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Electronic Structure and Optical Properties

of ZnO: Bulk and Surface

Chapter 1

Introduction

Second harmonic generation of optical frequencies was observed in 1961 by

P.A.Franken[1]. Since then, numerous nonlinear optical phenomena have been

discovered. These phenomena are very well understood and described

macroscopically through Maxwell's equations together with the constitutive equations.

The observation of these phenomena was facilitated by a revolutionary change in

optical technology right after the advent of the laser. On the other side, however,

physicists have been trying to understand and describe these phenomena

microscopically. Although a large amount of research has been conducted and our

knowledge about the interaction of light with matter has been greatly enhanced, a few

full band-structure calculations of nonlinear optical properties of matter have appeared

in the literature[2][31 only recently. A full band-structure calculation of the nonlinear

optical properties of matter has been a challenge for over three decades. In particular,

there is no such full band-structure calculation for ZnO over a wide range of

frequencies and including matrix elements. We chose ZnO as the subject to carry out

our systematic computation of optical properties of atomic matter because it has

potential[4I in the electro-optical technology, together with other wurtzite structure

crystals.

An optical phenomenon, whether it is linear or nonlinear, involves light and a

medium[51. The underlying process is simple. Light first induces a response in the

medium, and then the medium, in reaction, modifies the electromagnetic fields.
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Hence, we have two problems. One problem is how to describe the response in terms

of intrinsic properties of the medium. Another is to find out how the electromagnetic

fields are modified by the response of the medium.

N. Bloembergen and co-workers[6] developed in 1962 a semi-classical theory to

connect the macroscopic Maxwell's field quantities with the intrinsic properties of

dielectric matter. Via such a connection, the polarization, which accounts for the

response of the medium in the macroscopic Maxwell's equations, is expressed

microscopically in terms of eigenvalues and wave functions of the system. Those

expressions have been widely used in calculations of optical properties, and we will

also use them to carry out our calculations. We assume that the response function is

independent of the space variable F for a non-localized system.

Once we have obtained the connection between the macroscopic properties of

Maxwell's field quantities and the intrinsic properties of matter, we are ready to carry

out the computations if we know how to obtain the intrinsic properties of atomic matter.

For a material like ZnO, its intrinsic properties need to be characterized by its electronic

band structure. The LCAO (Linear Combination of Atomic Orbitals) method[7] will

be used in our calculations of the electronic band structure and corresponding wave

functions.

Also of interest are the electronic structure and optical properties of the ZnO

surface. A "layered" model is proposed. The idea is that surface states can be

identified by comparing the results of a bulk ZnO calculation with those of a layered

model calculation, and optical properties of the surface can be included using our

layered model.

So far we claimed that we are going to calculate optical properties and we

mentioned that optical properties are related to the polarizability. In Chapter 2 we

present the fundamentals defining the polarizability and nonlinear polarizabilities and

how they can be used to explain various optical phenomena such as refraction, second
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harmonic generation, third harmonic generation, stimulated Raman scattering, etc. The

general formalism used in our calculations will be given following these fundamentals

in that chapter. Since we need the electronic band structure and electron wave

functions to compute optical properties of ZnO, Chapter 3 provides a description of

the LCAO method, followed by a description of the ZnO crystal structure and the bulk

band structure calculation. In Chapter 4 we discuss finite one-dimensional models in

order to make some simple observations about surface states. Then, in Chapter 5 we

present our "layered" model for the ZnO surface and calculate the surface electronic

structure. In Chapter 6 we present our calculation of the first order susceptibility.

Our calculation of second harmonic response functions is given in Chapter 7.
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Chapter 2

Semiclassical Theory of Polarizability

As pointed out in chapter 1, all optical phenomena involve light and a medium.

The light first induces a response in the medium, then the medium in reacting modifies

the electromagnetic fields. A response is linear if its amplitude is proportional to the

amplitude of the incident light. Otherwise, a response is considered nonlinear. In the

case of linear response, the electromagnetic fields of the light will be modified linearly,

but the electromagnetic fields will be modified nonlinearly if the response is nonlinear.

So, if we can find a way to describe the response and to define at the same time

how the response will modify the electromagnetic fields of the light, then we are in the

position to understand and predict optical phenomena. A phenomenological theory

based upon such a philosophy exists. It is the well-known theory of classical

electrodynamics[81[9] of continuous media.

2.1 Maxwell's Equations in a Medium

Microscopically, a medium consists of nuclei and electrons. The size of a

nucleus is about 10-14 m and the size of an electron is much smaller. They can be

treated as charged point particles. When the medium is described as charged point

particles the interaction between such a medium and light is described by the

microscopic Maxwell's equations which are, in Gaussian unit, as follows:

VE.o (2.1)

(2.2)

(2.3)

c at

Ve=47cp
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lag 47cxo-=,
c Dt c

(2.4)

5

where "i and b are the microscopic electric and magnetic fields, p is the microscopic

charge density, j is the microscopic current density and c is the vacuum speed of light.

Unfortunately, those equations are unsolvable because a macroscopic system

contains a huge number of electrons and nuclei ( on the order of 1023 ). The details of

changes in those physical quantities are too overwhelming. It is not of interest,

however, to explore the detailed changes over very small ranges of both time and space

in our case. So, we average those microscopic quantities over a small volume of space

which is a little bit smaller than the smallest volume we can macroscopically

distinguish. We end up with the macroscopic Maxwell's equations,

(2.5)

E+1ac
at

=0 (2. 6 )

b = 4np (2.7)

1 an 47cv x =
c at c

J (2.8)

where E and B are the macroscopic electric and magnetic field quantities, p and J are

macroscopic charge and current densities, r) and H are macroscopic quantities which

are related to E and T3 through the macroscopic polarization P and magnetization Ai

of the matter as follows,

D =E +4itP

H = f3. - ztic&I

(2.9)

(2.10)

As it is shown from equations from (2.5) to (2.10), the response of the medium is

accounted for by the macroscopic polarization P and magnetization M. At the same

time, the modification of the electromagnetic fields by the response is also clearly
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defined through those equations. Equations (2.9 and 2.10) are often called the

constitutive equations.

By following the process of averaging the microscopic Maxwell's equations, we

find out[8I that P and IQ should contain macroscopic multipole terms. In this thesis,

we keep the electric dipole term only, and we assume that there is no electric current

and no net charge in the medium. Then, the macroscopic Maxwell's equations become,

xE=-c
at

(2.11)

O xij=c
at
4E+4/ci') (2.12)

.(E+47d)). 0 (2.13)

(2.14)

where P, the polarization is the only source for the electromagnetic fields in the

equations above.

P is not well defined on a surface, near a region of impurities or on an interface

between two different media because P is defined as a macroscopic quantity by

averaging the electric dipole moments over the volume of space which is

macroscopically small but microscopically large. We have to be very cautious when we

focus on the inhomogeneous region of a medium.

It should now be clear that we intend to describe the response of the medium to

the light by the macroscopic polarization P. Later on in this chapter we will see how

P can be formulated in terms of the intrinsic properties of the medium according to its

macroscopic definition. But first, we examine the possible dependency of P on the

external electric fields and discuss how the fields can be modified by such a response

P by studying equations (2.11-2.14) in more detail.
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2.2 The Polarizability

After substitution of equation (2.12) into the equation of x(2.11), we obtain,

Vx(Vx E')+
21a 4n a2

P (2.15)c2 at2 c2 at2

This equation shows clearly that P is a source for E. This equation is linear.

On the other hand, the electric fields are causing the polarization. The most

general form of P is,

P(r ,t) = JdrlJdt1 t,)E(F,,t,)+
-- 0

4--
E(2)/

cific/7-2 dtidt2x ,t - tl; t-t rE(1 t )E(I: t2 2 1 9 1 2 9 2
0

cilic/7-2d7:3 dtidt2dt3i(3)(F - ,t ; - F2,t t2;i - t3)E(Ti,t1)E(1-2,t2)E(7-3,t3)
0

(2.16)

This is just a functional expansion of P(? ,t) in terms of the electric field t(F,t). The

coefficients i(1), i(2) and areare called first, second and third order susceptibilities.

We have to bear in mind that P(7-, t) and E(r, t) are macroscopic quantities. The

combination of equations (2.15) and (2.16) determines the actual fields in the medium.

The properties of the material are embedded in the susceptibilities.

Now, in order to better see the effect of each term in equation (2.16), we take

the Fourier transform of equation (2.15). That is we substitute the following equations,

E(F,t)=1. E(o3,10ei(k.r-")dcod-k (2.17)
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+cm

P(F,t) = is(0), i-c)e i.--)dovii (2.18)

into equation (2.15). This gives,

Ex(Ext(o),k))+°322
2

P(0),E) (2.19)

where -403,E) and P(03, k) are the Fourier transforms of E(7-, t) and P(F,t)

respectively. The Fourier transform of equation (2.16) gives P(o),E) expanded into a

series,

15(0),E)= E)+ )3(2)(0),E) + )3(3)(0.),E)+ (2.20)

where

Pm (0),E) =
(21)4

faaldt atir (T- -F,,t

5cM (0),E) E(0 ),E) (2.21)

p(2) E)

1=
(2704

di:clte-4E'-") ch-- df2dr,dr2I(2) (7- F2,t t2)E(ii,ri)E(7-2,r2)

d(OldEiC1032dE2i(2)(°)1 El °)2 )E(a)1, )E(°)2 E2 )8(E )8( °)1 °)2 )

= Jdw,d 21(2) ( (Op E,, COI, k Ejk (0.),,OL103 (op k E,) (2.22)

\ 1 c c
-13(3)(0),E )= dfdte-' aid72cti:3dtidt2dt3

(2704

2,(3)(FF1 ,t t, F2 ,r 7-3;t t3)E(F,,ti)E(7-2,r2).E(7-3,r3)

r _ _ E.:
= dCOICikide.)2dk25C.`31(0)1,ki,W2,k2,03(01 (02 ,FC FC2)

E(0)1,0E(w2,E2)E(0) (01 (0291c k2) (2.23)
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0) /
where x ko),k), 1c, w i(3)(o),,lii;o32,1i2;w3,E3) are the Fourier, 2 , 2 ,

transforms of the susceptibilities, defined as,

=(') ( 1 1 .121(1) Me-4?-6m) di:dtX 0),k =
(4704

(2.24)

X
(2) ( 1

0)1,k'; 032 ) = t egicri-oht.)e02.F2- _

(47)8

2(2)(F t, - 2 , 2 )- c°212)dr2dt 2dr dt1

1(3)
X (031,ki;(021i2;(0313)=

(47012

Jr(3)= (3) (- - _
X kr, , t, ; , t, ;1 ,t3)e-".71-("1)e-44-2-`°2:2)e-4ii343-") di:3k3dr-2dt2d7idt

2.2.1 Linear response and dispersion

(2.25)

(2.26)

First we ignore higher order terms and keep 15(1)(o.),E) only. Then we obtain

from equation (2.19) and (2.21) the following equation,

A- x (A- x 0) i'!):- f(CO TC) 41M"2 (1)( 1E( 1,
c2

X CO, k w,k (2.27)

Obviously, this equation is a linear equation in E. From now on, we will suppose that

the susceptibility jen) is independent of . Furthermore, in the case of linear response

we choose the coordinate system such that i(1) is a diagonalized tensor. Then equation

(2.27) becomes,

where

Mo,),E))+°4x 6(co)E(o),E) = 0

E(w) =1+ 471-x(')((o) (2.29)

(2.28)

Equation (2.29) is called a dispersion relation, e(o)) is called the permittivity or

dielectric function. By solving equation (2.28) and discussing the solutions for various

cases one finds out that )1(1) is responsible for phenomena such as absorption and



10

refraction. The change in the shape of a traveling light beam through the medium can

also be explained by i(1).

For later convenience, we give the formulas for the refractive index n and

absorption coefficient K:

/2= 11- [1+ 47tXT 1-11(11-47EXT)
2

+ (I))2ItX/2

K =11-i[-(11-47EXT)+V(1+47EXT) 2 +(47C)61))2]
1

where x(ilz) and x(;) are real and imaginary parts of i(1)(0)) respectively.

(2.30a)

(2.30b)

2.2.2 Second order response

If we include P(2)((0,1c), then we obtain from equations of (2.19), (2.21), (2.22)

and (2.29):

Tx(lixE(0),E))+-94-6(0))E(co,k) =

ziEw2
2 &plc/U(2) (cot , wirE(0)1 ri rE(0) cot (2.31)

Equation (2.31) gives us a group of equations which couple different components of the

electric fields. The integration on the right hand side of equation (2.31) becomes a

summation if the electric field contains only a couple of discrete monochromatic

components. Equation (2.31) tells us that the response of the medium to the

components of the electric fields at frequencies (.01 and Co w, with wave vectors k1

and k 1c, becomes a driving source for the component of the electric field of

frequency Co and wave vector k . Generally, equation (2.31) couples three components

of the electric field. Equation (2.31) also shows that only those three components which
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satisfy the following conditions can be coupled.

= k; + k2 (2.32)

= w, +0)2 (2.33)

Equation (2.33) is simply conservation of energy. Equation (2.32) is commonly

interpreted as momentum conservation. It is the so-called phase matching condition.

