INTERNAL REPORT 126
FLEX 1 USER'S MANUAL

W. Scott Overton, Jon A. Colby, Jonna Gourley
and Curtis White

Oregon State University

January 1973

Revised, September 1973

NOTICE: This internal report contains information
of a preliminary nature, prepared primarily for
internal use in the US/IBP Coniferous Forest Biome
program. This inforamtion is not for use prior to
publication unless permission is obtained in writing
from the authors.

The FLEXI1 Users Manual

ABSTRACT

FLEX! is a general model processor, patterned after Klir's
General Sequential System Paradigm (Figure 1). Specifically, the
processor is a discrete time flux oriented realization of the general
paradigm and can process non-linear, non-stationary, environmentally
controlled state variable system models with explicit memory. The
current version is restricted to not more than 63 state variables, 40
input variables, 200 memory variables, and 50 output variables.
There are also restrictions on the number of functions identified, and
other restrictions, which will be elaborated in the appropriate part of
this writeup.

The system is implemented in the Oregon State University CS-3
operating system, is specific for the CDC 3300 computer, and may be
operated only from a teletype.

Output may be monitored at the teletype, line printed and dump
filed. Satellite programs have been written for plotting and listing
from the dump file.

FLEXI] is designed to be expanded in two directions. First will
be further elaboration as a single level model processor concentrating
all capacity into this single level. Second will be elaboration into a
multi-level, hierarchical model processor (REFLEX), capable of
mixed resolution. The two capacities are being incorporated into a
single processor, FLEXZ2, which is in the final stage of development at

this printing, and will be operative in late 1973.

Table of Contents

ABSTRACT
TABLE -OF CONTENTS

LIST OF FIGURES |
GLOSSARY OF SYMBOLS

I. THE FLEX PARADIGM
Introduction
The Processor Algorithm

II. MODELLING WITH FLEX1
Introduction v
Reasons for Modelllng in FLEX
Identification of FLEX1 Structure
Spec1f1cat10n of a Model
Time Resolution
Quantity o
Variables and Functlons
The X List
The Z Function
" The M List
The G Function
The ¥ Function
The Special Function
" The Y Function
Parameters , ‘
The Initial Condition List
General Run Information '
Run Time

Monitor, Line Prlnter and Data Dump File

Diagram
Comments ~ = S
Description of Behavior

IT11. PROGRAMMING IN FLEX1
Introduction
Overview
Programming Details
A. Coding the Model Function
Z Functions
G Functions
F Functions
S Functions
Y Functions
B. Preparing a Function Overlay
C. Entering the Parameter Information
C.1. Run Parameter I-File
C.1.a Memory Specifications
C.1.b X Limits
C.l.c Output Specification

12
12
13-

13

13
14
16
17

17

19
20
21
22
22
23
23
24
24
24

25
25
27
27
29
30
31
32
33
34
35
36
36
38
39

ii

bV

iii

Table of Contents

Page 2 of 2
C.2. Parameter B-File 41
C.3. Parameter R-File 41
C.4. Parameter N-File 41
N A Note on Naming Files and Overlays 42
Iv. USING FLEX1
3 Introduction 44
Preliminaries 44
Calling FLEX1 45
Commands 45
A. Number of State Variables 46
B. Time Limits 46
C. The Function Overlay 47
D. Parameter Files 47
E. The Title 48
F. Logs and Summaries 48
G. Listing Values 50
H. Simulate 50
I. Repeated Runs 50
Editing 51
Manual Interrupt 52
Output Specification 53
A. The Teletype Monitor Listing 53
B. The Line Printer Listing 54
Data Dump File Manipulation by Satellite Program 55
Satellite
A. Satellite Program *PLOTCON 55
B. Satellite Program *LPPLOT 56
C. Satellite Program *DMPRNT 58
REFERENCES 59
APPENDIX 60
Section 1. A Summary of Commands Al.l
Section 2. Format Summary A2.1
Section 3. Error Messages A3.1
Section 4. Sample FLEXFORM Ab.1

Section 5. Sample Programs With Run A5.1

LIST OF FIGURES

Figure 1. The FLEX Paradigm

Figure 2. The FLEX1 Sequential Computation Cycle ~

Figure 3. FLEXFORM
Figure 4. An Overview FLEX1l Operating System
Appendix Figﬁre 1. Diagram of Hydrology Model

Appendix Figure 2. Model Behavior

iv

10, 10-a

26

A4.8

A4,11

GLOSSARY OF SYMBOLS

X,Y,. .. Sets
X, Y, - Elements of Sets
-
x € X x is an element of X
~4
XY - Matrices
Xij Components of Matrices
X_j e X x.. is the component in the ith row and the jth
i ~ ij

column of X

X, Y, - - Vectors

X, Components of Vectors

X, € X X, is the ith component of x

k Discrete time index

X(k),x(k),...,i((k),xi(k) Value of that Set, Element, ..., Vector, or

Vector Component at time k

lun Logical unit number

<lun> Replace with an actual lun (i.e. 1 to 50)

name A file name (unless specified differently)

<name > Replace with an actual file name

i,]j Index numbers

<i> Replace with a particular index number
~ >

FLEXI] command mode symbol - glitch (unless

used in context of ''greater than'').

I. THE FLEX PARADIGM

Introduction

FLEX is a realization of Klir's general paradigm which is

illustrated in Figure 4.8 of An Approach to General Systems Theory

(Klir, 1969). This figure has been modified as Figure 1 of this writeup.
In constructing the processor, it was desirable to restrict the paradigm

to discrete time, versus continuous time, and to orient it to a flux

system. The flux orientation follows the conceptual structure of com-

partment models, which are currently fashionable in ecology. However,
some forms of ecological models are awkward in this form, and the
section on modelling (Section II) includes a discussion of alternative
orientations possible under the current version. It is also proving
difficult to model some systems conceptualized in continuous time in
the form of discrete time and it is anticipated that a differential
analyzer will be made available (in place of the discrete analyzer) in a
future version. For the present version, however, the paradigm is
strictly in discrete time, and restricted to a difference equation
structure. The f functions must explicitly or implicitly define the
first differences of the state variables.

Klir's model structures have also been restricted somewhat to
accommodate currently fashionable terminology. The terminology of
FLEX is a mixture of Klir and Freeman (1965). Klir's principal

quantities include input, output, and memory variables as used in FLEX,

z(x)
r——- -.——-,—'_—-.—-.-l
Environment i
| System
I | I
I — |
| Functionai Memory l
| Generator M \
: |
| |
S D
!(k')
a. The Gensral Parodigm ot modified
z(x)
r p —
| |
| x|
Constants: b, ¢, — {
b Variables: z, X, M, 9
| e L]
| o
| X Functions: |
| s,6,F, 8 -
| 1
(|
: keik] g(K)ex(x)4 AlK) H :
i I
e o e o e e o =

yiK),

b. Etaboration of the Functionc! Gensrator

P

T ik
K)ymzik-1)._mz(k-r)
K)}mxik-1)..mx(k-r)

]

Ko1K | m k- 1o (k-1-1)

zik)
r
|
i
| JFe.
| Wr' mz
K k
| m
|
R
|
|
|
L.
' QL!(“’)

¢. Elaboration of the Memory

Figure 1.

The FLEX Paradigm

e mem - — — -

as well as any others that are necessary to describe the behavior of

the system. Klir does not use the term state variable in his general

paradigm. Freeman's ''state variables'' include both state and memory

variables in FLEX terminology.

The arguments for the FLEX variable set are all oriented toward
the problems of modelling. We feel that identification of variables
according to their model function is helpful in model conceptualization.
Input variables are those provided by another system or by the environ-
ment. State variables are those required to characterize the behavior
of the system and are restricted to quantities occurring at a particular
instant. These will be incremented by the processor at each time step.

Memory variables are past values of input or state variables. Output

variables are identified state variables, or functions of state variables,

which are designated as system outputs, either for the purpose of study
of the system, or as outputs to another system. The vectors z, x,

and y designate the input, state and output variables, respectively,

and other quantities are identified in the following discussion.

The Processor Algorithm

The algorithm is the standard discrete time algorithm, structured
to explicitly identify the state variable increments A and with provi-

sion for automatic identity of A from a matrix of fluxes (f equations)

representing the flows of a compartment model. Letting k be the

discrete time index,

y(k) = h(x(k))
Model algorithm
x(kt+1) = x(k) + 4(k)

~

where A(k) is a column vector such that the fth element is defined as

~

n n

8, (k) - qu(k) -) (k)
i=1 i=1
j#4

and where,

~

00 = £ [k, x(0), 2(K), M), glk), 3, b, 1]

Further, 1'~1 is an arbitrary functional vector of the vector x
and M(k) is defined as a matrix of,ipast values of x and z. That is,
let M(k) = [m(k), m(k-1), ..., m(k-r)]

g(k-l—l) r~n§(k-£)

where m(k-£) = Q =
- Tl x(k-£-1) mx(k-£)

and where Q is formed by deleting rows from the identity Iﬁatrix of the
vector [%J’ the appropriate row being deleted for each variable

which will not be retained in memory. The Q specification is
implicit. The user specifies which elements of x and z will be

retained and how long each should be retained.

Other quantities identified in the model are:

the vectors of model parameters which may change
from run to run.

a vector of intermediate functions defined in the
same general form as the f,lj and such that element
g.l(k) may be a function of gj(k) for j <i. G
values are calculated once and stored for the dura-
tion of the computation cycle.

special functions, similar to g functions, which

are available on call and for which the values are

not stored by the processor.

II. MODELLING WITH FLEX]1

Introduction

In this section discussion will be‘ directed toward identifying how
modelling concepts are elaborated in FLEX1 with respect to the general
FLEX algorithm. First, a few of the advantages of rnodelling in a
general algorithm will be presented. Next is a .discus sion of the
FLEX] structure and its relation to the éigorit‘hrn. Third, the specifi-
cation of a model in FLEX1 will be given a detailed tkreatment. After
reading this section, a modeller should have little trouble conceptualiz-

ing state variable models in the FLEXI structure.

Reasons for Modelling in FLEX

One might begin by ’asking why any fixed modelling paradigm and
convention is desirable. There are several advantages fo’r taking a
fixed viewpoint.

First, it confers the advantage of ease of model conéeptualization.
If a general paradigm is used, the modeller has only to identify those
parts of the str;lucture which are relevant to a particular model and to
establish a ,corr,e,spondencle between components of the general paradigm
and the components of the model. The underlying assumptions ’of a well
known general paradigm will be well known, and will remain constant

from model to model. Uniformity of structure and notation is advan-

tageous in coupling models together, in comparing one model with

7
another, and in critically reviewing and evaluating a model. Differences
in two models are most readily apparent, and specific model features
and assumptions are easily discernible.

Further, a fixed modelling convention allows for ease of com-
munication. A standardized paradigm, with its accompanying
standardized notation, makes the interpretation of any particular model
realized within it extremely easy. It reduces the amount of information
which has to be communicated between several modellers in various
subsystem groups and between a modeller and a programmer.

Lastly, the use of a general paradigm allows construction of a
general computer program in the image of that paradigm, so that all
of the routine business is programmed, for once and all. It is
necessary to write computer code only for those features in which the
particular models in the general paradigm may change. In essence,
this allows the modeller to spend his time and effort on modelling, with
a minimum of time on program assembly.

These advantages are obtainable by using any fixed modelling
paradigm and convention. FLEX offers some unique advantages.

FLEX is conceptualized so as to make the model structure readily
apparent. It is based on a general paradigm which was synthesized by
George Klir from study of a great variety of system models, with the
explicit form of FI.EX dictated by the apparent needs of ecosystem

modelling. Model components are structurally and functionally

8
identified, forming, as it were, a paradigm for ecosystem models, in
contrast to the opposite extreme of unstructured models presented in
order of computation or in some other suc \ arbitrary manner. In

FLEX, input, output, and state variables are identified and readily

apparent, the hierarchy of function‘s is kclelajr..and una..rnbiguous, and con-
fusion between components should be minimized.

Further,} the FLEX algorithm is designed to'be a module in an
egpanded algorithm, called REFLEX. FLEX is:utilizevd as an element
in a Universe-Coupling structure (see Klir, 1969) Which: is realized in
REFLEX. This allows for explicit modelling of hierarchical systems.
In the FLEX paradigm, it becomes possible to uncouple various sub-
models from the whole and examine their behavior in a meaningful
manner, isolated from the total model. A discussion of rﬁany relevant

points is given by Overton (1972, 1973).

Identification of FLEX! Structure

’I’h e general structure of‘FLEXkrl caﬁ" bé se‘ehyv in F‘igures 1, 2, and
3. Figure 1 is a particular realization of fhe Generalized Paradigm for
Sequential Systems (Figure 4.8, Kl"ii-', 1969) kFigure 1 diagrams both
the particular general conceptual structure and the steps tak‘eh in a
computational cycle by FLEXI. Figuré 2 ‘detai‘ls this computational
sequence in time. Figure 3, FFL.EXFORM, is the basic specification

form for a model in FLEX!. The modeller utilizes this form to

”

: z(k-1) ; z(k) ; % g(?mox—i)%

| | \\ Lo |

| i ! |

> §

I P j P i

! Lo ! L] ;

| R N B i

y(o) yan oy y(k) : ylkel) § ¢ y(tmax) g
TIME 0 i k-i k K+! tmax-i tmaox

Figure 2. The FLEX1 Sequential Computation File

10

FLEXFORM FLEX MODEL OF:

INVESTIGATOR:

DATE:

TIME RESOLUTION:

QUANTITY: b

VARIABLES AND FUNCTIONS PARAMETERS

1. X List Description 8. B Parameters: list, description
S and values
- didentification of
state variables —- 9. R Parameters: "list, description
and values

2. Z Functions Description
10. Initial Conditions: 1list, descrip-
-~ — specification and : ‘ < ' tions, and
identification of ' ' . - values

input variables - - : :
' o XN - initial X values
3. M List Memory _ - : ,
Specifica- " 'MN - initial memory values
tions - o
: ~11. Run Parameters
~ specifications of x ' ~

¥

and z variables re- . - - to be completed by programmer
tained as memory -using information provided
variables - =~ L elsewhere ~ -
4. G Functions Description
- — intermediate
functions - -
5. F Functions Description

- flux functions - -
6. S Functions Description

- ~ special-use
functions - -

7. Y Functions Description

- = output variables = -

Figure 3

FLEXFORM

Page 2 of 2

GENERAL RUN INFORMATION

TSTART =

TMAX =

Variables to be monitored:

Monitor frequency =

Line printer frequency =

Dump file frequency =

SATELLITE PROGRAM INFORMATION
Variables to be plotted:

Plot frequency:

DIAGRAM
COMMENTS
DESCRIPTION OF BEHAVIOR

RUN LOG

Figure 3 continued

10-a

11
communicate, to the programmer and/or user, the correspondence
which has been made between the general structure and a particular
model. This form requires specification of each model component, as
well as the specifications for a simulation run.

