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A NONLINEAR PSEUDOPARABOLIC DIFFUSION EQUATION*

MICHAEL BOHM AND R. E. SHOWALTER?

Abstract. Diffusion in a fissured medium with absorption or partial saturation effects leads to a
pseudoparabolic equation nonlinear in both the enthalpy and the permeability. The corresponding initial-
boundary value problem is shown to have a solution in various Sobolev-Besov spaces, and sufficient
conditions are given for the problem to be well-posed.

Introduction. This is the second of two papers dealing with a certain pseudo-
parabolic diffusion equation. It was shown in [6] (see also [2]) that diffusion processes
in fissured media lead to the following problem:

Let G c R N be a bounded domain (the place where the diffusion process takes
place), and denote by S:= [0, T] a finite time interval. We are looking for functions
u u(x, t) (concentration) and v v(x, t) (a flow potential), such that

=/1,

-div(k(u) Vv) +1( v- a(u)) =f2,

u(x,Ol=uo(x),

Here u’:-Ou/Ot, "div" denotes the usual divergence operator, "V" stands for the
gradient with respect to X=(Xl,...,Xu)Z[ N, and tS. The functions fi=fi(x,t),
i--1,2, and u0 are given and k-k(u), a=a(u) are specified by properties of the field
or medium. For each uLI(G) define Au:= -div(k(u)V) and consider this elliptic
operator subject to Dirichlet boundary conditions. By eliminating o in (0.1) we obtain
the following equivalent ordinary differential equation involving only the single varia-
ble u

(0.2)
1 -1)u’(t)+-(I-(I+eA ) a(u)=f+(I+eAu)-f2

u(0)=Uo.

Applying I+A,(t to both sides of the equation in (0.2), one formally obtains the
pseudo-parabolic problem

(0.3)
u’ + eAu( u’) +A,( a( u)) I + eAu)(fl) +f2,
u(0)=,o,
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We note that problems of the type (0.3) also arise in the quite different contexts of heat
conduction modelled by two-temperature systems [8], certain weak formulations of
two-phase Stefan problems [6], [15] and in the description of some non-Newtonian
fluids [9], [17]. Further references can be found in [7].

In [6] we considered the case k=k(x,t), a=a(u) monotone, Lipschitz. There we
showed existence and uniqueness of solutions under fairly weak assumptions on the
data. Furthermore, for this case comparison and maximum principles were shown.
Here we are concerned with the additional nonlinearity k=k(u) which arises in the
diffusion model [6] due to saturation or absorption effects on the permeability. Specific
properties of k and a, as they are used later are listed below under (H1)-(H6).

We prove the existence of solutions to (0.2) or (0.3) in various spaces. Theorems
2.1, 2.3 and Corollary 2.2 contain existence results for solutions u= u(t) taking their
values in BV(G), W’’(G) and H)(G), respectively. As the formulation of Theorem 2.1
shows, there remains a "gap". If p[1,N/2), s(0,1], then there are solutions in
W)’P(G) (provided, uo, f(t) W)’P(G)). If p > N/2, we only have some (sufficiently
small) s>0, such that u(t) W)’’(G). Theorem 2.6 deals with wZ’’-existence of the
solutions in the two-dimensional case. By interpolation methods we obtain results for

Wol+’p-existence for (0,1) (Corollary 2.4). As a consequence we get some sufficient
conditions on the data which imply that u(t) W’’(G) for N= 2 and for certain p > 2
(Corollary 2.5). These seem not to be optimal since the assumed regularity of the data is
higher than that of the solutions obtained. We continue by proving a uniqueness- and
continuous-dependence result, the assumptions of which can be met at least in the one-
and two-dimensional cases. The final theorem states some useful pointwise estimates,
which in particular imply a weak maximum principle for (0.2).

The paper is organized as follows. Section 1 contains notations and lists some
function spaces which we use. Section 2 contains the precise formulation of the results.
Section 3 is concerned with the proofs. We conclude with a short appendix which
presents some facts on interpolation.

1. Notation and spaces. Let G c u be a smooth and bounded domain, F:= G
the boundary,

S:= [0, T]ma finite (time) interval, St:= [0,t] for t S,
Q,:= (0, t)G, Q:= (0, T)G
D := D’D... D’ for a multiindex a =(oh,..-,aN), D: O/ixi,

X’-(Xl," ",XN)G
s [0, 2], pc[l, o], r[1, o], o := Ns+p if s (0,1),
[0,1], k N,

spW (G)mthe usual Sobolev space, if s is an integer,
Ws’p (G)’= B,p (G)--the usual Besov space, if s is not an integer,

the norm in WS,e(G) is denoted by II’ll,e,
LP(G) :-- the usual space of p-integrable real-valued functions, LP(G) normed by

the usual LP-norm I’lp- Special case. Ifp= 2 and s= 1, then I1:= I1=, I111 := I1111,=.
"(., .)" denotes the usual scalar product in L2(G) and the dual pairing between

H-I(G) and H(G), "((-, .))" stands for the scalar product in Ho(G).
By W)’P(G) we denote the SobolevBesov space of those functions in VV’S’p(G)

having zero-trace on 3G. W’P(G) is assumed to be normed by IIllx,p "=

1m complete reference for these spaces may be found in Adams [1].
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This norm is on Wol’p(G) equivalent to the usual wl’p(G)-norm, so that we do not
introduce extra notation.

