores were considered viable. 

 

Data analysis 

A Kruskal-Wallis test was used to test the null hypothesis (HO) that the mean 

ranks of samples were the same between the control and autoclaved samples and 

among the color categories and samples (Table 3.1) using SAS Version 9.1© for 

windows as the count data were non-normally distributed (SAS Institute, Cary, NC). 

 

Germination of oospores 

An oospore suspension was mixed and 50μl aliquots were transferred to 

(25x75x1mm) microscope slides and covered with (22x40mm No.1) cover-slips.  Nail 

polish was used to border the cover slips to prevent evaporation.  Daily observations 

were made and upon completion of the day’s observations, the slides were placed in 

petri dishes containing wetted filter paper and wrapped with Parafilm™.  Observations 

continued over an eight-week or more period as necessary.  Germination images were 

obtained using a Leica DMRB™ compound microscope at 400x magnification and 

SPOT RT Color™ digital camera model 2.2.1 (Diagnostic Instruments Inc., Sterling 

Heights, MI) processed with Image Pro™ 3.1 software (Leeds Precision Instruments, 

Minneapolis, MN) with some finishing in Photoshop v 8.0™ (Adobe Systems Inc, San 

Jose, CA). 
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RESULTS 

 

Quantification of oospores 

The average number of oospores/g soil in the non-autoclaved control was 

14.75 ± 0.59 and was greater than the autoclaved treatment, 7.73 ± 0.37.  Kruskal-

Wallis test results suggested there was a statistically significant difference between 

mean ranks in the autoclaved versus the non-autoclaved counts (p-value < 0.001) 

(Table 3.1).  There were also statistically significant differences among the mean 

ranks in the four color categories (p-value < 0.001) while initial grouping of samples 

into two replicates per treatment showed no statistically significant differences in 

mean ranks among the replicates (p-value = 0.7860) (Table 3.1). 

 

Oospore germination 

Oospores were often observed with distinct nuclei and ooplast (Figure 3.1A 

and B) and ranged from 25μ to 50μ in diameter.  Initial signs of oospore germination 

began approximately two weeks after preparation of the wet mounts.  Germination 

occurred in the presence or absence of the oogonium wall and the germ tubes varied in 

size, branching patterns and thickness (Figure 3.1C, D, E and G).  One oospore 

showed swelling at the tip of what appeared to be a germ tube with dense refractory 

elements forming with the oogonium wall intact (Figure 3.1C).  After approximately 

four weeks of incubation, we observed a pair of fused oospores with two thick germ 

tubes which contained dense cytoplasmic material (Figure 3.1D).  After approximately 

six weeks of incubation, the oospores appeared to have split open and expelled large 

circular ‘sporangium-like’ structures attached to a short, thick germ tube (Figure 3.1E 

and F).  Once the oospores split open, we observed small ‘zoospore-like’ bodies that 

were approximately 15μ in diameter which began to germinate (Figure 3.1L and M). 
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DISCUSSION 

 

Oospore extraction and quantification 

 Effective techniques were developed for the formation, extraction, recovery 

and germination of oospores of P. humuli.  These techniques allowed for quick and 

prolific production in addition to precise soil-borne estimates.  We learned an 

outstanding way to obtain prolific amounts of oospores quickly by inoculating hop 

cotyledons.  The original technique reported by Jones (1932b) used ‘Late Cluster’ 

seedlings because that was one of the few cultivated varieties available in North 

America at that time in addition to it being very susceptible to hop downy mildew.  

After numerous experiments involving seeds derived from crosses with wild-

American varieties, we learned that oospore production in hop cotyledons appeared to 

be a general cotyledon-based phenomenon and not restricted to the downy mildew 

susceptible Late Cluster (Unpublished data, APPENDIX B). 

 Mortar and pestle as tools to extract oospores from plant tissue proved to be an 

excellent method to finely grind plant tissue that resulted in the consistent exaction of 

thousands of oospores from the plant tissue.  In addition, the further inclusion of a 

cellulase maceration step helped to release even more oospores from the plant tissue.  

Using a modified isolation technique based on those described in Van der Gaag and 

Frinking (1996), we isolated large amounts of oospores from P. humuli using a series 

of sieves.  Using these techniques, we found no need for further isolation techniques 

as there was very little plant tissue left in suspension following the sieving procedures.  

These combined steps allow for the generation of large supplies of oospores from 

which further studies on hop downy mildew can be pursued. 

 The extraction, isolation and recovery of oospores from soil samples were also 

successful.  Although 500g samples were large and it was very time-consuming 

process, the results showed that the samples were uniform as the ranks among sample 

counts were statistically similar (Table 3.1).  It is unclear why there were differences 

between ranks for the autoclaved and non-autoclaved samples (Table 3.1).  One 
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possible explanation may be the autoclaving procedure itself.  Autoclaving oospores 

for two hours may have compromised the cellular integrity of the oospores.  In doing 

so, the compromised oospores may have leaked their contents, lost buoyancy and 

settled out during centrifugation.  Additional research is required to test this 

hypothesis. 

 

MTT staining of oospores 

The significant difference in mean ranks among the MTT color categories 

suggests nothing.  Most scientists agree that black oospores are dead (Van der Gaag 

and Frinking 1997; Medina and Platt 1999; Spring and Zipper 2000).  Because MTT 

has been reported as an enzymatically induced stain, theoretically, dead cells should 

not stain.  It has been hypothesized that the formation of colored formazans in the 

autoclaved samples may be the result of dead oospores being parasitized by 

mycoparasites (Nelson and Olsen 1967; Van der Gaag and Frinking 1997).  However, 

there may be another explanation. 

Altman (1974 and 1976) indicated that MTT can undergo a chemical reduction 

in the presence of NADH.  In addition, several other non-enzymatic compounds have 

been identified as having the ability to reduce MTT under elevated temperatures 

(Hamed 2004).  If non-enzymatic, chemical reduction of tetrazolium salts takes place 

within the oospores, there would be no way to accurately differentiate between viable 

and dead cells.  An incubation temperature of 37°C for 36h in an MTT solution may 

result in the chemical reduction of MTT thereby causing a false-positive, non-

dehydrogenase-specific staining reaction.  If Altman (1974 and 1976) was correct, 

MTT should be used with caution as a test for viability within oomycota or other 

living systems.  Certainly, this potential for false-positive staining could result in the 

possibility that a number of oospores were alive prior to MTT staining and an 

unknown amount of the observed black-stained spores, or false-positives, were 

actually viable spores. 
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Oospore germination 

 Although germination of the hop downy mildew oospore was infrequent, there 

was visual evidence to suggest that germination had occurred on the in vitro wet 

mounts.  The thick germ tubes which appeared to contain dense cytoplasm are 

indicative of germination (Figure 3.1D, E, F and G).  In addition, the large 

‘sporangium-like’ structures closely resemble those reported by Rooms of Diaz and 

Polanco (1984).  The ‘zoospore-like’ bodies (Figure 3.1L and M) were larger than 

those reported for hop downy mildew (~15μ vs. 10μ for zoospores coming from 

asexual zoosporangia), these ‘zoospore-like’ bodies appeared to have originated from 

the oospore.  With little documented evidence of oospore germination, it is unclear 

whether zoospores derived from oospore germination would be similar in size as those 

derived from asexual zoosporangia. 

 

Chestnut-brown oospore 

During oospore extraction, we discovered a chestnut-brown color variant in all 

of our soil samples.  Reviewing oospore literature revealed this color variant had not 

been previously reported.  The brown color was observed in all the soil-borne 

extraction samples, however, none of our cotyledon-borne oospore samples showed 

this distinctive color phase.  Therefore, we hypothesize the chestnut-brown color may 

be a sign of dormancy.  Dormancy may be a common survival technique in P. humuli 

because most of the observed oospores extracted from the soil were chestnut-brown. 

Although some cotyledon-borne oospores appear to have some shade of brown 

within the cytoplasm and parts of the inner oogonium wall (Figure 3.1C, D, E and F), 

none were like the soil-borne oospores which showed a complete chestnut-brown 

staining throughout the entire cell wall similar to those in the MTT staining 

experiment (Figure 3.1J and K).  In addition, observations of the MTT staining results 

suggest the stain was unable to enter the ‘dormant’ cells.  Brown formazan (to our 

knowledge) has not been reported and the chestnut-brown oospores in the MTT 

samples appeared identical to dormant oospores observed during extraction.  Although 
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this does not prove the brown color variants produced melanin, are dormant or if the 

MTT contributed to the brown stain, it does suggest the possibility that a high 

molecular weight compound may be formed in the cells which may prevent the uptake 

of MTT into the cells. 

The onset of dormancy is a costly process for the cell and we suggest this 

process begins weeks, if not months after the oospores are initially produced in the 

plant tissue.  This would help explain the chestnut-brown color variant observed in all 

the soil-borne samples while being absent in the cotyledon-borne samples.  In addition, 

melanization would help explain why the MTT-stained samples with brown oospores 

appeared identical to our observations on unstained oospores.  Although color is a 

very subjective analysis, the observed differences between cotyledon-borne and soil-

borne oospores were quite distinct and it will be interesting to see if others discover 

this color variant within their systems in the future. 

 

Conclusion 

With the aid of these new extraction and isolation protocols, we studied the 

potential viability and germination capacity in order to learn more about the sexual 

spore of P. humuli.  This study was initiated in part due to lack of published 

information concerning the hop downy mildew oospore.  In the course of our 

investigation, we discovered previously reported information which may help explain 

the inconsistent results obtained by studying the potential viability of soil-borne hop 

downy mildew oospores. 

The observations and hypotheses reported by Altman (1974 and 1976) 

suggesting that MTT can undergo both enzymatic and non-enzymatic reduction are 

appealing given our results.  We hypothesize that a temperature induced chemical 

reduction of tetrazolium salts by NADH could potentially have resulted in some non-

enzymatic reduction of MTT in the autoclaved samples.  However, our studies were 

not designed to test this hypothesis and simply suggest that chemical reduction might 

have occurred.  Undoubtedly, scientists should reconsider the use of MTT, or the 
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methodology of use, as a viability stain in living systems.  We propose that the 

oospore of P. humuli has the ability germinate in vitro, which is in agreement with 

(Arens 1929; Bressman and Nichols 1933).  It is not clear whether oospore 

germination has a significant role in the epidemiology of hop downy mildew.  Our 

observations suggest that P. humuli oospores germinate and therefore, may play a role 

in the epidemiology of this disease. 

There continues to be disagreement as to whether hop downy mildew over-

winters as mycelium in dormant hop crowns or as oospores.  Numerous macro-and 

microscopic observations (Salmon and Ware 1925; Ware 1926; Ware 1929; Coley-

Smith 1960; Skotland 1961) led to the conclusion that hop downy mildew over-

winters in the dormant buds and tissue within the crown of the hop plant.  However, it 

doesn’t appear that these investigations were performed on infected crowns harvested 

during winter or tests run to determine if observed mycelium were viable. 

However, Arens (1929) made detailed observations of the mycelium within the 

hop crowns and strap cutting and he reported that the mycelium were dead due to the 

presence of shriveled fungal nuclei and the absence of staining with haematoxylin; 

thus suggesting that mycelium were not viable and could not serve as over-wintering 

structures.  Further support for oospores serving as one of the over-wintering 

structures of P. humuli comes from inoculation studies of Coley-Smith (1960).  When 

healthy hop plants were infected with oospore inoculum, 7% developed basal spikes 

(Coley-Smith 1960).  Also, as mentioned earlier, oospores have been found to reside 

in the pith of dormant buds (Ware 1929).  These data appear to suggest that oospores 

may play an important role in the over-wintering of P. humuli and the development of 

basal spikes in the spring.  Based on the previous work by Arens (1929) and Bressman 

and Nichols (1933) in conjunction with our own observations, we agree with the 

hypothesis that P. humuli oospores have the potential to over-winter inside the 

dormant buds and contribute to infection during the breaking of dormancy.  Once 

dormancy in hop is broken in the spring, the oospores germinate resulting in the 

initiation of the disease symptoms. 
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Preliminary molecular data (Chee et al. 2006) suggests that there is a large 

degree of genetic heterogeneity among the P. humuli population in Oregon and to a 

lesser extent in Washington.  At the same time, Neve (1991) reports that plant 

resistance to P. humuli is under polygenic control and that no major gene action has 

been observed.  These two observations suggest that sexual recombination is occurring 

in the field and that oospores may play a more important role in the epidemiology of 

hop downy mildew than previously thought.  It is clear that further investigation of the 

role of oospores in the epidemiology of hop downy mildew is warranted in order to 

determine the role of oospores in over-wintering and disease development and what 

effect this has on plant breeding efforts. 
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Table 3.1. Kruskal-Wallis test for soil-borne oospore data.  Spore counts were analyzed to test for similarity between  
mean rank scores and were performed according to treatment, color category and sample number with respective p-values. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  *Significant at the 0.0001 level 

 

 N Sum of Scores Expected 

Under HO 

Std. Dev. 

Under HO 

Mean Score Chi-Sq. DF Pr >Chi Sq. 

Treatment         

Control 64 5112.50 4128.0 209.37 79.88 22.11 1 <0.0001* 

Auto 64 3143.50 4128.0 209.37 49.12    

Color         

Black 32 3261.0 2064.0 181.32 101.91 57.98 3 <0.0001* 

Chestnut 32 2305.0 2064.0 181.32 72.03    

Violet 32 1253.0 2064.0 181.32 39.16    

Clear 32 1437.0 2064.0 181.32 44.91    

Sample         

1 32 2002.0 2064.0 181.32 62.56 1.06 3 0.7860 

2 32 2173.0 2064.0 181.32 67.91    

3 32 2162.5 2064.0 181.32 67.57    

4 32 1918.5 2064.0 181.32 59.95    
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Figure 3.1.  Oospores and zoospores in the process of germination.  The figure shows 
both unstained and MTT stained oospores using the following key: A-G) Cotyledon-
borne oospores, H-K) Soil-borne oospores, L-M) ‘Zoospore-like’ bodies from 
cotyledon-borne oospores, A) Oospore with well formed nuclei (n), B) Oospore with 
distinct ooplast (op) and antheridia (a), C) Oospore germinating with presence of 
oogonium wall (ow), empty antheridia (ea) and a germ tube (gt), D) Two fused 
oospores with two germ tubes (gt), E) Oospore cracked open and expelling a 
‘sporangium-like’ (sp) body on top of a short, thick germ tube (gt), F) Second oospore 
expelling a ‘sporangium-like’ (sp) body on top of a thick germ tube (gt), G) MTT-
stained oospore showing blue formazan production and a well defined germ tube (gt), 
H) Black formazan production, I) Uneven black/blue formazan production within an 
oospore, J-K) Chestnut-brown oospores, L-M) ‘Zoospore-like’ (zs) bodies which are 
in the process of germination. 
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Figure 3.1. Oospores and zoospores in the process of germination. 
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Statistical Modeling of Epistasis and Linkage Decay using Logic Regression 
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ABSTRACT 

 

Epistatic interactions are an important but often overlooked component of 

genetic models.  Traditional linear methods in QTL analysis identify model epistasis 

and potentially result in the supposition that all observed genetic interactions are due 

to additive genetic effects.  Logic regression has been identified as a tool that can 

identify both additive interactions as well as complex, non-additive genetic 

interactions.  We propose that logic regression is an alternative and robust method for 

identification and classification of genetic models involving non-additive epistatic 

interaction.  Logic regression, TASSEL-GLM and SAS-GLM were compared for 

analytical precision using a previously characterized model system to identify the best 

genetic model explaining epistatic interaction for vernalization-sensitivity in barley.  

