\qquad
William Curtis Cantwell for the degree of Master of Science
in \qquad presented on March 6, 1978

Title: AN ANALYTICAL MODEL FOR PREDICTING TRUCK PERFORMANCE ON INTERSTATE HIGHWAYS

Abstract approved:

This thesis describes a Truck Performance Simulation Model developed for use in a United States Department of Transportation university research project entitled "The Energy, Economic and Environmental Consequences of Increased Vehicle Size and Weight." The performance of the truck is found by specifying its engine, driveline and tire characteristics and evaluating its ability to overcome the resistances encountered while traveling on a highway section of specified horizontal and vertical alignment. Fuel consumption, exhaust gaseous emissions, distance, velocity and acceleration are calculated for time intervals which vary in length with the road terrain encountered.

The simulation logic is described and suggested methods for testing and validating the accuracy of the truck simulation technique used are presented.

An Analytical Model for Predicting Truck Performance on Interstate Highways by

William Curtis Cantwell

A THESIS
submitted to
Oregon State University

in partial fulfillment of
the requirements for the degree of

Master of Science
Completed March 6, 1978
Commencement June 1978

APPROVED:

Redacted for Privacy

Professor of Méckanical Engineering \bar{y} n charge of major Redacted for Privacy

Redacted for Privacy

Dean of Graduàte School

Date thesis is presented March 6, 1978

ACKNOWLEDGEMENTS

This thesis would not have been possible without the aid of many people.

The United States Department of Transportation provided the university research grant which allowed the project to begin. The Oregon State University Computer Center funded the finalization of the program after the USDOT project closed.

All the menbers of the university USDOT project group supported the project work. Dr. Robert Layton helped in the formulation of the program. Edword Chastain helped with the initial debugging of the program.

Professor John G. Mingle has been a constant supporter of both my undergraduate and graduate work. He has more than fulfilled his role as Major Professor.

Masao Fukuda has endured my constant muttering while I wrote my thesis and finalized my program.

Bea Bjornstad and the Mechanical Engineering Office crew came to my rescue more than once during my thesis preparation.

My wife Alice has been a constant strength and aid during my graduate work. She should be designated as coauthor of this thesis.

Last, but not least, the OSU Cyber 70 Model 73 computer should be mentioned. It has been very patient and has endured a terrible deluge of programming errors.

Thank you all.

TABLE OF CONTENTS

I. Introduction 1
II. Truck Performance Simulation 3
A. Data Required 3
B. Beginning the Simulation 9
C. The Performance Prediction Loop 10

1. Setting the Time Interval 10
2. Calculating the Required Rear Wheel Horsepower 14
a. Tire Rolling Resistance 14
b. Air Resistance 17
c. Grade Resistance 20
d. Cornering Resistance 21
e. Total Truck Resistance 22
3. Finding the Available Horsepower 25
a. Gross Horsepower 25
b. Friction Horsepower 27
4. Finding the Present Throttle Setting 30
5. Calculating the Fuel Used and Exhaust Gaseous Emissions 32
6. Calculating Tractive Effort and Related Factors 37
a. Driveline Efficiency 37
b. Tractive Effort 39
c. Net Accelerating Force 41
d. Effective Weight 41
e. Distance and Velocity 43
f. Average Acceleration 44
7. Recording Vehicle Data 46
8. Changing Gears 48
9. Truck Behavior on Grades 52
10. Truck Behavior for Curves 55
11. Truck Braking 55
12. Ending the Simulation Loop 62
D. Supporting Subroutines 62
13. Recording Vertical Road Section Data 62
14. Printing Final Results 63
III. Initial Program Test Results 64
IV. Conclusion and Recommendations 67
A. Further Testing of Program 67
B. Possible Future Program Modification 67
C. Suggested Methods for Validating the Program 68
Bibliography 70
Appendices
Appendix 1. Copy of the Computer Program 73
Appendix 2. Glossary of Important Variable Names 103
Appendix 3. Initial Test Data 108

LIST OF ILLUSTRATIONS

Figure Page
1 General Flowchart for Truck Performance Model 4
2 Sample Roadway Section 7
3 General Flowchart for Subroutine ALLVEL 11
4 General Flowchart for Subroutine VOTIME 12
5 Truck Free Body Diagram 15
6 General Flowchart for Subroutine WHLBHP 16
7 Comparision of Rolling Resistance Factors 18
8 Determining the Bank Angle 23
9 Comparison of Truck Resistances 24
10 General Flowchart for Subroutine VMAXHP 26
11 Engine Horsepower Curve 28
12 General Flowchart for Subroutine THRTTL 31
13 Fuel Performance Map 33
14 Genera 1 Flowchart for Subroutine DIESEL 34
15 General Flowchart for Subroutine VELDST 38
16 General Flowchart for Subroutine DTAKPR 47
17 General Flowchart for Subroutine GRSLCT 50
18 General Flowchart for Subroutine GERCHG 51
19 General Flowchart for Subroutine DWNHIL 54
20 General Flowchart for Subroutine HRZCRV 56
21 General Flowchart for Subroutine HLDTRK 58
22 General Flowchart for Subroutine DTADMP 59
23 Truck Velocity Profile for Initial Test Data 65
Table Page
1 Truck Data Required for Program TSTTRK 5
2 Road and Weather Data Required for Program TSTTRK 8
3 Values of Coefficients for Calculating Rolling Resistance 19
4 Past, Present and Future Standards for Brake Specific Emission Rates (gm/bhp-hr) 36
5 Suggested Driveline Factors for Calculating Efficiency 40
6 Data for Initial Test Section 66

AN ANALYTICAL MODEL FOR PREDICTING
 TRUCK PERFORMANCE ON INTERSTATE HIGHWAYS

I. INTRODUCTION

During the 1976-1977 school year, a university research project, funded by the United States Department of Transportation (USDOT), was conducted at Oregon State University. This project entitled "The Energy, Economic and Environmental Consequences of Increased Vehicle Size and Weight," developed a decision model that could be used to evaluate the total effect of larger and heavier trucks on the road system (1). ${ }^{1}$ The purpose of this decision model was to see whether the use of such vehicles would be energy and cost effective and to investigate operational and environmental consequences resulting from their use (2).

This decision model required a means of predicting the performance of trucks of various configurations over specified highway sections. Although truck performance simulation programs have been developed in the past, these programs are either proprietary in nature or were found to be unsuitable for the USDOT decision model. Therefore, it became necessary to develop a vehicle simulation program in order to accomplish the project objectives.

The Truck Performance Simulation program developed is a timebased computer model. It evaluates the total resistance that the vehicle must overcome on a highway section of specified horizontal and vertical alignment. The resistances encountered are tire rolling

[^0]resistance, air resistance, grade resistance and cornering resistance. The performance of the truck is then found by specifying its engine, driveline and tire characteristics (e.g., maximum brake horsepower, brake specific fuel consumption, tire size and type) and, then, evaluating its ability to overcome these resistance forces. Fuel consumption, exhaust gaseous emissions, distance, velocity and acceleration are then determined for a specified time interval. The length of each time interval varies with the severity of the terrain encountered.

In the USDOT decision model, the Performance Model is a portion of a traffic operations subsystem which also analyzes the truck's effect on other vehicles in the traffic stream. The traffic operations component estimates the capacity of the roadway resulting from reduced truck speeds on hilly terrain and speed changes due to traffic conditions. The traffic stream speed is an input to the Truck Performance Model (2). However, for this thesis, the Performance Program has been removed from the traffic operations subsystems. This has required the use of supporting subroutines not found in the USDOT decision model. These subroutines will be identified as the program is described.

The Truck Performance Model is written in Fortran IV. and has been designed to run on the CDC Cyber 70 computer at Oregon State University. However, only minor modifications should be necessary to run the program on another computer of similar size and capabilities.

II. TRUCK PERFORMANCE SIMULATION

A general flowchart for the Truck Performance Model is shown in Figure 1. A copy of the computer program is given in Appendix 1. The data input to the USDOT model is handled by the main program and is supplied to the Performance Model using labeled COMMON areas. In the version described in this thesis, the data is read by the executive program TSTTRK. The USDOT portion of the model begins with subroutine TRKOPS. Subroutine TRKOPS initializes variables and calls the other subroutines of the program.

A. Data Required

The specific truck data required to use the Truck Performance Simulation Program is listed in Table 1. Most of these data are readily available from manufacturers of custom truck tractors. Engine fuel consumption data must be requested from the engine manufacturer.

Data for the roadway over which the simulation is to occur must also be obtained. For the Performance Model, the roadway is divided into vertical road sections of constant grade or constantly changing grade as shown in Figure 2. The speed restrictions due to horizontal alignment (e.g., highway curves) are added to the vertical road section in which they occur. The specific roadway data required are listed in Table 2. Also listed are the weather data required by the Truck Performance Program.

Figure 1. General Flowchart for the Truck Performance Model

TABLE 1. TRUCK DATA REQUIRED FOR PROGRAM TSTTRK

DESCRIPTION
PROGRAM NAME

ENGINE DETAIL

Displacement, cubic inches
ENGINE(I)

Maximum horsepower engine speed, rpm
Accessory horsepower
Iower shift limit, rpm
Upper shift limit, rpm
Lowest allowed engine speed, rpm
Maximum engine speed (red-line), rpm
Maximum engine horsepower
(2)
(3)
(4)
(5)
(6)
(7)
(8)

FUEL PERFORMANCE MAP, $\mathrm{lb} / \mathrm{bhp}-\mathrm{hr}$
BSFC (I, J)
Horsepower, J
Up to $J=70$
Engine rpm, I
Up to $I=20$

MAXIMUM HORSEPOWER CURVE
BHPMAX (K)
Engine rpm, K
Up to $k=20$

DRIVELINE DETAIL

Number of gears	NOGEAR
Rear axle ratio	AXLRTO
Driveline loss terms	DRLOSS
Full throttle efficiency	(1)
Viscous loss factor	(2)
Transmission gear ratios	GEARNO (M)
First gear	(1)
Second gear	(2)
• . . Final gear	$U p$ to $M=15$

TABLE 1. TRUCK DATA REQUIRED FOR PROGRAM TSTTRK (Continued)

DESCRIPTION

TIRE AND RIM DETAIL
Tire outside diameter, inches Tire weight, pounds
Static loaded radius, inches
Drive tire revolutions per mile
Total number of tires
Nominal rim diameter, inches

BRAKE SPECIFIC EMMISSION RATE, gm/bhp-hr
Hydrocarbons
Carbon monoxide
Oxides of nitrogen

PROGRAM NAME

TIRRIM(N)
TRUCK CONFIGURATION DETAIL
Total vehicle weight, pounds
Overall width, feet
Overall height, feet W1 ITH
Air drag coefficient
DRAGCO

Figure 2. Sample Roadway Section

TABLE 2. ROAD AND WEATHER DATA REQUIRED FOR PROGRAM TSTTRK

DESCRIPTION

VERTICAL SECTION DETAIL

VMP (i)
GR (i)
LENG (i)
VCRAD (i)
R(i)
NVI:R'1'
$\mathrm{i}=1$ to NVERT

HORIZONTAL SECTION DETAIL

Mile post at beginning of curve, $f t$
HMP (i) Radius of curve, ft Length of curve, ft Maximum velocity allowed, mph
$\operatorname{IIRAD}(\mathrm{i})$
HCURL(i) Curve warning mile post, ft

HASPD (i) Number of horizontal sections

MPLA (i)
$i=1$ to NCURVE

WEATHER INFORMATION

WETHER (j)
Wind direction, degrees clockwise from North
Wind velocity, mph
Ambient air temperature, ${ }^{\circ} \mathrm{F}$
Atmospheric pressure, in. Hg .
Water vapor pressure, in. Hg.

PAVEMENT DETAIL

Static rolling resistance cocfficient CS
Dynamic rolling resistance coefficient, $1 / \mathrm{mph}^{-1} \quad C V$ Tire and pavement interaction coefficient CP

B. Beginning the Simulation

The program design can best be shown by describing the subroutines as they are called by subroutine TRKOPS. As an aid to the reader, the variable names used in the equations given are those used in the computer program. Also, as variables are defined, their computer nanes are shown in parentheses. A glossary of variable names is given in Appendix 2.

The truck is allowed to enter the first vertical road section (NOVSEC) at the maximum allowed velocity (VELALL). Because only freeway or primary road sections are used in the program, no provision has been made for starting and stopping the vehicle. If the truck comes to a stop during the simulation, an error message is relayed and the program is terminated.

There are several velocity constraints that may limit a truck's maximum velocity on a road section. The maximum allowed speed for the truck, which is determined by the transmission and rear axle gear ratios and the engines maximum (red-line) speed (TRKMAX), places an upper limit on velocity. The traffic stream speed (SPD) may also place an upper limit on truck velocity. (This variable is supplied by the traffic operations subsystem in the USDOT decision model when subroutine STRMSP is called. In the Performance Model described here, a constant speed is the input when STRMSP is called.) The posted speed may put an additional restraint on the allowed truck velocity (SPDLMT).

Subroutine ALLVEL finds the smallest of the velocity constraints described above and defines this as the maximum allowed velocity
(VELALL) on the vertical road section. A flowchart for this subroutine is shown in Figure 3. Subroutine ALLVEL is called at the beginning of each new vertical road section (NOVSEC).

0 ther speed-limiting factors are the road geometrics. Horizontal curves and downgrades may require reduced speeds in order to maintain safe operating conditions. The velocity required for these road conditions (VELMAX) is found by Subroutines DWNHILL and HRZCRV which are described later. The variables VELMAX and VELALL are compared and the smallest velocity becomes the limiting velocity (VELLMT). The truck is allowed to accelerate to this velocity if it is capable of doing so.

Subroutine GRSLCT is now called to find the gear suitable for the road geometrics initially encountered. This subroutine will be described in a later section.

C. The Performance Prediction Loop

The performance simulation loop begins when the time interval is set. The various subroutines are then called to obtain and to store the data for the time interval. This procedure is repeated for each new time interval until the end of the highway data is encountered.

> 1. Setting the Time Interval

The length of each time interval is found by subroutine VOTIME. A general flowchart for this subroutine is shown in Figure 4. The logic used in this subroutine is similar to that described by Klokkenga (4) and used by Cummins Engine Company in their Vehicle Mission

Figure 3. General Flowchart for Subroutine NLLVEL

Figure 4. General Flowchart for Subroutine VOTIME

Simulation (VMS). ${ }^{2}$
The length of the time intervals are a function of road conditions and truck performance. On long vertical sections where little or no change in terrain is encountered, the length of each successive time interval (TIMINT) becomes larger unitl a maximum of thirty seconds is reached. However, if road conditions begin to change rapidly, the length of each successive time interval decreases until a minimum of one second is reached.

The following situations or road conditions will cause a decrease in the length of successive time intervals:
(1) A gear change takes place. In this case, the time interval is set to one second.
(2) The vehicle road velocity (VORVEL) exceeds the velocity allowed (VELALL) by at least two miles per hour.
(3) There is a change in engine speed (CNGRPM) of more than five percent between successive time intervals.
(4) The truck brakes for a downgrade or curve.
(5) The end of the vertical road section is impending.

The length of successive time intervals increases if the change in engine speed is less than two percent between successive time intervals or if the above ennumerated conditions are not encountered.

[^1]2. Calculating the Required Rear Wheel Horsepower

A truck traveling on a road section is subjected to certain forces. These forces are shown in Figure 5(5). The summation of the resistance forces is the amount of force, or tractive effort, that must be exerted by the truck in order to maintain a constant velocity.

Carl C. Saal developed an analytical method for predicting tractive effort (6). His work was later used in the development of the SAE Truck Ability Prediction Procedure (7). Later, Gary L. Smith, in a special paper published by the Society of Automotive Engineers, refined these truck performance prediction procedures (8). The equations given by Smith are those used by Subroutine WHLBHP to find the required tractive effort horsepower. A flowchart for this subroutine is shown in Figure 6.

a. Tire Rolling Resistance

The tire rolling resistance (ROLRES) in pounds-force, is estimated using the relationship

$$
\begin{equation*}
\text { ROLRES }=(G C W)(C P)[(C S)+(C V)(V O R V E L)] \tag{1}
\end{equation*}
$$

where GCW = the vehicle gross combination weight (total vehicle weight), in pounds,
$C S=$ the static rolling resistance coefficient, $C V=$ the dynamic rolling resistance coefficient, in mph^{-1},
and $\quad C P=$ the tire and pavement interaction coefficient.