Furthermore:
Ck() "= { v" R,k times continuously differentiable), equipped with the usual

max-norm [[" [[c*(),
C’’() denotes the space of all H61der continuous functions with H61der expo-

nent/ (0,1], [[ [[cO,,()-norm of this space.
BV(G)’= (vL’(G): [[V[[sVG)< o}-the set of all LX-functions with finite total

variation,

[IVI[BV(G) IVlLI(G)"- V

sup(f vdivdx, C()u
for all x)[] BV(G)"

C(G)’= (vCI(G) suppvc
Generally, we do not distinguish in our notation between the norms in the space

(V,[.[) and the norm in VV ..- V, e.g., "[yTg[p means [Vg[1p(G)N. The same
applies for scalar products.

If (V,[-[) is a normed space, then:
Lr(s, V)’-- Lr(0, T; V)--the usual space of V-valued, to the power r Bochner-in-

tegrable functions on S and equipped with the norm [[[[L’(s,v) (sometimes we also write

[[i’(s,v) for the same standard norm).
wl’r(s, g)’-- { o Lr(s, V)" v’ Lr(s, V)).The norm in wI’r(s, V) is

IlVllw,,r(s,v
C(S, V)’ C(O, T; V)--the space of all continuous functions mapping S in V.

Ilvllc(s, := max{ Iv(s)l: s S },
C (S, V):- {vC(S, V)" v’ C(S, V)}, Ilvllcl(s,v
C’(S, V)’- {vC(S, V): Ilvllco,,s,v<

Ilvllco..(s.v)’-- [,vllc(s.w)/sup( [v(s)-v(t)[
t4:s t,sS)]t_s]’

By "" we denote (beside set theoretic inclusion) continuous imbeddings, and

" denotes compact imbeddings.
"c" always stands for a nonnegative constant. Sometimes, we indicate on what

quantities c might depend.

" denotes strong convergence, "---"-weak convergence, *- "-weak-star conver-
gence.

2. Results. We will use the following hypotheses on the coefficients k and a,
respectively.

(H1)

(H2)
(H3)
(H4)

(H6)

k: R ---)R-continuous, and there are constants k0, kl such that
O<ko<k(u)<=k for

a: R R-Lipschitz continuous with Lipschitz constant L,
a is monotone and a(O)= O,

k WI’(R), Ik’l =: L,

y := k-a’-Lipschitz continuous with Lipschitz constant Lv.
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Now we are going to formulate what we understand by a solution of (0.2) and (0.3),
respectively. Assume k and a are sufficiently regular so that all the appearing terms
make sense. For the sake of (purely technical) simplicity we set fl=f and f:=0
hereafter.

Formulation of (0.2) as an ordinary differential equation. Let us assume for a
moment, we are given a sufficiently regular solution u,v of (0.1). If u(t)L(G), then
:(t)’= k(u(t))L(G) (k as in (HI)). Set A(t)=-div(:(t)V(-)). By the existence
theory for elliptic operators which are subject to Dirichlet boundary conditions, we can
define

B(t)’= (I+eA(t)) - (/=identity)

and we have a continuous linear operator

B(t):LP(G)Le(G) forallp[1,]

(see Lemma 3.1 below). Now, set Ao:= -div(k(v)V(.)) for vL(G). By the preced-
ing remarks,

Bo’= (I+eAo) -1" LP(G)LP(G) for allp[1, o].
Set for abbreviation

A
1
(i_Bo)

Thus, (0.2) is equivalent to

(2.a) u’(t)+A(t)(a(u(t)))=f(t ) for tS.

This leads to the formulation of (0.2) as an ordinary differential equation in Lp(G): Let

r[1,], p[a,], fU(S,LP(G)), uoLP(G).
We call u w’r(S, LP(G)) a solution, if (2.1) holds for a.a. t S as an equation in

LP(G) and

(2.2) u(0)=u0 in LP(G).
Formulation in variationalform. Formally applying I + eAu(t) on both sides of (2.1),

we obtain (0.3). Given r [1, ], p [1, ], 1/p + 1/p’ 1, uo Wo’P(G), f
Lr(S, W’P(G)), we call u W’r(S, W’P(G)) a solution of (0.3) if

(2.3) (u’(t),v)+e(k(u(t))Vu’(t), Vo)+(k(u(t))Va(u(t)), Vv)
-(f(t),v)+e(k(u)vf Vv) for all v W’P’(G), a.a. tS,

(2.4) u(0) u0

Notice that under appropriate regularity assumptions on u, the fact that u satisfies
(2.1), (2.2) implies that it also satisfies (2.3), (2.4) and vice versa.

Our results are as follows.
THEOREM 2.1. Assume (H1), (H2),

UO W)’P(G), fC(S, W)’P(G))
and one of the following conditions is satisfied:

(a) N>__2, p[1,min{2N/(N+2),N/2}],s(O, 1],
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(b) 2 __<N=< 6, p[2N/(N+ 2), N/2), s(O,(2-N)/2 + N/p),
(c) p > max( 1, N/2), s (0,1 sufficiently small,
(d) U=l,p=l,s(0,1].