We also analyzed logic regression’s precision at identifying models in the presence of 

partially-linked randomly generated markers.  Logic regression identified the correct 

epistatic model containing the two molecular markers identified in vernalization 

response in barley.  TASSEL-GLM and SAS-GLM both identified VRN-H1 and VRN-

H2 as being associated with the days to flowering phenotype, however, they also 

identified random generated markers as being associated with the phenotype.  When 

the significant markers were analyzed in full models, a spurious interaction was falsely 

identified.  Linkage decay results demonstrated that randomly generated, less-tightly 

linked markers were correctly identified down to 50% linkage.  Based on these results, 

logic regression may be a useful tool for identification and modeling non-additive 

forms of epistasis. 
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INTRODUCTION 

 

Epistatic interactions have been long thought to play a vital role in the 

evolutionary diversification of species (Wright 1931).  It is currently believed that 

epistasis plays a central role in the maintenance of genetic variation (Weinig et al. 

2003) and in the evolution of species (Orr 1995).  Recently, researchers identified 

epistatic interactions in the FRI and FLC flowering time genes in Arabidopsis.  These 

genes are thought to play a role in the generation of a latitude cline in the species 

(Caicedo et al. 2004).  In addition, quantitative trait loci (QTL) analysis identified 

epistatic interactions that resulted in natural phenotypic variation in Arabidopsis 

(Ungerer et al. 2002; Weinig et al. 2003), Drosophila (Dilda and Mackay 2002) and 

Caenorhabditis elegans (Shook and Johnson 1999). 

Quantitative trait loci present a greater challenge in identification and mapping 

than simple Mendelian traits.  In the simplest form, QTL identification is performed 

by individual associations identified between a molecular marker and a phenotype by 

linear regression analysis (Kearsey and Hyne 1994; Hyne and Kearsey 1995).  When a 

particular marker is associated with a statistically significant phenotypic mean, it is 

reasonable to conclude that there is a QTL for that trait tightly linked with that marker.  

In situations where marker density is low, associations between molecular markers 

and a QTL can be identified using simple linear regression or least squares (Darvasi et 

al. 1993).  However, these tests are limited to identifying QTLs with reasonably tight 

linkage to the markers (van Ooijen 1992) and epistatic interactions between markers 

cannot be identified. 

Linkage analysis involving interval mapping and composite interval mapping 

has been used to overcome some of the shortcomings of simple linear regression by 

providing greater statistical power.  Although modern linkage analysis can identify 

statistically significant QTL between two flanking markers and account for the effects 

of additional QTL at other loci, there are some drawbacks to this approach.  Linkage 

analysis is time-consuming, expensive and the information gained may be of limited 
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use as only one cross from a population is made to form a recombinant population.  

Therefore, extrapolations to other individuals and populations may be spurious 

(Verhoeven et al. 2006). 

 Recent advances in adaptive regression methodology have been developed to 

explore high-order interactions in genomic data (Kooperberg et al. 2001; Ruczinski et 

al. 2003; Ruczinski et al. 2004).  One such technique, logic regression, utilizes a 

simulated annealing algorithm to identify statistical models for binary data sets.  Logic 

regression constructs models consisting of Boolean combinations of binary covariates 

(Ruczinski et al. 2003).  With X1…Xk as binary predictors and Y as the response, 

logic regression will fit regression models in the form g(E[Y]) = 0β + ∑
=

t

j
jj L

1
β , where 

jL  is a Boolean expression of the predictors Xi (Ruczinski et al. 2003).  These are 

collectively called logic models.  In evaluating models of varying sizes, logic 

regression looks for signal vs. noise in the data set.  In statistical modeling, signal is 

identified by asking whether the slope (b) is equal to zero or not equal to zero.  Signal 

is when X is associated with Y.  When additional covariates not associated with Y are 

added to the model, this is considered noise.  By evaluating models of various sizes for 

signal vs. noise, researchers can determine the level of over-fitting (noise) in each 

model-size class.  In addition, potentially troublesome data sets where there are 

unacceptable levels of noise are quickly identified so that no further time is wasted in 

the analysis of these problematic data sets. 

Logic regression has many potential benefits when compared to traditional 

QTL linkage mapping.  This methodology does not require data obtained from time-

consuming and expensive recombinant inbred line progeny although one can use data 

from such populations.  Logic regression offers numerous scoring functions for linear 

regression (residual sums of square), logistic regression (deviance), classification 

(misclassification) and proportional harzards models (partial likelihood).  In addition, 

the software allows for inclusion of binary or non-binary additive predictors in the 

model.  Furthermore, by creating statistical models consisting of Boolean 
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combinations of binary covariates, this statistical methodology shows promise in the 

identification of dominant forms of epistatic interactions between molecular markers. 

The epistatic interaction of alleles at the VRN-H1, VRN-H2 and VRN-H3 locus 

is the hypothesized determinant for vernalization-sensitivity in cultivated barley 

(Hordeum vulgare subsp. vulgare) (Takahashi and Yasuda 1971). There is no allelic 

variation at VRN-H3 in most cultivated barley genotypes, reducing the genetic model 

to a two-locus epistatic model (Takahashi and Yasuda 1971).  VRN-H2 encodes a 

dominant flowering repressor (ZCCT-H) down-regulated by vernalization (Yan et al. 

2004). VRN-H1 is a MADS-box floral meristem identity gene (HvBM5A) (Danyluk et 

al. 2003; Yan et al. 2003) and large deletions within the first intron result in a 

dominant VRN-H1 allele and spring growth habit (Fu et al. 2005; von Zitzewitz et al. 

2005).  A molecular model has been recently proposed to explain the VRN-H2/VRN-

H1 epistatic interaction where dominant VRN-H2 inhibits the expression of recessive 

VRN-H1 alleles (Yan et al. 2004).  Based on this model, genotypes with VRN-

H2_/vrn-H1vrn-H1/vrn-H3vrn-H3 allelic architecture flower late in the absence of 

vernalization (vernalization-sensitive) and all other allelic configurations lead to a lack 

of significant vernalization-sensitivity.  This well validated epistatic interaction 

(reviewed in Szűcs et al. 2007) was used as a model system to test the ability of logic 

regression in identifying epistasis in binary molecular data. 

The objective of this work was to determine whether logic regression can be 

used to identify the interaction between molecular markers associated with the days to 

flowering phenotype in barley with little or no spurious associations and to compare 

logic regression with traditional modeling techniques.  In addition, we wanted to 

determine logic regression’s capabilities at identifying spurious associations using a 

linkage decay series. 
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MATERIALS AND METHODS 

 

Plant material, phenotype and data set 

‘Dicktoo’ (vrn-H2vrn-H2/vrn-H1vrn-H1), ‘Calicuchima’-sib (Vrn-H2Vrn-

H2/Vrn-H1Vrn-H1) and the ‘Oregon Wolf Barley Dominant’ genetic stock (hereafter 

referred to as ‘OWB-D’) (Vrn-H2Vrn-H2/Vrn-H1Vrn-H1) are vernalization-

insensitive barley genotypes (Szűcs et al. 2007).  ‘Dicktoo’ was crossed with 

‘Calicuchima’-sib and ‘OWB-D’ and two F2 populations were established (Szűcs et al. 

2007).  Flowering time was measured for all unvernalized F2 plants grown under long-

day greenhouse conditions with supplemental lighting and constant temperature 

according to Szűcs et al. (2007).  Previously reported gene-specific primers were used 

to assign VRN-H2 and VRN-H1 allele-types for each F2 individual (Szűcs et al. 2007).  

We sequenced the recently cloned VRN-H3 gene (Yan et al. 2006) from the three 

parents and confirmed that ‘Calicuchima’-sib (EU007825), ‘Dicktoo’ (EU007827), 

and OWB-D (EU007829) have the recessive allele. 

The VRN-H1 and VRN-H2 molecular markers were coded as binary.  The 

heterozygotes were bulked with the homozygous dominants and scored as 1 while the 

homozygous recessives were scored as 0.  In addition to the actual molecular markers, 

VRN-H1 and VRN-H2, we created 100 randomized binary markers (simulated data) for 

a total of 102 binary markers. 

 

Logic regression analysis 

To test the null hypothesis that logic regression cannot identify the epistatic 

interaction in barley, the datasets from the two F2 populations were modeled with 

Logic Regression© using the linear regression scoring function (Kooperberg and 

Ruczinski 2005).  Days to flowering was used as the continuous response variable and 

the molecular marker data were used as binary predictors.  Initially, logic regression 

was allowed to choose the high and low temperatures for the simulated annealing 

algorithm using a single-fit selection with one tree.  Once the program chose the 
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annealing algorithm parameters, the high and low temperatures were optimized 

according to the author’s instructions (Kooperberg and Ruczinski 2005) for selection 

of a single-fit model.  After analyzing the single-fit model data, multiple-fit model 

selection was performed for use in model selection.  When the results warranted 

further investigation, we performed null model tests to test for statistical signal vs. 

noise in the data.  Upon verification of a strong statistical signal with little noise, we 

ran a cross-validation test to identify the logic trees with the best predictive capability.  

In the final step, permutation tests were run to confirm the results of the search 

algorithm so that we could positively identify the best model that describes the 

association between predictors and response. 

 

TASSEL analysis 

 The two F2 datasets were analyzed using the association mapping software 

TASSEL©-GLM (Trait analysis by association evolution and linkage) (Zhang et al. 

2006).  The binary coded two vernalization markers and the 100 randomly generated 

markers were imported into TASSEL along with the phenotypic matrix.  A population 

structure matrix called the Q-matrix was designed to suggest a single population for 

our data.  The general linear model function was selected for analysis. 

 

SAS-GLM 

 Analysis of variance was performed on both F2 datasets using the general 

linear model (GLM) of SAS Version 9.1© (SAS Institute, Cary, NC).  The individual 

markers which were identified as being significantly associated with the phenotype in 

TASSEL were analyzed in SAS using a type III fixed effects model analysis to 

confirm the single marker association results in TASSEL.  A type III fixed effects full 

model containing all the significantly associated markers was performed in SAS to 

identify marker interactions. 

 



 
 

 

77

Linkage decay data set 

Spurious associations between trait and randomly generated markers were 

tested with logic regression using a linkage decay series to determine the point at 

which logic regression could no longer make valid associations between truly linked 

markers and random noise.  Two randomly generated sets of linkage decay markers 

were created each set based upon one of the F2 populations in our study.  Both sets of 

linkage decay markers had 90%, 80%, 70%... 0% similarity to VRN-H1.  Our goal was 

to create randomly generated markers that would decay in a predictable pattern as the 

signal in the data became progressively weaker as the similarity to the original 

vernalization marker decreased (Figure 4.1).  The decay series data was created by 

randomly changing 10% of the 1’s to zeros and using this new linkage decay marker 

as the basis for creating the next marker in the decay series.  Original VRN-H1 and 

VRN-H2 markers were removed from the analysis as they interfered with the analysis 

of the decay series due to their strength of association with the phenotype.  This 

procedure created a linkage decay series where the model association became 

progressively weaker as the linkage to the phenotype decayed resulting in a smooth 

logarithmic response (Figure 4.1). 
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RESULTS 

 

VRN-H1/VRN-H2 model selection 

Logic regression correctly identified the genetic model explaining the epistatic 

interaction of the vernalization alleles in both data sets.  The search resulted in a 

model with a score (residual sums of square) of 12.47 and the equation [+74.9 * 

(VRN-H2 and (not VRN-H1))] for the in the ‘Dicktoo’ x ‘Calicuchima’-sib data and a 

model score 8.825 and the conjugate equation [-85.4 * (VRNH1 or (not VRNH2))] for 

the ‘Dicktoo’ x ‘OWB-D’ data.  The single-fit models were repeated 100 times and it 

was found that the scores (Figure 4.1) and the coefficients of the selected models 

never changed.  In addition, the null model tests suggested that there was a strong 

signal in the data with very little noise because 0% of the model scores were better 

than the best score (Table 4.1A and B). 

The cross validation and the 1000 randomization permutation tests on the 

multiple-fit model analyses confirmed the results of the single-fit model search.  

Cross-validation tests indicated the optimum model to be model two with one tree and 

two leaves as it had the lowest cross-validation test average (Table 4.2A and B).  The 

permutation tests identified the same model with one tree and two leaves as being the 

optimum sized and correct model for the data set as that was the point where the mean 

of the randomization scores stopped decreasing as the model size increased (Table 

4.3A and B). 

 

TASSEL analysis 

TASSEL-GLM results showed VRN-H1 and VRN-H2 as being associated with 

the days to flowering phenotype in the ‘Dicktoo’ x ‘Calicuchima’-sib and ‘Dicktoo’ x 

‘OWB-D’ data (Table 4.4).  TASSEL-GLM also identified the randomly generated 

marker RANDOM 70 as being associated with the days to flowering phenotype in the 

‘Dicktoo’ x ‘Calicuchima’-sib data and randomly generated markers RANDOM 46 
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and RANDOM 58 as being associated with the phenotype in the ‘Dicktoo’ x ‘OWB-

D’ data (Table 4.4). 

 

General linear model analysis of variance 

 The type III fixed effects full model for the ‘Dicktoo’ x ‘Calicuchima’-sib data 

revealed a significant interaction between VRN-H1 and VRN-H2, but there were no 

significant singular effects or interactions with the randomly generated marker 

RANDOM 70 (Table 4.5).  The type III fixed effects full model for the ‘Dicktoo’ x 

‘OWB-D’ data revealed a significant interaction between VRN-H1 and VRN-H2, but 

there were no significant singular effects with either marker RANDOM 46 or marker 

RANDOM 58 (Table 4.6).  GLM identified a spurious interaction between VRN-H1 

and RANDOM 58 (Table 4.6). 

 

Linkage decay 

The linkage decay results for the two data sets showed that they were quite 

different in how they responded in a controlled decay simulation.  The ‘Dicktoo’ x 

‘Calicuchima’-sib data showed less overall variation in single-fit model scores when 

compared with the ‘Dicktoo’ x ‘OWB-D’ data (Figures 4.1 and 4.2).  Closer 

examination of the ‘Dicktoo’ x ‘Calicuchima’-sib data revealed a large increase in 

variation (CV) within the single-fit model selection scores when linkage decay 

reached 40% similar to VRN-H1 (Figure 4.2), which corresponded where logic 

regression could no longer distinguish between linkage decay markers and the 

simulated markers (APPENDIX C).  Also, there were large variations in the single-fit 

model scores for VRN-H2 over multiple runs which resulted in extremely large CVs at 

the initiation of the decay series (Figure 4.2). 