Figure 5. Truck Free Body Diagram

Figure 6. General Flowehart for Subroutinc WILBIIP

The values of these coefficients are determined experimentally using acceleration and coast-down data from actual vehicles. Values for the bracketed portion of Equation [1], as calculated by several investigators (9), are plotted in Figure 7. These curves suggest that the rolling resistance is not only dependent upon velocity, but also varies with tire size, type and width. The values of the coefficients suggested by Klokkenga (10) are used in Subroutine (WHLBHP. They are listed in Table 3.

b. Air Resistance

Another force acting upon the truck is that caused by air resistance (AIRRES). This force can be estimated using the equation (11)

$$
\begin{aligned}
\operatorname{AIRRES}= & \operatorname{ARFKTR}\left[\frac{\operatorname{WETHER}(4)}{459.67+\operatorname{WETHER}(3)}\right][\operatorname{VORVEL}+\operatorname{WETHER}(2)]^{2}[2] \\
\text { where } \operatorname{ARFKTR}= & \text { an air resistance coefficient, in (in. Hg.-mph } \left.{ }^{2}\right) / \\
& \left(F-\mathrm{ft}^{2}\right), \\
\operatorname{VORVEL}= & \text { truck velocity in mph, } \\
\operatorname{WETHER}(2)= & \text { headwind velocity, in mph, } \\
\operatorname{WETHER}(3)= & \text { ambient air temperature, in }{ }^{\circ} \mathrm{F}, \\
\text { and } \operatorname{WETHER}(4)= & \text { atmospheric pressure, in } \mathrm{Hg} .
\end{aligned}
$$

This equation assumes that air resistance is proportional to dynamic pressure which varies with the square of the velocity. It corrects for ambient air temperature and pressure conditions (12).

A program refinement would be to use the head wind component of the wind velocity vector. The magnitude of this component would

Figure 7. Comparison of Rolling Resistance Factors (9)

TABLE 3. VALUES OF COEFFICIENTS FOR CALCULATING ROLLING RESISTANCE (AFTER (10))

Tire Type

Bias ply
Radial ply

Road Type

	Bias	Radial
Smooth concrete	1.00	0.70
Smooth asphalt with solid base		
Rough concrete	1.20	0.84
Rough asphalt with solid basc		
Smooth asphalt with soft base	1.50	1.05
Rough asphalt with soft base	2.00	1.40

vary with changes in horizontal alignment of the highway. Calculations by Smith show that the resistance caused by side winds of reasonable magnitude are negligible (13).

The air resistance coefficient (ARFKTR) is calculated in the initialization segment of Subroutine TRKOPS using the equation (14)

$$
\begin{equation*}
\text { ARFKTR }=(0.044258)(\text { DRAGCO })(\text { WIDTH })(\text { HEIGHT }-.75) \tag{3}
\end{equation*}
$$

where DRAGCO = an air drag coefficient, in (in. Hg. $-\mathrm{mph}^{2}$) $/{ }^{\circ} \mathrm{F}$ WIDTH = overall truck width, in feet, and HEIGHT = overall truck height, in feet.

The air drag coefficient is determined from road tests or from wind tunnel tests. Typical values suggested by Klokkenga are 0.7 for a truck semi-trailer combination, 0.77 for double and triple combinations and loaded flat-bed trucks and 1.00 for car haulers (15).

c. Grade Resistance

On a grade section, a truck encounters a grade force (GRDRES) which is equal to the component of vehicle weight acting downhill. This is calculated using the relationship

$$
\begin{equation*}
\text { GRDRES }=[(\operatorname{GCW})(\sin (a)] \tag{4}
\end{equation*}
$$

where $a=$ angle of incline, in radians, as shown in Figure 5.

In practice, the grade is designated by the ratio of the climbed height, h, to the projected horizontal distance, s. Also, the grade $(G R)$ is expressed as a percentage. Therefore,

$$
\begin{equation*}
G R=h / s(100) \quad \tan (a) \tag{5}
\end{equation*}
$$

For small angles the sine of the angle is approximately equal to its tangent. Therefore,

$$
\begin{equation*}
\operatorname{GRDRES} \approx(\operatorname{GCW})[\tan (a)]=\frac{(\mathrm{GCW})(\mathrm{GR})}{100} \tag{6}
\end{equation*}
$$

For grades of less than six percent, the error introduced by this approximation is less than two percent (16).

For grades that are not constant, a rate of change of grade per hundred feet (R) is used in the Truck performance Model. For these sections

$$
\begin{equation*}
\text { GRDRES }=(G C W)[G R+(V O D I S T)(R)] \tag{7}
\end{equation*}
$$

where VODIST $=$ The total distance traveled in the graded section, in feet. It should be noted that the grade force is a resistance force on upgrades, but acts in the direction of travel on downgrades.

d. Cornering Resistance

Another resistance force is encountered by a truck when it is turning or while on a banked or highly crowned road section. This force results from the tangential component of the cornering force. The general equation for predicting this force, as suggested by Smith (17) is

$$
\begin{align*}
& \text { CNRFRC }=\text { CORFCT }\left\{\left[\sum_{i=1}^{K} \frac{(\text { FRCOEF })[\operatorname{TANDWT}(\mathrm{i})] \text { [TANLNG(} \mathrm{i})]}{2(\text { HRAD })}\right]\right. \\
& \left.\left.+\frac{1}{[\operatorname{TIRRIM}(5)][\operatorname{TIRRIM}(8)]}\left[\frac{(\mathrm{GCW})(\mathrm{VORVEL})^{2}}{(113.21)(\mathrm{HRAD})}\right]^{2}\right)\right\} \tag{8}\\
& \text { where CORFCT }=\text { the correction factor for road bank angle, } \\
& K=\text { the number of tandem axles, } \\
& \text { FRCOEF = the tire drag coefficient between the axies on } \\
& \text { the tandem, } \\
& \text { TANDWT(i) }=\text { the weight on tandem 'i', in pounds, } \\
& \operatorname{TANLNG}(i)=\text { the distance between axles of tandem 'i', in feet, } \\
& \text { HEAD = the horizontal curve radius, in feet, } \\
& \operatorname{TIRRIM}(5)=\text { the total number of tires on the truck, } \\
& \text { and } \operatorname{TIRRIM}(8)=\text { the average tire cornering stiffness, in } 1 \mathrm{~b} / \mathrm{deg} \text {. }
\end{align*}
$$

The correction factor for bank angle is calculated from the equation

$$
\begin{equation*}
\mathrm{CORECT}=1-\left[\frac{(14.95)(\mathrm{HRAD})(E)}{(\mathrm{VORVEL})^{2}}\right] \tag{9}
\end{equation*}
$$

where $E=$ the bank angle or superelevation of the road surface, in $f t / f t$.

The procedure for finding the bank angle is shown in Figure 8.

> e. Total Truck Resistance

The amount of power required to overcome the rolling, grade and cornering forces is illustrated in Figure 9. Since the cornering

RIGITT TURN E-
LEFT TURN E+

Figure 8. Determining the Bank Angle

Figure 9. Comparison of Truck Resistances
force is relatively small in a freeway situation, it has not been included in the calculation of required rear wheel horsepower in Subroutine WHLBHP. However, it should be included if the program is extended to predict truck performance on other types of roads.

The rolling, air and grade forces are calculated and summed in Subroutine WALBHP. The total road resistance (TOTRES) is then converted from force to horsepower using the relationship (18)

$$
\begin{equation*}
\text { TWHLHP }=\frac{(\text { TOTRES })(\text { VORVEL })}{375.0} \tag{10}
\end{equation*}
$$

The total wheel horsepower required to overcone these vehicle forces (TWHLHP) is then returned to subroutine TRKOPS.
3. Finding the Horsepower Available

At this point in the Truck Performance Program, it is necessary to know the range of horsepower available from the engine at the present engine speed. This will be used to find the present throttle setting in Subroutine THRTTL. Subroutine VMAXHP is called to find the maximum gross horsepower and friction horsepower. A general flowchart for this subroutine is shown in Figure 10.

a. Gross Horsepower

Engine manufacturers often supply maximum horsepower (wide-openthrottle) curves in their sales literature. These are usually given in terms of gross horsepower (AVLBHP), or the brake horsepower of the

Figure 10. General Flowchart for Subroutine VMAXIIP
engine before power losses to any engine accessories are accounted for. A typical horsepower curve is shown in Figure 11. Data for the engine to be used in the program are taken from such a curve in one hundred rpm increments starting from the lowest allowable speed (ENGINE(6)) to the maximum engine speed (ENGINE(7)). This information is stored in a one dimensional array (BHPMAX). Linear interpolation is used between the data points to obtain a gross horsepower value for the present engine speed (ENGRPM).

The horsepower curves supplied by the manufacturer are for standard conditions ($85 \mathrm{~F}, 29.4 \mathrm{C} ; 29.38 \mathrm{in} \mathrm{Hg}, 99 \mathrm{kPa}$) is prescribed by the "Engine Rating Code -Diesel- SAE J270" (19). In order to correct these data to the ambient conditions, they are multiplied by a correction factor (ENGINE(9)) calculated by

$$
\begin{equation*}
\operatorname{ENGINE}(9)=\left[\frac{29.00}{\operatorname{WETHER}(4)-\operatorname{WETHER}(5)}\right]\left[\frac{460+\operatorname{WETHER}(3)}{545.0}\right]^{0.7} \tag{11}
\end{equation*}
$$

where $\operatorname{WETHER}(3)=$ ambient air temperature, in F,
WETHER(4) = barometric pressure, in in. Hg ,
and $\operatorname{WETHER}(5)=$ water vapor pressure, in in. Hg.

This correction is valid for dry barometric pressures between 28 and 30 inches of mercury (95 and 101 kPa) and between 60 and 110 F (289 and 317 K) (20). The horsepower correction factor is calculated during the initialization of TRKOPS.

b. Friction Horsepower

When the throttle is closed, "engine braking" occurs. This

Figure 1l. Engine Horsepower Curve
phenomenon is due to engine friction work which is dependent upon such factors as oil viscosity and shearing area, oil film thickness and engine displacement, compression ratio and speed (21). Ideally, data for closed-throttle tests could be used to calculate engine friction work. Since this information was not available for the Performance Model, the engine friction work is estimated from hot motored work calculations. It should be noted that this is an approximation and its accuracy has not been verified (22).

Relationships for hot motor work are given in the "Engine Rating Code -Diesel- SAE J270" (23). The mechanical efficiency (MECHEF) for a hot motored engine is

$$
\begin{equation*}
\text { MECHEF }=\frac{1}{1+\left(\frac{\text { COEFFT }}{\text { BMEPEN }}\right)} \tag{12}
\end{equation*}
$$

where COEFFT $=20.1893-3.75948\left(\frac{\text { ENGRPM }}{1000}\right)+3.33129\left(\frac{\text { ENGRPM }}{1000}\right)^{2}$

$$
\begin{equation*}
\text { BMEPEN }=\frac{(\operatorname{AVLBHP})(792,000)}{[\operatorname{ENGINE}(1)](\operatorname{ENGRPM})} \tag{14}
\end{equation*}
$$

and ENGINE (1) = engine displacement, in cubic inches. The available friction horsepower can then be estimated by the relationship

$$
\begin{equation*}
\text { AVLFHP }=(1.0-\text { MECHEF })(\text { AVLBHP }) \tag{15}
\end{equation*}
$$

4. Finding the Present Throttle Setting

In a vehicle, the driver constantly varies the throttle position. The driver compares the actual vehicle speed to the desired vehicle speed, is aware of the vehicle acceleration rate and can see the immediate conditions and changes in road terrain. All of these factors influence the drivers input to the vehicle by means of the throttle.

The driver's throttle response is simulated by subroutine THRTTL which is supported by inputs from other subroutines. A flowchart for this subroutine is shown in Figure 12. Part of the throttle logic used is that described by Klokkenga (24).

In subroutine THRTTL, an attempt is made to maintain the truck velocity (VORVEL) to within two miles per hour of the allowed velocity. If the truck velocity is less than the allowed speed, the throttle setting (RAKSET) is increased; if the velocity is greater, the throttle setting is decreased. As the length of the time intervals increases, the amount the throttle is moved during each time interval is decreased (e.g., road conditions are not changing). Also, as the truck velocity approaches the allowed velocity, the throttle movement allowed during each time interval is decreased.

Other conditions may also influence the throttle setting. If the acceleration rate (VACCEL) exceeds one-tenth the acceleration of gravity ($2.1973 \mathrm{mph} / \mathrm{sec} ; 7.1975 \mathrm{kmh} / \mathrm{sec}$), the setting is reduced. This rate is considered a "comfortable" maximum for trucks (25). The throttle setting is held constant while a gear change is being made. If the throttle is closed on a steep downgrade and the truck is accelerating when it should be slowing, Subroutine VELDST is signaled

Figure 12. General Flowchart for Subrout ine THRTTL
to apply the brakes (KBRAKE = 1).
After the throttle setting (RAKSET) has been determined, the gross horsepower available (ENGBHP) can be found. This is done by interpolating between the maximum available gross horsepower (AVLBHP) and the engine friction horsepower with respect to the throttle position

$$
\begin{equation*}
\text { ENGBHP }=[(\text { RAKSET })(\text { AVLBHP }- \text { AVLFHP })]-\text { AVLFHP } \tag{16}
\end{equation*}
$$

5. Calculating the Fuel Used and Exhaust Gaseous Emissions

After the engine speed (ENGRPM) and the available engine horsepower (ENGBHP) have been found, the fuel consumed and the particulates emitted can be determined. Fuel consumption can be estimated from fuel performance maps which can be obtained from the engine manufacturers. These maps include lines of constant horsepower or brake mean effective pressure, engine speed and fuel rate. These data are obtained from engine dynamometer tests performed upon the specific engine of interest. A typical fuel performance map is shown in Figure 13. The fuel performance map, like the maximum horsepower curve, is given for standard conditions.

The Truck Performance Model stores data from a fuel performance map in a two-dimensional array. (BSFC) in 100 rpm and 10 horsepower increments. The data required by the program are in terms of brake specific fuel consumption which has units of pounds-mass of fuel per brake horsepower hour. These data are read by Subroutine DIESEL. A general flowchart for this subroutine is shown in Figure 14.

Figure 13. Fuel Performance Map

Figure 14. General Flowchart for Subroutine DIESEL

Subroutine DIESEL finds the absolute value of the available engine horsepower (TRKBHP) and then corrects it to standard conditions (CORBHP). Then the data points in array BSFC which bound the desired value are found. These data points are then used to perform linear interpolation: first, for the present engine speed and, secondly, for the available engine horsepower. Once the brake specific fuel consumption (TOTBSC) has been found, the amount of fuel consumed (TRKSFC), in gallons, for the time interval can be calculated since

$$
\begin{equation*}
\text { TRKSFC }=\frac{(\text { TOTBSC })(\text { CORBHP })(\operatorname{TIMINT})(7.12)}{25632.0} \tag{17}
\end{equation*}
$$

The density of the diesel fuel is assumed to be 7.12 pounds per gallon $\left(853 \mathrm{~kg} / \mathrm{m}^{3}\right.$).

Ideally, an emissions map similar to a fuel performance map could be used to find exhaust gaseous emissions. However, this source of data was not available for the Truck Performance Model. Therefore, an estimate of the brake specific emission rate, in grams per brake horsepower hour, is made using the maximum limits set by the United States Environmental Protection Agency for hydrocarbons ($\operatorname{BSER}(1)$), carbon monoxide ($\operatorname{BSER}(2)$) and oxides of nitrogen (BSER(3)). The limits now in effect and those proposed for the future are shwon in Table 4 (26).