Then (2.1), (2.2) has a solution u CI(S, W)’P(G)).
Remark 2.1. Let k and a be as in Theorem 2.1. If Uo BV(G), f C(S, BV(G)),

then (2.1), (2.2) is solvable by a uCI(S, BV(G)). For merely integrable right-hand
sides f we have

COROLLARY 2.2. Let k,a,p and s be as in Theorem 2.1, r[1,]. If f
Lr(s, W)’P(G)), Uo W)’P(G), then there is a solution u W’r(S, W’P(G)) satisfying
(2.1), (2.2). The corresponding remark holds forf Lr(S, BV(G)), uo BV(G).

THEOmM 2.3. Let N >= 1, r [1, oo].
(a) If fLr(S,H(G)), uo H(G), then (2.3), (2.4) has a solution u

wI’r(S,H(G)).
(b) Iff C(S,H(G)), then u CI(S,H(G)).
We remark that the proofs also yield several estimates for norms of u in terms of

the data.
Looking at (2.1), (2.2), one should expect u to be exactly as regular as u 0 and f,

since Bu(t) is for many function spaces at least a regularity-preserving operator. But the
nonlinearity of the problem causes some problems. With respect to a higher than
square integrability of the first derivatives we get only a partial result which will be a
consequence of Theorem 2.6 formulated below and the following corollary, the formu-
lation of which seems to be rather technical.

COROLLARY 2.4. Let N= 2, and assume (H1), (H2), (H4), (HS) and (H6). Further-
more, let 0, r (0,1), p* >__ 2, a, a’ > 1, p > 2 be such that

1 1 a’p-2 1 (l-r) r 2 2-+ =1 O+r<l, O=
,(_ p--=+--, r>=p,a --a7 2a p 1)’ 2 p ap

If u0 w+r’p*(G), fC(S, Wd+r’p*(G)), then (2.3) (2.4) has a solution u
CX( S, WO + "P*( G)). Furthermore, u C(S, wO’ap(G)).

To illustrate the assumptions under which this corollary is valid, we formulate
COROLLARY 2.5.
(a) Let a > 1, p > 2 and set

ap-2 2ap(p-1) a(p-2)+2
r"

2a(p 1)’ P*’= 0"=
p(a+l)-2’ 2a(p-2)

These numbers satisfy the conditions imposed in Corollary 2.4.
(b) Vice versa--let N= 2, k and a as in Corollary 2.4, q > 2 a given number. We have

for a solution u CI(s, Woa’q(G)), provided the data satisfy

uo W+r,p*(a), f=:C(S, W+r,p*(G)),

where for a p [2, q)

p.=2q(p-1)
q+p-2

O= q(1-1/p + 2
r=

q- 2

2q(1- 2/p ) 2q(1-1/p )
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Concerning W2’p-regularity, we have
THEOREM 2.6. Let N 2, k and a as in Corollary 2.4, r 1, o ], andp [2, o ].
(a) If fLr(S, wz’P(G)Cq W’P(G)), Uo wz’P(G)A Wol’p(G), then we have for a

solution of (2.1), (2.2),

U wl’r(s, W2’p(G)("I W’P(G)).

(b) Iff C(S, W2’p(G)O Wol’p(G)), then u CI(S, W2’p(G) W’P(G)).
The next theorem reflects some sufficient conditions, which ensure unique solvabil-

ity and continuous dependence of the solution on the data for problem (2.3), (2.4). In
particular, these conditions are automatically fulfilled if N= 1. For N 2, Corollary 2.5
provides information about such properties of u0 and f giving at least one sufficiently
regular solution which meets these conditions.

THEOREM 2.7. Let N>= 1, and k satisfying (H1), (H4), (H6). Set p > 2 if N= 2,
otherwise, p "= N.

(a) /f u0 H(G), fLI(S, W’P(G)) and if there is at least one solution of (2.3),
(2.4) with u W’I(s, W’P(G)), then (2.1), (2.2) is uniquely solvable.

(b) The map

( Uo,f} H(G)XLr(S, WI’p(G)) --)u wl’r(S,H(a))

is locally Lipschitz for all r [1, ].
Finally, we obtain some pointwise estimates on solutions and briefly indicate their

usefulness.
THEOREM 2.8. Let k and a satisfy (H1)-(H3) and let u WIA(S,L(G)) be a

solution of (2.1), (2.2). Then, for a.a. S we have

lu+(t)l zlu l + [f+(s)l ds,

lu-(t)lo <luGl / If-(s)lo ds.

In particular, if Uo(X)> 0 a.e. f(s,x)>= 0 a.e., then u(t,x)>__ 0 a.e. If., in addition, there is
a number c0>0 with a(c0)= 0 and Uo(X)> co a.e. in G, then u(t,x)>= co a.e. in O.

The preceding is particularly relevant in the diffusion model of [6] where there is
some interval [0,L] on which a is identically zero. (This occurs because of partial
saturation or absorption in the model.) To illustrate the usefulness of Theorem 2.8,
suppose in this situation we know only that k(u) is defined and continuous at each
u > 0. With u0 and f as given in Theorem 2.8, we choose k0 to be the minimum and k
the maximum of k(-) on the interval [c0,[lu0ll / fllf(s)lleds]. Then extend k outside
this interval so as to satisfy (HI). By Theorem 2.8 it follows the solution is independent
of the extension, so we may assume without loss of generality that the original k
satisfies (H1). These remarks are useful in the diffusion model [6] where possibly
k(u) + o as u0+or k(u)O as u + .

