
INTERNAL REPORT 126

FLEX 1 USER'S MANUAL

W. Scott Overton, Jon A. Colby, Jonna Gourley
and Curtis White

Oregon State University

January 1973

Revised, September 1973

NOTICE: This internal report contains information
of a preliminary nature, prepared primarily for
internal use in the US/IBP Coniferous Forest Biome
program. This inforamtion is not for use prior to
publication unless permission is obtained in writing
from the authors.

The FLEX1 Users Manual

ABSTRACT

FLEX1 is a general model processor, patterned after Klir's
General Sequential System Paradigm (Figure 1). Specifically, the
processor is a discrete time flux oriented realization of the general
paradigm and can process non-linear, non-stationary, environmentally
controlled state variable system models with explicit memory. The
current version is restricted to not more than 63 state variables, 40
input variables, 200 memory variables, and 50 output variables.
There are also restrictions on the number of functions identified, and
other restrictions, which will be elaborated in the appropriate part of
this writeup.

The system is implemented in the Oregon State University OS-3
operating system, is specific for the CDC 3300 computer, and may be
operated only from a teletype.

Output may be monitored at the teletype, line printed and dump
filed. Satellite programs have been written for plotting and listing
from the dump file.

FLEX1 is designed to be expanded in two directions. First will
be further elaboration as a single level model processor concentrating
all capacity into this single level. Second will be elaboration into a

multi-level, hierarchical model processor (REFLEX), capable of
mixed resolution. The two capacities are being incorporated into a
single processor, FLEXZ, which is in the final stage of development at
this printing, and will be operative in late 1973.

Table of Contents

ABSTRACT
TABLE OF CONTENTS
LIST OF FIGURES
GLOSSARY OF SYMBOLS

THE FLEX PARADIGM
Introduction
The Processor Algorithm

Page

1
1.1

iv
v

1

3

II. MODELLING WITH FLEX1
Introduction
Reasons for Modelling in FLEX
Identification of FLEX1 Structure
Specification of a Model

Time Resolution 12

Quantity
Variables and Functions 13

The X List
The Z Function
The M List
The G Function
The F Function 17

The Special Function
The Y Function
Parameters 21

The Initial Condition
General Run Information 22

Run Time
Monitor, Line Printer and Data Dump File 23

Diagram
Comments 24

Description of Behavior 24

III. PROGRAMMING IN FLEX1
Introduction 25

Overview 25

Programming Details 27

A. Coding the Model Function. 27
Z'Functions 29
G Functions 30

F Functions 31

S Functions 32

Y Functions 33

B. Preparing a Function Overlay 34

C. Entering the Parameter Information 35

C.1. Run Parameter I-File 36

C.1.a Memory Specifications 36
C.a.b X Limits 38
C.l.c Output Specification 39

11

r

I.

6
8

12

13

13
14
16

17

19
20

List

23

24

iii

Table of Contents
Page 2 of 2

C.2. Parameter B-File 41

C.3. Parameter R-File 41

C.4. Parameter N-File 41

A Note on Naming Files and Overlays 42

IV. USING FLEX1
Introduction 44

Preliminaries 44

Calling FLEX1 45

Commands 45

A. Number of State Variables 46

B. Time Limits 46

C. The Function Overlay 47

D. Parameter Files 47

E. The Title 48

F. Logs and Summaries 48

G. Listing Values 50

H. Simulate 50

1. Repeated Runs 50

Editing 51

Manual Interrupt 52

Output Specification 53

A. The Teletype Monitor Listing 53

B. The Line Printer Listing 54

Data Dump File Manipulation by Satellite Program 55

Satellite
A. Satellite Program *PLOTCON 55

B. Satellite Program *LPPLOT 56

C. Satellite Program *DMPRNT 58

REFERENCES S9

APPENDIX 60

Section 1. A Summary of Commands Al.1
Section 2. Format Summary A2. 1
Section 3. Error Messages A3.1
Section 4. Sample FLEXFORM A4.1
Section 5. Sample Programs With Run A5.1

LIST OF FIGURES

Figure 1. The FLEX Paradigm

Figure 2. The FLEX1 Sequential Computation Cycle -

Figure 3. FLEXFORM

Figure 4. An Overview FLEX1 Operating System

Appendix Figure 1. Diagram of Hydrology Model

Appendix Figure 2. Model Behavior

iv

2

9

10, 10-a

26

A4.8

A4.11

V

X.. E X

GLOSSARY OF SYMBOLS

Sets

Elements of Sets

x is an element of X

Matrices

Components of Matrices

x
1j

is the component in the ith row and the jth

column of X

Vectors

Components of Vectors

x,
1

is the ith component of x

Discrete time index

X(k),x(k),...,x(k),x
1
.(k) Value of that Set, Element, .. - , Vector, or

^-

Vector Component at time k

lun Logical unit number

<lun> Replace with an actual lun (i. e. 1 to 50)

name A file name (unless specified differently)

<name > Replace with an actual file name

i, j Index numbers

<i> Replace with a particular index number

> FLEX1 command mode symbol - glitch (unless

used in context of ''greater than'').

k

I. THE FLEX PARADIGM

s

Introduction

FLEX is a realization of Klir's general paradigm which is

illustrated in Figure 4.8 of An Approach to General Systems Theory

(Klir, 1969). This figure has been modified as Figure 1 of this writeup.

In constructing the processor, it was desirable to restrict the paradigm

to discrete time, versus continuous time, and to orient it to a flux

system. The flux orientation follows the conceptual structure of com-

partment models, which are currently fashionable in ecology. However,

some forms of ecological models are awkward in this form, and the

section on modelling (Section II) includes a discussion of alternative

orientations possible under the current version. It is also proving

difficult to model some systems conceptualized in continuous time in

the form of discrete time and it is anticipated that a differential

analyzer will be made available (in place of the discrete analyzer) in a

future version. For the present version, however, the paradigm is

strictly in discrete time, and restricted to a difference equation

structure. The f functions must explicitly or implicitly define the

first differences of the state variables.

Klir's model structures have also been restricted somewhat to

accommodate currently fashionable terminology. The terminology of

FLEX is a mixture of Klir and Freeman (1965). Klir's principal

quantities include input, output, and memory variables as used in FLEX,

2

I

a. The General paradigm at modified

Ik S,G,F.A

I

k)L
!Y(K),

r

b. Elaboration of the Functional Generator

z lk)-- -----------1
MASK

V k k [mx((k-1)...:,lk-r
_

r _
014 k' I M(k-I)-in(k-l-1) 1 I

a. Elaboration of the Memory

Figure 1. The FLEX Paradigm 0

Functional

Generator
Memory

*

Environment
System

3

as well as any others that are necessary to describe the behavior of

the system. Klir does not use the term state variable in his general

paradigm. Freeman's "state variables" include both state and x-nemor.y

variables in FLEX terminology.

The arguments for the FLEX variable set are all oriented toward

the problems of modelling. We feel that identification of variables

according to their model function is helpful in model conceptualization.

Input variables are those provided by another system or by the environ-

ment. State variables are those required to characterize the behavior

of the system and are restricted to quantities occurring at a particular

instant. These will be incremented by the processor at each time step.

Memory variables are past values of input or state variables. Output

variables are identified state variables, or functions of state variables,

which are designated as system outputs, either for the purpose of study

of the system, or as outputs to another system. The vectors z, x,

and y designate the input, state and output variables, respectively,

and other quantities are identified in the following discussion.

The Processor Algorithm

The algorithm is the standard discrete time algorithm, structured

to explicitly identify the state variable increments s and with provi-

sion for automatic identity of L from a matrix of fluxes (f equations)

representing the flows of a compartment model. Letting k be the

4

discrete time index,

Model algorithm
x(k+1) = x(k) + p (k)

y(k) = h(x(k))

where o (k) is a column vector such that the f th element is defined as

n n

Of (k))f.(k) - ffj(k)

i=1 j=1
j Y:Q

and where,

f(k) = f1., j [k, x(k), z(k), M(k), g(k), s, b, r].1

Further, h is an arbitrary functional vector of the vector x

and M(k) is defined as a matrix of past values of x and z. That is,

let M(k) = [m(k), m(k-1), ... , m(k-r)I

where m(k-1) = Q
[z(k-.Q -1) mz(k-.Q)

x(k-.Q-1) I mx(k-fl

and where Q is formed by deleting rows from the identity matrix of the

vector the appropriate row being deleted for each variable

which will not be retained in memory. The Q specification is

implicit. The user specifies which elements of x and z will be

retained and how long each should be retained.

0

5

Other quantities identified in the model are:

b, r, the vectors of model parameters which may change

from run to run.

g(k), a vector of intermediate functions defined in the

s,

same general form as the f. , and such that element

gi(k) may be a function of g.(k) for j < i. G

values are calculated once and stored for the dura-

tion of the computation cycle.

special functions, similar to g functions, which

are available on call and for which the values are

not stored by the processor.

6

II. MODELLING WITH FLEX1

Introduction

In this section discussion will be directed toward identifying how

modelling concepts are elaborated in FLEX1 with respect to the general

FLEX algorithm. First, a few of the advantages of modelling in a

general algorithm will be presented. Next is a discussion of the

FLEX1 structure and its relation to the algorithm. Third, the specifi-

cation of a model in FLEX1 will be given a detailed treatment. After

reading this section, a modeller should have little trouble conceptualiz-

ing state variable models in the FLEX1 structure.

Reasons for Modelling in FLEX

One might begin by asking why any fixed modelling paradigm and

convention is desirable. There are several advantages for taking a

fixed viewpoint.

First, it confers the advantage of ease of model conceptualization.

If a general paradigm is used, the modeller has only to identify those

parts of the structure which are relevant to a particular model and to

establish a correspondence between components of the general paradigm

and the components of the model. The underlying assumptions of a well

known general paradigm will be well known, and will remain constant

from model to model. Uniformity of structure and notation is advan-

tageous in coupling models together, in comparing one model with

7

another, and in critically reviewing and evaluating a. model. Differences

in two models are most readily apparent, and specific model features

and assumptions are easily discernible.

Further, a fixed modelling convention allows for ease of com-

munication. A standardized paradigm, with its accompanying

standardized notation, makes the interpretation of any particular model

realized within it extremely easy. It reduces the amount of information

which has to be communicated between several modellers in various

subsystem groups and between a modeller and a programmer.

Lastly, the use of a general paradigm allows construction of a

general computer program in the image of that paradigm, so that all

of the routine business is programmed, for once and all. It is

necessary to write computer code only for those features in which the

particular models in the general paradigm may change. In essence,

this allows the modeller to spend his time and effort on modelling, with

a minimum of time on program assembly.

These advantages are obtainable by using any fixed modelling

paradigm and convention. FLEX offers some unique advantages.

FLEX is conceptualized so as to make the model structure readily

apparent. It is based on a general paradigm which was synthesized by

George Klir from study of a great variety of system models, with the

explicit form of FLEX dictated by the apparent needs of ecosystem

modelling. Model components are structurally and functionally

8

identified, forming, as it were, a paradigm for ecosystem models, in

contrast to the opposite extreme of unstructured models presented in

order of computation or in some other suc I arbitrary manner. In

FLEX, input output, and state variables are identified and readily

apparent, the hierarchy of functions is clear, and unambiguous, and con-

fusion between components should be minimized.

Further, the FLEX algorithm is designed to be a module in an

expanded algorithm, called REFLEX. FLEX is utilized as an element

in a Universe-Coupling structure (see Klir, 1969) which is realized in

REFLEX. This allows for explicit modelling of hierarchical systems.

In the FLEX paradigm, it becomes possible to uncouple various sub-

models from the whole and examine their, behavior in a meaningful

manner,. isolated from the total model. A discussion of many relevant

points is given by Overton (1972, 1973).

Identification of FLEXI Structure

The general structure of FLEX1 can be seen in Figures 1, 2, and

3. Figure 1 is a particular realization of the Generalized Paradigm for

Sequential Systems (Figure 4.8, Klir, 1969). Figure 1 diagrams both

the particular general conceptual structure and the steps taken in a

computational cycle by FLEXI. Figure 2 details this computational

sequence in time. Figure 3, FLEXFORM, is the basic specification

form for a model in FLEX1. The modeller utilizes this form to

9

Y(a

TIME

I

I ?'(I) I 1

0 I k-I
Y(k) I Y(k+l) 1 I y(tmax)

k k+I tmax-t tmax

Figure 2. The FLEX1 Sequential Computation File

10

FLEXFORM FLEX MODEL OF:

INVESTIGATOR:

DATE:

TIME RESOLUTION:

QUANTITY:

VARIABLES AND FUNCTIONS

1. X List Description

- - identification of
state variables --

. Z Functions Description

- - specification and
identification of
input variables - -

3. M List Memory
Specifica-
tions

- specifications of ,x
and z variables re-
tained as memory
variables - -

G Functions Description

- intermediate
functions - -

F Functions Description

- flux functions

6. S Functions Description

- - special-use
functions - -

7. Y Functions Description

- - output variables -

PARAMETERS

8. B Parameters: list, description
and values

R Parameters: list, description
and values

10. Initial Conditions: list, descrip-
tions, and
values

XN - initial X -values

MN - initial memory values

11. Run Parameters

to be completed by programmer
using information provided
elsewhere -

Figure 3

I

9.

