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1. Introduction

As atmospheric CO2 continues to be the primary greenhouse gas contributing to global

warming, CO2 sequestration is one of the leading efforts to reduce the effects of climate

change. The capture and storage of atmospheric CO2 in cement wells has been shown to

be a viable and long-lasting method for sequestration [1]. Research article [1] describes the

injection of supercritical CO2, a fluid state of carbon dioxide, into man-made, underground

wells where it dissolves in brine and binds with rock formations for long-term storage [1].

One issue with this method of sequestration is that ground movement creates tiny

fractures in the cement through which carbon dioxide leaks. Additionally, cap-rock is

permanently characterized by a significant level of permeability [1]. Researchers seek to use

microbial biofilms, bacterial colonies that adhere to surfaces using slimy excretions, to plug

these cement cracks. In particular, the bacteria Sporosarcina pastuerii is being studied for

use because of its ability to extract calcium carbonate from its surrounding environment.

Sporosarcina pastuerii then produces calcite, a hardened substance, in a process called

biocementation. This biofilm and calcite fills the cement cracks and inhibits upward leakage

of CO2 [1]. Researchers seek to control and encourage the growth of Sporosarcina pastuerii

to make underground sequestraion effective.

This paper is motivated by NSF-funded research currently conducted at Oregon State

University (OSU) by Assistant Professor and Senior Researcher Andrew Thurber, and Math-

ematics Professor Malgorzata Peszynska, on the optimization of biofilm growth. This paper

explores foundational mathematical models which build toward a real representation of

biofilm growth.

Chapter three of this paper presents a simulation of a system of ordinary differential

equations representing mass reaction chemical kinetics. Chapter four of this paper presents

simulations of one- and two-dimensional diffusion governed by Fick’s Second Law of Diffu-

sion. Chapter five of this paper explores a simulation involving two-dimensional diffusion

and chemical reactions.
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Figure 1.1: Sporosarcina pasteurii grown at Oregon State University under the direction of
Senior Researcher Andrew Thurber, referred to in chapter 1.



2. Recent Mathematical Models

for Biofilm Growth

Basic characteristics concerning the growth of biofilm with restricted food availability

is presented by Eberl and Demaret in paper [5]. Their model is governed by a quasi-linear

diffusion equation for biomass density. The model has two causes of degeneracy: diffusion

coefficient D(u) dissapears as biomass density nears zero and a singularity appears in D(u)

when biomass density approaches its maximum value at 1. They use a nonstandard, finite

difference scheme to simulate the model. The key finding in this paper is that food-limited

biofilm populations grow in pillars and clusters, whereas non-limited populations grow in

flat, homogenous forms. Eberl and Demaret prove this by presenting a simulation scenario

in which food nutrients are limited and lysis, the deactivation of biofilm that doesn’t have

access to food, takes place. In the scenario, biomass grows up until biomass density nears

one. The biofilm form then pushes outward, creating pillars and clusters. The model we

explore in this paper is a quasi-linear diffusion model, similar to that of Eberl and Demaret.

Additionally, we limit nutrient consumption using Monod kinetics and represent biomass

density approaching its maximum value at one.

A continuum model for the heterogenous structure of biofilm growth is presented by

Eberl, Parker, and Van Loosdrecht in paper [6]. Their model is governed by a quasi-

linear diffusion equation for biomass density. The newer development in this paper than

earlier biofilm modeling papers is the use of a continuum model for biofilm growth. Earlier

papers were exploring probabilistic models with discrete, local conditions. However, among

other complications, the probabilistic approach is not physically motivated. Eberl, Parker,

and Van Loosdrecht explore one- and three-dimensional structures that are experimentally

validated and suggest that biofilm structures have spatial heterogeneities.

3



3. Mass Reaction

3.1 System of Ordinary Differential Equations (ODEs)

In this chapter, we explore the chemical reactions governed by mass reaction chemical

kinetics. Assume we have a container with three interacting chemicals: A, B, and AB. A

and B are the reactants that combine to create the product substance AB. At the same

time, chemical AB can dissociate, thereby increasing the quantities of chemicals A and B.

We denote the concentration level of each chemical by CA, CB, and CAB. The reaction

that creates chemical AB takes place at a certain rate we denote by k1. The dissociation

reaction of AB takes place at the rate we denote by k−1 [7].

A + B
k1−−⇀↽−−
k−1

AB (3.1)

Physically, we assume a simple model for these reactions governed by mass reaction

chemical kinetics. We assume that the concentration of the reacting substance is the only

influence on reaction rate . Thus, the number of possible reactions is proportional to the

concentration of each substance [7]. We also assume constant temperature, thus keeping

each substance in a consistent phase.

We write these relations defining the rates of reaction and modeling the growth of A,

B, and AB as a system of ordinary differential equations (3.1). Note that CA, CB, and

CAB are functions of time.

C ′A = k−1CAB − k1CACB

C ′B = k−1CAB − k1CACB

C ′AB = k1CACB − k−1CAB

(3.2)

Equation (3.2) defines a system of ordinary differential equations (ODEs) which govern

the change of concentration over time for the three reacting chemicals.

Equation (3.2) is a nonlinear, autonomous, first-order system of ODEs. In order for

4
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this system to have a unique solution we need initial conditions. We define these conditions

in equation (3.3).

CA(t0) = CAinit

CB(t0) = CBinit

CAB(t0) = CABinit

(3.3)

3.2 Solving ODE system

In this section, we explore the numerical approach to understand a solution for equation

(3.2).

3.2.1 Numerical Approach

Numerical methods approximate solutions to differential equations. This paper ex-

plores a numerical approach utilizing finite difference schemes. Finite difference methods

relate to finite difference expressions of the form f(x+ b)− f(x+ a). These finite difference

methods can be understood using basic derivative concepts. Recall the derivative of some

function f at a point x is defined by:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(3.4)

Notice the finite difference in the numerator. Suppose h is a fixed, non-zero number.

Then we rewrite the derivative to give

f(x+ h)− f(x)

h
=

∆hf(x)

h
(3.5)

This represents the derivative of f(x) for some small h [4].

Given a function of x, f(x), we evaluate equation (3.5) at discrete time values, xj ,

to approximate. This is the foundational idea of numerical approximations. xj represents

x|j where j = 1, ...,M . This means that xj are specific values at which our equation is

evaluated. An approximation to the solution is produced by this evaluation.
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Given an ordinary differential equation, we choose a numerical method based on sta-

bility, convergence, and consistency. We then replace the derivative by the associated

finite difference quotient. The resulting combination of differential equation and numerical

method can be programmed using MATLAB to generate numerical approximations. This

means that the numerator in equation (3.5) may change dependent on the type of numerical

method we choose [8].