The ‘Dicktoo’ x ‘OWB-D’ data showed more overall variation in single-fit 

model scores, when compared with the ‘Dicktoo’ x ‘Calicuchima’-sib data (Figure 

4.1).  A stable single-fit regression model was only identified when both the markers 

appeared in the data set (Figure 4.1).  Furthermore, large increases in the CV were 
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observed when VRN-H1 was modeled in the linkage decay series (Figure 4.2).  It is 

interesting to note that none of the individual markers in the decay series for this cross 

had a CV of less than 6% (Figure 4.2).  This is in direct contrast with the ‘Dicktoo’ x 

‘Calicuchima’-sib data where all of the individual markers up to 40% similar to VRN-

H1 (the point where logic regression could no longer distinguish between decay and 

dummy markers) had CVs of less than 6% (Figure 4.2). 
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DISCUSSION 

 

Logic regression correctly identified the previously published epistatic 

interaction of VRN-H1 and VRN-H2 (Szűcs et al. 2007) in both the ‘Dicktoo’ x 

‘Calicuchima’-sib and ‘Dicktoo’ x ‘OWB-D’ F2 data.  Logic regression indicated there 

was an epistatic interaction between the two alleles and this interaction was best 

explained by a dominant/recessive epistatic model.  Vernalization in barley is 

hypothesized to be an interaction where dominant VRN-H2 inhibits the expression of 

recessive VRN-H1 alleles (Yan et al. 2004).  Because a dominant/suppression form of 

epistasis has been hypothesized to govern the vernalization response in barley, we 

suggest that logic regression correctly identified this proposed genetic model [+74.9 * 

(VRN-H2 and (not VRN-H1))].  Numerous QTL and genic studies have identified 

multiple loci involved in the expression of a single trait (Carlborg and Haley 2004).  

However, in all these cases, additional studies were required to ascertain the actual 

genetic model defining the interaction of the various loci.  The use of logic regression 

appears to address both problems simultaneously. 

Interval mapping and composite interval mapping have been used successfully 

to identify QTL associated with specific phenotypes that led to the identification of 

statistically significant interactions, or epistasis among QTL (Lefebvre et al. 2003; Ma 

et al. 2006; Shook and Johnson 1999).  However, one can argue that linear modeling 

testing for significant interactions between QTL appears to make assumptions that all 

genetic marker interactions are the result of an interaction of additive genetic effects.  

For example, when the ‘Dicktoo’ x ‘Calicuchima’-sib VRN-H1/VRN-H2 model data 

set was run in TASSEL-GLM and SAS-GLM, both programs identified VRN-H1 and 

VRN-H2 as being associated with days to flowering with p-values < 0.001 (Table 4.4).  

Therefore, analysis using general linear modeling resulted in the following statistical 

model: full linear model [days to flowering ~ VRN-H1 + VRN-H2 + (VRN-H1*VRN-

H2)] vs. the reduced or additive model (days to flowering ~ VRN-H1 + VRN-H2).  An 

F-test for the interaction between VRN-H1 and VRN-H2 determined there was a 
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statistically significant interaction.  If there was no interaction, the full model would 

be rejected in favor of the additive model.  Erroneous modeling resulted from the use 

of both TASSEL-GLM and SAS-GLM, regardless of the model chosen (Tables 4.4 

and 4.6). 

Our results suggest logic regression better identified and modeled 

dominant/suppression epistasis when compared with traditional general linear 

modeling.  Unlike traditional linear modeling, logic regression creates Boolean 

expressions in the form of logic models.  In the formation of logic groups, there are no 

full and reduced models and no assumption of interaction of additive effects.  In 

addition, because logic regression utilizes logic operators and is not limited in model 

assumptions, the best model identified by logic regression should theoretically have 

greater precision in matching the true genetic model in unknown interactions than 

traditional modeling analyses. 

Although TASSEL-GLM and SAS-GLM both identified VRN-H1 and VRN-H2 

as being associated with the days to flowering phenotype, both programs also 

identified random markers as being associated when run with default settings (Tables 

4.4 and 4.6).  It wasn’t until we ran a type III fixed effects full model with all three 

associated markers that RANDOM 70 was rejected from association with the 

phenotype in the ‘Dicktoo’ x ‘Calicuchima’-sib data (Table 4.5).  However, even 

when a type III fixed effects full model was run on the ‘Dicktoo’ x ‘OWB-D’ data, a 

spurious interaction remained (Table 4.6).  These results suggest that a GLM single 

marker QTL analysis using the default settings for association to be less precise than 

logic regression.  One possible explanation for the difference between the two 

modeling approaches may be how the models are generated.  Logic regression creates 

Boolean logic groups prior to performing regression analysis.  Because the logic 

groups are formed prior to regression, individual associations are ignored, in favor of 

the most likely combination of binary predictors which best explain the association to 

the response.  Only when combinations of binary predictors are determined as 

insignificant does logic regression focus on independent predictors for association 
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with the phenotype.  In GLM, the individual markers are identified as being in 

association with the phenotypic response prior to identification of possible interaction. 

Modeling linkage decay helped demonstrate the power of logic regression to 

accurately model data sets where linkage between markers may be incomplete or 

spurious.  Although the value and standard deviation in single-fit model scores 

increased as the decay series progressed (Figure 4.1), these values only show the 

smooth progression within the decay series itself.  The coefficient of variation (CV) is 

a dimensionless value used to quantify uncontrolled experimental error (Patel et al. 

2001).  The coefficient of variation results suggest there were measurable differences 

between the two crosses, however, this data alone does not provide any diagnostic 

information about acceptable levels of variation within the data sets. 

When the CV data was compared with TASSEL-GLM (Table 4.4) and SAS-

GLM (Table 4.6) output, we discovered that the CV may be diagnostic in the 

identification of potentially troublesome data sets.  As the decay series proceeded 

further from actual data (Figure 4.1), there was an increase in noise in the ‘Dicktoo’ x 

‘Calicuchima’-sib data represented by a jump in the CV at 40% similar to VRN-H1 

(Figure 4.2).  This jump in CV within the decay series suggests there may be a limit in 

predictive capability.  Our results suggest the limit of predictability threshold may be 

where there this substantial increase in CV was observed (Figure 4.2).  Comparing CV 

values with the results from the SAS-GLM suggest CVs above 6% may result in the 

modeling of spurious associations.  This was the precise point in the decay series 

where logic regression could no longer differentiate between the decay marker and 

randomly generated markers (APPENDIX C). 

SAS-GLM identified a spurious interaction before running the linkage decay 

series for the ‘Dicktoo’ x ‘OWB-D’ data (Table 4.6).  Therefore, the ‘Dicktoo’ x 

‘OWB-D’ data may be problematic right from the start due to lack of signal.  The 

ANOVA suggest a lack of signal and the CV analysis on the single-fit model scores 

suggest variation above 6% may lead to spurious association (Figure 4.2 and 

APPENDIX C).  In support of the hypothesized threshold, Ruczinski et al. (2003) 
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reported when there are large variations in single-fit model scores during initial model 

identification, there may be problems with the data set.  Unfortunately, it is unclear 

where that cutoff might be.  This was a concern for us and it became one of the major 

reasons for performing the linkage decay series.  Based on our results, we suggest any 

data set that has a single-fit model selection CV of 6% or less should prove a very 

good data set and identify real associations. 

Although logic regression has many strong points, there are some limitations 

inherent in the program.  First, the program handles binary data for markers.  This 

means interactions have some dominant and/or recessive interaction.  However, if the 

goal is to correctly identify and model all forms of epistasis and do so simultaneously, 

logic regression appears to be a very robust statistical process.  Another limitation is 

data analysis for multiple model sizes requires extensive computing capabilities in 

order to run through the required thousands of permutations.  Users should be 

cautioned to perform logic regression on a cluster computer or higher-end mainframe 

computer having the capability to perform simultaneous permutations rather than use 

of a desktop computer.  Despite these limitations, logic regression should prove itself 

useful anywhere logic models are needed to identify complex genetic interaction. 

Our results suggests logic regression works in accurate identification of 

epistatic interaction and that the model building algorithm appears to be more robust 

and accurate when compared with traditional general linear modeling in QTL analysis.  

From a theoretical point of view, logic regression may use the more appropriate 

approach for modeling epistasis by forming logic groups prior to running the 

regression analysis.  More work needs to be done using other documented examples of 

epistasis before definitive statements on the usefulness of the program be made.  

However, it does appear that logic regression is a useful tool in data mining 

applications and provides researchers with a complement to traditional QTL 

identification. 
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Figure 4.1.  The relationship between model score and linkage decay.  The mean (100 
replicates) single-fit model scores (RSS) for 11 categories of linkage decay markers.  
RSS is the residual sums of square with error bars indicating the standard deviation 
from the mean. 
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Figure 4.2.  The coefficients of variation for 100 single-fit model scores for the 
individual single-fit model data sets. 
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Table 4.1A and B.  Null model tests for the ‘Dicktoo’ x ‘Calicuchima’-sibA and 
‘Dicktoo’ x ‘OWB-D’B data used to check for signal in the data.  Summary data where 
the response of the best-fit model for the data was randomly permuted 1000 times.  
Scores represent the residual sums of square (RSS) for the randomized data. 
 
A 

 
 
 
 
 
 
 

      Null Score 31.03 ; Best Score 12.47  
      0 randomized scores ( 0 %) are better than the best score 
 
B 

 
 
 
 
 
 
 

      Null Score 36.95 ; Best Score 8.83  
      0 randomized scores ( 0 %) are better than the best score 
 

 

 

 

 

 

 

Summary 

Statistics 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

Score 

(RSS) 

18.87 25.24 25.95 25.79 26.68 28.19 

Summary 

Statistics 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

Score 

(RSS) 

25.76 31.63 32.24 32.14 32.80 34.03 
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Table 4.2A and B.  Cross-validation tests for the ‘Dicktoo’ x ‘Calicuchima’-sibA and 
‘Dicktoo’ x ‘OWB-D’B data used to identify the size of the logic tree model with the 
best predictive capability.  Ten cross-validation steps were performed for each model 
size.  Training average and c/v test scores represent the residual sums of square (RSS) 
calculated during the cross-validation test. 
 
A 

 

 

 

 

 

 

 

B 
 

 

 

 

 

 

 

 

 

 

 

 

 

Step # ntree nleaf train.ave train.sd cv/test cv/test.sd

10 1 1 22.21 1.02 24.69 10.88 

20 1 2 12.43 0.66 13.68 6.14 

30 1 3 12.43 0.66 13.68 6.14 

40 1 4 12.43 0.66 13.68 6.14 

50 1 5 12.43 0.66 13.68 6.14 

Step # ntree nleaf train.ave train.sd cv/test cv/test.sd

10 1 1 20.43 0.82 21.73 8.61 

20 1 2 8.83 0.22 9.69 2.23 

30 1 3 8.83 0.22 9.69 2.23 

40 1 4 8.83 0.22 9.69 2.23 

50 1 5 8.83 0.22 9.69 2.23 



 

 

Table 4.3A and B.  Permutation tests for the ‘Dicktoo’ x ‘Calicuchima’-sibA and ‘Dicktoo’ x ‘OWB-D’B data.  Summary  
statistics where the response of the best-fit for each model size was randomly permuted 1000 times.  Scores represent the  
residual sums of square (RSS) for the randomized data. 
 
A 

Model 

Size 

No. 

trees 

No. 

leaves 

Null Start Best 

Rand. 

Min. 1st Qu. Median Mean 3rd Qu. Max. % < 

Best

1 1 1 31.03 22.30 12.47 12.47 14.06 15.03 15.02 16.04 19.23 3.7 

2 1 2 31.03 12.47 12.47 12.47 12.47 12.47 12.47 12.47 12.47 53.5

3 1 3 31.03 12.47 12.47 12.47 12.47 12.47 12.47 12.47 12.47 52.8

4 1 4 31.03 12.47 12.47 12.47 12.47 12.47 12.47 12.47 12.47 51.8

5 1 5 31.03 12.47 12.47 12.47 12.47 12.47 12.47 12.47 12.47 53.7

B 

Model 

Size 

No. 

trees 

No. 

leaves 

Null Start Best 

Rand. 

Min. 1st Qu. Median Mean 3rd Qu. Max. % < 

Best 

1 1 1 36.95 20.45 8.83 8.83 10.99 12.81 12.11 14.20 16.75 14.1 

2 1 2 36.95 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.83 64.6 

3 1 3 36.95 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.83 65.7 

4 1 4 36.95 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.83 63.6 

5 1 5 36.95 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.83 66.7 
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Table 4.4.  TASSEL results identifying markers associated with the days to flowering 
phenotype.  Markers are listed with corresponding p-values and R2 values. 
 
 
 

 

 

 

 

 

 

 

 

 

 
            *Significant at the 0.05 level, ** Significant at the 0.01 level,  

*** Significant at the 0.001 level 
 

 

 

 

 

 

 

 

 ‘Dicktoo’ x ‘Calicuchima’-sib  

Marker p-value R2 (%) 

VRN-H1 <0.001*** 49 

VRN-H2 <0.001*** 12 

RANDOM 70 0.0070** 8 

 ‘Dicktoo’ x ‘OWB-D’  

VRN-H1 <0.001*** 70 

VRN-H2 <0.001*** 13 

RANDOM 58 <0.001*** 12 

RANDOM 46 0.04* 4 



 

 

 

 

 

 
Table 4.5.  Analysis of variance results for the ‘Dicktoo’ x ‘Calicuchima’-sib data full model with markers which  
were found to be associated with the days to flowering phenotype in TASSEL.  A type III fixed effects model with  
corresponding p-values. 
 

Source DF Type III SS Mean Square F-value p-value 

VRN-H1 1 14374.4 14374.4 101.4 <0.001** 

VRN-H2 1 14615.0 14615.0 103.1 <0.001 

RANDOM 70 1 83.3 83.3 0.6 0.445 

VRN-H1*VRN-H2 1 6367.3 6367.3 44.9 <0.001** 

VRN-H1*RANDOM 70 1 200.1 200.1 1.4 0.238 

VRN-H2*RANDOM 70 1 1.4 1.4 0.01 0.921 

VRN-H1*VRN-H2*RANDOM 70 1 26.3 26.3 0.2 0.668 

                 ** Significant at the 0.001 level 
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Table 4.6.  Analysis of variance results for the ‘Dicktoo’ x ‘OWB-D’ data full model with markers which were  
found to be associated with the days to flowering phenotype in TASSEL.  A type III fixed effects model with  
corresponding p-values. 
 

Source DF Type III SS Mean Square F-value p-value 

VRN-H1 1 9236.0 9236.0 136.42 <0.001** 

VRN-H2 1 8188.2 8188.2 120.94 <0.001** 

RANDOM 46 1 53.0 53.0 0.78 0.379 

RANDOM 58 1 169.4 169.4 2.50 0.118 

VRN-H1*VRN-H2 1 5705.0 5705.0 84.26 <0.001** 

VRN-H1*RANDOM 46 1 23.8 23.8 0.35 0.555 

VRN-H1*RANDOM 58 1 301.1 301.1 4.45 0.038* 

VRN-H2*RANDOM 46 1 10.6 10.6 0.16 0.694 

VRN-H2*RANDOM 58 1 208.9 208.9 3.09 0.083 

VRN-H1*VRN-H2*RANDOM 46 1 17.9 17.9 0.26 0.609 

VRN-H1*VRN-H2*RANDOM 58 1 185.6 185.6 2.74 0.1017 

*Significant at the 0.05 level, ** Significant at the 0.001 level 
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GENERAL CONCLUSION 

 

The results from the association mapping analysis suggest there are three 

subpopulation clusters in hop which agree with those previously reported (Murakami 

2000; Seefelder et al. 2000; Jakse et al. 2001).  The subpopulations showed a 

moderately high level of inbreeding with a mean FIS = 0.2014.  The high level of 

inbreeding within populations may be due to the narrow genetic base of cultivated hop 

since many cultivars share kinship amongst three or four cultivars (Henning et al. 

2004). 