-

4.

-

FLEXFORM

Page 2 of 2

GENERAL RUN INFORMATION

TSTART =

TMAX =

Variables to be monitored:

Monitor frequency =

Line printer frequency =

Dump file frequency =

SATELLITE PROGRAM INFORMATION

Variables to be plotted:

Plot frequency:

DIAGRAM

COMMENTS

DESCRIPTION OF BEHAVIOR

RUN LOG

Figure 3 continued

II

communicate, to the programmer and/or user, the correspondence

which has been made between the general structure and a particular

model. This form requires specification of each model component, as

well as the specifications for a simulation run.

FLEXFORM will be discussed in greater detail below. The first

two figures will now be discussed.

In Figure 1, an input vector z(k) enters from the environment at

time k. The functional generator uses this input information, the

present state of the system x(k), past inputs or states from the

memory M(k), and certain parameters, b and r, to calculate the

update vector o(k), the amount by which the state variables will be

incremented at time k. The functional generator utilizes s functions,

g functions and f functions in the calculation of L (k).

The state variable vector is updated and time is advanced to k+l.

Specified input and state variables from time k are stored in the

memory. An output vector y(k+l) is produced utilizing the new state

variable vector x(k+l), updated memory values M(k+l) and any

parameter values. FLEX1 is now ready to accept a new environmental

input vector z(k+l) and the process repeats itself until a terminating

condition is reached (i. e. , until the specified end of the simulation run

is reached).

It is important to understand how and when time is advanced in

the sequential procedure. Time is advanced just prior to the

12

calculation of the output vector, as an integral part of the update

procedure. The value of k remains the same from the output at time

k, through the input and function generation, until the update portion of

the cycle .

Note especially that the cycle which precedes time zero is a trans -

formation of the initial conditions by the output processor to produce

an initial output vector y(0). This calculation does not involve any z's.

Specification of a Model

FLEXFORM, as previously explained, is the basic modelling tool

of FLEXI. Filling in this form completelyfinishes the specification

of a model for a FLEXI run. A programmer can take this sheet, pro-

duce FLEXI FORTRAN code, make computer runs and return the

specified outputs to the modeller. Because of its importance, the rest

of this section will be concerned with use of FLEXFORM.

Time Resolution. Time resolution refers to that length of time

represented by the time, increment from time k to k+l. The discrete

time index, k, is incremented by 1 at each cycle of the sequential

analyzer. However, the meaning of the increment can be varied by

letting it stand for different time resolutions, i. e. , one second, five

minutes, four hours, five days, one year,, etc

The choice of a resolution level is an essential part of the model

building process. It is dependent on and influences both the general

r.

13

structure and the equations which are used in a particular model. In

general, a system with fast dynamics requires a model with. fine tem-

poral resolution and one with slow dynamics should be modelled with

coarse resolution. Changes in resolution can require changes in

functional forms and model structure.

Quantity. The state variables represent measures of the quan-

tities modelled such as energy, nutrients, or population numbers.

Several quantities can be modelled at one time.

Variables and Functions. The variables and functions outlined

on the left side of page 1 of FLEXFORM specify the model structure in

FLEX1. Principal variables are input variables, state variables (the

X list) and memory variables (the M list). Z functions specify the

input variables to the system from its environment. This information

is processed by the Function Generator, represented by the g

functions, f functions and s functions, to produce an update, or

increment, vector. After the state variables are updated, an output

vector is produced by the Y functions. Each of these structures and

operations will be discussed in detail.

The X List. The x variables represent state variables. There

is a limit of 63 x's, each one identified by a subscript from 1 to 63.

In the X List it is only necessary to specify which x's will be

used by writing them down in a column. Incides should be used

14

sequentially, unless there is some specific reason for skipping an index.

In a model with 5 state variables, x1, x2, . , x5 should be used.

Across from each x is a place to enter a description of the state

variable. Thus x1 could be identified as canopy water storage.

Acronyms can be used as a description, but fuller descriptions are

desirable. These descriptions are for the convenience of the modeller

or model user; they have no effect on FLEXI. Such descriptions are

necessary in any model with more than a few state variables. They

are also useful in translating an existing model into FLEX1.

If it is desired to constrain the values of any of the x variables

within certain limits, these should be specified within the description

of each state variable. In FLEXI, the lower limit defaults

This is usually the desired value in biological models. However, if

negative values are to be allowed, the lower limit must be specified to

be negative. If the lower limit is reached, the state variable will be

maintained at that value.

The default value for an upper limit is 10 If a variable

passes its upper limit, the FLEX1 run will terminate. If an x vari-

able should be maintained at some upper limit, the value of . must

be curtailed within the g or f functions .

As indicated earlier, the time resolution may need adjustment

depending on the dynamics of the model. A check may be made by

specifying the maximum increment 6, such that if this increment is

to 0.

15

exceeded, the simulation run will abort. Indicate the maximum

increment within the description of the x variables.

Initial conditions for state variables are specified in the initial

condition list, item 10 on the right side of FLEXFORM.

The Z Functions. The z functions are used to calculate the

values of the elements of the input vector. There is a limit of 40 z

variables .

The user of FLEX1 should keep in mind that since this is a single

level processor, there is no external coupling, and the inputs (i. e. ,

the z vector) are processed and generated as though they were inter-

nal functions. However, it is important that the conceptual distinction

of input quantities be retained; these are quantities (variables) arising

externally to the system being modelled, but subject to the system

receptors. Both generation of the quantities and the essential input

modifications are included in the z functions.

The z's should be indexed sequentially. The expression to be

used in calculating a z value should be specified as part of the defini-

tion. This expression may be a constant, an algebraic function, or a

table look-up function.

The zi(k) may be a function of the s functions and also of

z.(k), where j < i.

In the normal FLEX1 computation cycle, z values are calculated

16

first. On the first cycle of a run an output vector, y(0), is calcu-

lated on the basis of initial conditions provided prior to the first entry

into the FLEX1 computation cycle.

The M List. In this list those principal variables which are

elements of the memory are identified. This includes memory for

both x variables (mx) and z variables (mz). It is necessary to list

the index of the variable to be retained in memory and the number of

past values to be retained. Past values of all variables specified will

be maintained for all past times up to the maximum number specified.

Thus if ten past values of xI are needed and only four past values of

the other memory variables are required, all are still maintained for

ten past time steps.

There is a limit of 200 memory storage places . If the total

number of variables to be retained in memory multiplied by the maxi-

mum number of past values for any one variable exceeds 200, then the

memory specifications must be changed.

Within other equations, memory variables are indicated as

follows: for the rth past value write x.(k-r) or z.(k-r). This
1 i

establishes a uniform notation which simplifies the later coding

(programming) details.

Initial conditions for memory variables must be specified for a

run. These will be entered in the initial condition list, indicated on

the right side of FLEXFORM.

17

The G Functions. The g's are intermediate functions. The g's

are calculated sequentially and the value is stored for the remainder of

that iteration. There is a limit of 70 g functions.

G functions are used to calculate and store values which are used

more than once within a time step or otherwise for convenience in model

specification. They may be used to simplify the calculation of values

for the f functions. They may he used to represent a process or

quantities such as food demand or supply. Thus, for example, in cer-

tain predator-prey relationships, the demand on a prey by each of

several predators may be calculated in individual g functions and this

information used to determine the total demand and later to apportion

the captured prey among the predators.

G function arguments may be any of the principal variables,

previously calculated values of g functions, b and r parameters,

and values of special functions. Thus,

g. (k) = g.[k, x(k), z(k), M(k), g.(k), s, b, r), j < i

Most internal calculations can be accomplished using g functions.

The F Functions. F functions describe the fluxes between the

state variables. Thus

f.. E F
13 .-

defines a flux from x to x, and this value will be added to x and
L J J

subtracted from x.. If there are n defined state variables, then F
i

is an n x n matrix; many elements are zero,-

F functions can be a function of the input variables, state vari-

ables, intermediate functions, parameters and special functions.

fi.(k) = f..[k, x(k), z(k), M(k), S(k), s, b, r.

Thus

Notice that f functions cannot be functions of each other explicitly.

G functions should be used to accomplish this implicitly.

The existence of the flux f.. indicates a connectance between
1)

elements x. and x.. (However, it is possible to write F such that
1

connectances are not explicitly shown.) In a connectance matrix, the

diagonal elements are all 0, indicating that no element is coupled to

itself. In FLEX 1, the diagonal elements are used to indicate inputs

and outputs to that variable involving only that element. For example,

reproductive increases, environmental inputs and respiration output

would belong in the diagonal element if no other state variable receives

the change

As earlier indicated, -the orientation to the matrix of f functions

is in accordance with the compartment model paradigm, and the off

diagonal elements will be most useful when the model is so conceptua

ized. In the more general discrete time model formulation, we may

wish to define A. explicitly as f.., so that no use is made of the f
L it

This is also a way to get around the limitation of number of f

18

19

functions. There may be no more than 63 f functions, yet the limit

of 63 state variables provides a potential of 632 flux elements. Even

though this maximum number will clearly never be needed, it is not

unreasonable for a 20 variable system to call for more than 63 con-

nectances. In such an event, a compartment model can be implemented

by the device of defining some of the f.. equal to the L .
11 L

The most important limitation (for FLEX1) in these large models

will be the size of the overlay of the user supplied functions and sub-

routines. The number of allowable functions and variables is unlikely

to be limiting, and should be given little concern in use of FLEX1.

It will often be desirable to monitor fluxes at equilibrium or in

evaluation of cyclic balance. This can be done by assigning the

appropriate quantity from which outputs can be generated to a state

variable.

The Special Functions. Special functions are included to

provide greater modelling flexibility and ease. S functions may have

as arguments input variables, state variables, memory variables,

parameters and other special functions. Thus

si silk, x(k), z(k), M(k), s., b, r], j < i. 1/-
J "

_!/It is necessary that a sequencing exist such that j < i and
that any z variable called has already been computed.

20

S functions may be vector valued and are specified by an argument

string. These can be evaluated as many times as desired during a

single time step and with a variable definition of the elements of the

argument string at each evaluation. S functions may be table look-up

functions and, in fact, are best used to input environmental and driving

data for use by the z functions. They may also be used for often

duplicated functional forms..

There is no particular time in the FLEXi computation cycle at

which the value of each special function is calculated.. They are avail-

able at any time in the computation cycle. There is no set limit to the

number of special functions allowed. There is: an overall limit on the

space available for storage of user-defined functions, including z, g,

f, s, and y functions. If many other functions are used, there will

be little room for special functions.

The Y Functions. Y functions are used, to calculate the output

vector y(k) from the updated x(k) values. There is a limit of 50

output variables. This output vector is produced after updating the

state variables, memory variables, and incrementing time so the

modeller must remember the k used here is equal to k+l in the

preceding discussion (see Figures 1 and 2). Y functions may be func-

tions of the state and memory variables, the parameters, s functions

and other previously calculated y functions. Thus

0

21

Yi(k) = yi[k, x(k), M(k), b, r, s, y.(k)1, j < i

Although any output which is thus defined may be produced, the most

frequent case will be where h(x) = I x, the identity function, so that

y(k) = x(k).

Remember that there is an output vector, y(0), produced prior

to the beginning of the FLEX1 computation cycle. This is the initial

translation of the model's specified initial conditions, x(O) and M(O).

Parameters. On the right side of FLEXFORM is a summary of

the information necessary to specify the actual numbers used in a

simulation run. Only the first three of the four are of interest to the

modeller. The last, the run parameter file, will be filled in by the

programmer from other specified information.

The constants of the model have been divided into two vectors,

the b and r parameters. In addition, the initial values of the state

and memory variables must be specified.

The B and R Parameters. In this section, the b and r param-

eters to be used are listed. They may be described by any name or

acronym the modeller wishes. The value to be used for that parameter

is also listed. The default values are 0. There are limits of 100 b

parameters and 20 r parameters. Parameter indices should be

assigned sequentially.

R's were originally differentiated from b's in order to identify

respiration constants, but there are many criteria by which the param-

eter vector can be conveniently partitioned into its two subvectors, b

and r.

The program allows changes in the values of the parameters

during a FLEX1 simulation run. This capacity may be utilized in many

ways to simplify model structure.

The Initial Condition List. This list has° two sections, the XN

vector, x(0), and the MN matrix, M(0).

Initial x values are listed first. These are the values which will

be assigned to the respective xi prior to beginning a FLEX1 simulation

run, i. e. , at time k = 0. They should be listed sequentially. The

descriptions should match those of the X List. Default values are 0.