The total amount of exhaust gaseous emissions (TKEMMS) are calculated using the relationship

TABLE 4. PAST, PRESENT AND FUTURE STANDARDS FOR BRAKE SPECIFIC EMISSION RATES (gm/bhp-hr) (From(26))

	1975		1977		1978		1979	
POLLUTANT	C	F	C	F	C	F	C	F^{b}
Hydrocarbons	10	16	5	16	5^{a}	16	5^{a}	1.5
Oxides of Nitrogen								10
Carbon Monoxide	30	40	25	40	25	40	25	25

* C - California

F - Federal
anternative standards of $\mathrm{HC}-1.0$ gm/hhp-he amd $\mathrm{NO}_{\mathrm{x}}=7.5 \mathrm{gm} / \mathrm{bhp}-\mathrm{hr}$ are provided for the manutactor's option
$b_{\text {Planned }}$

$$
\begin{equation*}
\text { TKEMMS }=(\text { SUMPRT })(\text { CORBHP })(\text { TIMINT }) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\text { SUMPRT }=\sum_{i=1}^{3} \operatorname{BSER}(i) \tag{19}
\end{equation*}
$$

The value of SUMPRT remains constant for a given set of emissions data and is calculated during the initialization of TRKOPS. Present emission standards combine hydrocarbons and oxides of nitrogen. This can be done in the Truck Performance Model by entering the total amount in either $\operatorname{BSER}(1)$ or $\operatorname{BSER}(3)$ while setting the other variable equal to zero. It should be noted that the exhaust gaseous emissions calculated in this manner are the maximum that could be emitted by the truck. The actual amount of emissions will be equal to, or less than, the amount predicted by the simulation model.

6. Calculating Tractive Effort and Related Factors

Subroutine VELDST is now called by the Performance Model to calculate tractive effort, distance traveled, truck velocity and average acceleration for the present time interval. A general flowchart for this subroutine is shown in Figure 15.

a. Driveline Efficiency

The percentage of the available engine horsepower that reaches the driven wheels or the tractive effort horsepower, depends upon the efficiency of the driveline components (e.g., the transmission, differential and other related components). The overall driveline efficiency approach suggested by Smith (27) is used in the program. The following

Figure 15. General Flowchart for Subroutinc VELDST
empirical relationship can be used to predict driveline efficiency (PTHEFF),

$$
\begin{equation*}
\operatorname{PTHEFF}=[\operatorname{DRLOSS}(1)]\left(1.0-\left\{[\operatorname{DRLOSS}(2)]\left(\frac{1}{\operatorname{RAKSET}}\right)\right\}\right) \tag{20}
\end{equation*}
$$

where $\operatorname{DRLOSS}(1)=$ driveline efficiency at full throttle, and $\operatorname{DRLOSS}(2)=$ viscous loss factor.

The values for the driveline factors depend upon the type of truck tractor being modeled. Recommended values for use in Equation 20 are listed in Table 5 (28). The driveline equation becomes undefined as the throttle setting approaches zero (i.e., the throttle is closed). Therefore, the driveline efficiency is assumed to reach a minimum of fifty percent in the Performance Simulation Model.

b. Tractive Effort

It is now possible to determine the tractive effort of the truck. The total power required to run the engine accessories (ENGINE(3)) (such as the fan, air compressor, turbocharger and power steering) is subtracted from the available engine horsepower (ENGBHP). The resulting term is multiplied by the part throttle efficiency term (PTHEFF) to obtain the horsepower presently available at the driven wheels. When a gear change is occurring, the engine is disengaged from the driveline, and the available wheel horsepower is assumed to be zero.

TABLE 5. SUGGESTED DRIVELINE FACTORS FOR CALCULATING EFFICIENCY

Type of Tractor	Full Throttle Ffficiency, (DRLOSS (1))	Viscous Loss Factor. (DRLOSS (2))
4×2	0.90	0.042
4×2 w/aux.	0.86	0.066
4×4	0.86	0.066
6×4	0.86	0.066
6×4 w/aux.	0.82	0.092
6×6	0.82	0.041

c. Net Accelerating Force

The net accelerating force (ACCFRC) can now be calculated by subtracting the available wheel horsepower (AVLWHP) by the total wheel horsepower (TWHLHP) required to overcome the road resistances. This value is then converted to pounds-force. If the accelerating force is positive, the truck will accelerate; if it is negative, the truck will decelerate.

d. Effective Weight

The moving masses of the engine and driveline components have rotational, as well as translational, motion during acceleration. The inertial effects caused by this rotational motion can be approximated by using an effective weight for the truck. This effective weight (EFFWGT) will be larger than the actual vehicle weight (GCW) during acceleration.

The engine, clutch, brake drums, wheels, and tires are the major contributers to the total inertial effect. If the relatively small effects of the propeller shaft, axle shafts and transmission and differential gears, wheels and brake drums are neglected, the effective weight of the truck can be estimated using the relationship

$$
\text { EFFWGT }=\operatorname{GCW}+\left(\frac{32.174}{[\operatorname{TIRRIM}(7)]^{2}}\left\{\left[(\text { EINRTA })(\text { TOTRED })^{2}\right\}+\operatorname{TINRTA}\right)[21]\right.
$$

where $\operatorname{TIRRIM}(7)=$ tire rolling radius, in feet, EINRTA = engine and clutch inertia, in ft-lb-sec ${ }^{2}$, TOTRED = overall gear reduction,
and TINRTA $=$ inertia of the tires, in fg-lb-sec ${ }^{2}$.

The tire rolling radius is calculated during the initialization of subroutine TRKOPS using the relationship (30)

$$
\begin{equation*}
\operatorname{TIRRIM}(7)=\frac{5280}{(2)(\pi)[\operatorname{TIRRIM}(4)]} \tag{22}
\end{equation*}
$$

where $\operatorname{TIRRIM}(4)=$ speed of the driven tires, in revolutions per mile. The engine and clutch inertia for a four-cycle diesel engine is approximated by (31)

$$
\begin{equation*}
\operatorname{EINRTA}=\frac{1}{32.174}\left(4+\left[(1.6)\left\{\frac{\operatorname{ENGINE}(1)}{100}\right\}^{2}\right]\right) \tag{23}
\end{equation*}
$$

where $\operatorname{ENGINE}(1)=$ engine displacement, in cubic inches. The inertia of the tires (TINRTA) is calculated by using the equation given by Davisson (30)

$$
\begin{gather*}
\operatorname{TINRTA}=\left[\left(\left\{(0.2882)\left[\frac{\operatorname{TIRRIM}(1)+\operatorname{TIRRIM}(6)}{12}\right]\right\}-0.0990\right)^{2}\right. \\
([\operatorname{TIRRIM}(2)][\operatorname{TIRRIM}(5)])] \tag{24}
\end{gather*}
$$

where $\operatorname{TIRRIM}(1)=$ tire outside diameter, in inches,
$\operatorname{TIRRIM}(2)=$ tire weight, in lbs,
$\operatorname{TIRRIM}(5)=$ total number of tires
and TIRRIM(6) - nominal rim diameter, in inches.

e. Distance and Velocity

The distance traveled and truck velocity for the current time interval are now calculated by Subroutine VELDST. The method used to calculate velocity and distance is based upon the work of Firey and Peterson (33). If variable grade sections are modeled as circles of large radius, Newtons second law states that

$$
\begin{equation*}
\frac{\text { EFFWGT }}{G}\left[\frac{d^{2}(\text { VHDIST })}{d(T I M I N T)^{2}}\right]=\operatorname{ACCFRC}-\frac{(\text { EFFWGT })(\text { VHDIST })}{\text { VCRAD }} \tag{25}
\end{equation*}
$$

where EFFWGT = vehicle effective weight, in lbs,
G $\quad=$ acceleration due to gravity, in $\mathrm{ft} / \mathrm{sec}^{2}$,
VHDIST $=$ distance traveled, in ft,
TIMINT = the length of the time interval, in seconds,
ACCFRC $=$ vehicle accelerating force, in lb,
and \quad VCRAD $=$ radius of the vertical curve, in ft.

Rearranging and simplifying

$$
\begin{equation*}
\frac{d^{2}(\text { VHDIST })}{d(\text { TIMINT })^{2}}+(\text { CONSTB })^{2}(\text { VHDIST })=\text { CONSTA } \tag{26}
\end{equation*}
$$

where CONSTA $=\frac{(\text { ACCFRC })(\text { VCRAD })}{\text { EFFWGT }}$
and CONSTB $=\left(\frac{G}{V C R A D}\right)^{0.5}$ Now, a general solution to this nonhomogeneous, second-order differential equation is

VHDIST $=K 1 \cos ($ CONSTB $)($ TIMINT $)+K 2 \sin ($ CONSTB $)(T I M I N T)$

+ CONSTA
where K1 and K2 are constants of integration. Setting the initial distance equal to zero and setting the initial velocity equal to the truck velocity (TRKVEL), in feet per second, at the beginning of the time interval

$$
\begin{align*}
& K 1=-\operatorname{CONSTA} \tag{28}\\
& K 2=\frac{\text { TRKVEL }}{\operatorname{CONSTB}} \tag{29}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\text { VHDIST }=\text { CONSTA }-(\text { CONSTA })(\text { CONSTB })+\left(\frac{\text { TRKVEL }}{\text { CONSTB }}\right)(\text { CONSTE }) \tag{30}
\end{equation*}
$$

and VELNEW $=[($ TRKVEL $)($ CONSTD $)+($ CONSTA $)($ CONSTB $)($ CONSTE $)](B C O N S T)[31]$
where VELNEW = truck velocity at the end of the time interval, in mph, CONSTC $=($ CONSTB $)($ TIMINT $)$

CONSTD $=\cos ($ CONSTC $)$
CONSTE $=\sin ($ CONSTC $)$
and $B C O N S T=\frac{3600}{5280} \frac{\mathrm{mi}-\mathrm{sec}}{\mathrm{ft}-\mathrm{hr}}$

For grades with a vertical radius greater than 20,000 feet, the grade is assumed to be constant. Then the following differential equation applies

$$
\begin{equation*}
\frac{\text { EFFWGT }}{G}\left[\frac{d^{2}(\text { VHDIST })}{d(\text { TIMINT })^{2}}\right]=A C C F R C \tag{32}
\end{equation*}
$$

Integrating and solving for the constants

$$
\begin{align*}
& \text { VHDIST }=\text { TRKVEL }+\left(\frac{\text { FACTOR }}{2}\right) \text { (TIMINT) } \tag{33}\\
& \text { VELNEW }=(\text { TRKVEL }+ \text { FACTOR })(\text { BCONST }) \\
& \text { FACTOR }=\frac{(\text { ACCFRC })(32.174)(\text { TIMINT })}{\text { EFFWGT }}
\end{align*}
$$

This modeling technique has been shown to be accurate for grades of less than ten percent (34).
f. Average Acceleration

The average acceleration (VACCEL), in miles per hour per second, can be calculated using the relationship (35)

$$
\begin{equation*}
\text { VACCEL }=\left[\frac{(\text { VELNEW })^{2}-(\text { VELOLD })^{2}}{(2)(\text { VHDIST })}\right] \text { (ACONST) } \tag{36}
\end{equation*}
$$

where VELOLD = velocity at the beginning of the time interval, in mph,
and $A C O N S T=\frac{5280}{3600} \frac{\mathrm{ft}-\mathrm{hr}}{\mathrm{mi}-\mathrm{sec}}$

Subroutine VELDST also checks to see if the truck should be slowing (KBRAKE has been set to one by Subroutine THROTTLE). If the truck is accelerating, the truck is braked at a rate not exceeding three
miles per hour per second (4.40 ft/ $\left.\mathrm{sec}^{2}, 0.81 \mathrm{kph} / \mathrm{s}\right)(36)$. This requires the recalculation of velocity, in miles per hour, and distance, in feet, for the time interval using the following relationships which are valid for constant deceleration rates (37)

$$
\begin{gather*}
\text { VHDIST }=\{[\text { VELOLD }+(0.5)(\text { VACCEL })(\text { TIMINT })](\text { TIMINT })\}(\text { ACONST }) \tag{37}\\
\text { VELNEW }=\text { VELOLD }+[(\text { VACCEL })(\text { TIMINT })] \tag{38}
\end{gather*}
$$

where VACCEL = rate of deceleration, in $\mathrm{mph} / \mathrm{sec}$.

7. Recording Vehicle Data

Subroutine DTAKPR records the data for each time interval when the truck is not approaching a downgrade or horizontal curve. A general flowchart for this subroutine is shown in Figure 16. The length of the time interval (TIM), in seconds, the average truck velocity (TSPD), in miles per hour, and the total number of time intervals (NUMTIM) for the present vertical road section (NOVSEC) are stored in the labeled COMMON area TROPS. A cummulative total of the fuel consumed (DTAINI(3)), in gallons, the exhaust gaseous emissions (DTAINI(4)), in grams, and the distance traveled (VODIST), in feet, for the present section are also kept by Subroutine DTAKPR.

When the truck drives beyound the end of the vertical road section (the variable ENDSEC becomes negative), the truck data for the current time interval is corrected to the end of the road section using the relationship

$$
\begin{equation*}
\text { TKDATA }=[\operatorname{TKDATA}(\mathrm{i})]\left[\frac{\operatorname{TKDATA}(2)+\text { ENDSEC }}{\operatorname{TKDATA}(2)}\right] \tag{39}
\end{equation*}
$$

Figure 16. General Flowchart for Subroutine DTAKPR
where $\operatorname{TKDATA}(i)=$ time, distance, fuel consumed or emissions for the current time interval,

TKDATA(2) $=$ uncorrected distance traveled during the current time interval,
and ENDSEC = the distance the truck has driven beyond the end of the road section, in ft (a negative quantity).

The Performance Model is signaled that a new vertical section is about to be entered (variable NEWSEC is set equal to one). Also, the section data are sent to Subroutine TRKOPS for processing.

Subroutine TRKOPS is supplied by the traffic operations subsystem in the USDOT decision model. It has been replaced by a supportive subroutine in the present Performance Model. The function of the supportive Subroutine TRKOPS will be described in a later section.

If the truck is approaching a downgrade or curve (variable IFLGTR equals one), the data for the time interval is transferred to Subroutine HLDTRK using array DTAINI. When the truck is on a downgrade or curve (variable KNSTSP equals one) a record of the distance remaining for the grade or curve (HLDDST) is kept. The maximum allowed truck velocity (VELLMT) is set equal to the maximum speed allowed for the current road geometrics (VELMAX). At the end of the grade or curve, the maximum speed allowed is reset to the speed set by Subroutine (ALLVEL).

8. Changing Gears

In order to provide the required tractive force at the driven wheels, the engine must be maintained within a narrow range of speeds.

This speed range is usually bounded by the maximum torque engine speed (ENGINE(4)) and the maximum horsepower engine speed (ENGINE(5)). Subroutine GRSLCT keeps the engine speed within this range by selecting the proper transmission gear for the prevailing road conditions. A general flowchart for this subroutine is shown in Figure 17.

Subroutine GERCHG is used by Subroutine GRSLCT to find the overall gear reduction (TOTRED) and engine speed (ENGRPM) for the current truck velocity (VORVEL), in miles per hour, and transmission gear being used (NUMGER). A flowchart for this subroutine is shown in Figure 18. The overall gear reduction (TOTRED) is found by multiplying the rear axle ratio (AXLRTO) by the gear ratio of the transmission gear currently in use (GEARNO). The engine speed, in revolutions per minute, is then found using the relationship (38)

$$
\begin{equation*}
\text { ENGRPM }=\frac{(\text { VORVEL }) \operatorname{TIRRIM(4)(TOTRED)}}{60} \tag{40}
\end{equation*}
$$

where $\operatorname{TIRRIM}(4)=$ driven tire revolutions per mile.
Subroutine GRSLCT upshifts (reduces the overall gear ratio) if the current engine speed is greater than the upper shift point (ENGINE(5). The engine speed is never allowed to go above the maximum engine, or "red-line" speed (ENGINE(7)). Subroutine GRSLCT downshifts whenever the current engine speed is less than the lower shift rpm (ENGINE(4)). On curves and downgrades, the truck remains in the lowest gear possible for the maximum velocity allowed. This is done to provide greater engine braking.

When a gear change does occur, other parts of the Performance

Figure 17. Gencral Flowchart for Subroutine GRSLCT

Figure 18. General Flowchart for Subroutine GERCHG

Model affected by the change are signaled by Subroutine GRSLCT (variable IFSHFT is set equal to one). The subroutine also supplies the engine speed and the number of the gear being used (INGEAR) for each time interval.