Now, suppose that we have three electric field components with frequencies and

wave vectors of ((DI , k; ), (co2 ,E2), (0)3, ii3) and that they are coupled through a second

order nonlinear response. Then, from equation (2.31), the coupled wave equations

can be written as,

kl X(Il XL(01,0)-C2 -2 £(03I E(Wor= 4eO 2 -=(2)0/
2)°3)E(W2IT2)EV°3,k3)

(2.34)

TC2 X (TC2 X E(0)2 ,k2 )) + °A-e(w2 )E(o), = 4742 22 1(2) (0)(03 )E(0)1,ii,)E(-03,k3)

(2.35)

2

k3 X (k3 X E(0)3 )) +-12.1E(o),)E(03,14). 4=2 32
x(2)(wl,- 0)2)Elw1,E1)E( w2, k2)

(2.36)

with the conditions,

(01 = (02 + (03

= Tc3

(2.37)

(2.38)

If 0)2 = 0)3 = 0), 0), = 20), 1(2 = k3 = k and k = 211, then the three coupled

equations reduce to the following two coupled equations for Second Harmonic

Generation (SHG):

Fc x E(20) 920) +
w2

..E(2o),20= 4m2 312)(co,o)).E(o),ic)t(o),10

(2.39)
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x (k- xE(0),0)+EFE(0))Mco = 41cw =(2)c2 X (2(.0,--(0)E(20,),20E(-0),k)

(2.40)

In conclusion, the second order nonlinear response P(2)(o),ii) results in second

harmonic generation which is a special case of sum frequency generation. The phase

matching condition must be satisfied in these processes.

2.2.3 Third order response

If we ignore the second order response P(2)(o),Tc), but include the third order

response P(3)(co,ii), then from equations (2.19), (2.21), (2.23) and (2.29) we fmd:

/;- / -\\ 0)2 / 47ECO2Tc nicXEVO,k))+-700))Ev.0,0= x

f
_ E-

do) idk Ida) 2d1c2i-3 to), 90)2 ,o) 21E(0) 1 ,k;)E.(0) 2 ,k2)E(00 0)1 2 k2)
(2.41)

It is not difficult to deduce from equation (2.41) that the third order response leads to

the coupling of two, three or four components of the electric field.

In the case where two different components couple, there is no condition

imposed upon their frequencies and wave vectors. Especially, there is no phase

matching condition required. This is the case of the Stimulated Raman Scattering

(SRS) phenomena. The coupling equations for the stimulated Raman scattering are

derived from equation (2.41):

2 2Lincol
X X E(co,,ki))+÷a)

c c

A, \-1,wfn 2pwto 2/("m 1 /-1)(-2 )(m"2 (2.42)

12
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It-4 CO22

FC2 X (FC2 xE((.132,E2))+-e(co )k(co k )=
2 2 2, 2 X

C2

i") (a). ,°)2,(01)E(a)1,0M(1)2,FC2)M(1)1,ICI) (2.43)

Three component coupling is a special case of four component coupling. The

equations for four component coupling take the form

x(E, x k(o),,k,))+-±c° c(co,)-E(o),,ii,). 471:2 1 x

(
A,

3) ..2 ""3".'4 ) P'Pjwm 2 9'2
P m P m

2 - 4E0322
k2 x(1c2 x Mco2,ic2))+-2T-e(o)2)Mo)2,1c2) =

c c
x

(2.44)

(3) ( 0) 0) )E(e)1 )f( (°3 -k3)E( -a)4 1-44 )1)19. 3 9 4

x(E3 x Mco3,k3))+---i°) c(co3)E(o.)3,k3) = 4w32 x

i(3) (°31 9.(132, -°)4 )g°31 M-(1)2 YE(-W4 94.4 )

x (i4 x f(o4 ,i4 )) +
2

e(o4 )E(o4 , k4 )=
4

2

42

,v= (3) (m m m pmf,pri, /tpm
A, Xs...9 9 -`"2 9w3

with the restrictions of ,

(1)1 = w2 + (1) 3 + w4

= Tc4

(2.48)

(2.49)

13

(2.45)

(2.46)

(2.47)

As we can see from equations (2.44) - (2.49), the phase matching conditions have to be

satisfied in the four component coupling through third order response in addition to the

conservation of energy requirement. If 0)2 = o.)3 = co4 a w, equations (2.44) - (2.49)

describe third harmonic generation (THG).
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So, we have demonstrated that some phenomena resulting from the third order

response need phase matching to take place, but others need not.

2.3 Formal Expressions of Polarizability

Next, we turn to the formulation of polarizations in terms of the intrinsic

properties of the medium. Even without external electromagnetic fields the atomic

matter is a complex system which consists of a large number of particles interacting

with each other. Since those internal interactions among the particles are very strong,

the external electric fields introduce only a small perturbation in the atomic matter

system. Based on this judgment, the expressions of polarization can be formulated

using perturbation theory.

In the mean field approximation, a many-body system is described by particles

in single-particle eigenstates. Hence, there is an electron occupation distribution of the

eigenstates. The perturbing of the external electromagnetic field changes the electron

occupation distribution of the system by mixing those eigenstates or inducing

transitions from one eigenstate to another. It would be straightforward to calculate the

polarization if the distribution and the wave functions of the eigenstates were known.

We could simply take a quantum average of the dipole moments. A statistical

ensemble average of dipole moments, instead of a quantum average, should be taken if

thermal effects are considered. For such a calculation, it is convenient to use the

density matrix formalism.

Let p denote the density matrix operator. The equation of motion for p is the

following Liouville equation. [5] [20]

iii
a

= [H, p] (2.50)
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where the single electron Hamiltonian H includes external influences. The

Hamiltonian H consists of three parts,

H = Ho+ Hmt + Hrand,n (2.51)

where Ho is the Hamiltonian of the unperturbed material system, Hmt is the

Hamiltonian describing the interaction of light with the electrons, and Hma, is a

Hamiltonian describing the random perturbation on the system by the thermal reservoir

around the system. There is no simple expression for lirandom. However, the

Hamiltonian H is responsible for the relaxation of the perturbed p back to thermal

equilibrium. Hence, [IIrando p] can be handled approximately using the concept of a

relaxation time. In our calculation, H,,,,k,n is simply ignored.

In this case, the Liouville equation becomes,

ihaa =[Ho Hint,p]

In the semiclassical approximation the interaction Hamiltonian is,

Hmt = (2.53)

In principle, the Liouville equation (2.52) can be solved and we can obtain the density

matrix operator p . Then the ensemble average of a physical quantity P is given by

(2.52)

(p) = Tr(pP) (2.54)

P stands for electric polarization in our calculation and P= Nei- .

We use the perturbation theory to solve equation (2.52) for the density matrix

operator. We expand the density matrix operator p into the following series,

Pco) +P0) +pct) +Pc3) +... (2.55)

where pm is the density matrix operator for the system at thermal equilibrium without

the external electromagnetic perturbation. We suppose that a p(") corresponds to the nth

order correction and it is proportional to (Hint . Substituting equation (2.55) into

(2.52) and collecting terms of the same order with respect to Hint, we obtain,



apm 1 rif
ih Pat

aP") 1 h.

at 70H0,11+[Hint,P(1)

ap(2)

at ik[Ho'p(2)]+[Hint,P(1)])

a3)
at 'P(3)] + {Hint P(21)

(2.56)

(2.57)

(2.58)

(2.59)

and so on. If the electric field contains only a few of discrete monochromatic

components, we have

Hint = EV(")Ciwat (2.60)
a

where Oa) = er . So, we can also expand the density matrix operator p(n) into a

Fourier series

p(n) p(n) (0) 1_ icoa:

a

Inserting equations (2.60), (2.61) into equations (2.57) to (2.59) and taking the matrix

element between two single-particle eigenvectors of (il and I j), we obtain the solutions

for p(1),p(2),p(3):

pT(coc,)=d41)(a)4.)e-iwa' (2.62)

p(:)(co. +con).(q,.2k)(a,13)vala)vir + Gk2)(13, oc) v.?)v4a))e-i(wa'')' (2.63)

13(#3) ((o. + (op + (oy = (G j (a, 3 ,7)Vila)17k(r3)V7) +

4,1(a ,1 ,P)Vila)VLY)1)

Gx(p,a, y)V1P)17:`) 47) +

G: 03, a)vi(!)v,(,Y)4.)+

Gld(7,(3,a)VY)VrV(«) +

(2.61)

16

G./312 y, p)vicky)vkryr

where the indices k and 1 are summed over, and where

(2.64)



G1)(a) = , j;i
h(o)a GJy)

1
(k0) fil0)

Gik)(13C,13) =
kco, +coo h(coo co4) hlwa
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(2.65)

(2.66)

1 1
fi(10) fk(10)

G,Ti(a,(3)=
hko), +o)f3 +o) coif h(coo + o)1, (o1,4) h(ar o)u)

+
h(cofs

1
(0) (0)

+ + (2.67)
h(o.). +0)13con) h(coo con) h(a). 0)a)

with no summation implied. Here, 0,),wo, and wi are the monochromatic

OlHo l i)(f1Ho li)frequencies of the external fields; coif is defined as (04 = ; f9(0) is

defined as f,°) = p(:) 4) and f:10) is the probability that the single-particle state I i)

is occupied when there is no external field.

Combining equations (2.54), (2.62), (2.63), and (2.64), we obtain

(P) = Tr(p(1)P) + Tr(p(2)P) + Tr(p(3)/3) +

po p(2) p(3)

Finally, we write the macroscopic polarizability as[6][10]

P(1)
(t) = i(a2 (wa (2.69)

b,a

P(2) (t) 12(2)
(0) -i(coul-cop)t

a w
E,13,.

il
b,c;a,I3

(2.68)

(2.70)

Pa(3)(t) = X (3)
abc (0)a + ± ) Eb a e EY e-i(w`l+wls+wy)ty cd (2.71)

b,c,d;cc,11,y



where 5E4:2 (0)c, ), 1(2) (coa +
13 5
) and i(abc3) (a) +

13
+ y ) are the susceptibilitiesabc

defined as

[

e
i1 ( )io(0 )=yG(a)p1!p!

I
2.72

idmwd

XE.:(bc2) (w« + w0) =
i,j,k myw«

ie3 2ij( it)
jk
b

k F F ki (2.73)
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e4 ,,) .12(3)
X=abc(3) (Wa °)I3 ) rjjkl '?4

(0,0)50.),,,, ((Oa ()1)

ih
where p is the momentum operator. We have used the identity of [F, Ho = p in

deriving these expressions. Equations (2.72) and (2.73) will be used to calculate the

susceptibilities in Chapter 6 and Chapter 7.

2.4 Comments on the Semiclassic Theory

In the semiclassical theory of interactions between electromagnetic fields and

atomic matter presented above, the electromagnetic field is described classically. As a

result, the polarizations have been defined as macroscopic averages of a dipole moment

density over a small volume. This approach is very useful and it describes the optical

phenomena very well. One might, however, want to describe the underlying

microscopic processes of those optical phenomena in terms of transition probabilities

per unit time or cross sections for scattering or absorption. In that case one needs to

quantize the electromagnetic fields.

As mentioned in section 2.3.3, stimulated Raman scattering is one of the

nonlinear phenomena accounted for by the third order polarizability. As it is shown in

figure 2.1, the corresponding microscopic process is that one photon is absorbed by the
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medium, another photon with different energy is emitted from the medium and the

medium changes its internal configuration to keep the energy conserved in this process.

. , .

fmal state

initial state

Figure 2.1 microscopic process of stimulated Raman scattering

One can calculate the gain of the Raman wave 032 by calculating the transition

probability of such processes. The result is in agreement with the result of the

semiclassical approach[5] [11], as it should be.

Unfortunately, describing the electromagnetic fields in terms of a prescribed

number of photons, as we just did for stimulated Raman scattering, will lose phase

information of the electromagnetic waves. In the process of stimulated Raman

scattering, the relative phases of components col and co2 play no role at all. For some

other optical phenomena, such as second harmonic generation, the relative phases

among the different waves play a very important role. So one has to retain the phase

information of the waves in the quantum description for those optical phenomena. This

can be done in principle by using so-called coherent quantum states[12][13].

A discussion of susceptibilities in terms of coherent quantum states is very

tedious and challenging. Obviously, the difficulty is caused by the wave-particle

duality of the photon. It seems that there does not exist such a kind of detailed

treatment in the literature yet. The correspondence principle comes to rescue, however.

The correspondence principle states that the results from a fully quantum mechanical

treatment should be identical with the semiclassical method[l 1] in the limit of a large

average number of photons. We will therefore use the semiclassic approach in this

thesis.
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Chapter 3

LCAO Method and Bulk ZnO Electronic Band Structure

A medium is a very complicated system which consists of a huge number of

nuclei and electrons. By invoking the so-called adiabatic approximation we will

ignore the motion of nuclei. We will also ignore the response from those very tightly

bound atomic electrons which are often called core electrons. There are two reasons to

ignore the core electrons. First, they interact strongly with each other and with the

nucleus, and consequently they are perturbed much less by external light than the

loosely bound valence electrons. Second, those loosely bound valence electrons adjust

their states quickly in response to external light and screen out the light, in some extent,

from the core electrons.

Atomic matter can be distinguished into a few categories according to the

electronic charge distribution. For some matter, such as ionic and molecular crystals,

the charge distribution is determined by the contributions of clearly identifiable units.

In such crystals, the loosely-bound electrons are still bound to particular atoms, ions or

molecules. In other words, the electrons in such materials are localized. To compute

the polarizability of such a system we first apply the formalism given in Chapter 2,

compute the polarizability of the identifiable ions, and then do the averaging. In some

cases, local field corrections must be included.

For covalent crystals, however, the valence electrons are not bound to a single

ion any more. Instead, an appreciable charge density resides between ions. Band

theory has to be invoked in calculating optical properties of such covalent crystals.

Bulk ZnO is a covalent crystal. So, we have to obtain the electronic band structure of

ZnO before we can compute its optical properties.
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3.1 The LCAO Method

There are quite a few standard methods for electronic band structure

calculations. Some are empirical, some are more or less ab initio. We will use a

semiempirical LCAO method[14]. Here, "LCAO" stands for "Linear Combination of

Atomic Orbitals".

Suppose we have N atoms, and all the atoms are far away from each other.