Initial memory values are listed next. These are the values which

will be assigned to both the mx and mz variables in memory prior to

beginning the FLEX1 computation cycle. All variables listed in the M

List should have an initial condition specified. Default values are 0.

General Run Information

The information necessary to make a FLEX1 simulation run is

listed. This information includes the length of time for which a model

is to be simulated and what mode of output is desired.

23

Run Time. If a simulation run should start at some time other

than 0, this time must be entered after TSTA.RT= . TSTART need

only be specified when necessary, as this quantity defaults to zero.

The time for which a last output is desired is entered after TMAX=

There is no default value for TMAX, so this must be specified.

Monitor, Line Printer and Data Dump File. Output resolution

may be coarser than Lt so that output costs are less. Since FLEX1

is a difference equation analyzer, the time step required for accuracy

may be much smaller than the time step wanted for the most detailed

output. Generally the data dump file will have the finest output resolu-

tion; this file will be available for further investigation of the run. The

line printer output can have the same resolution as the dump file, but

this is not necessary; the line printer could be treated as a more

extensive monitor, with fewer variables and coarser time step than the

dump file. The monitor should have a fairly coarse time step and fewer

than six variables, since this information must be printed at the termi-

nal. The teletype monitor is intended only to provide a rough check of

progress of a run.

Output time resolutions are defined in terms of cycles. To

monitor every nth cycle, enter n for the monitor. N defaults to 1

in all these cases.

24

Diagram. A diagram of the model should always be included. A

block diagram is usually sufficient. An identification of g functions

on the diagram is helpful.

18

A

Comments. Here the modeller may make comments to himself, to

his programmer and to the model user. These include reasons for

including or excluding certain things, what is desired from repeated

runs, information sources, acknowledgements, etc. Anything which

the modeller thinks is pertinent may be entered.

This is the place to talk about any unusual features of the model.

A brief synopsis or abstract of the model's purpose may be deemed

appropriate.

Description of Behavior. The modeller should use this space to

describe how the model is designed to behave prior to the actual simula-

tion of the model. This description is a summary of the general

understanding of the behavior of the system being modelled and the

simulation output should be studied to verify that the model behaves in

the prescribed manner.

If the results of a simulation run are at variance with this

description, that is, if the model behavior does not conform to the pre-

scribed system behavior, a record of anomalies and surprises should

be made in this section.

25

III. PROGRAMMING IN FLEX1

Introduction

Programming a FLEX1 run involves translating the modeller's

information (FLEXFORM, Figure 3) into specific computer commands

and formats. If the FLEXFORM sheet is filled in completely, the

programmer should have all the information necessary for this trans -

lation. FLEX1 is partially FORTRAN based and programming FLEX1

demands the ability to write FORTRAN equations. In addition,

knowledge of the use of OS-3 (Oregon State Open Shop Operating

System) is necessary, as FLEX1 was written exclusively for this

interactive time-sharing system. Information on OS-3 may be

obtained from the OSU Computer Center and a list of relevant materials

are listed in the bibliography.

Overview

An overview of the FLEX1 system may be obtained by consulting

Figure 4. This figure illustrates the structural aspects of the FLEX1

system within the larger structure of the OS-3 system. In addition,

the upper portion of this figure is a diagrammatic outline of the steps

necessary to program a model for FLEX1. The details of this process

are listed in the section Programming Details. An outline of the steps

follows .

26

Equations
Coded

Input Equations

Compile
Instructions

Parameter
Files
Coded

Input Files

Input or
Driving Data
as Necessary

OS - 3

FLEXI System

*FLOAD

-Overlay made-

*FLEX1
-General Model

Processor
00

*PLOTCON
*LPLOT

-Plot routines

*LPRINTB
-Listing
routine-

Source Listing
of Function

Files

Source
Back-up

Card Deck

Online
Interaction

Online
Interaction

Teletype
Monitor
Listin

Line Printer
Listing

Line Printer
Plots

Data Dump

File Listing

Figure 4. An Overview FLEX1 Operating System

27

Translate the model functions into FORTRAN code. The z, g, f,

and y functions have a standardized format given below. S functions

follow the general FORTRAN language format. Generate a function

source file for each of the five types of functions, using the OS-3

EDITOR. Source listings and backup card decks are usually made.

Compile each source file, using the OS-3 FORTRAN compiler. Use

*FLOAD, part of the FLEXI system, to incorporate all the resultant

binary object files into a function overlay which is stored on a disk file

under a user-specified name.

Enter the parameter information using the standard format

specified below. Generate a FLEX1 command file for B, R, Initial

Conditions, and Run parameters. These four files are not compiled.

Parameter listings and backup card decks are usually made.

When the function overlay and parameter files are complete, the

model is ready for a simulation run.

Although not indicated in Figure 4, a copy of the parameter files

should be appended to the function source listing and back-up card deck.

Programming Details

A. Coding the Model Functions. We are concerned with the z

functions, g functions, f functions, s functions and y functions

from FLEXFORM. Although we have been calling them functions, the

correct mathematical terminology, they include both subroutines and

28

functions in computer terminology. We will explain these in order.

A summary of the formats is included as Appendix Section 2.

29

Z Functions

The number of z or input values is limited to 40. All z values

are computed in one subroutine. The standard format is

SUBROUTINE ZCOMP (K, X, B, R, Z)

DIMENSION X(l), B(1), R(1), Z(l)

Z(1) = expression

Z(2) = expression
Calculation
of
z values

Z(<n>) = expression

RETURN

END

The expression may be a constant, or a time-varying algebraic

function, or a table look-up. Input data is most often read from disk

data files in an s function called by the z function.

Z values are calculated first by FLEX1. The values are stored

internally and may be used in other functions by simply writing Z(l)

or Z(0l) for zI, etc. in the appropriate equations. The values may

be used by any other functions except the y output functions.

30

G Functions

The number of g functions is limited to 70. A separate

FORTRAN function is required for each g function. Each g function

is coded in the standard format

FUNCTION G01 (K, X, B, R, Z)

DIMENSION X(1), B(l), R(1), Z(1)
Calculation
of the
value of g 1

G01 = expression

RETURN

END

02, 13, ... , 7 may be substituted above for 01; two digits are

required. The calculation of the returned value may be as long and

complicated as desired. G functions are defined as intermediate

functions; any internal variable which will be used extensively and

which retains the same value throughout a time increment should be

calculated as a g function. G functions may be used for a single

process, to simplify the f function representation, for calculation of

demands, or for logical operations.

G values are calculated second by FLEX1. All defined g func-

tions will be calculated and the returned values stored internally.

The value is available to the f functions or other subsequently calcu-

lated g functions or special functions by writing G(G11), G(O2),..., G(71).

The use of parentheses is crucial and these must always be included.

31

F Functions

There is a limit of 63 f functions. A separate FORTRAN

function is required for each defined f... The standard format,
13

repeated for each f function, is as follows:

FUNCTION F110l (K, X, B, R, Z)

DIMENSION X(l), B(1), R(1), Z(1)
Calculation
of the value
off1

1 FG01 = expression

RETURN

END

and where 02, 03, ... , 63 may be substituted for 01 (i. e. ,

F0102, ... , F6363); four digits are required. The returned values are

stored internally and will automatically be manipulated to calculate the

update vector L (k) which will be added to the current state variable

vector to obtain the next time step's state vector. Please note that the

f functions cannot be used to calculate other functions. If the value of

one flow determines that of a second, the first value should be calculated

as a g function and used in both f functions . A g function used as an

).argument must be used with indices in parentheses (e.g., FU1U1 =G05)

The calculation of f values is the third step in the FLEX1 cycle,

just prior to the calculation of the update vector and the new state

variable vector.

S Functions

Special functions are included for further modelling and program-

ming flexibility. They may be either functions or subroutines. There

is no limit to the number allowed except for the limit on the function

overlay size which is 14, 0008 (octal) words..

There is no standardized format for the special functions;

function and subroutine formats in the C. D.C. FORTRAN handbook are

used. Special functions may not be used to define COMMON area

storage. S functions are functions of time k, state, input and

memory variables, b and r parameters and other special functions

only- Values of g, f, and y functions may not be used.

Special functions may be used in calculating z values, g values,

f values or values of other special functions. They are useful as table

look-up or data read-in functions, especially for z functions, where

real environmental data are entered.

There is no particular time in the FLEX1 computation cycle

where the values of the s functions are calculated, nor are these val-

ues stored internally. Their value may change during a time step since

the definition of the elements of the argument string may change each

time a function is called.

The s functions operate the same way with regard to FLEX1 and

any of its user defined function sets as functions and subroutines

operate with regard to a main FORTRAN program.

32

33

Y Functions

The number of y output values is limited to 50. Y values are

calculated by a subroutine. The standard format is

SUBROUTINE YCOMP (K, X, B, R, Y)

DIMENSION X(1), B(l), R(l), Y(1)

Y(l) = expression

Y(2) = expression
Calculation
of
value s

Y(<n>)= expression

RETURN

END

The expression for yi(k) may be a function of k, x(k), M(k), s,

b, r, y.(k) for j < i. Usually each x is matched with a y. In some

cases one may want to know the accumulated total of a certain x value

or the accumulated flux over a certain pathway. In such cases, it is

necessary to construct an x variable to provide this output. Y values

may not be used to calculate anything except another y value.

The calculation of the y or output variables is the fifth and final

step in the FLEX1 cycle. Before the y output is produced, time (k)

is advanced (to k+l). Thus the k in this section is kfl with regard

to the k in the preceding sections. The first output: y(O) is a transla-

tion of the initial conditions, x(0) and M(0), before the first FL.EX1

computation cycle begins.

34

B. Preparing a Function Overlay. After entering the coded

functions onto disk files, debugging and compiling them, make the

function overlay.

While in OS-3 control mode, indicated by a # sign, type

FLOAD,F'= <overlay name>, <file name>,..., <file name> (CR)

After F= specify an eight character file name. The overlay will

be saved under this name.

After the overlay name, enter the names of the binary object

files used, ZCOMP subroutine, G functions, F functions, YCOMP

subroutine and S functions. Separate file names with a comma. The

use of a special library may be included by adding

", L = <library name>" after the last file name. Type a carriage

return (CR) to.terminate the line. The pound sign (#) will be typed

after the overlay is made. File protect all overlays. Guidelines are

offered for file structure naming in A Note on Naming Files and

Overlays below.

The name of the overlay will be used with the command FUNLOAD

within the FLEX1 system. This name must be entered correctly to be

loaded and used by FLEX1..

There is a size limit of 14, 0008 or 614410 words on the overlay.

If too many functions are specified, either the structure must be

reworked or part of the model deleted.' *FLOAD error messages are

discussed in Appendix Section 3..

35

C. Entering the Parameter Information. Although parameter

information can be typed directly into the FLEX1 processor during a

simulation run, speed and accuracy will be improved by entering

FLEXI commands into a file and using a single typed command to bring

them all into FLEX1. For convenience in retrieving and changing

commands, four files are created, the I-file, the B-file, the R-file and

the N-file. Each file contains information from one section on the

FLEXFORM. After all information for a file is typed in, terminate

with the command INPUT= 60. This command returns control to FLEXI.

Appendix Section 2 contains a summary of the FLEX1 commands

which may be used in each file.

FLEX1 has a free-format input processor. The general form of

FLEX1 commands is COMMAND= <value>. One element of a vector

may be entered by COMMAND(i)= <value>. One element of a matrix is

entered by COMMAND(i, j)= <value>. Separate commands from one

another by one or more spaces. A vector of values may be entered by

COMMAND()_ <1st value>, <2nd value`, - .., <last value>. Separate

values within a command with commas. Matrices can be entered by

row, COMMAND(i,)_ <lst value>, <2nd value>, ... , <last value>, or

by column, COMMAND(, j)= <1st value>, <2nd value>, ... , <last value>,

or by elements.

Go to a new line wherever the material can be separated, pre-

ferably between commands, or between successive values of a command.

Do not break a name or a value.

Numbers may be entered with or without decimal points. They

should be separated by commas. Decimal points do not have to align

nor is it necessary to use the same columns repeatedly. Thus, for

example, a parameter B-file might be:

B() = 1. 273, , 013, 1392, 140. 59, 82

INPUT=60

This sets b1= 1.273, b2= .013, b3 1392, b4= 140.59 and b5= 82.

C. 1. Run Parameter I-File. The,run parameter I-file is a

catch-all file with a large variety of information included. It includes

(a) M List from the FLEXFORM with the MN section of the Initial

Conditions, (b) constraints on values of various x variables from the

X List, (c.) output specifications from the general run information

section of the FLEXFORM. The commands will be discussed in the

order in which they must be entered on the file.