3. Proofs. The formulation of (0.2) as an operator equation (2.1) involves the
resolvent B (I + eA,)- 1. We have to justify that B, exists. The point which has to be
observed is that for fixed v the operator Ao has a coefficient k=k(v), which is due to
the lack of regularity of k not too smooth. The following lemma lists some properties of
the resolvent B of a related operator A.
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LEMMA 3.1. Let k: g"R be measureable, O<ko<=k(x)<=k for a.a. xg

(ko, kl as in the definition of k(.)). Set A" div(k(x)7(.)), B" (I + eA)- 1, and
consider the elliptic operator A as subject to Dirichlet boundary conditions. In each of the
following cases B is defined and we have

(i) If l <p<=2N/(N+ 2), 1/p*= l/p-1/N, then B" LP(G) Wo’P*(G).
(ii) Ifp > N/2, then there is a (0,1)such that B: LP(G)H(G)fqC’X().
(iii) Ifp= 1, q [1,N(N- 1)), then B" LI(G) w’q(G).
(iv) If 2N/(N+ 2)<p<=min(N/2,2}, then B" LP(G) W0’2(G).
(v) If 2 <=p < N, I/p* l/p- l/N, then B: LP(G) Wol’2(G)OLe*(G).

In each of these cases, B is a linear and continuous map and its norm depends at most on
G, p*, p, N, ,, eko, kl. depends at most on G,p, N, eko, kl.

Proof. (i), (iii) are part of [16, Thm. 4.5], for (ii) see [12, Chap. III], (iv) and (v)
follows from (i). rq

The next lemma list some known imbedding properties.
LEMMA 3.2. Consider the situation in Lemma 3.1 and let p, p*, k,N be as in (i)-(v).

Take in (i)-(iv) s (0,1), in (v) s (0(2 N)/2 + N/p). Then
(i) 2 WI’p*(G)C C Ws,p*(G)c WS,pc cLP(G)
(ii) W’P(G)c c LP(G), C,X()cL(G)
(iii) WI’p*(G)C c Ws’p*(G)C ws’l(G)c c LI(G)
(iv) WI’p*(G)C c Ws,p(G)c c LP(G)
(v) WI’2(G)c c I/Vs,p(G)c c LP(G), ifN <= 6.

Proof. See [1], [3]. The compactness results from WI’p L p for any p _>_ 1, and
the fact, that Ws’p [L P, WI’P]s and general interpolation theory, if]

COROLLARY 3.3. Let oLI(G), set, as before, Av’= -div(k(v(x))7(.)), Bv’=
(1+ eAo) -1. B has exactly the same properties as B in Lemma 3.1. Furthermore,
A’=(1/e)(1-Bo)" LP(G)--,LP(G) is Lipschitz. Thus, Aoa" LP(G)LP(G) is

Lipschitz.
It follows that (2.1) can be considered as an ordinary differential equation in

L P(G). Moreover, we have the following.
LEMMA 3.4. Let vLI(S, LI(G)) be given. Then
(i) For each w Lp(G)

(3.1) t S "-)aev(t)(W) LP(G)

is measureable.
(ii) Ifv C(S, LI(G)), then the map in (3.1) is continuous.

Proof. (i) see [14].
(ii) Let tn in S, set gn’-- (Iq-eAo(t,))-l(w). By definition gn satisfies

(3.2) (I+eAv(t,))(gn) =w"

Consider case (i) in Lemma 3.1. We have Ilglll,p, clWlp. Therefore, for a subsequence
g. in LP*(G) andgin Wol’p*(G). By the continuity of k, satisfies

(3.2’) (I+ehv(t)),--w.

2,, c" denotes algebraic and topological imbedding, c c" the compact imbedding.

3,,[.,. ],, is the complex interpolation space generator (see appendix).
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But, (3.2’) is uniquely solvable, so that g,,-- in LP(G), which proves the assertion. The
other cases in Lemma 3.1 can be dealt with in a similar manner. q

Proof of Theorem 2.1. Fix fig C(S, LI(G)). By Corollary 3.3 and Lemma 3.4, there
is exactly one solution

(3.3) uCI(S, LP(G))
satisfying

e
a(u(t))-f(t) u(0)-u0.(3.4) u’( l +A-We employ Schauder’s theorem to show that the map

-: C(S, LP(G))-,C(S, LP(G))
defined by (3.3), (3.4) has a fixed point. Obviously, a fixed point of Y-solves (2.3), (2.4).
The next lemma summarizes some properties of Y-. In particular, the proof yields
several estimates of the solutions of (2.1), (2.2).

LEMMA 3.5. (i)..q’maps C(S, LI(G)) into a bounded subset of CI(S, LP(G)).
(ii) Let s,N be as in Lemma 3.2, tS, C(S,LI(G)). Then (Y’fi)(t) is in a

bounded subset of Ws’I"(G).
(iii).Y-: C(S, LI(G))---> C(S, LP(G)) is continuous.

Proof. (i). Integrate (3.4) over (0, t), and take the LP(G)-norm on both sides. Then,
by Lemmas 3.1, 3.2 and a’s Lipschitz continuity

hence, by Gronwall’s inequality

(3.5)

where c=c(eko, ki, IGl, N,p,L,X,s T). By (3.4) and (3.5)

(3.6)

To obtain further estimates, we notice that u as a solution of an ordinary differential
equation is the C(S, LP(G))-limit of the sequence (u ) defined by

(3.7) /,/1 := U0,

(3.8) u,+l(t)=Uo+ f(s)ds- A(,,ya(u,(s))ds, ,S.