The variance among genotypes was significant (Table 2.2) suggesting that 

there is genetic variation for resistance to hop downy mildew among genotypes 

present in the population under observation.  The distribution of resistance scores 

(Figure 2.1B) implies quantitative control over the expression of resistance.  The 

ANOVA for broad-sense heritability also showed that there was significant interaction 

between genotypes and years demonstrating that multiple environments must be 

utilized when examining this trait in order to effectively identify genotypes possessing 

resistance (Table 2.2).  Variance components estimated from the ANOVA for narrow-

sense heritability also showed significant (p<0.05) variation among populations (Table 

2.3).  This demonstrates that there are true differences in levels of resistance among 

the populations and that these differences in populations should prove responsive to 

selection.  There was not a significant interaction for population*year and therefore 

the variance component for this interaction was not estimated (Table 2.3).  It was 

interesting that the genotype*year interaction proved significant but the 

population*year was not significant.  Causes for this difference in significance may lie 

in the different genetic components estimated by these two tests.  In the case of 

genotypes*year, the genetic component estimated from the ANOVA consists of both 

additive and dominance genetic components.  In the case of the population*year 

interaction, the genetic component of population should theoretically consist of 

additive genetic variance.  Thus, the difference between both estimates of interaction 
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may lie in the presence of a strong dominance effect upon this interaction.  The 

estimates of broad-sense (H2 = 76%) and narrow-sense heritability (h2 = 49%) for the 

downy mildew resistant phenotype also suggest dominance or epistasis may be the 

cause of some of the differences among variance components.  Broad-sense 

heritability represents total genetic variation relative to phenotypic variation.  

Therefore, the estimate of variance components for total genetic variance consists of 

additive, or selectable variation, and dominance/epistasis, or non-selectable deviations 

from expectations.  By comparison, narrow-sense heritability estimates represent the 

ratio of selectable genetic variation, or additive genetic variance, relative to total 

phenotypic variation.  Comparisons between the two estimates of heritability suggest 

the presence of a strong dominance component.  Methods to increase the efficiency of 

selection for this trait would be the use of some means of genotypic recurrent selection 

or by means of molecular markers linked to downy mildew resistance or susceptibility.  

As genotypic recurrent selection for this particular trait would prove highly time-

consuming and space-consuming, use of marker-assisted selection should prove highly 

advantageous. 

Analysis of the mixed-model results from TASSEL showed 43 AFLP markers 

associated with the downy mildew resistant phenotype.  The percentage of phenotypic 

variation explained by the individual markers was quite low ranging from 4% to 11% 

of the total variation (Table 2.4A and B).  These low estimates suggest some of the 

variation was a result of environmental variance.  Repeated study on the incidence of 

hop downy mildew have shown that prevailing weather conditions conducive to its 

development and spread may play a large role in year to year variation in the disease 

(Hoerner 1939; Pejml and Petrlik 1964; Pejml and Petrlik 1967; Royle 1970; Royle 

1973; Skotland and Johnson 1983; Skotland and Romanko 1964).  After reexamining 

the phenotype between years, it became apparent that this could be one explanation for 

the low R2 values. 

The results from the investigation of the hop downy mildew oospore 

demonstrated excellent extraction, isolation and recovery techniques for obtaining 
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oospores from plant tissue and soil work.  Using a mortar and pestle on rewetted 

cotyledon material resulted in finely ground tissue which resulted in the extraction of 

thousands of oospores for analysis.  In addition, the extraction, isolation and recovery 

of oospores from soil samples were a success.  Although 500g samples were large and 

it was very time-consuming process to sieve through the samples, the results showed 

that the samples were uniform as the ranks among sample counts were statistically 

similar (Table 3.1).  It is unclear why there were differences between ranks for the 

autoclaved and non-autoclaved samples (Table 3.1).  However, the results suggest the 

reason for the difference may be the autoclaving procedure.  Autoclaving oospores for 

two hours may have compromised the cellular integrity of the oospores.  In doing so, 

the compromised oospores may have leaked their contents, lost buoyancy and settled 

out during centrifugation. 

 Although the MTT staining showed significant differences in rank among the 

color category counts and between the autoclaved and non-autoclaved counts, this 

cannot be used as a measure of viability.  Altman (1974 and 1976) reported that MTT 

reduction to colored formazans can occur through a chemical reduction of MTT in the 

presence of NADH.  Other compounds have been shown to do the same (Hamed 

2004).  Therefore, although there are significant differences in our MTT stained ranks, 

this data cannot be used as an objective test for viability. 

Although germination of the hop downy mildew oospore was infrequent, there 

was some visual evidence to suggest that germination had occurred on the in vitro wet 

mounts.  The thick germ tubes which contained dense cytoplasm are indicative of 

germination (Figure 3.1D, E, F and G).  In addition, the large ‘sporangium-like’ 

structures closely resemble those reported by Rooms of Diaz and Polanco (1984).  The 

‘zoospore-like’ bodies (Figure 3.1L and M) were larger than those reported for hop 

downy mildew (~15μ vs. 10 μ for zoospores coming from asexual zoosporangia), 

these ‘zoospore-like’ bodies appeared to have come from the oospore as no other 

structures were nearby.  With little documented evidence of oospore germination, it is 
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unclear whether zoospores derived from oospore germination would be similar in size 

as those derived from asexual zoosporangia. 

The results from the logic regression analysis suggest Boolean logic used in a 

linear regression format to be more robust in the statistical modeling of epistasis when 

compared with general linear modeling (GLM).  Logic regression correctly identified 

the genetic interaction of the VRN-H1/VRN-H2 locus in a model using the days to 

flowering phenotype without the inclusion of spurious markers.  In contrast, GLM 

identified randomly generated markers as being associated with the phenotype and in 

the ‘Dicktoo’ x ‘OWB-D’ data, GLM identified not just a spurious association, but a 

spurious interaction between a randomly generated marker (RANDOM 58) and 

marker VRN-H1 (Table 4.6). 

 The linkage decay (LD) results suggest logic regression may be able to identify 

‘potentially troublesome’ data sets, which when modeled, may lead to type I errors.  

Logic regression will model most data sets, however it is crucial to identify the precise 

point where statistical signal falls short resulting in the modeling of nonsensical data.  

The LD results suggest coefficients of variation (CVs) for single-fit models of less 

than 6% result in precise modeling with no spurious association (Figure 4.2, 

APPENDIX C).  The results also suggest that single-fit models with CVs greater than 

6% may result in the modeling of nonsensical data (Figure 4.2, APPENDIX C). 

 Logic regression also revealed one unexpected result.  When logic regression 

identified the model used to explain the days to flowering phenotype in barley, it 

created a Boolean logic group that consisting of VRN-H2 and ‘not’ VRN-H1.  The 

word ‘not’ suggests the conjugate form of VRN-H1 to be epistatic to VRN-H2 in the 

logic model.  Barley vernalization is one of the best-documented epistatic interactions 

in the world (Takahashi and Yasuda 1971; Yan et al. 2004; Szűcs et al. 2007).  It’s a 

classic dominant/suppression interaction where the product of gene one normally 

suppresses a second locus (gene two), unless a mutation at the second locus prevents 

binding of the repressor allowing for the expression of gene two.  In barley, dominant 

VRN-H2 normally inhibits the expression of recessive VRN-H1 alleles resulting in 



 
 

 

101

vernalization sensitivity unless a mutation (at the first intron of VRN-H1) removes the 

repressor binding site resulting in a dominant VRN-H1 which is vernalization 

insensitive.  The Boolean combination of VRN-H2 and ‘not’ VRN-H1 (or the conjugate 

model) suggests a dominant VRN-H2 and a recessive VRN-H1 allele.  This is the 

hypothesized genetic model governing the vernalization response in barley (Yan et al. 

2004; Szűcs et al. 2007). 



 
 

 

102

BIBLIOGRAPHY 

 

Aegerter B J, Nun ez J J and Davis R M (2002) Detection of management of downy 

 mildew in rose rootstock. Plant Dis 86: 1363-1368 

Altman F P (1974) Studies on the reduction of tetrazolium salts. III. The products of 

 chemical and enzymatic reduction. Histochemie 38: 155-171 

Altman F P (1976) Tetrazolium salts and formazans. Progr Histochem Cytochem 9: 1- 

55 

Arens K (1929) Untersuchungen über Pseudoperonospora humuli (Miyabe u. Takah.), 

 den Erreger der neuen Hopfenkrankheit. Phyto Zeitschr 1: 169-193 

Bacanu S-A, Devlin B and Roeder K (2000) The power of genomic control. Am J 

 Hum Genet 66: 1933-1944 

Barton N H, Halliday R B and Hewitt G B (1983) Rare electrophoretic variants in a 

 hybrid zone. Heredity 50: 139-146 

Beaumont M A, Zhang W and Balding D J (2002) Approximate Bayesian computation  

 in population genetics. Genetics 162: 2025-2035 

Beavis W D (1998) QTL analysis: power precision and accuracy. In: Paterson A H 

(ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp. 145- 

162 

Benham, J, Jeung J, Jasieniuk M, Kanazin V and Blake T (1999) Genographer: A 

 graphical tool for automated fluorescent AFLP and microsatellite analysis. 

http://hordem.oscs.montana.edu/genographer/ (Checked 5/26/2007) 

Binder W D, Mitchell G M and Ballantyne D J (1974) Pollen viability testing, storage 

and related physiology: review of literature with emphasis on gymnosperm 

pollen. Canadian Forestry Service, Victoria, BC, Canada 

Bowers J H, Papavizas G C and Johnston S A (1990) Effect of soil temperature and 

soil-matrix potential on the survival of Phytophthora capsici in natural soil. 

Plant Dis 74: 771-777 

 



 
 

 

103

Box G E P (1979) Robustness in the strategy of scientific model building. In: Launer 

R L and Wilkinson G N (eds) Robustness in statistics. Academic Press, New 

York, pp. 201-236 

Bressman E M and Nichols A A (1933) Germination of the oospores of 

 Pseudoperonospora humuli. Phytopath 23: 485-487 

Caicedo A L, Stinchcombe J R, Olsen K M, Schmitt J and Purugganan M D (2004) 

Epistatic interaction between Arabidopsis FRI and FLC flowering time genes 

generates a latitude cline in a life history trait. Proc Natl Acad Sci USA 101: 

15670-15675 

Cardon L R and Bell J I (2001) Association study designs for complex diseases. 

 Nature Reviews (Genetics) 2: 91-99 

Carlborg Ö and Haley C S (2004) Epistasis: too often neglected in complex trait 

studies. Nature 5: 618-625 

Carlson C S, Eberle M A, Kruglyak L and Nickerson D A (2004) Mapping complex 

 disease loci in whole-genome association studies. Nature 429: 446-452 

Carlson C S, Newman T L and Nickerson D A (2001) SNPing in the human genome. 

 Curr Op in Chem Biol 5: 78-85 

Chee H Y and Klein R E (1998) Laboratory production of oospores in 

Pseudoperonospora humuli. Korean J Plant Pathol 14: 618-621 

Chee H Y, Nelson M E, Grove G G, Eastwell K C, Kenny S T and Klein R E (2006) 

 Population biology of Pseudoperonospora humuli in Oregon and Washington. 

 Plant Dis 90: 1283-1286 

Chesler, E J, Rodriguez-Zas S L and Mogil J S (2001) In silico mapping of mouse 

 quantitative trait loci. Science 294: 2423a 

Chmielewicz K M and Manly K F (2002) User manual for Mapmanager QTX. 

Roswell Park Cancer Institute, New York 

Cohen S D (1984) Detection of mycelium and oospores of Phytophthora 

megasperma f. sp. glycinea by vital stains in soil. Mycologia 76: 34-39 

 



 
 

 

104

Coley-Smith J R (1960) Overwintering of hop downy mildew Pseudoperonospora 

humuli (Miy. and Tak.) Wilson. Rep Dep Hop Res Wye College for 1959: 107-

114 

Danyluk J, Kane N D, Breton G, Limin A E, Fowler D B and Sarhan F (2003) 

TaVRT1, a putative transcription factor associated with vegetative to 

reproductive transition in cereals. Plant Physiol 132: 1849–1860 

Darvasi A (2001) In silico mapping of mouse quantitative trait loci. Science 294:  

2423a 

Darvasi A and Soller M (1994) Optimum spacing of genetic markers for determining 

linkage between marker loci and quantitative trait loci. Theor Appl Genet 89: 

351-357 

Darvasi A and Soller M (1997) A simple method to calculate resolving power and 

confidence interval of QTL map location. Behaviour Genetics 27: 125-132 

Darvasi A, Weinreb A, Minke V, Weller J I and Soller M (1993) Detecting marker 

QTL linkage and estimating QTL gene effect and map location using a 

saturated genetic map. Genetics 134: 943-951 

Davis J J (1910) A new hop mildew. Science 31: 752 

Devlin B, Roeder K and Wasserman L (2001) Genomic control, a new approach to 

genetic-based association studies. Theor Pop Biol 60: 155-166 

Dilda C L and Mackay T F C (2002) The genetic architecture of Drosophila sensory 

bristle number. Genetics 162: 1655-1674 

Dodds P N, Lawrence G J, Catanzariti A, Teh T, Wang C A, Ayliffe M A, Kobe B and 

Ellis J G (2006) Direct protein interaction underlies gene-for-gene specificity 

and coevolution of the flax resistance genes and flax rust avirulence genes. 

Proc Nat Acad Sci USA 103: 8888–8893 

El-Hamalawi Z A and Erwin D C (1986) Physical, enzymatic and chemical factors 

affecting viability and germination of oospores of Phytophthora megasperma f. 

sp. medicaginis. Phytopath 76: 503-507 

 



 
 

 

105

Falush D, Stevens M and Pritchard J K (2007) Inferences of population structure using  

 multilocus genotype data: dominant markers and null alleles. Mol Ecology 

Notes doi: 10.1111/j.147-8286.2007.01758.x 

Flor H H (1942) Inheritance of pathogenicity in Melampsora lini. Phytopath 32: 653-

669 

Fu D, Szűcs P, Yan L, Helguera M, Skinner J S, von Zitzewitz J, Hayes P M and 

Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are 

associated with spring growth habit in barley and wheat. Mol Genet Genom 

273: 54–65 

Gahan P B and Kalina M (1968) The use of tetrazolium salts in the histochemical 

demonstration of succinic dehydrogenase activity in plant tissues. Histochemie 

14: 81-88 

Gaut B S and Long A D (2003) The lowdown on linkage disequilibrium. Plant Cell 15:  

 1502-1506 

Goldstein J (1995) Multilevel statistical models. Kendall’s Library of Statistics. 