C. l . a. Memory Specifications. From M List on FLEXFORM a

variety of information must be obtained. In FLEX1 the memory is a

matrix with the rows representing variables and the columns the time

delays. There is a limit of 200 memory variables.. If the total number

of variables retained in memory multiplied by the maximum number of

past values for a variable exceeds 200, the modeller should be notified

and the length of the maximum lag reduced or fewer variables retained.

36

37

The memory matrix is dimensioned by the maximum number of

lags desired. The variable LAG is the length of time that all the vari-

ables will. be retained in the memory. It must be entered before any

other memory specifications. Next the indices of the x and z vari-

ables which will be delayed must be entered. LAGX()= is followed by

the indices of the x variables to be delayed, separated by commas.

LAGZ()-- is followed by the indices of the z variables to be maintained

in the memory, also separated by commas. All of this information

can be entered on one line as follows

LAG= LAGX() = , , LAGZ(

Initial values for the memory must be next. These are listed in

the MN section of the Initial Conditions. These may be entered by

row vectors. Thus, for LAG=3 LAGX()= 1 we might have

XD(1,) = 12., 11., 10.

XD(l, 1) corresponds with xI(k-l)=12., XD(1,2) with xI(k-2)=11.,

XD(l, 3) with x1(k-3)=10- The values may have decimals specified or

not, and must be separated with commas. XD, and ZD, values may

also be input by column, such as

XD(, 1)=1, 9, 5

where XD(1, 1) = xI(k-1) = 1, XD(2, 1) = x2(k-1) = 9. and

XD(3, 1) = x3(k-1) = 5. Entry by column vectors is often more conven-

ient if fewer than 3 or 4 lags are used.

Next, the initial ZD values should be entered, following the

same format as the XD variables. Thus, for LAG=4 LAGZ()=2, 5

we might have

ZD(2,) = 1 , 4, 7, 10 ZD(5,) = 1 . , 3 12. 2

Since no value is entered for ZD(5, 4),: its value defaults to 0. This

value might not be needed in the model. That is, LAG=4 might refer

to z2 needing 4 delays.

C. 1. b. X Limits. If the X List from FLEXFORM specifies

that a variable x. is to be maintained between certain limits, thesei
limits are entered next.

For a lower limit, the command XL(<i>),=, followed by a value,

is used. If this limit is reached, the value of x. will be maintained at
1

that limit. The default lower limit is 0.

For an upper limit, the command XU (<i>) followed by a value,

is used. If this limit is passed or

Default value is 10100

reached, the FLEXI run will abort.

Finally, it is possible to specify the amount by which it is permis-

sible for a variable to change. The command XE(<i>)=, followed by

a value, is used for x.. Ifi

1AI >XE(i)i

and XE(i)I0

then the simulation run will abort. If XE(i) is 0 (the default value) no

checking is done

38

39

C. 1 . c. Output Specifications. As illustrated in Figure 4, three

specific outputs are produced by FLEX1. These are the teletype

monitor listing, the line printer listing and the data dump file. Each of

these will be explained in turn, although they all have similar com-

mands.

By convention, y values are usually the only variables sent to

the line printer and data dump file. State variables are added as

necessary to accommodate the output of z's, f's and g's. However,

it is possible to output the values directly to all units and not just the

monitor.

The line printer output is commonly used as a record of the dump

file. It is strongly recommended that the two outputs agree in variables,

order of variables and frequency of output. (Note that once the output

order of variables is established for one output unit, all other units

will maintain that same order for these variables.)

First, enter the command YMAX=, followed by the number of y

variables defined in YCOMP. This number should be the largest index

value used if the y's are not numbered sequentially.

Next, enter the teletype information. The monitor time resolu-

tion, from the FLEXFORM, is entered with the command TTYPRT= .

This will default to 1 if not specified. The variables to be monitored

are entered with TTY= followed by what is to be monitored. For

example

40

TTY=G(1) TTY=F(2, 2) TTY=Y(7)

and so forth. Anything may be monitored, but the more variables

monitored the longer and more costly the run.

Next, line printer information is entered. LPRT= is the

command for entering the line printer time resolution. This will

default to 1 if not :entered. The variables to be printed are entered

by commands of the form

LP=Y.(7,) LP=G,(1) LP=F(8, 8)

All Y variables which are defined should usually be line-printed.

The logical unit number (<lun>) assigned to the line printer must be

entered with the command LPLUN=<lun> This lun should be

equipped to the LP and labeled before a FLEX1 run.

Lastly, information for the data dump file must be entered.

First, the dump file time resolution is entered with DPRT= This

should be the same as that entered for the line printer and will also

default to 1. Variables to be dump filed are entered as above using

For example

D=Y(l) D=Y(22) D=X(5) D=G(7)

There is a limit of 79 variables which may be dumped during a ru
The lun assigned to the dump file must be entered with the command

DUMPLUN=<lun>. This lun should be equipped to a file before a

FLEX1 run.

41

Line printer and dump file lun equipping need be done only one

time, before the first call to FLEX1. If several runs are made, each

run's information on the dump file is separated from the next by a file

mark.

Some of the run parameter information may be omitted. For

example, if the memory is not used, simply skip that set of instruc-

tions.

C. 2. Parameter B-File. There is a limit of 100 b parameters.

These may be entered one at a time, i. e. , B(1)= B(2)= B(3)=

etc. or as a vector, i. e. , B(Values should be separated

by commas. Numbers must be entered so that the end of a line comes

between two numbers, not in the middle of one. All values not

specified default to 0.

C.3. Parameter R-File. There is a limit of 20 r parameters.

Input form is the same as for b's, either one at a time, R(1)=-,

R(2)=-, or as a vector R(All values not specified default

to 0.

C. 4. Parameter N-File. Initial x values may be entered one

at a time or as a vector. XN(1)= XN(2)= or XN(

Values not specified will default to 0.

All of the above input files must terminate with a command to

return to FLEX1. This command is INPUT=60.

A Note on Naming Files and Overlays

The translation of several models into FLEX1 has demonstrated

the necessity for a file naming convention to keep the user and pro-

grammer from getting lost in a maze of file names The following

convention has proved useful.

First, construct a 3 to 5 alphanumeric character code for the

model. Thus for a litter decomposition model we might use LIDS.

This code will form the root name of our files.

Function file names for source decks are obtained by appending

a letter and number. If this is the first Z subroutine, i. e the first

of several options, use LIDEZ 1 as its file name; if it is the fourth F

function file of several alternate files, use LIDEF4, etc. G functions

become LIDEG Special functions become LIDE5 , and Y functions

become LIDEY .

Compiled FORTRAN binary files are named with a ry= prefix.

Source FORTRAN files are named without a prefix. Binary decks

are public files, so they may be used from a different job number.

Back-up card decks of the source files should be maintained.

For the suffix of parameter files, use I, B, R, or N along with

a number. Prefix these with a * so that they may be used from another

job number. For example 'LIDEI4, .'LIDER3, -LIDENl2, etc.

Function overlay names have an asterisk prefix and a two

digit (no letter) suffix. Thus =LIDE0l, *LIDE02, etc.

42

,

43

Data dump file names should have a star prefix and a D with a

number suffix, i. eo , 'LIDED1, =LIDED2, etc.

Such a name structure carries with it implicitly the FLEX

structure, allowing a simple mnemonic code with varying endings to

stimulate one's memory. This is the only time that acronyms are

necessary. The acronym should be constructed using the preceding

rules . `'' I ith a knowledge of the three to five letter code, a run may be

made very quickly without consulting a long list of file names.

It is an advisable practice to file protect all files, especially

public files (those whose name begins with a =).

44

IV. USING FLEX1

Introduction

The actual use of FLEX1 may be divided into three parts. The

relationship of these parts is diagrammed in the lower portion of

Figure 4, An Overview FLEX1 Operating System.

First, a variety of information is input to the FLEXI processor.

This includes the overlay and parameter file names. Such input

requires on-line interaction of the user with FLEX1.

Second, the actual simulation run is made. The FLEX1 compu-

tation cycle is repeated until a terminating condition is reached (i. e. ,

time has achieved its final value, the upper limit on a state variable

has been exceeded, etc.). During the run, a monitor listing of some

of the system's variables is possible. A complete line printer listing

of the run is produced, if desired, and all output variables are dumped

to a file.

Third, the dumped data may be manipulated to produce line

printer plots. These plots, in addition to the line printed output, are

helpful in understanding the behavior of a model.

Preliminaries

Before a call is made to FLEX1, the logical unit (<lun>) numbers

assigned to the line printer (LPLUN= <lun>) and to the dump file

(DUMPLUN=<lun>) in the run parameter I-file (see previous section for

45

details) must be equipped to the line printer (LP) and a file (FILE)

Thus,

#EQUIP, <lun>=LP, <lun>=FILE

It is necessary that line printer output be labelled. Thus,

#LABEL, <LP lun>/ SAVE FOR <user identification>

Calling FLEX1

While in OS-3 control mode, type *FLEX1. Thus,

,FLEX1

The FLEX1 system will respond by typing a heading and the statement

ENTER INPUTS /COMMANDS FLEX 1 has its own control mode which

is represented by a glitch (>). After FLEX1 has typed its command

glitch, the user is ready for the first phase of actual use, the input of

information and file names to FLEX1.

Commands

The various commands used to input information to FLEX1 will

now be detailed. The order of their entry is important, so these com-

mands will be discussed in the order in which they should be entered.

This restriction on order of input should be regarded as a checklist,

a way to insure that all the information needed for that run has been

specified. A summary of this order appears in Appendix Section 2.

More than one command may appear per line (after each command

glitch). The two exceptions to this rule are the INPUT=<name> and the

46

TITLE=<some title> commands. When either of these two commands

are used, it must terminate that line. Each line may be up to 136

characters long, including spaces and editing symbols. As in the

previous section, in which the parameter files were constructed, each

command is separated from the next by a space. It is possible to edit

commands prior to carriage return. Consult the Editing section below.

Each line of command input terminated by a carriage return

(CR) is processed as a whole by FLEX1. After the commands and edit

symbols are processed, FLEX1 may print one of several possible

messages. A command glitch is then typed indicating that FLEXI is

ready for further input. If an error message occurs, consult Appendix

Section 3 for the proper response.

A. Number of State Variables. This command is used to tell

FLEX1 how many state variables are being used. The form of the

command is

NUMBER=

This command must always be the first command given. The number

entered following the equal sign is the integer value of the largest

index used. Thus, if x1, x2, x4 and x5 are being used, but x3 is

not, the proper command is NUMBER=5.

B. Time Limits. It is assumed that most models will be run

with time (k) having an initial value of 0. If a different starting time 9

47

is desired, enter

TSTART =

This will set the value of k equal to the integer specified. Default

value of TSTART is 0, so enter only if necessary.

A model will be run until the termination time is reached, if no

other terminating conditions are reached first. This time must always

be greater than the TSTART time. Terminating time is entered with

the command

TMAX=

Output is provided for k=TMAX, so this should be the time when the

last output is desired.

After each iteration, time (k) is incremented by one. This step

size cannot be changed.

C C. The Function Overlay. This command tells FLEX1 the name

under which the function overlay was saved. The command form is

FUNLOAD=<overlay name>

The overlay name is a file name, up to eight characters long. The

function overlay specified will be loaded into FLEX1 and used for that

simulation run. This must be the same file name that was used with

the F=<name> parameter in =.*FLOAD.

D. Parameter Files. The names of the four parameter files are

input in sequence to FLEX1. For each file, use the command

48

INPUT= <name of I-file> (CR)

INPUT= <name of B-file> (CR)

INPUT= <name of R-file> (CR)

INPUT= <name of N-file> (CR)

After each of the above commands, FLEXI will access that file

and read commands from it. The last command in each file is

INPUT=60 which will return control to the user. Wait for the command

glitch before entering subsequent commands.

E. The Title. It is advisable to label each simulation run with

its own title. This makes it possible to establish the identity of each

run without excessive trouble. It also allows other user oriented

information to be entered.

The title may be at most 80 characters in length. This includes

blanks. The command form is

TITLE=

followed by the title. This command must terminate that input line.

F. Logs and Summaries. The word log is used in its meaning of

a record of events. This command is used to indicate whether line

printer and dump file records of this run are being kept. In debugging

or exploratory simulation, the monitor output is often all that is

desired.

49

This command, as well as the next, is actually a pair of

commands. They are

LOG

NOLOG

If no log is being kept (i. e. , no line printer or dump file output) then

state NOLOG. This command will remain in effect until a LOG com-

mand is entered or the end of a modelling run is reached, at which

time the default value (LOG) is automatically set. If neither command

is used, LOG is assumed.

A summary of the run conditions (i. e. , number of state variables,

initial conditions, parameter values, etc.) will be produced by FLEX1

automatically. This information is also available on the teletype.

If the command SUMMARY is entered, this summary will be sent to

and printed on the teletype. If NOSUMMARY is entered, this summary

will still go to the line printer and dump file.