Then there exists a set of single-electron atomic orbital states for each atom. Those

states are denoted by 1 n, ft) where TR represents the position of a particular atom and n

represents an orbital for that atom. If all the N atoms are the same, each energy level

is N fold degenerate, corresponding to orbitals with wave functions differing from each

other only by a shift of their coordinate origin. This degeneracy is removed if the

atoms are brought closer together, for the atomic orbital wave functions will overlap

and the summation of isolated individual atomic Hamiltonians is replaced by the full

crystal Hamiltonian. However, the atomic orbital wave functions can still serve as

basis functions for the solutions of the crystal Hamiltonian. In other words, we can

expand the eigenfunctions of the crystal Hamiltonian in the space spanned by those

atomic orbitals.

3.1.1 Bloch sums

Atomic orbitals are good basis functions for the crystal Hamiltonian, but they

have the wrong properties under translations. The crystal has the symmetry of the

underlying Bravais lattice, and so does the crystal Hamiltonian. The crystal

Hamiltonian for a single electron has the form
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H= h2 V2+U(F)
2m

(3.1)

where the effective single electron potential has the periodicity of the lattice:

U(F+ it) = U(F)

for all vectors it in the Bravais lattice. As a general consequence of this periodicity of

U(F), an eigenfunction v(1) of the crystal Hamiltonian has the property

v(I +17i) = cw(F) (3.2)

where c is independent of F , and Id =1. We have to choose c as e" so that equation

(3.2) becomes

tv(7+k)= eildiv(?) (3.3)

where k is called the wave vector. Equation (3.3) is Bloch's theorem[15].

We construct from each atomic orbital a zero-order approximate wave function

which satisfies equation (3.3) as follows:

= y, ell'.(+4)1b,n, (3.4)

where I b, n, it-) is the nth atomic orbital of atom b located inside the unit cell at it. 3,,

is the coordinate vector of atom b in the unit cell relative to the origin of that unit cell.

We assume that the total number of unit cells is N. k is the wave vector whose value

is to be determined. There exist N different ic values and we can prove that:

H ) = Eb;,8A

So, it is much easier if we use f instead of b,n,it}} as the first-order

approximation to the wave functions.
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3.1.2 The Born-Von Karman boundary condition

It can be shown that the wave vector k takes exactly N distinguishable values

by imposing Born-Von Karman boundary conditions on the wave function. The Born-

Von Karman periodic boundary conditions are:

(F+Ni-d3= wL(F), i= 1, 2, 3, (3.5)

where -di (i = 1,2,3) stands for the three primitive vectors of the unit cell and Ni are all

integers of order N. N=N1 N2 N3 is the total number of primitive cells in the crystal.

Combining equation (3.3) and (3.5), k is found to be,

3

k rni integral. (3.6)

where are the primitive vectors of the reciprocal lattice unit cell[15]. It is

straightforward to show that the volume Aic of k-space per allowed value of k is

(27c)3
. Therefore, the number of allowed wave vectors in a primitive cell of the

V

reciprocal lattice is equal to the number of unit cells in the crystal because the volume

of a reciprocal lattice primitive cell is (21) , where v =
V

i s the volume of a direct
v N

lattice primitive cell.

3.1.3 The Hamiltonian

The first-order approximation to the wave functions, 4:Ib, , are used as our basis

functions for the eigen functions of the crystal Hamiltonian. Due to the periodic

symmetry of the Hamiltonian, functions Obni" with different wave vectors will not mix.

However, functions (p1, with the same k but different b or/and n are expected to mix.

So, the eigenfunctions of H can be written in the form,



= ab(ink-4)bn (3.7)
b,n

and the Hamiltonian matrix in terms of the set ign } is,

bn,b' = (4)bn 111101;n.

eii0+4-4) (b,n,61111 bt ,n' (3.8)

We obtain the eigen energy and the coefficients ab(tnk.)- in equation (3.7) by diagonalizing

the matrix (3.8). At this point we still have to determine the value of the crystal

Hamiltonian matrix between two atomic orbitals. We will parameterize these

Hamiltonian matrices and determine the values by fitting to known band gap values at

particular values of the wave vectors. Details will be given when we discuss the

24

Hamiltonian matrix for ZnO.

3.2 Bulk ZnO Electronic Band Structure

3.2.1 ZnO crystal structure

The ZnO crystal consists of two interpenetrating hexagonal closed-packed (hcp)

structures as shown in figure (3.1). One of the two hcp lattice contains zinc (Zn)

atoms, the other hcp lattice contains oxygen (0) atoms. Oxygen is the anion and zinc

is the cation. There is an anion for each cation and it is located directly above the

cation along the c-axis of the underlying simple hexagonal Bravais lattice of the zinc

oxide crystal. This crystal structure of ZnO is called the wurtzite structure.
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Figure 3.1 The wurtzite crystal structure of ZnO
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The hexagonal closed-packed structure is not a Bravais lattice. It consists of

two interpenetrating simple hexagonal Bravais lattices. The simple hexagonal Bravais

lattice is composed of an infinite number of two-dimensional triangular nets stacked

directly above each other. Its three primitive vectors are

a ,5a
= ax, 572 = (3.9)

where x, 9,2 are the unit vectors of the coordinate system, z is along the direction of

stacking and the i axis is called the c-axis, a is the length of a hexagonal side and c is

the length of the unit cell along the z direction. In the hcp structure, the two

interpenetrating simple hexagonal Bravais lattices are displaced from one another by

a' + a + . The hcp crystal structure is treated as a simple hexagonal Bravais lattice
3 3

with a basis of two atoms. The wurtzite structure of two interpenetrating hcp

structures is therefore treated as a simple hexagonal Bravais lattice with a basis

consisting of four atoms. Two are zinc atoms and the other two are oxygen atoms.

3
The anion (0) is displaced by

8
directly above the cation (Zn). The ideal value of c

a

is
3
. For ZnO, a= 5.52a0 and c = 8.7a0 where a0 is the Bohr radius.

We denote the four basis atoms by al, a2, cl, c2 where al and a2 stand for the

two anions and that ci and c2 stand for the two cations. Their coordinate vectors are

day

a -,11 c - a c - 5c=6, da,=-2:i+6 dc2= (3.10)

Since the direct Bravais lattice is simple hexagonal, the reciprocal lattice is also

simple hexagonal. The three primitive vectors of the reciprocal lattice are

.2/ri 27c L. 27c

a .jY = v3 = z,a .s5a
(3.11)
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3.2.2 Hamiltonian of bulk ZnO

For the zinc atom twenty-eight electrons are considered to be core electrons.

For the oxygen atom two electrons are considered to be core electrons. All the valence

electrons for both Zn and 0 are in sp3 orbitals. The principal quantum number is 4 for

zinc, but it is 2 for oxygen. We are going to consider mixing of the sp3 orbitals only.

So we have four atomic orbitals with symmetry s , px, py, for each atom. There

are four basis atoms per unit cell, therefore we can construct 16 first-order basis wave

functions for each wave vector k from equation (3.4) as follows,

, E 1 ) ai)))
(3.12)

v
e

ik4-1-41)
x (F (1? + a 1))) (3.13)÷

14)k )= 1 e ik.(R+4) ,Py(F(1?+30,))) (3.14)

10Eappx)=7--x-T-1 (3.15)

1(1)EcPs eil.(A+acd1cl's(7. (3.16)
N

px(F -c-4,)))
(3.17)

kgppy1=7-7s--11 Ieik..(A+1q,py(F(k+dai))) (3.18)

14)1!
"Pz

)=-1 Ie4(1?+iilci,Pz(F(1-ac,))) (3.19)
,NFITI A

1414 )= ,Lyeowdla2,s(F (3.20)
2's N



1 7
avp. I a2, P.(7 (1? + 67.2)))

1(1)i°2.P,) V/74ieji(k+j)1a2'PY(F-(k+ a'22)))

10a2,p,) 7/1=N A,ei144.a.'2)1a2.,11,(7. -(k+ cia2)))

I

1 T÷e -

lE.(khii, t-c2 , sv k+ cl, )))
V//

2,p.1(0'c) c2,p(1-(k+iic2)))

1 iic2)))

RI / Ic2'PY

10f,,pz ==7/-A-f-T,1 eii.(11447)1c2,Pz(F-(k+ac2)))

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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where b,9(r + ilb ))) with b fa,,c,,a2,c21 and 9 is, px is the wave

function of a localized atomic orbital 9 of atom b in unit cell R.

The Hamiltonian is a 16x16 matrix in the space of the functionslOkbm ) for each

wave vector k . We have to diagonalize N 16x16 Hamiltonian matrices because the

wave vector lc can take N different values. The elements of the Hamiltonian are

expressed in terms of the Hamiltonian matrix elements (b,n,Olfil b' ,n' ,i2) between the

localized atomic orbitals in equation (3.8). Since we do not know the Hamiltonian H,

we determine the Hamiltonian matrix element (b,n,611-11b' ,n' ,R) empirically through

parameterization. We make the following three approximations to simplify our

parameterization problem and to reduce the number of parameters.

1. Only on-site integrals and nearest-neighbor integrals are nonzero.

2. We assume that the four nearest neighbor atoms are equivalent.
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3. We neglect the small differences between the 19, orbital and the px and py

orbitals due to the crystal field splitting.

With those approximations we can fully parameterize the crystal Hamiltonian by nine

independent parameters. This first approximation is called the nearest neighbor

approximation. It means that (b, n ,o1HIb' , n' , is not equal to zero only if {b' ,

represents an atom that is either the same atom represented by b, O} or the nearest

neighbor to the atom represented by {b,o}.

When {b' ,k} is the same as { b, , that is b = b' and ft =6, the matrix element

becomes (b, n, O IHI b, n' ,O). We call (b, n,o1H1b, n' ,o) an on-site integral because both

orbitals belong to the same atom. Since Zn is considered to be isotropic in x-y plane, n

has to be equal to n' for (b,n,o1H1 b, n' ,O) to be nonzero. Combining the second and

third approximations we use four parameters to parameterize the on-site integrals.

The four parameters H(a,$), H(a, p), H(c,$) and H(c, p) are defined by

H(a,$) = H(a,,$) =

H(a, p) = H(ai, p)

= (6,p , bailHlk

H(c,$) H(c,,$) =

H(c, H(c, , p) =

= (6, p

H(a2,$)

= H(a2

H(c2,$)

H(c2,

HI

=

, p) = H(a2 ,

px,o)

= (6, s,

H(c2, p

p ,6)

HI

p x)

HI

x)

, s 05)

= 11(a2, py) = H(a2 , pz)

,s,d)

= H(c2, py) = H(c2, pz)

(3.28)

(3.29)

(3.30)

(3.31)

When {b' , k} denotes a nearest neighbor to the atom denoted by {b,0 }, the matrix

element (b, n, HI b' , n' , I?) is an integral of two orbitals where each belongs to and is
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centered on a different atom. We call such an integral the nearest-neighbor integral and

such a matrix element is a nearest-neighbor transfer matrix element. Combining our

symmetry approximations we can fully parameterize these nearest-neighbor integrals by

five numbers V (ssa),V (spa) ,V (psa) ,V (ppa) and V (pplt) . These are defined by[14]

V(ssa) ,s,bc1H1b,s,o) (3.32)

V(spa) p,k1.111k,s,o) (3.33)

V(psa) s,bc1H1b. , pi, o) (3.34)

V(ppa) px,k11111), px,o) (3.35)

V(ppn) (it, py,k11-11ba, py,O) = pz, bc1H1ba , p-(5) (3.36)

where d is assumed along the x direction, k = {g,c2} and b. = {a1,a2}. Although the

ZnO crystal has C3, symmetry, the local environment can be treated as Td (tetrahedral)

under the approximation of that the four nearest-neighbor atoms are equivalent. The

following on-site integrals and nearest-neighbor integrals are zero:

(6'Pz'aIllital's,6)=0,pa21Hia2,s,o)= 0 (3.37)

(6,pz,c11111cos,15)=0,p,c211-11c2,s,6)= 0 (3.38)

, py ,c11-11a, p ,o) = pz,c1H1a, px,o) = 0 (3.39)

(a, py,c1H1a,s,o) = (ii,pz, HI s05) = 0 (3.40)

(d,py,c1H1a,p,,o)= (3.41)
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Figure 3.2 The zero and nonzero elements of ZnO crystal Hamiltonian
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Finally, the Hamiltonian matrix in the space of the functionslOkb, ) can be written as

b \ b.

al

al

Ha

ci

11,,,,1

az

0

cz

Hai.c2-

c1

a2

H:i.c,

0

H,

H:,,42

H,,,a,

Ha

0

H
a2 e2

C2 H,F1c2 0 Hat c2 He

Each element of this matrix is a 4X4 matrix. When it is expanded, the Hamiltonian

matrix is a 16X16 matrix as shown in figure (3.2). In figure (3.2) we use the symbol x

to represent nonzero elements. The detailed expression for those nonzero elements can

be found in appendix A.

3.2.3 Parameters of the ZnO Hamiltonian

Now that we have the Hamiltonian matrix expressed in terms of the nine

parameters for every wave vector ii , we have to determine the values of these

parameters. We can do this by fitting the energy eigenvalues to the known band

structure at particular ii points. An efficient fitting method was used[16] as given by

Donald W. Marquardt[17].

John D. Dow and co- workers[18] have performed such a fit. They used the

band structure at the T point (k = ti) in addition to some rules which were deduced by

Vogl et a1[19] for chemical trends. In our calculation, we will use their values for the
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nine parameters. The following table 3.1 lists the nine parameter values calculated

from their results for five wurtzite crystals,

Table 3.1 Parameter values for five wurtzite crystals (eV)

Parameters ZnO MN CdS CdSe ZnS

H(a,$) -19.046 -12.104 -11.133 -10.782 -10.634

H(c,$) 1.666 -0.096 2.243 1.682 2.134

H(a, p) 4.142 3.581 1.327 1.309 1.574

H(c, p) 12.368 9.419 6.673 6.091 6.626

V (ssa) -1.511 -2.684 -0.554 -0.504 -1.226

v(PPG) 7.078 5.695 3.000 2.868 3.391

V ( PPE) -0.855 -0.670 -0.384 -0.375 -0.485

V (spa) 2.036 3.504 0.405 0.477 0.155

V (psa) 3.739 4.224 1.955 1.727 2.702

3.2.4 The band structure

Using the parameter values listed in the table above we are able to evaluate the

Hamiltonian for each wave vector ii. After diagonalizing the Hamiltonian, we obtain

the band structure at each wave vector. Figure 3.3 shows the band structure for the

ZnO crystal. The points denoted by F, K, M, A, H, L are high symmetry points in the

Brillouin zone and their coordinates are:

1 ,f5r ).(0, 0, 0), A.(0, 0,
2
-1)-2c n , M 4-i-, 0

27r
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1 4 1
L.,

27c
=

2711 27th 27E 1

3

)(, 3' V
a

, (-
a 2

, -
a 6 c 2

, 27c 1 27t 4 27r 1
H

)
= (--7- 7-a 3' a 3 c 2

The wave vectors used to calculate the band structure shown in figure 3.3 are k vectors

along the line segments A ---> L > M > r > A --> H > K > r in the Brillouin zone.