For a coupled system of differential equations, one must code all equations to run si-

multaneously in MATLAB. This is because, at any moment, the value of one dependent

variable depends on the current value of another dependent variable. The system for chem-

ical kinetics, (3.2), is a coupled system programmed in this simultaneous manner.

3.2.2 MATLAB Implementation

To write the simulation in MATLAB for system (3.2), we create a vector of discrete

time points, tn, at which we approximate the chemical concentration over time. tn represents

t|n where n = 1, ..., N . This means that tn are specific time values at which the equations

in system (3.2) are evaluated. Note that we are evaluating the equations in system (3.2)

over time because they are time-dependent ODEs. Simple numerical methods to use are

Forward Euler, Backward Euler, 2nd Order Runga-Kutta, and 4th Order Runga Kutta.

The disadvantage of Forward Euler is the necessity for a small value between consecutive

time points, tn. We denote this difference as the timestep, h. This small timestep will make

the MATLAB function longer to implement than desired. For nonlinear systems, however,

like the one explored in this chapter, it is advantageous to use the Forward Euler method

because it is simple to program [8].

To implement, write each of the ordinary differential equations in system (3.2) using

the forward finite difference quotient in (3.6).

D+u(t) =
u(t+ h)− u(t)

h
≈ u′(t) (3.6)

Assume



7

u′(t) = f(u(t), t)∀t ≥ t0 (3.7)

Then rewriting equation (3.6) yields:

u(tn+1) ≈ u(tn) + hf(u(tn), tn) (3.8)

This means that we can approximate the value of our solution, u(t), at any subsequent

time value given we know the value and the derivative of u(t) at our current time value.

This translates into the following numerical method. Note that U represents the numerical

approximation to u(t).

Un+1 = Un + hf(Un, tn) = Un + hU ′(tn) (3.9)

For chemical A, we create a numerical equation based on equation (3.9), shown in

equation (3.10).

CA(tn+1) = CA(tn) + hf(CA(tn), tn) (3.10)

Here, we generate an equation for f(CA(tn), tn) from system (3.2) since we assume

equation (3.7).

f(CA(tn), tn) = k−1CAB − k1CACB (3.11)

We write the full numerical method for system (3.2) in equation (3.12).

CA(tn+1) = CA(tn) + h(k−1CAB(tn)− k1CA(tn)CB(tn))

CB(tn+1) = CB(tn) + h(k−1CAB(tn)− k1CA(tn)CB(tn))

CAB(tn+1) = CAB(tn) + h(k1CA(tn)CB(tn)− k−1CAB(tn))

(3.12)

We evaluate system (3.12) in MATLAB using a vector of timesteps. Let us assume the

following initial chemical quantities for chemicals A, B, and AB: CAinit = 4, CBinit = 3, and

CABinit = 7. Let us assume that it is easier for AB to dissociate into individual chemicals
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A and B. Thus, we let k−1 = 1 and k1 = .2. Evaluating system (3.12) for 10 timesteps

with a timestep value h = 0.1 generates the plot shown in figure 3.1. The superscript ef

identifies that Forward Euler was the method used to compute these values.

Figure 3.1: Forward Euler sample plot demonstrating chemical concentration over time,
referred to in chapter 3.2.2.

3.2.3 Numerical Method Analysis

When utilizing the Forward Euler method, we need to analyze the problem to ensure

that we have stability, consistency, and convergence. Stability is governed by the region of

absolute stability for a given method. The region of stability for Forward Euler consists of

all points inside the unit circle centered at (−1, 0) in the complex plane [8].

Consistency is analyzed by evaluating local truncation error (LTE). The local trunca-

tion error for Forward Euler is τn within the following equation.

u(tn+1)− u(tn)

h
= f(u(tn), tn) + τn (3.13)

Let us replace f(u(tn), tn) by u′(tn). Then we use Taylor expansions to find τn =

h
2u
′′(tn) +O(h2). τn is on the order of h but hτn is on the order of h2 so that at each step

you make an h2 error. By taking (1/h) steps you have an accumulation effect of losing an
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h and thus, the full numerical method is on the order of O(h). This tells us that Forward

Euler is a first order method [3].

A numerical method is said to converge if the approximation approaches the exact

solution as the time step h approaches zero. We know that Forward Euler is convergent [8].

3.2.4 Numerical Method Accuracy

To ensure that the numerical approximation is accurate, we calculate a more accurate

approximation using the built-in MATLAB ODE solver, ODE45. We expect the error

between these approximations, Forward Euler and ODE45, to be on the order of O(h). We

will use five different h values to examine this error.

Shown in figure 3.2 is a plot of both the MATLAB ODE solver and the Forward Euler

method. Here, the superscript ef tells us that Forward Euler was used to compute certain

values and the superscript ode45 tells use that solver ODE45 was used to compute certain

values.

Figure 3.2: Forward Euler method (segmented line) compared to MATLAB ODE45 Solver
(solid line), referred to in chapter 3.2.4.

The Forward Euler and ODE45 approximations exhibit similar behavior. However,

Forward Euler is not as accurate as ODE45. We compute the error, E(h), using the Linf

norm giving the maximum difference between the ODE45 values and the Forward Euler
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Error, E(h)

h E(h) Time (seconds)

0.1 0.2835 0.854111
0.01 0.0257 0.250165
0.001 0.0025 0.903269
0.0001 2.5449x10−4 1.350832
0.00001 2.5839x10−5 6.280132

Table 3.1: Error for Forward Euler referred to in section 3.2.4.

values. See the errors listed in Table 3.1. Notice that the errors are on the order of the h

timestep value. This is in accordance with our knowledge of Forward Euler being on the

order of O(h).



4. Diffusion

4.1 Diffusion Partial Differential Equations (PDEs)

This chapter explores diffusion governed by Fick’s 2nd Law. It predicts the location of

a diffusing substance over time. The following partial differential equation models diffusion

in one spatial dimension as an initial boundary value problem (IBVP) [2].

ut − uxx = f(x, t) (4.1)

For well-posedness of this IBVP we need to define initial and boundary conditions.

This will yield an approximation of a unique solution. For our numerical approach we use

Dirichlet boundary conditions where the values at our end points are zero. This means that

the spatial boundaries are defined by a fixed value. We define this boundary value using

g(x). Our boundary and initial conditions are defined in (4.2).

u(0, t) = g(0) = 0

u(M, t) = g(M) = 0

u(x, 0) = uinit(x)

(4.2)

The initial conditions will be manually input to our MATLAB simulation to generate

a unique approximation. The boundary conditions will be programmed into our MATLAB

simulation.

