Polycyclic aromatic hydrocarbons (PAHs), including benz[a]pyrene (BP), are environmental pollutants linked to increased disease susceptibilities. Alpha-Tocopherol (α-T) supplementation decreases BP-DNA adducts in smokers, particularly women; but the mechanism is unknown. To test the hypothesis that α-T protection from BP exposure is gender-dependent, male and female rats received 7 daily subcutaneous (SQ) injections of α-T (100 mg α-T/kg body wt) or vehicle, followed by a single injection of BP (20 mg/kg, spiked with N,N′-BP) on day 9. Urine and bile were collected pre- and post-BP. Plasma and tissues were collected 6 or 24 h post-BP. α-T supplementation increased α-T levels in females greater than males. Compared to vehicle, α-T supplementation increased total urinary and biliary excretion of BP and/or BP metabolites more than 2.5-fold in females, but decreased total BP and/or BP metabolite excretion in males (p < 0.05). SQ α-T prevented BP-induced increases in urine 8-isoprostanes (males) and urinary and biliary 8-isoprostanes (males) and decreased tissue malondialdehyde levels in a tissue- and gender-dependent manner. These data are the first to suggest gender-dependent increases in BP-DNA adducts in smokers, but the mechanism is unknown. To test the hypothesis that α-T protection from BP exposure is gender-dependent and occurs by both antioxidant and non-antioxidant mechanisms. Further elucidation of the mechanism(s) of α-T protection against PAHs may lead to the development of novel protective strategies for occupational PAH exposures.

Introduction

- PAHs are environmental toxins produced by incomplete combustion processes.
- High occupational exposures occur: road paving, roofing, second-hand smoke (bars, casinos), houses.
- High level PAH exposure is linked to increased risk of several cancers: lung, skin, and scrotal cancer.
- Benz[a]pyrene (BP) is often used as a model compound for PAH exposure studies as it is present in almost all PAH mixtures.
- α-T supplementation decreases BP-DNA adduct levels in smokers.
- Effects were greater in women than men (Mooney et al., 2005).
- SQ α-T increases expression of enzymes and transport proteins involved in BP detoxification and excretion (Mustacich et al., 2006).

Hypothesis

We hypothesized that:

1. Elevated levels of α-T decrease BP-induced damage by two synergistic mechanisms:
 - (1) increased antioxidant protection against oxidative stress-induced damage
 - (2) modulation of BP metabolism and/or excretion.
2. In addition, we hypothesized that this protection would be greater in female rats compared to males.

Methods & Study Design

Animal Studies. Male and female Sprague Dawley rats (n=5-8/gender/treatment) were given 7 daily subcutaneous (SQ) injections of either RRV-α-T (100 mg α-T/kg body wt) or vehicle (vehicle). On day 9, rats received an intraperitoneal injection of BP (20 mg BP/kg body wt, spiked with N,N′-BP) dissolved in tocopherol-stripped corn oil. Urine and bile were collected pre- and post-BP exposure (only collected from 5th rats), 5 or 24 h post BP injections, rats were euthanized with sodium pentobarbital (80 mg/kg) and tissue and blood were collected. Plasma was obtained by centrifugation, and tissue and plasma were stored at -80°C until analysis.

Measurement of α-T. Plasma and tissue α-T concentrations were determined by a modification of the method described by Podila et al. (1996) and measured using HPLC with fluorescence detection and quantification by comparison to standard curves generated with authentic compounds.

Measurement of Total Radiocactivity. Urine and bile total radiocactivity were measured by liquid scintillation counting (LSC).

Measurement of 8-IsoPGF2α and Creatinine. Urine 8-isoPGF2α was extracted using the method described by Taylor et al. (2006), measured by enzyme immunoassay (Cayman Chemical), and normalized to creatinine (Jaffe reaction, Assay Designs).

Measurement of Malondialdehyde. Tissue malondialdehyde concentrations were determined by a modification of the Lykkesfeldt (2001) and measured using HPLC fluorescence.

Measurement of Reduced and Oxidized Glutathione. Liver reduced and oxidized glutathione concentrations were determined as described by Farris and Reed (1997).

Conclusions

- **α-T supplementation:**
 - Alters BP exposure outcomes in both antioxidant and non-antioxidant mechanisms
 - Alters BP exposure outcomes in a gender-dependent manner

Elucidation of mechanisms of α-T protection against PAHs may lead to development of novel protective strategies for occupational PAH exposures.