 Edward Arnold, London, England 

Gowda P S B and Bhat S S (1986) Germination of oospores of Peronosclerospora 

sorghi. Trans Br Mycol Soc 87: 653-655 

Grupe A, Germer S, Usuka J, Aud D, Belknap J K, Klein R F, Ahluwalia M, Higuchi 

R and Peltz G (2001) In silico mapping of complex disease-related traits in 

mice. Science 292: 1915-1918 

Haley C S and Knott S A (1992) A simple regression method for mapping quantitative 

trait loci in line crosses using flanking markers. Heredity 69:315-324 

Hamed S H (2004) Efficacy and mechanism of action of a new tyrosinase inhibitory 

agent. PhD Diss, Univ of Cincinnati, OH. http://www.ohiolink.edu/etd/send-

pdf.cgi?ucin1085566152 (verified 07/23/2007) 

Hardy O J (2003) Estimation between individuals and characterization of isolation-by 

-distance processes using dominant genetic markers. Mol Ecology 12: 1577-

1588 



 
 

 

106

Hardy O J and Vekemans X (2002) SPAGeDI: a versatile computer program to 

analyze spatial genetic structure at the individual or population levels. Mol 

Ecology Notes 2: 618-620 

Hardy O and Vekemans X (2006) SPAGeDi 1.2 user’s manual. Laboratoire Eco- 

 éthologie Evolutive, Bruxelles, Belgium 

Haunold A and Zimmermann C E (1974) Pollen collection, crossing and seed 

germination of hop. Crop Science 14: 774-776 

Henning J A (2006) The breeding of hop. In: Bamworth C (ed) Brewing: New 

Technologies. Woodhead Publishing Limited Cambridge, England, pp. 102-

122 

Henning J and Haunold A (2003) Notice of release of high-yielding, multi-disease 

 resistant, high bittering acid hop variety, ‘Newport’. USDA-ARS, 

Washington, DC 

Henning J A, Townsend M S and Kenny S (2004) Potential heterotic crosses in hops 

as estimated by AFLP-based genetic diversity and coefficient of coancestry. J 

Am Soc Brew Chem 62:63-70 

Hoerner G R (1939) The relation of climatology of western Oregon to the incidence  

 and control of downy mildew of hops. Plant Dis Rpt 23: 361-366 

Hoerner G R (1949) Hop diseases in the United States. The Brewers Digest 24: 45-51 

Holsinger K E (1999) Analysis of genetic diversity in geographically structured 

 populations: A Bayesian approach. Hereitas 130: 245-255. 

Holsinger K E, Lewis P O and Dey D K (2002) A Bayesian approach to inferring 

 population structure for dominant markers. Mol Ecology 11: 1157-1164 

Hyne V and Kearsey M J (1995) QTL analysis: further uses of marker regression. 

Theor Appl Genet 91: 471-476 

Ivandic V, Hackett C A, Nevo E, Keith R, Thomas W T B and Forster B P (2002) 

Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile 

Crescent: associations with ecology, geography and flowering time. Plant Mol 

Biol 48: 511–527 



 
 

 

107

Ivandic V, Thomas W T B, Nevo E, Zhang Z and Forster B P (2003) Associations of 

simple sequence repeats with quantitative trait variation including biotic and 

abiotic stress tolerance in Hordeum spontaneum. Plant Breed 122: 300–304 

Jakse J, Kindlhofer K and Javornik B (2001) Assessment of genetic variation and  

 differentiation of hop genotypes by microsatellite and AFLP markers. Genome 

 44: 773-782 

Jiang J and Erwin D C (1990) Morphology, plasmolysis and tetrazolium bromide stain 

as a criteria for determining viability of Phytophthora oospores. Mycologia 82: 

107-113 

Jones W (1932b) A new technique for obtaining oospores of hop downy mildew by 

inoculating cotyledons. Science 75: 108 

Kearsey M J and Farquhar G L (1998) QTL analysis in plants: where are we now? 

Heredity 80: 137-142 

Kearsey M J and Hyne V (1994) QTL analysis: a simple 'marker-regression' approach. 

Theor Appl Genet 89: 698-702 

Kennelly M M, Gadoury D M, Wilcox, W F, Magarey P A and Seem R C (2007) 

Primary infection, lesion productivity, and survival of sporangia in 

the grapevine downy mildew pathogen Plasmopara viticola. Phytopath 97: 

512-522 

Kenny S T (1991) Registration of five hop germplasms for hop downy mildew 

 research. Crop Science 31: 1391-1392 

Kidwell K K and Osborn T C (1992) Simple plant DNA isolation procedures. In: Plant 

genomes. Methods for genetic and physical mapping. Kluwer Academic Publ, 

the Netherlands, pp. 1-13 

Klein R E (1995) Hop diseases and their control. HRC Reports, 41-45 

Knapp S J (1991) Using molecular markers to map multiple quantitative trait loci: 

models for backcross, recombinant inbred, and doubled haploid progeny. 

Theor Appl Genet 81: 333-338 

 



 
 

 

108

Knott S A and Haley C S (1992) Aspects of maximum likelihood methods for the 

mapping of quantitative trait loci in line crosses. Genetical Research 60: 139-

151 

Kooperberg C and Ruczinski I (2005) The logic regression package. In: Contributed 

Packages. R Project. http://cran.r project.org/src/contrib/PACKAGES.html 

Kooperberg C, Ruczinski I, LeBlanc M L and Hsu L (2001) Sequence analysis using 

logic regression. Genetic Epidemiology 21 (Suppl. 1): S626-S631 

Krauss S L (2000) Accurate gene diversity estimates from amplified fragment length 

polymorphism (AFLP) markers. Mol Ecology 9: 1241–1245 

Lande R and Thompson R (1990) Efficiency of marker-assisted selection in the 

improvement of quantitative traits. Genetics 124: 743-756 

Lander E S and Botstein D (1989) Mapping mendelian factors underlying 

quantitative traits using RFLP linkage maps. Genetics 121: 185-199 

Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E and 

Newburg L (1987) MAPMAKER: an interactive computer package for 

constructing primary genetic linkage maps of experimental and natural 

populations. Genomics 1: 174-181 

Lander E S and Kruglyak L (1995) Genetic dissection of complex traits: Guidelines 

for interpreting and reporting linkage results. Nature Genetics 11: 241-247 

Lander E S and Schork N J (1994). Genetic dissection of complex traits. Science 265:  

2037–2048 

Lefebvre V, Daubèze A–M, Rouppe van der Voort J, Peleman J, Bardin M and 

Palloix A (2003) QTLs for resistance to powdery mildew in pepper under 

natural and artificial infections. Theor Appl Genet 107: 661-666 

Lindqvist-Kreuze H, Koponen H and Valkonen J P T (2002) Variability of 

Peronospora sparsa (syn. P. rubi) in Finland as measured by amplified 

fragment length polymorphism. Eur J of Plant Path 108: 327-335 

 

 



 
 

 

109

Loiselle B A, Sork V L, Nason J and Graham C (1995) Spatial genetic structure of a 

 tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:  

 1420-1425 

Luo Z W and Kearsey M J (1992) Interval mapping of quantitative trait loci in an F2 

population. Heredity 69: 236-242 

Lynch M and Ritland K (1999) Estimation of pairwise relatedness with molecular 

markers. Genetics 152: 1753-1766 

Ma H–X, Bai G–H, Zhang X and Lu W–Z (2006) Main effects, epistasis, and 

 environmental interactions of quantitative trait loci for Fusarium head blight 

 resistance in a recombinant inbred population. Phytopath 96: 534-541 

MacKay D B (1972) The measurements of viability. In Roberts E H (ed) Viability of 

seeds. Chapman and Hall, London, United Kingdom, pp. 172-208 

Medina M V and Platt H W (1999) Viability of oospores of Phytophthora infestans 

under field conditions in northeastern North America. Can J Plant Path 21: 

137-143 

Meier R and Charvat I (1993) Reassessment of tetrazolium bromide as a viability stain 

for spores of vesicular-arbuscular mycorrhizal fungi. Am J of Bot 80: 1007- 

 1015 

Melchinger A E, Utz H F and Schön C C (1998) Quantitative trait locus (QTL) 

mapping using different testers and independent population samples in maize 

reveals low power of QTL detection and large bias in estimates of QTL effects. 

Genetics. 149: 383-403 

Morgan W M (1978) Germination of Bremia lactucae oospores. Trans Br Mycol Soc 

71: 337-340 

Morley M, Cliona M M, Weber T M, Devlin J L, Ewens K G, Spielman R S and 

Cheung V G (2004) Genetic analysis of genome-wide variation in human gene 

expression. Nature 430: 743-747 

Murakami A (2000) Hop variety classification using genetic distance based on RADP. 

 J Inst Brew 106: 157-161 



 
 

 

110

Nei M and Chesser R K (1983) Estimation of fixation indices and gene diversities. 

 Ann Hum Gen 47: 253-259 

Nelson G A and Olsen O A (1967) Staining reactions of resting sporangia of 

Synchytrium endobioticum with a tetrazolium compound. Phytopath 57: 965-

968 

Nelson M E, Eastwell K C, Grove G G, Barbour J D, Ocamb C M and Alldredge J R  

 (2004) Sensitivity of Pseudoperonospora humuli (the casual agent of hop  

 downy mildew) from Oregon, Idaho, and Washington to fosetyl-Al (Aliette). 

 Online. Plant Health Progress doi: 1094/PHP-2004-0811-01-RS 

Neve R A (1991) Hops. 1st edition, Chapman and Hall, New York 

Neve R A and Darby P (1983) Plant breeding. Rep Dept Hop Res Wye Coll for 1982, 

pp. 8-11 

Neve R A and Darby P (1984b) Yoeman and Zernith: two new varieties. Rep Dept 

Hop Res Wye Coll for 1983, pp. 7-9 

Nordborg M, Borevitz J O, Bergelson J, Berry C C, Chory J Hagenblad J, Kreitman M,  

 Maloof J N, Noyes T, Oefner, P J, Stahl E A and Weigel D (2002) The extent  

of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics 30: 190-

193 

Orr H A (1995) The population genetics of speciation: the evolution of hybrid 

incompatibilities. Genetics 139: 1805-1813 

Pakniyat H, Powell W, Baird E, Handley L L, Robinson D, Scrimgeur C M, Nevo E, 

Hackett C A, Caligari P D S and Forster B P (1997) AFLP variation in wild 

barley (Hordeum spontaneum C Koch) with reference to salt tolerance and 

associated ecogeography. Genome 40: 332–341 

Palaisa K A, Morgante M, Williams M and Rafalski A (2003) Contrasting effects of 

selection on sequence diversity and linkage disequilibrium at two phytoene 

synthase loci. Plant Cell 15: 1795–1806 

 

 



 
 

 

111

Patel J K, Patel N M and Shiyani R L (2001) Coefficient of variation in field 

 experiments and yardstick thereof-An empirical study. Current Science 81:  

 1163-1164 

Pejml K and Petrlik Z (1964) The influence of weather conditions on the spread of 

downy mildew. Chmelarstvi 37: 73-73 

Pejml K and Petrlik Z (1967) Typization of characteristic weather for spreading of  

 downy mildew in hops. Ochr Rost 5: 109-116 

Populer C (1981) Epidemiology of downy mildews. In Spencer D M (ed) The 

Downy Mildews. Academic Press, London, New York, San Francisco pp. 57-

105 

Pritchard J K, Stephens M and Donnelly P (2000a) Inference of population structure 

using multilocus genotype data. Genetics 155: 945-959 

Pritchard J K, Stevens M and Donelly P (2000b) Association mapping in structured 

 populations. A J Hum Genet 67: 170-181 

Queller D and Goodnight K F (1989) Estimating relatedness using genetic markers. 

 Evolution 43: 258-275 

Rannala B and Hartigan J A (1995) Identity by descent in island-mainland populations. 

 Genetics 139: 429-437 

Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J,  

Kresovich S, Goodman M M and Buckler IV E S (2001) Structure of linkage 

disequilibrium and phenotypic associations in the maize genome. Proc Natl 

Acad Sci USA 98: 11479–11484 

Ritland K (1996) A marker-based method for inferences about quantitative inheritance 

 in natural populations. Evolution 50: 1062-1073 

Ritter E, Gebhardt C and Salamini F (1990) Estimation of recombination frequencies 

and construction of RFLP linkage maps in plants from crosses between 

heterozygous parents. Genetics 125: 645-654 

 

 



 
 

 

112

Rooms of Diaz G and Polanco C D (1984) Oospores of the parasitic fungus 

Peronosclerospora sorghi under conditions of flood. Tropical Agronomy 34: 

87-94 

Rousset F (2002) Inbreeding and relatedness coefficients: what do they mean? 

Heredity 88: 371-380 

Royle D J (1970) Infection periods in relation to the natural development of hop 

 downy mildew (Pseudoperonospora humuli). Ann App Biol 66: 281-291 

Royle D J (1973) Quantitative relationships between infection by hop downy 

mildew pathogen, Pseudoperonospora humuli, and weather and inoculum 

factors. Ann Appl Biol 73: 19-30 

Royle D J and Kremheller H Th (1981) Downy mildew of hop. In: Spencer D M (ed) 

The Downy Mildews. Academic Press, London, New York, San Francisco, pp. 

395-419 

Ruczinski I, Kooperberg C and LeBlanc M (2003) Logic regression. J Comput Graph 

Stat 12: 475–511 

Ruczinski I, Kooperberg C and LeBlanc M L (2004) Exploring interactions in 

high-dimensional genomic data: an overview of logic regression with 

applications. J Multi Analysis 90: 178-195 

Ryley M J (2001) Location and activity of hyphae of downy mildew, 

Peronosclerospora noblei (Family Peronosporaceae), and its relationship to 

symptom expression on wild sorghum (Sorghum leiocladum). Aust J Bot 

49: 487-492 

Salmon E S and Ware E M (1925) The downy mildew of hop and its epidemic 

occurance in 1924. Ann Biol 12: 121-151 

Sax K, (1923) The association of size differences with seed-coat pattern and 

pigmentation in Phaseolus vulgaris. Genetics 8: 552-560 

 

 

 



 
 

 

113

Seefelder S, Ehrmaier H, Schweizer G and Seigner E (2000) Genetic diversity and 

 phylogenetic relationships among accessions of hop, Humulus lupulus, as 

 determined by amplified fragment length polymorphism and fingerprinting 

 compared with pedigree data. Plant Breed 119: 257-263 

Shook D R and Johnson T E (1999) Quantitative trait loci affecting survival and 

fertility related traits in Caenorhabditis elegans show genotype-environment 

interactions, pleiotropy and epistasis. Genetics 153: 1233-1243 

Skotland C B (1961) Infection of hop crowns and roots by Pseudoperonospora humuli 

 and its relation to crown and root rot and overwintering of the pathogen. 

 Phytopath 51: 241-244 

Skotland C B and Johnson D A (1983) Control of downy mildew of hops. Plant Dis 67:  

 1183-1186 

Skotland C B and Romanko R R (1964) Life history of the hop downy mildew fungus. 

 Bull Idaho Agric Exp Stn, no. 424 

Slatkin M and Barton N H (1989) A comparison of three indirect methods for 

 estimation average levels of gene flow. Evolution 43: 1349-1368 

Spiegelhalter D J, Best N G, Carlin B P and van der Linde A (2002) Bayesian 

measures and model complexity and fit. J Royal Stat Soc Ser B 64: 483-689 

Spielman R S, McGinnis R E and Ewens W J (1993) Transmission test for linkage 

 disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus 

 (IDDM). Am J Hum Genet 52: 506-513 

Spring O and Zipper R (2000) Isolation of oospores of sunflower downy mildew, 

 Plasmopara halstedii, and microscopic studies of oospore germination. J 

Phytopath 148: 227-231 

Staub J E, Serquen F C and Gupta M (1996) Genetic markers, map construction, and 

their application in plant breeding. Hortscience 31: 729-740 

Sutherland D E and Cohen S D (1983) Evaluation of tetrazolium bromide as a vital 

 stain for fungal oospores. Phytopath 73: 1532-1535 

 



 
 

 

114

Szűcs P, Skinner J S, Karsai I, Cuesta-Marcos A, Haggard K G, Corey A E, Chen T 

H H and Hayes P M (2007) Validation of the VRN-H2/VRN-H1 epistatic model 

in barley reveals that intron length variation in VRN-H1 may account for the 

continuum of vernalization sensitivity. Mol Genet Genom 277: 249-261 

Takahashi R and Yasuda S (1971) Genetics of earliness and growth habit in barley. 