4.2 Numerical Methods for Diffusion

To approximate a solution for the diffusion problem we use a finite difference approach

as we did with the mass reaction system. Equation (4.1) is a partial differential equation

which is first order for the time variable and second order for the space variable.

11
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4.2.1 Time Discretization

For this first-order derivative, we must choose a finite difference method. Because this

is a linear equation, it will be simple and fast to use an implicit method. The implicit

Backward Euler method is advantageous because it is characterized by absolute stability

for all time step values. We denote our time increment using k and our space increment

using h. Assuming

u′(t) = f(u(t), t), ∀ t ≥ t0 (4.3)

Backward Euler uses the backward difference shown in equation (4.4).

D−u(t) =
u(t)− u(t− k)

k
≈ u′(t) (4.4)

This translates to the numerical method in equation (4.5).

Un+1 − Un

k
= f(Un+1, tn+1) (4.5)

This method is of the order O(k) with a local truncation error of order ck2 at each

step. As well, it is a convergent method.

We rewrite the partial differential equation using Backward Euler and represent our

spatial derivative, uxx using matrix AUn+1. Note that Unj represents our approximate value

of our solution at location j and time h. Here, A represents a matrix.

Un+1
j − Unj

k
= [AUn+1]j + f(xj , tn+1) (4.6)

Equation (4.6) translates into the numerical method in equation (4.7).

Un+1
j = Unj + k[AUn+1]j + kf(xj , tn+1) (4.7)

The subscript j represents the current space grid point corresponding to xj , in other

words, U |xj = Uj and U |xj ,tn = Unj .
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4.2.2 Space Discretization

For the second-order space derivative, we must choose a finite difference method to

incorporate spatial discretization. To approximate a second-order derivative, we create a

numerical method by combining two first-order derivative approximations. We combine

the forward and backward finite difference methods to approximate u′′(x). This gives us

the following approximation in equation (4.8). This serves as a second-order derivative,

centered difference.

u(x+h)−u(x)
h − u(x)−u(x−h)

h

h
=
u(x+ h)− 2u(x) + u(x− h)

h2
≈ u′′(x) (4.8)

This translates to the following numerical method at every xj , tn:

1

h2
(Uj+1 − 2Uj + Uj−1) ≈ u”(xj) (4.9)

4.2.3 Full Discretization

For a full discretization, we substitute the space and time discretizations into the

diffusion equation. This results in the following numerical method:

Un+1
j − Unj

k
−
Un+1
j − 2Un+1

j + Un+1
j−1

h2
= f(xj , tn+1). (4.10)

4.2.4 MATLAB Implementation

To implement in MATLAB, we solve for Un+1
j and rewrite in matrix form by placing

the U values inside a vector over the spatial grid. This form is shown in equation (4.11).
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Un+1
0

Un+1
1

...

Un+1
M−1

Un+1
M


+
k

h2



0 0 0 0 . . . 0 0 0

−1 2 −1 0 . . . 0 0 0

0 −1 2 −1 . . . 0 0 0

. . .

0 0 0 0 . . . −1 2 −1

0 0 0 0 . . . 0 0 0





Un+1
0

Un+1
1

...

Un+1
M−1

Un+1
M


=



g(0)

Un1
...

UnM−1

g(M)


+k



0

f(x0, tn+1)

...

f(xM−1, tn+1)

0


(4.11)

To evaluate, we divide our spatial domain into M equally spaced segments, each the

length of our spatial step, h. In order to have M segments we need M + 1 grid points,

including the end points. For a boundary value problem, it is necessary to define boundary

conditions on these end points. We use Dirichlet boundary conditions by which the values

at the spatial end points, defined by g(x), stay constant. To implement Dirichlet conditions,

the upper and lower rows of the matrix system must be solely dominated by the value of

the last timestep. In other words, Un+1
j = Unj for j = 0,M .

Let us denote the square matrix as A, and we can simply write (4.11) as:

(I +
k

h2
A)Un+1

j = Unj + kf(xj , tn) (4.12)

Because equation (4.12) is a linear, square system, we can use the MATLAB backslash

or inverse operator to solve for Un+1
j . The inverse operator will find the solution using fewer

computational steps.

Solving for the Un+1
j vector we obtain the following form:

Un+1
j = (I +

k

h2
A)−1(Unj + kf(xj , tn)) (4.13)

We program equation (4.13) into MATLAB and iterate for x timesteps. Figure 4.1

displays a sample simulation plot.

In figure 4.1 the green line shows the chemical concentration for the initial time step.

The red line shows the chemical concentration for the final time step.
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Figure 4.1: One dimensional diffusion with initial chemical concentration of 1 in the center
of the space domain referred to in chapter 4.2.4.

4.2.5 Testing Simulation Accuracy

To test the accuracy of this one-dimensional simulation, we assume an exact solution

for u, compute the approximation, compute the exact solution, and evaluate the Linf norm

error between the two. Let

u(x, t) = sin(πx)e−2t (4.14)

be the exact solution. Then

ut = −2sin(πx)e−2t (4.15)

and

uxx = −π2sin(πx)e−2t (4.16)

We see then that

f(x, t) = ut − uxx = (−2 + π2)sin(πx)e−2t (4.17)
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Error, E(h)

h k E(h) Time (seconds)

0.2 0.004 7.5874x10−4 5.98627
0.1 0.001 1.9502x10−4 10.727437
0.066 0.00016 8.584x10−5 11.244604
0.04 0.00044 3.0948x10−5 54.510372

Table 4.1: Error for one spatial dimension diffusion, referred to in section 4.2.5.

We evaluate this using MATLAB over the same spatial grid and time segment as our

previous simulation. Figure 4.2 shows the comparison of our exact solution, using ODE45,

with the numerical method approximation, using Backward Euler at the final timestep.

Figure 4.2: Comparison of the exact solution with the Backward Euler generated solution
at the final time step, referred to in chapter 4.2.5.

We use the Linf norm to compare error and find that the error is on the order of k2.

For Backward Euler, the expected error is on the order of O(k) and for the second-order

derivative method the error is on the order of O(h2). This is consistent with the error we

found in the simulation.

Table 4.1 shows errors dependent on varying spatial step size of h.
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4.3 Two Dimensional Diffusion

In this section, we expand the simulation to two spatial dimensions. According to

Fick’s 2nd Law, the diffusion equation for two dimensions is shown in equation (4.18) with

defined initial conditions and boundary conditions in equation (4.19).

ut − α(uxx + uyy) = f(x, y, t) (4.18)

u(0, y, t) = g(0, y) = 0, u(M,y, t) = g(M,y) = 0,

u(x, 0, t) = h(x, 0) = 0, u(x,N, t) = h(x,N) = 0,

u(x, y, 0) = uinit(x, y)

(4.19)

Again, for this numerical approximation we let all of our boundary values equal zero.

