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EQUIVALENCE OF FINITE MEASURES
I. INTRODUCTION

This paper is motivated by the problem of finding necessary and
sufficient conditions for the equivalence of Gaussian stochastic pro-
cesses. If X = {xt: t eT} énd Y = {yt:t € T} are real-valued
Gaussian processes, the Kolmogorov theorem (5, p. 32-37) allows
one to consider both X and Y as processes defined on the meas-
urable space (RT,e). R represents the real numbers, € rep-
resents the cylinder sets of RT, and (RT,B) is usually referred
to as the path space of the processes. If p and Vv are ‘the~proba—
bilities generated respectivély by X and Y on (RT, €) via the
Kolmogorov theorem, then ‘X is equivalent to Y if and only if
is equivalént to v. Here of course, two measures are equivalent
provided they have exactly the same sets of measure zero. The pro-
cesses X and Y are perpendicular or mutually singular if and
only if the associated measures p and Vv are perpendicular.

Extensive research has been done on the problem of finding
necessary and sufficient conditions for the equivalence of Gaussian
processes, and on the problem of finding necessary and sufficient
conditions for the perpendicularity of Gaussian processes. These

investigations have taken many forms and have used a wide variety of



‘methods. In the following, the major results of these investigations
are given and outlines of important methods are presented.

In1947, R. H. Cameron and W. T. Martin (3) were able to show
that if one considers the measures induced on the path space by
Wiener processes on the unit interval, then the measures are per-
pendicular if the processes have different variances. A wider suffi-
cient condition for the perpendicularity of measures induced on the
path space by continuous Gaussian processes on the unit interval was
obtained in 1956 by G. Baxter (2).

In 1950, by using the idea of spectral measures, U. Grenander
(10) was able to give necessary and sufficient conditions for the equiv-
alence of stationary Gaussian processes in the case where the index
set T "represents ’the‘r'eal nﬁmi)ers. His method was to consider
functions Af(s,t) and B(s,t) defined on T X T such that
A(s,t) = a(s-t) and :B(s,t) = b(s-t), where both a and b are
continuous. positive definite functions on T. It then follows from
Bochner's theorem (5, p. 126-128) that there exist finite regular Borel

measures p and ¢ on T such that

The measures p and ¢ are called spectral measures. If m(t)

and n(t) are two functions defined on T, it then follows (6, p. 72;



8, p. 2.2) that there exist unique stationary Gaussian processes
X = {xt:t €T} and Y = {yt:t € T} such that X has mean ml(t) ’
and covariance Af(s,t) while Y has mean n(t) and covariance

B(s,t). Using this notation, Grenander's result may then be stated:

THEOREM 1.1. X is equivalentto Y if and only if

(i) p and o have identical non-atomic parts;

(ii) p and ¢ have exactly the same set of atoms A and if
the masses at i € A are respectively a, and ﬁ.l, then

Q.
Z (1- p—l)Z < o0,
ieA i

Jacob Feldman has used spectral measures to study the question
of equivalence of Gaussian processes restricted to finite intervals of
the real line and has obtained results (9) for a special class of cases.
Many others have done work on finding conditions for equivalence of
Gaussian processes in terms of their spectral measures in various
special cases. A summary of many of these results is to be found
in (19).

In 1969, T. R. Chow (4) generalized Grenander's result to the
case where the index set T is a separable locally compact group.
This generalization was accomplished by using techniques of von
Neuman algebras and direct integral representations. Chow was able
to show that any stationary Gaussian process on a locally compact

group admits a direct integral representation. This result together



with the following theorem gives the generalization. The notation is

that of (4).

THEOREM 1.2. Let G be a separable locally compact group.
Two stationary processes {X(t),te G} and {Y(t),t ¢ G} with means
zero, covariances p and o respectively are equivalent if and

only if they admit the direct integral representations

@ @
x(t) = 5' x)\(t)dbL y(t) = 5. yx(t)dv
A A
where -pn and v are the central Radon measures of p and o
such that

(i) B and Vv have the identical non-atomic parts,

(ii) they have the same set of atoms which is countable such that
zd(a)(l—(}.L(a)/\/(a)))Z < o where d(a) is the dimension of Hp(a)
acA
if Hp(a) is finite dimensional and ®© otherwise, and A is the

set of all atoms.

In 1958, a rather surprising result was obtained independently
by J. Hajek (11) and Jacob Feldman (7). They showed that if X
and Y are Gaussian processes with the same index set, then either
X and Y areequivalentor X and Y are perpendicular. The
two methods of proof are quite different and both give necessary and

sufficient conditions for equivalence.



H&jek's approach is based on the idea of entropy distance be-
tween measures. Let p and Vv be the measures generated
. T :
respectively by X and Y on the path space (R ,€). Let By
and vs denote respectively the measures obtained by restricting
p and Vv to the o-algebra 80 generated by the cylinders with

conditions on only a finité number of values of the index set T.