These commands operate as a pair,

SUMMARY

NOSU MMARY

and entering one negates the other. One command will remain in effect

until the other is entered or until the end of a simulation run is reached,

at which time the default value (SUMMARY) is automatically set. If

.neither is used, SUMMARY is assumed.

G. Listing Values. While in FLEX1 command mode it is possible

to ask for the defined value of several variables. These include the

initial x values, the initial memory values, b and r parameter

values, etc. (A complete list is included in Appendix Section 1.) The

command form is

LIST=

The blank is replaced with that variable whose value is desired. For

example, LIST=B(2) (CR) would cause the value of b2 to be printed.

Thus, the value of a parameter may be checked while in FLEX1

command mode .

H. Simulate. After the above information has been entered into

FLEX1, the command

SIMULATE

will begin the simulation run. This command freezes the current

parameter values for that run, so that they may be changed only by

using the CLEAR command.

I. Repeated Runs. When a simulation run has been completed,

FLEX 1 will type

END OF SIMULATION RUN

ENTER INPUTS /COMMANDS

followed by a command glitch. Use of FLEX1 may be terminated by

typing

STOP

50

51

If an additional run is desired, enter

CLEAR

This command will reset all FLEX1 variables to their pre-use defined

values. In effect, it is as if the user typed STOP and then made a

call to FLEX1. The system will type

[FLEX1 Heading]

ENTER INPUTS /COMMANDS

followed by a command glitch. Now the user may input his new

information. The same order and types of inputs are necessary.

Obviously, many runs can be made without ever leaving FLEX1 if

all the parameter files and overlays needed have been made prior to

the first call.

Editing

FLEX1 uses three symbols for editing of input. These are the

backslash (\), the at sign (@), and the back arrow (--). The use of each

will now be detailed.

Often the charcter typed is not the one which the user intended.

The backslash operates as a back spacer. Each time it is used, a

character is deleted from the line or character string. This deletion

is done in a consecutive manner. For example

INN\ PUU \ T -\ _ *LIJ \ DEI 1

would be read, by FLEX 1, as

INPUT= *LIDEI1

Another example is

EOANLI 1 \ 1 UNLOAD=*LIDE01

The first backslash deletes the L, the second the preceding N, the

third the preceding A and so forth. The backslash here operates

exactly the same as the backslash in the OS-3 EDITOR.

Sometimes so many mistakes have been made that it is desirable

to begin the line again. There are two ways to do this. The first way

uses the at sign (@). This operates for FLEX1 exactly the same way

that it does for the OS-3 EDITOR. That is, the at sign deletes all

characters preceding it. After typing this symbol, follow it with the

line as it should have appeared. For example,

N-\=12 TRNTL@NUMBER=12 TSTART=1tI TMAX=15 (CR)

The second way to begin again involves the use of the back arrow.

The back arrow deletes the entire line in which it appears and a new

line is started by a FLEX1 command glitch. The back arrow should

always be followed immediately by a carriage return (CR).

The length of a line in FLEX1 is limited to 136 characters includ-

ing spaces and editing symbols. If the user has entered part of a line

and decides to start over, he should use the at sign if fewer than, say,

50 characters have been entered,' and the back arrow if more.

Manual Interrupt

It is possible to interrupt FLEX1 after the SIMULATE command

has been given. Depress the BREAK key and type MI after the OS-3

52

53

system returns the pound sign. After this command, control is

returned to the FLEX1 system which finishes that section of output

interrupted when BREAK was hit, and returns to its internal command

mode typing

INTERRUPTED

ENTER INPUTS /COMMANDS

followed by the command glitch.

Output specifications may now be changed, including monitor

specifications. In the Appendix on FLEX1 Commands is a complete

list of those variables which may be altered after interrupting FLEX1

without having to type CLEAR. Of course, if CLEAR is entered all

information must be input to FLEX1 again.

Output Specification

A. The Teletype Monitor Listing. It is advisable to make a

summary on the teletype of the first FLEX1 simulation of a model.

This is useful in case any debugging of the model functions is neces-

sary. Since this output slows FLEX1 down quite a bit, as soon as

summaries are no longer needed at the teletype, they should be deleted

(NOSUMMARY) .

The more variables monitored, the slower the simulation run.

Only monitor the most crucial variables. If no monitoring is needed,

and many runs are to be made, a great deal of time may be saved by

not monitoring and just using the line printer and dump file output.

B. The Line Printer Listing. Ordinarily, all of the y output

variables should be sent to the line printer with the YMAX command

(see PROGRAMMING IN FLEX1 section on output specifications).

This is the complete output of that FLEXI run and records the changes

in the output variables through time. This listing should be used for

model examination. The same LPLUN can be specified for consecutive

runs.

C. The Data Dump File. If satellite program examination of the

output is desired a dump file should be made. All specified output will

be sent to the lun entered by the DUMPLUN command. As noted pre-

viously, this lun should be equipped to a file prior to the first call to

FLEX l .

If several consecutive runs are made, the same DUMPLUN can be

used each time. FLEX1 will output the model results to that lun in the

sequential order that the runs are made, each output block separated

from the next by a file mark. Putting several runs on one file helps

save storage room and makes no difference regarding any file manipu-

lations

After the last run has been made on FLEX1, the user, while in

OS-3 control mode, should save the dump file by some name. For

example, if the command DUMPLUN= 10 had been used, then prior to

calling FLEX 1, he should enter

55

#EQUIP, 1 V=FILE

and after the STOP command and return to OS-3 control mode, enter,

for example,

#SAVE, 10= *LIDED 1

The dump file should always be saved under a public name so that it

may be accessed from other job numbers. Remember to file protect

all public files.

Data Dump File Manipulations by Satellite Programs

After the dump file has been saved, it may be used to produce line

printer plots or to generate line printer listings. There are two line

printer plot programs and each will be discussed separately. The

dump file listing program will also be detailed.

A. Satellite Program -PLOTCON This program produces line

printer plots from a FLEX1 dump file with plot specifications entered

conversationally from the teletype. The calling procedure is

#EQUIP, 1=<dump file name-

#*PLOT CON

The first question is "INSTRUCTIONS?" If instructions are needed,

type "YES". The program will explain what information is requested

by the program.

At the end of the program execution, the logical unit number

(<lun>) of the plots are printed. Two copies of the plots are usually

made. The following procedure is used:

#EQUIP, 10=LP

#LABEL, 1V/SAVE FOR <user identification>

#DATE, ld

#COPY, I=<plot Iun>/R,O-10, 5=Y

#COPY1I=<plot lun-,/R,O =10, S=

Some tun other than 10 may be used for the line printer. Substitute

the other lun for every appearance of 10.

B. Satellite Program *LPLOT. This program produces line

printer plots from a FLEXI dump file and a plot specification file. The

calling procedure is:

#EQUIP, 1=<dump file name>

#EQUIP, 2 <specification file name

#`LPLOT

The program prints a model title, then asks "PLOT? " If a plot is

desired, type "YES"; if not, type "NO." When the first plot is indi-

cated the program reads information from the specification file and

plots the data. For subsequent plots, in addition to asking "PLOT?

the program asks "SAME SPECS? " If the specifications desired for a

plot are the same as the previous plot, type "YES." The program will

process the plot. If specifications are different, type "NO" and the

program will read a set of information from the specification file.

56

57

Specification File

1. Title Card Col. 1-80 identifying title

2. Specification Card Col. 1-2 number of variables selected for

plotting (1 < n < 10)

3-6 starting time

7-10 time step multiple

11-14 stopping time

3. Variable card(s) Col. 1-2

(use as many 3-10

as number of

selected variables)

1 1 -20

21-30

position in dump file

variable identifying alpha name

(1st character of name is plotting

symbol)

maximum value

minimum value

The time variables can be used to select a subset of the data.

Rather than starting at the first time step on the dump file, a later

starting time may be specified. The stopping time can be used simi-

larly to cut off a plot before the end of the dump file. The time step

multiple (n) is used to skip records; every nth record is plotted.

Note that this refers to records on the dump file. That is, if these

records are for every fifth time step and if the plot time step multiple

is two, then every other record will be plotted, i. e. , every tenth

time step.

58

C. Satellite Program *DMPRNT. If a line printer listing of a

simulation run is desired from the dump file, it may be generated

using the data dump file and the FLEXI Satellite *DMPRNT program.

This is run from a teletype as follows.

While in OS-3 command mode enter

#EQUIP, if =<name of FLEX1 dump file>, 6=LP

#LABEL, 6 /SAVE FOR <user's name>

#REWIND, 1

#MFBLKS= ltdtdt6

#LOAD, nDMPRNT

RUN

The dump file will now be read and a copy of it sent to the line printer

and saved at the Computer Center under the user's name.

59

REFERENCES

Control Data Corporation Computer Systems Fortran Reference Manual,
CDC 3100, 3200, 3300, and 3500; 1966. (Especially Chapter 7.)

Freeman, H. 1965. Discrete-Time Systems. John Wiley, New York.

Klir, G. J. 1969. An Approach to General Systems Theory. Van
Nostrand Reinhold, New York.

Overton, W. S. 1972. "Toward a general model structure for a forest
ecosystem." In Proceedings - Research on Coniferous Forest
Ecosystems - a symposium. Franklin, J. F. , L. J. Dempster
and R. H. Waring (Eds.), U.S. Government Printing Office,
stock number 0101-0233.

Overton, W.S. 1973. The Ecosystem Modelling Approach in the
Coniferous Biome. (presented) Symposium on Ecosystem
Modelling, Athens, Georgia. March, 1973. (In Press, edited
by B.C. Patten)

OS-3 Editor Manual, (by Fred Dayton). O.S.U. Computer Center
Publication ccm-70-7(R); 1971.

OS-3 Reference Manual, O. S. UO.S.U. Computer Center Publication ccm-70-
8R; 1971.

Al.1

1. A SUMMARY OF COMMANDS

The following is a summary of the commands introduced in Sections

III and IV above. The command is accompanied with a short description,

example and default values. In addition, symbols are used to indicate

if the command can be used in conjunction with the LIST command (*) or

if the value may not be changed after the command SIMULATE without use

of the command CLEAR (+).

The commands are listed in the order in which they should be used.

A nested structure is used so that, for example, after the INPUT command

is listed, the various files (I-file, B-file, etc.) to which it applies

have their commands listed, also in the correct order.

COMMAND DESCRIPTION AND EXAMPLE DEFAULT LIST CHANGE

NUMBER=_ Number of x's,
NUMBER=1O

TSTART=

abort * +
use N

Initial time value, 0 * +
TSTART=23

TMAX= Termination time value.
TMAX=52

FUNLOAD=<name> Load the function
overlay saved under
<name>,

FUNLOAD=*LIDEOI1

INPUT=<name> Read commands from
=<lun> <name> or <lun>.

INPUT=*LIDEI3
INPUT=6Q

none

abort

lun=60

*

LAG=_ Maximum delay of any 0

x and/or z.
LAG=10

Al. 2

COMMAND DESCRIPTION AND EXAMPLE DEFAULT LIST CHANGE

LAGX(Indices of lagged x or z none
LAGZ()_ , ,... variables. none

LAGX()=1,3,5 LAGZ()=12
LAGX()=must precede
LAGZ()_.

XD(
ZD(,) _,-,

Initial value of the undefined
delayed x or z. undefined
XD'(5,)=54,67,93 ZD(12,1)=14

XL()_ , ,... Lower limit for x.
If passed, x is reset to
given value.
XL(3)=-l

0

XU(Upper limit for x. 10100
If exceeded, run ends.
XU()=l,0,200

XE()_ , ,... Change norm. If
- -

IA1(k)I >XE(i)

and XE(i)00,
the run ends.
If XE(i)=O, no check.
XE(4)=1.2

YMAX= Number of y's dumped
to the dump file.
YMAX=15

no check

dump all
x's

*

TTYPRT=_ Monitor print interval. 1/50 run
TTYPRT--5

TTY=

LPRT=

LP=

Variables to be monitored.
TTY=Y(1) TTY=F(1,2)

Line printer interval.
LPRT=3

Variables to be line-
printed.
LP=Y(l) LP=Y(7)

*

none

LPLUN=<lun> Line printer lun. no output
LPLUN=44

Al. 3

COMMAND

DPRT=

DESCRIPTION AND EXAMPLE DEFAULT LIST CHANGE

Dump file print interval. 1

DPRT=5

Variables to be dump filed. all x's if

D=Y(l) D=Y(10) YMAX not
specified

DUMPLUN=<lun> Dump file lun.
DUMPLUN=401

no dump

*

*

0 * +B()_ , ,... Constant parameters.
B(1)=7 B(8)=9
B()=1,3,10,4

* +R(Constant parameters. 0

R(1)=3. R(2)=4.79
R()=4.300,1,7.2

* +
XN(Initial values of x. 0

XN(3)=5.2 use X

XN()=7.5

TITLE= Identification for run, none

TITLE=MODEL RUN 17

LOG Line printer listing LOG

NOLOG is being made (LOG) or

not (NOLOG).
LOG

SUMMARY Summary to be printed

NOSUMMARY on the monitor (SUMMARY)
or not (NOSUMMARY).
NONSUMMARY

LIST=

SUMMARY

Print current value of none

item. Item may be any
in this section with an
asterisk (*) in the
list column.
LIST=N
LIST=X(3)

*

Al. 4

COMMAND DESCRIPTION AND EXAMPLE DEFAULT LIST CHANGE

SIMULATE Begin simulation run. none
SIMULATE

CLEAR

STOP

Reset to original entry none
condition.
CLEAR

Simulation session is none
terminated.
STOP

A2.1

Z Functions

Calculate
z values

G Functions

2. FORMAT SUMMARY

SUBROUTINE ZCOMP (K, X, B, R, Z)

DIMENSION X(l), B(l), R(l), Z (l)

Z

{
(i)=expression

RETURN

END

FUNCTION G01 (K, X, B, R, Z)

DIMENSION X(1), B(l), R(l), Z(l)

Calculate

value of g
G01=expression

RETURN

END

Note: If G's are used by other functions, reference them as G(Ol),

G(7q) (with parentheses).