The narrow lowest valence band near -20eV corresponds to an atomic-like oxygen 2s

state, the upper valence bands are mainly derived from the oxygen 2p state with a

sizable mixture of Zn 4s and 4p states. The lowest conduction band is composed

primarily of Zn 4s states. These bands reproduce those of Reference [18] quite

accurately.
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Figure 3.3 The Bulk band structure of the ZnO crystal.
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Chapter 4

A Simple Model for Surface

The surface of dielectric materials is of major interest in our research. We

investigate simple one-dimensional models in this chapter before we attack the real two-

dimensional surface. How the intrinsic atomic properties and the structures beneath the

surface determine the surface behavior is easier to understand using these simple models

as a guideline. Also these simple models show some generic features of surfaces.

Furthermore, the discussion of these models tells us about the convergence properties of

the calculations for our ZnO surface model.

4.1 The One-Dimensional Model

Suppose that N objects are located in one-dimensional chain as shown in the

following figure.

0 0
Although each object may have many single-object eigenstates, we assume that only one

particular eigenstate for each object is coupled to its nearest neighbor after an interaction

is turned on between the nearest neighbors. To simplify our description, we assume each

object has only one eigenstate. We use $1); to denote the eigenfunction of the ith object.

The energy spectrum of this chain is simply composed of single-object energy levels

before we turn on the interactions, and it consists of only one N-fold degenerate level if

all the objects are the same. The degeneracy will decrease and the spectrum will change

after the interactions are turned on. The coupled chain system has a new set of
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eigenstates with eigenfunctions {4:13l i = 1, ,N}. Each eigenfunction (V is a

superposition of the single-object eigenfunctions as in equation (4.1):

sztoj = ajA (4.1)

1

where 'aft'
2

indicates the weight of 4 in cl)j. If the Hamiltonian of the coupled chain is

denoted as H, the Schrodinger equation is,

HO] = Elcbj j=1,,N (4.2)

where E' is the energy of the eigenstate with eigenfunction

In the space of {0i i = 1, -,N}, the Hamiltonian of the coupled one-dimensional

chain system looks like the following tridiagonal matrix:

0 0 0 0

0 0 0

H =[kii=[(4) JIHIO ,)1= (4.3)

0 0 0 x x x

0 0 0 0 x x

In this Hamiltonian matrix of equation (4.3), only those elements marked x are possible

nonzero elements. The dimensionality of this matrix is equal to the number of objects of

the chain N.

By diagonalizing the Hamiltonian matrix (4.3) we obtain the energy spectrum

IE-11, with j = 1,- ,N N. At the same time, we obtain the coefficients fafil in equation

(4.1) as the eigenfunction for the jth eigenstate. In the rest of this chapter, we will study

several one-dimensional models.
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4.2 Identical Objects in a Chain

4.2.1 Case one

The simplest case of our one-dimensional model is when all the objects are the

same. First we ignore the boundary effects or the terminal effects. Hence, the diagonal

elements of the Hamiltonian matrix take the same values and we set them equal to zero.

The nonzero off -diagonal elements represents the coupling strength between nearest

neighbors, and we assign the value of one to all of them since they are equal to each

other in this case. We studied this model with various values of N, and we draw the

following three major conclusions:

1. The distribution of the ordered eigenvalues is smooth. There are no sharp jumps.

2. The single-object eigenfunctions are mixed "evenly". There are no localized

states. The mixing of the basis functions creates standing waves.

3. The upper and lower bounds of the energy spectrum will increase as we increase

the number of objects on the chain. However, they will quickly reach certain

limits ( see figure 4.1 ).

Figure 4.1 shows seven sets of spectra corresponding to seven different values of the

total number of objects in the chain. As we can see from this figure, the upper (lower)

bound of the spectrum is equal to 1.00(-1.00) when N is 2, but the bound becomes very

close to the limit 2.0(-2.0) when N is 20. Figure 4.1 also shows spectra for N=40 and

N=80, and the corresponding bounds are almost equal to the limit.

Next, we study the effects of terminating the chain differently. We will vary the

value of the first diagonal element of the Hamiltonian matrix or the coupling strength

between the first and the second object to study the surface effects.
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Figure 4.1 Energy spectra corresponding to different numbers (N) of objects in
the 1D model.
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4.2.2 Case two

The environment of the terminal object is different from other objects on the

chain. As a result of this environmental difference, the first order correction to the

eigenvalue of the terminal object is different from the first order corrections to the

eigenvalues of the other objects. That is:

Hu for i = 2,- -,N

As this shows, we do not make H" different from others in this model in order to

simulate a semi - infinite chain. In this case we still assume that all Huti values are equal.

To be specific, we consider Hu # 0 and take ki= 0 for i = 2, ---,N N. After varying Hu ,

we found that:

1. There is no localized end state if H11 is small comparing to the coupling strength

( or the off -diagonal elements ). There may exist a few states that have a larger

weight of the end object than others, but the eigenfunctions of these states do

not decay exponentially from the end into the chain. The eigenvalues are still

confined between the upper and lower limits when Hu is smaller than the value

of the coupling strength. See figure 4.2.

2. One localized end state will appear when Hu is larger than the value of the

coupling strength. In this case, the eigenvalue of the localized end state is above

the upper limit in the spectrum if H11 is positive (see figure 4.3); it is below the

lower limit if H11 is negative. The eigenfunction of this end state decays

exponentially as it goes into the chain (see figure 4.4). The exponent is related to

the gap that is defined as the difference between the eigenvalue of the end state

and the upper bound. See figure 4.5.

Figure 4.2 shows the energy spectra corresponding to values of 0.25, 0.50, 0.75 and

1.00 respectively for H11. We can see that the spectrum is not significantly changed
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even when I/13 is set equal to as large as 1.00. There is, however, one eigenvalue that is

above the upper limit in the spectrum when H1,1 is larger than 1.00. That is the energy

of the localized end state. Figure 4.3 shows the spectra for eight different H1,1 values of

1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75 and 3.00. The eigenfunction ON of the end state

has a much larger weight for (1), than the others, and laNi 12 cc e The values of H13,

and corresponding eigenvalues of the end states, as well as its eigenfunction decay

exponents, are listed in the following table 4.1.

Table 4.1 Eigenenergy and eigenfunction behavior of end states corresponding to

seven different Hu values of the 1D single-type object model

1.25 1.50 1.75 2.00 2.25 2.50 3.00

Eigenvalue 2.05 2.167 2.321 2.500 2.694 2.900 3.333

Bound 1.9983 1.9983 1.9984 1.9984 1.9984 1.9984 1.9984

Gap 0.0517 0.1682 0.3230 0.5015 0.6960 0.9015 1.3348

Decay exponent w 0.4462 0.8109 1.1192 1.3862 1.6218 1.8325 2.1972

There is a relationship between the "gap" and eigenfunction decay exponent w, and it is

approximately w a gap cc VE(N) - limit . Figure 4.5 shows this relationship

graphically. Figure 4.4 shows eigenfunctions of the end states corresponding to different

Hu values.

4.2.3 Case three

Another result of the environmental difference for the terminal atom is a change

in the coupling strength between the terminal object and its neighbor; it may be different

from the coupling strengths among other objects. To discuss this case, we make the
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value of the first off-diagonal element of the tridiagonal Hamiltonian matrix different

from the other off-diagonal values but keep all the diagonal elements equal to zero. That

means:

= 1121 # 1.00 and Hu+, = Hi+1,1 =1.00 for i= 2,, N 1

but Hu = 0.0 for i =1,-,N

Localized end states may or may not appear depending on how large H12 is. We varied

, and we observed phenomena similar to those in case two.

1. If Hu is smaller than the other coupling strength or slightly greater, there is no

localized end state ( see figure 4.6).

2. If11/1,21 is made large enough, there are two localized end states. One has an

eigenvalue larger than the upper limit; another has eigenvalue smaller than the

lower limit ( see figure 4.7).

Figure 4.6 shows the spectra for small Hu values of 0.25, 0.50, 0.75, 1.00 and 1.25.

Figure 4.7 shows the spectra exhibiting localized end states for large H12 values of 1.50,

1.75, 2.00, 2.25, 2.50 and 2.75. The energies of these localized end states corresponding

to six different Hu values are listed in table 4.2 below. Also listed are those

corresponding eigenfunction decay exponents.

Table 4.2 Eigenenergy and eigenfunction behavior of end states corresponding to six

different Hu values of the 1D single-type object model

1.50 1.75 2.00 2.25 2.50 2.75

energy ±2.012 ±2.132 ±2.309 ±2.512 ±2.728 ±2.952

Decay exponent 0.142 0.612 0.960 1.240 1.475 1.679
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Figure 4.8 shows the localized end state eigenfunctions vs the distance from that

end. Figure 4.9 shows table 4.2 graphically. We can see from figure 4.9 that again

there exists a square root relation between the "gap" and eigenfunction decay exponent.
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Figure 4.7 The 1D model energy spectra for large H12 values.
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4.3 A Chain with Alternate Objects

In order to make the model a little more complex, we suppose that there are two

different types of objects on the chain and that they take alternate positions as shown in

the following figure:

O 0 0 O
The Hamiltonian matrix of this system is still tridiagonal because only nearest-neighbor

coupling is considered. However, there are two different values for the diagonal

elements of the Hamiltonian matrix with one value for A objects and another for B

objects. We call this model a (H,e, Had) or (2, 0) chain model. We investigate this

model in the following subsections.

4.3.1 Case one

We set the energy of sets B equal to zero and investigate the model for various

values of A. We make the nonzero off-diagonal elements all equal to 1.00. Hence the

Hamiltonian matrix is

li2i+1,2i+1 = Hodd 0.0 and H21.2i = 0.0; = =1.0

Notice that the nonzero value on the diagonal of the matrix is actually the difference

between these two different objects' energies.

We vary this value of the energy difference from small to large and observe the

following:

The spectrum is split into two parts. The gap between the two parts

increases as we increase Hodd . There are no localized end states.

Figure 4.10 shows the spectra for various Hodd values.
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4.3.2 Case two

In order to study the effects of terminating the chain differently, we fix all Had,

except Hu , at 2.0 and vary the value of Hu. Figure 4.11 shows the spectra for nine

different values of H11. In table 4.3, we list the end state eigenvalues for each Hu value.

If Hu is close or in the lower part of the spectrum, we get two localized end states. One

is below the lower part of the spectrum; the another is below the upper part of the

spectrum but above the lower part. As H11 increases away from the lower part towards

Table 4.3 End state eigenvalues of the (2, 0) chain model when varying the value of

H11

Hu -1.0 -0.5 0.0 1.0 1.75 2.0 2.75 3.25 4.0

E1 0.387 0.551 0.781 1.414 1.919 X 3.267 3.606 4.266

E2 -1.721 -1.451 -1.281 X X X X X X

X stands for nonlocalized end state.

the upper part, we get only one localized end state in the gap between these two parts of

the spectrum. The localized end state disappears when Hu > Hodd but close to Hodd of

value 2.0. The localized end state appears again with its eigen energy bigger than the

upper part. Figure 4.12 shows eigenfunctions of the localized end states.

Figure 4.13 shows the relation between the decay exponent of the localized end

state eigenfunction and square root of the difference between the eigen energy of the

localized end state and the bound value of the corresponding part of the spectrum.

There are three groups of data. One is for localized end states with energies below the

lower part marked as lower; one is for localized end states with energies in the gap
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between the two parts marked as middle, and the third one is for localized end states

with energies above the upper part marked as higher. The lower and higher groups show

the square root relationship on the same straight line, but the middle group shows a little

more complicated relation. This is because the eigenvalues of both the lower and

higher group end states are pushed in the same direction by all the other states, but for

the middle group, the end state eigenvalues are pushed in one direction by the eigenstates

with eigenvalues in the upper part of the spectrum and are pushed in the opposite

direction by the eigenstates with eigenvalues in the lower part of the spectrum.
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Figure 4.12 The end state eigenfunctions for different H11 values in the (2, 0)
chain model.
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4.3.3 Case three

In this case we study the effects of changing the coupling near the surface. We

vary the first off -diagonal element H12 while keeping all other Huil= 1.0 and

H2i+1,214-1 = 2.0 and H21,2i = 0.0. we found that:

1. If 111,2 is smaller or slightly larger than 1.0 by <0.5, there is no localized end

state.

2. If H12 is large enough (> 1.5), there are two localized end states. One has an

energy above the upper part of the spectrum, and the another has an energy

below the lower part of the spectrum.

