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EQUIVALENCE OF FINITE MEASURES

I. INTRODUCTION

This paper is motivated by the problem of finding necessary and

sufficient conditions for the equivalence of Gaussian stochastic pro-

cesses. If X = {xt : t E T} and Y = t E T} are real-valued

Gaussian processes, the Kolmogorov theorem (5, p. 32-37) allows

one to consider both X and Y as processes defined on the meas-

urable space (R R represents the real numbers, rep-

resents the cylinder sets of R , and (R T,) is usually referred

to as the path space of the processes. If p. and v are the proba

(RT,)
-

..ebilities generated respectively by X and Y on via the

Kolmogorov theorem, then X is equivalent to Y if and only if 11

is equivalent to v. Here of course, two measures are equivalent

provided they have exactly the same sets of measure zero. The pro-

cesses X and Y are perpendicular or mutually singular if and

only if the associated measures
1-1 and V are perpendicular.

Extensive research has been done on the problem of finding

necessary and sufficient conditions for the equivalence of Gaussian

processes, and on the problem of finding necessary and sufficient

conditions for the perpendicularity of Gaussian processes. These

investigations have taken many forms and have used a wide variety of



methods. In the following, the major results of these investigations

are given and outlines of important methods are presented.

In 1947, R. H. Cameron and W. T. Martin (3) were able to show

that if one considers the measures induced on the path space by

Wiener processes on the unit interval, then the measures are per-

pendicular if the processes have different variances. A wider suffi-

cient condition for the perpendicularity of measures induced on the

path space by continuous Gaussian processes on the unit interval was

obtained in 1956 by G. Baxter (2).

In 1950, by using the idea of spectral measures, U. Grenander

(10) was able to give necessary and sufficient conditions for the equiv-

alence of stationary Gaussian processes in the case where the index

set T represents the real numbers. His method was to consider

functions A(s, t) and B(s,t) defined on T X T such that

A(s,t) = a(s-t) and B(s,t) = b(s-t), where both a and b are

continuous positive definite functions on T. It then follows from

Bochner's theorem (5, p. 126-128) that there exist finite regular Borel

measures p and Cr on T such that

+00 . +00

a(t) = eIto.) dp(w) and b(t) = eitu.)do-(w).
_co

The measures p and o are called spectral measures. If (t)

and n(t) are two functions defined on T, it then follows (6, p. 72;



8, P. 2.2) that there exist unique stationary Gaussian processes

X = {xt t E T } and Y = {yt T} such that X has mean m(t)

and covariance A(s, t) while Y has mean n(t) and covariance

B(s, t). Using this notation, Grenander's result may then be stated:

THEOREM 1.1. X is equivalent to Y if and only if

p and a- have identical non-atomic parts;

p and have exactly the same set of atoms A and if

the masses at i EA are respectively
a.

(1- °a1)2 < c4.
1

1 EA

and Pi, then

3

Jacob Feldman has used spectral measures to study the question

of equivalence of Gaussian processes restricted to finite intervals of

the real line and has obtained results (9) for a special class of cases.

Many others have done work on finding conditions for equivalence of

Gaussian processes in terms of their spectral measures in various

special cases. A summary of many of these results is to be found

in (19).

In 1969, T. R. Chow (4) generalized Grenander s result to the

case where the index set T is a separable locally compact group.

This generalization was accomplished by using techniques of von

Neuman algebras and direct integral representations. Chow was able

to show that any stationary Gaussian process on a locally compact

group admits a direct integral representation. This result together



with the following theorem gives the generalization. The notation is

that of (4).

THEOREM 1.2. Let G be a separable locally compact group.

Two stationary processes {X(t), t E G} and {Y(t), t E G} with means

zero, covariances p and CT respectively are equivalent if and

only if they admit the direct integral representations

x(t) j x (t)dp. y(t) = y (t)dv
XA A

where p. and v are the central Radon measures of p and

such that

p. and v have the identical non-atomic parts,

they have the same set of atoms which is countable such that

/d(a)(I-(p.(a)/v(a)))2 < co where d(a) is the dimension of H (a)
a EA
if H (a) is finite dimensional and 00 otherwise, and A is the

set of all atoms.

In 1958, a rather surprising result was obtained independently

by J. Flgjek (11) and Jacob Feldman (7). They showed that if X

and Y are Gaussian processes with the same index set, then either

X and Y are equivalent or X and Y are perpendicular. The

two methods of proof are quite different and both give necessary and

sufficient conditions for equivalence.



Hg.jek's approach is based on the idea of entropy distance be-

tween measures. Let p, and v be the measures generated

respectively by X and Y on the path space (R ,`e). Let p.0

and v denote respectively the measures obtained by restricting

p. and v to the a--algebra generated by the cylinders with

conditions on only a finite number of values of the index set T.

The entropy distance between
p.o

and
vo

is defined by:

Jolo,

,r(p., v) = sup J(p.0

The entropy distance between F1 and v is defined by

dp. dv
= S. log d--v-a dp.0 + $' log dvo.

1-o

where the supremum is taken over all pos-

sible finite dimensional restrictions of p. and V. Hg.jek's result

is then stated as:

THEOREM 1.3. X is equivalent to Y if and only if

J(p., v) < 00. Further, if Al, v) = 00, then X and Y are per-

pendicular.

Feldman's approach makes use of Kakutani's theorem (14) and

equivalence operators between Hilbert spaces. If H and K are

Hilbert spaces, an operator A: H K is an equivalence operator

if A is a linear homeomorphism and I - AA is Hilbert-Schmidt.

Let F1 and V be the probabilities generated respectively by X

5



and Y on the path space Assume that Sx2tdp. < 00 for

2t
all xt E X and SYdv

<
for all y E Y. Let H be the sub-

space of L241) generated by X and let K be the subspace of

L2(v) generated by Y. Feldman's necessary and sufficient condi-

tions for equivalence are given by the following theorem. The version

given here appears in (8).

THEOREM 1.4. If X and Y are Gaussian processes with

means zero, then X is equivalent to Y if and only if there is an

equivalence operator from H onto K, sending the equivalence

class of to that of yt.

Yet another approach to the problem is to use the theory of

reproducing kernel Hilbert spaces (1). In a paper (17) appearing in

1963, E. Parzen was able to give necessary and sufficient conditions

for the equivalence of Gaussian processes in terms of their covari-

ance functions by using reproducing kernel Hilbert spaces.

Let X and Y be Gaussian processes with covariance func-

tions A(s, t) and B(s, t), respectively. Let
HAODB

be the repro-

ducing kernel Hilbert space generated by

(AX B)((s, t), (u, v)) = A(s, u)B(t, v). Parzen proved the following:

THEOREM 1.5. X is equivalent to Y if and only if

A - B E HA B
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A proof of this last result also appears in (8), where an example

case in which X represents Brownian motion on T = [0, +00) is

worked out. The same result for this special case was obtained by

L. A. Shepp (21) using methods very much different from those of

Par zen.

The applications of this subject to statistics, time series

analysis, and related fields are numerous. A collection of applica-

tions is to be found in (18). Indeed, one of the major efforts in this

area is the translation of the general results listed above to special

cases so as to make them-easily applicable.

A companion question to the question of finding necessary and

sufficient conditions for the equivalence of measures deals with find-

ing representations of Radon- Nikodymderivatives. That is, if [I

and v are equivalent measures, just what does 511.-1 look like?dv

Results on this representation question have been obtained by Feldman

(8) and Parzen (17). Feldman's results are obtained by using the

theory of Hilbert-Schmidt and trace operators. Parzen derives his

results by using reproducing kernel Hilbert space theory.