F Functions

FUNCTION F0811 (K, X, B, R, Z)

DIMENSION X(l), B(1), R(1), Z(l)

Calculate value
of f

8,11
F0811 = expression

RETURN

END

See CDC Computer Systems Fortran Reference Manual.

Y Functions

SUBROUTINE YCOMP (K, X, B, R, Y)

DIMENSION X(l), B(1), R(l), Y(l)

Calculate
y values

RETURN

expression

A2.2

END

S

A2.3

I-file

LAG=

LAGX= , , ...

LAGZ_ , , ...

XD(,)_ ,

ZD(

XL()=-,-,

TTY=

LPRT=

LP=

LPLUN=<lun>

DPRT=

D=

DUMPLUN=<lun>

INPUT=60

B-file

B()= , ,

INPUT =60

0

TTYPRT=

R-file

R(

INPUT=60

General Run Commands

NUMBER= TSTART= TMAX= FUNLOAD=<name>

INPUT=<I-file name>

INPUT=<B-file name>

INPUT=<R-file name>

INPUT=<N-file name>

TITLE=

LOG or NOLOG

SUMMARY or NOSUMMARY

SIMULATE

A2.4

N-file

XN

INPUT=60

A3.1

3. ERROR MESSAGES

This is an exhaustive list of FLEX1 error messages and their mean-

ings. VSYM represents an internal variable symbol of FLEX, BASESYM

represents any command keyword (i.e. CLEAR, XD(,), XN(), etc.) and

SYM represents any symbol (i.e. misspelled commands, etc.).

1. "Error on VSYM while processing VSYM invalid definition of array

bounds in VARDEF." This indicates an error in the FLEX1 pro-

cessor and should be brought to the attention of one of the

authors for appropriate action.

2. "Error on VSYM while processing VSYM error in VARDEF -- invalid

type." FLEX1 error. See 1.

3. "Error on SYM while processing BASESYM:

a. symbol not defined." FLEX1 was expecting another command

but the new SYM was not a command. Recover by re-entering

entire command.

b. invalid symbol." See 3a.

c. invalid character after symbol." In some cases an '_' sign

is needed after a command and this did not appear. Or

parentheses were mismatched. Recover by re-entering entire

command.

d. non-integer subscript." An integer subscript was expected

(i.e. X(8)), but something else occurred. Recover by re-

entering entire command.

e. subscript exceeds array bounds." A subscript was larger

0

A3. 2

than the maximum allowed

entering entire command.

.e. X(84)). Recover by re-

value must be integer." SYM was probably not a number.

cover by re-entering entire command.

value must be real." SYM was probably not a number. Re-

cover by re-entering only the quantity(ies) on the right

side of the '_' sign.

variable cannot be specified again." Some commands cannot

be specified twice without using CLEAR. SYM is the erroneous

command. This message occurs only if another command has

been processed between the two specifications (i.e. you may

change NUMBER if you do so immediately after the first entry).

i. value must be a symbol." FLEX1 does not recognize the SYM

Recover by entering CLEAR.

because it has a digit as its first character. Recover by

re-entering entire command.

3. end of file processing not complete." An end of file was

reached before completing the processing of a command Re-

cover by re-entering quantity(ies) on the right side of the

sign.

k. character string too long." This type of SYM must be 8

characters or less. Recover by re-entering entire command.

1. equal sign not found." The next character after a command

was not an '_' sign. Recover by re-entering entire command.

f. Re-

g.

h.

-

A3. 3

M. invalid definition of array bounds in VARDEF." See 1.

n. another variable must be specified first." To process the

command another command must precede it, e.g. NUMBER

must be specified prior to x limits, initial x's, or any

memory specification; LAG, prior to XD or ZD. Recover by

re-entering entire command.

o. unable to equip saved file." There was no saved file with

the given name or it was a public file and someone else was

using it. Unequip a lun from 1 to 50 or try again later.

p. number of subscripts specified as invalid." Either sub-

scripts were used with a non-subscripted command or the

wrong number of subscripts were indicated (too many or too

few commas). Recover by re-entering entire command.

4. "Error on print spec, SYM ignored." The variable requested

cannot be selected for output, or the subscript is non-numeric

or less than 1, or there is an invalid number of subscripts

specified. This print request is ignored.

5. "Too many print selections." More than 79 variables have been

selected for output. Only the first 79 will be used.

6. "Invalid lun - SYM ignored." If LP lun was not between 1 and

50, no log (LP listing) could be made. If dump was not between

1 and 50, but was equipped, the run would abort. Recover by

re-assigning luns.

A3. 4

7. "Invalid function file." An empty file, a busy public file.or

a non-binary (uncompiled) function file was used. Recover by

re-entering entire command.

8. "Invalid X dimension." NUMBER was read as 0 or negative or

greater than 63. Recover by immediately re-entering entire

command.

9. "Too many past values specified." Caused by memory block over-

flow (i.e., total number of variables in memory times maximum

past values retained is greater than 200). Recover by entering

CLEAR.

10. "Error condition prevails -- enter CLEAR command." Self-explana-

tory.

11. "Abnormal termination of modelling run." Some non-recoverable

error has occurred. Recover by starting afresh.

12. "Error." An error has occurred. Precedes further error clarifi-

cation.

13. I 'X()=SYM in model number 1." X() has decreased below its lower

limit and been reset to that lower limit. The model number is

irrelevant in FLEX1.

14. "X() is out of range." X() has increased above its upper

limit. The simulation run is terminated.

15. "Change in X() exceeds limit." A() exceeded the error limits.

The simulation run is terminated.

A3. 5

16. "F and G functions too deeply nested." FLEX1 keeps track of the

nesting of functional dependence. Although the g functions need

not be indexed in numerical order, so that g
z
, never references a

g. jsi, it must be possible to construct such an order. If

nesting of functional dependence exceeds 50 or if a function

references itself using parentheses, this message will occur.

Recover by changing functions and starting over.

17. "Variable not valid for LIST command." Only those variables and

commands in the Appendix Section 1 command summary are valid.

Recover by re-entering entire command.

For the most part, FLEX1 error messages are self-explanatory. The

major difference lies between the instruction

REENTER

and the instruction

REENTER VALUE

In the first case the command, equal sign, and the value must be typed

again (as well as anything which followed that command on the same input

line). In the second case, only what was entered on the right side of

the equal sign need be re-entered.

If several error messages are printed in a row, hit the break key

and start over. When in doubt, enter CLEAR and begin again.

*FLOAD error messages.

There are two messages used by *FLOAD. The first

INVALID OR NO F PARAMETER

A3. 6

indicates that either (a) no F=<name>,command appeared in the parameter

string or (b) no lun is available. The solution to (a) is obvious. If
this was included, then unequip some lun between 1 and 10 and try again.

This seldom occurs.

The second error message is

TOO MANY FUNCTIONS OR NO OVERLAY NAME SPECIFIED

If more than 70 g functions or 63 f functions were specified, this will

occur. If no name was used in the F=<name> command this will also occur.

(This is needed since F=<lun> can slip past (a) of the first message, but

a <name> is required.)

0

A4.1

MODEL II

VARIABLES AND FUNCTIONS

1. X LIST

xl
x2

x3

x4

x5

x6

x7

x8

x14

x17

FLEX MODEL OF: Overton Hydrology Model (Revised)

INVESTIGATORS: Overton, White

DATE: 7/11/73

RESOLUTION: Daily

QUANTITY: Water equivalents (m3/ha)

Description

Canopy storage (m3/ha)

Snow storage (m3/ha)

Soil Water (m3/ha)

Ground water (m3/ha)

Stream flow (m3/ha/day)

Duruny - observed stream flow (m3/ha/day)

Dummy - output E(g15 z3)2

Dummy - output E(ln g15 - In z3)2

Daily transpiration (m3/ha)

Monthly transpiration (m3/ha)

Yearly transpiration (m3/ha)

Daily evaporation (m3/ha)

Monthly evaporation (m3/ha)

Yearly evaporation (m3/ha)

Daily precipitation (m3/ha)

Monthly precipitation (m3/ha)

Yearly precipitation (m3/ha)

Monthly comp. stream flow (m3/ha/month)

Yearly comp. stream flow (m3/ha/yr)

Monthly obsr. stream flow (m3/ha/month)

Yearly obsr. stream flow (m3/ha/yr)

A4.2

2. Z FUNCTIONS Description

S2(k)
(.1667)(S3(k)-32)S2(k)

z2 =

z
3

=

z4 =

0

{ S2(k)-z1

t S5(k)

C b9z1

4. C FUNCTIONS

J

S3(k)>38
32.<S3(k) 538 Precipitation as rain
S3(k)<32 (m3/ha)

Precipitation as snow

Observed stream flow (m3/ha/day)

Precip. direct to forest floor (m3/ha)

b11zlOt
gl (bl0-x1)(1-e) Incremental input to canopy (m3/ha)

g2 = max

max

g
g3 = min

xl
1 -b13(xI+g1)

g2(1-e

0

-b (x3-bl)
2 1

g2-g3

g5 = (1-b9)z1-g1

g6

g7 =

g8 =

g9 =

Sl(k)+1 - (Sl(k)+l)z1/b12

Drip (m3/ha)

((s3(k)_32)(254 RAD(S4(k,l))+.014(z4+g5)3
0

Potential snow melt (m3/ha)

z2+x2
min

g
Actual snow melt (m3/ha)

-b3At
max (1-e)(x3-b5) Amount of x3 available for flow (m3/ha)

0

min

g8

}
Adjusted potential
evapotranspiration (m3/ha)

Evaporation from canopy
storage (m3/ha)

x3<bl

bl<x3<b2 Transpiration (m3/ha)

x3>b2

Percolation from x3 to x4 (m3/ha)

g10 = g8-g9 x3 lateral flow (m3/ha)

)

C

A4.3

-b4At
g11_ = max (1-e) (x4-b6)

0

912 = z4+g5+g7

g13 =
min

914
max

915 (gl0+g11+g14)/At

5. F FUNCTIONS

f1,1 91-93

f2,2 = z2-g7

f3,3 913-94-98

f4,4 = g9-g11

f5,5 g15-x5

f6,6 = z3-x6

f
7,7 =((1,15_z3)2_)

f8,8 (
[in {max

f9,9 = g4 -x9

f = 94
10,10

94

x4 lateral flow (m3/ha)

Possible infiltration (m3/ha)

Actual infiltration (m3/ha)

Surface runoff (m3/ha)

Stream input (m3/ha/day)

Description

Input, evap. (m3/ha)

Snow, melt (m3/ha)

Infiltration, trans, outflow (m3/ha)

Percolation, lateral flow (m3/ha)

Update (m3/ha/day)

Update (m3/ha/day)

Dummy

}
(10 ; g15)} - in {max (10

;

z
3))12)Dummy

-x10

94

g4-xll

otherwise

S4(k,0)(k,l)

otherwise

Non-dimensional

Monthly transpiration (m3/ha)

S4(k,0) 6 and S4(k,l)=7

Daily transpiration (m3/ha)

Yearly transpiration
(m3/ha)

(12,12 g3-x12 Daily evaporation (m3/ha)

A4.4

f =
13,13

C

g3 , otherwise Monthly evaporation (m3/ha)
g3-x13 ' S4(k,0)#S4(k,l)

f14 ,14

, otherwise Yearly evaporation
g3-x14 , S4(k,O)=6 and S4(k,l)=7 (m3/ha)