4.3.1 Spatial Discretization

To incorporate this second spatial dimension, y, we will apply another second-order

derivative method discretization. This gives us the resulting numerical method:

Un+1
i,j − Uni,j

k
−α(

Un+1
i,j+1 − 2Un+1

i,j + Un+1
i,j−1

h2
+
Un+1
i+1,j − 2Un+1

ij + Un+1
i−1,j

h2
) = f(xi, yj , tn) (4.20)

Note that Unj approximates u(xj , tn) ∀ xj , tn.

We simplify this method as follows in equation (4.21).

Un+1
i,j =

kα

h2
(Un+1

i−1,j + Un+1
i+1,j − 4Un+1

i,j + Un+1
i,j−1 + Un+1

i,j+1) + Uni,j + kf(xi, yj , tn) (4.21)

Combining our Un+1
i,j terms from both spatial discretizations in x and y gives us the

resulting 4 coefficient in equation (4.21).
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4.3.2 MATLAB Implementation

Rewriting this in matrix form requires the use of square matrix A which governs the

two-dimensional spatial discretization.

First, let us examine the unpacking of the matrix u, the matrix containing the chemical

concentration values. Let us use the term umatrix for this matrix form of u and uvector

for the vector form of u. Below is the matrix umatrix which shows the x and y values

corresponding to each matrix element on our rectangular grid. This matrix is an n by m

matrix. Here, n is the maximum value in the y-space direction and m is the maximum

value in the x-space direction. To explore an example, let m = 24 and n = 13.

umatrix =



(1, 1) (1, 2) (1, 3) · · · (1, 24)

(2, 1) (2, 2) (2, 3) · · · (2, 24)

...
...

...
. . .

...

(13, 1) (13, 2) (13, 3) · · · (13, 24)


(4.22)

In order to implement the numerical method, we need to generate a u vector from the

values in umatrix. To do this we create an algorithm called myind. myind lists the values

in umatrix in vector form moving from left to right and top to bottom. Thus, the following

vector shows how umatrix values are shifted into the uvector.
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uvector =



(1, 1)

(1, 2)

(1, 3)

...

(1, 13)

(2, 1)

(2, 2)

(2, 3)

...

(2, 13)

(3, 1)

(2, 2)

(3, 3)

...

(24, 13)



(4.23)

Note that the size of umatrix is 13 by 24 and the size of uvector is 312 by 1.

We simplify the method, allow A to represent the coefficients from our spatial dis-

cretization, and let A absorb kα
h2

. This simplification is shown equation (4.24).

(I +A)Un+1 = kfn+1 + Un (4.24)

In equation (4.24), U is the numerical approximation to our solution u(x, y, t).

Now, let us explore the form of matrix A, shown below. To generate the understanding

let us think about two smaller domains. First, we’ll show a 3 by 3 domain and second a

4 by 4 domain. These visualizations will give us a foundation to understand the form of

matrix A for a 13 by 24 rectangular grid domain.
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A3x3 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 −kα
h2

0 −kα
h2

4kα
h2
−kα
h2

0 −kα
h2

0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



(4.25)

In matrix A3x3 in equation (4.25), row 5 is the most detailed row. This is because

row five represents the only internal grid point, namely point (2, 2). We leave the other

rows without detail because we will be using Dirichlet boundary conditions. The diagonal

ones represent that each of the boundary points retains the same valued defined by g(x) for

every time step. This means that the values on the boundaries do not change over time.

Now, we explore the 4 by 4 domain case.
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A4x4 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 −kα
h2

0 0 −kα
h2

4kα
h2

−kα
h2

0 0 −kα
h2

0 0 0 0 0 0

0 0 −kα
h2

0 0 −kα
h2

4kα
h2

−kα
h2

0 0 −kα
h2

0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 −kα
h2

0 0 −kα
h2

4kα
h2

−kα
h2

0 0 −kα
h2

0 0

0 0 0 0 0 0 −kα
h2

0 0 −kα
h2

4kα
h2

−kα
h2

0 0 −kα
h2

0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(4.26)

Again, notice that the detailed rows correspond to the internal grid points of the

domain. For a rectangular domain, we simply align equation detail with the internal grid

points of the domain. Imagine this layout expanded to a 24 by 13 grid which we explore

in the following example. The only addition needed for a non-square domain is that we do

not only have h terms in our denominators. We will have hx and hy terms to differentiate

different space increments in each spatial dimension.

In this example, let α, the diffusion coefficient, equal 1. We compute the Backward

Euler approximation for 100 time steps using the time step increment k = .01. Figure 4.3

represents the displayed approximation at one time step.
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Figure 4.3: Backward Euler approximation in two spatial dimensions over a 24 by 13 rect-
angular domain, referred to in chapter 4.3.2.

4.3.3 Numerical Method Analysis

Now, we analyze the numerical method. In order to to do this, we choose a sample

exact solution, u(x, y, t). Let

u(x, y, t) = sin(πx)sin(πy)e−2t (4.27)

Then the forcing function is

f(x, y, t) = ut − α(uxx + uyy) = sin(πx)sin(πy)e−2t(−2 + 2απ2) (4.28)

We implement and plot this exact solution over the spatial and time grids used in

figure 4.3. See the results compared in figure 4.4.

4.3.4 Testing Simulation Accuracy

We generate the Linf norm error between the sample exact solution and the numerical

approximation. The error is on the order of O(k) +O(h2). This is consistent with the error

we expect for Backward Euler and centered difference. Table 4.2 shows the error values



23

Figure 4.4: Comparison of the proxy exact solution (right figure) with the Backward Euler
generated solution (left figure) at the final time step referred to in chapter 4.3.3.

dependent on time and space steps.
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Error, E(h)

hy hx k E(h) Time (seconds) Quality of Behavior

0.5 0.4166 0.01 N/A N/A N/A
0.25 0.4166 0.01 0.0863 51.676536 Poor
0.625 0.4166 0.01 0.0175 52.3366631 Good
0.03125 0.4166 0.01 0.0147 52.522455 Good
0.0769 0.5 0.01 N/A N/A N/A
0.0769 0.25 0.01 0.0855 53.605038 Poor
0.0769 0.625 0.01 0.0126 53.314103 Good
0.0769 0.03125 0.01 0.0081 55.685118 Good
0.0769 0.4166 0.1 0.1350 52.437321 Good
0.0769 0.4166 0.01 0.0154 52.353048 Good
0.0769 0.4166 0.001 0.6602 52.482394 Good
0.0769 0.4166 0.0001 0.8487 52.219641 Good

Table 4.2: Error for two-dimensional spatial simulation referred to in section 4.3.4.