9. Truck Behavior on Downgrades

On a long downgrade, a truck must rely upon its wheel brakes and upon engine braking to maintain a safe speed. The truck driver usually knows from experience what gear to select and at what speed to begin the downgrade in order not to overheat his brakes and to insure a safe speed around any corners that will be encountered. This driver behavior is simulated in the Truck Performance Model using a technique described by Hykes (39).

The minimum brake rating horsepower (TRKBHP) recommended by "Brake Rating Horsepower Requirements - Commercial Vehicle - SAE J257" (40) is defined by the relationship

$$
\begin{equation*}
\text { TKBRHP }=12+\left[\frac{(1.4)(\mathrm{GCW})}{1000}\right] \tag{41}
\end{equation*}
$$

where $G C W=$ the total weight of the truck, in lbs.

The brake rating horsepower of the truck is estimated using this relationship. This calculation is made during the initialization of Subroutine TRKOPS.

The available braking horsepower for the truck can now be calculated using the relationship

$$
\begin{equation*}
\mathrm{TKBRHP}=12+\left[\frac{(1.4)(\mathrm{GCW})}{1000}\right] \tag{41}
\end{equation*}
$$

where GCW = the total weight of the truck, in lbs.

The brake rating horsepower of the truck is estimated using this relationship. This calculation is made during the initialization of Subroutine TRKOPS.

The available braking horsepower for the truck can now be calculated using the relationship

$$
\begin{equation*}
\text { AVBRHP }=\text { TKBRHP }+ \text { AVLFHP }- \text { TWHLHP } \tag{42}
\end{equation*}
$$

where AVLFHP = engine friction horsepower, and \quad TWHLHP $=$ total road resistances, in $h p$.

Due to the velocity dependence of the road resistance term, a velocity can be reached on a downgrade where the truck brake rating plus the truck friction horsepower will be exceeded by the road resistance horsepower (the available braking horsepower will become less than zero). At this and larger velocities the truck can no longer brake safely on the downgrade.

A constant check is made of the vertical road sections ahead of the truck by Subroutine DWNHIL. A flowchart for this subroutine is shown in Figure 19. The look-ahead distance (EYEDST) has been set to 1500 feet (PREDST) plus the distance traveled in the present time interval (VHDIST). If a downgrade begins in this distance, all the vertical road sections in the downgrade section are examined and the maximum grade (LSTGRD) is found. The maximum velocity allowed by the

Figure 19. General Flowchart for Subroutine DwNHIL
downgrade (VELMAX) is then found by using Equation [42] at the point of maximum grade.

Subroutine DWNHIL also checks the downgrade for horizontal curves. If the maximum curve velocity (HASPD) is less than the allowed grade velocity, it becomes the maximum velocity allowed on the downgrade. Subroutine DWNHIL also calculates the total length of the downgrade section (HLDDST) and the distance from the truck to beginning of the downgrade at the end of the present time interval (SLWDST). The Truck Performance Model is then signaled that the truck is approaching a downgrade (variable IFLGTR is set equal to one).

10. Truck Behavior for Curves

For road sections without downhill sections, Subroutine HRZCRV is called to check for horizontal curves. A general flowchart for this subroutine is shown in Figure 20. The horizontal road data includes a signal (MPLA) 1500 feet before each horizontal curve. When the truck approaches the curve signal point, Subroutine HRZCRV finds the length of the curve (HLDDST) and the maximum curve velocity (VELMAX). It then calculates the present distance from the truck to the curve (SLWDST). The performance Model is then signaled that the truck is approaching a curve (variable IFLGTR is set equal to one).

11. Truck Braking

When the truck approaches a downhill road section or curve, it is allowed to travel to the beginning of the downgrade or curve and its velocity is checked. If the truck velocity (VORVEL) exceeds the

Figure 20. General Flowchart for Subroutine IIRZCRV
maximum allowed velocity (VELMAX), the truck is then backed up to the point where the truck can safely brake to enter the downgrade or curve at the velocity allowed.

The truck braking sequence is controlled by Subroutine HLDTRK. A general flowchart for this subroutine is shown in Figure 21. When a downgrade or curve is approached (variable IFLGTR has been set equal to one), Subroutine HLDTRK is called and its variables receive their initial values. The time elapse (DTAINI(1)), distance traveled (DTAINI(2)), fuel consumed (DTAINI(3)), amount of pollutants (DTAINI(4)), total truck distance traveled in the present road section (DTAINI(5)), and the available engine horsepower (DTAINI(6)), for each subsequent time interval in the slowing distance (SLWDST) are stored in an array (DTALOG). The transmission gear used in each time interval is also stored in an array (LOGDTA).

If the number of time intervals in the slowing distance reaches forty, the data for the first twenty intervals are processed in the same manner as done by Subroutine DTAKPR. The data for the last twenty intervals is then numerically resequenced and the program is allowed to continue.

When the truck reaches the beginning of the downgrade or curve, if the truck velocity is less than or equal to the maximum grade or curve velocity allowed, no braking is necessary to reach the allowed velocity (VELLNIT). Then the data is processed by Subroutine DTADMP. A general flowchart for this subroutine is shown in Figure 22. Subroutine DTADMP qrocesses the data in a manner similar to Subroutine DTAKPR. The time and speed for each time interval in a vehicle road

Figure 21. General Flowchart for Subroutine HLDTRK

Figure 22. General Flowchart for Subroutine DTADMP
section are stored in labeled COMMON area TROPS. Subroutine TRKOUT is called at the end of each vertical section to process these and other vehicle data.

If the truck velocity exceeds the maximum allowed velocity at the beginning of a downhill section or curve, Subroutine HLDTRK reviews the present vertical road section until a safe braking rate can be found. The deceleration rate (DECCEL), in miles per hour per second is calculated using the relationship (41)

$$
\begin{equation*}
\text { DECCEL }=\left[\frac{(\text { VELMAX })^{2}-(\text { ENDVEL })^{2}}{2(S L W D S T-\text { DSTLOG })}\right] \text { (ACONST) } \tag{43}
\end{equation*}
$$

where ENDVEL = velocity at the end of the time interval being checked, in mph,
and $\quad D S T L O G=$ distance remaining to the beginning of the curve or downgrade, in ft.

When a deceleration rate is found which is less than three miles per hour per second ($0.81 \mathrm{kph} / \mathrm{s}$), the truck is braked from the end of the time interval involved to the beginning of the grade or curve. The data in the time intervals not affected by braking are processed by Subroutine DTADMP.

The total time for braking (BRKTIM), in seconds, can now be calculated using the equation (42)

$$
\begin{equation*}
\text { BRKTIM }=\left[\frac{\text { VELMAX }- \text { ENDVEL }}{\text { DECCEL }}\right] \text { (ACONST) } \tag{44}
\end{equation*}
$$

After the braking sequence has been completed: Subroutine GRSLCT is used to find the proper transmission gear (INGEAR) ; the time interval (TIMINT) is reset to one second in Subroutine VOTIME, Subroutine WHLBHP is used to find the tractive power required (TWHLHP) ; and Subroutine VMAXHP is used to find the available engine horsepower (AVLBHP) and friction horsepower (AVLFHP).

When approaching a curve or downgrade, the driver ilda be able to slow down the truck sufficiently by "letting up" on, or closing the throttle. This action is simulated in the Truck Performance Model by approximating the desired throttle position by the relationship

$$
\begin{equation*}
\text { SETLST }=\frac{\text { AVLBHP }- \text { TWHLHP }}{\text { AVLBHP }- \text { AVLFHP }} \tag{45}
\end{equation*}
$$

This throttle setting (which neglects driveline efficiency) is used to reset Subroutine THRTTL. This approximation is used when the truck is approaching from an upgrade section. However, when the truck is approaching on a level or downgrade section, the throttle position is set to zero (the driver's foot is assumed to be on the brake).

The engine horsepower (AVGBHP) during the braking process is estimated by averaging the engine horsepower for the last unaffected time interval and the presently available horsepower. This average horsepower and the engine speed at the end of braking are used in Subroutine DIESEL to find estimates of the fuel consumed and the amount of exhaust gaseous emissions produced during the braking sequence. These quantity estimates are divided among the road sections traveled during the braking period in proportion to the section length to the total brak-
ing distance (BRKDST). If the vehicle is not at the end of a vertical road section after the slowdown sequence, the data for the current section are recorded in Subroutine DTAKPR. Finally, the Performance Model is signaled that the truck is at the beginning of the downgrade or curve (variable IFLGTR is reset to zero).

12. Ending the Simulation Loop

At the end of each vertical road section, the truck data is collected and stored by Subroutine TRKOUT. When the Truck Simulation Program reaches the end of the roadway data, Subroutine TRKOPS returns control to Program TSTTRK. Subroutine OUTPUT is then called to print the truck data accumulated during the program run. This completes the simulation run.

D. Supporting Subroutines

Subroutine TRKOUT and Subroutine OUTPUT have not yet been described. They replace subroutines supplied in the USDOT decision model and allow the Truck Performance Program to be run independently.

1. Recording Vertical Road Section Data

Subroutine TRKOUT is called at the end of each vertical road section (NOVSEC). It records the length (TIM) and speed (TSPD) of each time interval (NUMINT) from the COMMON area named DATA. This subroutine also calculates the total time for the road section in seconds. The total time (TOTIME), number of time intervals (TOTINT), the amount of fuel used (TKFUEL), in gallons, and the total amount of
exhaust gaseous emissions (TKEMNS) are also stored in COMMON area DATA by Subroutine TRKOUT.

2. Printing Final Results

Subroutine OUTPUT has two basic functions. If an error occurs in the Truck Performance Model, the variable IEXIT is set equal to an integer unique to the subroutine where the problell occurs. Subroutine OUTPUT is then called to print an error message and data generated up to the time when the error occurred. If no error occurs, then, when the road data ends, the subroutine is called to print data generated for the vertical road sections traveled by the truck. Subroutine OUTPUT prints the number of gallons of fuel used and the number of grams of exhaust gaseous emissions produced by the truck for each vertical road section. A summary of the length of each time interval and the truck velocity at the end of the time interval are also printed.

III. INITIAL PROGRAM TEST RESULTS

The road section shown in Figure 2 was used while testing the Truck Performance Simulation Program. The extreme road geometrics of this test section are not typical for interstate highways. However, the road section provided a means of evaluating all the subroutines with the exception of Subroutine HRZCRV.

The truck configuration used while testing the Program was a three axle tractor semi trailar combination. A 350 horsepower engine and a ten-speed transmission were used. A total vehicle weight of 80,000 pounds was used. The truck and road data used and performance data acquired are given in Appendix 3.

A plot of truck velocity versus distance is shown in Figure 23. The truck velocity was not restricted on the 1.4 percent downgrade in Section 1. However, the velocity was restricted in Section 17 and in Section 13 due to the steepness of the downgrades encountered.

A summary of fuel consumption and exhaust gaseous emissions are given in Table 6. The fuel consumption data have been converted to miles per gallon and gallons per payload ton-mile. The gaseous exhaust emissions have been converted to grams per payload ton-mile. A payload weight of 60,000 pounds was assumed for these calculations.

Figure 23. Truck Velocity Profile for Initial Test Data

TABLE 6. DATA FOR INITIAL TEST SECTION

$\begin{aligned} & \text { VERTICAL } \\ & \text { ROAD } \\ & \text { SECTION } \end{aligned}$	FUEL CONSUMED			EXHAUST GRAMS	GASEOUS EMISSIONS GRAMS
	GALIONS	MILES	GALLONS		
	GALLONS	GALLON	PAYLOAD TON - MILE		PAYLOAD TON - MILE
1	0.085	4.08	0.004	87.4	4.18
2	0.010	3.07	0.005	10.3	5.78
3	0.038	1.71	0.006	40.0	6.25
4	0.028	2.32	0.007	29.3	7.59
5	0.096	1.70	0.010	101.4	10.41
6	0.043	1.50	0.011	45.9	11.78
7	0.053	1.78	0.009	56.4	9.92
8	0.019	2.01	0.008	20.0	8.80
9	0.065	1.76	0.009	68.4	10.03
10	0.273	1.04	0.016	289.6	16.99
11	0.144	0.94	0.018	153.0	18.70
12	0.029	3.14	0.005	21.7	3.98
13	0.440	1.68	0.010	401.2	9.05

IV. CONCLUSION AND RECOMMENDATIONS

The initial test of the Truck Performance Simulation Model suggests that it will provide the data required for the USDOT decision model. Simulation programs developed by former researchers suggest that this program should have an accuracy of at least 95\% (43). However, the accuracy of this program has not been verified at this time. Program testing and validation will be included in phase two of the USDOT project (44).

A. Further Testing of Program

Further testing should be done using road sections with varying terrain in the program. A variety of truck configurations should also be tried. This will ensure that all programing errors have been removed from the model.

B. Possible Future Program Modification

An interesting anomaly can be seen in the truck test data. The velocity of the truck tends to oscillate about the desired velocity. This is probably due to the equations presently being used in Subroutine THRTTLE. The throttle setting is governed by the equations
and

$$
\begin{gather*}
\operatorname{DLTRAK}=\{1.0-\cos [(\pi)(\text { DIFVEL })(.25)]\} \quad(\text { DLTTIM }) \tag{46}\\
\text { DLTTIM }=\frac{(31.0-\operatorname{TIMINT})}{31.0} \tag{47}
\end{gather*}
$$

where DLTRAK = change in throttle setting,
and DIFVEL = variation of the truck velocity from the allowed velocity. Equation [46] provides greater throttle movement as the velocity of the truck (VORVEL) deviates more from the velocity allowed (VELALL). The throttle is either opened or closed completely when the variation in velocity (variable DIFVEL) exceeds two miles per hour. Equation [46] limits the change in throttle setting allowed for longer time intervals. The present throttle setting (RAKSET) is calculated by

$$
\begin{equation*}
\text { RAKSET }=\text { SETLST }+ \text { DLTRAK } \tag{48}
\end{equation*}
$$

where SETLST is the throttle setting for the previous time interval. The above equations could be changed or modified to prevent the present velocity variation. By reducing or eliminating the above anomaly, the number of time intervals required will decrease. This will occur since the time interval is a function of engine speed variation. (Engine speed is, in turn, related to the road velocity by the overall gear reduction). A saving in computer time and possibly, an increase in program accuracy will also result.

C. Suggested Methods for Validating the Program

There are two possible methods that can be used to validate the computer program. One method is to run tractive effort tests on various trucks and compare these results with the data obtained from the program. The other method is to compare the program data for this Simulation Model with a program whose accuracy has already been verified (Such as the Cummins Vehicle Mission Simulation). The second method would probably be the most economical of the two.

It is strongly recommended that this program be validated before it is used to simulate truck performance. Only then can this analytical model be used with confidence.
16. Taborek, Jaroslav J., Mechanics of Vehicles, (Cleveland: Penton Publishing Co., 1957) p. 34.
17. Smith, Commercial Vehicle Performance, pp. 7, 8.
18. Taborek, Mechanics of Vehicles, p. 30.
19. Society of Automotive Engineers, 1977 SAE Handbook, 2 vols. (Warrendale, Pa: The Society of Automotive Engineers, 1977), p. 25.20 .
20. Ibid, pp. 25.20, 25.21.
21. Lichty, Lester C., Combustion Engine Processes, (San Francisco: McGraw-Hill Book Company, 1962), pp. 490, 491.
22. Ibid, p. 489.
23. SAE, 1977 SAE Handbook, p. 25.21.
24. Klokkenga, Selecting Powertrain Components, p. 7.
25. Ibid., p. 7.
26. U. S. Government Interagency Report, Commercial Vehicle Post 1980 Goals Study, Draft Copy, (May 1976), p. 3a-2.
27. Smith, Commercial Vehicle Performance, pp. 5.
28. Ibid., p. 6.
29. Ibid., p. 12.
30. Ibid., p. 22.
31. Ibid., p. 13.
32. Davisson, Jack A., Design and Application of Commercial Type Tires, Paper SP-344, (New York: Society of Automotive Engineers, Inc., January 1959), p. 26.
33. Firey. Joseph C., Peterson, Edward W., "An Analyses of Speed Changes for Large Transport Trucks." Highway Research Board, Bulletin 334 (1962), pp. 1-26.
34. Ibid., p. 3.
35. Beer, Ferdinand P., Johnston, E. Russell, Vector Mechanics for Engineers: Dynamics, Second Edition (New York: McGraw-Hill Book Company, 1962), p. 433.
36. Smith, Commercial Vehicle Performance, p. 3.
37. Beer and Johnston, Vector Mechanics: Dynamics, pp. 432, 433.
38. Smith, Commercial Vehicle Performance, p. 11.
39. Hykes, Paul G., "Truck Downhill Control: Prediction Procedure," Highway Vehicle Safety, PT-13 (New York: Society of Automotive Engineers, 1968), pp. 56-65.
40. SAE, 1977 SAE Handbook, p. 31.99.
41. Beer and Johnston, Vector Mechanics: Dynamics, p. 433.
42. Ibid., p. 432.
43. Smith, Commercial Vehicle Performance, p. 19.
44. Layton, et al., Increased Vehicle Size and Weight, pp. 132-136.

