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ABSTRACT

The diffusivity dependence of internal boundary layers in solutions of the continuously stratified, diffusive
thermocline equations is revisited. If a solution exists that approaches a two-layer solution of the ideal thermocline
equations in the limit of small vertical diffusivity ky , it must contain an internal boundary layer that collapses
to a discontinuity as ky → 0. An asymptotic internal boundary layer equation is derived for this case, and the
associated boundary layer thickness is proportional to . In general, the boundary layer remains three-dimen-1/2ky

sional and the thermodynamic equation does not reduce to a vertical advective–diffusive balance even as the
boundary layer thickness becomes arbitrarily small. If the vertical convergence varies sufficiently slowly with
horizontal position, a one-dimensional boundary layer equation does arise, and an explicit example is given for
this case. The same one-dimensional equation arose previously in a related analysis of a similarity solution that
does not itself approach a two-layer solution in the limit ky → 0.

1. Internal boundary layer scaling

Stommel and Webster (1962) discovered a similarity
solution of the thermocline equations with an internal
boundary layer that could be interpreted as a model of
the subtropical main thermocline. The internal boundary
layer marks the base of the wind-driven motion, as the
deeper circulation is driven by vertical diffusion of heat
through the internal boundary layer. The characteristic
thickness of the Stommel–Webster internal boundary
layer is , where ky is a constant vertical diffusivity.1/2ky

Originally obtained by a linearized analysis, this scaling
was confirmed by Young and Ierley (1986) using
matched asymptotic expansions. It contrasts with the

thickness dependence that follows from the tradi-1/3ky

tional advective–diffusive scaling of the thermocline
equations (Welander 1971).

The boundary layer is evidently not peculiar to1/2ky

the particular similarity form studied by Stommel and
Webster (1962) and Young and Ierley (1986). Salmon
(1990) showed that a internal boundary layer should1/2ky

generally arise in subtropical-gyre solutions of the ther-
mocline equations, although this result depended on a
Taylor-series argument that itself relied on an assump-
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tion that the vertical convergence in the boundary layer
was constant and nonzero. A related discussion was giv-
en by Pedlosky (1979, p. 422). (As a reviewer has point-
ed out, these same arguments establish that a scaling1/2ky

will generally arise in a stationary boundary layer when
the advected scalar is passive rather than active, since
constant vertical convergence is then generic.) Samelson
and Vallis (1997) suggested that the scaling will1/2ky

arise whenever isotherm slopes in the thermocline are
fixed as ky → 0 and reported evidence for a scaling1/2ky

in numerical solutions of a closed-basin planetary geo-
strophic circulation model, despite clear differences be-
tween the horizontal structure of the numerical solutions
and the Stommel–Webster similarity solution.

The present contribution should be read as a footnote
to the articles cited above. In essence, it is a modest
extension of the argument of Salmon (1990), cast in a
different form. The starting point is a two-layer solution
of the ideal (ky 5 0) equations, in which temperature
is discontinuous across the interface between the layers
and the detailed structure of the wind forcing is not
specified. A general internal boundary layer equation is
then derived that must be satisfied asymptotically by
any smooth solution of the diffusive (ky . 0) ther-
mocline equations that approaches the two-layer ideal
solution as ky → 0. This point of view resembles that
of Young and Ierley (1986), who interpret the ideal limit
of the Stommel–Webster solution as a weak (discontin-
uous) solution of the continuously stratified ideal ther-
mocline equations. Here, it is generally assumed that
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the relevant smooth solutions exist, but one explicit ex-
ample is given.