5. Reaction-Diffusion

5.1 Two Species System

This chapter explores nutrient diffusion and biofilm growth. First, we form the partial

differential equations that govern nutrient and biofilm in two spatial dimensions. Then

we run simulations of the resulting numerical method. This implementation is developed

using the IMEX scheme numerical method. This means we discretize our diffusion terms

implicitly and the reaction terms explicitly.

5.1.1 Differential Equations

In this situation, the nutrient will diffuse in two spatial dimensions. Thus, we start with

the nutrient, u(x, y, t), governed by (4.18). We also know the nutrient will be consumed by

the biofilm. So, we now add a −k2bu term, where b(x, y, t) represents biofilm concentration.

By Monod kinetics, we divide the −k2bu term by 1 +u(x, y, t), which represents the critical

point where biofilm stops growth after consuming all available nutrients. The results are

shown in equation (5.1).

ut = α(uxx + uyy)−
k2bu

1 + u
(5.1)

For the biofilm differential equation, we only need to represent growth by the con-

sumption of nutrient. We represent this in equation (5.2).

bt =
k3bu

1 + u
(5.2)

The full system is now shown in equation (5.3).

ut = a(uxx + uyy)− k2bu
1+u

bt = k3bu
1+u

(5.3)

25
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System (5.3) is a nonlinear, coupled system of partial differential equations.

5.1.2 Numerical Method

We use the IMEX numerical method by which diffusion is treated implicitly and reac-

tion is treated explicitly. We choose to discretize in this way due to the level of efficiency

leveraged by the IMEX method. We use the second-order derivative, centered difference

approximation shown in (4.8) for our space discretization and we use Backward Euler for

our time discretization. We let the column vector U represent the numerical approximation

for u(x, y, t) and column vector B represent the numerical approximation for b(x, y, t). We

are using the positive definite matrix A modeled after the sample matrices shown in (4.3.2)

with
h2

absorbed into matrix A. We also define a column vector Pn whose entries are given

by term (5.4) arranged in a manner corresponding to the vector reorientation sampled by

the uvector shown in equation (4.23). Column vectors B and U are also arranged corre-

sponding to this reorientation so that each point on the rectangular grid is represented in

our columns.

k2B
n
i,jU

n
i,j

1 + Uni,j
+ Uni,j , ∀ i, j. (5.4)

Given B, U , and Pn the numerical method used to approximate our nutrient is shown

in equation (5.5).

Un+1 = (I +A)−1 − kPn, ∀ i, j. (5.5)

Using Forward Euler method for biofilm, we obtain the following biofilm numerical

method in equation (5.6).

Bn+1
i,j =

kk3B
n
i,jU

n
i,j

1 + Uni,j
+Bn

i,j , ∀ i, j. (5.6)
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5.1.3 MATLAB Implementation

In order to test these numerical methods in MATLAB, we create random biofilm

regions in the domain to serve as our initial conditions. Now, the implementation outputs

two figures to show nutrient diffusion as well as biofilm growth. Here is a sample when

k = 0.0100, hx = 0.0833, hy = 0.0435, k2 = 3, k3 = 9.

Figure 5.1: Time: 0.02. Backward Euler approximation of the nutrient, u (left figure).
Forward Euler approximation of the biofilm, b (right figure) referred to in chapter 5.1.3.

Due to the complicated nature of the two-dimensional reaction-diffusion problem we

cannot easily understand the accuracy of our simulation. While we cannot fully trust our

implementation, we expect reasonable accuracy given that this implementation is built from

the previous simulations described in this paper.
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Figure 5.2: Time: 0.12. Backward Euler approximation of the nutrient, u (left figure).
Forward Euler approximation of the biofilm, b (right figure) referred to in chapter 5.1.3.

Figure 5.3: Time: 0.22. Backward Euler approximation of the nutrient, u (left figure).
Forward Euler approximation of the biofilm, b (right figure) referred to in chapter 5.1.3.
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Figure 5.4: Time: 1.00. Backward Euler approximation of the nutrient, u (left figure).
Forward Euler approximation of the biofilm, b (right figure) referred to in chapter 5.1.3.



6. Conclusion

A foundational spatio-temporal model is developed yielding simulations to predict

biofilm growth. To aide CO2 sequestration research, this model establishes the beginning

components of a more comprehensive model. The development of this model began with the

exploration of modeling chemical reactions dependent on time. Next, modeling of diffusion

was developed in one spatial dimension. This was followed by the development of a two-

dimensional spatial model of biofilm growth. Finally, this paper implemented and tested a

numerical IMEX scheme method for a coupled system of two species in two-dimensions of

reaction-diffusion type.

Some further extensions that this paper motivates are the addition of flow processes to

this model. Additionally, one could add another species of competing biofilm, three spatial

dimensions, and a singularity for biofilm density at a value of 1. A necessary extension is

accuracy testing for the coupled IMEX system.

In summary, through working on this project I studied approximations to ODEs and

PDEs and implemented and tested a numerical method (IMEX) for a coupled system of

two species in two dimensions of reaction-diffusion type. I also learned about mathematical

modeling of biofilm growth and tested numerical method accuracy of schemes on simples

examples. Additionally, I gained technical skills using MATLAB, LaTex, and Beamer.
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Appendix A

Forward Euler, Chemical Reactions

1 function EF conc(N, Ca 0, Cb 0, Cab 0, k 1, k inv1)
2 k = 1/N;
3 tsteps = zeros(N+1, 1);
4 Cavalues = zeros(N+1, 1);
5 Cbvalues = zeros(N+1, 1);
6 Cabvalues = zeros(N+1, 1);
7 Cavalues(1) = Ca 0;
8 Cbvalues(1) = Cb 0;
9 Cabvalues(1) = Cab 0;

10 tsteps(1) = 0;
11 for n = 1:N
12 tsteps(n+1) = tsteps(n) + k;
13 Cavalues(n+1) = Cavalues(n) + k.*((k inv1).*Cabvalues(n) − (k 1).*...

Cavalues(n).*Cbvalues(n));
14 Cbvalues(n+1) = Cbvalues(n) + k.*((k inv1).*Cabvalues(n) − (k 1).*...