APPENDICES

Appendix 1．Cony of the Computer Program

```
    FDORFAM TSTTRK (INPUT,OUTPUT)
    PEAL MPLA, LENG
    COMYON/ENGFA=/ ENGIVF(J), BHFMAX(23), DRLOSS(2)
    COY4CN/TIREIN/ TIRQIM(7)
    COMMON/WEIGHT/ GCW
    COIMCN/ATMCED/ WETHER(5)
    COMMTN /CONFIG/ WTOTH, HEIOHT, CZAT,CO
    CJMYON /TOANSM/ NOTEAR, AXLRTC, GEARND(15)
    COMMON/=AVT/ CS. CV. CF
    COM10N /ALIFIN/VMP(3JO),GP(3(L), LENG(3J0),
* VOPAJ(?OC), E(?JO), NYFRT
    COM:1CV/HORIZ/HAO(3OO), HRAO(30以), HCURL(3)0),
    * HASPq(3GC), MFLA(SUS), NOUPVE
    COMMON /TKAFC/ SODLYT
    COMMON /FU=LIN/ 3SFO (20,70)
    CO:14CN/TRENMS/ 3SER(3)
    COMPCN/TKOFS/T[4(?)U), TSFD(2R.,), NUMINT
```



```
* FXHAST(?,). TOTITE(く). TUTINT(%`)
r
C MEATIV JATA
    PEA` 1', NCURVF, NVERT, SFGLMT
1C FORMAT(5X,I?,7x,I3,?\,F2.G)
    READ 2?, (VMP(I),GR(I),VCQAO(I), Q(I), LENG(I),
    * I=1.NVEQT)
2, FOOMA:(5F12.5)
    READ 2!, (HMP(J), HRAZ(J), HCUFL(J), HASPO(J),
    * M=LA(J), J=1,NOUPVE)
    REAJ 2,CS, CV,CP
3% FOPMAT(ZFB.E, FB.Z)
    Q=Aา 4), (WETHER(K), K=1,5)
    F\.1AT(5F).i)
    د=Aר 5\therefore, {CW, WIO-H, HEIGHT, DRAGCO
5^ F)r.14T(F1.1. 2F5.2.F5.3)
    NEA7 6:. (ミNFTNE(M), M=1,q). (EHPMAX(N),N=1, 2U),
    * (こことCうう(I), I=1,2)
    E:FJR41T(अFF.(/1,F5.J/10F5.U/2F6.3)
        DEAT 7?. (TIPQIM(J),J=1,5)
    7^ FOOMAT(EFL?.2)
    PEAT &J,NJGEAR, AXLRTO, (GEAONO(K), K=1,NOGEAF)
    80 FORMAT(I2, \x,11F5.2)
        DO #? M=1.2[
    a< P=A) 1!U. (EJFC(N,N),N=1,70)
irJ FU'RMAT(1 2F5.3)
    RF\Delta) 110, (FSEズ(I), I=&,3)
11^FOR4IT(EF10.1)
```

C
C STADT TRUCK SIMULATION
CALL TPKOPS
U
C PPIVI JATA
TEXI = ?
CALL oLTOUT (NVERT, IEXIT)
STOP
END

> SURPOUIINE TRKOPS

DIMENSION DTAINI（6）
REAL LENG，MPLA
INTEGER OLDGFR，OLDHSC
COMYCN／ENGFAR／ENGINE（ヨ），उHFMAX（20），DRLOSS（2）
COMMON／TIREIN／TIFRIM（7）
SOMYON／TREMYH／BSER（3）
COMYON／WEIGHT／GCW
COMYCN／ATMCND／WETHER（5）
COMYJN／CONFIG／WIJTH，HEIGHT，DRAGCO
COMYON／TKANSM／NOGEAR，AXLRTO，GEARHO（15）
COMYON／ALIFN／VYP（30C），GR（JCG），LENG（300），
＊JこマAク（3） 0 ）K（？30），NJERT
COMMON／HOCIT／HYP（30C），HRAD（30J），HCURL（3JO），
＊haspd（3eG），mpla（3j0），nCurve

FROGRAM INITIALIZATION
DATA ILLGT？，INTLIL，KFRSTM，KNSTSP，KARAKE，LWRGER，
＊NEWSEC，NOHSEC，NJVSEL，HLDOST，TRKJST，VODIST，
＊FOEUST，VACCEL／o＊0，3＊1，2＊G．J，15J0．0，2．1937／
UNIT CJNVERSION CONSTANTS
ACONST＝528n．C／36）0．J
GCONST $=1.0 / 4 C O N S T$
CUNSTAVT FOR AIR RFSISTANE EALCULATION
AFEKTa $=$ G． 0 ＋425＊＊JRASCO＊WIUTH＊HFIGHT
FOP EMISSION CALCULATION
SUMERT $=$（2SEP（1）＋3SER（2）$+\operatorname{ESEF}(3))$／35ÜO．l
TRUCK YAXIMUM VELOCITY
TRKMAX $=($ ENGINE（7）＊UT．0）／（AYLFTO＊GFARNO（NOGEAR）
＊＊TIPRIM（4））

C
LIMITE FOR BSFC MATRIX
LOWCR RPツ
LTLREN＝IFIX（ENGINE（5）／100．（1）－ 1
UロPEマ RP4
LTURFM＝IFIX（IENGINE（7）－ENGINE（5）＋10C．0）／1CO．C）
HORTEFJWER CORRECTIDN FACTOR
34叉つFK = 29.3 / (WETHED(4) - WETHER(5))
TEMFFK $=(140$ O. 0 + WETHEP(Z)) / 545.0) ** 0.7
ENGTNE (g) = BAFUFK * TEMCFK
ENGIVE INERTTA, FT-LT-SES-SEC
EINRTA = 14.J 4 (0.00012 * ENGINE(1)*ENGINE(1)1)/
* 32.174

```
C
c calculatepi
    PI = 4.0 * ATAN(1.0)
    PI2 = PI * 2.n
C
C TIRE PCLLING RAOIUS, FT.
    TIRPIM(7) = 5280.0 ( (PI2 * TIRRIN(4))
r
c. CONStant fof galdulating vehicle effFCtive weight
    CFFFHT = 32.174 / (TIRRIM(7) * TIRFIM(7))
C TIQE MOMENT JF INERTIA, LB-FT-FT
        TCNSNT = (U.2.&22 * ((TIRRIM(1) + TIR2IM(E)) / 12.(.))
    * - ..39%
        TINRTA = (TCVENT * TCNSNT * TIRRIM(2) * TIRRIM(5)) '
    * 32.174
C
C. TRUDK YINIMUT BRAKING HORSEPOWER
    TKSRHP = 12.] + (1.4 * GOW * U.UJ1)
c
C
C FINT INITIAL VELOCITY OF TRIJCK (JELALL)
        VELYAX = TRK1AX
C FTNT INITIAL VELOCITY ALLOWEO
        CALL ALLVEL (NOVSEC, TRKMAX, VFLALL)
C
        SElEOT INITIAL GFAF (INGEA#), CALCULATF OVERALL GFAR
            REQUCTION (TOTPET) ANJ ENGINE SFEED (ENGRPN)
        OALL GRSLCT ILWRGER, NCVSEG, VELALL, NOGEAR, IFSHFT,
            * [vecar, totred, Ev;RPM)
        IFSHFT = C
        PFALST = FNGPFM
        VGOV=L = VELALL
        VELL,AT = VELALL
        GO TO 20:
        REGINNING OF TRUCK OPERATION LOOP
    10: IF (NEWSEC .NE. 1) GO TO 220
        IF A NEW VFGTICAL ROAD SECTION (NOUSEC) IS ENTERED
        (VFWSEO = 1), FIND VELOCITY ALLCWEO (VELALL)
        MOVSEC = NOVSEC + 1
        IF (NOVJFO GT, 'IVERT) GO TO ECS
        call allyel (NOvSEC, TkKMAX, velall)
```

VnDISt $=$ i.e
C FTHO LENGTH DF TIME INTERVAL ITININTI
206 CALL VOT IMF PACONST, IMTLIL, PEMLST, NOVSEC, IFSHFT, * yorvel, velall. ENGRPy, VODIST. VHDIST, TININT)
fing requipeu wheel hp tc maintain constant speen (TWHLHO)
CALL WHL JHP (ARFKTR, VOJIST, NOVSEC, VDRVEL, EFFGRD. * Tinlup)
Estimate initial thrjttle setting ouriag the first
- \&CGRAM LOOF
SFTLST $=$ (AVLFHD - TWHLYP) / (AVLEHP + AVLFHP)
IF (SETLST •LT. 2.J) SETLST = C.j
EINJ MAXIMUM VFLDCITY ALLUWFO FOR THE DRESFNT CONDI-
TICNS (VELLMT)
EC: VELLAT = AMIN1 (VFLALL, VFLLMT)
find fregfnt ihrottle tetting (rakset) and preselt
ENGINE GROSS HOPSFDOWFR (ENGSHO)
CALL THRTTL IFI, IFSHFT, VACCEL, SETLST, AVLBHF,
* a ILfhP. VELLMT, VORVEL, TIMINT, RAKSET, KBRAKE.
* EVORHP)
CAL MULATE FUEL CONSUAETION (TFKSFE) AND TRUCK
EMISSIONS (TKEMMS)
CALL DIESEL ILTLRDA, LTURPM, SUMDRT, ENGRPM, ENGBHP,
* tirint, tRKSFC, tKemij)
FIッJ MAXIMUM ENGINE HO (AVLZUP) ANJ ENGINE FRICTION HP
(AVLFH)
CALL VNAXHD (LTLODM, LTUPPM. ENGPFM, AVLSHP, AVLFHFI
IF (INTLIZ •EQ. 1) G) TO 300
FTH FRE SEN ACCELERATION RATE (VACOEL), TAUCK
V GOOITY (VOFVEL) AND DISTANCE TPAVELE (UHOIST)
VELILD = VOFJEL
CALL VELTST (ACUNGT, BCONST, IFSHFT, KMRAKE, ENG:3HP,
* OAKSET, VELULO, OEFFWT. EIMUTA, TOTRFO, TINRTA,
* NOVSEC, TIMINT, TWHLHD, VACCFL, VELNEW, VHDISTI

```
:
F&CORE TOUCK DATA AV) OHECK FOR THE ENJ JF THE SECTIC
TミKJET = VODIST
CALL NTAKFQ (RCONGT, NJVTEC, IFLGTR, KNSTSP, LWOGER,
* JELALL, vFLMAX, HLJJBT, TRKEST, NENSEC, VELOLD,
* VELNEW, YELLMT, YACCEL, TIMINT, VHOIST, TRKSFC,
* TKENMS, #TAINI, voOIST, vORVEL)
CHEGK ORESENT ENGINE SFEED AND CHANGE GEARS IF
            RETUIREC
        OLDGFR = LINGFAE
        CALL GRSLCTILWNGFR, NOVSEC, VORVEL, DLOGER, IFSHFT,
        INGEAR, TOTREO, FNGRPM)
        IF (IFLGTR.EO. 1) ro iO 4u0
    OLDHSC = NOHSEC
    CHESK FOR WOSSIBLE DONNGRADE AHEAC
    CALL DWN:IL IAFFKTZ, TKQRHP, LTLPFN, LTUPPM, PREOST,
* INGEAR, NOISEC. OLJHSC. VHIIST, VOJIST, VORVEL,
* INTLIZ, SLNרST, VELMaX, HLDCST, NOHJEC, KNSTSP.
* IFLGTP)
    IF (IFLGTP.EQ. 1) G\ TO 4uU
    IF (INTLIZ .VE. 1.ANO. KNSTSP.EO. 1) GO TO 4OO
C CHEOK FOP HOPIZUNTAL CIVVE
    CALL HRTOKV INCVSEC, OLOHSこ, VOUIST, VHOIST, SLWOST,
    * VELMAX, HLOOST, NOHSFC, IFLGTRI
    IF (IFLGTR •EO. ज) GO TO 450
    QREOAFE IO SLOW RONV IF A DOWNGRAEE OR HORIZONTAL
        UJFVE IS APFROACHING
        LOO CALL HLOTRK IKFROT1, ACOVST, GCO.VST, LTLRPM, LTURFM,
    * A FFKTO, JUMDFT, SLWOST. VOJIST, NOVSSC. NEWSEC,
    * VEL4AX, IMGEAR, DTAINI, AVLFHD, RAKS=T, ENGRPM,
    * TYTEEO, IFSHFT, YOPVFL, VACCEL, KNSTSP, KBFAKE,
    * IFL得缺
45% IF (INTLIZ . EO. 1) G) TO 100
40, INTLIT = i
    O0 TO 100
SCC 2ETIJZN
    FNT
```

SUBRJUIINE ALLVEL (NOVSET, TPKNAX, VFLALL)
REAL LENG
COMMCN /TEAFC/ SPOL:AT
COMAON/ALIE:N/ VMD(3JU), GでFEC), LENG(300),

* yczan(3 G$)$, R(30j), NVERT

FINT JPEEO OF THE TRAFF[C STREAM (SDD)
CALL STRMSPE (NUVSFC, JPO)
C
COMPARE TO THE TRUCK MAXTHUM SFEEC DUE TO GEARINT,
(TRKMAX) ANO THE FOSTEO SPEEC (SPDLMTI ANO OUTOUT
THE LEAST OF THESE AS HE ALLONEC VELOCITY (VELALL)
VFLALL = AMIV1 (TPKMAX, SDD, SFELMT)
QETIJRN
END
\qquad

```
    SURROUTINE VOTIME |ACOHST, INTLIT, POMLST, NOVSEC,
    * IFSHFT, VCRVEL, JELALL, ENGPOY, VOTIST, VHOIST.
    * TININT)
        REmL LENG
        COM10N/ALIGN/ VMP(300), GP(SEU), LENG(300),
```



```
        IF (INTLIT.EQ. %) GJ TO 5
    IF (IFSHFT ME. 1) GO TO 1O
    IF A g.a. CHANGF IS JCOJPING SET TIMF INTERVAL FQUAL
        T? ONE SECONC
        5 TIMINT = 1.b
        50 TO 60
r. CECFEASE TIME INTERVAL IF TRIJCK IS GOING TOO FAST
10 IF (VOFVEL.GT. VELALL + 2.j) GO TO 40
C OEDUSE VELOCITY IF APFRIAGMING ENL OF VFRTICAL SECTION
        IF ((TIMINT * VOPVEL * ACOYST) .GF. (LENG(NOVSEC) -
        * (voots+ + vhoISTl)) 50 TO 4!
            IF (RFMLST .GT. ENGQJM) GO TO 2J
            CNGRPY = (FNGFFFM - RPMLJT) / RFMLST
            GO Tn 30
7- CNGPFM = (RPALET - ENGRPM) / ENGRFN
    If ghang= ill fngine speeg is ghenter than five
        PEOCENT, FEUVES TIME INTERVAL
3.j IF (CNGRNM .GT. O.S5) GO TO 4i.
    If ghaigGf in engine speed is less than tiNo percent,
        INOREASE TIME INTERVAL
    IF IONGRFM .LT. 0.02) GO TO 50
    GO T) ら%
4: TIMTNT = TIMINT * 3.5
    IF (TIMINT .LT. 1.0) TIMINT = 1.2
    GO -) 5%
5J TIMINT = TIMIN** 1.5
    IF (TIMIVT.GT, 27.)) TIMINT = 3.J.0
EC PEALST = ENGRPM
    PETIJRN
    FNC
```