Figure 4.14 shows the spectra for various values of H12. Figure 4.15 shows the

eigenfunctions of the localized end states. In table 4.4, we list the end state eigenvalues

Table 4.4 End state eigenvalues of the (2, 0) chain model when varying the value of

H12

Ho 0.75 1.25 1.50 1.75 2.00 2.25 2.50

E1 X X -1.247 -1.355 -1.516 -1.703 -1.905

E2 X X 3.247 3.355 3.516 3.703 3.905

X stands for nonlocalized end state.

for different H12 values of the model. Figure 4.16 shows the relationship between the

decay exponent and the square root of eigen energies relative to the bound of the

spectrum.
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Using the results of this one-dimensional model to guide us, we are in a better

position to understand the surface of a real material like ZnO. In the next chapter, we

will look into the localized "surface" states and surface resonant states in ZnO. Many

phenomena will be similar to those found in our one-dimensional model.
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Chapter 5

Surface Electronic Structure of ZnO

5.1 The "Layered" Model for Surface

Actual crystals are finite. The infinite system of a Bravais lattice is an

idealization. It is a very good and useful idealization when the vast majority of atoms

concerned are far from the surface. However, when the surface atoms are of interest we

have to consider new models.

The periodic crystal structure of a solid can be viewed as a layered structure.

The layers are parallel to each other. In chapter 3, where we were interested in bulk

properties, we assumed not only that each layer is infinitely large but also that the total

number of layers is infinite. Consequently, the properties of the surface were ignored.

In this chapter, we intend to retain the properties of the surface by considering a finite

number of layers. It would be ideal if we could include every layer of a given solid

sample in our model.

In reality, it is not possible to include a realistic number of layers characteristic

for a solid sample because the number is too large. A computer can handle only a small

number of layers. So, in our "layered model" the real sample of a huge number of

layers is replaced by a small number of layers, and each layer is supposed to be so large

that it can be idealized to be a two-dimensional Bravais lattice.

An important question addresses the sensitivity of the properties of the surface

layer to the number of layers beneath it. It seems that the properties of the surface

should be different when there are 10 layers of atoms beneath it or when there are 100

layers of atoms beneath it. If these differences are so significant that we have to take
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care of them, we run into trouble since we are forced to include a large number of

layers like a realistic sample contains. We are unable to do that. Fortunately,

convergence of electronic structure properties occurs within only tens of layers.

5.2 Structure of the Model for a ZnO Surface

For crystalline ZnO, we concentrate on the surface that is perpendicular to the

c-axis in the wurtzite ZnO crystal. Hence, each layer contains either all Zn or all 0

atoms and every layer of Zn is sandwiched between two layers of 0 and vice versa.

The layers are stacked along the i direction. If the number of layers is infmite and the

surface properties are ignored, we recover the bulk case discussed in Chapter 3.

Figure 5.1 The triangular net structure of ZnO layers

Figure 5.1 above shows the structure of each layer in ZnO. It is a two-dimensional

Bravais lattice: a triangular net. In the coordinate system that we chose the two

primitive vectors of the Bravais lattice are

a ,a, =ax,
2

= -X -F-
2

y. (5.1)

The two-dimensional reciprocal lattice of a triangular net is also a triangular net and the

two primitive vectors of the two-dimensional reciprocal lattice are

27c 4n
(5.2)

xa 43a 2 -1§ay

Equations (5.1) and (5.2) are equations (3.9) and (3.11) without the third component.
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5.3 Hamiltonian of the ZnO Model Surface System

5.3.1 The basis wave functions

The atomic orbitals will hybridize when we put the atoms into a triangular net.

We will treat only mixtures of spa orbitals, and we will apply the LCAO method

discussed in Chapter 3. Although it loses the periodicity along the c-axis, the

Hamiltonian still has the periodicity of the two-dimensional Bravais lattice. Therefore,

we should take advantage of the symmetry and work with the right zero-order basis

wave functions or Bloch wave functions instead of atomic orbitals. For each two-

dimensional wave vector and each layer, we construct four basis wave functions

corresponding to four atomic orbitals. If the layer contains oxygen atoms, the four

basis wave functions are:

(1)L,, = --r-A71 ela, s(F + i?)))

= ed.)11 a, P. (F ±

itlf 1

I
71171 e I Py (F (at + JO))

p 1) -T-N7 e a'Pzj"(c7/ +/2)))

(5.3)

(5.4)

(5.5)

(5.6)

where a represents anion of oxygen, N is the total number of atoms contained in each

layer, 1 is the layer index, di is a vector leading toward layer 1 from the origin of the

coordinate system, k is a two-dimensional wave vector and i? is a two-dimensional

Bravais lattice vector. If the layer contains zinc atoms, the four basis wave functions

are:

(5.7)



loop )=-Ie"lc,P.(7-(ai +0)vT,r

py(r- j?)))

1

1():''Pz)= jfe"le'Pz(F(as + TO))
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where c represents the zinc cation.

These basis wave functions follow Bloch's theorem. That means they satisfy the

following equation:

OL(7+)0.eii-koLn(F) (5.11)

where b, n are the labels for atom and atomic orbital respectively, k and R are

respectively a two-dimensional wave vector and a Bravais lattice vector. k is found to

take N distinguishable values if Born-Von Kaman boundary conditions are applied:

2

k = mi integer. (5.12)

where b1 and b2 are defined in equation (5.2), NiN2 = N is the total number of atoms

in each layer, and is equal to the number of unit cells of the two-dimensional Bravais

lattice. It can be easily shown that the area Ak of the two-dimensional k -space per

allowed value of
A

is (21) . So, the number of allowed wave vectors in a primitive

cell of the two-dimensional reciprocal lattice is equal to N. If our model consists of L

layers, we have a total of 4LN basis wave functions.
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In the space spanned by the total 4LN. basis wave functions of our "layered"

model of L layers the Hamiltonian is a 4 LN x4LN matrix. A matrix with size of

4LN x4 LN is too large to handle.

We can prove, however, that only those basis wave functions with the same

wave vector k will mix because the Hamiltonian has the periodicity of the two-

dimensional Bravais lattice. We know that the system is invariant under a translation

by any two-dimensional Bravais lattice vector R. So, if we denote the translational

operation of any given Bravais lattice vector 1? by the operator TR, the invariance

property of the system is expressed as,

TRHT;1 = H (5.13)

where H is the Hamiltonian of the system. Following Bloch's theorem of equation

5.11, any wave function of equations 5.3 to 5.10 1 4)/(10) satisfies,

TR 1 c (0) = e'l $o, 00 )

Hence,

(5.14)

( 0 , ( ii, ; ) 1111.12(i i 1:)) = (4) (li; ,)1T;1 TRH T;1 TRIO 12(rc2))

= ei(C2-1711)4 (4) 11(ki)142(k-la)

and thus,

(5.15)
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(1e4C244).k)(0(k,)11/1012(Eia)= 0 (5.16)

Since equation (5.16) has to hold for an arbitrary two-dimensional Bravais lattice vector

R, we arrive at:

(C, (k) IHI Oh (k/a) ' 80c;, ka (5.17)



Equation (5.17) states that two basis wave functions of two different wave vectors do

not couple to each other. Therefore, the huge Hamiltonian matrix of 4LN, by 4LN, is

reduced to N, smaller matrices; each has the size of 4L by 4L. It is feasible to

diagonalize the Hamiltonian matrix of size 4L by 4L if L is not too large.

For a given wave vector k , the 4L basis wave functions are

1 4f,(7-))=-1 (5.18)
ITV

where 1, d, 12)) is the atomic wave function of the atom at site di + I? in layer

1 where 1 runs over the layers starting from the top (1=1) to the bottom (1= L); n

runs over the orbitals s , px, py, and px. We assume that every layer has the same

number of atoms N. The Hamiltonian matrix elements H1,n;1
ri can be written as,

(i) = (00,011H10.0e(F))

1 iIe{k -A+ii, 4) (1, nfr. (F Jr _k))
N

In equation (5.19), (/,n(F- 1?-)11-111' , n' d,. R)) is the Hamiltonian matrix

element between the atomic orbital n of the atom located at + R in layer 1 and the

atomic orbital n' of the atom located at d,. + k in layer /' . Under the nearest neighbor

approximation, (1,n(F d, 12)1H111 ,n' -k)) is equal to zero unless both 1' =1

and k= k in the on-site case, or, l' 1 = ±1 for the nearest neighbor case. Hence,

equation (5.19) is reduced to

(5.19)
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kna.,,e(ii)=Ieij'au (1, n(F)11-11r ,n' (r )) (5.20)

where, for a given atom in layer 1 , am. runs over the nearest neighbor atoms in layer l'

if t -1= ±1. If /' = 1, itu is zero and the summation in (5.20) is removed. When l' =1,

we assume that (1,n(111H11' ,n' (0) is not zero only if n = n' , as in Chapter 3. When
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1' 1= ±1, au may take one vector value or three vector values depending on what kind

of atoms are in layer 1 and whether l' 1 is positive or negative.

cation of zinc 0 anion of oxygen

Figure 5.2 The possible nearest neighbor relations

Figure 5.2 above shows in the middle that an anion can be directly on top of a cation

along the c-axis. This is because an anion is always sitting directly above each cation

along the c-axis in the wurtzite crystal structure. However, when we view a layer of

cations as sitting on top of an anion layer we get two cases. These two cases are

represented by the left and right sides in figure 5.2.

The nonzero Hamiltonian matrix elements (1,n(F)11111' ,n' d, r )) between

atomic orbitals are parameterized in the way discussed in Chapter 3. The Hamiltonian

matrix is obtained in terms of these parameters. After diagonalizing the Hamiltonian

matrix we obtain the electronic structure of our layered surface model.

5.4 ZnO Surface Electronic Structure

In this section, we discuss the results for the unrelaxed surface first. Then, we

will follow Harrison's d" rule[14] to modify that part of the Hamiltonian matrix that is

related to the top layers of our layered model. Harrison's d' rule states that the
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interatomic matrix elements scale from material to material quite accurately as the

inverse square of the interatomic distance between atoms. We will apply this 41-2 rule

to discuss the effects of possible surface relaxation in our layered model.

5.4.1 Unrelaxed ZnO surface electronic structure

We use the same parameter values as for the bulk electronic structure in chapter

three. Figure 5.3 shows the unrelaxed surface electronic band structure calculated using

the layered model with 48 layers. The surface electronic structure has two parts. One

part consists of surface states and surface resonances, and the other part consists of the

bulk band structure. Figure 5.4 shows the electronic band structure obtained from the

bulk band structure calculation described in chapter three. In order to compare with the

"layered" model calculation, we calculated the energy spectra at points that project to

the lines from F to M to K, and back to IT when Ex is taken to be zero. For each

(Ex, Ey) on the lines from IT to M to K, and back to F, we calculated the energy

L . 1 27c 1 2irspectra for different Ex values evenly distributed from --- to .
4 2 c 2 c

Comparing figure 5.3 with figure 5.4, we found that the bulk band structure is very

well reproduced by the layered model.

Surface states and surface resonances are identified by calculating the charge

density. The charge density is localized within the top layers for both surface states and

surface resonances. The density decays exponentially into the bulk for surface states

while for surface resonances the density does not decay exponentially. As

demonstrated in chapter four, an eigenstate corresponds to a surface resonance if the
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eigen energy is within the bulk spectrum. It is a surface state if the eigen energy of the

state is in the energy gap, larger than the upper bound, or smaller than the lower bound

of the spectra at the particular k point.

The surface states near the top of the narrow, lowest valence band around -20

eV correspond to oxygen 2s states in the top oxygen layer. Above the upper valence

bands but below the lowest conduction band one finds surface states mainly derived

from oxygen 2p, states in the top oxygen layer; these are coupled slightly to the Zn 4s

and 4p states in the layer underneath. The surface states whose eigen energies fall

between the middle and uppermost conduction bands have Zn character. These surface

states, derived mainly from the states of Zn 4s character in the second layer, have a

sizable admixture of top oxygen 2p, and Zn 4p, , and small amount of top oxygen

2pxo, and oxygen 2p, in the third layer. Finally, Zn 4pxy derived surface states and

surface resonance have a sizable mixture of top oxygen 2p ( see figure 5.3 ).

5.4.2 Consequences of relaxation of the top layer

We will discuss two possible ways to relax the position of the top oxygen layer:

pushing it outward or pulling it inward. The result of our calculations show that the

electronic structure favors pulling it inward.

If the top layer is pushed outward about ten percent, the coupling strength

between the top two layers reduces to about eighty percent using Harrison's c1-2

rule[14]. Figure 5.5 shows the surface electronic structure when the top layer is

pushed outward about ten percent. Although we find surface states of Zn 4p character

at lower energies, they are above the lowest conduction bands. Those surface states

have higher energy eigenvalues than the corresponding states in the unrelaxed structure.

We can see that the surface states corresponding to the top oxygen 2s and 2pz states are

higher than those in the surface electronic structure of the unrelaxed case. In addition,
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eigenvalues pertaining to the top oxygen 2pxo, states jump up from the upper valence

bands. Hence, the total electronic ground state energy of the system increases if the top

layer is placed farther away from the Zn layer underneath.

Figure 5.6 shows the surface electronic structure when the top layer is pulled

inwards about ten percent. We see that the eigenvalues of occupied surface states are

pulled down when the distance between the top oxygen layer and the zinc layer

underneath it decreases. Also, the eigenvalues of the top layer oxygen 2s atomiclike

surface states are moved down from above the narrow lowest valence bands around -20

eV to below those bands. In addition to the lowering of the energy of the oxygen 2Pz

surface states, oxygen 2pxo, surface states appear, with eigenvalues in the lower part of

the upper valence bands, and occupied 4s surface states appear with eigenvalues below

the upper valence band.

Those zinc 4s surface states show a mixture of top layer oxygen 2p, third layer

oxygen 2Pz and the second layer zinc 41), states. The top layer of oxygen 2pzy surface

states have a sizable mixture of second layer zinc 4p,. Relaxing the top oxygen layer

closer to the zinc layer underneath is favored from an electronic energy point of view,

since it results in a lower total ground state energy of the system.
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Chapter 6

Linear Optical Properties of ZnO Bulk and ZnO Surface

The linear optical property of a system is characterized by its first order

susceptibility tensor 51(1) according to the semiclassical theory of interactions between

the electromagnetic fields and atomic matter. This susceptibility tensor i(I) of rank

two is a macroscopic quantity. We obtained the formula for i(1) in terms of eigen

energies and wave functions of the system by using the density matrix formalism in

Chapter 2. We also calculated the electronic structure and wavefunctions for bulk ZnO

in Chapter 3 and for the layered model of ZnO in Chapter 5 respectively. In this

chapter, we present the results of our calculations for the density of states(DOS), the

joint density of states(JDOS), and the susceptibility tensor i(1) for both bulk and surface

of ZnO.