Cavalues(n).*Cbvalues(n));
15 Cabvalues(n+1) = Cabvalues(n) + k.*((k 1).*Cavalues(n).*Cbvalues(n) − (...

k inv1).*Cabvalues(n));
16

17 end
18 plot(tsteps, Cavalues, 'k−.', tsteps, Cbvalues, 'r−.', tsteps, Cabvalues, 'b−...

.')
19 axis([0, 1, 0, max([Ca 0, Cb 0, Cab 0])])
20 legend('C Aˆ{ef}', 'C Bˆ{ef}', 'C {AB}ˆ{ef}')
21 title(['C A(0)=' num2str(Ca 0), ', ' 'C B(0)=' num2str(Cb 0), ', ' 'C {AB...

}(0)=' num2str(Cab 0), ', ' 'k 1=' num2str(k 1), ', ' 'k {−1}=' num2str(...
k inv1)])

22 xlabel('Time')
23 ylabel('Concentration Level')
24 z = [Cavalues(:,1) Cbvalues(:,1) Cabvalues(:,1)]
25 size(z)
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Appendix B

ODE45 Solver, Chemical Reactions

1 function mass reacf(N, Ca 0, Cb 0, Cab 0, k 1, k inv1)
2 k = 1/N;
3 tspan = (0:k:1)'
4 A = Ca 0
5 B = Cb 0
6 C = Cab 0
7 yzero = [A B C]
8

9 [t,y] = ode45(@mass reacf, tspan, yzero)
10 size(y),
11 y,
12 clf;
13 plot(t, y(:,1),'k',t,y(:,2),'r',t,y(:,3),'b');
14 legend('C Aˆ{ode45}','C Bˆ{ode45}','C {AB}ˆ{ode45}');
15 axis([0, 1, 0, max(yzero)])
16 title(['C A(0)=' num2str(Ca 0) 'C B(0)=' num2str(Cb 0) 'C {AB}(0)=' num2str(...

Cab 0) 'k 1=' num2str(k 1) 'k {−1}=' num2str(k inv1)])
17 xlabel('Time')
18 ylabel('Concentration Level')
19

20 %−−−−−−−−−−−−−Nested functions−−−−−−−−−−−−−−−−
21 function yprime = mass reacf(t,y)
22

23 yprime = zeros(3,1);
24 yprime(1)=(k inv1).*y(3) − (k 1).*y(1).*y(2);
25 yprime(2)=(k inv1).*y(3) − (k 1).*y(1).*y(2);
26 yprime(3)=(k 1).*y(1).*y(2) − (k inv1).*y(3);
27

28 end
29 end
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Appendix C

Backward Euler, One Dimensional
Diffusion

1 function backeulwsn(M, x f, T)
2

3 h = x f./M; % I think this is arbitratily chosen to be a small space step.
4 k = (h.ˆ2)/10; %This time step was chosen for stability reasons.
5

6 %The set up of the equation with source term f(x,t) = 0 is the form:
7 %
8 %0 = (uˆ{n+1} − uˆ{n})/k + (1/hˆ2).*A*uˆ{n+1}
9 %

10 %And then the form:
11 %
12 %uˆ{n+1} + (k/hˆ2).*A*uˆ{n+1} = uˆ{n} where A is chosen in accordance with
13 %second order, centered difference approximation (1/hˆ2)(−u {j−1} + 2u {j}
14 %−u {j+1}) each evaluated at n. In order ot find uˆ{n+1},
15 %our next step data values, we must use the backslash operator in the form:
16 %
17 %(I + (k/hˆ2).*A)*uˆ{n+1} = uˆ{n}
18 %
19 %And then the form:
20 %[Recall Backslash Operator: Ax = B goes to x = A\B].
21 %
22 %uˆ{n+1} = (I + (k/hˆ2).*A)\uˆ{n}.
23 %
24 %We modify the above equation with a source term, f(x,t) creating this form:
25 %
26 %f(x,t) = (uˆ{n+1} − uˆ{n})/k + (1/hˆ2).*A*uˆ{n+1}
27 %
28 %And then the form:
29 %
30 %k.*f(x,t) = (I + (k/hˆ2).*A)*uˆ{n+1} − uˆ{n}
31 %
32 %And then the form:
33 %
34 %(I + (k/hˆ2).*A)*uˆ{n+1} = k.*f(x,t) + uˆ{n}
35 %
36 %Solving for uˆ{n+1} using the backslash operator gives:
37 %
38 %uˆ{n+1} = (I + (k/hˆ2).*A)\(k.*f(x,t) + uˆ{n})

33



34

39 %
40 %%For simplification in this code, we will use the following notation:
41 %A = matrix representing centered difference w/o hˆ2
42 %B = I + ((k/hˆ2).*A)
43 %F = k.*f(x,t)
44 %K = k.*f(x,t) + uˆ{n} = F + uˆ{n}
45

46 %Note: We have M space segements of length h. Thus we
47 %record data for M+1 points that
48 %seperate our M space segments.
49

50 %First, let's create our space step vector, u vector, matrix A, and matrix B.
51

52 xsteps = (0:h:x f)'; %This is our vector with space step points.
53 uvalues = sin(pi.*xsteps); %This vector gives our initial condition,
54 %i.e. our numerical data at t=0.
55 uvalues(1,1) = 0;
56 uvalues(M+1, 1) = 0;
57

58

59 A = zeros(M+1);
60 for j = 2:M
61 A(j,j) = 2; A(j,j−1) = −1; A(j,j+1) = −1;
62 end
63

64 %The above for−loop generates A with 2 on the diagonal, −1 on the
65 %semi−diagonals and the (1,1) and (M+1, M+1) elements equal to zero in
66 %order to generate our boundary conditions.
67

68 C = (k./(hˆ2)).*A;
69 B = eye(M+1) + C;
70

71 %Second, let's create our vectors F and K.
72

73 %We define f(x,t) = u {t} − u {xx} where u(x,t) = sin(pi.*x).*exp(−2.*t).
74 %Thus, f(x,t) = (−2 + piˆ2).*sin(pi.*x).*exp(−2.*t).
75 %So, our vector F will depend on both time and space. We have a vector,
76 %xsteps, that will determine our values of x. To determine our changing
77 %values of t let us use a time for−loop. We need this loop to take on
78 %non−integer values. Thus we create list v which holds all of the time values
79 %over which we wish to evaluate.
80 %
81 %Recall:
82 %F = k.*f(x,t)
83 %K = k.*f(x,t) + uˆ{n} = F + uˆ{n}
84 %
85 %To be used in:
86 %uˆ{n+1} = (I + (k/hˆ2).*A)\(k.*f(x,t) + uˆ{n})
87 %
88 %Using our f(x,t) we then create our vector F and K. We execute the
89 %backslash operator in order to find uˆ{n+1} within our for−loop.
90