C

SUBROUTINE WULEHD（ARFKTP，VOUIST，NOVSEC，VOEVEL， ＊EFFG20，TWHLHF）
RFAL LENG
COMMON／FNGFAFノ FNGIVE（3），BHFMAX（ころ），UYLOSS（2）
CO：4 AN／COHFIG／WIJTH，HEIGHI，DPAGCO
LOM 10 ／ATYCNT／WETHER（5）
COMMCN／OAVT／CS，CV，CP
COM10N／ALIG：N／VMD（3J0），GR（3U（），LENG（3CO），

COMYUN／VEIGUT／GCW
calculate rclling pesistance
OOLRFS＝GOW＊（CS＋（CV＊VORVEL））＊CP
C calculate air besistance
EFFVEL＝VOKVEL＋WETHER（2）
AIRYFS＝AFFKTF＊（WETHEQ（4）／（459．67＋WETHER（3）））＊
＊\quad aFFVEL＊FFFVEL
\because CALOULATF PRESENT GRAOF
EFFgOT＝（VOJTST＊2（NOYNEC））＋GF（NOVSEC）
c
C
CALCULAGE GKAUF REGISTANDE
GRJPES＝GCW＊EFFGR．
FINE TITAL QESISTAVCE，LTS
TOTRES $=$－（DOLRES + AIRPES＋GRJFESI
FIN？TOTAL WHEEL HORSEDOWER PEQUIREJ
TWHAHE $=$（TCTPES $*$ JOPVEL）$/ 375.1$
DFTJQ
EUJ

EUSQNUTIME VYAXHD ILTLRDM．LTUPDM，ENGRPM，AVLBHP， ＊aVLFiff）
ROML MECHEF
COMMON TENGFAR／FISIVF（9），BHFMAX（23），DRLOSS（2）
C．FINS LJWER ENGINE SDFFD JATUA FOINT LOWPFM $=$ IFIK（（（FINGRFN－EiNGINE（E））／100．0）＋1．0）

C FIND UPPFE ENGINE SDEEC JATUA PCINT
JUPPPM $=$ LOWRFN +1
C
C
IF（JUORDM ．GT．LTUPP1）GO TO 10
IF（LOWEDM ．LE，1）j）TO 23
PDMLCW＝FLOAT（（LOWRDM＋LTLRDN）＊LUU）
AVL．3HR $=($ BHOMAX（LON？FY）$+(($（EHOMAX（）UORPM）－
＊BHFNAX（LOWPFM））＊（ENGRF1－FP1LOW））／100．0）1＊＊
＊Evisine（9）
60 T） 36
iv AVLBHF＝6．
AVLFHP $=8.0$
GO TO 415
2．AVL $3 H E=6 H F \cdot Y A X(1) *$ ENGINE（Y）
C
し

$$
\begin{aligned}
& \text { CALOULATE ENGIN= FRICTION HP } \\
& \text { 3. COEFET = 2-. } 1395-13.759+8 E-\text { C } 3+13.33129 E-05 * \\
& \text { * EvOPFM) * ENGRDM) } \\
& \text { BHLFEN = (AVLAHP*792.J3.i) / (ENGINE(1)*ENGPDM) } \\
& \text { MECHEF }=1 . C /(1 . ?+1 \text { COSFFT / 3MFPFN1) } \\
& \text { AVLFH = (:. - MECHEF) * AVLBHD } \\
& \text { L: RETIJRN } \\
& \text { E円」 }
\end{aligned}
$$

SUQROUTINF. THRTTL IFT, IFJHFT, VACCEL, SETLST, AVLbHF,

* AvLFHp, velall, vorvel. iImint, rakset, kbfake,
* ENGe4p)
IF (VACCEL .LT. ?.1937) OC TO 1J
PAKSET = SETLST * (2.1933 / VACCEL)
IF (GAKSET .LT, 0.0) RAKSFT $=C .0$
GO 970
C
$\stackrel{0}{0}$
10 CLTTIM = (31. - CIIINT) 31.0
DIFVL = VFLALL - VJRVFL
IF MIFVEL •GE. 2.j) GO TO 20
C
C. THROTTLE SETTING IS AFFECTEO BY THE OIFFERENCL BETWEEN
c TRUCK JELOETTY AV ALLOW=D YFLOCITY
IF MIFVGL.LE, -2.3) GU TO $5 i$
DLTRAK = (2.3-COS13I * DIFVFL*0.25) * ULTTIM
IF GIFVFL.LT. U.J) GO TO 4r
DAKSET = SETLST + DLTRAK
IF ($\mathrm{XA} K \mathrm{~S}=\mathrm{T}$.LE. 1.J) G TO 34
20 PAKSET $=1 .[$
3 K KJRIKE $=0$
GOTO 70
4: OAKSET = SFTLST - DLTRAK
IF FFAKSET.GE. 0.31 GO TO 5月
50 RAKSET = C. C
SIGNAL POSSIJILITY OF ZRAKING,
6^{n} KBRAKE = 1
TV SFTLST = RAKSET
CALOULATE THE FRFS=MTLY AVAILABLE ENGINE GDOSS HO
ENGGHP = (KAKSET * (AVLSHP + AVLFHF)) - AVLFHF
RETJEN
END

SURROUTINE DISSEL ILTLROA，LTJROM，SUMFPT，ENGPPM， ＊EVGZHP．TIMINT，TRKSFC．TKEMMSI
COMMCN／ENGFAR／FNSINE（a），JHFMAX（2U），DRLOSS（2）
COMMCN／FUELIN／3SFO（26．70）
IF 1－N：BHF •GT．O．j）GU TO $1 i$
T二K 3 HF $=-F N G B H P$
gorozu
1：T PK $3 H R=$ ENG $3 H F$ 20 CORRHP $=$ TRKBHF／ENGIHE（9）

FINT LJWER ENGINE SOEET JATU＇FOINT
LOWROA＝IFIX（1（FNGROM－ENGINE（5））／100．0）＋1．C）
FIND UPDER ENGINE SDEEC JATUM fOINT
JUPTPM＝LOWREM＋ 1
FIIH LOWER［VGINT WD OATIM POINT
LOW3HF＝LFIX（（CORBHP／10．6）＋1．0）
FINT UOPER FINGINF HD JATUM FOINT
IUPTHF $=$ LDW 3 HF +1
INT：ZFOLATE TU FINT BSFG WITH RESFECT TO ENGINF SFEED
RFFHLOW＝FLOAT（（LONROM＋LTLRFM）＊ICJ）
BHFLOW $=$ FLGAT（（LONBHP－1）＊10）
Intereclate io fins 3 SEO with pfsfect to engine hf
IF ILOWRDM •LE． 11 GO TO 3：
IF（JJPRFM ．TGE．LTUROM）GO TO 4．0
CONSNT $=$ FNSODM－ROMLOW）$*$ C．BI
BGFOLW＝ISONSNT＊（3SFC（JUPRFM，LOWZHD）－BSFC（LOWPDM，
＊LON＝TP））+ 日SFC（LOWEDN，LOWFHP）
DSFCHI＝（CONSNT＊（BSFC（JUDRFM，IUFBHP）－BSFC（LOWRDM，
＊IUDQapll）＋aSFC（LOWOPM，IUPEHO）
GのT0 50
3！ESFCLN＝PSFC（1，LON 340$)$
BSECHI＝55FO（1．I（JP 3HD）
GOTO jo
4．RSFALW＝ESFC（LTURNY，LOWQHP）
BSFOUI＝3SFC（LTURDM，IUP3HP）
ER TOTBSC＝（（COOBHD－3HDLOW）＊ $2.1 *(3 S F D H I-E S F C L W))$
＊＋3SFCLW

TRKSCO $=$（TOTESC＊COR5HD＊TIMINT）／25́́32．U
calrulatf．gasequs eyissions in grams
－KミイUS＝SUMPET＊COPBHO＊TIMINT
peTUZN
ENO

SUBROUTINE VELCST IACONST，BCONST，IFSHFT，KOPAKE，
＊．EVGSHF，RAKSET，VZLOLT．CEFFWT，EIMRTA，TOTPEO，
＊TIVOTA，NOJSEC．iIYINT，TWHLHP，VACCEL，VELNEW，
＊VHJISTI
REAL LENG
COM1CN／ENGFAR／FNGINE（Э），उHFMAx（2J），DPLOSS（2）
COMAON／WEIGHT／SOW
COMACN／ALIFI／VMP（3；0），JK（30C），LENG（3CO），
＊VOFAO（30i），R（30i），vVERT
IF（IFSHFT •EO．J）GO TO 1 i
AVAISAPLE WHEFL HP IS $7 E D O$ JUPING A GEAR CHANGS $\Delta V L$ NH $=0.0$
GO TO 40
C
C．FIN PAPT THOOTTLL ORIVELINT EFFICIENCY
10 IF（₹ロKSET •JT．О．J9）Gう T） 26
OTH三FF $=0.5$
GOTO？ 0
26PTHEFF＝DCLOSE（1）＊（1．3－（LRLOSS（2）＊（1．© ）
＊o，akseTl－1．しい）
IF（FTHEFF ．LT．？．5）PTHEFF＝こ． 5
し
CALGJLATE THE HP aVAILABLE AT THE WHEELS
3）AVLWHD＝（ENGBHD－FiNGINE（3））＊DTHFFF
r
C
CAL SULATE THE ACPELEPATING FORCE．LJS 4 G $A C G F F C=(A V L W H P+T N H L H P) *(275.6 / V E L O L D)$

CONVFRT TKUCK VELOEITY TO FT／SEC
TRKVEL＝VELOLD＊ACONST
（
C CALCULATE TRUCK FFFECTIJE WEIGHT CLE TO INERTIA LBS EFFA！T $=$ GOW $~$（REFFNT＊（EINETA＊TOTOEO＊TCTAFD）
＊＋TINRTA）
IF（VCRA）（NOVSEC）．LT．2JUU．I）GCTO 60
GALGULATE THE NEW VELOLITY IN MPH ANT DISTANCE
TPAVELEO ON m SONSTANT GRAJF
FACTOQ $=((A B C F Q O * ? 2.174) /$ EFFWGT）＊TIMINT
$V E L N=W=(T R K V E L+F A C T O R) *$ FCOJST
VHTIST $=($ TFKVEL $+(F A C T O E *: .51) * T I M I N T$
Gつ TO 76

```
O caloulate nen velocity ant oistance traveled on a
    CHANGING GRACE
    60 CO:ASTA = (ACGFFL * VLRAJINOVSFCI) / EFFWGT
    CONSTA = SQKT(32.174 / VCRAO(NCVSEC))
        CONSTC = CONSTE * TIMINT
        IF (CONSTG .LT. 1.57) GO TO 56
        ORINT 54, NOVSEC
        64 FOZMAT RX,FFRPOO IN TIME SPECIFICATION IN SECTIONA,
        * ?र.I復
        GO TO 14%
        EG CONSTH = LOS(CONSTO)
        CONSTE = SIN(CONSTC)
        VFLNEW = ((TPKVEL * CONSTO) + (CONSTA * CONSTE *
        * CONS1OI) * bCOMST
        VHOLST = CONSTA - (SONTTA * CON'STO) + (ITRKVEL/
    * conS(B) * constel
r
C CALSMLATE IHE FATF DF AVOELEPATICN, MFH/SEC
        TO VACSRL = (!IVELN=W*V=LNEW) - (VELOLJ * VELOLOI) '
    * (2.0 * VHOTST)) * ACONST
C
C CHECK THRGTtLF STATUS GNJ grakE IF REQUIRED
    IF (KGPAKF ,NE. 1) GJ TJ 90
    IF (vaCGEL .lF. j.0) GO TO 90
    VFLVEW = VFLIGLC - ?.1
    VAOCEL = (VELNEW - VELOLD) / TIMINT
    IF (VAOCEL .GE. -3.3C) 60 io Rl
    VAOJSL = -3.j0
    VELVEN = VELOLC + (VACCEL * TIMINT)
    Gu VHDIST = ((VELOLD + (O.5 * VACLEL * TIMINT)) * TIMINT)
    * * aconst
    ar IF (VELNEW .GT. S.0) GO TO 11T
    PRINT IUT, NOVSEC
10% FORMAT (IUX, fTHE TRUCK HAS STOPPEO IN SECTIONA, 2x.
    * I3)
    GO TO 14?
114 IF (VHOIST .GT. J.J) GO T0 13:
    PRINT 12J, NJVEEC
120 FODMATI:CX.ANEGATIVE FROGRESS IN SECTIONt,2X,IZI
    GO in 14|
i`. RETJRN
ZuE IExIT = 7
    CALL OUTOUT (NOVSEC, IEXIT)
    END
```

```
    SU?QOUTINE OTAKPR (BCONST, NOVSEO, IFLGTRE KNSTSO,
        * LWEgEO, VELALL. VELMAX, HLOOST, TRKTST, NEWSEC,
        * VELOLD. VELNEW, VELLMT, VACCEL. TIMINT, VHOIST,
        * TOKJFG, TKFMMS, DTAINI. VO\IST, VIQVELI
        RCAL LENT
        OIMEN=ION TKDATA(4), DTAINI(G)
        GOMMON/iROF3'TIM(2jn), TjOר(2Oj), IUMTIM
        COMACN/ALIGN/ YMP(3)SI,GE(3(1), LENT;(300),
        * VCPA)(EC), Q(?0.G), TVFRT
        COMMON/TRAFO/ SODLMT
        TKDATA(1) = TIMINT
        TKOATA(2) = VHCIST
        TKDATA(3)= TRKSFC
        TKOATA(4)=TKEMMS
    C. INITIALITE VARTABLES IF AT BEGINNING OF NEW SECTICN
        IF (NFWSEC .NE. L) ro TO 1S
        DTATNT(3)=N.U
        OTAINT(4)=0.0
        IF (IFLGTR .EO. 1) GO TO 5
        NUMTTY=6
        5 NFWSEC=U
            VOUIST = i.C
c
O cAl_ULATL uISTAiNCE TPAVELEG in preSENT SFCTTION
    IC VOOIST = TRKOST + TKOATA(2)
O
C. LHEOK FOR ENJ CF SENTICN
    ENOSSC = LENG(NOVSEC) - VODIST
    VODVFL = VELVEW
    IF (ENOSEC.GT.*.") GOTO}3
i
C CORRONT JATA IF AT ENO OF SECTION
    NEWSEC=1
    COPZOT = (TKJATA(2) + ENJSEC)/ TKLATA(2)
    j0 2:3 I = 1, 4
    TKDATA(I) = FKDATA(I) * MORECT
    2; CONTINUE
        VOPVEL = VFLDLD + (VACCEL * TKDATA(1))
        VODIST = LFNG(NOVSEC)
<. TOANSEER UMTA TO DERAY JTAINI FO? SUBZOUTINE HLDTKK
    ?; DTAINT(1)= TKDATA(1)
    DTAIFI(?)= TKCATA(?)
    OTAINI(3)= JTAINI(?) + TKIATA(3)
    JTAINI(4)= JTAINI(+) + TKOATA(4)
    DTAINT (う) = VOOIST
```

```
    RETJGN IF NLITRK IN CONTPOL (IFLGTR = 1)
    \perpF IIFLGTF.EQ. 1) GO TO 5%
```