In this paper, necessary and sufficient conditions are found for

the equivalence of finite measures in terms of maps between function

spaces and in terms of a Radon-Nikodym derivative.

The companion question of finding a representation for a Radon-

Nikodym derivative is also examined. If 11 and v are finite



measures on the same measurable space and X = p. + v, then the

function f( ) = , 1> is shown to be a continuous linear functional
p.

on L2(X). By the Riesz representation theorem, there exists a

unique vector a E L2(X) such that f(x) = <x, a>for all x E L2 (X).
X

dp.The uniqueness of allows us to show a = .-a. e. We may
dX dX

dp.thus represent as a Fourier series using any complete ortho-
dX

dp.normal system of L2( sinceX) E L2(X). An immediate conse-

quence of this representation of is a representation of
dX dv

when p. and v are equivalent.

The problem of finding complete orthonormal systems for

L2-spaces is examined in the case where p. and v are equivalent

and
clE is known. If a complete orthonormal system is known for
d v

we give a method for finding a complete orthonormal system
2

for L2(v). This result is then applied to examples involving classi-

cal complete orthonormal systems.

Finally, we given necessary and sufficient conditions for the

equivalence of Gaussian processes with countable index sets. These

conditions are given in terms of the finite dimensional distributions of

the processes by a direct application of Kakutani's theorem and our

result on the Radon-Nikodym derivative.



II. TERMINOLOGY AND NOTATION

Measures and Related Topics

This section is devoted to the definitions and notations of meas-

ure theory needed in this paper.

DEFINITION 2.1. Let 0 be a set and let a be a o--algebra

of subsets of O. The ordered pair (0,a) is called a measurable

space, and the elements of a are called a-measurable sets or

just measurable sets.

DEFINITION 2. 2. By a measure on a measurable space

(0, a) we mean a nonnegative extended real-valued set function
oo

oo

defined on a satisfying p.(oS) = 0 and ii,(v A.) = (A.) for
i= 1

any sequence {A.} of disjoint measurable sets. A measurable space

(0, a) together with a measure p. is called a measure space and is

denoted by (0,a, p.). A measure p. on (0,a) is called a finite

measure if 11(0) <00. A measure on (0,a) is called a proba-

bility measure if 11(0) = 1. A measure space (2,a. ,p.) is called a

complete measure space, and 11 is called a complete measure,

provided p.(A) = 0 and B C A imply B e a . That is, every

subset of a set of measure zero is a measurable set.

DEFINITION 2.3. Let p. and v be two measures defined on

the same measurable space (0,a ). The measure V is said to b
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absolutely continuous with respect to p. if A E 0. and p.(A) = 0

imply v (A ) = 0. If v is absolutely continuous with respect to 11

we write v If IA << v and v , then and v are

said to be equivalent and we write p. -- v. Thus, and v are

equivalent if and only if they have exactly the same sets of measure

zero. If there exists a set A E a such that p.(A) = 0 -= v(Ac),

and v are said to be mutually singular or perpendicular and we

write p.J. v. We shall write p. = v if p(A) = (A) for all A E a
and p. < v if p.(A) < (A) for all A Ea . Note that if p. < v,

then p. << v. We define the measure p. + v by

(1Li-v)(A) p.(A) + v(A) for all A 6 a.

The idea of a measurable function plays an important role in

later results and is introduced in the following definition.

DEFINITION 2.4. Let (Sy a1,111) and (02, a2 , 112 ) be any

two measure spaces. Let x be a function from (Or ar,...) to

(12 , a , We say that x is an a1 -measurable function, or just
2 2 2

-1a measurable function, if x (A) E a for all A E2 . Of par-
1

ticular interest is the case where
C22

is the real numbers and a
2

the Borel sets.

The next definition introduces an equivalence relation on the set

of real-valued functions defined on a measure space. It plays a basic

role in later results.

DEFINITION 2. 5. If x and y are real-valued functions
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defined on (0,a, p.) , we say x is equal to y palmost every-

where provided they differ only on a set of p.-measure zero. This will

be written as x = y p.-a. e. The equivalence classes will be de-

noted by [ = fy:y=x

Several of the later results depend on the concept of a function

space. The following definition includes the notation to be used.

DEFINITION Z. 6. Let p be any real number greater than or

equal to one and let (0, be any measure space. If x repre-

sents a measurable real-valued function defined on (2, a, then:

2' a' II) SixIPdp. <00/

a , x x (CZ, 0., p.) and x > 01.

If [xl is the equivalence class introduced in DEFINITION 2.5, then:

L (2, a,) fix] E (S-2, a,)}.
P.

When there is no question as to what measurable space p. is defined

on, we write Xp(11) instead of (2, a, p.) and L (p.) instead
P P

of L (C2, a , p.).
P

Recall that the spaces L(2, a, p.) are real, normed linear
P

spaces for 1 < p < 00 with a norm defined by:



there exists a function x E
0

=[Sixi

It should also be recalled that the space L2(S-2, a , p.) is a Hilbert

space with an inner product defined by:

<ix] , [y] > $xydp..

Radon-Nikodym Theorem

Since the Radon-Nikodym derivative plays such an extensive role

in this paper, we state the Radon-Nikodym theorem here in the form

which is most useful to us for applications.

THEOREM 2.7. Let (0, a) be a measurable space and let

p. and v be finite measures on (0, a)

for all A E a . Also, if x E (C2, a , v), then
1

such that v p.. Then

(C2, a, p.) such that v(A) = S.1 x dp.
A°

xxo E

and Sixdv = sxx dp.. Moreover, x
o o

is unique in the sense that if

yo is any real-valued, a-measurable function such that

v(A) = Sb yd for all A E a , then x y p.-a. e.
A °

Proof:

See (12, p. 315).

Because of the uniqueness of x in the theorem above, we

12



dvwrite x = p.- a. e .
o dp.

with respect to

We now give two lemmas dealing with some elementary proper-

ties of Radon-Nikodym derivatives which are useful in later results.

LEMMA 2.8. Let p., v, and X be finite measures on the

same measurable space.

d(p.+v) dp. dv
+ X.--a.e.If p. << X. and v << X, then =

dX dX dX.

dv dp.If v << p. << X, then

dvIf p. v, then = [dv p,- a. e.
.0411

Proof:

See (12, p. 328).

LEMMA 2.9. Let p. and v be finite measures on the same

measurable space and let X = p. + V.

dv
= 1 k- a. e.

dX d

dv
0 < <1 X.-a. e. and 0 < <1 X.-a. e

dp. dv
0 < < 1 X-a.e. if and only if 0 < < 1

dX. dX.

Proof:

Part (a) follows at once from LEMMA 2.8(a) since

and call dv
dp.

13

the Radon-Nikodym derivative



clkd.(11+v) dp, d.v
1 = = = + k-a. e.

elk dk elk dk

dv a.04+Recalling that (7., E 01/4.1(k), parts (b) and (c) follow at

once from part (a) of this lemma. Q. E. D.

14



III. MAPS BETWEEN FUNCTION SPACES

Maps between L(Ii) and L (v)
P

This chapter contains two theorems which give necessary and

sufficient conditions for the equivalence of finite measures in terms

of maps between function spaces. Throughout this chapter p. and

will represent finite measures on the same measurable space

(7, a ) and will be the finite measure on (0, a ) defined by

X = I.L + V.

The next theorem is suggested by an approach due to Neveu

(16, p. 112).

THEOREM 3.1. Let p be a real number such that 1 <p < 00.