91 v = (0:k:T);
92 for n = v
93 f = (−2+(piˆ2)).*sin(pi.*xsteps).*exp(−2.*n);
94 f(1, 1) = 0;
95 f(M+1, 1) = 0;
96 F = k.*f;
97 K = F + uvalues;
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98 uvalues = B\K;
99 hold on

100 plot(xsteps, uvalues)
101 if n == 0
102 plot(xsteps, uvalues, 'go−', 'LineWidth', 2.5)
103 else
104 plot(xsteps, uvalues, 'b')
105 end
106 if n == T
107 plot(xsteps, uvalues, 'ro−', 'LineWidth', 2.5)
108 else
109 plot(xsteps, uvalues, 'b')
110 end
111 end
112 rr = size(v)
113 title(['One dimensional diffusion for ', num2str(rr(2)), ' timesteps'])
114 ylabel('Chemical Concentration')
115 xlabel('Space')
116

117

118 p
119 %Now, let's plot the exact value dependent on the following equation:
120

121 %u(x,t) = sin(pi.*x).*exp(−2.*t).
122

123 vvalues = sin(pi.*xsteps).*exp(−2.*T);
124

125 figure
126 plot(xsteps, vvalues, '*−', xsteps, uvalues, 'o−')
127 legend('exact', 'generated')
128 title(['Exact solution and backward euler approximation'])
129 ylabel('Chemical Concentration')
130 xlabel('Space')
131

132

133 %We want to include the dimensions of our vector v, vector K, and matrix B
134 %to help with troubleshooting.
135

136 %x = size(v)
137 %y = size(B)
138 %z = size(K)
139

140 E = norm(vvalues − uvalues, inf)



Appendix D

Backward Euler, Two Dimensional
Diffusion

1 function sample2becd(m, n, k, a, NT)
2 tic()
3 %Create our spacesteps, specify our space steps for x and y
4

5 x = linspace(0, 1, m);
6 y = linspace(0, 1, n);
7 hx = 1/(m−1);
8 hy = 1/(n−1);
9

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %Create x(j) and y(l) functions
12

13 function [q] = xx(j)
14 q = j*hx;
15 end
16

17 function [r] = yy(l)
18 r = l*hy;
19 end
20

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22

23 %Create the packing function
24 function [p] = myind(j,l,n)
25 p = n.*(j−1) + l;
26 end
27

28 A = sparse(m*n,m*n);
29

30 %Create A, the matrix that corresponds to centered difference in
31 %x and y
32 for j = 2:m−1
33 for l = 2:n−1
34 A(myind(j,l,n), myind(j+1,l,n)) = − a./(hx)ˆ2;
35 A(myind(j,l,n), myind(j−1,l,n)) = − a./(hx)ˆ2;
36 A(myind(j,l,n), myind(j,l+1,n)) = − a./(hy)ˆ2;
37 A(myind(j,l,n), myind(j,l−1,n)) = 4− a./(hy)ˆ2;
38 A(myind(j,l,n), myind(j,l,n)) = 2.*((1./hx)ˆ2 + (1./hy)ˆ2);

36



37

39 end
40 end
41

42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
43

44 %Create B, the matrix we use in our backslash operation
45 I = eye(m.*n);
46 B = I + k.*A;
47

48 %Check the eigenvalues for stepsize/stability information
49 %eig(A);
50 %eig(B);
51

52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53

54 %Create our values at t=0 and boundary conditions (zeros on boundary)
55 %This uses u(x,y,t) = sin(pix)sin(piy)eˆ−2t
56 uold = zeros(m.*n, 1);
57 for j = 2:m−1
58 for l = 2:n−1
59 uold(myind(j,l,n)) = sin(xx(j).*pi).*sin(yy(l).*pi);
60 end
61 end
62

63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64

65 %Create our XX and YY meshgrids for our surface plot
66 [XX,YY] = meshgrid(x,y);
67 P = [XX(:), YY(:)];
68

69 %%%%%%%%%%%%%%%%%%
70 %Unpack our values from uold into matrix form in order to plot using
71 %surf/mesh
72 for v = 1:m.*n
73 for l = 1:n
74 g = (v−l)./n;
75 if mod(g,1) == 0
76 j = ((v−l)./n) + 1;
77 uoldm(l,j) = uold(v);
78 end
79 end
80 end
81 %%%%%%%%%%%%%%%%%%
82

83 %Plot our XX,YY,uoldm matrices to physically see our data
84 %surfc(XX, YY, uoldm);
85 %xlabel('X'); ylabel('Y'); zlabel('Z'); figure
86

87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88

89 %Now, we want to iterate over our timesteps w
90 %First, generate f using f(x,y,t) = u t −a(u xx + u yy) =
91 %sin(pix)sin(piy)eˆ(−2t)(−2+2apiˆ2)
92 figure
93

94 for w = 1:NT
95 tw = k.*w;
96 f = zeros(m.*n, 1);
97 for j = 2:m−1
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98 for l = 2:n−1
99 f(myind(j,l,n)) = sin(xx(j).*pi).*sin(yy(l).*pi)*(exp(−2.*(tw)))....

*(−2 + 2.*a.*pi.ˆ2);
100 end
101 end
102 rhs = k.*f + uold; %This is our right hand side
103 unew = B\rhs; %Now, we solve the linear system.
104

105 %%%%%%%%%%%%%%%%%%%%
106 %Unpack our unew vector into matrix form to plot using surf/mesh
107 for v = 1:m.*n
108 for l = 1:n
109 g = (v−l)./n;
110 if mod(g,1) == 0
111 j = ((v−l)./n) + 1;
112 unewm(l,j) = unew(v);
113 end
114 end
115 end
116 %%%%%%%%%%%%%%%%%%%
117

118 surf(XX, YY, unewm) %Plot at time w
119 xlabel('X−direction in space'); ylabel('Y−direction in space');
120 zlabel('Concentration');
121 title(sprintf('Surface plot of numerical solution at t=%g',tw))
122 pause(.5)
123 uold = unew; %Prepare the data for the next iteration
124 end
125 size(unewm)
126 toc()
127 end



Appendix E

Two Species

1 function sample2becdREACTION(m, n, a, NT)
2

3 %Create our spacesteps, specify our space steps for x and y
4

5 k = 1/NT;
6 x = linspace(0, 1, m);
7 y = linspace(0, 1, n);
8 hx = 1/(m−1);
9 hy = 1/(n−1);

10

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 %Create x(j) and y(l) functions
13