FLEXFORM will be discussed in greater detail below. The first
two figures will now be discussed.

In Figure 1, an input vector g(k) enters from the environment at
time k. The functional generator uses this input information, the
present state of the system >~<(k), past inputs or states from the
memory M(k), and certain parameters, 13 and r, to calculate the
update vector é(k), the amount by which the state variables will be
incremented at time k. The functional generator utilizes s functions,
g functions and f functions in the calculation of é(k)-

The state variable vector is updated and time is advanced to k+1.
Specified input and state variables from time k are stored in the
memory. An output vector Z(k+l) is produced utilizing the new state
variable vector >~<(k+~l), updated memory values I\~/[(k+1) and any
parameter values. FLEX]1 is now ready to accept a new environmental
input vector z(k+l) and the process repeats itself until a terminating
condition is reached (i.e., until the specified end of the simulation run
is reached).

It is important to understand how and when time is advanced in

the sequential procedure. Time is advanced just prior to the

12;‘

calculation of the output vector, as an integral part‘ of the update |
procedure. The value of k remains the same from the output at time
k, through the input and function generation, until the update portion of
the cycle.

Note especially that the cycle which precedes time zero is a trans-
formation of the initial conditions by the output processor to produce

an initial output vector y(0). This calculation does not involve any z's.

Specification of a ,M() del

FLEXFORM, as previbusly explained,: is the basic modelling tool
of FLEX]1. Filllingk in this form completely finié'hes the specification
of a model fOr a FLEkal run. A programmef can ‘také this sheet; pro-
duce FLEXI FORTRAN code, make computer r\‘1n's and return the
specified outputs to the modeller. Because of its impbrtance, f:he rest

of this section will be concerned with ﬁse of FLEXFORM-

Time Resolution. Time resolution refers to that length of time

represented by the time increment from time k to k+l. Tiue discrete
time index, k, is incremented by 1 at each cycle of the seq\iential
analyzer. However, the meaning of the increment can be varied by
letting it stand for different time resolutions, i.e., one Second, five
minutes, four hours, five days, one year,. etc.

The choice of a resolution level is an essential part of the model

building process. It is dependent on and influences both the general

13
structure and the equations which are used in a particular model. In
general, a system with fast dynamics requires a model with fine tem-
poral resolution and one with slow dynamics should be modelled with
coarse resolution. Changes in resolution can require changes in

functional forms and model structure.

Quantity. The state variables represent measures of the quan-
tities modelled such as energy, nutrients, or population numbers.

Several quantities can be modelled at one time.

Variables and Functions. The variables and functions outlined

on the left side of page 1 of FLEXFORM specify the model structure in
FLEX1. Principal variables are input variables, state variables (the
X list) and memory variables (the M list}. Z functions specify the
input variables to the system from its environment. This information
is processed by the Function Generator, represented by the g
functions, f functions and s functions, to produce an update, or
increment, vector. After the state variables are updated, an output
vector is produced by the Y functions. Each of these structures and

operations will be discussed in detail.

The X List. The x variables represent state variables. There
is a limit of 63 x's, each one identified by a subscript from 1 to 63.
In the X List it is only necessary to specify which x's will be

used by writing them down in a column. Incides should be used

14

sequentially, unless there is some specific reason for skipping an index.

In a model with 5 state variables, X Kps s s X should be used.

Across from each x is a place to enter a description of the state

variable. Thus 3 could be identified as canopy water storage.
Acronyms can be used as a description, but fuller descriptions are
desirable. These descfiptions are for the convenience of the modeller
514 model user; they have no effect on FLEX!. Such descriptibns ‘are
necessary in any model with more than a few state vé.riabiés. They
are also useful in translating an existing model into FLEX]I.

If it is desired to constrain the \;alues of any of the x wvariables
within certain limits, these should be ‘sp‘e‘cifie;d‘within the description
of each state variable. In FLEXI, thevlovwer limit defaults to O.

This is usually the desired value in biological mode‘ls. HoweVer, if
negative values are to be‘allowed, the lower limit must be specified to
be negative. If the lower limit is reached, the state variabie will be
maintained at that value. |

The default value for an upper limit is 101,00° If a variable
passes its upper limit, the FLEXI1 run will terminate. If an x vari-
able should be maintained at some upper limit, the value of A, must
be curtailed within the g or f functions.

As indicated earlier, the t’ime resolution may need adjustment

depending on the dynamics of the model. A check may be made by

specifying the maximum increment A, such that if this incremént is

15
. exceeded, the simulation run will abort. Indicate the maximum
increment within the description of the x wvariables.
Initial conditions for state variables are specified in the initial

condition list, item 10 on the right side of FLEXFORM.

The Z Functions. The =z functions are used to calculate the

values of the elements of the input vector. There is a limit of 40 =z
variables.

The user of FLEXI1 should keep in mind that since this is a single
level processor, there is no external coupling, and the inputs (i.e.,
the z vector) are processed and generated as though they were inter-
nal functions. However, it is important that the conceptual distinction
of input quantities be retained; these are quantities (variables) arising
externally to the system being modelled, but subject to the system
receptors. Both generation of the quantities and the essential input
modifications are included in the 2z functions.

The z's should be indexed sequentially. The expression to be
used in calculating a z wvalue should be specified as part of the defini-
tion. This expression may be a constant, an algebraic function, or a
table look ~up function.

The =z, (k) may be a function of the s functions and also of
1

zj(k), where j < i.

In the normal FLEX]1 computation cycle, =z values are calculated

16
first. On the first cycle of a run an output vector, y(0), 1is calcu-

lated on the basis of initial conditions provided prior to the first entry

into the FLEX1 computation cycle.

The M List. In this list those principal variables which are
elements of the memory are identified. This includes memory for

both x variables (mx) and z variables (mz). It is necessary to list

the index of the variable to be retained in memory and the number of
past values to be retained. Past values of all variables specified will
be maintained for all past times up to the maximum number specified.

Thus if ten past values of x

| are needed and only four past values of

the other.memory Variables are required, all are still maintained for
ten past time steps-

There is a limit of 200 memory storagé places. If the total
number of variables to be retained in memory multiplied by the m’axi—‘
mum number of past values for any one variable exceeds 200, then the
memory specifications must be changed.

Within other equations, memory variables are indicated as
follows: for thé rth past value write xi(k—r) or zi(kfr). Th‘is
establishes a uniform notation which simplifies the later coding
(programming) details. |

Initial conditions for memory variables must be specified for a
run. These will be entered in the initial condition lisf, indicated on

the right side of FLEXFORM.

17

The G Functions. The g's are intermediate functions. The g's

are calculated sequentially and the value is stored for the remainder of
that iteration. There is a limit of 70 g functions.

G functions are used to calculate and store values which are used
more than once within a time step or otherwise for convenience in model
specification. They may be used to simplify the calculation of values
for the f functions. They may be used to represent a process or
quantities such as food demand or supply. Thus, for example, in cer-
tain predator-prey relationships, the demand on a prey by each of
several predators may be calculated in individual g functions and this
information used to determine the total demand and later to apportion
the captured prey among the predators.

G function arguments may be any of the principal variables,
previously calculated values of g functions, b and r parameters,

and values of special functions. Thus,

g.(k) = g.lk, x(k), z(k), M(k), g.(k), s, b, r), j<i

1 ' 1 ~ ~ J

Most internal calculations can be accomplished using g functions.

The F Functions. F functions describe the fluxes between the

state variables. Thus

f.e F
ij ~

defines a flux from x. to x. and this value will be added to x. and
1

18
subtracted from X, If there are n defined state variables, then]~F‘
is an n x n matrix; many elements are zero.

F functions can be a function of the input variables, state vari-

ables, intermediate functions, parameters and special functions. Thus

£,,(k) = £k x(), 2(k), Mk, g(k);'s, b, r]

Notice that £ functi'ons‘c‘annot be f‘u'nctions of each other explicitly.k
G functions should be used to accomplish.this implicitly.

The existence o‘f the flux fij _ indic;,alfe's a connectancé between
elements xi and x.- (Howevezj, it is possible to write]~§‘ such that
connectances are not explicitly shown.) »In a"connec»tar’xce matrix, the
diagonal elements are all 0, indicating t»hz%t- no element is coupled to
itself. In FLEX]I, the diagoﬁal elements ax;vt.e‘lused to indicate inputs
and outputs to that variable involving o:niy that element. For example,
reproductive increases, environmental inputs énd respiration output
would belong in the diagonal element if no other state variable receives
the change.

As earlier indicated, the orientation to the matrix of f functions
is in accordance with the compartmfenﬁ m(;del par‘adigm, and the off-
diagonal elements will be most useful when the model is so Conceptual—
ized. In the more general discrete time model formulation, we may
wish to define Ai ex’piicitlj as fii’ so that no use is made of the fij’

I 7 j. This is also a way to get around the limitation of number of £

19
. functions. There may be no more than 63 f functions, yet the limit
of 63 state variables provides a potential of 632 flux elements. Even
i though this maximum number will clearly never be needed, it is not
unreasonable for a 20 variable system to call for more than 63 con-
nectances. In such an event, a compartment model can be implemented
by the device of defining some of the fii equal to the b,

The most important limitation (for FLEX!) in these large models
will be the size of the overlay of the user supplied functions and sub-
routines. The number of allowable functions and variables is unlikely
to be limiting, and should be given little concern in use of FLEXI.

It will often be desirable to monitor fluxes at equilibrium or in
evaluation of cyclic balance. This can be done by assigning the
appropriate quantity from which outputs can be generated to a state

variable.

The Special Functions. Special functions are included to

provide greater modelling flexibility and ease. S functions may have
as arguments input variables, state variables, memory variables,

parameters and other special functions. Thus

1 .
— It is necessary that a sequencing exist such that j < i and
‘ that any =z variable called has already been computed.

20
S functions may be vector valued and are specified by an argument
string. These can be evaluated as many times as desired during a
single time step and with a variable definition of the elements of the
argument string at each evaluation. S functions may be table look-up
functions and, in fact, are best used to input environmental and driving
data for use by the =z functions. They may also be used for often
duplicated functional forms. -

There is no particular time in the FLEX] computation cycle at
which the value of each special function is calculated. They are avail-
able at any time in the computation cycle. There is no set limif,to the
number of special functions allowed. There is an overall limit on the
space available for storage of user ~-defined :E\inctio‘ns,, includi‘ngk zZ, £
f, s, and y functions. If many other functions are used, there Will

be little room for special functions.

The ¥ Functions. Y functions are used to calculate the output

vector X’(k) from the u'pda‘ted i((k) values. There is a limit of 50
output variables. This output vector is produced after dpdating the
state variables, memory variables, and incrementing time so the
modeller must remember the k used here is equal to k+1 ink the
preceding discussion (see Figures 1and 2). Y functions may be func-
tions of the state and memory variables, the parameters, s functions

and other previously calculated y functions. Thus

21

Although any output which is thus defined may be produced, the most
frequent case will be where 111()5) =1x, the identity function, so that
y(k) = x(k).

Remember that there is an output vector, X(O)’ produced prior

to the beginning of the FLEXI] computation cycle. This is the initial

translation of the model's specified initial conditions, x(0) and M(0).

~

Parameters. On the right side of FLEXFORM is a summary of

the information necessary to specify the actual numbers used in a
simulation run. Only the first three of the four are of interest to the
modeller. The last, the run parameter file, will be filled in by the
programmer from other specified information.

The constants of the model have been divided into two vectors,
the b and r parameters. In addition, the initial values of the state

and memory variables must be specified.

The B and R Parameters. In this section, the b and r param-

eters to be used are listed. They may be described by any name or
acronym the modeller wishes. The value to be used for that parameter
is also listed. The default values are 0. There are limits of 100 b
parameters and 20 r parameters. Parameter indices should be

assigned sequentially.

22
R's were originally differentiated from b's in order to identify
respiration constants, but fheré afe‘many criteria byywhich the param-
eter vector can be conveniently partitioned into ‘its two subvectors, 13
and r.
The program allows changes in tHe values of the parameters

during a FLEX] simulation run. This capa‘city may be utilized in many

ways to simplify model structure.

The Initial Condition List. This list has""'twb séétions, the XN

vector,)~((0), and the MN ma‘trixr, I'l/I(O)'.V
| Initial x values are listed firé’t.) Tkrlesbe’areu the values §Vhich will
be assigned to the respective X, prior to beig‘inbning a FLEX! simulation
run, i-e., at time k = 0. They should be listed ééquéntially. The
descriptions should match those of the X List. Deféul’t values are 0.‘
Initial memory values are listed next. These are the v’alues’whicyzh
will be assigned to both the mx and mz variables in memory prior to

beginning the FLEX1 computation cycle. All variables listed in the M

List should have an initial condition specified. Default values are 0.