We have
LEMMA 3.6. Let u, C(S, Ws’p(G)), where s,p are taken as in Lemma 3.1, 3.2,

s (0, ifp > N/2 ( arises in Lemma 3.1, (ii)). Then
a) u,+ C1(S, Ws’p(G)) and
b)

(3.9)

with c as in (3.5).
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Proof. By assumption Un(t)WS’p(G); hence a(Un)WS’p(G)cLP(G). By
Lemma 3.1, 3.2 A,(t)(a(u,(t))) Ws’P(G) if p N/2, and

1 c(3.10)

C-Ilun(t)ll ,p (c as in (3.5))

Therefore, by (3.8), U+l(t) W’P(G). The t-continuity properties follow as in Lemma
3.4. Equations (3.8) and (3.10) yield (3.9) by an iteration argument (cf. [4]). To show
(3.9) for p > N/2, take the WS’p-norm on both sides of (3.8). Thus

(3.11)

We have II(u.)lls,p Lllu,ll,p and for

g(t,x)" (I+eAr(t))-x( a(ttn(t)) )
by Lemma 3.1, 3.2.

(ii)

ff Ig(t’x)-g(t’Y)lP[]g( ) l[P,p dx dy l=N+ sp
Ix -yl

<= ff C" IX _y[Xp-dx dy <= const.
GG

Therefore (3.11) and Gronwall’s inequality imply (3.9). l
To complete the proof of Lemma 3.5(ii), we note that (3.9) and (3.6) imply

(3.12) I[UnI[CI(S,WS,p(G))Z C { llUoIl,p / IIfIIc(,W’"())/ 1 },
where c is as in (3.5). By weak-star compactness, u WI’(S, Ws’p(G)) and by (3.4),
u CI(s, W’P(G)), where (3.12)implies

(3.13) Ilullc(s,ws.,(a)) <= C { llUolls,p -1-IIfIIc(s,w,P(G))-I- 1 }.
This proves (ii) of Lemma 3.5. To see the continuity of Y" let fi---, fi in C(S, LI(G)), set
gk’= B(a(uk)),u’= Y-(fik), so that g and u, resp. satisfy

(3.14) eAn(gk) -gk + a(u),
1 1

(3.15) u,(t)+-a(uk(t))=-g,()+f(t), uk(0) uo

By estimates (3.6), (3.13) and a’s Lipschitz continuity there is a subsequence

(3.16)
uLu in wx’(S, W’P(G)),

a(u) a(u) in L(S, Ws’P(G)).
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Using the estimates for uk from (3.15) (cf. estimates (3.6), (3.13)) to estimate gk in (3.14)
((3.14) is an elliptic problem for gk, various norms of g can be estimated in terms of
a(uk) by Lemma 3.1, and a(uk) can be estimated by (3.13), (3.6)), we arrive for
p <= (N/2) at

c (1-4-lUolp +
and for p > N/2, at

Therefore, we have for a subsequence

(3.17) g,j g in L(S, W)’P(G)).

Equations (3.16), (3.17) and relation (3.14) imply that g satisfies

(3.18)

(To pass to the limit j in (3.14), use the strong convergence properties of
k(fi,.)--remember, fi, Ft in C(S, LI(G)) and k is continuous.) Since (3.18) is uniquely
solvable, we have uLu in WI’(S, Ws’P(G)), i.e., the whole sequence converges, in
particular u=Y-(fi)u=7-(fi) in C(S, LP(G)), i.e., Y-is continuous, which finishes
the proof of Lemma 3.5. []

COROLLARY 3.7. Lemma 3.5 implies that Y’has a fixed point u. u solves problem
(2.3), (2.4) and satisfies the estimates given by (3.6), (3.9). Moreover, u ismaccording to
(3.7), (3.8)rathe limit of the sequence ( u } defined by

(3.19)
U U0

and

(3.20) u,u in C(S, LP(G)), u,=u in W’(S,LP(G)).

This finishes the proof of Theorem 2.1. []

Proof ofRemark 2.1. Construct as in (3.3), (3.4) an operator

,." C(S, LI(G))--->CI(S,LI(G)).

One has already estimate (3.6), so that Lemma 3.5(i) follows. The third statement of
this lemma has already been proved and the second has to be changed to

LEMMA 3.5’. (ii’) If Ft C(S, LI(G)), then (-u)(t) is in a bounded subset of BV(G),
which does not depend either on or on Ft.
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To see this, look at the iteration procedure (3.7), (3.8) which yields u as the
C(S, Ll(G))--limit of (u,). By Lemma 3.1(iii) we have
W’*(G)c BV(G) so that by the same 1emma

1

1

Tang the BV(G)-norm on both sides of (3.8) yields

Since BV(G)c cL;*(G)cLI(G) for p* +(1,N/(N- 1)), Arzela-Ascoli’s theorem
yields for a subsquence

Bcause of the reflexivity of BV(G) we have by weak-star compactness

i w,:(s,v(g))

Since u satisfies (3.4), we obtain after a short calculation

,’ + C(S,())

Thereforhas a fixed point u CI(S, BV(G)) wch solves (2.3), (2.4).
Proof of Corolla 2.2. We modify estimates (3.6), (5.13). One has

c (1 + I(t) } + If(t) I
from arguments wch led to estimate (3.5). Taking (3.5) into account, one gets for
r[1, ]

(3.22) lU’IL’(S,L(6))C (1 + ]Uo]p+

Similarly, (3.11) implies

and (2.3) yields

Therefore,

Ilu’(t)ll,,z IIAL(t)(,(u()))II,,+

(3.23) lU’ILr(S,.’(G))<_C {1 + }lUol[s,p + [fIL’(S,W"e(G))}.
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Proof of Theorem 2.3. We employ the Galerkin method. Let ( w } c H(G)H2(G)
be an orthonormal eigenvalue basis of the Laplacian subject to Dirichlet boundary
conditions, i.e,.