6.1 The Susceptibility Tensor 3c-(1)

Z(') has complex values. Its real part is related to its imaginary part by the

Kramers- Kronig relation:

Re i(1) (0)) ...._ pl 6 Imi(1) (CO' )
6-w2O 03' 2

(6.1)

where P means principal value, Re means real part, and Im means imaginary part. We

calculate the imaginary part of i(1) and obtain the real part of i(1) from the imaginary

part using the Kramers-Kronig relation (6.1).
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6.1.1 The imaginary parts of i(1)

From Chapter 2, we know that the linear polarization is

/5(1) ( t) = i(.), (coc, )E7,(e-lwat (6.2)
b,a

where the susceptibility tensor 51(.11 (we) ) is written from equations (2.72) and (2.65) as

2 (0)
e

jeb (co a) =
.4

m a ) a n(03« Ji)
(6.3)

The notation is the same as explained in Chapter 2. If we introduce the perturbation

adiabatically, we can write (co) as

2 f?)
Eh (0)) =

a b
P# P (6.4)

mod ho.) Efi + ic

where Eii = w;;. Substituting p = ihV and the following identity,

Lim
1Lan = hth (x)

E-40 x + ic x
(6.5)

where P indicates principle value, into equation (6.4) and writing ej, (o.)) as

51(!2(0))=XTb'(0))+6ET," (w),

we obtain the imaginary part jtb" ((o)

(6.6)

2
ehi(!)," (0)). 7c1,[] Re[v;vbfilf,10)8(hcoE) (6.7)

ma)

where Re means the real part; i and j run over all single-particle electronic states. In

our band structure calculation, i(and j) is replaced by n and ii; n is the band index,

is a reciprocal wave vector. When i runs over all the single-particle states, its

corresponding n and k will run over every band and every possible wave vector.

Therefore, we obtain from equation (6.7) the following:

n'Ic%nk

a r7a
./c7.8(h°) E -)mw

Re[ v k.k. n

=WI (0))

cle
(6.8)



In section 6.1.3, we will derive the following important relation:

Vbnim,i, cc Soc,

If we put relation (6.9) in equation (6.8) we obtain

where

5c(22"(0))= I Fne (E)en3)8(h°) En. n)
nnl

ha
Fnd(ii) = n[e 1 Re[V°_ -Vb - -].

rik;n'k n' k;nkmw

6.1.2 From summation to integration

(6.9)

(6.10)

(6.11)
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The summation over all allowed values of ic in equation (6.10) is carried out as

follows:

VI (27t)3
16k (6.12)

E Ai

In the limit V > co, we have t.k > 0 and the summation approaches an integration.

For the bulk calculation, E. space is three dimensional and we write

v fd3ky,Fnn, (EV2) o(h 'en)0) E5c- (al:, , (0)) = _ j (6.13)

where V is the volume of the ZnO crystal and the integral is over any primitive cell of

the three dimensional reciprocal space. For our layered model, the £ space is two

dimensional and we write

5--,(:),,,(.). 2
(27

A 2 i d2iiI F... (Of n(,c;) OW En .)
0

(6.14)

where A is the area of one layer and the integral is over a primitive cell of the two

dimensional reciprocal space. If we assume that the layered model contains L layers,
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then its volume is V = Lc x A, where c is the height of a ZnO crystal unit cell. So,

equation (6.14) can be written:

(" (m) 8Xab V d2E F (EV2)800) E n)
(2702 Lc nn.

In the rest of this thesis, we calculate the susceptibility per unit volume.

6.1.3 The matrix element
n'

V b - -
nk, k'

bThe matrix element V
nEn'-i, in equation (6.11) is defined as

vbni,n1. ivb145 (6.16)

(6.15)

where I n) is a single-particle wavefunction with band index n and wave vector E.

From equations (3.4) and (3.7), we write 1 n) as follows:

In) = y, czokg,o)
a,o

= ,-1 cn Idelk.(A+3°)1a,o(T- (T? + ita))) (6.17)
-s1

where I a, o(r (R + cia ))) is the wavefunction of the atomic orbital, 1? runs over all the

lattice vectors in the direct Bravais lattice. The direct Bravais lattice is simple

hexagonal for our bulk calculation and it is a triangular net for our layered model

calculation. N is the total number of unit cells in the bulk case while it is the total

number of atoms in a single layer in the layered model case. c:, is the admixture

coefficient and it is also a function of the wave vector E. The index a of can0

represents one of the four basis atoms in a unit cell for the bulk case, and for the

layered model case it represents the atom in a specific layer.

Substituting equation (6.17) into equation (6.16) we obtain
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1 . v- I 1\ b F +3..)))
'°

Vbdi = L L c ca. 2., e a,o q?+ (la))1V
a,0 a'

(6.18)

In our calculation, we make the on site approximation. That is to assume

(a, o(F 41?- + c70))1VbIa' ,o' ( r(k -Fila.)))= (a, o(F)IVb la' ,o')Sad8 (6.19)

After substituting (6.19) in (6.18) and summing over a' , R, and Re, we obtain

* .

=
n can,e(a,o(7-)1Vbia,o' (F))8-- (6.20)kle

The integral of (a, o(F)1Vb la, o' (F)) in equation (6.20) is nozero only if one of o and o'

is the s-orbital while the other is pb orbital; b can be x, y , and z . We use a program

written by Dr. Jansen to obtain the wave functions of the atomic orbitals. Then, the

integral of (a, o(F)1V1a, o' (F)) is performed for atom Zn and atom 0 and the results

are:

(Zn,px(F)111Zn,s(F))= 1.04

(0,p,(7-)I a 10,s(0)= 1.001

Combining equation (6.20) with either equation (6.13) or equation (6.15), we can

calculate the imaginary parts of the first order susceptibility for the bulk and layered

model respectively.

6.2 DOS, JDOS, and of of ZnO Bulk

The imaginary part of the first order ZnO bulk susceptibility is given by

equations (6.13), (6.11), and (6.20),

2

=(oh11 (0)) = 17.1d3II( enRe[VameN,',4(ho) Eb.) (6.21)
nn. 21rinhe)



where n' runs over the unoccupied conduction bands and n runs over the occupied

valence bands. Here, we assume zero temperature. To facilitate the computation we

use the symmetry in the x-y plane of ZnO to convert the integral in (6.21) to one over

only an irreducible segment of the Brillouin zone(BZ).

We use the linear analytic tetrahedron method[21] to evaluate the integral

2

51(a)," (0)) = fd3kI( e" Re[VLVb.P(h03 En.n) (6.22)
IBZ nri 2/mho)

where IBZ stands for an irreducible segment of the BZ. To illustrate the method, we

explain how the density of states and joint density of states are calculated.

6.2.1 Density of states and joint density of states

The density of states per unit volume gn(e) for band n is defined as:

gn (c) = (21t)3 f dko(e en (0)
1

where en (E) is the band energy function and the integral is over a primitive cell in k

space. Since E = En (FC) represents a surface S. (c), we convert the integral of equation

(6.23) to an integral of

(6.23)

83

f ds

(271) s:/(01Ven(k)1
(6.24)

where the integral is over a space surface inside a primitive cell on which the band

energies are the same for every wave vector k . cn(E)1 is the absolute value of the

band energy gradient. The key to doing the integral numerically is to break the surface

Sn (c) into many small pieces, with each small piece treated as a plane approximately.

This is done by dividing the primitive cell into many tetrahedrons. The contributions

Agn (c) from each tetrahedron are calculated and added to give g(c).
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Each tetrahedron has four vertices. We calculate the en (E) values at these four

vertices and we obtain en (E) values anywhere else inside the tetrahedron by

interpolating linearly using the values obtained at the vertices. We find that if a

tetrahedron contains a piece of the e = en (ii) surface, it may be either a triangle or a

quadrilateral.

We denote values of the en (E) at four vertices by el, 82, 83, 84 and assume that:

Et E2 £3 E4

Then, the contribution Agn(e) from the tetrahedron is as follows:

2
-1- vfo e4 e<e3
1

Agn(e) =
2V"11 e35e<e2
1

2 vf2 e2e<e1
0 £ < e4, or e ?. ei

where v is the volume of the tetrahedron multiplied by six, and

2(8-84)
(el 84)(82 84)(83 84)

(8-63)(81 8) (82 0(8-84) 1

(81 83)(82 63)
+

(82 63)(82 84) (81-84)

(e---8,)
2

f2 (el 84)(61 63)(81 62)

Figure (6.1) shows the density of states for zinc oxide bulk. The joint density of states

Gn.(e) is defined as G..(e)= (22 2 3 d3i-c8(E en. (0) where n' and n represent

conduction bands and valence bands respectively, En.. (k) is the eigen energy difference
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Figure 6.1 Density of states for ZnO bulk.
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Figure 6.2 Density of states for ZnO layered model of 48 layers.
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Figure 6.3 Joint density of states for ZnO bulk.
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Figure 6.4 Joint density of states for ZnO layered model of 48 layers.
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between the conduction band ri and the valence band n at wave vector E . The joint

density of states of the bulk ZnO crystal is shown in figure (6.3).

6.2.2 The first order susceptibility of ZnO bulk

The integral for i(°" (0)) in equation (6.22) differs from equation (6.23) by an

additional function. We treat the additional function Re[VL.V.b..] as constant on the

surface found inside each tetrahedron. The constant value is obtained by evaluating the

function at an arbitrary wave vector inside the tetrahedron.

We divide the IBZ into 400,000 tetrahedrons. The imaginary part 5c--(:)" (0)) of

the first order susceptibility is shown in figure (6.5). For our first order susceptibility

calculation, the energy resolution is 0.04 eV . The real parts are obtained using the

Kramers-Kronig relation and are presented in figure (6.6). Notice that there are only

two components shown in figures (6.5) and (6.6). This is because 31(1) of ZnO has only

two independent nonzero elements: it) and i(z,l) = i (yyl ) on the diagonal. We calculated

the off-diagonal components and they were found to be zero as they should due to the

symmetry of ZnO. From i(I) we calculated the energy loss function and the results

are shown in figure (6.7).

6.3 DOS, JDOS, and i(I) of Layered Model ZnO

Similar to the ZnO bulk, the imaginary part of the first order layered model

ZnO susceptibility is given by equations (6.15), (6.11), and (6.20):

i(al)b" (CO =
87C fd2k-E( eh} )2

Renan,Vnb,a105(h(0 kn)
Lc me 2/tmh0)

(6.25)

where n' runs over the unoccupied surface states, surface resonances, and conduction
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Figure 6.5 Imaginary part of the 1st order susceptibilities.
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bands; n runs over the occupied surface states, surface resonances, and valence bands.

The integral in equation (6.25) is over a primitive cell in two dimensional k space.

In analogy to the linear analytic tetrahedron method in the 3D integration, we

use the linear analytic triangle method to perform the integration in equation (6.25). To

illustrate the linear analytic triangle method, we describe how the density of states is

calculated.

6.3.1 The density of states and joint density of states

In 2D k space, the density of states is defined as

g (E) = (21c)2 f d2-(c en (0)
7

where e (k) is the band energy function and the integral is over a primitive cell in 2D

E space. Since E = (lc) represents a curve tn(c) in the 2D k space, we convert the

integral of equation (6.23) to an integral of the form:

(6.26)

2 r dl
g (e) =

(2102 colVen(E)1
(6.27)

where the integral is over a curve which is inside the primitive cell and on which the

band energies are the same for every wave vector E IVE.(11 is the absolute value of

the band energy gradient. The integral is calculated numerically by breaking the curve

tn(c) into many small segments, with each small segment approximately treated as a

straight line. This is done by dividing the primitive cell into many triangles. The

contribution Agn(e) from each triangle is calculated and added to give g(c).

Each triangle has three vertices. We calculate En(ii) values at these three

vertices and we obtain the values ofEn (E) anywhere else inside the triangle by
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interpolating linearly using the values at the vertices. So, if a triangle contains a

segment of the curve e = en (E) this segment will be a straight line.

Let's denote the values ofen(E) at the three vertices by cl, £2, 83 respectively

and assume that:

El e2 S 83 .

Then, the contribution Agn (e) from the triangle is found to be:

2(e el)
Sk 5

(83 8) (82 -El) 2 3

e1 <8 82

Agn(e)
2(83

82 < 5_ 83\ LT
(83 )(E3 -e2)
0 E Ei or e ?. e3

where S - is the area of the triangle in the 2D k space.kik23

We calculated the density of states for our ZnO layered model with 48 layers.

The results are shown in figure (6.2). Comparing the DOS of ZnO bulk in figure (6.1)

with the DOS of the ZnO layered model in figure (6.2), we find that they are very

similar. This similarity is expected since the electronic structure of the layered model

consists of the electronic structure of the bulk and the surface states, and the number of

surface states is much smaller than the number of bulk-like states. The number of

surface states do not change when we increase the number of layers in our layered

model. Figure (6.4) shows the joint density of states for our ZnO layered model.

Again, it is very similar to the joint density of states in figure (6.3).
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6.3.2 The first order susceptibility of ZnO layered model

The integral for El" (co) in equation (6.25) differs from equation (6.26) by an

additional function. We treat the additional function as constant on the line segment

inside each triangle in the 2D space. The constant value is obtained by evaluating

and averaging the function values at the three vertices of the triangle.

We divide the 113Z into 3,000 triangles and the calculated imaginary parts
0), ,xab (co) of the first order susceptibility for our layered model of 48 layers are shown

together with the bulk results in figure (6.5). The real parts and the energy loss

functions are calculated from the imaginary parts. They are also presented together

with the bulk results in figures (6.6) and (6.7).