2. The two-layer limit

Following Welander (1971), the dimensionless con-
tinuously stratified steady diffusive thermocline equa-
tions may be written

2 f 21Mzy Mzzx 1 f 21Mzx Mzzy 1 b f 22Mx Mzzz 5 ky Mzzzz,

(2.1)

where M(x, y, z) satisfies

Mz 5 p. (2.2)

The temperature T and velocities (u, y , w) may be writ-
ten as derivatives of M,

21 21T 5 M , u 5 2 f M , y 5 f M ,zz zy zx

22w 5 b f M , (2.3)x

expressing the hydrostatic, geostrophic, and Sverdrup
vorticity balances, where the additional boundary con-
ditions w, M → 0 as z → 2` (or w 5 M 5 0 at the
bottom z 5 2HB) have been enforced. The Sverdrup
transport relation takes the form

bf 22Mx(x, y, 0) 5 wE, (2.4)

where wE is the Ekman vertical velocity at the base of
the surface boundary layer.

For general wE , 0, the ideal (ky 5 0) thermocline
equations have a two-layer (or ‘‘one-and-a-half-layer’’)
solution, with an upper, moving layer of thickness
h(x, y) and uniform temperature T 5 T0 overlying a deep
motionless layer of temperature T 5 0. The thickness
of the moving layer is

1/2x22 f
2h(x, y) 5 H 1 w (x, y) dx , (2.5)0 E E1 2bT0 xe

where H0 is the depth of the upper layer at the eastern
boundary. For example, such solutions have been con-
sidered by Parsons (1969) and Veronis (1973) and are
equivalent to a ventilated thermocline (Luyten et al.
1983) with a single moving layer.

Now, for 0 , ky K 1, suppose that there exists a
solution of the diffusive thermocline equations (2.1) that
matches the two-layer solution (2.5) except near z 5
2h(x, y) where a smooth transition across an internal
boundary layer of finite thickness replaces the discon-
tinuity. The analysis below shows that any such solution
must asymptotically satisfy an internal boundary layer
equation following from (2.1).

To derive this general internal boundary layer equa-
tion, it is convenient to introduce the stretched boundary
layer coordinate z, where

z 5 d21(z 1 h(x, y)) (2.6)

is the vertical distance from z 5 2h scaled by the un-

known boundary layer thickness d. The appropriate
matching conditions on T outside the internal boundary
layer are then T → T0 as z → 1` and T → 0 as z →
2`. In order to write the corresponding boundary con-
ditions for Mzz in a form that is independent of d, it is
necessary to rescale M in the boundary layer by the
substitution

M(x, y, z) 5 d2T0A(x, y, z), (2.7)

where the absence of order-1 and order-d contributions
to M is consistent with the requirement that M vanish
for z , 2h when ky 5 0, and with the matching con-
ditions on T. Then Mzz 5 T0 Azz, and the boundary
conditions for A are

1 as z → 1` (2.8)
A →zz 50 as z → 2`. (2.9)

The matching conditions on w are w → (z/h 1 1)wE 5
d(z/h)wE as z → 1` and w → const as z → 2`. The
first of these matches the wind-driven vertical velocity
above the internal boundary layer, while the second will
give the diffusively driven abyssal upwelling velocity
beneath the boundary layer, which must vanish along
with the abyssal M as ky → 0. Since Mx 5 dT0(Azhx 1
dAx), to first order in d these are

z as z → 1` (2.10)
A →z 5c as z → 2`, (2.11)

consistent with (2.8) and (2.9), where c is a constant
and use has been made of (2.5).

With the substitution (2.7), the resulting equation for
A is

21f [h (A A 2 A A ) 2 h (A A 2 A A )]x zzy zz zzz zy y zzx zz zzz zx

22 21 221 b f h A A 1 d[ f (A A 2 A A ) 1 b f A A ]x z zzz zx zzy zy zzx x zzz

22 215 d T k A .0 y zzzz (2.12)

Balancing the diffusive term against the leading-order
advective terms in (2.12) leads to d2 } ky . Thus, the
internal boundary layer in the two-layer limit should
generally have thickness proportional to . Presum-1/2ky

ably, an appropriate solution of (2.12) exists. In general,
it is not immediately clear how to solve (2.12). The
leading horizontal advective terms contain first-order
horizontal derivatives, and appropriate lateral boundary
conditions must be determined. Note that it is the need
to match to constant temperatures above and below the
boundary layer that determines the rescaling (2.7) and
ultimately requires d } .1/2ky