General Run Information

The information necessary to make a FLEX] simulation run is
listed. This information includes the length of time for which a model

is to be simulated and what mode of output is desired.

23
Run Time. If a simulation run should start at some time other
than 0, this time must be entered after TSTART= . TSTART need
only be specified when necessary, as this quantity defaults to zero.
The time for which a last output is desired is entered after TMAX=

There is no default value for TMAX, so this must be specified.

Monitor, ILine Printer and Data Dump File. Output resolution

may be coarser than At so that output costs are less. Since FLEX]I
is a difference equation analyzer, the time step required for accuracy
may be much smaller than the time step wanted for the most detailed
output. Generally the data dump file will have the finest output resolu-
tion; this file will be available for further investigation of the run. The
line printer output can have the same resolution as the dump file, but
this is not necessary; the line printer could be treated as a more
extensive monitor, with fewer variables and coarser time step than the
dump file. The monitor should have a fairly coarse time step and fewer
than six variables, since this information must be printed at the termi-
nal. The teletype monitor is intended only to provide a rough check of
progress of a run.

Qutput time resolutions are defined in terms of cycles. To
monitor every nth cycle, enter n for the monitor- N defaults to 1

in all these cases.

24
Diagram. A diagram of the model should always be included. A
block diagram is usually sufficient. An identification of g functions

on the diagram is helpful.

Comments. Here the modeller may make comments to himself, to
his programmer and to the model user. These include reasons for
including or excluding certain things, what is desired from repeated
runs, information sources, acknowledgements, etc. Anything which
the modeller thinks is pertinent may be entered.

This is the place toktalk about any unusual features of the model.

A brief synopsis or abstract of the model's purpose may be deemed

appropriate.

Description of Behavior. The modeller Should use this space to
describe how the model is designed to behave prior to the actual simula-
tion of the model. This descfiption is a summary of the general
understanding of the behavior of the system being modelled and the
simulation output should be studied to verify fhat the model behaves in
';he prescribed manner.

If the results of a simulation run are at variance with ’this
description, that is, if the model behavior does not conform tb the pre-
scribed system behavior, a record of anomalies and surprises should

be made in this section.

25

‘ III. PROGRAMMING IN FLEX]1

Introduction

Programming a FLEX! run involves translating the modeller's

- information (FLEXFORM, Figure 3) into specific computer commands
and formats. If the FLEXFORM sheet is filled in completely, the
programmer should have all the information necessary for this trans -
lation. FLEXI1 is partially FORTRAN based and programming FILEX]I1
demands the ability to write FORTRAN equations. In addition,
knowledge of the use of OS-3 (Oregon State Open Shop Operating
System) is necessary, as FLEX!] was written exclusively for this
interactive time-sharing system. Information on OS-3 may be
obtained from the OSU Computer Center and a list of relevant materials

are listed in the bibliography.

Overview

An overview of the FLEX! system may be obtained by consulting
Figure 4. This figure illustrates the structural aspects of the FLEX]
system within the larger structure of the OS-3 system. In addition,
the upper portion of this figure is a diagrammatic outline of the steps
necessary to program a model for FLEX!1. The details of this process

are listed in the section Programming Details. An outline of the steps

- follows.

0s -3

Eaystions 05-3 Packages 05-3 Disk Files

Source Listing

Source
Function of Functien
Files Files
. 1,6,F,S,Y
input Equations
Source
- 1 | ‘ Back-up
Compile Fortran Card Deck
Instructions | Compiler N
— e FLEXT System
Parameter Function
Files Overlay
Coded *FLOAD - Online
- de- ti
Editor -Overlay made T Interaction]
‘ i & Parameter N
- Files
Input Files I,B,R,N
e o mes e GwEs lE SR S amp SR e o)
*FLEX] .
-General Model 7 Interaction
Processor
N Teletype
Monitor
Listin
\ B
. : N Line Printer
‘ Listing
Dump File ' ' N\ ‘
Requests ‘~.._-—”"——-~
' *PLOTCON
*LPLOT 1
-Plot routines{ [T Line Printer
Plots
: ~ ANA .
Dump File &2 —
Manipulations
! : : *_PRINTB
-Listing _Data Dump
routine- File Listino

Figure 4. An Overview FLEX1 Operating System

27

Translate the model functions into FORTRAN code. The =z, g, f,
and y functions have a standardized format given below. S functions
follow the general FORTRAN language format. Generate a function
source file for each of the five types of functions, using the OS-3
EDITOR. Source listings and backup card decks are usually made.
Compile each source file, using the OS-3 FORTRAN compiler. Use
*FILOAD, part of the FLEX]1 system, to incorporate all the resultant
binary object files into a function overlay which is stored on a disk file
under a user-specified name.

Enter the parameter information using the standard format
specified below. Generate a FLEX1 command file for B, R, Initial
Conditions, and Run parameters. These four files are not compiled.
Parameter listings and backup card decks are usually made-

When the function overlay and parameter files are complete, the
model is ready for a simulation run.

Although not indicated in Figure 4, a copy of the parameter files

should be appended to the function source listing and back-up card deck.

Programming Details

A. Coding the Model Functions. We arc concerned with the =z

functions, g functions, f functions, s functions and y functions
from FLEXFORM. Although we have been calling them functions, the

correct mathematical terminology, they include both subroutines and

28
®

functions in computer terminology. We will explain these in order.

A summary of the formats is included as Appendix Section 2.

29

Z Functions

The number of z or input values is limited to 40. All z values
are computed in one subroutine. The standard format is
SUBROUTINE ZCOMP (K, X, B, R, Z)

DIMENSION X(1), B(1), R(1), Z(1)

t

Z(1l) = expression

Z(2) = expression
Calculation
of
z values
ZKn>)= expression
RETURN
END
The expression may be a constant, or a time-varying algebraic
function, or a table look-up. Input data is most often read from disk
data files in an s function called by the z function.
Z values are calculated first by FLEX1. The values are stored

internally and may be used in other functions by simply writing Z(1)

or Z(¢1) for zy etc. in the appropriate equations. The values may

be used by any other functions except the y output functions.

30

G Functions ..

The number of g functions is limited to 70. A separate
FORTRAN function is required for each g function. Each g function
is coded in the standard format

FUNCTION GU1(K, X, B, R, Z)

DIMENSION X(1), B{(1l), R(1), Z(D

Calculation
of the
value of g, . .
GU1 = expression
RETURN
END
#2,03,...,70 may be substituted above for @1; two digits are

required. The calculation of the returned‘vafl,ue may be as 10ngk and
complicated as desired. G functions are defined as intermediate
functions; any internal variable which will be used extensively and
which retains the same value throughout a time increment s’hould be
calculated as a g function. G functions may be used for’afsingle
process, to simplify the f function represeptation, ‘for calculation of
demands, or for logical operations.

G values are calculated second by FLEX1. All defined g func-
tions will be calculated and the returned values stored interné.lly.
The value is available to the f functions or other subsequently calcu-

lated g functions or special functions by writing G(01), G(42),..., G(70).

The use of parentheses is crucial and these must always be included.

31

F Functions

There is a limit of 63 f functions. A separate FORTRAN
function is required for each defined fij' The standard format,
repeated for each f function, is as follows:

FUNCTION F{@1d1 (K, X, B, R, Z)

DIMENSION X(1), B(1l), R(1), Z(1)

Calculation
of the value
of f1) .
’ F@l¢l = expression
RETURN
END
and where @2,03,...,63 may be substituted for @¢1 (i.e.,
FJ1¢2,...,F6363); four digits are required. The returned values are

stored internally and will automatically be manipulated to calculate the
update vector é(k) which will be added to the current state variable
vector to obtain the next time step's state vector. Please note that the
f functions cannot be used to calculate other functions. If the value of
one flow determines that of a second, the first value should be calculated
as a g function and used in both f functions. A g function used as an
argument must be used with indices in parentheses (e.g., FOLPl =G(U5)).
The calculation of f values is the third step in the FLEXI! cycle,
just prior to the calculation of the update vector and the new state

variable vector.

32

S Functions

Special functions are vin.cluded for further modelling and program-
ming flexibility. They may be either fqpqtions or subroutines.k There
is no limit to the number allowed except for _theg limit on the function
overlay size which is 14, 0008 (octal) w,ords‘.: -

There is no s tandardized fqrmat for the special fuhctions;
function and subroutine formats in the C’,D' C. FORTRAN handbook are
used. Special functions may not be used to define COMMON area
storage. S functions are functions of time k, state, input and
memory variables, b and r kparaﬁrneters and other special functions
only. Valqes of g, f, .4 and vy fuﬂctions may not be usgd.

Special functions‘mayibe used in F:alculating z values, g values,
f values or values of other special functions. They are useful as tablé
look-up or data read-in functions, especially for z functiqns, where
real environmental data are entered.

There is no particular time in .:the FLEXI cqmputation cyclé
where the valueé of the. s functions are ’calculated, nor are these val-
ues stored internally. Their value may change durjng a time step since
the definition of the elemepts of the érgument string may change each
time a function is’ called.

The s functions operate the same way wi‘t}‘l regar'd to FLEX1 and

any of its user defined function sets as functions and subroutines

operate with regard to 2 main FORTRAN program.

33

Y Functions

The number of y output values is limited to 50. Y wvalues are
calculated by a subroutine. The standard format is
SUBROUTINE YCOMP (K, X, B, R, Y)

DIMENSION X(1), B(1l), R(1l), Y(1)

Y(1) = expression
Y(2) = expression
Calculation
of
values

YKn>) = expression
RETURN
END
The expression for Yi(k) may be a function of k, x(k), IYI(k), s,
l~), r, yj(k) for j < i. Usually each x is matched witha y. In some
cases one may want to know the accumulated total of a certain x value
or the accumulated flux ovér a certain pathway. In such cases, it is
necessary to construct an x variable to provide this output. Y values
may not be used to calculate anything except another y value.
The calculation of the y or output variables is the fifth and final
step in the FLLEX] cycle. Before the y output is produced, time (k)
is advanced (to k+1). Thus the k in this section is k+1 with regard
to the k in the preceding sections. The first output X(O) is a transla-

tion of the initial conditions, x(0) and I\~/I(O), before the first FILEX1

computation cycle begins.

34

B. Preparing a Function Overlay. After entering the coded

functions onto disk files, debugging and compiling them, make the
function overlay.

While in OS-3 control mode, indicated by a # sign, type

>kFLOAD,F= <overlay name>, <file name>,..., <file name> (CR)

After F= specify an eight character file name. The overlay will
be saved under this name.

After the overlay name, enter the names of the binary object
files used, ZCOMP subroutine, G fun'c'tions, F functions, YCOMP
subroutine and S functions. Separate file names with a comma. The
use of a special library meiy be included by adding
",L = <library name>" after the last file name.A Type a carriage
return (CR) to terminate the line. The péund éigri (#) will be typed
after the overlay is made. File protect all overlays. Guidelines are
offered fo:r;ffll’é structure naming in A Note on Naming Files and
Overlays below. |

The name of the overlay will be used with the command FUNLOAD
within (;he FLEX1 systeﬁ). This name must be entefed correctly to be
loaded and used by FLEXI..

Theré is a size limit of 14, 000

or 61441 words on the overlay.

8 0

If too many functions are specified, either the structure must be
reworked or part of the model deleted. *FLOAD error mes sages are

discussed in Appendix Section 3.

35

C. Entering the Parameter Information. Although parameter

information can be typed directly into the FLEX! processor during a
simulation run, speed and accuracy will be improved by entering
FLEX1 commands into a file and using a single typed command to bring
them all into FLEX1. For convenience in retrieving and changing
commands, four files are created, the I-file, the B-file, the R-file and
the N-file. Each file contains information from one section on the
FILEXFORM. After all information for a file is typed in, terminate
with the gommand INPUT= 6@¢. This command returns control to FLEX]I.

Apéendix Section 2 contains a summary of the FLEX1 commands
which may be used in each file.

FLEX!1 has a free-format input processor. The general form of
FLEX! commands is COMMAND-= <value>. One element of a vector
may be entered by COMMANDY(i)= <value>. One element of a matrix is
entered by COMMAND(i, j)= <value> Separate commands from one
another by one or more spaces. A vector of values may be entered by
COMMAND{)= <lst value>, <2nd value>, ..., <last value>. Separate
values within a command with commas. Matrices can be entered by
row, COMMAND(i,)= <1lst value>, <2nd value>, ..., <last value>, or
by column, COMMAND(, j)= <lst value>, <2nd value>, ..., <last value>,
or by elements.

Go to a new line wherever the material can be separated, pre-

ferably between commands, or between successive values of a command.

36
Do not break é. name or a value.

Numbers may be entered with or without decimal points. They
should be separated by commas.. Decimal points do not have to align
nor is it necessary to use the same columns repeatedly. Thus, for
example, a parameter B-file might be:

| B()=1.273, .¢13,1392, 14¢.59, 82
INPUT=64
This sets b,1= 1.273, b2= .013, b,=1392, b = 140.59 and b_= 82.

3 4 5

C.1l. Run Parameter I-File. The .run parameter I-file is a

catch-all file with a large variety of information included. . It includes
(a) M List from the FLEXFORM with tkhe‘.vMN section of.the Initial
Conditions, (b) constraints on values of various x varia,bles from kthe
X List,. (c) output specifications from the gevneral run information
section of the FLEXFORM. The commands ;);ril‘l be discussed in the

order in which they must be entered on the file.

C.l.a. Memory Specifications. ‘From M List on FLEXFORM a
variety of information must be tha'ined. In FLEX]I t‘hei memory is a
matrix with the rows representing variables and the columns the time
delays. There is a limit of 200 memory va-riables'\. If thke total number
of variables retained in memory multiplied by the ma:xirnurn number of
past values for a variable exceeds 200,. the modeller shquld be x‘lotified

and the length of the maximum lag reduced or fewer variables retained.