The entropy distance between M and vy is defined by:

dpo dvo
J(Ho, vo) = y 1ogd—v—o—d|¢o + 5 log d“o dvo.

The entropy distance between pu and Vv is defined by
J(u, v) = sup J(po, Vo), where the supremum is taken over all pos-
sible finite dimensional restrictions of p and v. Hijek's result

is then stated as:

THEOREM 1.3. X is equivalent to Y if and only if
J(u, v) <. Further, if J(u,v) =, then X and Y are per-

pendicular.

Feldman's approach makes use of Kakutani's theorem (14) and
equivalence operators between Hilbert spaces. If H and K are
Hilbert spaces, an operator A: H — K 1is an equivalence operator
if A 1is a linear homeomorphism and 1 - A*A is Hilbert-Schmidt.

ILet p and Vv be the probabilities generated respectively by X



and Y on the path space (RT,E). Assume that ‘sztdu < o fork
all x, ¢ X and j‘yid‘v <o for all Y € Y. Let H be the sub-
space of LZ(}L) generated by X and let K be the subspace of

LZ(V) generated by Y. Feldman's necessary and sufficient condi-

tions for equivalence are given by the following theorem. The version

given here appears in (8).

THEOREM 1.4. If X and Y are Gaussian processes with
means zero, then X is equivalent to 'Y if and only if there is an
equivalence operator from H onto K, sending the equivalence

class of xt to that of Ve

Yet another approach to the problem is to use the theory of
reproducing kernel Hilbert spaces (1). In a paper (17) appearing in
1963, E. Parzen was able to give necessary and sufficient conditions
for the equivalence of Gaussian processes in terms of their covari-
ance functions by using reproducing kernel Hilbert spaces.

Let X and Y ©be Gaussian processes with covariance func-
tions Af(s,t) and. B(s,t), respectively. Let HA@B be the repro-

ducing kernel Hilbert space generated by

(AX B)((s,t), (u,v)) = A(s,u)B(t,v). Parzen proved the following:

THEOREM 1.5. X is equivalentto Y if and only if

A—BeHA®B.



A proof of this last result also appears in (8), where an example
case in which X represents Browﬁian motion on T = [0, +®) is
worked out. The same result for this special case was obtained by
L. A. Shepp (21) using methods very much different from those of
Parzen.

The applications of this subject to statistics, time series
analysis, and related fields are numerous. A collection of applica-
tions is to be found in (18). Indeed, one of the major efforts in this
area is the translation of the general results listed above to special
cases so as to make them easily applicable.

-A companion question to the question of finding necessary and
sufficient conditions for the equivalence of measures deals with find-
ing representations of Radon-~-Nikodym derivatives. That is, if g
and v are equivalent measures, just what does —3—% look like ?
Results on this representation question have been obtained by Feldman
(8) and Parzen (17). Feldman's results are obtained by using the
theory of Hilbert-Schmidt and trace operators. Parzen derives his
results by using reproducing kernel Hilbert space theory.

In this paper, necessary and sufficient conditions are found for
the equivalence of finite measures in terms of maps between function
spaces and in terms of a Radon-Nikodym derivative.

The companion question of finding a representation for a Radon-

Nikodym derivative is also examined. If p and Vv are finite



measures on the same measurable space and X = p .+ v, then the

function fl-)=<-, 1>’H is shown to be a continuous linear functional

on LZ()\). By the Riesz representation theorem, there exists a

unique vector a € LZ()\) such that f(x) = <x, a>)\ for all x ¢ LZ()\).
. dp. _dp

The uniqueness of an allows us to show a = an A-a.e. We may

thus represent g—% as a Fourier series using any complete ortho-

normal system of LZ()\) since S—% € LZ()\). An immediate conse-

quence of this representation of g% is a representation of g%

when p and Vv are equivalent.

The problem of finding complete orthonormal systems for

L_-spaces is examined in the case where | and Vv are equivalent

2
and %% is known. If a complete orthonormal system is known for
LZ(H), we give a method for finding a complete orthonormal system
for LZ(V)- This result is then applied to examples involving classi-
cal complete orthonormal systems.
Finally, we given necessary and sufficient conditions for the

equivalence of Gaussian processes with countable index sets. These
conditions are given in terms of the finite dimensional distributions of

the processes by a direct application of Kakutani's theorem and our

result on the. Radon-Nikodym derivative.



II. TERMINOLOGY AND NOTATION

‘Measures and Related Topics

This section is devoted to the definitions and notations of meas-
ure theory needed in this paper.

DEFINITION 2.1. Let € be a set and let (A be a oc-algebra
of ’subsetsof 2. The ordered pair (R, a ) is called a measurable‘
space, and the elements of (| are called (J-measurable sets or
just measurable sets.