Since the form (2.7) fixes the isotherm slopes inde-
pendently of d (Tx/Tz 5 hx, Ty/Tz 5 hy, to leading order),
this result is consistent with the scaling argument of
Samelson and Vallis (1997), who presented numerical
evidence for a thickness in the central subtropical1/2ky

gyre of a planetary geostrophic circulation model and
suggested that the thickness should arise whenever1/2ky
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isotherm slopes are fixed as ky → 0. Because of the
relative horizontal uniformity of the fluid immediately
above (‘‘subtropical mode water’’ analog) and below
(abyssal fluid) the internal boundary layer in the nu-
merical solutions of Samelson and Vallis (1997), the
two-layer model can reasonably serve as an approxi-
mation to the numerical solutions near the internal
boundary layer, despite the existence of a strongly strat-
ified portion of the ventilated thermocline near the sur-
face.

3. A one-dimensional equation

One might expect that the substitution (2.7) would
lead to an asymptotic boundary layer equation involving
only z derivatives of A in the limit d → 0, corresponding
to the thermodynamic balance wTz ø ky Tzz. However,
this does not happen. The horizontal advective terms of
order d21 that arise from the substitution (2.7) vanish
identically from (2.12), but the leading-order horizontal
advective terms that remain in (2.12) are still of order
1, the same order as the leading-order vertical advective
term. Consequently, the thermodynamic balance does
not, in general, reduce to wTz ø ky Tzz as ky → 0. This
might be anticipated from the observation that the ver-
tical velocity itself vanishes in this limit.

Special solutions of (2.12) may still be sought in
which horizontal advection does vanish, either identi-
cally or to leading order. The matching conditions for
A are themselves independent of x and y. In the case of
(2.10), this reduction is possible because the Sverdrup
relation enforces a proportionality between hx and wE/h
at each point. This suggests the substitution A(x, y, z)
5 B(z) in (2.12), or M(x, y, z) 5 d2T0B(z). If the re-
sulting equation for B(z) were independent of x and y,
then a one-dimensional boundary layer theory would
exist in the two-layer limit. This substitution gives

3 4dB d B d B
22 22b f h T 5 k d . (3.1)x 0 y3 4dz dz dz

Comparison with (2.1) shows that this is a vertical ad-
vective–diffusive balance in which the term Mx is re-
placed by Mzhx, a consequence of fixing the isotherm
slopes to first order. The equality in (3.1) can in general
be satisfied only if the quantity ky f 2/(bhxT0) is constant
since the latter is clearly independent of z while by
assumption B depends only on z. From (2.5),

2k f k hy y5 , (3.2)
bh T wx 0 E

but inspection shows that h/wE is not generally constant.
Thus, an asymptotic one-dimensional internal boundary
layer theory for the two-layer limit of (2.1) does not
exist in general. A solution may still exist that ap-
proaches the two-layer solution in the limit ky → 0, and,
if it exists, it must have d } , but the corresponding1/2ky

internal boundary layer will in general not be indepen-

dent of horizontal position; that is, it will remain in-
trinsically three-dimensional.

If the expression (3.2) were constant, the equation
(3.1) would reduce to the equation ultimately solved by
Young and Ierley (1986) in their asymptotic analysis of
the similarity solution discovered by Stommel and Web-
ster (1962). This can be seen as follows. Set

1/2 1/22k f k hy yd 5 5 (3.3)1 2 1 2bh T wx 0 E

and let

dB
F(z) 5 . (3.4)

dz

Then (3.1) is

FF0 5 F-, (3.5)

and the boundary conditions (2.10) and (2.11) are

F(z → 1`) → z, F9(z → 2`) → 0, (3.6)

where prime denotes derivative with respect to the ar-
gument. The two conditions (3.6) are sufficient for the
third-order equation (3.5) since the first also imples F9(z
→ 1`) → 1. The abyssal upwelling velocity is deter-
mined by the value c, where F(z → 2`) → c, since
w(z → 2`) → cdwE/h.