37
The memory matrix is dimensioned by the maximum number of
lags desired. The variable LAG is the length of time that all the vari-
ables will be retained in the memory. It must be entered before any
other memory specifications. Next the indices of the x and z vari-
ables which will be delayed must be entered. LAGX()= is followed by
the indices of the x wvariables to be delayed, separated by commas.
LAGZ()= is followed by the indices of the z variables to be maintained
in the memory, also separated by commas. All of this information
can be entered on one line as follows
LAG=__ LAGX()=_, ,_ LAGZ()= _,_,_
Initial values for the memory must be next. These are listed in
the MN section of the Initial Conditions. These may be entered by
row vectors. Thus, for LAG=3 LAGX()=1 we might have
XD(1,)=12., 11., 1§.
XD(1, 1) corresponds with xl(k—l):lz., XD(1, 2) with xl(k—Z):ll.,
XD(1, 3) with xl(k-3):10. The values may have decimals specified or
not, and must be separated with commas. XD, and ZD, values may
also be input by column, such as
XD(,1)=1, 9, 5

where XD(1,1) = x (k-1) = 1, XD(2,1) = xz(k-l) = 9. and

1

XD(3,1) = x,(k-1) = 5. Entry by column vectors is often more conven-

3

ient if fewer than 3 or 4 lags are used.

38

Next, the initialv ZD valqes should be entered, following the
same format as the XD wvariables.) Thus, for LAG=4 LAGZ()=2,5
we might have

ZD(2,)=1, 4, 7, 1¢ ZD(5,)=1., 3., 12.2
Since no value is entered for ZD(5, 4),; its value defaults to 0. This
value might not be needed 1n the model. That is, L AG=4 might refer
to z, needing 4 delays.

C.1l.b. X Limits. If the X List from FLEXFORM specifies

that a variable X, is to be ma-iptained' between certain limits, these
limits are entered ngxt.‘

| For a lower limit, the command ,X_;L‘(<i>)«:’ followed by a value,
is used. If th’is limit is reakvc;hed, the valge of X, will be maintained at
that limit. The default lowq;r limit is- 0.

For an upper limit, ;he command XU(<i>)=, followed by a value,
is used. If this limit is paséed or reached, the FLEX] run will abort.
Default value is 10100.

Finally, it is possible to specify theuamo’unt’ by which it is permis -
sible for a variable to change. The command XE(<i>)=, followed by
a value, is used for xi- If

la.| >XE(>)
and XE(i)70

then the simulation run will abort. If XE(i) is 0 (the default value) no

checking is done.

39

C.1l.c. OQOutput Specifications. As illustrated in Figure 4, three

specific outputs are produced by FLEX1. These are the teletype
monitor listing, the line printer listing and the data dump file. Each of
these will be explained in turn, although they all have similar com-
mands.

By convention, y values are usually the only variables sent to
the lin¢ printer and data dump file. State variables are added as
necessary to accommodate the output of z's, f's and g's. However,
it is possible to output the values directly to all units and not just the
monitor.

The line printer output is commonly used as a record of the dump
file. It is strongly recommended that the two outputs agree in variables,
order of variables and frequency of output. (Note that once the output
order of variables is established for one output unit, all other units
will maintain that same order for these variables.)

First, enter the command YMAX=, followed by the number of y
variables defined in YCOMP. This number should be the largest index
value used if the y's are not numbered sequentially.

Next, enter the teletype information. The monitor time resolu-
tion, from the FLEXFORM, is entered with the command TTYPRT=_.
This will default to 1 if not specified. The variables to be monitored
are entered with TTY= followed by what is to be monitored. For

example

40

TTY=G(l) TTY=F(2,2) TTY=Y(7)
and so forth. Anything may be monitored, but the more variables

monitored the longer and more costly the run.

Nextk, 1i~n\e printer information is entered. LPRT=__ is the
command ‘for entering the line printer time resolution. This will
default to 1 if not entered. The v»a.rtiafblefs to be printed are entered
hy cofnmands of the form

LP=Y(7) LP:&G,,(l) LP=F(8, 8)
All Y wvariables which are defined should usually be 1ine~prin£ed.
The logical unit number (<lun>) assigned to the line printer must Be "
entered with the command LPLUN;<1un>. This lun should be
equipped to the LP and labeled before a FLEXI run.

.La.,sutly, information for the data dump file mus;t be ehtered.
First, the dump file time resolution is entered with DPRT?_- This
should be the same as that entered for the line printer and,will also
d;'efa,ul-,t t;o l. Variables to be dump filed are entered as above usiﬁg ‘
D=__ For example

D=Y(1) DV=Y(ZVZ) D=X(5) D=G(7)
There is a limit of 79 variables which may be dumped during a run
The lun assigned to the dump file must be entered with the comma‘nd
DUMPLUN=<lun>. This lun should be equipped to a file before a |

FLEX] run.

41
Line printer and dump file lun equipping need be done only one
time, before the first call to FLEX1. If several runs are made, each
run's information on the dump file is separated from the next by a file
mark.
Some of the run parameter information may be omitted. For

example, if the memory is not used, simply skip that set of instruc-

tions.

C.2. Parameter B-File. There is a limit of 100 b parameters.
These may be entered one at a time, i.e., B(l)=__ B(2)=__ B(3)=___
etc. or as a vector, i.e., B()= , s __+ Values should be separated

by commas. Numbers must be entered so that the end of a line comes
between two numbers, not in the middle of one. All values not
specified default to 0.

C.3. Parameter R-File. There is a limit of 20 r parameters.

Input form is the same as for b's, either one at a time, R(1l)=__,

R(2)=__, or as a vector R()=__, . All values rot specified default

to O.

C.4. Parameter N-File. Initial x values may be entered one

at a time or as a vector. XN(l)=__ XN(2)=___ or XN()=__,
Values not specified will default to 0.

All of the above input files must terminate with a command to

return to FLEX1. This command is INPUT=6¢.

42

A Note on Naming Files and Overlays

The translation of several models into FLEXI1 has demonstrated
the necessity for a file naming convention to keep the user and pro-
grammer from getting lost in a maze of file names. The following
convention has proved useful.

First, construct a 3 to 5 alphanumeric character code for the
model. Thus for a litter decomposition model we might use LIDE.
This code will form the root name of our files.

Function file names for source decks are obtained by appending
a letter and number. If this is the first Z subroutine, i.e., the first
of several options, use LIDEZI as its file name; if it is the fourth F
function file of several alternate files, use LIDEF4, etc. G functions
become LIDEG_, Special functions become LIkDES__, and Y functions
become LIDEY_.

Compiled FORTRAN binary files are named with a * prefix.
Source FORTRAN files are named without a * prefix. Binary decks
are public files, so they may be used from a different job number.
Back-up card decks of the source files should be maintained.

For the suffix of parameter files, use I, B, R, or N along with
a number. Prefix these with a * so that they may be used from another
job number. For example *LIDEI4, k*LIDER?:, *LIDEN12Z, etc.

Function overlay names have an asterisk * prefix and a two

digit (no letter) suffix. Thus *LIDE¢1, *LIDE@2, etc.

43
’ Data dump file names should have a star prefix and a D with a
number suffix, i.e., *LIDEDI, *LIDED2, etc.

Such a name structure carries with it implicitly the FLEX
structure, allowing a simple mnemonic code with varying endings to
stimulate one's memory. This is the only time that acronyms are
necessary. The acronym should be constructed using the preceding
rules. 7ith a knowledge of the three to five letter code, a run may be
made very quickly without consulting a long list of file names.

It is an advisable practice to file protect all files, especially

public files (those whose name begins with a).

44

IV. USING FLEXI1

Introduction

The actual use of FLEX1 i‘na.y be divided into three parts. The
relationship of these pafrts is diagrammed in the lower portion of
Figure 4, An Overview FLEX1 Operating System.

First, a variety of information is inpﬁt to the FLEX] processor.
This includes the overlay and parameter file names. Such input
requires on-line interaction of the user W’ith FLEX]I.

Second, the actual simulation run is made. The FLEX] compu -
tation cycle is repeated until a terminating condition is reached (i.e.,
time has achieved its final value, the upper limit on a state variable
has been exceeded, etc.). During the run, a ‘r‘nonitor listing of some
of the system's variables is possible. A complete line printer ylisting
of the run is produced, if desired, and all output variables are dumped
tk’o a file.

Third, the dumped data may be manipulated to produc“e line S
printer plots.. These plots, in addition to the line printed output, are

helpful in understanding the behavior of a model.

Preliminaries

Before a call is made to FLEX]1, the logical unit (<lun>) nambers - -

assigned to the line printer (LPLUN=<lun>) and to the dump file

(DUMPLUN=<1lun>) in the run parameter I-file (see previous section for

45
‘ details) must be equipped to the line printer (LP) and a file (FILE).
Thus,
#EQUIP, <lun>=LP, <lun>=FILE
It is necessary that line printer output be labelled. Thus,

#1.ABEL, <LP lun>/ SAVE FOR <user identification>

Calling FILEX]

While in OS-3 control mode, type *FLEXI1. Thus,
#*FLEX]1
The FLEX!] system will respond by typing a heading and the statement
ENTER INPUTS/COMMANDS. FLEXI] has its own control mode which
is represented by a glitch (>). After FLEXI has typed its command
glitch, the user is ready for the first phase of actual use, the input of

information and file names to FLEX]I.

Commands
The various commands used to input information to FLEX] will
now be detailed. The order of their entry is important, so these com-
mands will be discussed in the order in which they should be entered.
This restriction on order of input should be regarded as a checklist,
a way to insure that all the information needed for that run has been
specified- A summary of this order appears in Appendix Section 2.
More than one command may appear per line (after each command

glitch). The two exceptions to this rule are the INPUT =<name> and the

46

TITLE=<some title> cofnmands. When either of these two commands
are used, it must terminate that line. Each line may be ﬁp to 136
icharacters long, inclu}ding spaces and editing symbols. As in the
previous section, in which Mthe parameter files were constructed, each
command is separated from the next by a space. It is possible to édit
commands prior to carriage return. Consult the 'Editing section below.
Each line of command input terminated by a carriage return
(CR) is processed as a whole by FLEX1. After the commands ar;d edit
symbols are processed, FLEX] may print one of several possible
messages. A command glitch is then typed indicating that FLEX! is
ready for further input. If an error message occurs, consult Appen’dfix

Section 3 for the proper response.

A. Number of State Variables. This command is used to tell

FLEX] how many state variables are being used. The form of the
command is
NUMBER=__

This command must always be the first command giveh- The number

entered following the equal sign is the integer value of the largest x

X, and x

index used. Thus, if 3% xz, 4 are being used, but x, is

5 3

not, the proper command is NUMBER=5.

B. Time Limits. It is assumed that most mbdels will be run

with time (k) having an initial value of 0. If a different starting time

47
is desired, enter
TSTART=___
This will set the value of k equal to the integer specified. Default
value of TSTART is 0, so enter only if necessary.

A model will be run until the termination time is reached, if no
other terminating conditions are reached first. This time must always
be greater than the TSTART time. Terminating time is entered with
the command

TMAX=_
Output is provided for k=TMAX, so this should be the time when the
last output is desired.

After each iteration, time (k) is incremented by one. This step

size cannot be changed.

C. The Function Overlay. This command tells FLEXI1 the name

under which the function overlay was saved. The command form is
FUNLOAD=<overlay name>

The overlay name is a file name, up to eight characters long. The

function overlay specified will be loaded into FLEX1 and used for that

simulation run. This must be the same file name that was used with

the F=<name> parameter in *FLOAD.

D. Parameter Files. The names of the four parameter files are

input in sequence to FLEX1. For each file, use the command

48
INPUT= <name of I-file> (CR)
INPUT= <name of B-file> (CR)
INPUT= <name of R-file> (CR)
INPUT= <name of N-file> (CR)
After each of the above commanc‘is,k FLEX]!] will access that file
and read commands from it. The last command in each file is
INPUT=68 which will return control to the user. Wait for the command

glitch before entering subsequent commands.

E. The Title. It 'is advisabie to label each simulation run with

its own title. This makes it possible to establish the identity of -each
run without excessive trouble. It also allows other user oriented
information to be entered.
The title may be at most 80 characters in length. This includes
blanks. The cofnmand form is
TITLE=__

followed by the title. This command must terminate that input line.

F. Logs and Summaries. The word log is used in its meaning of

a record of events. This command is used to indicate whether line
printer and dump file records of this run are being kept. In debugging
or exploratory simulation, the monitor ocutput is often all that is

desired.

49

This command, as well as the next, is actually a pair of
commands. They are

LOG

NOLOG
If no log is being kept (i.e., no line printer or dump file output) then
state NOLOG. This command will remain in effect until a LOG com-
mand is entered or the end of a modelling run is reached, at which
time the default value (LOG) is automatically set. If neither command
is used, LOG is assumed.

A summary of the run conditions (i.e., number of state variables,
initial conditions, parameter values, etc.) will be produced by FLEX]1
automatically. This information is also available on the teletype.

If the command SUMMARY is entered, this summary will be sent to
and printed on the teletype. If NOSUMMARY is entered, this summary
will still go to the line printer and dump file.

These commands operate as a pair,

SUMMARY

NOSUMMARY
and entering one negates the other. One command will remain in effect
until the other is entered or until the end of a simulation run is reached,
at which time the default value (SUMMARY) is automatically set. If

‘neither is used, SUMMARY is assumed.

50
®

G. Listing Values. While in FLEX1 command mode it is possible

to ask for the defined value of several variables. These include the .
initial x wvalues, the initial memory values, b and r parameter
values, etc. (A complete list is included ikn Appendix Section 1.) The
command form is | |
LIST=;__
The blank is replaced with that yariable whose vaklue is desired. For

example, LIST=B(2) (CR) would cause the value of b, to be printed.

_ 2
Thus, the value of a parameter may be checked while in FLEX]1

command mode.