(3.24) -Awi=Xiwi, (wi,ws.)=3o., wi+/- wj inH(G).

Set Vn’= span(wi,..-,w ), denote by P, the orthogonal projection in H(G) onto V,.
We are looking for an absolutely continuous

n

(3.25’) u,(t)’= E h,j(t)wj,
j=l

wch satisfies

(3.25) (u;(t),v)+e(k(u.)Vu;,
=e(k(u,)vf vv)+(f,v) Vv V, a.a. tS,

(3.26) u(0) u0 "= P,uo.

By using a fixed point argument and applying the results of [6] or a reduction of (3.25),
(3.26) to an ordinary differential equation (cf. [5, Lemma 1]) to obtain the standard
form for an application of Caratheodory’s theorem, one shows, that (3.25’)-(3.26) is (at
least) locally solvable. The following lemma implies that these solutions are globally
defined. One has

LEMMA 3.8. There is a constant c=c(eko, k,L, T,

(3.27) IlUnll
Proof ofLemma 3.8. Choose in (3.25) v’= u’,(t), use the boundedness properties of

k(-) and a(-) and apply H61der’s and Young’s inequalities

(3.28) ]u (t)[
2 2; +ekolVU’,(t)[

klta[

(3.29) z Ifl +lvf+lvuo,I + [vu;(,)l d,

If r < oo, then := r; if r oo, then := 1.
Gronwall’s inequality in connection with (3.26) yields

U’,,ll,.,r,:s,,_,,,::,:>__<C { Ilfll ’,:,’-",,::,:, + IlUoII }
and therefore (3.27). The usual compactness argument completes the proof and shows
that (2.1), (2.2) has a solution, which satisfies

(3.30) Ilullw’"(",’o(Z c { Ilu011+ Ilfll’(s,.(e) r

Before proving Corollaries 2.4, 2.5, we prove Theorem 2.6.
Proof of Theorem 2.6(a). We use the Galerkin method and continue at (3.25),

(3.26). We have already estimate (3.27) and will show that

(3.31) u.II wl,r s,W2’p G)N W’p a)) const.
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To see this, note that due to (3.24)

’= -Au’(T)V.

is an admissible function in (3.25). Integration by parts and reordering yield

+((u.)aU’n,a.;)

=e(k’(u.)Vu’., Vu.v)+(f,v)-e(k’(u.)Vu.,

-e(k(u.)A,f,o)+(k’(un)Au." VUn,Off(Un) O )

+ k( u.)a"( Un) VUnl2, U)-Jl- ( k( Un)Off( Un) AUn, U).

By (H1), (H2), (H4), (H5), H61der’s, Young’s and one of Sobolev’s inequalities we
obtain

Ivu.t)l + ekolAu.(t)[

2q- Ek11mfl21ol2 -t- tkol IV Unl]IUI2 -I- klO IV Un]41UI2 -I- klO11mu.12lo]2

ek
2

2
_-< --!,! +c(I vu;,I=IAu’.,121 vu,,! + ,f!.

2 12 2 2}+ VU,,I lau,,llvfl]+ IA/I2 + vu,, Iau,,I + lau,,I

(This is the only place where the restriction N= 2 is essential. The case N--3 allows
2/3 which finally would require some re-only estimates like Ivu’n14<=clxTu.112/31Au.12

strictions on Ix7f4 and Ilu0112,2, to obtain (3.31).)
From now on we use again our convention concerning the notation of L-norms.

Using again Young’s inequality, we arrive at

{au. (t)12 ,2 z{ 2 2

-<- <{I v..I v.,,I Au,,I + Ifl + la/I

+ Iv u,,I IA.I viii + Ivu.llau.l+ Iau.I)
2Iau’o(t)l<=<{Ivu’.llvu.llau.l+ II1+ Ivuol+ Iau,,ll vSl4

+ IASI+ vu,,llau.l+ Ivu.,llvfl]+

By (3.27),
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so that

If r= , then estimate (3.30) and Gronwall’s inequality yield IAU’nIc(o,t;L2(G)) const.,
where the const, depends on

(3.33) eko, kl, tk, T,N= 2, Ial, IflLr(s,wl.’(a)), Imu0[2.

If r [1, ), take on both sides of (3.32) the rth power and integrate over (0, t)c [0, T],
which yields by Gronwall’s inequality

]mU?nltr(o,t;t2(a)) const.

Because of Un/OG-- Au’n/OG=O, this implies

(3.34’)

as in (3.33). The usual compactness argument finishes the proof and yields an
estimate

(3.34)

for the solution u of (2.1), (2.2).
Proof ofpart (b). (Sketch, a similar argument is used in the proof of Corollary 2.4.)