14 function [q] = xx(j)
15 q = j*hx;
16 end
17

18 function [r] = yy(l)
19 r = l*hy;
20 end
21

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23

24 %Create the packing function
25 function [p] = myind(j,l,n)
26 p = n.*(j−1) + l;
27 end
28

29 A = sparse(m*n,m*n);
30

31 %Create A, the matrix that corresponds to centered difference in
32 %x and y
33 for j = 2:m−1
34 for l = 2:n−1
35 A(myind(j,l,n), myind(j+1,l,n)) = − a./(hx)ˆ2;
36 A(myind(j,l,n), myind(j−1,l,n)) = − a./(hx)ˆ2;
37 A(myind(j,l,n), myind(j,l+1,n)) = − a./(hy)ˆ2;
38 A(myind(j,l,n), myind(j,l−1,n)) = − a./(hy)ˆ2;
39 A(myind(j,l,n), myind(j,l,n)) = 2.*((1./hx)ˆ2 + (1./hy)ˆ2);
40 end
41 end

39



40

42

43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44

45 %Create B, the matrix we use in our backslash operation
46 I = eye(m.*n);
47 B = I + k.*A;
48

49 %Check the eigenvalues for stepsize/stability information
50 %eig(A);
51 %eig(B);
52

53 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
54

55 %Create our values at t=0 and boundary conditions (zeros on boundary)
56 %This uses u(x,y,t) = sin(pix)sin(piy)eˆ−2t
57 uold = zeros(m.*n, 1);
58 for j = 2:m−1
59 for l = 2:n−1
60 uold(myind(j,l,n)) = 10; %55 sin(xx(j).*pi).*sin(yy(l).*pi);
61 end
62 end
63

64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65

66 %Create our XX and YY meshgrids for our surface plot
67 [XX,YY] = meshgrid(x,y);
68 P = [XX(:), YY(:)];
69

70 %%%% setup bold= initial condition for biofilm
71 bold = 0*uold;
72 rand('seed',0);
73 %% set up random centers and radii of blobs
74 k1 = 3; k2 = 9;
75

76 x1 = rand; y1 = rand;
77 x2 = rand; y2 = rand;
78 r1 = rand; r1 = 0.1 + r1*0.3;
79 r2 = rand; r2 = 0.1 + r2*0.3;
80 for j = 2:m−1
81 for l = 2:n−1
82 blob = 0;
83 if norm([x1,y1]−[x(j),y(l)]) <r1, blob = 1;end
84 if norm([x2,y2]−[x(j),y(l)]) <r2, blob = 1;end
85 bold(myind(j,l,n)) = blob;
86 end
87 end
88

89 %%%%%%%%%%%%%%%%%%
90 %Unpack our values from uold into matrix form in order to plot using
91 %surf/mesh
92 for v = 1:m.*n
93 for l = 1:n
94 g = (v−l)./n;
95 if mod(g,1) == 0
96 j = ((v−l)./n) + 1;
97 uoldm(l,j) = uold(v);
98 end
99 end

100 end
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101

102 %%%%%%%%%%%%%%%%%%
103 %Unpack our values from uold into matrix form in order to plot using
104 %surf/mesh
105 for v = 1:m.*n
106 for l = 1:n
107 g = (v−l)./n;
108 if mod(g,1) == 0
109 j = ((v−l)./n) + 1;
110 boldm(l,j) = bold(v);
111 end
112 end
113 end
114

115 %%%%%%%%%%%%%%%%%%
116 %Plot our XX,YY,uoldm matrices to physically see our data
117 %surfc(XX, YY, uoldm);
118 %xlabel('X'); ylabel('Y'); zlabel('Z'); figure
119

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
121

122 %Now, we want to iterate over our timesteps w
123 %First, generate f using f(x,y,t) = u t −a(u xx + u yy) =
124 %sin(pix)sin(piy)eˆ(−2t)(−2+2apiˆ2)
125 figure
126

127 for w = 1:NT
128 tw = k.*w;
129 f = zeros(m.*n, 1); g = zeros(m.*n, 1);
130 for j = 2:m−1
131 for l = 2:n−1
132 %%% f(myind(j,l,n)) = sin(xx(j).*pi).*sin(yy(l).*pi)*(exp(−2.*(tw)...

)).*(−2 + 2.*a.*pi.ˆ2);
133 f(myind(j,l,n)) = (−k1*bold(myind(j,l,n))*uold(myind(j,l,n)))....

/(1+uold(myind(j,l,n)));
134 g(myind(j,l,n)) = (k2*bold(myind(j,l,n))*uold(myind(j,l,n)))./(1+...

uold(myind(j,l,n)));
135 end
136 end
137 rhs = k.*f + uold; %This is our right hand side
138 unew = B\rhs; %Now, we complete our backslash operation
139

140 bnew = bold + k*g;
141

142 %%%%%%%%%%%%%%%%%%%%
143 %Unpack our unew vector into matrix form to plot using surf/mesh
144 for v = 1:m.*n
145 for l = 1:n
146 g = (v−l)./n;
147 if mod(g,1) == 0
148 j = ((v−l)./n) + 1;
149 unewm(l,j) = unew(v);
150 end
151 end
152 end
153 %%%%%%%%%%%%%%%%%%%%
154 %Unpack our unew vector into matrix form to plot using surf/mesh
155 for v = 1:m.*n
156 for l = 1:n
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157 g = (v−l)./n;
158 if mod(g,1) == 0
159 j = ((v−l)./n) + 1;
160 bnewm(l,j) = bnew(v);
161 end
162 end
163 end
164 %%%%%%%%%%%%%%%%%%%
165

166 figure(1);surfc(XX, YY, unewm) %Plot at time w
167 axis([0, 1, 0, 1, 0, 10]);
168 caxis([0, 10]);
169 xlabel('X−direction in space'); ylabel('Y−direction in space'); zlabel('...

Concentration');
170 title(sprintf('Nutrient concentration at t=%g',tw))
171 aa = colorbar; %caxis([0 10]);
172 ylabel(aa, 'Concentration');
173 figure(2);surfc(XX, YY, bnewm) %Plot at time w
174 axis([0, 1, 0, 1, 0, 5]);
175 caxis([0, 5]);
176 xlabel('X−direction in space'); ylabel('Y−direction in space'); %zlabel('...

Z');
177 title(sprintf('Biofilm growth at t=%g',tw))
178 bb = colorbar; %caxis([0 1]);
179 ylabel(bb, 'Concentration');
180 pause(.5)
181 uold = unew; %Prepare the data for the next iteration
182 bold = bnew;
183 end
184

185 end
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