In: Nilan RA (ed) Barley Genetics II. Proceedings of the Second International 

Barley Genetics Symposium. Washington State University Press Pullman, pp. 

388–408 

Tenaillon M I, Sawkins M C, Long A D, Gaut R L, Doebley J F and Gaut B S 

(2001) Patterns of DNA sequence polymorphism along chromosome 1 of 

maize (Zea mays ssp mays L.). Proc Natl Acad Sci USA 98: 9161–9166 

Thoday J M (1961) Location of polygenes. Nature 191: 368-370 

Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D and Buckler IV 

E S (2001) Dwarf8 polymorphisms associate with variation in flowering time. 

 Nature Genetics 28: 286-289 

Townsend M S and Henning J A (2005) Potential heterotic groups in hop as 

determined by AFLP analysis. Crop Science 45: 1901-1907 

Ungerer M C, Halldorsdottir S S, Modliszewski J L, Mackay T F C and 

Purugganan M D (2002) Quantitative trait loci for inflorescence development 

in Arabidopsis thaliana. Genetics 160: 1133-1151 

Van der Gaag D J (1994) The effect of pH on staining of oospores of Peronospora  

 viciae with tetrazolium bromide. Mycologia 86: 454-457 

Van der Gaag D J and Frinking H D (1996) Extraction from plant tissue and 

germination of oospores of Peronospora viciae f. sp. pisi. Phytopath 144: 57-

62 

Van der Gaag D J and Frinking H D (1997) Extraction of oospores of Peronospora 

viciae from soil. Plant Path 46: 675-679 

van Ooijen J W (1992) Accuracy of mapping quantitative trait loci in autogamous 

species. Theor Appl Genet 84: 803-811 



 
 

 

115

Van Waes J M and Debergh P C (1986) Adaptation of the tetrazolium method for 

testing the seed viability, and scanning electron microscopy of some western 

European orchids. Physiol Plantar 66: 435-442 

Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. 

Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, 

Belgium 

Verhoeven K J F, Jannink J-L and McIntyre L M (2006) Using mating designs to 

uncover QTL and the genetic architecture of complex traits. Heredity 96: 139-

149 

Virk P S, Ford-Lloyd B V, Jackson M T, Pooni H S, Clemeno T P and Newbury H J 

(1996) Predicting quantitative variation within rice germplasm using molecular 

markers. Heredity 76: 296–304 

von Zitzewitz J, Szűcs P, Dubcovsky J, Yan L, Pecchioni N, Francia E., Casas A, 

Chen T H H, Hayes P M and Skinner J S (2005) Molecular and structural 

characterization of barley vernalization genes. Plant Mol Biol 59: 449–467 

Ware W M (1926) Pseudoperonospora humuli and its mycelial invasion of the host 

 plant. Trans Brit Mycol Soc 11: 91-107 

Ware W M (1929) Experiments on the production of diseased shoots by the hop 

downy mildew, Pseudoperonospora humuli (Miy. et Takah.), Wils. Ann of Bot 

43: 683-711 

Wehrhahn C F and Powell R (1987) Electrophoretic variation, regional differences, 

 gene flow in the coho salmon (Onchorhyncus kisutch) of southern British 

 Columbia. Can J Fish and Aquat Sci 44: 822-831 

Wehrhahn C R (1989) Proceedings of the ecological genetics workshop. Genome 31:  

 1098-1099 

Weinig C, Dorn L A, Kane N C, German Z M, Halldorsdottir S S, Ungerer M, 

Toyonaga Y, Mackay T F C, Purugganan M D and Schmitt J (2003) 

Heterogenous selection at specific loci in natural environments in Arabidopsis 

thaliana. Genetics 165: 321-329 



 
 

 

116

Weir B S and Cockerman C C (1984) Estimating F-statistics for analysis of population 

 structure. Evolution 38: 1358-1370 

Weller J I (1992) Statistical methodologies for mapping and analysis of quantitative 

trait loci. In: Beckmann J S and Osborn T C (eds) Plant genomes: methods for 

genetic and physical mapping. Klewer Academic Publishers, Norwell, MA pp. 

181-207 

Weller J I, Kashi Y and Soller M (1990) Power of daughter and granddaughter 

designs for determining linkage between marker loci and quantitative trait loci 

in dairy cattle. J of Dairy Science 73: 2525-2537 

Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97-159 

Wright S (1969) Evolution and the genetics of populations, Volume 2. The theory of  

 gene frequencies. Un of Chicago Press, Chicago, IL 

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, 

Yasuda S and Dubcovsky J (2006) The wheat and barley vernalization gene 

VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103: 19581-19586 

Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, 

Bennetzen J L, Echenique V and Dubcovsky J (2004) The wheat VRN2 gene is 

a flowering repressor down-regulated by vernalization. Science 303: 1640–

1644 

Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T and Dubcovsky J (2003) 

Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci 

USA 100: 6263–6268 

Young N D (1996) QTL mapping and quantitative disease in plants. Ann Rev 

Phytopath 34: 479-501 

Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, 

 Gaut B S, Nielsen D M, Holland J B, Kresovich S and Buckler E S (2006) A 

 unified mixed-model method for association mapping that accounts for 

 multiple levels of relatedness. Nature Genetics 38: 203-208 

 



 
 

 

117

Zhang Z, Bradbury P J, Kroon D E, Casstevens T M and Buckler E S (2006) 

"TASSEL 2.0: a software package for association and diversity analyses in 

plants and animals", Plant & Animal Genomes XIV Conference 

Zhivotovsky L A (1999) Estimating population structure in diploids with multilocus 

dominant DNA markers. Mol Ecol 8: 907–913 



 
 

 

118

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

119

APPENDIX A 

 

HOP GENOTYPE PEDIGREE INFORMATION (Townsend and Henning 2005). 

 

Primarily European ancestry: 

M19007  Brewer’s Favorite-s 

M19047  Elsasser/Fuggle-s 

M21690  Late Grape-s//Fuggle/Fuggle-s/3/Late Cluster-s/Fuggle-s/4/(Late 

Grape-s//Fuggle/Fuggle-s/3/Late Cluster-s/Fuggle-s 

M63011  Late Grape/Fuggle-s//Early Green/Unknown-s 

U.S. Tettnanger (F21015)  Fuggle 

Styrian (F21049)  Yugoslavian selection from Fuggle 

M64034  Zattler-s 

M64036  Zattler-s 

M64037  Zattler-s 

M64101  Unknown 

M64035  Zattler-s 

M21119  Late Grape/OP/3/Fuggle//Fuggle/OP/4/Late Cluster/OP//Fuggle/OP 

M21009  Sunshine-s/3/Utah-523-4//Early Green/Unknown-s 

M21132  Yakima Cluster/Zattler-s 

M21336  Northern Brewer//Bullion/Zattler-s 

M21335  Northern Brewer//Bullion/Zattler-s 

M21087  Yugoslavia Selection 3-3 

M21090  Yugoslavia Selection 12-17 

M21268  Northern Brewer/4/Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 

M21398  Native Yugoslavian Male 01P04 

M21400  Native Yugoslavian Male 20P09 

Hallertauer Mittlefruh (F21014)  German landrace 

Saazer 36 (F21521)   Clonal selection from Saazer 
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Fuggle N (F21016)   Clonal selection from Fuggle 

Tardif de Bourgogne (F21169)  France landrace 

Spalter Select  (F21674)  German 76-18-80/German 71-16-07 

Perle (F21227)  Northern Brewer/German 63-5-27 

Yeoman (F21498)  Wye 43/69/17 _ Wye 25/68/173 

Challenger (F21043)   Zattler/open pollinated//Northern Brewer/Wye 22-56 

Omega (F21667)  Wye Challenger/English male 

Northern Brewer (F21093)   Brewer’s Gold/OY1//Canterbury Golding 

Orion (F21675)  Perle/German 70-10-15 

Wye Viking (F21283)  Svalof//Bramling Cross/Wye 1-63-42 

Wye Saxon (F21282)   Svalof//Bramling Cross/Wye 1-63-42 

M21089  Yugoslavia selection 5-10 

 

Primarily Wild American/Europe Hybrids (A): 

M19009  Fuggle/Fuggle-s 

M21424  Cascade/Late Cluster-s 

M19172  Cat’s Tail//Fuggle/Fuggle-s 

M19036  Late Cluster/Fuggle-s 

M19037  Fuggle-s/Fuggle-s 

M19061  Late Grape/Fuggle-s 

M19046  Late Cluster-s/Fuggle-s 

M19060  East Kent Golding/Bavarian-s 

M21058  Fuggle//Striesselspalt/Late Cluster-s 

M21446  Northern Brewer/3/Brewer’s Gold//East Kent Golding/Bavarian-s 

M58111  Brewer’s Gold//Belgian-31-s/Belgian-31/3/Late Grape/Fuggle-s 

M52047  Striesselspalt//Early Green/Unknown-s/3/Striesselspalt/Late Cluster-s 

M21603  Cascade//Semsch-s/8-3B yrd 

M51114  Landhopfen-s//Golden Cluster/Fuggle-s/3/Semsch-s/8-2B Yrd 

M21076  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1 
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M21339  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1/4/Brewer’s Gold//Early 

Green/Unknown-s/3/Zattler-s 

M21358  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1/4/Brewer’s Gold//East 

Kent Golding/Bavarian-s 

M21462  Cascade//Fuggle/Fuggle-s 

M21072  Brewer’s Gold/Arizona-1-2 

M21129  Late Grape-s//Fuggle/Fuggle-s/3/Brewer’s Gold/Utah-526-4 

M21461  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1/4/(Brewer’s Gold//Early 

Green/Unknown-s)/3/Zattler-s/5/Comet//Bullion/Zattler-s 

M21351  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1/4/Bullion/Zattler-s 

M63015  Brewer’s Gold//East Kent Golding/Bavarian-s 

M64102  Wild American/open pollinated 

M64105  Fuggle//Wild American/open pollinated 

M21432  Cascade/4/Late Grape-s//Fuggle/Fuggle-s/3/Early Green/Unknown-s 

M21437  Fuggle/open pollinated 

M21435  Cascade/Colorado-1-1 

 

Primarily Wild American/European Hybrids (B): 

M21109  Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 

M21313  Comet/4/Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 

M21306  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1/4/Brewer’s Gold//Early 

Green/Unknown-s/3/Zattler-s/5/Comet//Bullion/Zattler-s 

M21345  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1/4/Brewer’s Gold//Early 

Green/Unknown-s/3/Zattler-s 

M21329  Comet//Bullion/Zattler-s 

M21110  Bullion/Zattler-s 

M21135  Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 

M21303  Bullion/Zattler-s 

M21300  Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 
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M21360  Cascade/4/Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 

M21466  Comet/4/Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 

M21416  Bullion/Zattler-s 

M21272  Northern Brewer//Bullion/Zattler-s 

M21415  Brewer’s Gold//Early Green/Unknown-s/3/Late Cluster-s/Fuggle-s 

M21273  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1 

M21444  Comet/4/Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 

M21417  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1/4/Brewer’s Gold//Early 

Green/Unknown-s/3/Zattler-s/5/Comet//Bullion/Zattler-s 

M21420  Comet/3/Brewer’s Gold//Fuggle/Colorado-2-1/4/Brewer’s Gold//Early 

Green/Unknown-s/3/Zattler-s/4/Northern Brewer//Bullion/Zattler-s 

M21426  Cascade//Fuggle/Fuggle-s 

M21428  Cascade//Fuggle-s/Fuggle-s 

M21448  Cascade/4/Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 

M21463  Cascade/Yugoslavian 3-3 

Cascade (F21092)  Fuggle//Serebrianca/Fuggle-s/3/open pollinated 

Wye Target (F21112)   Northern Brewer/Wye 22-56//Eastwell Golding/OB79 

M21465  Comet/4/Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 

Comet (F62013)  Sunshine-s/Utah 524-2 

M21184  Unknown 

M21425  Cascade//Semsch-s/8-2B yrd 

M21427  Cascade//Red Vine/Fuggle-s 

Brewer’s Gold (F21116)  BB1/open pollinated 

Galena (F21182)  Brewer’s Gold/open pollinated 

Galena VF (F21699)   Meristem-tip culture from Galena 

Crystal (F21490)  4xHall Mittlefruh //Cascade/USDA 65009M 

Kitamidori (F21677)   Japan C79-27-01/Japan C79-64-110 

Magnum (F21670)  Galena/German 75/5/3 

M21488  Cascade/4/Brewer’s Gold//Early Green/Unknown-s/3/Zattler-s 
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APPENDIX B 

 

Disease Note 

The Oospore of Pseudoperonospora humuli Produced in Abundance by 

Inoculating Hop Cotyledons. T. B. Parker, Department of Crop and Soil Science, 

Oregon State University, Corvallis, OR; 97331. J. A. Henning, Hop Research Unit, 

USDA-ARS National Forage Seed Processing Research Center, Corvallis, OR; 97331. 

W. Mahaffee, USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, 

97331. 

 

Downy mildew is a major disease affecting hop (Humulus lupulus L.) in 

Oregon and around the world.  Jones (1932b) successfully produced oospores of hop 

downy mildew in abundance by sowing ‘Late Cluster’ hop seedlings and inoculating 

the cotyledons with minute portions of infected leaves obtained from basal spikes.  We 

wanted to determine if oospores could be produced in abundance within any cotyledon 

tissue or whether this phenomenon was genotype specific to Late Cluster.  We 

repeated the work of Jones (1932b), except we inoculated flats of ‘Montana II’ x Open 

Pollinated and ‘Wyoming’ x Open Pollinated F1 seedlings with zoosporangia collected 

from host plants grown in a mist chamber.  The flats were bagged, misted daily and 

maintained at 16°C for six days.  When the cotyledons showed obvious signs of 

downy mildew infection, they were removed.  Leaf peels of the cotyledons revealed 

oospores in abundance inside the plant tissue.  The results indicate oospores are easily 

produced in hop cotyledons and that their production is not restricted to the highly 

susceptible Late Cluster variety.  Additional work is being carried out to determine the 

viability of the oospores by staining with MTT. 

 

References: (1) W. Jones. Science 75: 108, 1932b. 
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APPENDIX C 

 

Chapter 4. Supplemental Material:  The Dicktoo’ x ‘OWB-D’ data barley 

vernalization data showing the single-fit and multiple-fit model scores.  The ‘Dicktoo’ 

x ‘Calicuchima’-sib data linkage decay series. 

 

Single-fit and multiple-fit model selections for the ‘Dicktoo’ x ‘OWB-D’ data barley 

vernalization data: 

Single-fit model: 

> fitA 

score 8.825  

 -85.4 * (VRNH1 or (not VRNH2)) 

Multiple-fit model for the ‘Dicktoo’ x ‘OWB-D’ barley: 

> fitB 

1 trees with 1 leaves: score is 20.45 

 +68.4 * (not VRNH1) 

1 trees with 2 leaves: score is 8.825 

 +85.4 * ((not VRNH1) and VRNH2) 

1 trees with 3 leaves: score is 8.825 

 -85.4 * (VRNH1 or (not VRNH2)) 

1 trees with 4 leaves: score is 8.825 

 +85.4 * ((not VRNH1) and VRNH2) 

1 trees with 5 leaves: score is 8.825 

 -85.4 * (VRNH1 or (not VRNH2)) 
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‘Dicktoo’ x ‘Calicuchima’-sib data linkage decay data for the individual decay series 

of VRN-H1 and VRN-H2 shown in Figures 4.1 and 4.2. **Note** ‘Dicktoo’ x ‘OWB-

D’ linkage decay series was not analyzed as Figure 4.2 suggested the signal was too 

weak to obtain any meaningful results. 