A necessary and sufficient condition for the equivalence of p. and v

is that the following hold:

(a) There exists an isometric isomorphism u of L (p.)

onto L (v).

p dv
)

( 1 )1 Or
dX. dX

dv
(c)

dX
111-1(i)ip dp.

dX.

dvor >

U (1)
13 dX.

Proof:

To show the necessity, we assume that p. V. It then follows

at once that p. - X - v. To save writing and simplify the notation in

15

dX.
e.



this part of the proof, we shall write x instead of [x] . All

equalities are therefore to be understood as p.-a. e. (and hence also

as v- a. e. and

Since v,

dp. lipu (x) = x() .
dv

Now x E L (p.) implies

orem 2.7 that

5111 (x)IPdv

dv 143x() .
d.p.

Since:

dv 1we have x(
dp.

dp.

dv exists, and for all x E L (p.) we define

dp. 1 /pipdv
dv

P E L (p.). By applying

E L1 (p.), so it follows from The-

p dp. dv
dv

1/pipdvzSixipdvd
lxi

I 4.

and therefore, u is a map from L (p.) into L (v).

is clearly a linear map. That is, u is a vector space

homornorphisrn.

To see that u is one-to-one, assume u (x ) = u (x ) forp1 p2
dp. p dp.any xl, x2. E Lp(p.). We thus have x_() 1 /

i dv' x2()1
/p

dv Now
dvsince dp. -1exists and by LEMMA 2.8(c) we have -- = we
dp. dp. dvconclude that_

x2 (
(

)

, dp. )1 /13( dp. 1-1 /p 1 43 cli.). -1 /p Therefore,1 dv `dv/ - dv ( "-d-v- )

x = x and u is one-to-one.
1 2 P

To see that u is onto, choose any x E L (v) and consider
P

16

to this element we get:



Hence, u is onto and it follows that u is an isomorphism.

The map u is norm preserving since:

IIx = jIxId p dii
dv

u (x) IPd v

dp. /p dv 1
dv xdlt

V = S6
dp. 1 /pipdv
dv I

dv -1/p
-

dp.

for all X E

Since u is linear and norm preserving, it follows that

is an isometry.

d.idp. dvProperties (b) and (c) are obvious since =
dX dv dX

dv dv dp. by LEMMA 2. 8(b), while I u = la and
dX. dp. dv

-1 ,p dv
u (1)1 = This proves necessity.

dp.

To prove the converse, assume conditions (a), (b), and (c) hold.

Because is norm preserving we have:

II = up(' )11

Applying THEOREM 2.7, since p. < k and v < X., we get:

17
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It then follows that:

dp.dv p,_dv(--- u(l)l' -')dk = 0 and u (1)1_cla)dx
kdkd dk dk

This means that if either inequality of (b) holds, we have:

iu (nip dv =0 ,x-a.e.,dk 1 p 1 dk

dia (01 p
& .e.dk 1 p 1 dk

p dv
IAd p

M
dk

dk u (1)I
dX

for all A E

A Adk
dv
dk

P

Similarly, II u-1(1)II1)
P

dv
u (1)IPd

dX

S-1
...cddvx dx,

u (1)1 dx d&

e. for all A

IIPv implies

18

If we let represent the characteristic function of A E a, then

we have:

u (1)1 for all A E a .
A

Therefore, 11 << V.



and it then follows from condition (c) that:

dv iu-1(i)ip dp.
dX I p I dX.

-a. e.

dv
1
A dX

1 I u
p

(
d),.

)1P X-a.e.

dv dx C
1u 1(l)1P III- dX. for all A EadX. p dX.

.A .A

-v(A) = u1 (1p)I for all A
A P

Therefore, v p. and p. -

We note that because of the uniqueness of the Radon-Nikodym

derivative we must have u (1)IP = v-a.e. anddv

lu;1(1)1P = Q. E. D.

The following observations should be made from the proof of

THEOREM 3.1. In the proof of the necessity of conditions (a), (b),

and (c), the conditions (b) and (c) required no real proof since
dp.lu (1)1p X.-a.e. and 1u-1(1)1P = X.-a. e. Thus, condi-p d v dp.

tions (b) and (c) were really special cases of LEMMA 2. 8(b).

In the proof that conditions (a), (b), and (c) are sufficient, the

full strength of (a) was not used. We only needed the fact that the map

is one-to-one and norm preserving.

Finally, the constant function 1 is not as significant as it

for all A E a.

a

19



might appear. The entire theorem may be restated as follows:

THEOREM 3.1'. 11 and v are equivalent if and only if there

exists an x E L (p.) with
o p 11x0 H = 1,

(al) There exists an isometric isomorphism u of L (p.)

onto L (v).
P

dp. clE 1 p dv(b') < u (x )1P-c1-1-1- p.()>C2) or (x ) .( ) k_ a. e.dX o dk dk o I dX l'''

dv dv > ix IP ilk. v(C2) k -a. e.( c t ___. < I P dil vici or% 1

dX dX. dX dX.

Maps from L (X) into .L (p.) and L (v)

The approach used in this section is suggested by Feldman's

result on the equivalence of Gaussian processes (8). Several lemmas

are needed for our next result and we state them now.

LEMMA 3.2. Let p. and 6 be measures on (0,a) such

that p, <6. If p > 1 and x E (C2 , a , 6), it follows that
P

X E (0, a, p.) and SI 1Pdfl < Slx1Pd6-P

Proof:

See (12, p. 313).

LEMMA 3.3. Let p. and v be finite measures on the meas-

urable space (0, a) and define X = p. + V. For 1 _p <

there is a well-defined map 0 : L (X) L (p.) given bypp

and the following hold:

20



0 ([x] ) [xl
P

Proof:

Since X = p. + v, it follows that p. < .

L (X.), it follows from LEMMA 3.2 that

1PdX. and hence 0 ([ ) E L (p.). Thus, 0 is a

21

and [ Ai [x2]x . Therefore, x [ , and 0 is one-

map from L (X) into L (p.).

To see that is well-defined, suppose

are elements of L (X.) and assume [ ] [x 1 . Then there
P 1 p, 2 p.

exists a set A E a such that p.(A) > 0 and x1(co) i x2(c,..)) for

co g A. But, p.(A) > 0 implies k(A) > 0 and hence [xiix i [x2ix

Therefore, 0 is a, well-defined map. Q. E. D.
P

The map 0 : [ [ j is often referred to as the induced

identity map.

The next lemma provides the major part of the proof of the

theorem of this section.

LEMMA 3.4. A necessary and sufficient condition for p. -

is that the map 0 defined in LEMMA 3.3 be one-to-one.

Proof:

Assume p. - X and [xl]x. [x2 x for two elements

[ x]x [x2] L (X). However, p. - X. means that and

have exactly the same sets of measure zero, so that [x

1 p.
xik

If [x]x E

SI IPdp. < 1



0 ([0] ) = [0] , we must have
P X P.

[1A k

< X implies

[0]x.. Therefore, k(A) = 0

and X << I.L. Hence, p. - X. Q. E. D.

Since k = + V , a completely analogous procedure, or a

direct application of the preceding lemmas, allows us to define

(1) L (X) L ( ) by 43. ([x] ) = [x]v and conclude:
P P P X

LEMMA 3.5. A necessary and sufficient condition for v-

is that the map 4) be one-to-one.

Combining the last three lemmas we obtain necessary and suffi-

cient conditions for the equivalence of p. and v in the next

theorem.

THEOREM 3.6. Let p. and v be finite measures on the

same measurable space (0, a) and let X = p. + v. The measures

p. and v are equivalent if and only if both the maps

defined above are one-to-one.

and .43.
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to-one.