(15,15 = zl+z2-xl5

f
16,16

f18,18

89,19

f
20,20

f21,21

Daily precipitation (m3/ha)

zl+z2

z1 +z
2-x 16

zl+z2

zl+z2-x17

, otherwise Monthly precipitation
(m3/ha)S4(k,O)OS

, otherwise
Yearly precipitation

, S4(k,O)=6 and S4(k,l)=7 (m3/ha)

g15
otherwise Monthly computed stream

3

g15-x18
S4(k,0)#S4(k,l) flow (m /ha/month)

g15
otherwise Yearly computed stream

=

gl5-xl9

z3 ,

S4(k,O)=6 and S4(k,l)=7

otherwise Monthly observed stream
z3-x20 , S4(k,0)#S4(k,l) flow (m3/ha/month)

=
(z3 otherwise Yearly observed stream

3z3-x21 , S4(k,O)=6 and S4(k,l)=7
flow (m /ha/yr)

6. SPECIAL. FUNCTIONS

S1(k) = CP(S4(k,l))S3(k)

S2(k) = Tabulated data

S3(k) = Tabulated data

S4(k,m) = Tabulated data

S5(k) = Tabulated data

7. Y FUNCTIONS

yl = xl

y2=x2

Description

Potential evapotranspiration (m3/ha)
(CP= m3/ha/°F)

Precipitation (m3/ha)

Temperature (°F)

Month that day k+m is in (1 to 12)

Observed stream flow (m3/ha/day)

Description

f

17,17

flow

A4.5

y3 = x3

y4=x4

y5 = x5

y6 = x6

x7 = x7

y8 = x8

y9 = x9

Y10 _ {10

713xx13

y16 = x16

y17 = x17

yll = x18

y19 = x19

y20 = x20

y21 = x21

PARAMETERS

(m3/ha/day)

(m3/ha/month)

(m3/ha/yr)

(m3/ha/day)

(m3/ha/month)

(m3/ha/yr)

(m3/ha/day)

(m3/ha/month)

(m3/ha/yr)

(m3/ha/month)

(m3/ha/yr)

(m3/ha/month)

(m3/ha/yr)

8. B PARAMETERS

List Value Description

b1 1.82 x 103 m3/ha Wilting point

b2 2.96 x 103 m3/ha Transpiration resistance point

b3 1.48 day -I x3 flow rate

A4.6

3.75 day -I

2.96 x 10' m'/ha x3 retention capacity

9.,97 x 103 m3/ha x4 retention capacity

4.59 x 103 m3/ha x3 storage capacity

11.9 x 103 m3/ha

.25

b 100 m3/ha10

b11 .0075 ha/m3/day

b12 762 m3/ha

b13 .3 ha/m3

x4 flow rate

x4 storage capacity

Prop. of rain direct to forest floor

Max. canopy storage

(1-b9)

b10

Assume g2 = 0 with 3" 7.62 cm rain

Assumed evaporation rate

10. IC (N) INITIAL CONDITIONS

List Value Description (see X List)

XN: xl 0

2.3114 x 103 m3/ha

10.97 x 103 m3/ha

0

x7 0

0

0

X10

xll
x 012

x13

b4

b5

b6

b7

b8

b9

x2

x3

x5

x6 0

x8

0

0

=

0

A4.7

x
0

14

x
0

15

x
0

16

x
0

17

x 0
18

x
0

19

x
0

20

x
0

21

GENERAL RUN INFORMATION

TSTART = 0

TMAX = 731

Dump, LP: all y's

(July 1, 1958)

Plot: y. , i = 1, ..., 6

No monitor

Appendix Figure I. Diagram of Hydrology Model 1

A4.8

A4. 9

Comments

This model is the second in the series of hydrology models worked

on by the Oregon Central Modelling Project. It represents the first

reworking of the hydrology model developed by Paul Riley and associates

at Utah State University and reported as Biome Internal Report 52.

Several features distinguished Model II from its predecessor. The

order of model events and couplings have been made explicit. Canopy

charge has been made a function of present canopy storage and the current

amount of precipitation. Atmospheric demand for water has been made a

function of precipitation, allowing for atmospheric saturation. Water

intercepted by the canopy which does not add to canopy storage has been

defined as canopy drip to the forest floor. In addition, thrufall direct

to the forest floor has been distinguished from canopy intercepted pre-

cipitation. Melted snow now flows direct to forest floor. Lastly, the

model has been parameterized to Watershed 10 physical characteristics.

Behavior

The mass balance is changed, most noticeably by the reversal in

relative magnitude between evaporation and transpiration. This is a

change in the wrong direction.

There is little change in objective function one, but there is a

dramatic improvement in objective function two (two orders of magnitude).

This is due to the maintenance of some flow throughout the summer.

Flow peaks match a little better than before. However, the charge

and discharge of the stream is still too rapid. Also, Model II does not

A4.10

catch the early fall recharge peaks.

Several runs were made with different storage capacities for

ground water. This did not noticeably change behavior.

A run was made with the transpiration resistance point changed

from equality with field capacity to wilting point plus one-fifth the

difference between field capacity and wilting point (i.e., w.p. + 1/5

(f.c. - w.p.)). This increased transpiration by about 10%, but did not

change the relative magnitude of evaporation and transpiration. Ground

water was depleted to wilting point more rapidly than before.

Sept. 1

Sept. 1

4

March 15

Year 1

Year 2

Appendix 2 Figure 2. Model Behavior

March 15

................

NOTE:
A4.12

In all hydrology models two sets of data, with monthly values, are used.
The first, identified as RAD in the potential snow melt equation, expresses
the effect of radiation on melting snow. The second, identified as CP
in the special function Sl, expresses the atmospheric demand for water
(i.e. potential evapo-transpiration) depending on air temperature. Values
are given in the table below.

RAD (inches)

January .0208 .00029

February .0184 .00075

March .0136 .00181

April .0088 .00233

May .0040 .00329

June .0024 .00340

July .0028 .00416

August .0068 .00381

September .0112 .00290

October .0168 .00152

November .0192 .00057

December .0212 .00029

W

CP

A5.1

5. Sample Program with Runs

00001Y SUBROUTINE ECOMP(KaX,B,R,F)
00002: DIMENSION X(1),8(1)vR(/), (fl)
00003a F-(1)=00
000042 Z(3)aS5(K)
0005: IF CS3(K) >o 38.) 2(1)=S2(K)

00006: IF (53(K) o6E. 320 .AND. 53(K) QLEo 38.) 2(1)=
40007: 1.1667*S2(K)*(S3(K)-32o)
00008: Z(2)=S2(K)-9(1)
10009: i(4)=B(9)*9(1)
x,,0010: RETURN
000111 END

A5.2

00001: FUNCTION G01(K,X,B,R,E)
000021 DIMENSION X(l).B(l),R(1),0(1)
00003: 601=(B(10)-X81))*t1.'EXP(-8{1l)*r (1)))
00004: RETURN
00005: END
00006: FUNCTION 602(K,X,B,R.iz)
00007: DIMENSION X(1),B(1).R(1),g(l)
00008$ 602=0.
00009: IF (E(1) .GE 8(12)) RETURN
00010: G02=S1(K)+l-(S1(K)+1.)**tg(1):/8(12)-)

000118 RETURN
00012: END
000138 FUNCTION G03(K,X,B,R,O)
000142 DIMENSION X(1),B(1),R(l),0(1)
000151 603G(2)*(1..EXP(-B(13)*(X(l)+G(1))))
000169 IF (603 .GT. X(1)+6(1)) G03=X(l)+G(1)
00017:
000181
000199
00020:
00021:
00022:
00023:

RETURN
END
FUNCTION
DIMENSION

G04CK,X,B,R,E)
X(l),B(1),R(1),2(l)

IF (X(3) .LT. 8(1)) 604=0.
IF (X(3) .GT. 8(2)) 604=6(2)-6(3)
IF (X(3) .GE. B(1) .AND. X(3) .LE 0(2)) G94

00024: 1(6(2) G(3))*(X(3)-B(1))/(B(2)-B(1))
00025: RETURN
00026. END
000279 FUNCTION G05CK,X,B,R,Ey
00028 DIMENSION X(1).B(1).R(1),E(l)
000299 605=(1.-B(9))*E(l)-G(1)
00030: RETURN
00031: END
00032:
000331
000349

FUNCTION 606(K,X,B,R,E)
DIMENSION Xt l),B(l).k(1),Et l)
DIMENSION RAD(12)

000359 DATA ((RAD(I),I=1,12)s.0208..0184,0136,0088,.OO4O1 0®24.
000369 1.0028,,0068,.0112,.0168,.0192a.0212)
00037: M=S4(K,1)
00038: G06=(S3(K)-32.)*(254.*RAD(N)+.014*(EC4)+6(5)))
00039% IF (606 .LT. 0.) 60600.
000404 RETURN
000418 END

A5. 3

00042:
00043:
000448
000458
000468
000478
000489
000 49 2
00050:
00051:
00052:
000538
00054:
00055:
000568
000578
000582
00059:
000608
00061:
000628
00063:
000642
00065:
00066:
00067:
00068:
00069:
00070:
00071:
00072:
00073:
00074:
000758
000762
00077t
000783
000793
00080u
00(0}81:
00082
00083:
00084:
00085%
000862
0008 7 2
000888
000892
0009 0 8
0009 18

FUNCTION 607(K,X,B,R,E)
DIMENSION Xt I),R(1),R(1), (1)
G07=E(2)+X(2)
IF (607 .GT. G(6)) 607=G(6)
RETURN
END
FUNCTION G08(K,X,B,R,2)
DIMENSION
G08=(1.-EXP(-B(3)))*(X(3)-8(5))
IF (G08 LTo 0.) G08=0.
RETURN
END
FUNCTION G09(K,X,B,R,i!)
DIMENSION X(l).8(I),R(1),V1)
609=8(8)-X(4)
IF (G09 .GT G(8)) G09=6(8)
RETURN
END
FUNCTION G10(K,X,B,R,Z)
DIMENSION X(13,8(1),Re DYv (1Y
G10=G(8)-6(9)
RETURN
END
FUNCTION G11(K,X,B,R,Z)
DIMENSION X(1),B(1).R(I),9(1)
G11g(1-EXP(-B(4)))*(X(4)-B(6))
IF (611 .LT. 0.) G11=0.
RETURN
END
FUNCTION G12(K,X,B,R,E)
DIMENSION Xt1Y,8(1),R<1),t 1)
G12=9(4)+G(5)+6(7)
RETURN
END
FUNCTION G13(K*Xv8pRj-i6)
DIMENSION X(1),01$),R(1),i(1r
x;13=B(7)-X(3)
IF (613 o6T. 6(12)613=6(12)
RETURN
END
FUNCTION 6$4(K,X,B,R,Z)
DIMENSION XtflY,®(1),R(1Y,0(I)
G14*G(12)-G(13)
RETURN
END
FUNCTION G15(K,X,B,R,E)
DIMENSION X(1),B(1),R(1),E(1)
615=6(10)+G(I U+GI 14)
RETURN
END

00001:
00002:
000031
00004:
00005:
000061
000071
00008:
000091
00010:
00011:
000121
00013:
00014$
00015:
00016:
00017:
0001St
00019:
000201
00021:
00022:
00023:
00024:
00025:
00026:
00027:
00028:
00029:

00031:
00032:
00033:
00034:
000351
00036:
000371

000392
00040a
0004k
000428
000432
000449

FUNCTION F0101(K.X.B,k,O)
DIMENSION X(1),B(1),R(1),P
F0101G(1)-G(3)
RETURN
END
FUNCTION F0202(KX,rBR,E)
DIMENSION X(1),B(1) R(1),B($)
F0202=0(2)-G(7)
RETURN
END
FUNCTION F0303(K,X,B,R,6)
DIMENSION X(1),B(1),R(1),2
F0303=G(13)6(4)-G(8)
RETURN
END
FUNCTION F0404(K,X,9,R,O)
DIMENSION Xt 1), B(I), R(1),1* 1
F0404=G(9)-G(11)
RETURN
END
FUNCTION F0505(K X,B R,E)
DIMENSION X(1),B(1),R(14,0(1)
FO505*G(15)--X(5)
RETURN
END
FUNCTION F0606(KsX,D,R,$)
DIMENSION X(l),B(1),R(1),0(1)
F0606=E(3)-X(6)
RETURN

FUNCTION F0707(K,X,B,R,O)
DIMENSION X(1),B(1),R(j),E(1)
F0707=(G(15)-E(3))**2
RETURN
END
FUNCTION F0808(K,X,B,R,E)
DIMENSION X(1),8(1),R(1)r0t1)

IF (6(15) GT,w AA) AA*G(15)
IF (0(3) -6T- AB) ABsEE3)
AC=1 OGF (AA) -LOGE (AB)
F0808AC*AC
RETURN
END

A5.4

1)