H. Simulate. After the above information has been entered into

FLEXI, the command

SIMULATE
will begin the simulation run. This command freezes the current
parameter values for that run, so that‘ they may be changed only by

using the CLEAR command.

I. Repeated Runs. When a simulation run has been completed,
FLEX]1 will t‘ype
END OF SIMULATION RUN
ENTER INPUTS/COMMANDS

followed by a command glitch. Use of FLEX] may be terminated by

typing

STOP

51
If an additional run is desired, enter
CLEAR
This command will reset all FLEX]1 variables to their pre-use defined
values. In effect, it is as if the user typed STOP and then made a
call to FLEX!1. The system will type
[FLEX1 Heading]
ENTER INPUTS/COMMANDS
followed by a command glitch. Now the user may input his new
information. The same order and types of inputs are necessary.
Obviously, many runs can be made without ever leaving FLEX]1 if
all the parameter files and overlays needed have been made prior to

the first call.

Editing

FLEX]1 uses three symbols for editing of input. These are the
backslash (\), the at sign (@), and the back arrow (=). The use of each
will now be detailed.

Often the charcter typed is not the one which the user intended.
The backslash operates as a back spacer. FEach time it is used, a
character is deleted from the line or character string. This deletion
is done in a consecutive manner. For example

INN\PUU\T-\=*LII\DEI1

would be read, by FLEX]1, as

INPUT=*LIDEII

52

Another example is

FOANL\ 1R} UNLQAD=*LIDE61
The first backslash deletes the L, ’the second the preceding N, the
third the preceding A and so forth. The backstash here operates
exactly the same as the backslash in the OS-3 EDITOR.

Sometimes so many r’nistalg’esrhav‘e ,beep made that it is desirable
to bégin the line again. There are two ways to do this. ’T}’le first way
uses the at sign (@). This operates fo‘r‘FI_..EXI exactly the same way
‘that it does for the OS-3 EDITOR. That is, the at sign deletes all
'charact/e’i"s preceding it. After tYp_ing this ‘symbol, follow it with the
line as it should have appeared. For example,

N-\=12 TRNTL@NUMBER=12 TSTART=1¢ TMAX=15 (CR)

'I"he. second way to begin again involves the use of the b’ack Arrow.
The back arrow deletes the entire line in which it appears and a new
line is started by a FLEX1 command glitch. The back arrow should
alWays be followed immediately by a carriaée return (CR).

The length of a line in FLEX] is limited to 136 characters includ-
ing spaces and editing svymbols‘.k If the user has entered part of a line
and decides to start over, he should use theit sign if fewer than, say,

50 characters have been entered, and the back arrow if more.

Manual Inter rupt

It is possible to interrupt FLEX] after the SIMULATE command

has been given. Depress the BREAK key and type MI after the OS-3

53
system returns the pound sign. After this command, control is
returned to the FLEX1 system which finishes that section of output
interrupted when BREAK was hit, and returns to its internal command
mode typing

INTERRUPTED
ENTER INPUTS/COMMANDS
followed by the command glitch.

Output specifications may now be changed, including monitor
specifications. In the Appendix on FLEX] Commands is a complete
list of those variables which may be altered after interrupting FLEXI
without having to type CLEAR. Of course, if CLEAR is entered all

information must be input to FLEX]1 again.

Qutput Specification

A. The Teletype Monitor Listing. It is advisable to make a

summary on the teletype of the first FLEXI1 simulation of a model.
This is useful in case any debugging of the model functions is neces -
sary. Since this output slows FLEXI down quite a bit, as soon as
summaries are no longer needed at the teletype, they should be deleted
F(NOSU MMARY) .

The more variables monitored, the slower the simulation run.
Only monitor the most crucial variables. 1f no monitoring is needed,

and many runs are to be made, a great deal of time may be saved by

not monitoring and just using the line printer and dump file output.

54

B. The Line Printer Listing. Ordinarily, all of the y output

variables should be sent to the line printer with the YMAX command
(see PROGRAMMING IN FLEX]1 section on output specifications).

This is the complete output of l:hat‘FI.V.EVXI run and records the changes
in the output variables through ktime. This listing should be used for
model examination. The same LPLUN can be specified for consecutive

runs.

C. The Data Dump File. If satellite program examination of the

output is desired a dump file should be made. Al specified output will
be sent to the lun entered by the D_UMPLUN command. As noted pre-
viously, this lun should be equipped to a file prior to the first call to
FLEX]I.

If several consecutive runs are madef thélsame DUMPLUN can be
used each time. FLEXI will outpkut the model results to that lun in the
sequential order that the runs are ‘made, each output block separated
from the next by a file mark. Putting several runs on one file helps
save storage room and makes no difference regarding any file manipu-
lations.

After the last run has been made on FLEXI, the user, while in
OS-3 control mode, should save the dump file by some name. FOIi
example, if the command DUMPLUN-= 19 had been used, then prior to

calling FLEX]1, he should enter

55
#EQUIP, 1¢=FILE
and after the STOP command and return to OS-3 control mode, enter,
for example,
#SAVE, 1¢=+LIDEDI .
The dump file should always be saved under a public name so that it
may be accessed from other job numbers. Remember to file protect

all public files.

Data Dump File Manipulations by Satellite Programs

After the dump file has been saved, it may be used to produce line
printer plots or to generate line printer listings. There are two line
printer plot programs and each will be discussed separately. The

dump file listing program will also be detailed.

A. Satellite Program *PLOTCON. This program produces line

printer plots from a FLEX!1 dump file with plot specifications entered
conversationally from the teletype. The calling procedure is
#EQUIP, 1= <dump file name>
#+*PLOTCON
The first question is "INSTRUCTIONS? " If instructions are needed,
type "YES''. The program will explain what information is requested
by the program.
At the end of the program execution, the logical unit number

(<lun>) of the plots are printed. Two copies of the plots are usually

56

made. The following pr/ocedure is used:

#EQUIP, 1¢=LP

#LABEL, 1§ /SAVE FOR <user identification>

#DATE, 10

#COPY, 1:<pioc 1un>/R,o»=1¢,_ S=¢

#COPY, I=<plot lun>/R,0=1¢,5=¢
Some lun other than 1¢ may be used for the line printer. Substitute

the other lun for every appearkance of IG

B. Satellite Program *LPLOT. This program produces line

printer plots from a FLEX1 dump file and a plot specification file. The
calling procedure is:

#EQUIP, 1=<dump file name>

#EQUIP, 2=<specification file name>

#*LPLOT
The progfam prints a model title, then asks "PLOT?" Ifa plot is
desired, type "YES"; if not, type "NO." When i:he first plot is indi-
cated the program reads information froni'the specification file and
plots the data. For subsequent plots, in addition to asking "PLOT?",
the program asks "SAME SPECS?" If the specifications desired fof a
plot are the same as the previous plot, type "YES." The program will
process the plot. If specifications are different, type "NO" and the

program will read a set of information from the specification file.

57

‘ Specification File
1. Title Card Col. 1-80 identifying title
- 2. Specification Card Col. 1-2 number of variables selected for

plotting (1 < n < 10)
3-6 starting time
7-10 time step multiple
11-14 stopping time

3. Variable card(s) Col. 1-2 position in dump file

(use as many 3-10 wvariable identifying alpha name
as number of (lst character of name is plotting
selected variables) symbol)

11-20 maximum value

21-30 minimum value

The time variables can be used to select a subset of the data.
Rather than starting at the first time step on the dump file, a later
starting time may be specified. The stopping time can be used simi-
larly to cut off a plot before the end of the dump file. The time step
multiple (n) is used to skip records; every nth record is plotted.
Note that this refers to records on the dump file. That is, if these
records are for every fifth time step and if the plot time step multiple

is two, then every other record will be plotted, i.e., every tenth

time step.

58

C. Satellite Program *DMPRNT. If a line printer listing of a

simulation run is desired from the dump file, it may be generated
using the data dump file and the FLEX! Satellite *DMPRNT program.
This is run from a teletype as follows.
While i-n:‘OS—?: command mode enter
*EQUIP, 1¢=<name of FLEX1 dump file>, 6=LP
#LABEL, 6/SAVE FOR <user's name>
#REWIND, 1¢
#MFBLKS=1¢d¢
#LOAD, *D-MPRNT’
RUN
The dump fi,];ekwi‘lli now be read and a copy of it sent to the line printer

and saved at the Computer Center under the user's name.

59

REFERENCES

Control Data Corporation Computer Systems Fortran Reference Manual,
CDC 3100, 3200, 3300, and 3500; 1966. (Especially Chapter 7.)

Freeman, H. 1965. Discrete-Time Systems. John Wiley, New York.

Klir, G.J. 1969. An Approach to General Systems Theory. Van
Nostrand Reinhold, New York.

Overton, W.S. 1972. "Toward a general model structure for a forest
ecosystem." In Proceedings - Research on Coniferous Forest
Ecosystems - a symposium. Franklin, J.F., L.J. Dempster
and R.H. Waring (Eds.), U.S. Government Printing Office,
stock number 0101-0233.

Overton, W.S. 1973. The Ecosystem Modelling Approach in the
Coniferous Biome. (presented) Symposium on Ecosystem
Modelling, Athens, Georgia. March, 1973. (In Press, edited
by B.C. Patten)

OS-3 Editor Manual, (by Fred Dayton). 0.S.U. Computer Center
Publication ccm-70-7(R); 1971.

OS-3 Reference Manual, O.S.U. Computer Center Publication ccm-70-
8R; 1971.

Al.1l

‘l' 1. A SUMMARY OF COMMANDS

The following is a summary of the commands introduced in Sections
IIT and IV above. The command is accompanied with a short description,
example and default values. In addition, symbols are used to indicate
if the command can be used in conjunction with the LIST command (*) or
if the value may not be changed after the command SIMULATE without use
of the command CLEAR (+).

The commands are listed in the order in which they should be used.
A nested structure is used so that, for example, after the INPUT command
is listed, the various files (I-file, B-file, etc.) to which it applies

have their commands listed, also in the correct order.

COMMAND DESCRIPTION AND EXAMPLE DEFAULT LIST CHANGE
NUMBER=__ Number of x's, abort * +
NUMBER=1¢ use N
TSTART=_ Initial time wvalue, 0 * +
TSTART=23
= Termination time value, none *
TMAX=52
FUNLOAD=<name> Load the function abort
overlay saved under
<name>,

FUNLOAD=*LIDE@1

INPUT=<name> Read commands from lun=60
=<lun> <name> or <lun>.
INPUT=*LIDEI3
= INPUT=69

LAG=_ Maximum delay of any 0 *
. x and/or z.
LAG=1§

x(,)=
Zn(,)

XL()=_,

XU()= >

XE()=, 5...

TTYPRT=_

TTY=_

LPRT=_

LP=_

LPLUN=<1un>

DESCRIPTION AND EXAMPLE

Indices of lagged x or z
variables.)

LAGX()=1,3,5 LAGZ()=12
LAGX()=must precede
LAGZ()=.

Initial value of the
delayed x or z.
XD(5,)=54,67,93 ZD(12,1)=14

Lower limit for x.
If passed, x is reset to

given value,
XL(3)=-1

Upper limit for x.
If exceeded, run ends.

XU()=1,9,200

Change norm. If
|4, (k) |>XE(1)

and XE(i)#ﬁ’

the run ends. ,
If XE(i)=0, no check.
XE(4)=1.2

Number of y's dumped
to the dump file.
YMAX=15

Monitor print interval.
TTYPRT=5 o

Variables to be monitored.
TTY=Y(1) TTY=F(1,2)

Line printer interval,
LPRT=3

Variables to be line-
printed.
LP=Y(1) LP=Y(7)
Line printer lun.
LPLUN=44

Al.2

LIST CHANGE .

‘DEFAULT
none
none
undefined * +
undefined * +
0
1Ol00‘
no check
dump all *
x's
1/50 run *
1 *
none)
%

no output

COMMAND

DPRT=_

DUMPLUN=<1lun>

B()=, ,.--

RC)=, ,...

XN(C)=, 5.-.

TITLE=

LOG

NOLOG

SUMMARY
NOSUMMARY

LIST=_

DESCRIPTION AND EXAMPLE

Dump file print interval,
DPRT=5

Variables to be dump filed.
D=Y(1) D=Y(1¢)

Dump file lun.
DUMPLUN=4§

Constant parameters.
B(1)=7 B(8)=9
B()=1,3,10,4

Constant parameters.
R(1)=3. R(2)=4.79
R()=4.300,1,7.2

Initial values of x.
XN(3)=5.2
XN()=7.5

Identification for run.
TITLE=MODEL RUN 17

Line printer listing
is being made (LOG) or
not (NOLOG).

LOG

Summary to be printed
on the monitor (SUMMARY)
or not (NOSUMMARY).
NONSUMMARY

Print current value of
item. Item may be any
in this section with an
asterisk (*) in the
list column.

LIST=N

LIST=X(3)

Al.3

DEFAULT LIST CHANGE
1 %
all x's if
YMAX not
specified
no dump *
0 * +
0 * +
0 ® +
use X
none
LOG
SUMMARY *
none

COMMAND DESCRIPTION AND EXAMPLE DEFAULT LIST CHANGE

SIMULATE Begin simulation run. none
SIMULATE

CLEAR Reset to original entry none
condition.
CLEAR

STOP Simulation session is none
terminated.
STOP

2. TFORMAT SUMMARY

Z Founctions
SUBROUTINE zCOMP (K, X, B, R, Z)

DIMENSION X(1), B(1l), R(1), Z(1)
r

Calculate

z values { Z(i)=expression

RETURN

END

G Functions
FUNCTION G@1 (K, X, B, R, Z)

DIMENSTION X(1), B(1), R(1), Z(1)

Calculate .
value of g,
G@l=expression
RETURN

END

Note: If G's are used by other functions, reference them as G(¢1), ...,

G(7@¢) (with parentheses).