 C.ALL TQKOUT (NCVECG, OTAINI(3), JTAINI(4))
 4 4 IF (KNSTGP. NE. 1) GO TO 3.
KEEF TRACK OF HORIZONTAL GURVE ANC JOWNGRADE SECTION
LENGTHS
VELLAT = VFLIAX
HLUJST = HLDJET - TKJATA(2)
IF (VELMAX •LT. SFMLMT) LWEGER = 1
IF (HLODST .GE. J.O) GO TO 50
KMJTCO = 0
VELLYT = VELALL
LWRGE? = い
50 RETURN
CNO

```
    SJQPUJTINE GPSLGT (LNPGE?, NOVSES, VOFVEL, NUMGER.
    * IF=HFT, INGEAR, TOTDEU, ENGRFMI
    COMMUN/INGFAF/ =\ÚGN=(9). 3HFMAX(2)), DRLOSS(2)
    COM10N/THANSM/ NOGEAR, AXLRTO, GEARNO(15)
    IFSHFT = :
    INITR,R = MUMOER
C
    UPSHIFT IF FEQUIDEI
    IF (GNGROM .GT. ENGINE(5)) GO TO L!
C UOWVSHIFT IF REQUIPEO
    IF (ENTRPM .GT ENGINE(4)| GO TO EJ
    10 NUMGED= NUMGFF - 1
    IF INJMGFP.LT. 11 GO TO 30
    CALL GERGHG (VORJFL. NJMOEN, TOTRED, ENGRDM)
    IF ENGRPM .L:.ENGIVE(+)) GO TO 1%
    2j IF (LWPGER .EO. 1) GO TO 6J
    GO TO & %
    30 NUMSER = 1
    GO TO 39
    4J NUMFER = NUMGFE + 1
        IF (NUMGFE .OT, HUGEARI GO TO D:J
```



```
        IF (ENSFPM .ST. ENGINE(S)) GO TO 4O
        GO T? 10:
        5% NUNGEO = NUGEAF
        GALL GEQOHG (JOPVEL, NUTGLR, TOTPED, ENGPPM)
        IF IFNGKPM .GT. ENGIME(7)) 「O TO 110
        50 TO 10?
C
C
    USE LONEST GEAK IF ON JOWNGRAGF JR CURVE
        ER NUMGER = IUMGER - 1
            IF (NU.1GEE.LT. 1) GO TO 3%
            CALL GEPMHT, (VOR:IEL, NUAGEP, TOTPED, ENGROM)
            IF (5NTRJ.1 !! ENGINF(5)) GO TO FJ
            NJMTER = NUM;FR + 1
            gr CALL G=FSHG (YOPVEL, NUMSER, TOTर|D, ENGRPMI
ING INGEDR = ||MSES
    SIGVAL IF A SHIFT HAS DCCURFED IIFSHIFT = 11
    IF (INGEAF .|F. TNITGF) IFSHFT = 1
    RETURN
11? FRINT 12J, NUVSEC
120 FOP\AT (EX,AFRROR IN GEND SELECTION IN SECTIONT,I5)
    IFXIT = %
    GALL CUTOUT (NOVSEC, IEXIT)
    END
```

```
    SUFPOUTIME GERGUG (V)OVEL, NJMGER, TUTQE), ENGRFMI
    COMION/TRANSM/ NO;FAR. AXLRTO, GEAFMO(15)
    COM'1CN/TIREIN/ TIERIM(7)
r
C. GALOULATE NEW GEAR PEDJCPIUN
    TOTPEO = AXLRTO * GEARMO(NUMGFR)
C
U CALSLLNTE NEN ENGINE SFEFD
ENGRFM = (VOPVEL * TIRRIM(4) * TOTREOI / GU.4
        &ETリRV
        ENT
```

SURPOUTINE［ANHIL（ARFKTR，TKERHP，LTLRPY，LTUPPM， ＊prenit．injeap．NOYSEC，OLDHSC，VHIISt，VODISt，
＊JnqvEL，INTLIZ，SLWDST，vELMAX，HLDOST，NEWHSC．
＊kNSTjF．IFLGTRI
rEal LENG，MOLA，LETGRO
INTESER みOHSC，STKTGR
COM10N／aLEGV／VYO（310）．Gマ（zLG）LENG（3UU），
＊vocaj（3nu），2（33：）．iNERT
COMACN／HORIT／HMO（3ng），HKAD（？：こ），HCURL（300），
＊hasperseo），mola（310），ncueve
COMYCN／TFAFB／SODLYT
IF（INTLIT．VE．C）GO TO 5
C－ubocutive initialization
TOTクST $=6$ er
KMTSER＝NOVSEC
FYEJST＝FREJST＋VHJIST
OSTKDR $=0.0$
GO TO 10
c
C IF YG NEY ROAD SECTION IS IMMINENT，RETURN TC MAIN
C．FOUSRAM
5 DSTKDR＝OSTKPR－VHJIST
if（OSTKP品．ST．Q．J）GO TO 146
TOTOST＝VODIST
KNTSEC＝NOVSEC +1
IF（KNTSEC．LF．LJTSEC） 90 TO 140
OSTKFZ $=$ O．$[$
c
C caloulate lojk aheal oistance
FYEDST＝FRETST＋JHTIST

0
C．CHEGK FOR JUNGGRAIE NITHIN LOOK AHEAD DISTANCE 1？IF（Gq（KMTSFO）．LT．J．C．OR．R（KNTSEC）•LT．U．CI
＊GOTO ？ 0
TOTJST＝TOTOST＋LENG（KDTSEC）
IF（TOTJST ．jT．＝YEDST）GO TO $1+j$
KNTSEC＝KNTSFL＋ 1
GO TO 10
C
r
F FINJ YAXIYIM GFADE SEOTION UN［OWNGRAJE

```
    STRTGR = KiNTSEC
    zn IF (₹(KNTSEC) .LT. J.0) GU TO LO
    GOO44x = GO(KNTSEC)
    DSTSRO = - - i
    G0 TO 45
    40 GPMMAX = GR(KNTSER) + (LENG(KNTSEC) * F(KNTSEC))
    GSTGZ7 = LFNG(KNTSES)
    45 IF {r,NMAX •GE. LSTKQO) 5O TO 5J
    LSTGRO = GRO 1AX
    LSTOSG=KリTSEC゙
    OSTLIT = DSTGRO
    50 KNTS:C KNTSEC + 1
    IF (KNTSEC GT. MVERT) GO TO Ui
    IF (GR(KNTSFO) .LT. ?.) GOTO 3J
    IF (Q(KNTSEC) &T.,].E) GOTO 40̈
    FINO THL 'AAYTMUY ALLJWEJ JELOCITY ON THE DOWNGRGDE
    fl VELMAX = VOPVEL
    NOGV=L=L
    LSTSEL = KNTSFC - 1
    7O CALL WHL 3HP (GEFKTR. OJTLST, LSTUSC, VFLYAX, LSTGFY.
        * TWHLHP)
        CALI GKSLLTIL, LSTDST. VELMAX, INGEAR, IFSHFT, NEEOGE,
        * रण\capREJ. REJFFM!
        CA!- VAA<HO (LTLPPM, LTJFFM, FFO<&M, IVLOHP, AVLFHFI
        AVEFHE = T&FOHF + AVLFHD - TWHLNO
        IF (AVAR位.,T. j.O) GJ TO 8?
        NOTJEL = 1
        VELAAX=VELIAX - 5.J
        GO TO 70
    ge IF NNCFVEL •E\cap. 11 GOTO 3%
    IF (AVBRMF .LT.,.:)G\cap TO Y:
    VELYAX=VELYAX + J.S
    IF (IFLMAA .LE. SPDLITI GOTD TU
    VFL'ADX = SPCLMT
    GO TO 10:
    G: VELMAX = VELMAX - 5.1
    95 IF (NOVSFC .NE. 1) GO TO 100
    CALEULATE THE CISTANGE TO THE DOWAGRAOE (SLWGST) ANO
        THELENGTH OF THE GRAJF (HLDOST)
    SGMTST = VUOISI
    GC TO 105
    L[G SAM决= VMF(NCVE=O - 1) + VODIST
    i(5 SLW)ST = VMF(STRTGOI - SAMOST
    HLDJST = JMF(LSTSEC) - SAMDST
    OSTKOQ = HLOOST - EYEOST
11.J IF (FMD(JLTHJC) .GT. (SAMOST * HLCJSTI) GOTO I3.
```

```
c
r
C
    GHECK FOR SFEER LIMITING HORIZCNTAL CURVES ON THE
        0DWNGPADE
    IF (HASPD(OLJHSC) .GT. VFLMAX) GO TO 120
    VELMDX = HASPE (OLDHSO)
    12: OLDHSC = ULDHSC + 1
    IF (CLCHSO .L'. VCJRVE) ro TO 11?
    1इJ NEW45% = OLOHSC
    IF (INTLIZ .OF. I) GJ TO 135
    VELYAX = AMINI(VELYAK, SOJLYT)
    KNjTjP = 1
    SLNOST = 0.0
    「O TO 14j
155 IFLTTP = 1
14] FETURN
    ENO
```

```
    SUQRCUTINE HRZCRV INOVSEO, JLEHSE, VODIST, VHDIST,
        * SLNDST, VELMAX, HLDTST, NEWHSÓ, IFLGTRI
        REAL LEN'S
        INT=GER OL DHSC
        COMMON/4ORI?/ HMO(300), HRAC(30S), HCURL(3J0),
        * HISP)(30!). MFLA(320), NCUPVE
        COM10N/ALIGN/J10(3J0),GR(300),LENG(330),
        * V?=AC(zCr), R(z]!), vVERT
C
C CHESK FOR HORITONTAL CJPVES WITHTN LOOK AHEAO DISTANCE
        TF (NOVSEL .NE. 1) GO TO IL
        SH:47ET = VODIST
        GO TO 20
    1: SA1JST = V4D(NOVSFC - 1) + VODIST
    ZE IF (NFLA(OLOHSC) .GT. (SAMJST + VHOLST)) GO TO 4%
CFIVJ पAXIMUM SEEEJ ALLOWEO UN THE CJPVE
    VELYAX = HASPO(OLDHSC)
    NEWHST = ULOHST + 1
    IF (NFNHSC .LF.NCURVE) GOTO 3*
    NEWHEC=OLOHSC
C FTNT IISTANCF TO C'JQVF
3. S(W)ST = HYF(CLOHSO) - SAMDST
    IFL,TG=1
    4. ORTUFN
        FNO
```

```
    SUGPOUTINE HLOTRK IK!-̇TM, ACONST, 3CONST, LTLFFM,
    * LTUEDM, ARFXTR, SUMDET, SLWOST, VOGIST, NOVSEC.
    * NEWSEC, VELMAX, ING&`, DTAIII, OVIfHD, RAKSET,
    * ENG-PM, TOTFED, IFSHFT, VOFVRL, VACCEL, KNETSP.
    * K子रa<E, IFLGTRI
        REAL LENG,
        INTEGER OKETFN, DLOSEC
        DIMENSION INTEVI(20), DTALOT(20.41,6), SUMLOG(4),
    * ctainile), logota(20.41)
    COMMON/ALIGN/ VMP(3O0), GR(300), LFNG(300),
    * VOPAD(300), P(307), NVEFT
    COMWON/TPOPE/ TIM(200), TSPO(?OD), NUMINT
    IF (KFKSTM .EQ. 1) GO TO 30
C INITIALITE SUBROUTIN=
    OSTLOG = 0.0
    NUMSES = 1
    INTNUM = 0
    KFFSTM=1
    INTTTA = 0
    IF (VEWSER .NE. 1) GO T0 10
    K3GSEC = NOVSER + 1
    OLDSEC = KSGSEC
    G0 T) 20
    10 KGGSEC = NOVSEN
    OLOSEC = NOVSEC
    20 RETURN
C
C Recogo data fof time interval
    30 TTAI'I(6) = AVL3HD
    If (NOVSEC .EJ. OLDSEG) GO TO 40
    INTRVL(NUMSEC) = INTNUM
    OLTS=0 = :1OVSEO
    NUMSEC = NUMSEC + 1
    IF (N!MSES .GT. 20) SO -0 200
    IHTNTJM = 0
    40 INTNUM = INTHISM + 1
    IF (INTN!MM .OT, 40) GO TO ?00
    DO 50 K = 1, %
    JTALOG(NUMSEC, INTNUM, k) = CTAINI(K)
    60 CONTINUE
        LOGOTA(NUASEC,INTNUM) = INGEAO
        OSTLOG = DSTLOR + OTAINI(Z)
        IF (OSTLON,.GE, SLWOST) GO TO a0
        TNTITA = IHITOTA + 1
    IF (INTOTA .lT. 40) RETUPN
C
C, RFOOFJ DATA FOF FIFST 20 TIME INTEFVALS
    INTRVL(HUMS:CO) = IMTNUM
```

```
    KNTSCC=1
    INTOTA = 0
    NUMTIM = NUMINT + INT=VL(1)
    KUMINT = 0
    f0 TO 68
    64 KNTSEC = KNTSECC + 1
    IF (KNTSF=.GT. 20) GO TO 200
    K3GSEC = KBGSEC + 1
    KUMIVT = ?
    NUMTIM = INTRVL(KNTSEC)
    NUNINT = 0
68 INTOTA = INTMTA + 1
    IF (INTOTA GT. 20) GO TO >2
    NUMINT = NUMINT + 1
    KUMINT = KUMINT + 1
    IF (NUMINT .GT. NUNTIM) GO TO T0
    TIM(NUMINT) = OTALOG(KNTSFR,KUYINT.1)
    TSPO(NUMINT ) = (UTALOG(KNTSEC.KLMINT.2) /
    * GTALOG(KRITSES,KUMINT, 1)) * BCONST
    GO TO E.9
70 :UUMI:JT = NU1TIM
    GALL TRKOUT(K3GSFC. DTALOG(KNTSE゙G,NU4INT,3),
    * [TTALOG(KNTSEC,NUMINT,H))
    G0 10 64
72 INTRSO=0
    NOMINT = KUMINT
C
C JESEQUENCE RFYAINING TIME INTEPVALS
    INTZVL(KNTSEC) = INTRVL(KNTSEC) - KUMINT
74 NUMTIM = INTEVLOKNTSEC)
    INTRSQ = IN:TRSO + 1
    DO 77 I = 1, NUMTIM
    70 75 J = 1, 6
    KOINTE = N!OMINT * T
    JTALOF(IATRSD,I,J)= GTMLOG(KNTSEC,KOIINTK,J)
76 OONTINUE
    LCGOTA(IMTESO.I) = LOGDTA(KNTSEC,KCUNTF)
7% CONTINUE
    NOMIIIT = 0
    KNTSEC=KNTSEC+1
    IF IKNTSEC .LE. NUMSECI GO TO 74
    INTOTA = 20
    NUMSEC = INTESO
    INTNUM = NUMTIM
    RETUZN
    QO INTRVE(NIMSFC) = INTMUM
    IF (VOFVEL .GT. VELMAX) GO TD aO
C
C
```

```
C RECORO DATA IF TEUCK VRLOCITY JOES NOT EXCEED VEEOCITY
```

C RECORO DATA IF TEUCK VRLOCITY JOES NOT EXCEED VEEOCITY

```
        ALLOWE?
```

```
        ALLOWE?
```

KNSTSP $=3$
CALL DTAMMD 13CONST, KBGSEC, KFSTSC, NUMSEC, INTEVL, * oialog, nuwseci

GO TO 170
apare pryek if venocity exozens velocity allowed
30 70t75t $=0.3$
100 JSTLOG = OSTLOG - DTALGT(NUMSEC, INTENL(NUMSEC), 21
ENOV:L = (OTALOG(NUMSEC,INTマUL(NUYEEC),?)

* CTALOG(HJMSEC, INTOVLINUMSEC.).111 * ロCON.ST

ПFKIST = SLWOST - OSTLDS
IF (askost . LT. 0.0) go TO 180
, DECCEL = ((VGLMAX *VELMAX) - (ENCVZL*ENCVEL)),

* (2.0 * 3FKOSTl) * 4.0.Met

IF MECCEL •GE•-3.03) 50 TO 105
Int RVL (HUMSEE) = Intevi(numser.) - 1
IF (Intevl(Numsec) .GE. 11 do TO 100
NUMSEC = NUMSE - 1
IF (NUMSEL .LT. 11 GO TO 180
GO ro 10 ?
105 CALL DTADMF (3CONST, KTGSEC. KFSTSC. MAMSEC, IATRVL. * atalcg. Mowsec)

QRKTIM = (VELMAX - ENOVTL) / OECCEL
IF (BOKTIM .LT. O.0) BRKTIM = -RKKTIM
RESET SUFROUTINES AFTEG QEAKING
CALL GESECT 11. NOVSEC, VELMAX, LOROTA (INMMSEC, INTEVL * (NUMEEC)), IFSHFT. INGEAE, TOTEET. ENGEDM)

CALL VOTIME 10.0, 1. ENGEDN, NOVSER. 1. 0.0, 0.0.