Now assume 0 is one-to-one. Since

p, X, it suffices to show that A E a and p.(A) = 0 imply

k(A) = 0. If A E a , then [lAlx E Lp(k) since I 1AI P = lA and

1A1PdX = S1AdX = k(A) < 00. If p.(A) = 0, then =

However, 0 ([1 ] ) = [1 ] = [0] and since 0 is one-to-one andp A X A p. p.

a map



Proof:

V if and only if p. - X. and v X. But, p. - X. and

v - X. if and only if 0 and 43 are one-to-one by LEMMA 3. 4

and T.F,MMA 3.5 respectively. Q. E. D.

It should be observed that 0 and qb are continuous linear

maps, but they are not in general norm preserving.

An examination of the proofs of this section also shows that

THEOREM 3.6 is still valid if L (0, a , L (C2, a , v), and

L 02, a, X.) are replaced by the vector spaces of equivalence classes

of bounded measurable functions on (S2, a , (0, a, v) and

(0, a , X) respectively.

Finally, we make some observations about THEOREM 3. 6 in

comparison to THEOREM 3.1. The maps in THEOREM 3.6 will

always exist, while the existence of the map in THEOREM 3.1 is not

guaranteed in one direction. On the other hand, L (X) must be used

in THEOREM 3.6, so we have maps between three spaces while

THEOREM 3.1 requires maps between only two spaces. However,
dp.

L1
(X.) is used in THEOREM 3.1 since we have conditions on

dX
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d v

dX



IV. A RADON-NIKODYM DERIVATIVE

Conditions on the Derivative

In this chapter we give necessary and sufficient conditions for

the equivalence of finite measures on the same measurable space in

terms of a Radon-Nikodym derivative, As before, p. and V will

represent finite measures on (0, a) and X =,i + V. Now, 11 <

and v < X., so that p. << X. and v << X. It therefore follows from

THEOREM 2.7 that Eit and dv exist in
1

POdX dX

The first theorem of this section requires two lemmas. The

next lemma is a modified form of THEOREM 2.7.

LEMMA 4.1. The measures p. and V are equivalent if and

only if there exist functionsx 4.(11) and
Yo

X+(V) such thato 1 1

dp. dv
dX o dX

dp.
Yo = dv

have:

Proof:

If p. - v, then p. - X. - v. It follows from THEOREM 2.7

that .5:1J-1 and 512-i- both exist and by LEMMA 2. 8(b) we havedv dp.

dp. dp. dv dv dv dpX- a. e . and X-a, e, Thus, we letdX dv dk dX dp. dk

- 0.. e . and d.v clE
dX xo dX

dvv-a. e. and x p. - a.. e
dp,

k-a.e.

To prove the converse, suppose
xo and yo exist. Then we
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11(A) = y dv for all A E a
A °

We thus have p. << V.

dp. d.v X-a.e.,d.k o dk

A o
1 dv

A dk h-a. e. for all A E adk

A

d x d

Ayo dk

A completely analogous argument starting from
dv dp,xdk o dk k-a. e. shows that v FL. Therefore, p. V. Q. E. D.

Our next lemma requires that p. and v be complete meas-

ures. Note that if p. and v are complete, then X is also

complete.

LEMMA 4.2. Suppose p. and v are complete finite meas-
da ,ures. If 0 i k-a. e. , then there exists a

+1(v)dk yo E

dp. dvand an x E t ( P. ) such that
y ando 1 dk - o dk x.-ae.

dv dp.
X k-a. e.dk o dk

Proof:

Define the real-valued function z on 7 by:

z(c0) =
( ) if ----"-(w) 0dk dk

1
i

df p. (w) 0.
dk

for all A E a ,

25



Since z is everywhere nonzero and since is measurable, it
dk

follows (12, p. 151) that = z-1 is measurable. Because X is

complete and because 0 < < 1 k-a.e. gives us
dk

= ()1 X-a. e. , it follows (12, p. 155) that (Y is
dk

measurable.
All -1Since ()dk

dv (dp. 1-1
dk

±...)Elk_ -1 47-1-

dk (dk) 6d`-1(11)

dv, dp. -1we take x =
o dk dk

dv
and are nonnegative measurable functionsdk

and the product of measurable functions is measurable (12, p. 153),

it follows that (dk)( dk )1 is measurable and nonnegative.

dv d.p, ).-1 dp. dv
dk dk dk dk

k-a. e.

k-a. e. , we have:

d
dv (121.E. -1 stEdx. dvd.

(s-2) < 00,
= k d.k d.k dk

and has the desired property. Thus,

It follows from LEMMA 2.9(c) that 0
dp. < ..i k -a. e,dk

d vimplies that 0< --i-d < 1 k-a. e., so a similar argument shows

can be taken to be ..-. -
dp. (dv )-1

k - a . e . Q. E. D.
dk dk

We now may prove the following theorem which gives a condi-

tion for equivalence in terms of .
dk

THEOREM 4.3. If p. and v are complete finite measures

on (S-2, a) and k = p, V, then p. and v are equivalent if and

26
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Therefore,



only if 0 < < 1 X.-a. e.

Proof:

Suppose H. v, so that pl. X. - v. Since LEMMA 2. 9(b)

shows that 0 < < 1 k-a. e. in every case, we need only show

that --(ill assumes the values zero and one only on sets ofdk

k-measure zero.

Suppose ILI (co) = 0 for all w E A Ea . Then we havedk

11(A) .1E11--Ldk = 0. Now since H. - X., we have k(A) = 0.
A dk

On the other hand, if 511-1 (CO) = 1 for all co E A, we havedk
LIE

p.(A) =
dk = dk = k(A) = ) + v(A) and hence v(A) = 0.

A A
But, v- k implies that k(A) = 0. Therefore, 1.1. v implies

0 < < I k- a. e.dk

To prove the converse, assume 0 < < 1 k-a.e. Bydk

LEMMA 4.2, there must exist
yo pc.1

( v ) and
xo E+(p.) such

1

dv dvthat
y and k-a. e. It then followsdk o dk dk o dk

at once from LEMMA 4.1 that Q. E. D.

Completeness can be discarded in the last theorem. If p. is

not equivalent to v, then either p. is not absolutely continuous

with respect to v or v is not absolutely continuous with respect

to [I. Without loss of generality, we assume that -i is not abso-

lutely continuous with respect to v. Then there must exist a set

A E a such that v(A) = 0 and 11(A) >0.
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so that = 1 on A. Thus, we havedk -= 1 on a set of posi-

tivek-measure, so it cannot be the case that 0 < < 1 X.-a. e.
dX

Since the proof that v implies 0 1 X.-a. e. diddk

not require completeness, we have proved the following result:

THEOREM 4.4. If p. and v are finite measures on (C2, a)
and k p. + v, then p. is equivalent to v if and only if

0 < -11-d < 1 k-a. e.dk

It should be pointed out that by LEMMA 2- 9(c) we have
dv0 < < 1 X-a. e. if and only if 0 < < 1 k-a. e. This factdk dk

together with THEOREM 4.4 allows us to state the following result.

COROLLARY 4. 5. If p. and v are finite measures on the

measurable space (0, a) and k = p. + v, then p. is equivalent

to v if and only if 0 < -c-i-E <1 k- a. e .

dvor 0 < < 1 X.-a.e.dk d k

Special Cases

di
dk

In this section we examine special cases in which the

28

It follows that 'A dk

Since v << k, we have 0 = v(A) = $ dk = S1 dX .
dv

0 k-a.e. since 1 0 k-a. e.A dk

dk A dk
dv dv

dv

Because 1A = 1 on A and k(A) p..(A) + v(A) i(A) > 0, it

cannot be the case that lA = 0 k-a.e. Consequently, we must have

dk on A. By LEMMA 2.9(a) we have
dv

dk
1 - X-a. e.,

dp. dv



measurable space (0, a) is of such a nature that it is possible to

define finite measures of the form di() = f(w)dw and dv(w) = g(w)dw.