A2.

1

A2.2

F Functions

FUNCTION F@811 (K, X, B, R, Z)

DIMENSION X(1), B(1), R(1), Z(1)

Calculate value
of f

B,ll
F@8ll = expression
RETURN

END

S Functions

See CDC Computer Systems Fortran Reference Manual,

Y Functions

SUBROUTINE YCOMP (K, X, B, R, Y)

DIMENSION X (1), B(1), R(1), Y(1)
r

Calculate
y values

.

Y(i) = expression

RETURN

END

A2.3

TTYPRT=__

TTY=

LPRT=__
LP=
LPLUN=<1un>
DPRT=__

D=

DUMPLUN=<1un>

INPUT=60
B-file
B()=___:____s L

INPUT =60

A2.4

R-file
R()=_, , ...

INPUT=60

N-file
XN)=,y .e

INPUT=60

General Run Commands
NUMBER=___ TSTART=___ = FUNLOAD=<name>
INPUT=<I-file name>
INPUT=<B~-file name>
INPUT=<R~file name>
INPUT=<N-file name>

TITLE=

LOG or NOLOG
SUMMARY or NOSUMMARY

SIMULATE

A3.1

3. ERROR MESSAGES
This is an exhaustive list of FLEX1 error messages and their mean-
ings. VSYM represents an internal variable symbol of FLEX, BASESYM
represents any command keyword (i.e. CLEAR, XD(,), XN(), etc.) and
SYM represents any symbol (i.e. misspelled commands, etc.).

1. "Error on VSYM while processing VSYM invalid definition of array

bounds in VARDEF.'" This indicates an error in the FLEX1 pro-

cessor and should be brought to the attention of one of the
authors for appropriate action.

2. "Error on VSYM while processing VSYM error in VARDEF -- invalid

type." FLEX1 error. See 1.

3. "Error on SYM while processing BASESYM:

a. symbol not defined." FLEX]l was expecting another command

but the new SYM was not a command. Recover by re-entering
entire command.

b. invalid symbol." See 3a.

c. 1invalid character after symbol." In some cases an '=' sign

is needed after a command and this did not appear. Or
parentheses were mismatched. Recover by re-entering entire

command .

1"

d. non-integer subscript. An integer subscript was expected

(i.e. X(8)), but something else occurred. Recover by re-

entering entire command.

e. subscript exceeds array bounds." A subscript was larger

A3.2

than the maximum allowed (i.e. X(84)). Recover by re~

entering entire command.

value must be integer.” SYM was probably not a number. . Re-

cover by re—entering entire command.

value must be real." SYM was probably not a number. Re-
cover by re-entering only the quantity(ies) on the right
side of the '=' sign.

variable cannot be specified again." Some commands cannot

be specified twice without using CLEAR. SYM is the erroneous
command. This meésage occurs only if another command has
been processed between_the two specifications (i.e. you ﬁay
change NUMBER if you 56 so immediately after the fiﬁst entry).
Recover by entering CLEAR. | |

value must be a symbol." FLEX1 does not recognize the SYM

because it has a digit as its first character. Recover by

re-entering entire command.

end of file - processing not complete." An end of file was

reached before completing the processing of a command. Re=-

cover by re-entering quantity(ies) on the right side of the

-sign.

character string too long." This type of SYM must be 8;

characters or less. Recover by re-entering entire command.

equal sign not found.”" The next character after a command

was not an '=' sign. Recover by re-entering entire command.

m. invalid definition of array bounds in VARDEF." See 1.

n. another variable must be specified first." To process the

command another command must precede it, e.g. NUMBER

must be specified prior to x limits, initial x's, or any
memory specification; LAG, prior to XD or ZD. Recover by
re-entering entire command.

o. unable to equip saved file." There was no saved file with

the given name or it was a public file and someone else was
using it. Unequip a lun from 1 to 50 or try again later.

p. number of subscripts specified as invalid." Either sub-

scripts were used with a non-subscripted command or the
wrong number of subscripts were indicated (too many or too
few commas). Recover by re-entering entire command.

"Error on print spec, SYM ignored." The variable requested

cannot be selected for output, or the subscript is non-numeric
or less than 1, or there is an invalid number of subscripts

specified. This print request is ignored.

"Too many print selections.'" More than 79 variables have been

selected for output. Only the first 79 will be used.

"Invalid lun - SYM ignored."” If LP lun was not between 1 and

50, no log (LP listing) could be made. If dump was not between
1 and 50, but was equipped, the run would abort. Recover by

re-assigning luns.

10.

11.

12.

13.

14.

15.

"Invalid function file." An empty file, a busy public file or

a non-binary (uncompiled) function file was used. Recover by
re-entering entire c¢ommand.

"Invalid X dimension." NUMBER was read as 0 or negative or

greater than 63. Recover by immediately re-entering entire
command .

"Too many past values specified." Caused by memory block over=

flow (i.e., total nuiiber of variables in memory times maximum
past values retained is greater“than 200). Recover by entering
CLEAR.

"Error condition prevails -=- enter CLEAR command." Self-explana-

tory.

"Abnormal termination of modelling run." Some non-recoverable

error has occurred. Recover by starting afresh.

' An error has occurred. Precedes further error clarifi-

"Efror.'
cation.

"%()=SYM in model number 1." X() has decreased below its lower

limit and been reset to that lower 1imit. The model number is
irrelevant in FLEX1.

"X() is out of range." X() has increased above its upper

limit. The simulation run is terminated.

"Change in X() exceeds limit." A() exceeded the error limits.

The simulation run is terminated.

A3.

‘ 16. "F and G functions too deeply nested." FLEX1l keeps track of the

nesting of functional dependence. Although the g functions need
not be indexed in numerical order, so that g; never references a
gj j<i, it must be possible to construct such an order. If
nesting of functional dependence exceeds 50 or if a function
references itself using parentheses, this message will occur.
Recover by changing functions and starting over.

17. '"Variable not valid for LIST command.' Only those variables and

commands in the Appendix Section 1 command summary are valid.
Recover by re-entering entire command.
For the most part, FLEXl error messages are self-explanatory. The
major difference lies between the instruction
REENTER
and the instruction
REENTER VALUE
In the first case the command, equal sign, and the value must be typed
again (as well as anything which followed that command on the same input
line). 1In the second case, only what was entered on the right side of
the equal sign need be re-—entered.
If several error messages are printed in a row, hit the break key
and start over. When in doubt, enter CLEAR and begin again.
*FLOAD error messages.
There are two messages used by *FLOAD. The first

INVALID OR NO F PARAMETER

A3.6

indicates that either (a) no F=<name> command appeared in the parameter
string or (b) no lun is available. The solution to (a) is obvious. If
this was included, then unequip some lun between 1 and 10 and try again.
This seldom occurs.
The second error message is
TOO MANY FUNCTIONS OR NO OVERLAY NAME SPECIFIED

If more than 70 g functions or 63 f functions were specified, this will
occur. If no name was used in the F=<names command this will also occur.
(This is needed since F=<lun> can slip past (a) of the first message, but

a <name> is required.)

A4,

MODEL II FLEX MODEL OF: Overton Hydrology Model (Revised)

‘ INVESTIGATORS: Overton, White
DATE: 7/11/73
RESOLUTION: Daily

QUANTITY: Water equivalents (m3/ha)

VARIABLES AND FUNCTIONS
1, X LIST Description
Canopy storage (m3/ha)
Snow storage (m3/ha)
Soil Water (m3/ha)
Ground water (m°/ha)
Stream flow (m3/ha/day)
Dummy — observed stream flow (m3/ha/day)
Dummy — output I (g, .2)=
15 37
— _ 2
Dummy — output I(1ln 815 in 23)
Daily transpiration (m3/ha)

Monthly transpiration (m3/ha)

Yearly transpiration (m3/ha)

Daily evaporation (m3/ha)

Monthly evaporation (m3/ha)

Yearly evaporation (m3/ha)

Daily precipitation (m3/ha)

Monthly precipitation (m®/ha)

Yearly precipitation (m?/ha)

Monthly comp. stream flow (m3/ha/month)
Yearly comp. stream flow (m3/ha/yr)
Monthly obsr. stream flow (m3/ha/month)

Yearly obsr. stream flow (m3/ha/yr)

A4.2

2. 7 FUNCTIONS Description

S2(k) S3(k)>38
(.1667) (S3(k)-32)S2(k) s 32<53(k)<38 Precipitation as rain

VA =
1 0 . $3(k)<32 (m3/ha)
z, = (SZ(k)—z1) Precipitation as snow
zy = (S5(k)) Observed stream flow (m3/ha/day)
= 3
z, (b921) Precip. direct to forest floor (m3/ha)

4. G FUNCTIONS

bllzlAt ’
8 = (blo-xl)(l—e ') ; Incremental input to canopy (m3/ha)
S1(Kk)+1 - (Sl(k)+1)zl/b12 Adjusted potential
8, = max ' evapotranspiration (m3/ha)
0
x.+g N
o 1°1 b, (x.+g.) Evaporation from canopy
g3 = min 13Y%178; storage (m3/ha)
gz(l"e)
g g T X3<b1
- 2 °3 _ , 3
8, ; (bz—bl) (X3 bl) . bl_<_x35b2 Transpiration (m3/ha)
8,783 - XPhy
= (1- - ’ 3
8s (1 b9)z1 8, Drip (m3/ha)
g = max {(SB(k)—BZ)(254 RAD(S4(k,1))+.014(z4+g5)3 Potential snow melt (m3/ha)
0 ;
: zz+x2 ’
8y = min . Actual snow melt (m3/ha)
6
—b3At
gg = max (1-e)(x3-b5) Amount of X, available for flow (m3/ha)
0 .
89 = min { b8_x4} - Percolation from Xy to X, (m3/ha)
&g
= - 3
810 = 8g g9 X4 lateral flow (m3/ha)

Ab4 .3

~b At
- e & - 3
8, = max (1-e)(x4 b6) %, lateral flow (m°/ha)
| 0
= 3
819 z4+g5+g7 Possible infiltration (m°/ha)
815 = min {b7‘x3} Actual infiltration (m3/ha)
. 812
81578
g., = max (12 13} Surface runoff (m3/ha)
14 0
= ’ i 3
815 (g10+g11+g14)/At Stream input (m3/ha/day)
5. F FUNCTIONS Description
[~ = —— 3 X
fl,l 81784 Input, evap. (m3/ha)
f2,2 = z,-g, Snow, melt (m3/ha)
= _ - . . 3
f3’3 81478, 8g Infiltration, trans, outflow (m3/ha)
= - i 3
f4’4 897811 Percolation, lateral flow (m3/ha)
= - 3
fS,S 815 %5 Update (m°/ha/day)
= — 3
f6,6 Z47%¢ Update (m3/ha/day)
= - 2
f7’7 (315 23) } Duzmy

Non-dimensional

7)} - 1n {max (IO—Z 23)}]2)Dummy

f8,8 ([1n {max (1079 815
f9’9 = g4—X9 Daily transpiration (m3/ha)
f10 10 = 84 » Otherwise Monthly transpiration (m3/ha)
’ 8,7%10 » S4(k,0)#(k,1)
£ _ g s Otherwise : :
1111 ° 4 Yearly transpiration
’ g,-%y; » S4(k,0) 6 and S&(k,1)=7 (m3/ha)

Daily evaporation (m3/ha)

12,12 = 837%,

AdL4

f13 13 = g3 » otherwise Monthly evaporétion (m3/ha)
’ 837Xy3 > S4(k,00484(k,1) o
£ - (33 » Otherwise } Yearly evaporation
= 3 -
14,14 837%14 , S4(k,0)=6 and S4(k,1)=7 (m®/ha)
= - : 3 ’
f15,15 z2,%2, X5 Daily precipitation (m3/ha))
£ - ~ zl+z2 s Otherwise Monthly precipitation
16,16 z,+z,-x S4 (k,0)#S4(k,1) (m3 /ha)
172 716 i ’
£ _ zl+22 » otherwise . Yearly precipitation
17,17 2 ¥2,~%,, 5 S4(k,0)=6 and S4(k,1)=7 (m3/ha)
85 » Ootherwise } Monthly computed stream
= 3
f18,18 = g c-x,, , Sh(k,0)#84(k,1) flow (m?/ha/month)
15 “18 , ,
gl5 » oOtherwise Yearly computed stream
= , 3 :
f19,19 8157%19 S4(k,0)=6 and S4(k,1)=7 flow (m*/ha/yr)
£ _ Zq » otherwise ' Monthly observed stream
(- 3
20,20 S S4(k,0)#84 (k,1) flow (m /ha/month)
£51 27 = : Zq ». otherwise) Yearly observed stream
' 3
’ 2%y, s S4(k,0)=6 and S4(k,1)=7) Flow (m*/halyr)
6. SPECIAL FUNCTIONS o Description
S1(k) = CP(S4(k,1))S3(k) Potential evapotranspiration (m3/ha)
(CP = m3/ha/°F)
S2(k) = Tabulated data Precipitation (m3/ha)
S3(k) = Tabulated data Temperature (°F)
S4 (k,m) = Tabulated data Month that day ktm is in (1 to 12)
S5(k) = Tabulated data Observed stream flow (m3/ha/day)
7. Y FUNCTIONS Description |
1% .

Yo = %

37 %
M
Y5 7 %5
Y6 = %6
77 %
Vg T g
Vg = Xg (m3/ha/day)
Yi0 © Yo (m3/ha/month)
Y11 T ®q1 (m3/ha/yr)
Yip = ¥4 (m3/ha/day)
J13 = %13 (m3/ha/month)
Y14 = ¥q4 (m3/ha/yr)
Y15 = X5 (m3/ha/day)
Y16 = *16 (m3/ha/month)
Y17 = %17 (m3/ha/yr)
Y11 T ¥qg (m3/ha/month)
Y19 = %19 (m3/ha/yr)
Y20 = %50 (m3/ha/month)
Y91 T %91 (m®/ha/yr)

PARAMETERS

8. B PARAMETERS
List Value Description
by 1.82 x 103 m3/ha Wilting point
b2 2.96 x 103 m3/ha Transpiration resistance point
b 1.48 day ! x, flow rate

3 3

A4 .5

10.