* ENGFOM, O.O. O.O. TIMINTI

CALL WHL 3HF (AFFKTO, VODIST, NOVSEC, VELLMAX, EFFGFO,

* TNHI-MPI

CALL VMAXHF ILTLEDM, LTUPPM, ENGFPN, AVLZHP, AVLFHDI
FIND THEOTTLE SETTING
IF (GE(NOVSEC) .GT. O.O) GO TO 110
SETLST $=0.0$
GO TO 120
110 SETLST = (AVLFHP - TWHLHP) / (AVLBHD + AVLFHP)
120 CALL THPTTL (3.0, D, E.?, SETLST, GVLEHF, AVLFHF, * 0.7. D.?, U.O. RAKSET, O. ENGOHPI KQqAKE $=0$
0
C
C
ESTIMATE FUEL CJNSUMEO AND EYISSICNE
AVSTHD = (OTALOG (NUMSEC. TMTRVL(NIJMEEC), E) + =NG NHD)

* * 0.5

CALL DIESEL UTLQPA, -TJPDM, SUMDFT, ENGFFM, $\triangle V G B H D$,

* g२KTIM, fNLGAL, AVGEMS)


```
    IF (ACNSL •NF. NOVSFO, FOTO 125
    ッFにごこ= = 1.0
    MJMT:T = IUUINT + 1
```



```
    F0, < 13]
    1?=0K?-:N=?
    MUMI\T = [HT OVL(KF弓T;O) + 1
```



```
    < 51) , 3セ<<OうT
```



```
        CHMLGG?)=(FMLGNL* EFCDFF) + O|AGAL
```



```
        TI^(1U4T:V丁)= S!4Lur.(1)
        |EWO(NJ:THT) = (SHMLOR(?) / J|MLCG(1)) * SOONST
```



```
    OTTST = TOTMST 4 3リ|LCO(2)
    \because\capN3.& = `ub?CC + 1
    |1:- = IUNOFEC + 1
    |!4[:T = 1
    S!| 5,it=0
    CUM:二:% = 1
```



```
    jrra:q = LrNj(NUMSEO) / QR<OST
    (G) TO !3]
    140 の人々एサN=1
        KリごミP=1
        TFS4F'= !
        ソ沄准 = D-COEL
        C-OつEマ=(25KDST - TITSST) / 「FKOST
        50-9137
    150 v0Pり三L=TSF%(NU"IVF)
```



```
        CALL - =KうUT (NOVSTC, SUMLOH(3), SUMLOR1H))
        ヶい -7 17?
?
```



```
    * F'NMOr(2). SUMLOr(3), SU^LOC(4), J*AINI, vOOIST.
    * vO•v*L!
1:0 TFL:%=0
    kFOSTu=0
    IFJHF}=
    NJWINT=FWV2VL(NU1SEC)
```

```
        マニ-Jき,
10n P2INT 13J, K3F5EC
```



```
    * v-10`IV姩 2x, I3)
        GOTM 21!
```



```
210 I\sigma<IT = !?
```



```
        DFTJOV
        EM%
```

```
    SUBROUTINE UTAUMO (3EONJT, KTGSEV, KFSTSC, NUMSEC,
        INTQUL. OTALCC; NOWSECI
    ПIMENこI\capA INTRVL(2II, OTMLOG(ご,+1,6)
    COMYON / IROFS/ TIY(2?0), TSPO(E0J), NJMINT
    F=SOAE TYME INTEPVAL CATA
    KFSTSC=1
1: NOWINT = INTPVL(\angleFSTSC)
    OO ? J = 1, NOWINT
    KCOUNT = J + NUMIHT
    TIf(KCCUNT)= ITALOC(KEST3O, J, 1)
    IF (TIM(KCOUNT) .LE. G.a) GO TO + C
    TSD)(KOO!JNT) = (JTALOG(KFSTSC,J,2) / OTALOG(KFSTSC,J,1
    * 11 * bccvet
    IF (ISOO(KCOUNT) .LE. I.n) GO TO EU
2% CONIINUE
    NUMINT = KOUUNT
    IF (NUYSFC .EO. KFSTSC) ro TO 30
    GARL TOKJUT (KEGSEC, DTALOG(KFSTJC,NOWINT,3),
    * UTALUG(KFSTSC,NOWINT,4))
    KFSTjC=KFSTSC + i
    IF (KFSTSC .GT. 2LI TO 「O75
    NUMINT= '
    K3GSEC = KEGSEC + 1
    GO TO 10
3n NOWSEO = KBCSEC
    METURN
4\hat{0}FRIVT 5|, KFGSEC, NUIINT
5% FORAAT (IUX, LCROOR IN TIME SFECIFICATION IN SECTIONZ,
    * I&, INHFN NUMINT EOUALSt,I4)
        GO TO 30
EC PRIUT 70, <EGSEG, KJOUNT
7. FOR1AT(1)X,AERFO? IV DISTANOF SPECIFICATION IN SECTICN
    * F.IL,INHEN NLMINT EDUALSF,ILI
    GO 「O 80
Tj FRITT*, & SECTION NUYEER OVERLCAJF
8T IExIT = 1?
    CGLL OUTOUT (KAGSEG, IEXITI
    ENO
```

C
6

```
        SUBROUTLNE TRKCU: (NJVSEC, TKFUEL, TKEMMS)
        COMMON / TROFS/ T [M(2?U), TSD](ZUj), NUMINT
        COM:1ON/GATA/ IIME(2J,2JO), SPEE)(Z̈O.2OO), DIESEL(20),
    * ExHAST(2U), TOTIME(2O). TOTINI(2J)
C
O TPAVSFER TIME AND SPEEJ TO COMMON CATA
        TOTIME(NOVSEC) = 0.0
        \cap\cap 1.) [=1,NUMINT
        TIMS(NOVSFO,I) = TIM(I)
        SPEES(VOVSEC.I) = TSOO(I)
C
@ GALSULATE TOTAL TIME IN SEOTION
        TOTIMF(NOVSFO) = TOTIME(NOVSFC) + TIM(I)
        1: CONTINUE
        TR\triangleNSFER NUMBEF OF TIME INTERVALS (TOTINTI
        FIJEL CONSUMEC
        (TKFUEL)
        EMISSIONS (TKEMMS)
C TO SCM10N JATA
    -OTIAT(NJVSFG) = WUMINT
    DIFSEL(NOVSEC) = TKFUFL
    EXHAST(NOVSEC,) = TKEYMS
        QETリRN
        Ev\
```

jugroutine gitput (novsec, IEXIT)
COTMJN/TKOFS/ TIM(20n), TSPO(200), NUYINT
COM:1ON /JATA/ TIME(21,20J), SFEE)(2?,?09), DIESEL(20),

* Exhast (2n), totife(20), tutint(20)

NUMSEC $=1$
IF(IEXIT •EQ. ?) GD TO 2 ?
IF IEXTT IS NOT TEPO, A DROGRAM ERROF HAS OCCURRED. SUZRJUTINE TRKOUT IS CALLFD TO PRORESS THE DATA FGR THE LAST VERTICAL SECTION

PRIVT 10, NOVSEC, INUMINT, IEXIT

1. FOPMATIA EFFJP IN SECTIONA,I3, \pm AFTER INTFRVALA,I3,

* \neq WHEN IEXIT $= \pm I 3)$

GALL TRKJUT(NOVSEC, 0.0, J.0)
C
C PRIVT OATA FOR EACH VEPTICAL SECTION
29 DPIN ${ }^{\top}$ 3C, NUMSEC, OIESEL (NUYSEC), EXHAST (NUMSEC)
3 S FORAATIZOFOR GECTION NU43ERA, I B, 5X, FFUEL USEJ $=t$,

* /.t IVTERVAL TIME SPEEJ*

INTRVL $=$ TOTINT(NUMSF.C)
DO 5. I = 1, INT RVL
DRINT 40 , I. TIME(NUYSEC, I), SPEEC(NUMSEC, I)
LE FORMAT (YX, I3, 2X, 2(F7.2))
50 CONTINUE
NUMSEC $=$ NUMSEC +1
IF (NUASES. LE. NOVSEC) GO TO 20
IF IIEXIT .NE. O) GO TO 60
FFTURN
60 STOP
END

APPENDIX 2. GLOSSARY OF IMPORTANT VARIABLE NAMES

PROGRAM NAME

ACCFRC
ACONST
AIRRES
ARFKTR

AVBRHP
AVLBHP
AXLRTO

BCONST
BRKDST

CNGRPM
CNRFC

DECCEL
DSTLOG
DTAINI (1)
DTAINI (2)

DTAINI (3)
DTAINI (4)

DESCRIPTION

Vehicle acceleration force, lb
Unit conversion, (ft-hr)/(mi-sec)
Air resistance, 1 b
Air resistance coefficient, (in. Hg .$\left.m p h^{2}\right) /\left({ }^{\circ} \mathrm{F}-\mathrm{ft}{ }^{2}\right)$

Available braking horsepower
Engine gross horsepower
Rear axle ratio

Unit conversion, (mi-sec)/(ft-hr)
Braking distance, ft

Change in engine speed, rpm
Cornering resistance, 1 b

Braking deceleration rate, mph/sec
Distance traveled, ft
Length of time intcrval, sec
Distance traveled during time inter-
val, ft
Fuel consumed, gal
Gaseous Exhaust Emissions, gm

PROGRAM

DTAINI (5)

DTAINI (6)

EFFWGT
EINRTA

ENDVEL
ENGBHP
ENG INE (9)
ENGRPM
EYEDST

GRDRES

HLDDST

INGEAR
IFLGTR

IFSHFT

KBRAKE

LOGDTA

DESCRIPTION

Distance traveled in vertical section, ft

Engine gross horsopower

Truck effective weight, 1 b
Engine and clutch inertia, ft-lb-
sec^{2}
Velocity before braking, mph
Engine gross horsepower
Engine horsepower correction factor
Engine speed, rpm
Look-ahead distance, ft

Grade force, lb

Total length of downgrade or curve, ft

Present transmission gear
Signal for approaching downgrade or curve

Signal for gear change

Signal that truck should be slowing Present transmission gear

PROGRAM
DESCRIPTION

LSTGRD
Maximum grade, percent/100

NOVSEC
Number of vertical sections

NUMGER
Number of transmission gear
NUMT IM

PREDST

PTHEFF

RAKSET

ROLRES

SETLST

SLWDST

SPD

SPDLMT

SUMPRT

TIM

TIMINT
TINRTA

TIRRIM(7)

TKDATA (1)

Throttle setting for previous time interval

Tire rolling radius, ft
Pre-set look ahead distance, ft

Part throttle driveline officiency

Throttle setting
Rolling resistance, $1 b$

Braking distance, ft
Traffic stream speed, mph
Posted speed limit
Constant for calculating emissions, gm/bhp-hr

Length of time interval, sec
Length of time interval, sec
Tire inertia, ft-lh-sec ${ }^{2}$

Length of time interval, sec

PROGRAM

TKDATA (2)

TKDATA(3)

TKDATA (4)
TKEMMS
TOTBSC
TOTRED
TOTRES
TRBRHP
TRKBHP
TRKMAX
TRKSFC
TRKVEL
TSPD

TWHLHP

VACCEL
VELALL

VELMAX

DESCRIPTION

Distance traveled during time interval, ft

Fuel ćonsumed during time interval, gal

Emissions during time interval, gm
Exhaust gascous enissions, gr
Fuel consumed, ga1
Overall gear reduction
Total road resistance, lb
Truck braking horsepower
Absolute horsepower valuc
Maximum truck velocity
Exhaust gaseous emissions, gm
Truck velocity, ft/sec
Truck velocity for time interval, mph

Total road resistance, hp

Average acceleration rate, $\mathrm{mph} / \mathrm{sec}$
Velocity allowed by Subroutine
ALLVEL, mph
Velocity allowed by road geometrics, mph

PROGRAM

VELLMT
VELNEW

VELOLD

VHD IST

VODIST

VORVEL

DESCRIPTION

Maximum velocity allowed, mph
Velocity at end of time interval, mph

Average velocity of previous time interval, mph

Distance traveled during time
interval, ft
Distance traveled in vertical sec-
tion, ft
Present truck velocity, mph

APPENDIX 3．INITIAL TEST DATA

INPUT DATA

```
C
\begin{tabular}{|c|c|c|c|c|}
\hline 1347.0 & －0．014 & 79493． 0 & 0.1 & 14：1．0 \\
\hline 1937.3 & －0．01． & \(55 ? \cdot(+4\) & 1．13111．4 & 1：7．5． \\
\hline 2．50．3 & 0.600 & 与ら5．6＋才 & 0．30394y & 502.5 \\
\hline 2777．0 & 7．050 & 994 3． & \(\bigcirc \cdot 7\) & \(3+0.0\) \\
\hline 3757.143 & 0．0．0 & －1こ．751 & －0．100930 & 3 \(5 \% 16\) \\
\hline 4107.0 & ก．0 & 915．151 & －3．09いろ？ & \(3+2.15\) \\
\hline 4500.11 & －0．020 & 99399.3 & \(0 . \vdots\) & うこJ．0 \\
\hline 4900.0 & －0．020 & 5！ 4.417 & （．7191 & 211）．0 \\
\hline 5400.0 & 0.0 & \(\cdots 17 \rightarrow \cdots 17\) & 11.071 & 200.0 \\
\hline 5300.0 & 7．MFO & 9ajaj． & \(1{ }^{1} \cdot 1\) & 1300.0 \\
\hline 7520.0 & 0.0 と 0 & 23＋．122 & －0．00\％〕？ & 7？17．0 \\
\hline 9190.0 & 0.0 & 49.142 & －¢ ¢ ¢ J d ？ & 4）U．0 \\
\hline 12700.7 & \(-0.061\) & \(999+2.0\) & 7． 0 & 3100.0 \\
\hline
\end{tabular}
` HJOITJNTIL GFTTION GAIA
```



```
C
\begin{tabular}{rrrrr}
1503.0 & 1237.0 & 1003.0 & 70.1 & 130.0 \\
3750.0 & 2465.0 & 1253.7 & 70.7 & 130.0 \\
5903.0 & 550.0 & 2010.0 & -3.7 & 750.0 \\
6500.7 & 2500.0 & 1001.1 & 70.7 & 3000.0
\end{tabular}
C
```



```
r
0.00+3 0.010015 1.00
C
G NETHER(K)
C
    ก.0 10.0 70.0 is.0 U.0
O
C GJW, WIUTH, H=IGHT, JOMGCO
C
30010.011.100%.%00.070
```


0.70 O .96

C TIRPIM（J），रAIAL TIPEう

```
    NOSFAP, AXLPAO.GEAFMU([)
```


C $3 S F 6(\%, N), 3 ゝ 9$ HF こけGIVE

0.504

3.7129.7120.3340.+700.4+50.4200. 220. +1.70.4140.4173.+200..27
$0 .+390 .+40 .+6 n 0.4760 .5+3$
C PLAOE 4 LGNK CGROJ HF゙PE

1. $+030.4154 .+270.4377 .45+0.4327 .53$

2. 407

J. $4150 .+170.411$
「. FLACF 3 alGik CrDJう H上?


```
\therefore PLARE 3 ULANK B,NHj H1 ?:
```



```
O OLAOE 3 E!ANK GAFIS H!? 
```



```
0.3717.37[n.3700.37.30.{710.3710.3730.3777.3730.30?
CPLAOE 3 SLDIVK GmFiJS HE?%
```



```
0.3710.37חп.3700.3547.3690.371J.3730.3720.{74.7.2730.377
3 PLACE 3 HLSNK OLROS HE?:
```



```
0.3300. 27 30. 2750.37>1..7710.2,10.3737.3720.374).3730.3750.370
C DL:OE 3 iL&ilV ?!QUS HE?S
```



```
Q LLACE ? ULDIGK OiDOJ H%DE
```


 P PLAUZ ？BLAKK CHFOSHEF

C PLALF $\quad 3 L A i, K$ こんロOj HF？
3．204
C PLACF 23 ：LGNK EAGIE H：OF

r
0

16．U＋0．0 J．1

vouncrunummiomvinturnmen

[^0]: ${ }^{1}$ Numbers in parentheses designate references in the Bibliography.

[^1]: ${ }^{2}$ Vehicle Mission Simulation and VMS are trademarks of Cummins Engine Company.