Of particular interest are the cases where 11 represents the real

numbers R., finite subintervals of R, or n-dimensional Euclidean

R'1spaceRand 0.. represents the respective Borel sets. Conse-

quently, throughout this section (1-2, a ) will be considered to be a

space so that finite measures of the form di() = f(w)dw do exist on

it.

If p. and v are finite measures such that dp.(w) = f(w)dw

and dv(w) = g(w)d and X = p. + v, then

d(w) = dp.(w) + dv(w) (f(w)+g(w))dw. Since

p.(A) = dp.(w) = f(w)dw =f(w) (f(w)+g(w))dwf(w)+g(w)A A A

for all A E a , it follows that:

dp. f(w)(04 -
dX f(w)+g(w) X-a. e.

Similarly:

dX f(w)+g(w) -a.e.dv (w) g(w)
X

f(w)Note that 0 < < 1 X-a. e. may be restated asf(w)+g(w)
f(w) f(w)0 < < 1 wherever is defined.f(w)+g(w) f(w)+0(0)

With the notation introduced above, it is now possible to restate
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COROLLARY 4.5 in the context of this section.

COROLLARY 4. 6. If p. and V are finite measures on

(12, ) having the form dp.(w) f(w)d w and dv(w) g(w)dw and

f(w)= p. + v, then p. - V if and only if 0 <
f(w)+g(w)

< -g(w) < 1 wherever
f(w)+g(w)

is defined.

f(w) is defined orf(w)+g(w)

The refore

If dil(w) f(w)d w and dv(w) = g(w)dw and it is the case that

then it is possible to use LEMMA 2.8 to find 5/11. Thus:
dv

dX tdv f ft.& f
dv d).dv = ddXli dX f+g g g

5-1-E = wherever is defined.dv g

We conclude this chapter by giving two specific examples.

EXAMPLE 4.7. Let [-1, 1] and let .18 be the Borel

sets of [-1, 11. On (0, let p. be Lebesgue measure so that

c111(6)) = ldw and let V be the measure defined by dv(w) = ewdw.

Since ew > 0 for all w E 12, we have 0 < --1-- <1 everywhere
1+e

on 12. It therefore follows from COROLLARY 4. 6 that

We also have (w) = e-wdv

Our final example makes use of Gaussian density functions.

EXAMPLE 4.8. Let 12 = R and let ..(13 be the Borel sets of

R. Let m, a E R such that a > 0 and suppose they are fixed.

v-a.e.

1 wherever

g(w)
f(w)+g(w)

p. V.



For any co E R, define the function N(o-,m,c..) by:

1N cr, m, = exp[-
N/ LITT

co-m)21.
cr j

This is the density function of a nondegene rate Gaussian distribution

with mean and variance o-
2

.

0<
N(0-2, Mal (-4.) ) "1" N m1, w

N(cr m ,
dp.((-0)dv N(cr2' m , co)

<1

31

and
o-2

> O. Since exp(c0 > 0 for all co E R, it follows that:

N(cr m

Define the measures p. and on (0,2 ) by

dp.( ) = N(cr
1,

0)c1co and dv(o.)) N(cr2, m2,c.o)do.) where >0



V. REPRESENTATIONS OF RADON-NIKODYM DERIVATIVES

The Riesz Theorem

The first representation of a Radon- Nikodym derivative given

in this chapter makes extensive use of the Riesz representation theo-

rem. For completeness and later reference we give the Riesz

theorem and its proof here as found in Horvg.th (13, p. 42).

THEOREM 5.1. Let E be a Hilbert space and g a contin-

uous linear form on E. Then there exists a unique element a E E

such that g(x) = <x, a> for all x E E.

Proof:

If g is identically zero, choose a= 0. If g is not

identically zero, then (ker g) is distinct from E and there must

exist a nonzero vector b E E which is orthogonal to (ker g). Let:

,bg(b).

1110112

Then g(a) = llall2 = lg(b)12/11b112- Since (ker g) is a hyperplane,

every vector X E E can be written in the form y + aa where

y E (ker g) and a is a real number. Thus:

g(x) = g(y+aa) = ag(a) = all all 2 = <aa, a> = <y+aa, a> = <x, a>.

(*)
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The uniqueness of a is clear. Q. E. D.

The next proposition introduces a continuous linear form on an

L2- space.

PROPOSITION 5.2. Let p. and X be finite measures de-
fined on the same measurable space (0, Q) such that 11 <

Then the map g defined by g(14 Q = <[x] ,[1]x>11,=.- Sxdi is a con-
tinuous linear form on L2(0, a, ).).

Proof:

Let E L2(X). Then x E e2(X), and since p. < X, it

follows from LEMMA 3. 2 that x E t2(p.). By the Schwarz inequality

we have:

Txdilt 5Jxjd lx1

1 2(
2 )

x I 2d1-t

1 /2

1

1/2(I()) <

The map g is thus defined and real-valued on L2(X.).

To see that g is well-defined, let [xl]x and [
21X.

elements of L2(X) such that g([xik) g([x2]x). This means that

Sxidp. Sx2di.L, so there must exist a set A E a such that

li(A) > 0 and
x1 (0.)

x2 (co) for all (A) E A. However, p. < X

and p.(A) > 0 imply X(A) > 0. Therefore, x1 and x differ
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on a set of positive X-measure. Thus, [x2] and g is

well-defined.

The fact that g is linear on L2(X) follows from the fact that

g is linear on
L2(II) and LEMMA 3.2 which shows that if

X E then x E (,).

To see that g is continuous on L (X), choose [x]x E ( )

and use the Schwarz inequality to get:

g (rxk) = J $xcipl xl 24)
1/2

where M= (p.(0))1 /2

By LEMMA 3.2 we have S

I gaxl I < (Six,

so:

34

Thus, g is continuous on L2(X). Q. E. D.

Since
L2(X) is a real Hilbert space and the function

defined in PROPOSITION 5.2 is a continuous linear form on L2 (X),

THEOREM 5.1 applies directly to this case. We restate it here in

this context.

THEOREM 5.3. If and are finite measures on the

same measurable space (0, a) such that 11 < X and g is the
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continuous linear form defined on L2( X) by gax] ) <[x], [1} > ,
X p.

then there exists a unique element [a] E L2 (k) such that
X

g( [x]) < [x] ,[a]x >x for every [x]x e L2(X).

We are now in a position to state and prove the theorem which

relates the Radon-Nikodym derivative
dk and the Riesz vector a.

THEOREM 5.4. Let 11 and v be finite measures defined

on the same measurable space (0,a) and let X + v . If

[a.lx is the unique element of
L2(k) guaranteed by THEOREM 5.3,

then - a k-a.e.
dX

Proof:

It follows from THEOREM 5.3 that 5xdL= ilxadk for all

x e t2(k). Since Et (k) for all A c a , we haveA 2

SlAcIp. = S1 ad). for all A c a. Therefore, i(A) = S adk for
A

all A E a .

But, by THEOREM 2.7 we must have i(A) = 5c-11-1-dk for all
A dk.