-1

b4 3.75 day
be 2.96 x 103 m3/ha
b6 9.97 x 103 m3/ha
b7 4,59 x 103 m3/ha
by 11.9 x 103 m3/ha
by .25

3
b1 100 m3/ha
by .0075 ha/m3/day
s 3
b12 762 m°/ha

3

bl3 .3 ha/m

IC (N) INITIAL CONDITIONS

P Xy 0
X, 0
X, 2.3114 x 103 m3/ha
X, 10.97 x 103 m3/ha
Xg 0
Xg 0
x5 0
Xg 0
Xy 0
X0 0
X1 0
Xy 0
X 0

Ab4.6
X, flow rate
retention capacity
X, retention capacity
storage capacity
x4 storage capacity
Prop. of rain direct to forest floor

Max. canopy storage

b _ (1—b9)
11 blO
Assume gy = 0 with 3" = 7.62 cm rain

Assumed evaporation rate

Description (see X List)

AL, 7

X4 0

‘ *15 0
*16 0

. %17 0
*18 0

X9 0

%20 0

%21 0

GENERAL RUN INFORMATION

TSTART = 0 (July 1, 1958)

TMAX = 731

Dump, LP: all y's

Plot: Vi o i=1, ..., 6

No monitor

A4.8

X1 !
iwCanopy
! { storage !

¥
N
g

g3 q&m Zy

R i

!

i
§

S

/ | |
- Vi §
g 4 5 / "; N
; { a
2y ' b
J 1/ E
i P
’ ‘ g8 / G f
; o4 P K g11 MY
! < 83 . }GroundM...._J;,{.gls E
] }“’"’ "! Water s/ i

B Flow
Appendix Figure 1. Diagram of Hydrology Model b

A4.9

Comments

This model is the second in the series of hydrology models worked
on by the Oregon Central Modelling Project. It represents the first
reworking of the hydrology model developed by Paul Riley and associates
at Utah State University and reported as Biome Internal Report 52.

Several features distinguished Model II from its predecessor. The
order of model events and couplings have been made explicit. Canopy
charge has been made a function of present canopy storage and the current
amount of precipitation. Atmospheric demand for water has been made a
function of precipitation, allowing for atmospheric saturation. Water
intercepted by the canopy which does not add to canopy storage has been
defined as canopy drip to the forest floor. In addition, thrufall direct
to the forest floor has been distinguished from canopy intercepted pre-
cipitation. Melted snow now flows direct to forest floor. Lastly,. the
model has been parameterized to Watershed 10 physical characteristics.
Behavior

The mass balance is changed, most noticeably by the reversal in
relative magnitude between evaporation and transpiration. This is a
change in the wrong direction.

There is little change in objective function one, but there is a
dramatic improvement in objective function two (two qrders of magnitude).
This is due to the maintenance of some flow throughout the summer.

Flow peaks match a little better than before. However, the charge

and discharge of the stream is still too rapid. Also, Model II does not

A4.10

cateh the early fall recharge peaks.

Several runs were made with differeant storage capacities for
ground water. This did not noticeably change behavior.

A run was made with the transpiration resistance point changed
from equality with field capacity to wilting point plus one-fifth the
difference between field capacity and wilting point (i.e., w.p. + 1/5
(f.c. - w.p.)). This increased transpiration by about 10%, but did not
kchange the relative magnitude of evaporation and transpirationf Ground

water was depleted to wilting point more rapidly than before.

U

Sept. 1 March 15

Year 1

Sept. 1 March 15

Year 2

Appendix 2 Figure 2. Model Behavior

T %V

A4.12
NOTE: ‘

In all hydrology models two sets of data, with monthly values, are used.
The first, identified as RAD in the potential snow melt equation, expresses
the effect of radiation on melting snow. The second, identified as CP

in the special function S1, expresses the atmospheric demand for water
(i.e. potential evapo-transpiration) depending on air temperature. Values.
are given in the table below.

RAD (inches) CP_ (inches/°F)
January .0208 .00029
February .0184 .00075
March .0136 .00181
April .0088 .00233
May .0040 .00329
June- .0024 : .00340
July .0028 .00416
August .0068 ' ;00381
September .0112 .00290
October | -.0168 .00152

November .0192 .00057

December .0212 .00029

20001
P0Gz
Q0BG 33
000043
29085
BV3006:
590073
200083
29009 3
J0010¢
290113

5. Sample Program with Runs

SUBROUTINE ZCOMP(KsXsBsRsZ)
DIMENSION X{1),BCi)oRCEY,2C1)>

2C13=0.
Z2(3>=S5(K)

IF C(S3C(K?> +GTe 384> Z{}1)sS2(K)

IF (S3(K) <GE¢ 32 <ANDs
Lel667%52(KI®(SI(K)=320)
Z(2)8S2(K)-Z(1)
E£{4)=B(9)»2(1)

RETURN

END

S3IKY

obLEe

38.) Z(1)s

A3.1

20001
Q00022
200033
0080A4a:
000053
000061
200072
200082
P0009¢
900103
eoo1lit
ovo12¢
000133
000143
02015¢
20016
000172
00183
Po019¢
20020

000o21:

P0022:
20023t
000243
900253
00026
20027¢
90028 s
000292
9003032
208313
0008323
20033¢
POB343
00035:¢
200363
Y0837
200638 s
200393
QPR 48s
20044

FUNCTION GO1(KsXsBsRsZ) ;
DIMENSION XC1),B(1),RC(1),8C1)
Gﬂl'(B(lﬂ)-K(l))*(lo-EXP(“~BC11)%8C1)))

RETURN
END

FUNCTION GO2(KsXsBsRs#)
DIMENSION X(l)oB(l):R(l)oE(l)

G02=20.
IF (B(D)

RETURN
END

oGEe

BC12)) RETURN .
GO2=S1(K)+1e=(S1(K)+1.)t#(ECI)IBCIE))

FUNCTION GO3C(KsXsBsRsE)
DIMENSION XC1)»BC1)sRC1ILE(CLD
GO3nGC2)% (1« =EXP(=B(13)%(X(1)+G(1))3))
IF (GBI «GTe XC(13+6C1)) 6O3I=XC1)+G(1)

RETURN
END

FUNCTION GBAC(K»X»BsRs»2)
DIMENSION X(C1),BC1),RC(1),2(1)
B(1)) GO4=0.

B(2)) 604=G(2)=-6(J)

IF (X<(J)
IF (X{3)
IF (X¢J)

1¢6(2)=G(3))*(X(3)=B(1>)/(B(2)-B(1))

RETURN
END

LTe
«GTe
GEe

B(1) <AND.

FUNCTION GOS(KsX»BsRs2Z)
DIMENSION XC1),BC1),RC1D,2C1)
GO5S=(1.~B(9)I)%Z(1)=G(1)

RETURN
END

FUNCTION Gﬂé(KaXaBoR:E)
DIMENSION X(C1)oBC1I),RC1YLZ(D)
DIMENSION RAD(12)

DATA ((RAD(I):I’!)12)3002080-ﬂ13¢30ﬂ1360000380009‘000092‘3

X

LEe

B(2)>

1:0028,.00685.0112,00168,.0192,.0212)

M=S4(K, i

)

A5.2

GB4s

GO62(SI(KI=32 I %254 *RAD(M)I ¢ 01 4%(Z(4) +G(S5I)

IF (GO6
RETURN
END

OLTO

Qe 606?9.

000422
000432
oD A4l
200453
00463
P00A47s
P00848 s
POB 492
9005012
200513
908523
PO253%
005 a:s
2PBSSe
PBBS 6%
20057
022583
00859
2006012
0061
228623
0063
P2664¢
P9065¢
00066
0067
Q0068 s
00069
208703
020713
PBR72:3
200732
203742
Q3075
200768
PRBTTe
Bed78 s
20079
20050¢
Q0081
PB08Z:
BOO8 35
P0B8 4%
P0085¢
200863
000873
00088
80089
000903

. 2009 1

FUNCTION GOT(KsX»sBsRs2)
DIMENSION X(1),BC1),RC1),2(C1)
GOT=Z(2)+X(2)

IF ¢GB7 «GTe. G(6)) GRTI=GC6D
RETURN

END

FUNCTION GOBI(KsXsBoRsZ)
DIMENSION X(1)>,BC1),RC1I,E(1D
GO8=C 1+ =EXP{(~B(3))))*(X(3)*B(S5))
IF <(GE8 +LT. Be) GOB=Qs
RETURN

END

FUNCTION GOQI(KsX2BsRsZ)
DIMENSION XC1)sBC(LYoRC(1I»2(2D
CU9=B(Br=-X{(4)

IF CGO9 «GTe GI(BY) GRI=GIB)
RETURN

END .

FUNCTION Gl1O(KeKXsBsRs2Z)
DIMENSION X(1),BC1)aRC1D0ECYD
Gio=G(8)~G(9)

RETURN

END

FUNCTION GlIC(KsXsBsRa2)
DIMENSION X{13,BC1),RC1I,E(1)
Gliz(le~EXP{(~B(4)))®(X(4)~B(6))
IF (G11 <LTe B¢) Glimg@.
RETURN

END

FUNCTION GI2¢K,XsBsRsB)
DIMENSION X{1),BC1),RC1I,BC 1)
Gi2=2(4)+G(5)+G(T)

RETURN

END

FUNCTION Gi3{KaXsBoRsZ)
DIMENSION X{(i)oBCiI,RCEVLE(ES
G13=BC¢73~-X{3)

IF (G613 oGTe GLi2)) Gi3xGC12)
RETURN

END

FUNCTION G14(KoXsBsRsZY
DIMENSION XC15,B(1,RC10,2()
Gl4sG{12)~-G{13)

RETURN

END

FUNCTION Gi15¢(KsXsBoRs2)
DIMENSION XCi)sB(1)LRC1ILELL)
GiSsG(iB)+G{i11YeG(14)

RETURN

END

AS.

20001 FUNCTION FO101(KsXsBoRs2Z)
000023 DIMENSION XC1),BC1)aRC1)3C1)
000032 FO1018GC1)=G(3)
0000 Aas RETURN
000053 END ,
0000612 FUNCTION F0202(KsXsBsRs2)
P00N7s DIMENSION XC1)sBCI),RCLI2C1)
09008 FO202=2¢2)-6G(7)
02009 s RETURN
00010: END
20011 FUNCTION F@303(KsXsBsRsE)
P2212% DIMENSION X(1),BC1),RCE),2(1)
202133 FB30832GC13)-G{A)=-G(8)
000143 RETURN
200153 END
000162 FUNCTION FﬂAﬂacn.x.a.n;z)
000172 DIMENSION xt:),ntt).ncl).acl)
000182 FR404=2G(9)-GC11)
08019 RETURN
200202 END
00021 FUNCTION reses¢x.x.s~n.a>
P0022% DIMENSION XC1),BCIYSRCIILECT)
200233 FO5052GC15)=X(S5) :
000243 RETURN
220252 END ' ‘
V00262 FUNCTION FﬁéﬂG(K:X: BsRsZ)
200272 DIMENSION XC1),BCIY,RC1)L,BCL)
00028¢ FO60622(3)~X(6)
00029 ¢ RETURN ~
T T+ K 1", ¥ S e kot it s e A S o e e s it
; 0090333 FUNCTION re7o1tn,x.a.n.z> .
900322 DIMENSION XC1),BCI),RC1),2¢C1) ' ~
090332 FOT0T=(GC15)=2(3))es2
000342 RETURN
200353 END
000363 FUNCTION rasoacu.x.a.n.z)
02637 DIMENSION x(1>.8<1).R<l).z(|)
T 90038 T AATABT T 000000 — b
20039y IF (GC15) +GT. AA) AA®G(1S)
P0040¢ IF <¢#¢(3) +6T« ABY ABsZE(3)
PB4 ¢ AC=LOGF (AA) ~LLOGF ¢ AB)
206423 Fo808sAC*AC
200433 RETURN

209440 END

000452
00046
V00472
00048
700493
000502
00053
200523
0009533
800543
900553
200563
200573
000258
030593
000603
20361
0006213
P00633
VPB64:
000652
000665
000673
90068 ¢
80069
000702
0871t
880723
08073s
000743
20B75:
00076
280773
200678¢
200792
Coog o
20081:¢
20082
0008 3%
0008 43
J09885¢
V0686 ¢
P0087 ¢
900868
90089

A5.5

FUNCTION FO90@9(K,sX»BsRsB8)

DIMENSION XC1),BC1)sRC1),2C1)
FO909=GCA)=X(D)

RETURN

END

FUNCTION FiOi0C(KsXsBsRsBY

DIMENSION X<CL)oBCLILRUIDHSBCY)

Flo10=G(4}

IF (S4(KsB)eNEcSACKs 1)) Fi010aG A)=X(10)
RETURN

END

FUNCTION Filii1(KsXsBsRs2)

DIMENSION XC1)»,BClISRC1ILECL)

Fill1i=xG(4)

IF (SA(Ks0)eEQe6ecANDeS4(Ko 1) oEGoTad FIf1ISGCA)=XC11)
RETURN

END

FUNCTION Fi1212CKaXsBsRoZ)

DIMENSION X(13,BC1I),RC1),BC1)
F1212=26¢3)-X(12)

RETURN

END

FUNCTION Fi1313C(KsXsBsRs2)

DIMENSION X{1)sBCRI),RC1V,EC L)

F1313=G¢(3)

IF (SA(Ko0) eNESA(K, 1)) F13132G(3)-%XC13)
RETURN

END

FUNCTION F1414CKoXsBsRs2)