Under the conditions of part (b) we set that (2.1), (2.2) holds in LI(G) a.e. Therefore,
we can multiply equation (2.2) on both sides by v := --IAu’(t)lP-2Au’(t) and arrive,
using similar arguments as in (a) and estimate (3.34), at

(3.35) Ilull wI’r(s,w2’p(G)) . C { 1 + IA/ILr(S,LP(G)) + IAu01 }
which is sufficient to complete the proof, c depends via (3.34) on the data. []

Proof of Corollary 2.4. We approximatef and u0 respectively by regular f, u0, and
obtain by Theorem 2.6 regular solutions u for which we show the estimate (3.39). The
basic tool to obtain (3.39) are the estimates (3.42), (3.43) for a related linear problem
(3.40). Let

(3.36) c(s, n Wo1’ (6)

such that

(3.37) f--->f in C(S, Wo+"P*(G)), UoUo n W+"P*(G).

By Theorem 2.6, there are solutions

(3.38) u el(s, W’(G) n W’(G)),
satisfying (2.1), (2.2) with u0, f as data. Set k(t,x)’= k(u(t,x)), (t,x)"= c(t,x).
a’(u(t,x)). By our hypotheses, O<ko<=:(t,x)<=k VtS, xG and [’1 < . It is
our goal to show the following estimate. There is a constant c merely depending on the
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bounds of the coefficients k, a and their derivatives as appearing in (H1)-(H6) and on

such that

(3.39)

To this end consider for given g, v0 the linear problem

v’- ediv(Vv’)-div(Vo) g- ediv(TcV )
(3.40) v(O)=oo.

We note that choosing g’= f, v0"= u0, v’= u satisfies this equation.
Denote by St’= [0, l, S, a subinterval of S. As in Theorems 2.3 and 2.5 one

shows the existence of solution operators Pi,t, 0,1,

Po,t" H(G) C(St,H(G))" C(St,H(G)),
Pl,t" (W2’p(G)( Wd’P(G))xC(St, W2’p(G))->C(St, W2’p(G)("I Wd’P(G))
Pi,t" (vo,g} v’,vo, g,v,v’ asin(3.40).

(The numbers p and p* are related by the hypotheses of this corollary.) These operators
are linear and bounded in the given spaces and we denote by M, their respective
norms. By interpolation it follows that Pl,t can be restricted to w+r’p*(G)
C(St, W +"P*(G)) (see Lemma A5, appendix) and, denoting the restriction by Pr,t,

Pr,t: Wd+r’P*(G)(G)C(St, Wol+r’P*(G))-C(St
P.r,t is linear and bounded and its norm M, can be estimated by

(3.41) Mr,t<= cM,-rM?,t
with some numerical constant depending on r, but independent of t. We prove the
following

LEMMA 3.9. There exists a constant c, depending at most on , G, T,p* the several
bounds of the coefficients as appearing in the hypotheses of this corollary, such that

(3.42) (a) Mo,t<=c,
(3.43) (b) MI,tZc ] + IlUsllc(s,,wl+,,V’(G))

Proof ofLemma 3.9. First we notice that due to the rather technical assumptions of
this corollary we have

(3.44)
(3.45)

(see the appendix, Lemmas A4, A6). The proof of (a) is at the beginning almost
identical to that of estimate (3.27) in Lemma 3.8. To show (3.43) we begin with the case
p 2. Computing the div-terms in (3.40), multiplying by w’= -Av’(t) and integrating
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over G by parts, one obtains for s S

Ivy’( )1s +(&av’,av’)
(&ag+a,a’)+ (g, a’)+ (vk. v’ + v. v, a’) + (vk. vg, a’).

To obtain (3.43), it is sufficient to assume that

(3.46) [IVolla,p q-IIglIc(st,w2,P(a))<_ 1.

Using the boundedness properties of k and and Hlder’s inequality, we obtain with
c=c(eko, kl, L)

tvo,()l

By u’/G=O, there is a constant c=c(G),

(3.47)

by interpolation, Io’l]c(G)lo’l=llo’ll=,=. This and (3.46) imply by using Young’s
inequality and (3.42),

II’()ll=,=sc Ilgll=,=+llo011=,=+ II’(r)llu,zdr

Gc{I+ 1]:+ *l]+ v’(r)l,dr }
Because of

Ivkl4+ IVlaZcllunll,4 (cf. def. of

<= Ilunll3/,:z (cf. (3.44)),

this and Gronwall’s inequality imply (3.43) for p= 2, = 1/2. To deal with the general
case p 2, (0,1) as in the assumptions of this corollary, we compute in (3.40) the
div-terms, multiply by w’=-I&o’(s)lP-&v’(s), integrate over G parts, use the
boundedness of k and as implied by (H1), (H2) and apply HOlder’s inequality to
arrive at

By (3.42),

so that by (3.46) and the embedding theorems

I,’(s)l,,zc.
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Furthermore, ]7gla,p<=C[Igll2,p (we have N=2, p>=2!), so that by (3.46)[K7g[a,p<=C
< Ot -01 0(indep. of g). By Sobolev’s lnequahtles [Vo I,,p=c(G,a ,P,P)IV [ Io’[[2,p (0 defined

in the assumptions)Iolo,p < c(G,a’,p,P)lVo’]12-l[o’[[ 2,p,

[vo’(s)12/ Ivo(s)[=<__c(llool[/ by (3.42)

=<c by (3.46).