 

VRN-H1 Linkage Decay Series 

Multiple-fit model of the ‘Dicktoo’ x ‘Calicuchima’-sib data for VRN-H1: 

> fitB 

1 trees with 1 leaves: score is 22.298  

 -49.3 * VRNH1 

1 trees with 2 leaves: score is 12.472  

 +74.9 * ((not VRNH1) and VRNH2) 

1 trees with 3 leaves: score is 12.472  

 +74.9 * (VRNH2 and (not VRNH1)) 

1 trees with 4 leaves: score is 12.472  

 +74.9 * ((not VRNH1) and VRNH2) 

1 trees with 5 leaves: score is 12.472  

 +74.9 * (VRNH2 and (not VRNH1)) 

1 trees with 6 leaves: score is 12.472 

+74.9 * (VRNH2 and (not VRNH1))  

 

Multiple-fit model for 90% similar to VRN-H1: 

> fitB 

1 trees with 1 leaves: score is 25.974 

 -36.3 * Ninety 

1 trees with 2 leaves: score is 24.531 

 +45.6 * (RANDOM83 and (not Ninety)) 

1 trees with 3 leaves: score is 22.313 

 +60.3 * (((not Ninety) and RANDOM80) and RANDOM83) 



 
 

 

126

1 trees with 4 leaves: score is 19.629 

 +62.1 * ((not Ninety) and ((RANDOM83 and RANDOM80) or (not RANDOM29))) 

1 trees with 5 leaves: score is 18.594 

 +62.7 * ((not Ninety) and ((RANDOM83 and RANDOM80) or ((not RANDOM29) 

or (not RANDOM79)))) 

1 trees with 6 leaves: score is 16.371 

 -71.4 * (((RANDOM40 and RANDOM93) and RANDOM78) or (Ninety or 

(RANDOM28 and (not RANDOM57)))) 

 

Linkage decay multiple-fit model for 80% similar to VRN-H1: 

> fitB 

1 trees with 1 leaves: score is 27.448 

 +29.8 * (not Eighty) 

1 trees with 2 leaves: score is 26.39 

 +36.7 * (RANDOM83 and (not Eighty)) 

1 trees with 3 leaves: score is 24.384  

 +47.7 * ((not Eighty) and ((not RANDOM85) or (not RANDOM63))) 

1 trees with 4 leaves: score is 21.64 

 +62.2 * ((not Eighty) and (((not RANDOM70) or (not RANDOM85)) and 

RANDOM83)) 

1 trees with 5 leaves: score is 19.961 

 -84.6 * ((Eighty or (not RANDOM48)) or ((RANDOM74 and RANDOM66) or (not 

RANDOM84))) 

1 trees with 6 leaves: score is 17.103 

 -77 * (((RANDOM63 and RANDOM96) or ((not RANDOM84) and RANDOM25)) 

or ((not RANDOM35) or Eighty)) 
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Linkage decay multiple-fit model for 70% similar to VRN-H1: 

> fitB 

1 trees with 1 leaves: score is 28.289 

 -26 * Seventy 

1 trees with 2 leaves: score is 27.246 

 +48.5 * ((not Seventy) and (not RANDOM66)) 

1 trees with 3 leaves: score is 25.307 

 +80 * ((not RANDOM63) and ((not RANDOM70) and RANDOM83)) 

1 trees with 4 leaves: score is 23.222 

 -83.9 * (((Seventy or (not RANDOM7)) or RANDOM66) or (not RANDOM84)) 

1 trees with 5 leaves: score is 20.434 

 -72.2 * (((Seventy or (not RANDOM35)) or (RANDOM63 and RANDOM96)) or 

(not RANDOM84)) 

1 trees with 6 leaves: score is 20.283 

 -83.6 * (((RANDOM63 and RANDOM96) or Seventy) or ((RANDOM78 and 

RANDOM33) or (not RANDOM79))) 

 

Linkage decay multiple-fit model for 60% similar to VRN-H1: 

> fitB 

1 trees with 1 leaves: score is 29.004 

 -22.9 * Sixty 

1 trees with 2 leaves: score is 27.33 

 -56.4 * (RANDOM63 or RANDOM70) 

1 trees with 3 leaves: score is 25.307 

 -80 * (RANDOM63 or (RANDOM70 or (not RANDOM96))) 

1 trees with 4 leaves: score is 24.156 

 +74 * (((not RANDOM70) and RANDOM96) and ((not RANDOM63) or (not 

RANDOM78))) 
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1 trees with 5 leaves: score is 20.596 

 -82.7 * (((RANDOM63 or RANDOM70) and (RANDOM66 or RANDOM78)) or 

Sixty) 

1 trees with 6 leaves: score is 19.296 

 -82 * ((RANDOM66 and ((not RANDOM47) or RANDOM78)) or (Sixty or ((not 

RANDOM48) or (not RANDOM84)))) 

 

Linkage decay multiple-fit model for 50% similar to VRN-H1: 

> fitB 

1 trees with 1 leaves: score is 29.723 

 -19.5 * Fifty 

1 trees with 2 leaves: score is 27.33 

 -56.4 * (RANDOM63 or RANDOM70) 

1 trees with 3 leaves: score is 25.307  

 +80 * (((not RANDOM70) and (not RANDOM63)) and RANDOM96) 

1 trees with 4 leaves: score is 24.156 

 +74 * ((RANDOM96 and (not RANDOM70)) and ((not RANDOM63) or (not 

RANDOM78))) 

1 trees with 5 leaves: score is 21.83 

 -63.6 * (((RANDOM78 and RANDOM63) or (RANDOM70 and RANDOM29)) or 

Fifty) 

1 trees with 6 leaves: score is 19.755 

 -71.2 * ((RANDOM70 and ((not RANDOM79) or RANDOM96)) or ((RANDOM78 

and RANDOM33) or Fifty)) 

 

Linkage decay multiple-fit model for 40% similar to VRN-H1: 

> fitB 

1 trees with 1 leaves: score is 29.969 

 -19.9 * RANDOM70 
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1 trees with 2 leaves: score is 27.33 

 -56.4 * (RANDOM70 or RANDOM63) 

1 trees with 3 leaves: score is 25.307 

 -80 * (RANDOM70 or ((not RANDOM96) or RANDOM63)) 

1 trees with 4 leaves: score is 24.156 

 +74 * (((not RANDOM63) or (not RANDOM78)) and (RANDOM96 and (not 

RANDOM70))) 

1 trees with 5 leaves: score is 23.918 

 -75.1 * ((RANDOM78 and (RANDOM60 or RANDOM34)) or ((not RANDOM96) 

or RANDOM70)) 

1 trees with 6 leaves: score is 20.827 

 +66.3 * ((((not RANDOM63) and (not Forty)) or (not RANDOM78)) and 

((RANDOM44 and (not RANDOM29)) or (not RANDOM70))) 

 

 

VRN-H2 Linkage Decay Series 

Multiple-fit model of the ‘Dicktoo’ x ‘Calicuchima’-sib data for VRN-H2: 

> fitB 

1 trees with 1 leaves: score is 29.347 

 -25.5 * (not VRNH2) 

1 trees with 2 leaves: score is 27.33 

 -56.4 * (RANDOM70 or RANDOM63) 

1 trees with 3 leaves: score is 25.307  

 -80 * ((RANDOM63 or RANDOM70) or (not RANDOM41)) 

1 trees with 4 leaves: score is 24.626 

 -77.1 * ((RANDOM63 or (RANDOM70 and RANDOM16)) or (not RANDOM96)) 

1 trees with 5 leaves: score is 22.787 

 -79.9 * ((((not RANDOM68) or (not RANDOM6)) or ((not RANDOM20) and 

RANDOM64)) or RANDOM78) 
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1 trees with 6 leaves: score is 21.38 

 -67 * (((RANDOM15 or RANDOM96) and RANDOM70) or ((RANDOM78 or (not 

RANDOM68)) and RANDOM34)) 

 

Multiple-fit model for 90% similar to VRN-H2: 

1 trees with 1 leaves: score is 29.969 

 -19.9 * RANDOM70 

1 trees with 2 leaves: score is 27.33 

 -56.4 * (RANDOM70 or RANDOM63) 

1 trees with 3 leaves: score is 25.307 

 +80 * (((not RANDOM70) and (not RANDOM63)) and RANDOM41) 

1 trees with 4 leaves: score is 23.222 

 -83.9 * (((not RANDOM79) or (not NinetyVRNH2)) or (RANDOM66 or (not 

RANDOM80))) 

1 trees with 5 leaves: score is 23.329 

 -63.4 * ((RANDOM63 and RANDOM78) or ((RANDOM33 or RANDOM28) and 

RANDOM70)) 

1 trees with 6 leaves: score is 22.392 

 +69.4 * (((not RANDOM70) or ((not RANDOM8) and RANDOM48)) and ((not 

RANDOM78) or ((not RANDOM90) and RANDOM28))) 
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APPENDIX D 

 

General thoughts and comments 

 I decided to approach this last part of the dissertation as an ‘overview’ of my 

thought processes which led to each part of my dissertation, thereby linking them 

together as pieces in a grand puzzle.  I believe this to be an important part of the 

dissertation in that it documents (to the best of my knowledge) the outline of my 

discoveries.  Bits of information that were either inappropriate for a publishable 

chapter or the general introduction are included below.  It is hoped that this appendix 

will help tie the events of discovery together so that everyone reading can see how all 

the ‘pieces’ fit together in the finished work. 

First, let me state, hop downy mildew was a difficult disease to study.  The 

Pseudoperonospora pathogen was very difficult to work with because it is an obligate 

parasite.  The pathogen needs living host tissue to survive and grow.  Generating 

inoculum from oospores was not an option.  People forgot about the oospore when 

interest waned because previous attempts to induce germination in the lab had failed 

(Royle and Kremheller 1981).  Therefore, asexual inoculum must be maintained 

throughout the winter on susceptible plants which were then rotated in and out of mist 

chambers in an attempt to recreate a continuous infection cycle.  The inoculum 

produced was used to infect hop cotyledons for the production of oospores for 

experiments during the winter months. 

 I decided early on to work with field plots.  Field plots contain genotypes that 

are several years old which have many advantages over greenhouse clones.  First, the 

field plots contain big plants.  Big plants have many mature leaves giving the 

researcher many more potential points of infection than greenhouse clones.  Second, 

the plants are maintained by common cultural practices so information on 

epidemiology is related to infectivity under ‘field conditions’ which really makes the 

most sense.  Third, the environment is controlled by ‘mother nature’.  Some may 

consider that to be a negative.  I took it to be a positive in that experimental error can 
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occur at many stages and levels within an experiment.  We try to control potential 

sources of error as much as we can, hoping that the factors we cannot control do not 

come back to haunt us in the form of excessive experimental error.  By utilizing the 

outdoor plots correctly (inoculating during light, continuous misting rain), I was able 

to collect three years of quantitative data for the hop downy mildew resistant 

phenotype. 

 Based on my initial inoculation experiments, I learned that I was dealing with a 

quantitative trait.  There was no evidence to suggest qualitative differences among 

susceptible and resistant genotypes.  The phenotype appeared to be continuous.  

Because it appeared that the hop downy mildew resistant phenotype was quantitative 

in nature, I was pointed in the direction of association mapping during a committee 

meeting.  The initial method I investigated was an in-silico statistical analysis (Grupe 

et al. 2001).  However, this method was criticized because the results were not 

reproducible (Chesler et al. 2001) and there were many questions concerning the 

experimental design (Darvasi 2001). 

 These concerns about the in-silico method appeared valid, so I decided to 

investigate other potential methods which could be used in my data analysis.  After 

rereading my introductory statistics, I realized that logistic regression was a method of 

modeling binary data sets.  However, based on the examples I investigated, I was lead 

to believe that logistic regression could only be run on data with a binary response and 

unfortunately, I had a continuous response variable.  However, I new that I was 

heading down a productive path.  Next, I performed a search in Google™ for logistic 

regression and stumbled onto something called logic regression. 

Logic regression was a search and model-building algorithm written for R 

statistics.  After reviewing the logic regression manual provided by R statistics, I 

realized this software allowed for the modeling of a non-binary response as a function 

of binary predictors.  After reading Ruczinski et al. (2003), I realized he came up with 

a statistical algorithm that combines Boolean algebra with standard statistical 

modeling and that logic regression allowed for a continuous response variable. 
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I hypothesized that logic regression might (due to Boolean algebra and creation 

of logic groups) very well identify complex genetic interaction.  While using logic 

regression on my hop data set, I quickly learned that the program forms logic groups 

prior to running the linear regression.  These logic groups consist of Boolean 

combinations of binary covariates separated by logical operators (‘and’, ‘or’ and ‘not’) 

and these logic groups are independent of the model.  Therefore, no model 

assumptions are implicit in the formation of these groups.  By combining groups of 

Boolean expressions in a well-defined search space, the search algorithm steps 

through this space searching for the best combination of Boolean expressions which 

most accurately describes the relationship between the predictors and the response.  I 

became really excited, but there was no way to prove that logic regression would work 

using my hop data set.  I needed a well-characterized epistatic interaction to test my 

hypothesis. 

 Unfortunately, well-characterized epistatic interactions are quite rare.  

Fortunately for me, the barley research group here at Oregon State University had the 

perfect model system to test my hypothesis.  The VRN-H1/VRN-H2 epistatic 

interaction for vernalization response in barley was exactly what I needed to prove my 

hypothesis.  Barley vernalization is one of the best-studied epistatic interactions in the 

world (Takahashi and Yasuda 1971; Yan et al. 2004; Szűcs et al. 2007).  It’s a classic 

dominant/suppression interaction where the product of gene one normally suppresses a 

second locus (gene two), unless a mutation at the second locus prevents binding of the 

repressor allowing for the expression of gene two.  In barley, dominant VRN-H2 

normally inhibits the expression of recessive VRN-H1 alleles resulting in vernalization 

sensitivity unless a mutation (at the first intron of VRN-H1) removes the repressor 

binding site resulting in a dominant VRN-H1 which is vernalization-insensitive.  

Because my dissertation focus was hop downy mildew, I had to justify the inclusion of 

the logic regression study on barley vernalization.  The justification for its inclusion 

was a simple as cracking open a bottle of beer.  Barley and hops are two main 
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ingredients in beer.  Therefore, I had an industry-based connection with beer and a 

purely mathematical/statistical connection for DNA data analysis in general. 