A Ea.dp.'It therefore follows by the uniqueness of -- thatdk

X.-a. e. Q. E. D.dk

By using formula (*) of the proof of THEOREM 5.1 to express

the Riesz vector a, we may restate THEOREM 5.4 in the following

form:

COROLLARY 5. 5. Let p. and v be finite measures on the



b5lbdp.clE
dk

b dX
k-a. e. ,

where [13] is any nonzero elenzent of (ker g)"L C
L2 (k) and g is the

continuous linear functional on L2 (X) defined by g(ix] ) = < ix] ,[1]

The last result together with THEOREM 4.4 allows us to give

necessary and sufficient conditions for the equivalence of finite meas-
ures II and v in terms of the element b.

We know that p. v if and only if c14.
1 h-a. e. by

d X.

clETHEOREM 4-4. Using the representation of
dk given by

COROLLARY 5. 5, we have p. equivalent to v if and only if

b Sbdp.

trb2dk
< 1

This reduces at once to v if and only if b Sbdp. < S 2d X.

k-a. e. We may therefore state the following theorem.

THEOREM 5. 6. Let p. and v be finite measures on the

same measurable space (0, a) and let k = + V. Then p. v

if and only if 0 < b bd < Sb2dk k-a. e., where [b]k is any

nonzero element of (ker g) and is the continuous linear form
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same measurable space (0,a) and let +v. Then



defined on
L2 (X) by g([x] ) = <[xJ

we have:

The last result of this section gives a representation for ----
dv

in the case where ji

THEOREM 5.7. Let 1.1. and v be finite measures on the
same measurable space (0, a ) and let k = + V. If

then

dv
b Sbd

where
[b]X. is any nonzero element of (ker g)1 and g is the

continuous linear form defined on L2(k) by g( [x] ) = <[x]x,[1]x

Proof:

If v, then II v k. It then follows from LEMMA 2.8
that:

dk dp., idv 1-1
dv dX. dv dX. dX./ k- a. e.

dvBy LEMMA 2.9(a) we have dil k-a, e. , so thatdk - dkdp.,. diu (1_d h-1
k-a. e.tiv dk dk

Using the representation of c-1}-1- given by COROLLARY 5.5,dk
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di.t
dv

b $bd b bd

b2dX Sb2dX.

b Sbd

Sb2dX-b Sbd.I.t

Fourier Representations

In this section we give a representation of in terms of any
dX

complete orthonormal system of
L2 (X).

DEFINITION 5. 8. Let E be a. Hilbert space with inner pro-

duct < , >. A family of elements {cp .}. of E is called a
J J

complete orthonormal system of E if

< T., >k

if jk
if j k

Q. E. D.

and there does not exist any other nonzero element of E which is

orthogonal to all the elements of
J J EJ

The following theorem gives a representation of every element

of E in terms of any complete orthonormal system of E. This

representation of x E is usually called the Fourier representation

of x.

38
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THEOREM 5. 9. Let {,p }. be a complete orthonormal sys-

tem of the Hilbert space E. Then for every X E E we have

X <x, co.> c..
3

E J

Proof:

See (13, p. 34).

Using the results of THEOREM 5.4, or for that matter LEMMA

2. 9(b), we note that [51] E2(X). It follows that THEOREM 5.9dX X.

rmay be applied to find a Fourier representation for .dX X

done in the next theorem.

THEOREM 5.10. Let p. and v be finite measures on the

same measurable space

is any complete orthonormal system of L2(X), then

(Sbcpidii) (pi X.-a. e.

Proof:

Since E
L2(X) it follows from THEOREM 5.9 that:

dp.
dX

(C2, a) and let X + v { [cp. }jx.jEJ

This is



[dial
dX X

Therefore, =
dX

j

E

(c9. dp.cv)
j

j EJ

= (Sbco.d[)Eco.iJ J X

k 0 > [50jidX jk X X

(Scp.d[..) cp. e. Q. E. D.
J J
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The Gram-Schmidt orthonormalization process (12, p. 240) is

available for the generation of complete orthonormal systems of

L2(X), provided linearly independent subsets which span L2(X) can

be found. The usefulness of THEOREM 5.10 depends much, therefore,

on the structure of
L2(X).

Analogs of THEOREM 4.4 and THEOREM 5.7 may be stated by

using the Fourier representation of . They are simply a matter
dX

of substitution and we shall not state them here.



VI. COMPLETE ORTHONORMA.L SYSTEMS

Computing Complete Orthonormal Systems

Let p and v be finite measures on the same measurable

space (, a ) such that i is equivalent to v. If a complete

dp.orthonormal system is known for L2(i1) and is known, then a
d v

method is given in this section for finding a complete orthonormal

system for L2(v). This method of computing complete orthonormal

systems is given by the following theorem.

THEOREM 6. 1. Let 11 and v be equivalent finite meas-

ures on the same measurable space (C2, a). If {(P.). is a com-

plete orthonormal system for
L2 (p.)'

then {_.(clp)1}.
E J

is a
`I'j d v 3

complete orthonormal system for L (v).
2

Proof:

Since p is equivalent to v, and to simplify the notation, we

shall write x in place of [x][1.

.p. ( d p, )1 /21.To see that
E J is an orthogonal system for`vj dv 3

L2(v), assume j k. Then:

dp 1/2 1411 /2 dp,
< (Pj dv ' k dv v S`Pfk dv

since {c, .} is an orthogonal system for
L2().EJ

41

V 7-= cpjcokdp. = 0,



we observe:

(dia. 1/2
dv

To see that
dv

0= <

is orthogonal to

It remains to show that

= Scpxdp. = < x >
P-

for all co., j EJ. We thus have a nonzero element x E (p. ) whichL2

1
/2}. TEJ

is a normal system for L2(v),

I:)1/2>= Sc7v = Scp.dp.= 1,
3 dv

since {cp.}.
EJ is a normal system for

L2(p.).3

Since p. is equivalent to v, it follows from THEOREM 3. 1

that L2(p.) is isometrically isomorphic to L2(v) via the map
dia. diau2: x()1 /2

. It therefore follows that {co .(--, )1/2 },
EJ

C L2(v).dv 3 QV i =

f t'1.11)1/2}
P dv 3 EJ

,y> = dp. 1/2 d

dv ' x(dv

is a complete system

of L2(v). Suppose that this is not the case. Then there exists a

nonzero y E L2(v) which is orthogonal to all the element of
dp, 1/2

EJ
Since u2 is one-to-one and onto, there exists a

dId

dv

unique nonzero x E L2(0 such that y = u2 (x) = x( )1/2 Then bydv

our assumption about y we have:

>
v

Scp,x
1/2 c111

3 dv

But, this contradicts the fact that
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3 E

EJ is a complete orthonormal system of L2(p). Thus,

{co (dia)1/21 is a complete orthonormal system for L2(v). Q.E.D.
j dv ji EJ



Examples

This section presents several applications of THEOREM 6.1.

These applications make use of the classical complete orthonormal

systems known as the trigonometric functions, the Legendre func-

tions, the Hermite functions, and the Laguerre functions. These

systems have many applications in applied mathematics and mathe-

matical physics. They have been studied extensively, and for further

information the reader is referred to the works by N. N. Lebedev (15),

G. Sansone (20), and Gabor SzegU (22).

In all the examples which follow, we shall be in the situation d is -

cussed in Chapter IV under Special Cases. The finite measures p.

and v will be defined on a measurable space (C2, a) so that they

have the form di.L(w) = f(w)dw and dv(w) = g(w)dw. Recall that in

this context, COROLLARY 4. 6 showed that ti v if and only if
f(w) f(w)0 <

f()+g(w)
< 1 wherever is defined. Also recall that

f(0)+0(0)

p. v implies that dP'(w) = )) wherever the fraction is defined.d v g(w)

Since we will be dealing with equivalent measures in our

examples, the functions are to be understood as being defined only

almost everywhere and we write p in place of [q2].