6.4 Results and Discussion

We plot i(,,') and LI) on the same graph in figures (6.5) and (6.6) so that the

polarization dependence is clearly shown. In figures (6.8) and (6.9), we compare the

results of the ZnO bulk calculation with the layered model calculation. As one can see

from the figures, there are small differences between the crystal bulk calculation and

the layered model calculation. This tells us that the linear response of ZnO to

electronmagnetic fields is a bulk feature and the surface effects can be safely ignored.

We will see in next chapter, however, that the surface plays a significant role in the

second harmonic response of zinc oxide.

For the first order susceptibility, the main difference between the bulk and the

layered model lies from 2 eV to 3.3 eV in the photon energy. The nonzero values of

the imaginary parts of both je and 5t) for the layered model in this range are pure

surface features. However, this pure surface feature is insignificant because the values
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are small and they decrease as we increase the number of layers in our layered model.

We calculated the normal-incidence reflectivities from vacuum using the

following formula:

(n2 -1)2 +K22
R=

(n2 +1)2 +x22

where n2 and K2 are respectively refractive index and absorption coefficient, which are

defined in equations (2.30a) and (2.30b) based on the first order susceptibilities. The

results are shown in figure (6.10). Figure (6.11) shows the reflectance spectra of ZnO

measured by R. Klucker et aiE22]. The experimental measurements made by J.L.

Freeouf[23] are shown in figure (6.12). Above the band-gap exciton around 3.3 eV,

the first structure observed by J.L.Freeouf is at about 8.7 eV. He did not find the small

structure reported by R.Klucker et al at about 7 eV. At higher energies above 10 eV,

although these two experimental results give similar spectral shape and polarization

dependence, their magnitudes are different.

Table 6.1 Energies (in eV) of prominent features in the reflectance spectra of ZnO

E_Le(1) 3.3 7.00 9.2 12.6 14.0 15.2 17.1 19.3 20.8

Elle0 3.3 7.05 8.95 13.8 14.7 15.6 18.9

El I E(2) 3.4 9.76 12.7 13.0 14.9 17.7 19.3 20.2

Ele(2) 3.4 8.68 9.52 11.5 13.4 14.6 15.7 18.7 20.3

Ele(3) 3.3 8.6 11.0 12.5 13.8 15.2 17 20.5 23

Elle(3) 3.3 8.8 10.2 11.1 13.8 15.2 16.2 21 23.5

(1) experimental results by R.Klucker et aI[22].
(2) our calculated results.
(3) experimental results by J.L.Freeouf[23].
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In order to compare our results to those experimental results, we plot the

reflectivities calculated using our layered model in figure (6.13) for photon energies

ranging from 0 to 25 eV. The peak positions in the reflectivity spectra of experimental

results from R.Klucker et a1[22] and J.L. Freeouf[23] as well as our calculation are

listed in Table (6.1).

The small structure at about 7 eV reported by R.Klucker et al does not show up

in our calculation. This might explain why J.L.Freeouf did not see such peak around 7

eV even although he carefully studied this region of the spectrum and searched for the

peak. There are no agreement as of the reflectance magnitude among the experimental

results and our calculated results. However, there are quite good agreements as of the

spectral shape among them.
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Chapter 7

Second Harmonic Optical Response Functions

of ZnO Bulk and ZnO Surface

Second harmonic generation is a special case of sum frequency generation in

nonlinear optical phenomena. It results from the second order nonlinear response

p-(2)(co,k) of the medium to the incident laser beam. In chapter two, we defined

p(2)(o),Tc) in terms of the second order susceptibility tensor i(2) and expressed im in

terms of eigen energies and wave functions of the medium. In this chapter, we will

derive an expression for the imaginary part of x(2) in a form suitable for numerical

calculation. We will also discuss our numerical integration methods for evaluating

these expressions for ZnO bulk and ZnO layered model respectively. The results for

i(2)(2co) from ZnO bulk calculations and ZnO layered model calculations will be

presented, compared, and discussed.

7.1 The Susceptibility Tensor 1(2)

x(2), like i(1), has complex values. Its real part is related to its imaginary part

by the same Kramers- Kronig relation[3]:

Re i(2)((o) _2 pi ay

0,2

5t (2) ( )do

0
it ( CO2

(7.1)

where P means principal part, Re means real part, and Im means imaginary part. To
(2)compute the second order susceptibility tensor x , we first calculate the imaginary part
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= f 1

of t2', then we use the Kramers-Kronig relation (7.1) to obtain the real part of 1( -'2'

from the imaginary part.

In chapter two, we have expressed the second order nonlinear polarization as

Pa(2)(t)
Ii(ab),.(0) +0)0) L.- ei(o).+(ofs)t

b,c;a43

(7.2)

= (2)where the susceptibility tensor ta;cko.) + 60 is defined from equation (2.73) and

(2.66) as

trb21.(0) + =
ie3 p Aic fil0) fi(k0)

j,k M
3
(Da(00 (0), + h(0), (0r3 (0)i5 (Oki) *3, (Oik

(7.3)

and we use the same notations as in chapter two. For second harmonic generation, we

have

(.0 = p w,

So, equation (7.3) becomes:

t ie3 P; 1)1;K.
fik(0) ffr

(0)

t(20))= 2.7 , + ,
i j ,k 2m 033 OW CO fi) h(a) (1) ki ) kr)) C° jk)

(7.4)

where tb2),(2() is called the second harmonic optical response function. If we

introduce the perturbation adiabatically, we should write i(ab2),(2(o) as

= r ie3 P`i; P"kPcki
fr) fir)

tab2)c (2W) = y, 2m3co3 2hcoEii +ie hcoEAi + ic hw E ;k +iE

where Eii = ho)fi. Using the following identity

Lim
1 =1[P(-1) P(-1 in8(x) + in 8(x + y)]

6-0 (x + ie)(x + y + ie) y x x+y

=(where P indicates principal value, and writing j-cab%(2(o) as

(7.5)

(7.6)



ec(20)) = X(.22; (20))+ it."(20)),

we obtain the imaginary part i-(a1,2)," (2w)

tab2),'. (20 = Ea[er IIPkci) {24°)8(2hco E
i,j.k 2 mw E

fik( CO98(h Eik ) firCO8(h Ejd )1

where Im means the imaginary part; i, j, and k run over all single-particle electronic

states. In our band structure calculation, i(and j ,k) is replaced by n and k; n is the

band index; k is a reciprocal wave vector. When i runs over all the single-particle

states, it corresponds to n and k running over every band and every possible wave

vector. As we did in chapter six, we make the zero temperature approximation and

continue to assume Vbn,i, « Su,. Then, the expressions for the imaginary part of

(7.7)

(7.8)
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trb2),.(20)) for ZnO bulk and ZnO layered model can be obtained from equation (7.8).

For ZnO bulk, the k space is three dimensional and we have:

3

Xab k(1)) = E 4-1 d3TC=(1)t / eh

occupied) Amply) k(all 21tmw
{

BZ

28(2hwEfi)Re(VfibikVcid)
hco Eki

8(ho) Eii Re(Va4VbfiTk)+
.

hco Eik

sow Efi )Re(v:vb4v
he)._ Eki

(7.9)

where the matrix elements V7j and transition energies Eft are implicit functions of the

wave vector E. The summation of index i runs over only valence bands. The

summation of index j runs over only conduction bands. However, the summation of

index k runs over both valence and conduction bands. The integral is over a primitive

unit cell in the 3D k space.



For ZnO layered model, the k space is two dimensional and we have:

E(
eh ]3 r

0)) = y, d2k{
nix i(occupied) j(empty)k(al MCI) BZ

28(2ho) Eft)

hco EA;

8(ho)Efi)
RekVa.Vb-Wk)

ho) Elk

6(ha) E Re(V1Vb4Vcfl)}
hco E (7.10)
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where L is the number of layers of our layered model; c is the height of a ZnO crystal

unit cell. The integration is over a primitive unit cell in the two dimensional k space.

This tab2)c(20 has been divided by the volume V =L cA.
4

We can see from equations (7.9) and (7.10), that resonances can occur when

either w or 2co is the frequency difference between an unoccupied single-particle state

and the occupied single-particle state. The ZnO symmetry point group is C6v in the

Shoenflies notation, or 6mm in the international symbolism. Because of this
=(2)symmetry, only seven out of the total twenty seven tensor elements of Lic(20.)) are

nonzero and only four of the seven are independent. The nonvanishing elements and

the relations between them are as follows:

E(2) E-(2) ,,==(2) E(2) ,=-(2) ,,,1" (2)

Aazz A. szx = yzy, yyz zxx zyy

In chapter six, we have discussed how to evaluate the matrix element V: . In next two

sections of this chapter, we will discuss how to evaluate the integrals in equations (7.9)

and (7.10) respectively.



106

7.2 Calculation of ZnO Bulk Second Harmonic Response Functions

The imaginary part of the second harmonic function of ZnO bulk is given by

equation (7.9). If we make a,b, and call equal to z in equation (7.9), we obtain the

formula for i(2)(2o)). The formulas for other nonvanishing elements can also be

obtained by properly assigning values to a,b, and c in equation (7.9).

One way to evaluate the integral of equation (7.9) is to assume that

Re(V;Vbik Re(VajbfiVO Re(V:V6,4Tfi)
, and are all constants over a triangle or a

hco E h(0 Eik hco Ey

quadrilateral plane of either 2hco = Eft or ho) = Eft so that the linear analytic

tetrahedron method introduced in chapter six can be used here exactly the same way.

Although the resonant-energy denominators of ho)Eki, ho) Elk, and ho) Eji do not

give any ill-behaved contributions to the response functions in our calculation, we find

that we obtain better convergence if we take only the matrix elements as constants and

integrate
1 1 1

, and analytically.ho)Eki ho)Eik hco-

1
To integrate analytically, we first obtain E ki values at the three

ho)Eki

vertices of the triangular plane contained inside the tetrahedron by interpolating linearly

from the values at the four vertices of the tetrahedron. Then, we obtain the function of

Eb over the triangle plane by linearly interpolating from the Eki values at the three

vertices of the triangle. If -Eid has values A, 12, and f3 at the three vertices of the

ds
triangle respectively, the results of the integral

1
j" , where As is the

Mangle plane

area of the triangular plane in the E space, are as follows:



1. if A # f2 # f3:

2. if fi = f2 # .f3:

3. iffi=f3*.f2:

4. if fi # f2 = f3:

5. i
1 1f f f- f-' ' ' : 2 ha) + A

1 ha)+L 1111h0)+41h() + f3
In I ha) 4131 ( c f )(f, fl )- 2

..,( f3 f2 ) ( f3 fl )

Tito +fl inlhaM" fl I
+(f3 -11)(f2 -A)

ham-f3

(.f3-f)2

ho o + f2

(f2-11)2

hco + f3 1

ho)+A (.f3-11)

ho)+ f2

ho )+ fi

(f2 A )2 ho +f2
ho +f1 inho.)-Efi
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We divide the IBZ into about 100,000 tetrahedrons. Our results for the
=(2)imaginary parts of the nonvanishing elements of Lb,(2(0) are presented in figures (7.1),

(7.3), (7.5), and (7.7). The real parts are obtained from the imaginary parts using the

Kramers-Kronig relation. The results for the real parts are presented in figures (7.2),

(7.4), (7.6), and (7.8).

7.3 Calculation of Second Harmonic Response Functions for the ZnO Layered
Model

The imaginary part of the second harmonic response coefficients for ZnO

layered model is given by equation (7.10). To evaluate the integral in equation (7.10),

we use exactly the same method discussed above for the zinc oxide bulk calculation.

The only difference is that we do the integral now in two dimensions instead of three
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Figure 7.3 Bulk crystal Im x.(21 (2Q).
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Figure 7.4 Bulk crystal Rex (2t6).
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dimensions. In this two dimensional case, we integrate
hco 1 Eki h03-

1

Eik
, and

1
analytically over a line segment instead of a triangular plane in the three

taw Eg
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dimensional case.

We divide the two dimensional IBZ into about 3,000 triangles and we take

0.028 eV to be the energy resolution in all the second harmonic response coefficients

calculations for the bulk and the layered model. Figures (7.9), (7.11), (7.13), and

(7.15) show the imaginary parts of the second harmonic response functions i(.2)(2co),

Z(2) (2(0), k(2) (2w), and (2co) calculated from our ZnO layered model with 48

layers. The real parts obtained using the Kramers- Kronig relation from the calculated

imaginary parts are shown in figures (7.10), (7.12), (7.14), and (7.16).
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7.4 Comparison and Discussion

In order to compare the results from the bulk calculation to the results from the

layered model calculation, we plot them together in figures (7.17)-(7.20) for each of the
. .

four second harmonic optical response functions jez)(20)), 1(2) (2(0), Z(2)(20)), and

i(2)(20)). Although the ZnO second harmonic response spectrum calculated using the

layered model shows patterns similar to the spectrum calculated for the bulk crystal, the

peaks are shifted and the magnitudes are different. The significant differences between

the results of the bulk calculation and of the layered model calculation tell us that the

surface plays a very important role in the second harmonic optical response of ZnO to

the electromagnetic fields. To understand the nonlinear optical phenomena of the

second harmonic generation of ZnO, one has to somehow include surface effects.

The contributions from surface states to the second harmonic optical response

functions should decrease as the number of layers in our layered model increases. This

is because the number of surface states remains unchanged while the total number of

states increased if we increase the number of layers in our layered model. To check out

which features are mostly due to pure surface states in the spectrum, we constructed our

layered model with various number of layers and calculated the spectrum for each
=--(2)nonvanishing element of LI.(20)). The results are shown in figures (7.21)-(7.24).