After running the vernalization data in a logic model, I quickly realized that 

logic regression worked.  The software was able to identify the VRN-H1 and VRN-H2 

interaction as the most likely model with no spurious markers added to the model.  In 

the course of running the data set, I realized that logic regression appeared to identify 

the hypothesized genetic model used to explain the interaction of VRN-H1 and VRN-

H2 in barley (Yan et al. 2004; Szűcs et al. 2007).  In the formation of logic groups, the 

inclusion of operators ‘and’, ‘or’ and ‘not’ is suggestive of dominant and recessive 

genetic terminology.  When the ‘Dicktoo’ x ‘Calicuchima’-sib data resulted in a model 

with a score of 12.47 and the equation: [+74.9 * (VRN-H2 and (not VRN-H1))].  Not 

only did logic regression identify VRN-H1 and VRN-H2 as the two markers that best 

describe the interaction of predictors with response, it also nailed the proposed genetic 

model by suggesting that the true model consists of the epistatic interaction of VRN-

H2 and the ‘conjugate’ or recessive form VRN-H1 (‘not’ VRN-H1).  This revelation 

was totally unexpected!  The results of this work showed that logic regression worked 

in the identification of high order epistatic interaction.  In addition, because Boolean 

logic groups are formed prior to running the regression analysis, the interactions are 

not limited by model assumptions.  Therefore, logic regression may be able to 

distinguish between dominant and dominant/suppression from additive components in 

a model. 

 After my defense during editing of the logic regression chapter, I realized that 

the impact of my discovery was not as great as I previously thought.  I was told by Pat 

Hayes that there are other software packages out there that are able to identify 

epistasis and what I have discovered was nothing new.  This was a cause of great 

concern for I knew that logic regression was the most correct method for modeling 

epistasis, but I needed a way to prove it.  The simulated data set meant that I had very 

few comparative options.  I decided to run my vernalization data sets in the association 

mapping software TASSEL-GLM.  TASSLE-GLM uses simple linear regression to 
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identify potential marker associations with a phenotypic response.  Because TASSEL-

GLM required population structure covariates in their model, I tricked the software 

into thinking I had a single population by setting up a population Q-matrix consisting 

of Q1=1 and Q2=0.  This allowed me to run TASSEL-GLM on my data sets. 

 When I analyzed the data, I was shocked, but not surprised to see that TASSEL 

identified three randomly generated markers as being associated with the days to 

flowering phenotype!  I knew right then that this was going to be a BIG discovery.  In 

order to confirm my results, I decided to run the data sets in SAS proc GLM.  Sure 

enough, those results were the same as those from TASSEL.  Next, I decided to 

perform a full model containing ALL the statistically significant markers and their 

interactions.  The full model ANOVA for the ‘Dicktoo’ x ‘Calicuchima’-sib data 

showed that although the single marker association of RANDOM 70 was significant, 

the marker was found to be insignificant in the full model containing interactions.  

However, the ‘Dicktoo’ x ‘OWB-D’ data revealed two markers (RANDOM 46 and 

RANDOM 58) to be associated with the days to flowering phenotype.  When a full 

model was run and analyzed, RANDOM 58 was found to have statistically significant 

interaction with VRN-H1!  I now had proof that logic regression worked better at 

identifying epistasis when compared to general linear modeling.  This discovery 

should increase the impact factor of my paper, but only time will tell whether the 

scientific community will accept my position concerning the use of Boolean logic for 

identification of epistasis. 

 Unfortunately, logic regression has a few drawbacks.  First, because logic 

regression uses Boolean algebra, the DNA must be dominantly coded.  Second, logic 

regression is a fixed effects model.  Therefore, the results pertain to only those 

individuals within the data set.  Third, logic regression output for a QTL analysis can 

be difficult to interpret, especially when there are deviations from the expected 

response.  When analyzing potentially ‘noisy’ data sets, it is up to the user to decide 

what constitutes an unacceptable data set (unacceptable in terms of noise).  We can 

use the null model test to test for signal in the data and we can chart single-fit model 
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scores to get an idea of the coefficient of variation (CV) in the over-fit models, 

however, these statistical tests are merely tools to help the researcher make appropriate 

choices.  Many more studies need to be performed using logic regression to determine 

whether the mean CV for single-fit models can be used as a diagnostic test in the 

identification of potentially troublesome data sets. 

I rediscovered the hop downy mildew oospore and it was quite by accident.  It 

happened while I was walking in one of the research plots at the hopyard.  I looked 

closely at the leaves and they had numerous late-season downy lesions.  These lesions 

looked very similar to those described by Hoerner (1949).  Hoerner (1949) reported 

that there are oospores in the late-season downy mildew lesions.  I took some material 

back to the lab and worked it with a mortar and pestle, put the material through a 

series of wet sieves and I found oospores in that material.  After learning oospores 

could be produced in abundance in hop cotyledons (Jones 1932b), I began a year and 

a-half investigation of the oospore.  During that time period, I was fortunate to capture 

multiple germination events on laboratory wet mounts. 

 Unfortunately, germination events showing a classic germ tube were 

admittedly quite rare.  In addition, I was unable to obtain infection when I carried out 

an experiment on infective capability of hop seedlings using oospores as an inoculum 

source.  I knew going into that experiment that it had a very high chance for failure 

with a very small chance for success.  I knew this because the disease is over 100 

years old and none of the researchers in all that time have claimed success in showing 

the oospore to be an infective agent for the disease.  When the seedling experiment 

failed, all I had were observations of what appeared to be germination events and 

counts for oospore numbers in hopyard soil.  Although I was disappointed that I could 

not ‘prove’ the oospore was an infective agent, I did have good evidence that they 

appeared quite capable of germination.  With this information in hand, I went about 

reading the journals to see whether there was anything that researchers might have 

missed that would contribute to a better chapter on the oospore. 
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I knew that in addition to my germination pictures I had data on potential 

viability in my oospore soil samples.  However, after counting the number of oospores 

in my samples, I realized that something was not quite right.  I was getting too many 

false-positives and too few clear oospores.  I immediately knew that there was 

something wrong with the MTT stain as a viability test.  Most researchers stated they 

could not explain the reason for false-positive reactions and that this percentage 

needed to be subtracted out of the data (Nelson and Olsen 1967).  Others suggested 

that the false-positives were the result of mycoparasites (Van der Gaag and Frinking 

1997).  However, this line of reasoning did not sit well with me.  I told myself this is 

not correct and that there had to be a more simple reason.  I turned to a review article 

on tetrazolium staining and believe that I found the answer I was looking for.  Altman 

(1974 and 1976), produced two excellent reviews on the chemistry of tetrazolium salts.  

After reading the title of the first review article, I knew that all the pathologists missed 

something crucial.  The title of Altman (1974) was, “Studies on the reduction of 

tetrazolium salts. III. The products of chemical and enzymatic reduction.”  Altman 

mentioned a chemical reduction of tetrazolium in addition to the well known 

enzymatic reduction.  I thought to myself, “I bet NADH and/or NADPH is involved in 

this chemical reduction which Altman mentioned in the title of his paper.”  NADH and 

NADPH are two very common reducing agents within cells and because they are not a 

protein, should survive autoclaving intact.  I went home and starting reading the 

review paper.  After a little while, I found the section on chemical reduction.  In that 

section of the review, Altman tells the readers that MTT should not be used as a 

diagnostic stain for viability because tetrazolium salts are readily reducible in the 

presence of the reducing agent NADH (Altman 1974).  I felt vindicated after making 

this discovery.  Here I discovered something that all the previous pathologists missed 

and the answer was right in the title of the publication cited in most of the prior studies 

on oospore viability! 

 Based on this new information, I was able to put together a better chapter on 

oospore germination and MTT staining.  Although I was unable to prove infective 
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capability of the hop downy mildew oospore, I was still able to come up with new 

protocols for the extraction, isolation and recovery of oospores from soil and plant 

tissue, I captured multiple germination events and photographed them and I 

discovered something that all the previous reports missed (MTT cannot be used as a 

viability stain).  Based on my observations, I believe that the hop downy mildew 

oospore is quite capable of germination.  I hypothesize that the oospore may germinate 

within the plant at the break of winter dormancy.  This scenario would help explain 

why an infected bud grows into a downy mildew diseased spike while a bud right next 

to an infected shoot develops normally.  Early on, Ware (1929) was unable to provide 

sufficient evidence to support his claim but remained steadfast that the disease over-

wintered as mycelium in the dormant crown of the hop plant.  However, oospores 

which survive within the dormant buds have a huge selective advantage when 

compared to oospores in the soil.  Oospores within the plant are protected from the 

direct onslaught of winter.  Once the hop plant breaks dormancy, all the oospore has to 

do is germinate within the bud and the disease cycle can start anew. 

With less than six months of funding remaining, I challenged myself to 

complete the hop downy mildew association mapping chapter of my dissertation and 

to make it a chapter worthy of publication.  As mentioned earlier, I did not like the 

approach taken by Grupe et al. (2001).  It was clear to me that there were too many 

problems and too few solutions with this approach to association mapping.  Logic 

regression was a viable alternative, however, the software was still very new and I 

only just recently showed that it was a viable alternative for AFLP marker analysis, 

not to mention, I did not (as of yet) run the comparative analysis with general linear 

modeling.  Therefore logic regression was still ‘too new’ and wouldn’t help me in my 

association mapping chapter. 

After going to numerous department seminars on association mapping, I 

learned the maize group at Cornell was using the software TASSEL in a mixed-model 

format for association mapping.  I learned that TASSEL has many modeling options 

and one method, a mixed effects model, takes population structure and kinship into 
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account in an attempt to limit type I and type II errors (Yu et al. 2006).  After 

contacting the Buckler group, I learned that TASSEL could be used with my AFLP 

data set by treating the AFLP data as a string length polymorphisms.  Yu et al. (2006) 

reported that the software Spagedi was used to determine estimates of kinship and the 

software Structure was used to determine population structure both of which were 

subsequently added to the mixed-model in TASSEL.  The Buckler lab suggested that I 

read Hardy (2003) as that paper reported on new F-statistics which were being used to 

derive kinship and relationship coefficients with dominant molecular markers such as 

AFLP.  After reading the paper, I realized that it was now possible to perform a 

mixed-model analysis on my hop downy mildew AFLP data set.  I quickly learned 

how to use the software Structure v2.1 and Spagedi v1.2 and Hickory v1.0.  I knew 

that I had to first determine whether there was any population substructure in my 

AFLP data set.  Previous reports (Murakami 2000; Seefelder et al. 2000; Jakse et al. 

2001) suggested that there were two main clusters in hop that could be further broken 

down into 3 to 6 subclusters.  However, when I ran Structure v2.1, I was unable to get 

similar clustering as that previously reported. 

After running all my analyses and comparing the output, I decided to use a 

traditional genetic distance cluster analysis as these results made the most sense both 

biologically and with the pedigree information available on hop.  With the population 

structure identified, I ran the AFLP data set in the genetic analysis software Hickory.  

Hardy (2003) reported that it was possible to obtain an inbreeding coefficient using 

Bayesian inference.  I knew that I needed an ‘assumed’ inbreeding coefficient in order 

to obtain kinship estimates for my AFLP marker data set.  Holsinger et al. (2002), 

reported on estimating population structure (F-statistics) with dominant markers like 

AFLP.  After I read the paper, I quickly learned how to format my data set for the 

software Hickory.  After 45 minutes, I got a value for the mean inbreeding coefficient 

necessary for calculating estimates of kinship using the Hardy (2003) method. 

 The kinship estimates allowed me to calculate the variance components for 

narrow-sense heritability of the downy mildew resistant phenotype in addition to their 



 
 

 

140

use in a mixed-model approach to association mapping.  The broad-sense heritability 

of 76% and a narrow-sense heritability of 49% suggested to me that the F-statistics 

developed by Hardy (2003) might actually work.  If the narrow-sense heritability was 

greater than the broad-sense heritability, then the results would have been viewed with 

extreme caution.  However, looking at my phenotypic distribution and the broad-sense 

heritability results, I realized the estimated narrow-sense heritability results were 

probably correct.  Since these techniques are the only ones currently available for use 

with dominant markers and the initial results ‘looked right’, I continued on with my 

analysis. 

 I incorporated the population structure and kinship estimates into the mixed-

model in TASSEL.  The results revealed 43 AFLP markers to be statistically 

associated with the hop downy mildew resistant phenotype.  That was approximately 

9% of the 492 markers in my data set.  The R2 of the markers themselves was quite 

low ranging from less than 1% to 23%.  The low R2 of the markers makes perfect 

sense considering the hop downy mildew resistant phenotype is quantitative.  Many 

molecular markers linked to genes, each contributing a little bit to the expressed 

phenotype.  Based on the heritability estimates for the phenotype and the mixed-model 

results, some form of family-based genotypic recurrent selection or marker-assisted 

selection will be needed to help introduce many levels of resistance to this devastating 

pathogen. 

 Looking back at the process of discovery, it becomes apparent that each step in 

the process led directly to the next step.  Often the steps seemed haphazard and 

disconnected at the time, but looking back it all fit together.  Would I have discovered 

logic regression and its potential use in modeling of epistasis without first learning 

about the in-silico methods of Grupe et al. (2001) and being dissatisfied with that 

approach?  I would have to say probably not.  Would I have pushed myself to learn 

mixed-models for use in association mapping if I did not first learn about logic 

regression?  I can safely say, maybe, but then again, maybe not.  Learning logic 

regression gave me the confidence I needed so that I could learn the additional theory 
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and software necessary for a mixed-model approach.  There was a good chance that I 

would not have learned mixed modeling without the prior confidence boost from logic 

regression.  I know people are going to be curious (as I would be) and ask, “What 

were you thinking when you discovered Boolean logic and where did the idea that 

epistasis might best be modeled using Boolean logic?  All I can say is that I did what I 

was told to do, solve the problem, whatever problem was in my path at the time.  You 

cannot look at a problem from just one dimension or one area of thought and/or 

expertise.  I was able to make these important discoveries because I was well prepared 

to make the discoveries.  It took a lot of reading and a lot of coursework, but in the end, 

I was prepared to pick up bits of information that otherwise might have gone 

unnoticed.  I always joked with a friend, Dr. Janssen, and I told him, “Yeah I have the 

gift of observation, but I wish I was better at math or computers instead.”  I always 

thought (out of all the gifts that people have in this world) I got one that stinks.  It 

wasn’t until Dr. Janssen told me, “Tom, you have a wonderful gift, many great 

scientists are really good at mathematics, many are good with computers and many are 

good in the lab, but many of these people cannot see the nose at the end of their face.  

You have the ability to see things that others miss and you have shown that you have 

this ability numerous times and that is a good gift.”  I will never forget what Dr. 

Janssen told me. 

The rediscovery of the hop downy mildew oospore, well, that was just 

fortuitous on my part.  This incident of ‘dumb-luck’ reminds me of the movie Forrest 

Gump.  I only did what you told me to do.  I remember Walt told me that I have to 

make my own luck and put myself in a position to make a discovery.  How do you do 

that, again, you go to the library and read!  When you think you are finished, you need 

to read some more.  Every single discovery I made was a direct result of reading.  I 

cannot overemphasize the importance of reading in scientific discovery.  It is, in my 

opinion, the most important step in the whole process.  I am no different than any 

other average scientist.  I just really like to read A LOT!  The discoveries are out there 

for everyone to find.  The people that make the discoveries are most often the ones 
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that put themselves in the position to make those discoveries.  Thank you Walt, I will 

never forget what you told me and I hope to teach others these time tested techniques 

‘of discovery’ in the future. 

 I am glad to have had to opportunity to help the hop industry.  Scientific 

achievement is not always readily apparent to those most affected by a problem.  As 

you can see by reading these thoughts and comments, scientific discovery is an 

incremental process where each discovery leads to new discoveries.  Will science ever 

be able to defeat hop downy mildew?  I cannot answer that.  However, I do know that 

without making an attempt, failure is a certainty. 

 