DIMENSION XC1),BCi),RCE)0ZC 1)

F1414=GC3)

IF (SA(KsD) eEQe 60 e ANDeSAC(Ks 1) oEQeTe) FLA1ARGLID =X (L 4)
RETURN

END

FUNCTION FiS1S5CKsXoBsR,Z)

DIMENSION XC1)oBC1),RC2),2¢ 1)
FISIS=2C1)eBC2)-X(15)

RETURN

END

FUNCTION F1616<KsXsBsRs2)

DIMENSION XC12,BCUI)sRCUIBCE)

Flél16mE 1)+B8(2)

IF (S4¢K @) NE-SACKs 1) FloiémZ(1) +B(2)=X(16)
RETURN

END

000902
00091
0209213
200233
PR AL
00095
000961
PPO9Ts
000982
900992
PO10O:
001011
28102%

001033

001043
20105:
001063
001072
29108
20109
00110
22111¢
201128
28113:
00114
02115

001168

22117
001182
20119

FUNCTION F1717CKaXasBsRyE)

DIMENSION XC1),BC1),RC1)28C1)

F171T=2C1)+2(2)

IF (SQ(KOQ).EQ.ﬁtOAND.S4(K!‘30290703 Fl?l"ﬁ(l’*ﬁ(ﬂ"!‘l?)
RETURN

END : ; ; ~
FUNCTION FlBlS(K:K&Bcha)

DIMENSION X<1)oBC1)2RC1ILECL)D

F1818=G(15)

IF (SA(K,0) NEeS4{Ks1)) FRB‘G'G‘.S»’K(‘&P

RETURN ,

END

FUNCTION F‘Ql?(KaXaBtRoﬁ)

DIMENSION XC1)oBC1),RC12,2C1)

Fio19=G(15>

IF (SG(K:G).EQoéQoﬁNDQSQ(KQl)ot@o?c) Fl?l?lG(lS)*K(l?)
RETURN : :

END

FUNCTION F2020(KsXsB2Ra2)

DIMENSION XC12,BC1)sRC1),2C))

FRO20=%CJ)

IF (SQ(K:@)QNEOSQ(K”)) F2Q20'§€3)-x¢aa)

RETURN .

END

FUNCTION F2121CKsXsBaRs2) -

DIMENSION XC1),BC1),RC12,2C1)

F2l21=2¢3)

IF (SQ(K’“)OEOQ‘..ﬁNDOS“KO‘)0E007-3 72121‘!¢3)’K(8"
RETURN

END

00001s
000023
000933
200043
2000853
000063

SUBROUTINE YCOMP(K»XsBsR»Y)

DIMENSION XC1),BC1),RC1I»YC(D)

DO S I=i,21
YCI)=XCL)
RETURN

END

A5.

7

ool
000021
2000 3%
20804

200053 -

00006
000071
00008
200093
200101t
900113
vonies
000132
200143
2000154
00016
00017
20018¢
0601912
00203
200213
000223
20023
oG24
0900253
200261
00273
000281
900293
000303
200313
200323
20033
200634¢
798351
Y0036
20037
20038 ¢
P0039y
20040

25
100

1509

110

25
100

158

11@

FUNCTION S1CK)
DIMENSION CP(12)

A5.8

DATA {(GP(l)ol=l:lﬁ)‘oﬂﬁﬂﬂ?tw@ﬁﬁﬂspaﬂﬁﬂﬁ3:o00233mw§33993

ﬁhﬁ0340300ﬂ41690003810~°'E9ﬂwwﬂ@l$2»v!ﬁﬂs70%93029)

MESA4(K2 1)
S12254. 4S5 3(KICP (M)
RETURN

END

FUNCTION Se<(K)

DIMENSION STWOC18)

KKEK»]

iF (XK 6T» 18> GO TG 100
iF (KK+EQe18) ITIME=D ;
IF UKK «E8« 1) 60 70 159
BL=P54+ % STWOIKK)

RETURN

KKsKK~18

€0 TO S ;

IF CITIME.EG.1) 60 TO 25
READ(S» 110> (STWOUIdoIm15138)
ITIME=1]

GO TO 25

FORMAT{18F4.2)

END

FUNCTION $3(K)

DIMENSION STHREE(18)
KKeKe]

IF (KK +GTe 18) GO TO 106
IF (KK+EQ.18) ITIME=0

IF (KK «EQ« 1) 6O ‘0 150
S$3=STHREE(KK)

RETURN

KKaKK-18

G0 TO S

IF (ITIME.EQ«1) GO TO 85
READ(6,110) (STHREECI)»1I=1,18?
ITIME=s]

&C TO 25

FORMAT(18F 4.1)

END

200413
000423
P0043:
200442
P00 453
PBB 463
900473
02048 3
000493
017 LYo 1
206513
ReOS2s
PB0S53s
200254
20955
200563
@2057s
22058
00659
200603
P00é 13
0062y
20063
op6 4t
0065
00B663
00672
90068 ¢
0069
00070
02071
200723
000732

1@s

i5

50
75

200

S
25
ioe
150

FUNCTION S4(K,MK)
DIMENSION ISFOUR(24)

IF (K «NE. B> GO TO 15

IF C(FIRST oEQ¢ 1o) GO TO 1S
READ(7,105) (ISFOURCIY,Im],24)
FORMAT(24L 3>

FIRST=1.

MM= @

M=1

IF (K «LEe MM) GO TO 58
MM=MM+]I SFOUR(M?

M=M+1

GO TO 15

S4=M+6-1

IF (Ke+MK «GTe MM) S4mS4+i.
IF (5S4 «GTe. 12¢) GO TO 200
RETURN

S4=54-12,

GO TG 75

END

FUNCTION SS(KJ)

DIMENSION SFIVE(Z20)

KK=K+1

IF (KK -GT. 20) GO TO 108
IF (KK +EQ« 1) GO TO 150
S9=40.6%SFIVE(KK)>

RETURN

KK=KK=29

GO TO S

READ(8,110) (SFIVE(I),I=},2@)
GO TO 25

FORMATC10F 6+ 3)

END

A5.9

45.10

I-file, N-file and B-file

000012 YMAX=2]

20002:LPLUN=44 LPsYl LP2Y2 LPsY3 LPeY4 Lpnvs LPRY6 LPsY7 LP=Y@
@08033LP=Y9 LP=Y1@ LP3Y11 LP=Y12 LPsY13 LP*Y14 LPeY 15 LPsY16 LPsY17
20004:LP=Y18 LP=Y19 LPsY20 LPrY21

900053 DUMPLUN=4@ D=Yi DaY2 D=¥3 Ds¥4 DaY5 Ds¥Y6 Ds¥7 DsYS DeY§
P0006:D=2Y10 DaY1l DxY12 DmY13 DsY14 DeY15S DeY16 DsY17 DeY 18 OmY19
80007:D=Y20 D=y}

000081 INPUT=6@

020211 XNC)=0 @ 29&“453 m.ewg Q eapee
0000210 0 @ @ @ @ @

2000310 '

200043 INPUT=6@

oaoon;ac>-x.aa£a 2:96E3 1,48 3,75 2.96E3 ?2.97E3 4.59;3 ;1,9E3
000021 .25 100 0875 762 3
oeaaa:xnputngg |

Sample Run

#EQUIP, 44=L P, 40sFILE
FEQUIP,5=%S2INP» 6=2#S3INP, T2 %SAINP,85%SSINP
#LABEL , 44/SAVE FOR FLEX1 USER

»FLEX1

St o o o o e o0 o o o R o o o o o oK o
FLEX1 GENERAL MODEL SIMULATOR 0S3 VER (.0
HRRERRR R KRR KRR IR ERERRR R RER AR ERR R QR R &R

ENTER INPUTS/COMMANDS
>NUMBER=2]{ TMAX=50 FUNLOAD=%GHM@2
>INPUT=%0HMI 2

ENTER INPUTS/COMMANDS
>INPUT=%0HMB2

ENTER INPUTS/COMMANDS
>INPUT=%0HMNZ

ENTER INPUTS/COMMANDS
>TTYPRT=1 TTY=Y(3) TTY=Y(4) TITLE=FLEX! SAMPLE RUN
>LIST=N
21

>LIST=B(3J

' 1.4800
>LIST=X(3)

2311.4000
>TTY=Y(S) TTY=Y(6> TTYPRI=1Q
*SIMULATE

A5.11

09726713
29261213

STATE VARIABLES a1

INITIAL TIME @
TERMINATION 50
TIME STEP (DT) 1

CONTROL INPUT LUN 60
LINE PRINTER LUN @
DATA DUMP LUN 4@

ERROR CHECKING
LOG ON LUN @

¢« 1)
<« &)
(i1
(i16)
21>

QOMPUTE SEQ i
6

it

16

21

INITIAL X OE

OE @0
oE 00

0E 00
2E ©0

UPPER LIMIT 1.0000E100

12513 PM FLEX] SAMPLE RUN

-

TTY PRINT INTERVAL 1@
DATA DUMP INTERVAL 1
LP PRINT INTERVAL !

CONTROL LIST LUN 61

- FUNGCTION INPUT LUN 54

. 1«@97QE

1.008RE100
1.0000E100
1.000CE100
1 .2Q00EL 00

¢« 2 « 3
< ¢ 8
€12) (1
17 (18)
2 ~ 3
7 8
12 13
17 18
OE 00 2.3114E 03
9E 00 0E @0
PE 90 0E 00
PE 90 0E 00
1.0000E100 1.000QE100
1.0000EL100 1.0000E100
1-P000E1I9C 1.P00OCE100
1.0000E100 1.0000E100

¢ @
¢ 9
C14)
€19)

4
9
14
19

24
OE 089

GE 00

0E 00

1.0000E100
1.0000E1 00
1.00C0EL1 00
1.0000E100

A5.12

¢ 5
<10
€153
c2e)

5
1@
15
2o

@E 00

oE 00

9E 060

QE 00

1.00C0E108
1.0000E108
1.@QR0E100
1.0000E100

A5.13

. LOWER LEMJLT OE 00 QE ©0 OE 00 PE 00 OE 90
0E 00 OE 00 gE 00 OE 08 0F 00
oE 00 0E 00 OE 00 oE 00 gE 00
0E 00 9E 09 OE 00 0E 00 0E 00

) oE 00
ERROR LIMIT RE 00 9E 00 %E 00 %E 00 CE 90
e OE 08 OE 26 2E 00 OE 00 GE 00
PE 20 PE 00 PE 00 GE 00 @E 00
2E 00 2E 00 PE 08 OE 20 PE 00

2E 00

B CONSTANTS 1.8200E 93 2.9600E 03 1.4800E 90 3.7S00E 88 2.9600E 03

FePTOOE D3 4.5900E O3 1.1900E 04 2.5000E-0] 1.0800E 82
7.50600E-23 7.6200E 92 3.P000E-01

99/26/73 12:13 PM FLEX1 SAMPLE RUN
099261213

FLOW FUNCTIONS - #» = DEFINED

[_)

=
o® oo e® DS -

* ® LS ISR IS I S (SR~

i3 14 15 16 17 18 19 20 21
"] e © 0
"/ B @ o

* SN
(SRS A
Q@6 s
as
(SRS Y
S
(SN
L)

TR ®
LRSI SIS)
S ®
S en
e (S
(SR~ R SIS
e en
e [IR

& LS IS B)
SRS vLaess

e

Fcio, 0

Faiiodd
< FCi2, 0
- FC13.0)

FCl4,J)

o o8 GRS FrEE SOG
Sone 90 ©IODNEE &
& -
VDI O RS O N
*Tome B S0
Cacoe o eDOQO

Y o5 oo
Pove e OO SE
Spae ©0 OSSO

S gpee
Poese me
P ©
Coen
Sgex
CPree o
O e o
Veon o
e o
Cpes®
Sgeoa
Ve o

A5.14

FC15,0) @ © 86 © © @ @ @ © © © ¥ © @ » 0 ¢ P 0

FC16.J) @ © © © © ©¢ @ @ 0 © © © @ @ @ = 0 0 ©

FC17.J) @ ©@ © © © © 6 © © O © © © © © © = © 06
FCi18,J) © © © © 0 O © 0 2 0 @ 0 9 0 © 0 © » @

FC19,J) @ @ © @6 © © © © 0 0 0 0 @ @ 0 0 ©0 0 »

F<(2d,J> © © © B © © © @ © © 0 0 © © 0 © © © ©

Fceir,J> 6 © 0 0 © © 6 0 @ © @6 © 0 @ 0 @ © 0O

INDICIES OF DEFINED G FUNCTIONS

i 2 3 &4 %5 & 7 8 9 18 11 12 13 14 1S

YCOMP SUBROUTINE IS DEFINED
ZCOMP SUBROUTINE IS DEFINED

09/26/73 12313 PM FLEX1 SAMPLE RUN
09261213

PAGE 1 @9/26/73 12313 PM FLEX! SAMPLE RUN

29261213

TIME Y¢ 3) Y< 4) o ¥e Sy Ye 6y
® 2311.400008 1.09700E 04 2 8
16 2289.815223 9970.000000 @ 4547200
20 1960.153471 99708.000000) 3.735200

30 1888.829055 9970.000000 0 2.720200
X(13) = -9.31323E-190 1IN !

XC16) = -9.31323E-1@ 1IN 1

40 1856.+438658 9970.000000 %) 1.948800
s@ 1840.674564 9970.200000 0 1.827006

END OF SIMULATION RUN

ENTER INPUTS/COMMANDS
>CLEAR

PREERREERERMERERRERERBRRRRERRRERERERRRRER R KR RE
FLEX1 GENERAL MODEL SIMULATOR 0S3 VER 1.6
EEERREEREREEEERRREEERREREERRERERREREERRRRRR KRR R R R K

ENTER INPUTS/COMMANDS
>STOP

END OF FLEX! SESSION
¢

A5.15