From figures (7.21) to (7.24), we see where the spectrum scales inversely with

the number of layers. The spectrum does not, however, scale with the number of

layers in most regions of the spectrum. One might naively expect that in these regions,

the layered model calculation should give the same results as the bulk crystal

calculation. They are, however, significantly different from one another. Taking the

surface into account, we not only obtained the surface states but also changed the bulk-

like state wave functions. It is these changed wave functions that cause the differences
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between the layered model calculation and the bulk crystal calculation in the region of

the spectrum where there is a negligible direct contribution from the surface states.

Why do the changed bulk-like wave functions have such a significant impact on

the second order harmonic response but almost no effects at all on the first order

response? Why are similar patterns found in the bulk crystal calculations and the

layered model calculations, but why do the peaks shift their positions and magnitudes

so significantly? We leave these questions unanswered.
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Appendix A The C program computing the Hamiltonian of ZnO

/*********************************************************************

This program accepts Bloch wave vector (k[1],k[2],k[3]) defined as
k=2*pi*(k[1]/a,k[2]/a,k[3]/c) as inputs where °a' & 'c' are the lengths of unit cell in
hexagonal Bravis Lattice and k is the Bloch wave vector. Then, it calculates the 16x16
Hamiltonian matrix elements of ZnO crystal bulk and stores the results in the two 16x16
matrices of "mtrx" and "imtrx" for real and imaginary parts respectively.
********************************************************************/

#include <math.h>
#include <stdio.h>

void wrztmtrx(mtrx,iintrx,k)
double mtrx[16][16],imtrx[16][16],k[4];
{

static int IsFirst=l;
static double A1S,A2S,C1S,C2S,A1P,A2P,C1P,C2P; 1* Parameters of the */
static double vss,vsp,vps,vpp,vppi; /* Hamiltonian matrix */

int i,j;
double xp,ratio,cfi,cfa,sfi,sfi2,pi,u,x1,d[5][4],dy[5][4],kd[5],kdy[5];
double exc2,exc3,exs2,exs3,eyc2,eyc3,eys2,eys3;
extern FILE *fpInput;

if(IsFirst) I
IsFirst=0;
fscanf(fpInput," %If ' ,&AlS);
fscanf(fpInput,"%lf',&A2S);
fscanf(fpInput,"%lf',&C1S);
fscanf(fpInput," %lf",&C2S);
fscannfpInput," %lf',&A1P);
fscanf(fpInput," %lf',&A2P);
fscanf(fpInput," %lf',&C1P);
fscanf(fpInput," %lf",&C2P);

fscanf(fpinput," %If" ,&vss);
fscanf(fpInput," %lf' ,&vpp);
fscanf(fpinput,"%lf',&vppi);
fscanf(fpinput," %lf',&vsp);
fscanf(fpinput," %lf" ,&vps);
}
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for(i=1;k---4;i++)

{

kd[i]=0.0;
kdy[i]=0.0;
for(j =1; j<=3; j++)

{

d[i][j]=0.0;
dy[i] [j] =0.0;
)

I

for(i=0; i<16; i++)
for(j= 0;j <16;j++)
(

mtrx[i] [j]=0.0;
imtrx[i] [j].0;
}

xp=0.5*sqrt(3.0);
ratio=sqrt(8.0/3.0);
u=3.0/8.0;
pi=4.*atan(1.0);
cfi2=1.0/(1.0+3.0*ratio*ratio*(0.5-u)*(0.5-u));
cfi=scirt(cfi2);
sfi2=1.0-cfi2;
sfi=sqrt(sfi2);

d[1] [1] =0.5 ;
d[ 1] [2]=d[2] [2]=sqrt(3.0)/6.0;
d[2][1]=-0.5;
d[1][3]=d[2][3]=d[3][3]=0.5-u;
d[3][1]=d[4][1]=d[4][2]=0.0;
d[3][2]=-1.0/sgt(3.0);
d[4] [3]=-u;

for(i=1;i<5;i++)
for(j=1;j<4;ji+)

{

dY[i]Lil=d[i]Lil;
if(j=--2) dy[i] [j]=-d [i][j];

}

for (i=1;k5;i++)
for (j=1;j<4;j++)
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{

kd[i]+=d[i][j]*k[j]*2.0*pi;
kdy[i] + =dy[i] [j] *k[j] *2.0 *pi;

}

exc2=cos(kd[1])+cos(kd[2]);
exs2=sin(kd[1])+sin(kd[2]);
exc3=cos(kd[3])+exc2;
exs3=sin(kd[3])+exs2;
eyc2=cos(kdy[1])+cos(kdy[2]);
eyc3=eyc2+cos(kdy[3]);
eys2in(kdy[1])+sin(kdy[2]);
eys3ys2+sin(kdy[3]);

mtrx[0][0]=A1S;
mtrx[0] [4] =vss *exc3;
imtrx[0] [4]=vss*exs3;
mtrx[0] [5]=vsp*xp*cfi*(cos(kd[1])-cos(kd[2]));
imtrx[0][5]=vsp*xp*cfi *(sin(kd[1])-sin(kd[2]));
mtrx[0][6]=vsp*cfi*(0.5*exc2-cos(kd[3]));
imtrx[0][6]=vsp*cfi*(0.5*exs2-sin(kd[3]));
mtrx[0] [7]= vsp *sfi *exc3;
imtrx[0] [7]= vsp *sfi *exs3;
mtrx[0] [12]=vss*cos(kd[4]);
imtrx[0] [12]= vss *sin(kd[4]);
mtrx[0][15]=-vsp*cos(kd[4]);
imtrx[0][15]=-vsp*sin(kd[4]);

mtrx[1][1]=A1P;
mtrx[1] [4]=-vps*xp*cfi*(cos(kd[1])-cos(kd[2]));
imtrx[1] [4]=-vps*xp*cfi*(sin(kd[1])-sin(kd[2]));
mtrx[1][5]=(vppi*(0.75*sfi2+0.25)+0.75*cfi2*vpp)*exc2+vppi*cos(kd[3]);
imtrx[1][5]=(vPpi*(.75*sfi2+.25)+0.75*cfi2*vpp)*exs2+vppi*sin(kd[3]);
mtrx[1][6]=0.5*xp*cf12*(vpp-vppi)*(cos(kd[1])-cos(kd[2]));
imtrx[1] [6]=0.5*xp*cfi2*(vpp-vppi)*(sin(kd[1])-sin(kd[2]));
mtrx[1][7]=xp*sfi*cfi*(vpp-vppi)*(cos(kd[1])-cos(kd[2]));
imtrx[1][7]=xp*sfi*cfi*(vpp-vppi)*(sin(kd[1])-sin(kd[2]));
mtrx[1] [13]= vppi *cos(kd[4]);
fintrx[1][13]=vppi*sin(kd[4]);

mtrx[2][2]=A1P;
mtrx[2][4]=-vps*cfi*(0.5*exc2-cos(kd[3]));
imtrx[2][4]=-vps*cfi*(0.5*exs2-sin(kd[3]));
mtrx[2][5]=0.5*xp*cfi2*(vpp-vppi)*(cos(kd[1])-cos(kd[2]));
imtrx[2] [5]=0.5*xp*cfi2*(vpp-vppi)*(sin(kd[1])-sin(kd[2]));
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mtrx[2][6]=(.25*cfa*vpp+(.25*sfi2+.75)*vppi)*exc2;
mtrx[2] [6] +=(cfa*vpp+sfi2*vppi)*cos (kd[3]);
imtrx[2] [6] =(.25* cfi2 *vpp +(.25 *sfi2 +.75) *vppi) *exs2;
imtrx[2] [6] +=(cfi2*vpp+sfi2*vppi)*sin(kd[3] );
mtrx[2][7]=(vpp-vppi)*(0.5*exc2-cos(kd[3]))*sfi*cfi;
imtrx[2][7]=(vpp-vppi)*(0.5*exs2-sin(kd[3]))*sfi*cfi;
mtrx[2] [14] =vppi*cos(kd[4]);
imtrx[2] [14]=vppi*sin(kd[4]);

mtrx[3] [3]=A1P;
mtrx[3] [4]=-vps*sfi*exc3;
imtrx[3] [4]=-vps*sfi*exs3;
mtrx[3] [5] =xp*sfi*cfi*(vpp-vppi)*(cos(kd[1])-cos (kd[2] ));
imtrx[3] [5]=xp*sfi*cfi *(vpp-vppi)*(sin(kd[1])-sin(kd[2]));
mtrx[3][6]=sfi*cfi*(vpp-vppi)*(.5*exc2-cos(kd[3]));
imtrx[3] [6]=sfi*cfi*(vpp-vppi)*(.5*exs2-sin(kd[3]));
mtrx[3][7]=(sfi2*vpp+cfi2*vppi)*exc3;
imtrx[3][7]=(sfa*vpp+cfi2*vppi)*exs3;
mtrx[3][12]=vps*cos(kd[4]);
imtrx[3] [12] =vps*sin(kd[4]);
mtrx[3][15]=vpp*cos(kd[4]);
imtrx[3][15]=vpp*sin(kd[4]);

mtrx[4] [4]=C1S;
mtrx[4] [8]=vss*cos(kd[4]);
imtrx[4] [8]=-vss*sin(kd[4]);
mtrx[4][11]=vps*cos(kd[4]);
imtrx[4] [11] =-vps*sin(kd[4]);

mtrx[5] [5]=C1P;
mtrx[5] [9] =vppi*cos(kd[4]);
imtrx[5] [9]=-vppi*sin(kd[4]);

mtrx[6] [6]=C1P;
mtrx[6] [10]=vppi*cos(kd[4]);
imtrx[6] [10]=-vppi*sin(kd[4]);

mtrx[7][7]=C1P;
mtrx[7] [8] =-vsp*cos(kd[4] );
imtrx [7] [8]=vsp*sin(kd[4] );
mtrx[7] [11] =vpp *cos(kd[4] );
imtrx[7][11]=-vpp*sin(kd[4]);

mtrx[8] [8] =A2S ;
mtrx[8] [12] =vss*eyc3 ;
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imtrx[8] [12]=vss*eys3 ;
mtrx[8][13]=vsp*xp*cfi*(cos(kdy[1])-cos(kdy[2]));
imtrx[8][13]=vsp*xp*cfi *(sin(kdy[1])-sin(kdy[2]));
mtrx[8][14]=-vsp*cfi*(0.5*eyc2-cos(kdy[3]));
imtrx[8][14]=-vsp*cfi *(0.5*eys2-sin(kdy[3]));
mtrx[8] [15]=vsp*sfi*eyc3 ;
imtrx[8][15]=vsp*sfi*eys3;

mtrx[9] [9] =A2P;
mtrx[9][12]=-vps*xp*cfi*(cos(kdy[1])-cos(kdy[2]));
imtrx[9][12]=-vps*xp*cfi*(sin(kdy[1])-sin(kdy[2]));
mtrx[9] [13]=(vppi*(0.75*sfi2+0.25)+0.75*cfi2*vpp)*eyc2+vppi*cos(kdy[3]);
imtrx[9] [13]=(vppi*(.75*sfi2+.25)+0.75*cf12*vpp)*eys2+vppi*sin(kdy[3]);
mtrx[9][14]=-0.5*xp*cfi2*(vpp-vppi)*(cos(kdy[1])-cos(kdy[2]));
imtrx[9][14]=-0.5*xp*cfi2*(vpp-vppi)*(sin(kdy[1])-sin(kdy[2]));
mtrx[9][15]=xp*sfi*cfi*(vpp-vppi)*(cos(kdy[1])-cos(kdy[2]));
imtrx[9][15]=xp*sfi*cfi*(vpp-vppi)*(sin(kdy[1])-sin(kdy[2]));

mtrx[101[10]=A2P;
mtrx[ 1 0] [12]=vps*cfi*(0.5*eyc2-cos(kdy[3]));
imtrx[l 0] [12]=vps*cfi*(0.5*eys2-sin(kdy[3]));
mtrx[10][13]=-.5*xp*cfi2*(vpp-vppi)*(cos(kdy[1])-cos(kdy[2]));
imtrx[ 1 0][13]=-.5*xp*cfi2*(vpp-vppi)*(sin(kdy[1])-sin(kdy[2]));
mtrx[ 1 0][14]=.25*(cfi2*vpp+(sf12+3.)*vppi)*eyc2;
mtrx[10][14]+=(cfi2*vpp+sfa*vppi)*cos(kdy[3]);
imtrx[10][14]=.25*(cfi2*vpp+(sfi2+3.)*vppi)*eys2;
imtrx[ 1 0][14]+=(cfi2*vpp+sfi2*vppi)*sin(kdy[3]);
mtrx[10][15]=sfi*cfi*(vpp-vppi)*(cos(kdy[3])-.5*eyc2);
imtrx[10][15]=sfi *cfi*(vpp-vppi)*(sin(kdy[3])-.5*eys2);

mtrx[ 11] [11]=A2P;
mtrx[ 1 1] [12]=-vps*sfi*eyc3;
imtrx[ 1 l][12]=-vps*sfi*eys3;
mtrx[ 1 1][13]=xp*sfi*cfi*(vpp-vppi)*(cos(kdy[1])-cos(kdy [2]));
imtrx[ 1 l][13]=xp*sfi *cfi*(vpp-vppi)*(sin(kdy[1])-sin(kdy[2]));
mtrx[11][14]=sfi*cfi *(vpp-vppi)*(cos(kdy[3])-.5*eyc2);
imtrx[11][14]=sfi *cfi*(vpp-vppi)*(sin(kdy[3])-.5*eys2);
mtrx[11][15]=(sfi2*vpp+cfi2*vppi)*eyc3;
imtrx [11] [15]=(sfi2*vpp+cfi2*vppi)*eys3;

mtrx[12][12]=C2S;
mtrx[13][13]=C2P;
mtrx[14][14]=C2P;
mtrx[15][15]=C2P;
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for (i =1; i<16; i++)
{

for (j =0; j<i; j++)
{

nitrx(i] Ej]=Intrgil[i];
imtix[i][i]=4IntrxlilEil;