The equation (3.5) with the boundary conditions (3.6)
is solved by Young and Ierley (1986) in their analysis
of the Stommel–Webster similarity solution (with the
sign of z reversed). Their solution yields c 5 0.875 74.
Note that the Stommel–Webster similarity solution is
not of ‘‘two-layer’’ type: it retains zonal temperature
gradients above and below the internal boundary layer
even in the limit ky → 0. Near the internal boundary
layer, the two-layer model is a more accurate represen-
tation of the numerical solutions of Samelson and Vallis
(1997) than is the Stommel–Webster similarity solution
because of the large zonal temperature gradients in the
latter and the dependence of the thermocline depth in
the numerical solutions on horizontal position, which
roughly follows the two-layer solution.

As an explicit example of a two-layer solution with
this type of internal boundary layer, consider (2.5) with
H0 5 0 and wE 5 af 2(x 2 xE), where a is a constant.
In this case, wE/h is constant, and (3.1) is independent
of x and y and has the form (3.5), with boundary con-
ditions (3.6). This is a two-layer solution with a one-
dimensional internal boundary layer that has thickness
d } and is independent of horizontal position. In1/2ky

this case, the thermodynamic balance in the boundary
layer does reduce to wTz ø ky Tzz.

Although (3.5) is formally valid only if d from (3.3)
is constant, as in the preceding example, it may still
provide a useful approximation to M if d is only ap-
proximately constant. If

(dx, dy)/d ; d, (3.7)
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then (3.5) will be the correct leading-order approxi-
mation, and (3.7) will in turn be satisfied if

|=(wE/h)|/(wE/h) ; d. (3.8)

That is, the accuracy of the approximation will be con-
trolled by the extent to which the vertical convergence
wz in the two-layer solution is horizontally uniform. This
requires that the fractional variations in wE and h either
be separately small or cancel to first order. The condition
(3.7) can be recast in terms of wE and H0 using (2.5).
If wE is independent of x and y, and H0 is sufficiently
large, then the approximation will be accurate. If wE is
independent of x, and h(x) 2 H0 ø H0, then the ap-
proximation may be inaccurate.

4. Related examples

Salmon and Hollerbach (1991) obtained some special
solutions of the thermocline equations that are relevant
to the present discussion. In one class of solutions (their
‘‘S12’’), the temperature changed abruptly across an in-
ternal boundary layer, as in the solution discussed above.
In a second class of solutions (their ‘‘S13’’), the potential
vorticity changed abruptly across an internal boundary
layer, while the temperature field remained smooth as
ky → 0. For each of these classes, they presented specific
examples for the special case in which the boundary
layer is located at a constant depth, independent of hor-
izontal position [their Eqs. (8.1)–(8.9) and (8.10)–
(8.12), respectively]. In both of these specific examples,
the thickness of the internal boundary layer was , as1/2ky

in the solution discussed above.
It is especially interesting that a boundary layer1/2ky

appears also in their second example, for which the jump
is in potential vorticity rather than temperature. An ex-
trapolation of the argument given above would seem to
suggest that the boundary layer thickness should be pro-

portional to , as in the traditional advective–diffusive1/3ky

scaling, since the potential vorticity fTz 5 fMzzz (rather
than temperature T 5 Mzz) must be matched outside the
boundary layer, and this would appear to lead to a factor
d3 in the scaling (2.7). In this case, however, M in the
boundary layer may have contributions of zero, first,
and second order in d, along with the third-order term
associated with the potential vorticity matching. Thus,
the simple extrapolation is misleading, and the boundary
layer again scales with .1/2ky
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