Finally, by (3.44), Ivkl],p + ]v’l,p_-< cllulll,ap<__ cllulll+,,p,. Therefore, (3.47), (3.48’)
and Young’s inequality imply

1/(1-0Ilo’(s)ll2,p__<c{1 + Ilua,,l+,e, + Ilo(s)ll2,p}

{ 1/(1-0) SO }<=c 1 + [[Usl[l+r,p, + Ilooll=, / [v’(r)12,pdr

Set for abbreviation V’= W0 +"’*(G). Gronwall’s inequality and (3.46) show that

(3.48)
1/(1-0),Iv’lc(s,,w,p(a))<c 1 + Ilual[c(st,v).exp(cT),

where c= c( eko,kl,L., [G[, T,p, O, r,p*, Ik’[, [a"] ),
which implies (3.43). Lemma 3.9 is proved. 1

To show (3.9), we first notice, that by (3.37), (3.41)-(3.43) and by 0 + r __< 1,4

Gronwall’s inequality and (3.37) yield (3.39). Therefore, problem (3.40) with Uoa, fa as
data has u as a solution, which by (3.39) satisfies

Ilu, ll const.

The usual compactness argument yields a.(sub-) sequence

ua--.u in wl’(S, V).

By means of the approximate equation (3.40) one easily shows that u satisfies (2.1),
(2.2). This completes the proof of Corollary 2.4. O

Proof of Corollary 2.5. (a) follows directly from Corollary 2.4.
(b) set a:= q/p and apply (a). Then, uCI(S, Wol+r’p*(G)) and by (3.44), u

CI(s, Wol,q(G)). r]

Proof of Theorem 2.7. Let u be a solution of (2.1), (2.2) with respect to the initial
value Uo; and the right-hand sidefi, i= 1,2. Set for abbreviationf: fl -f2, w := u u 2,

4V’-- WOI+’r’P*(G), II’llv II’lh+-,p*.
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W0 N 01 N 02 and assume

u2 WI’I(s, w’P(G)),
f2LI(S, WI’p(G)),

UlWI’I(S,H(G)),
fl LI(S,H(G)).

Subtract (2.2) for u 2 from that for Ul, choose w’ as a test-function in the variational
formulation, integrate over G and make some rearrangements. Thus, for S

Iw,(t)l

By using the Lipschitz continuity of k and 3’ and applying H61der’s inequality, we
obtain

By the imbedding theorems, IWlp,c(G)llwll Also, Ilw(t)ll rllwoll r+cff)llw(r)llrdr, if
rE[l, o), with c=c(r,T). This and Young’s inequality imply for ?’= r if r< o, ?= 1
if r=o,

[[Wt(t)[]rEkl[[f(t)l[r=cl(t){[[W0[lr-[-f0 [[wt(s)[[rds}.
Integration and Gronwall’s inequality yield

For r’= we obtain

This proves (b) of the theorem, and (a) follows by setting u01- U02 fl =f2" I-’]

Proof of Theorem 2.8. First of all, notice that 7(t)" (u(t, .)) L(G), 7(t,x)>= ko
> 0 for a.a. S, x G. Thus, A(t)" div(k(t)v(-)) is an m-accretive operator on
LI(G). Now, [6, Thm. 1] yields the desired estimates. If Uo> O, f(T)_> O, then obviously,
lu(t)l(m= O, i.e., u(t,s)>=O a.e. []

Appendix. We list some facts on complex interpolation of B-spaces and, in partic-
ular, Sobolev spaces. Basic references are Bergy-L6fstrom [3], Lions-Magenes [13],
and Triebel [18].
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Let -[0,1] be a parameter, A "= (A0,A1) B’= (Bo, B1)mtwo couples of com-
patible B-spaces "[.,- ]," denotes the interpolation functor for the complex interpola-
tion method (cf. [3], [13], [18]), .,’= [A0,A1] . We have

LEMMA A1. [AoBo,AIB],=[Ao,A1],[Bo, B1] (algebraically and topologi-
cally).

LEMMA A2. Let .L’(Ai, Bi) with norm Mi, i=0,1. Then (A,,B,) and

LEMMA A3. C(S, Ao), C(S, A1)],= C(S,A,) (algebraically and topologically).
LEMMA A4. (a) Let s

1 1-

P* Po Pl

So s, Gc a (bounded) domain. Then [WSo’P(G), WSl’p(G)]z Ws*’p*(G).
(b) Let

1 1-r
p 2 p

Then [W’(G), W’P(G) W’P(G)] W+’(G).
LMM A5. Let z,p and be as in Lemma A4(b), S" [0, T] an interval of any finite

length,
wd,p(  )x c(s, c(s,

a linear and bounded operator with norm Mx,
o a linear and bounded extension of1, such that

c(s, c(s,
Then

" restriction of o to W+’(G)x C(S, W +’(G)) maps continuously into

c(s,
Let Mo denote the norm ofo, M that of. Then

Note that this estimate does not depend on S.
References/proofs. Lemma A1 follows from [3, Thm. 4.1.2]. Lemma A2 is a special

case of a theorem in [11]. Lemma A3 can be found in [13], if AI, Ao are Hilbert spaces,
otheise cf. [10]. Lemma A4(a)cf. [3, Thm. 6.4.5], (b)cf. [18, Thm. 4.3.3]. Lemma
A5 follows from Lemmas A1-A4.

Lemma A6. [3, Thm. 6.5.1]. Let sR, p>l, i=1,2. If s-N/PxS-N/p,
then Ws’p(G)C Ws’p(G).
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