In our first example, we make use of the trigonometric functions.

EXAMPLE 6.2. Let 2 = [0, 21T] and let a be the Lebesgue

measurable sets of [0,2]. Let p. be Lebesgue measure on
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([0, 2irj, a), so that d(x) dx, The trigonometric functions:

1 cos nx sin nx
Nrrr 477.

d.E(x)dv

< x < Tr, n = 1, 2, 3, ...}

dp.,1/2 1so that -(47.7 kx" f(X)

It then follows at once from THEOREM 6.1 that a complete orthonor-

mal system for L2( [0, 2.r], a, V) will be given by the set:

1 cos nx sip nx
27f(x) Trf(x)

'0 <x < IT, n= ,2 3,...}.4

Our next example makes use of the Legendre functions.

EXAMPLE 6.3. Let SZ 1.. 4, 1] and let a represent the

Lebesgue measurable sets of [-II 1]. Let p. be Lebesgue meas-

ure on ( [-1, 1], a) so that clp.(x) dx. If P(x) represent the

Legendre polynomials (15, p. 44) on 1, a then the Legendre

functions are defined on [-I, 1] by:

2n+1
(X) 74 j---""°"""' P (x)' n = 0, 1, 2, ...

2 n
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are a complete orthonorrnal system (20, p. 43-46) for

L2( [0' 2 p.).

Let v be another finite measure on ([0, 2ir], a) such that

dv(x) = f(x)dx and assume that v is equivalent to F.L. Then we

have



The set of Legendre functions {(pn( ):n = 0,1,2, ...} is a-complete

orthonormal system (20, p.189-193) for the space L2( [-1, act, p.).

If v is any other finite measure defined on ([-1,1], a)

which is equivalent to p. and has the form dv(

dill 1,x, f(x) , then it follows from THEOREM 6.1 that:

{)conk Zn+1
7-177 .n = 0,1,2, . = {12f- TPn(x) :n = 0,1,

is a complete orthonormal system for L2( [-1,1], a,v).

The next example makes use of the Hermite functions.

EXAMPLE 6 . 4. Let 2 = R = (-00, +00) and let a. be the

Lebesgue measurable sets of R. Let la be the measure on
+co

(R, a) defined by d(x) = dx. Since e-x2dx = Nrrr, is

a finite measure on (R, a)

If H(x) represent the Hermite polynomials (20, p. 306) on

R, then the Hermite functions are defined on R by:

H (x)

(Pn(x) 2 n !
n = 0,1,2,

The set of Hermite functions {p(x) : n = 0, 1,2, ...} is a complete

orthonormal system (20, p. 351-355) for Lz(R, 0. , la)

Now, let v be a finite measure on (R, a) which has the

form dv(x) = f(x)dx and is equivalent to p. Then:

) = f(x)dx, so that
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-x2
dist, (x)
dv f(x)

(x)

J2ex f(

so that 11(01/2 1

NI x2dv
e f(x)

It then follows at once from THEOREM 6. 1 that a complete

orthonormal system for L v) is given by:

1

= 0, 1, 2, ... .

Our final example makes use of the Laguerre functions.

EXAMPLE 6. 5. Let S-2 = [0, +00) and let a be the

Lebesgue measurable sets of [0, +00). Define the measures

on [0, +00) by d(x) =-x ax dx for a > -1. Since
+00

e-xxadx = r(a+1), r being the Gamma function (20, p. 392),
0

p.a
is a finite measure on ([0, +°°), a) for each a> -1.

If L(a)(x) represent the Laguerre polynomials (20, p. 295)

on [0, +00), then the Laguerre functions are defined on [0, +00) by:

(a)(x)
r(n+a+ 1 )
r(n+ 1) (a)(x), n 0, 1, 2, ...

The collection {9
(a)Then = 0, 1, 2, .. , } is a complete orthonorrnal

system (20, p. 349-351) for L2( [0, +00),a,

Let v be a finite measure on ([0, +00), a) which has the

form dv(x) = f(x)dx. Suppose v is equivalent to p.. Then we
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have:

It then follows from THEOREM 6. 1 that a complete orthonormal

system for L2( [0, +00),a, v) is given by the set:

e x d 1/2
f(x) so that ((x))p.dvxa-----x a

exf(x)
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VII. GAUSSLAN PROCESSES

Background

In this chapter we give necessary and sufficient conditions for

the equivalence of Gaussian processes, with countable index sets, in

terms of the finite dimensional distributions of the processes. The

proof of this result requires the application of Kakutani's theorem

together with the results of Chapter IV.

We first introduce the necessary terminology of Gaussian pro-

cesses. As for notation, R will denote the real numbers, 43

will denote the Borel sets of R, and P will be used to represent

probability measures when there is no danger of confusion.

DEFINITION 7. 1. Let (0, a, p.) be any probability space.

If x is a measurable function from (0, a, p.) into (R, 2), then

is called a real random variable or simply a random variable.

A random variable x is called a Gaussian random variable

if one of the following holds:

(a) x has a distribution with a density function of the form:

N(a-, m, w) -
1

exp
Lir o-

1 ,w-m2

S'where a- > 0. That is, P(x <r) = N(a-,m, w)dw. (This case
_oo

will be called the nonsingular case.)
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(5, p. 26).

a

N (w w )dw ...dw'n n 1 n_oo

where
Nn represents the n-dimensional Gaussian density function

49

(b) x has a point mass at some point m. (This case will be

called the singular case.)

DEFINITION 7.2. Let T be an arbitrary set. The collection

{xt : t ET} is called a stochastic process on the probability space

(C2, a ,11) provided each xt is a random variable on (0, a, 1-1)

If each finite linear combination atxt is a Gaussian random

variable, then { T} is called a Gaussian process.

If T is a finite set and {xt: t ET} is a stochastic process,

then there is a natural way (5, p. 32-33) to define a 0" -algebra and

measure on R . This leads to the following definition.

DEFINITION 7.3. If T is a finite set and {xt:t ET} is a

stochastic process, then its joint distribution is the measure on

which is determined by assigning P{xt E At : t E T} to A,
t T

where At = (a, b), at and bt being extended real numbers.

In particular, if {xt :t E T} is a finite Gaussian process and

each x is nonsingular and At = (-co, at), then:

P{Xt E At : t E T} = P{xt < at : t E
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DEFINITION 7.4. If T is an arbitrary set and {x t E T}

is a stochastic process, then for each finite subset T C T, we

Tomay obtain a joint distribution p.

To
on R by considering

{xt :t E T} and using DEFINITION 7.3 to define

P.m 11 A ) = P{x EA :tET }. The set {p. : T C T, T finite}
t t o To o o'0 tETo t

is called the family of finite joint distributions of {xt: t E T} or the

family of finite dimensional distributions of {x : t E

If two stochastic processes X and Y on the same index set

have the same family of finite joint distributions, then X and Y

are called isomorphic.

As a matter of notation, we shall let .}13 be the o- -algebra
To

of R ° on which the measure p. is defined. It should be noted
To

that if
To C

T1 are finite subsets of T, then there exists an

embedding of ,C8T into
T1

defined by the map

c: At Bt where B At for t E
To

and B = R
tET tET

1

for tET1 - T. We thus may write
o

DEFINITION 7. 5. If T C T are finite subsets of T,
o 1

then the finite joint distributions of the stochastic process

are said to satisfy the consistency condition if the restriction of

to the o--algebra is equal to

C_13ToT
1

P.