A5.5

000451 FUNCTION F0909(K,X,B,R,B)
000461 DIMENSION X(1),B(1),R(1),g(1)
000471 F0909=6(4)-X(9)
000481 RETURN
000498 END
000508 FUNCTION F1010(K,X,BokogL
00051: DIMENSION 166 D),®(Il),R(1),6fl)
000528 F1010=6(4)
000538 IF (S4(K,0).NE.S4(K, Il)) F10100G(4)-X00)
000541 RETURN
000551 END
000561 FUNCTION F1111(K,X,B,R,Z)
000578 DIMENSION 16(1).8(Il),Rt1),8(1)
000581 F1111=G(4)
000591 IF (S4(K,0).E®.6..AND.S4(K, 1).E®.7.) F11 Il D6(4)aX(D Il)
00060: RETURN
00061: END
000621 FUNCTION F1212(K,X,B,R,i!)
00063: DIMENSION X(1),B(1),R(1),0(Il)
000641 F1212=6(3)-X(12)
000651 RETURN
000668 END
00067: FUNCTION F1313(K,X,B,R,O)
000681 DIMENSION X(1),B(1),R(Il),8(1)
000691 F1313=6(3)
000701 IF (S4(K,O).NE.S4(K,Il)) F1313SG(3)-X(13)
000711 RETURN
000721 END
000731 FUNCTION F1414(K,X,B,R,B)
000741 DIMENSION X(1),B(1),R(1),Z(1)
000751 F1414=G(3)
000761 IF (S4(K,0).EQ.6..AND.S4(K,Il)oE0.7.) F1414u6C3)-X(14)
00077* RETURN
00078: END
000791 FUNCTION F1515(K,X,B,R,B)
00080: DIMENSION X(1),B(1),R(Il),(1)
000818 F1515=8(1)9(2)-X(15)
000828 RETURN
00083: END
00084: FUNCTION F1616(K,X,B,R,EZ)
00085: DIMENSION X(1),8(Il)bR(1),2(1)
00086: F1616$8(1)+9(2)
00087% IF (S4(Kv0).NE.S4QKio))) F1626=l(1)+8(2)-X(16)
000888 RETURN
009898 END

000901 FUNCTION F1717(K,X,B,R,O)
000911 DIMENSION X(11, 811),R(1),11(1)
00092: f171?=Z(j)+1(2)
00093: IF (S4(K,0).E6.6..AND.S4(K,1).EQ.7.)
000942 RETURN
0009 5 t END
000961 FUNCTION F1816(K,X,8,R,0)'
000971 DIMENSION X(1).B(1),R(1),E(1)
0009s t F1818=605)
000998 IF (S4(K,0).NE.S4(K,1)) F1818*6(1
001008 RETURN
001011 END
00102: FUNCTION F 1919 (K, X, $, R, O)
001038 DIMENSION X(1),B(1),R(1)x2(l)
00104: F1919;6(15)
001051 IF (S4(K,0).EQ.6,.AND.S4(M,1).EA.7)
001061 RETURN
00107: END
00108: FUNCTION P2020(K X,B,R*0)
001098 DIMENSION X(1),B(1),R(1),2(1)
001108 F2020*0(3)
001118 IF (S4(K O).NE.$4(K,1)) F2020* (
001128 RETURN
001131 END
00114: FUNCTION F2121(K,X,BR,E)
001151 DIMENSION X(1),8(1),R(1),0(1)
001169 F212188(3)
001171 IF (S4(K,0).E0.6..AND.S4(K,1)
00118: RETURN
001191 END

A5. 6

#1717x11(1)+2(2)r-X(17)

X($0)

) F21218(3)eX(21)

A5. 7

00001Y SUBROUTINE YCOMP(K,X,B,R,Y)
000021 DIMENSION X(D),B(1),R(1),Y(1)
000031 DO 5 Is1,21
000041 5 Y(I)-X(d)
000051 RETURN
000061 END

.8

000012 FUNCTION SICK)
00002: DIMENSION CPt 12)
000034 DATA 't CP(I),Ya1.12)*.0 1 1y. ''S . I`$is00233 » °y

000042 fl . 00340, . 00416, . 003814. 90* 10152..- ` 9* #0029)
000052 f4ftS*44-Ks 1)
000062 5l1-ffi254.*S3c*)*0P(M)
00007: RETURN
00008: END
.000091 FUNCTION Se-(K)
'000101 DIMENSION STWO(1S)

°1000118 5 x+
00012: 5 If C K ©G Ti °. 1S) 60 To 100
000132 'if C(K.EQ.I8) ITEM *0
00014: IF KKK +1r®* 1) 60 TO) SO
000151 25 'Se?me54.*STWO(KK)
00016: RETURN
00017: 100 KK' XK-18
000 18 t to TO 5
0001,94 150 "If `(I TI ME. EQ. 1) 60 TO r25
000020's REAO{ 5 r 1, 0 -) (SITW0 i) a * 1)
00021 s I TI`' I
00022: 460 TO 25
000231 11,0 1: 'ORMAT `1 8F4+2)
00024: END
000251 FUNCTION 53(K)
00026: DIMENSION STKREVIS)
00027: KKK(+1
0002812 5 IF (KK .GT. 18) GO TO 100
000292 IF CKK.EA-.18) ITI`NEMO
00030: IF CKK EA. 1) 60 TO
00031: 25 S3=STHR'EE(KK)
000322 RETURN
00033: 100 KKmKK18
00034: G0 TO 5
`0035: 150 IF (I TI M E. EA. 1) 60 TO 25
00036: READt6, 110r STKRE d'I 3,I1, 1`8D
00037 T 1t I I ME*
00038t 80 TO X25
00 0 39 k 120 FOR 4AT C 18F4. a 1
0004ou END

A5.9

00041: FUNCTION S4(K,MK)
00042: DIMENSION ISFOUR(24)
000431 IF (K NE. 0) GO TO 15
000441 IF (FIRST oEAo 1 .) 60 TO 15
00045: READ(7o105) (ISE'OUR()oII=1o24)
000461 105 FORMAT(2413)
00047: FIRST=1.
000481 MMa O
00049: M=1
00050: 15 IF (K .LE. MM) 60 TO 50
00051: MM=MM+ISFOUR(M)
00052: M=M+1
00053: GO TO 15
00054: 50 S4=M+6-1
000551 IF (K+MK .67. MM) S4=S4+1.
000562 75 IF (S4 61. 12.) GO TO 200
00057% RETURN
000581 200 S4=S4.12.
00059: 60 TO 75
000601 END
000611 FUNCTION S5(K)
00062: DIMENSION SFIVE(20)
000631 KK=K+1
000641 5 IF (KK .61. 20) 60 TO 100
000651 IF (KK EA. 1) GO TO 150
00066: 25 S5=40.6*SFIVE(KK)
00067: RETURN
00068: 100 KK=KK-20
000691 60 TO 5
000701 150 READ(8,110) (SFIVE(1),Is1,20)
00071: GO TO 25
00072: 110 FORMAT(IOF6.3)
00073: END

A5. 10

I-file, N-file and B-file

000012YMAX=21
00002:LPLUNi 44 Q,PPY1 LP=Y2 LPtwY3 LPaY4 LP1YS LFsY6 1.P Y9 1.PRYB
00003; LP=Y9 LP=Y10 L1'3Y 11 LP=Y12 LP+ Y 13 LPPY 14 LPwY 15 LPosY 16 4PPY 17
000041 LP Y 18 LPi Y 19 L PaY20 LPPY21
00005;DUMPLUN:40 D*Y1 DaY2 DsY3 004 TOYS DsY6 0aY7 1PY8 D*Y0
00006=D=YI0 DaY1P D!Y12 9?;!Y13 D=v16 Y16 0016 OsY17 DaY15 QW.1y19
®0007sDsY20 D=Y?1
00008*INPUTa60

00001;XN()st 0 093114E3)e t`jt R0o0021000000000l
00003Y 0
0000:INPUT=

00001BO=1.02E3 296E3 1o40 3*75 2.96E3 98.51793 4o59E3 41.9E4
000028.25 1037 .0(175 702 43
08003:INPUT*60

A5.11

Sample Run

#EQUI P. 44=LP.402FILE
/EQUIP,5=*S2INP,6=*S3INP,7s*S4INP.8s*S5INP
*LABEL.44/SAVE FOR FLEX1 USER

#*FLEX I

FLEX1 GENERAL MODEL SIMULATOR OS3 VER 1.0

ENTER INPUTS/COMMANDS
)NUMBER=21 TMAX=50 FUNLOADN*OHM02
)INPUT'*OHMI2

ENTER INPUTS/COMMANDS
)INPUT=*OHMB2

ENTER INPUTS/COMMANDS
aI NPUTu *OHMN22

ENTER INPUTS/COMMANDS
)TTYPRT=1 TTY=Y(3) TTY=Y(4) TITLE=FLEXL SAMPLE RUN
>LIST=N

21
)LIST=8(3)

1.48 00
)LIST=X (3)

2311.4000
9TTY=Y(5) TTY=Y(6) TTYPRT=10
:,SIMULATE

09/26/73 12113 PM FLEX) SAMPLE RUN
09261213

STATE VARIABLES 21
INITIAL TIME 0
TERMINATION 50
TIME STEP (DT) I

CONTROL INPUT LUN 60
LINE PRINTER LUN 0
DATA DUMP LUN 40

ERROR CHECKING
LOG ON LUN 0

COMPUTE SEC 1

6
11
16
21

INITIAL X 0E 00

OE 00

OE 00

OE 00
OE 00

UPPER LIMIT 1.0000E100
1.0000E100
1.0000E 100
1o0000E100
1.0900E100

TTY PRINT INTERVAL,
DATA DUMP INTERVAL
LP PRINT INTERVAL

CONTROL LIST LUN 61
FUNCTION INPUT 4UN 54

t 2) C 3)
e `1) 4 8)
(12) (13)
17) (18)

2 3
7 8

12 13
17 18

OK 00 2.3114E 03 1,0970E 04

OE 00 OE 00 OE 00

OE 00 OE 00 OE 00

OE 00 OE 00 0E 00

A5.12

(5)
(10)
c1I
I20I

S
10
15
20

S(00

00

0E 00

0E 00

10000SE100 1.0000E100 1.0000E100 1,00OOE100
1.0000E100).0000E100 1.00009100 14000E100
1.00004100 1.0000E100 1.0000E100 400000E100
1.0000E 100 1 P 0000E 100 1.0001E 100 1 * 0040E 100

A5.13

LOWER LI9+3JI-T' l OE 00 OE 00 OE 00 OE 00 OE 00
OE 00
OE 00
0E 00
OE 00

OE
OE
OE

00
00
00

OE 00
OE 00
OE 00

OE 00
OE 00
OE 00

OE
OE
OE

00
00
00

ERROR LIMIT OE 00 OE 00 OE 00 OE 00 OE 00

0E 00 OE 00 OE 00 OE 00 OE 00
OE 00 OE 00 OE 00 OE 00 OE 00
OE 00 OE 00 OE 00 OE 00 OE 00

OE 00

8 CONSTANTS 1.8200E 03 2.9600E 03 1.4800E 00 3.7500E 00 2.9600E 03

9.9700E 03 4.5900E 03 1.1900E 04 2.5080E-01 1.0000E 02
7.5000E-03 7.6200E 02 3.0000E-0,1

09/26/73 12313 PM FLEX1 SAMPLE RUN
09261213

FLOW FUNCTIONS - * a DEFINED

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21F(1,J) * 0F(2,J) 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F(3,J) 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F(4,J) 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F(50.1) 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F(6,J) 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F(7,J) 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F(8, ;.6) 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0

F(9,J) 0F(10yJ) 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0

F(110J) 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0F(12,J) 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0F(139J) 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0
Fe'940J) 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0

A.5.14

F(15,J) 0 8 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 a 0 0 0

F(16,J) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0
F(17&J) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0

F(180J) 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0* 0 0 0

F(19, J) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0

F(201J) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0* 0
F(21,J) 0 *

INDICIES OF DEFINED G FUNCTIONS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 18

YCOMP SUBROUTINE IS DEFINED
ECOMP SUBROUTINE IS DEFINED

09/26/73 12813 PM FLEXI SAMPLE RUN
09261213

PAGE 1 09/26/73 12113 PM FLEXII SAMPLE RUN
09261213

TIME Y(3) Y(4) Y(5) Y(6)
0 2311.400000 1.09700E 04 0 0

30 2089.815223 9970.000000 0 4.547200

20 1960.153471.9970.000000 0 3.735200

A5.15

30 1888.829055 9970.000000 0 2.720200
X(13) _ -9.31323E-10 IN I

X(16) a -9.31323E-10 IN D

40 1856.438658 9970.000000 0 1.948800

1840.674564 9970.000000 0 1.827000

END OF SIMULATION RUN

ENTER INPUTS/COMMANDS
EAR

FLEX I GENERAL MODEL SIMULATOR 0S3 VER 1.0

ENTER INPUTS/COMMANDS
.STOP

END OF FLEX I SESSION