LEMMA 7. 6. The finite joint distributions of a Gaussian pro-

cess satisfy the consistency condition.
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{xt t E
T}



Proof:

Let To C T be finite subsets of T such that
1

T1 = {t 1, . , tn}. Without loss of generality we assume

= {t1, , tm}, where m < n. Then we need only show that

p. II A ) = ( II At)tOtET T1 t ET
0 0

where At = a ,b ). This follows since:

b b

p. ( TI At = Si
s. t

$' N (co ,...,co )dco ...do.)
To tE T a a a

ml m m
o ttl t2 m

b

= S
t t

s t
$ . SI N (co

+cc

n
a a - - 00

du) ...dcon
a t

M

= ( II At).T1 t E
To Q. E. D.

We are now in a position to state the Kolmogorov theorem,

THEOREM 7.7. Suppose that for each finite subset To C T

we are given the finite joint distribution
P-T

of the stochastic pro-

cess {x :t E T} and suppose that these finite joint distributions

satisfy the consistency condition. Then there exists a measure P,

on the o--algebra generated by the cylinder sets of R making the
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coordinate functions into a stochastic process with the preassigned

measure s
P.To

as its set of finite joint distributions.

Proof:

See (16, p. 79-83) or (5, p. 34-37).

Some general remarks about the proof of the Kolmogorov

.g.ptheorem are in order. The probability space we obtain is (RT ,

where e is the infinite product o--algebra generated by the cylinder

sets (16, p. 80), and the measure p. is the infinite product measure

generated by the finite joint distributions. The process defined on

(RT,%e, p.) is called the path space version of the process and is

isomorphic to the original process.

DEFINITION 7.8. Let X and Y be Gaussian processes

with the same index set, and let p. and V be the measures gen-

erated on (RT,%e) respectively by X and Y via the Kolmogorov

theorem. We shall say X is equivalent to Y if and only if p,

is equivalent to V.

The final background result we need is Kakutani's theorem and

we now state it:

THEOREM 7.9. Let J be a countable set.eLeta. b a
J

o--algebra of 0. and let a be the product o--algebra generated by
J

the a. on the product 0 = II S-2,. Let p.. and V. be proba-
3 i EJ j 3

bility measures on (0., a) with p.. - v.. Let p.=.II p.. and
J 3 J J 3 E j
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v = be the product measures on (0, a). Then either
j EJ

or p-L..v. A necessary and sufficient condition for p. v is that:

jj srdvp....)1/2dv > 0
E 3

Proof:

See (14) or (12, p. 453-455).

Conditions for Equivalence

Throughout this section we shall let X = {xt : t E T} and

Y = :t E T} be Gaussian processes with countable index set T.

Let : To C T, T finite} be the finite joint distributions of X

and let : ToC T, T finite} be those of Y. We shall write

p.t
in place of

p.{t0}
andv v{to} forin place of ft }C T.

to
It then follows that the measures .i and v on (RT,e) gener-

ated by X and Y respectively via the Kolmogorov theorem are

the infinite product measures p.=
p.t

and v n v.
t E T t E T

Our result requires the following lemma.

LEMMA 7. 10. If p v, then v for all finite
To

To C T.

Proof:

We prove the contrapositive. Suppose there exists a finite
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To C T such that p.To is not equivalent to . Since p. and



v are Gaussian measures, it follows that p.m and VT are
io o

Gaussian, so that_i_I.LT . VT by THEOREM 1.3. Thus, there
0 o T

exists a set A E To'.113 the a o--algebra of R on which
p.To

and

V are defined, so that p. (A) = 0 =
vTo(Ac).

But, sa is
To To To

embedded in the cr-algebra 't, of RT via a map 4), where

OA) has restrictions only on the coordinates t E
To

and is unre-

stricted in the coordinates t E T - To. Then p.(4)(A)) p.,r (A) -= 0

and v(q)(A.c)) = VT (Ac) . Thus, jv, and the lemma follows.

Q. E. D.

With the aid of this lemma, THEOREM 7.9, and COROLLARY

4.6, we can now prove the following theorem.

THEOREM 7,11. Let X and Y be Gaussian processes

with the same countable index set T. A necessary and sufficient

condition for the equivalence of X and Y is that there exist

disjoint sets U and V such that T = U i V and the following

hold:

for each t U, xt and yare nonsingular Gaussian

random variables,

for each t E V,
Xt

and y are singular Gaussian ran-t

dom variables with point mass at the same point mt,

) n
C dllt 1/2dv >

t EU t
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Proof:

Assume X - Y so that 11 - v. It then follows by LEMMA

7.10 that vt for all t E T. Then for each t E T, we con-

sider four cases: (i) and vt both have nonsingular distribu-

tions, (ii) p,t is nonsingular while vt is singular, (iii) is

singular whileis nonsingular, and (iv) both p. andvt

singular.

In case (i), p. must have a density function of the form

N(o-1, m1), with o-i > 0, and vt will have N(cr2, m2), with

er2
> 0, for its density function. It then follows at once from

EXAMPLE 4.8 that v .
t

has a density function of the form N(cr, m),

vt has point mass at some point mt. Let

bA = (a, b) such that m I Then (A) - S'
N(o-1 P
m co)dco > 0

t -
a

and v (A)= 0. Thus, is not equivalent to v and case (ii)t t

must be ruled out.

In a similar manner, case (iii) must also be ruled out.

In case (iv), let have point mass at mt and let vt

have point mass at nt. If nt' we let A = ( ,+00) so that

n A while mt A. Then I.Lt(A) = 0 = vt(Ac), contradicting

v . If, however, m = n , then
p.t

and v have exactlyt t t t

the same distribution function and we must have and hence

- Vt.

are

In case (ii),

with o- > 0, while
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and since the exponential function is always positive, we have

--dvt
>

for all t E U.

N(o-i,

d vt N(crz, m2)
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Consequently, if p. v we must have conditions (a) and (b).

Condition (c) is also necessary by THEOREM 7.9. The product
d tit

need be taken only over Ti since for t e V.dvt

To prove the converse, assume (a), (b), and (c) hold.

In case (a),
IIt has a density of the form N(o- ,m1) with

0-1
> 0 and vt has a density of the form N

(a-2, m2) with o- >
2

If X =1.L t
+ v, thent t

N(o- ml' 1

dXt N(o- 1, mi)+N(crz, rn2)

so that 0 < < 1 every where. It then follows from COROLLARY
t

4.6 that
vt for all t E U.

In case (b),
p.t

= vt for all t E V.

It therefore follows that v for all t E T. Since (c)t t

also holds, it follows at once from THEOREM 7.9 that v. - V.

Therefore, X - Y. Q. E. D.

If T is finite, condition (c) of the last theorem may be

omitted. To see this we need only show that conditions (a) and (b)

imply (c) in this case.

If t E U, it follows from EXAMPLE 4. 8 that
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If T is finite, then of course U is finite so
ciP't 1/2dv > 0 is always true. Thus, (a) and (b) do imply (c)

tEU avt
when T is finite and we have proved the following corollary.

COROLLARY 7. 12. Let X and Y be Gaussian processes

defined on the same finite index set T. A necessary and sufficient

condition for equivalence of X and Y is the existence of disjoint

sets U and V such that T=Uv V and the following hold:

for each t E U, x and y are nonsingular Gaussian

random variables,

for each t E V, x and yt are singular Gaussian ran-

dom variables with point mass at the same point mt.
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