DEFINITION 2.2. By a measure . on a measurable space
(€2, a_) we mean a nonnegative extended real-valqed set function

o0

0
defined on Q@& satisfying p(d) = 0 and MuAi):ZMAi) for
i=1
i=1

any sequence {Ai} of disjoint measurable sets. A measurable space
(2, a) together with a measure p is called a measure space and is
denoted by (2, (L ,p). A measure B on (Q,a) is called a finite
measure if p(2) <. A measure p on ,3) is called a proba-
bility measure if W(2) = 1. A measure space ’(Q,a‘.,p,) is called a
complete measure space, and p is called a complete measure,
provided u(A)=0 and B C A imply B . That is, every
subset of a set of measure zero is a measurable set.

DEFINITION 2.3. Let u and v be two measures defined on

the same measurable space (Q,q_). The measure Vv is said to be



10
absolutely continuous with respect to p if A e QX and p(A) =0
imply v(A)=0. If v is absolutely continuous with respect to .,
we write v KX p. If p < v and v <y, then pn and v afe
said to be equivalent and we write p ~v. Thus, W and Vv -are
equivalent if and only if they have exactly the same sets of measure
zero. If there exists a set A ¢ (I such that p(A) =0 = v(AC), v
and Vv are said to be mutually singular or perpendicular and we
write p_l. v. We shall write. p=v if n(A) = v(A) for all ;’A ed
and p <v if p(A) <v(A) forall Ae(l. Notethatif p < v,
then p K v. We def;ne the measure  + Vv by
(htv)(A) = p(A) + v(A) forall A (.

The idea of a measurable function plays an important role in
later results and is introduced in the following definition.

DEFINITION 2.4. Let (2, al,h) and (2, CLZ,pZ) be any
two measure spaces. Let x be a function from (Ql, al,p,l) to
(QZ, az,pz). We say that x is an al-measurable function, or -just
a measurable function, if x-l(A) e, forall A e a . Of par-

1 2
ticular interest is the case where 92 is the real numbers and a 2
the Borel sets.
The next definition introduces an equivalence relation on the set
of real-valued functions defined on a. measure space. It plays a basic

role in.later results.

DEFINITION 2.5. If x and vy are real-valued functions
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defined on (Q,a,p), we say x 1is equalto y p-almostevery-
where provided they differ only on a set of p-measure zero. This will
be written as x =y  p-a.e. The equivalence classes will be de-
noted by [X]p = {y:y=x p-a.e.}-

Several of the later results depend on the concept of a function
space. The following definition includes the notation to be used.

DEFINITION 2.6. Let p be any real number greater than or
equal to one and let (Q,a,,p) be any measure space. If =x repre;

sents a measurable real-valued function defined on (2, ., ), then:

xp(ﬂ’ a.,p.) = {x: ‘S'ixlpdp. <o}

X;(Q,a,p) = {x:1x ¢ fp(ﬂ, a,p) and x >0}

If [X]p is the equivalence class introduced in DEFINITION 2.5, then:

Lp(Q,a,p,) = {[x]p:x exp(ﬂ, a,p,)}.

When there is no question as to what measurable space p is defined
on, we write Xp(p) instead of :CP(Q, a,p) and Lp(p) instead
of L (@ O, p).

P

Recall that the spaces Lp(Q, a, $) are real, normed linear

spaces for 1 < p < © with a norm defined by:
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- 1/
16,1, = | S 1<l ]2

It should also be recalled that the space LZ(Q, a, k) 1is a Hilbert

space with an inner product defined by:

<[X]u’ [Y]H>H = yxydu-

Radon-Nikodym Theorem

Since the Radon-Nikodym derivative plays such an extensive role
in this paper, we state the Radon-Nikodym theorem here in the form

which is most useful to us for applications.

THEOREM 2.7. Let (2, (1) be a measurable space and let
i and Vv Dbe finite measures on (Q,a) such that v < p. Then
there exists a function X € XI(Q, a,p) such that Vv(A) = yxod,p

- A
for all A ¢ . Also, if x exl(ﬂ, a., v), then xx € 351(9, a,p)
and Xde = LS/\XXOdp.- Moreover, X is unique in the sense that if
Y, is anyfrea/l-valued, a-measurable function such that
V(A) = yy dp  for all A ea, then x =y h-a.e.
o o o
A
Proof:

See (12, p. 315).

Because of the uniqueness of x in the theorem above, we
o
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dv

write x == pj-a.e. and call dv the Radon-Nikodym derivative
o dp dp
of v with respectto W.

We now give two lemmas dealing with some elementary proper-

ties of Radon-Nikodym derivatives which are useful in later results.

ILEMMA 2.8. Let pu, v, and M be finite measures on the

same measurable space.

< < A
(a) If n AN and Vv \, then ax Ty + iy A-a.e
dv _dv du
<< < A, — I e A-a.e.
(b) If v v A then ar - dp ax a.e

dv _ rdp,-1
(c) If p~v, then an _[dv] L-a.e.

Proof:

See (12, p. 328).

LEMMA 2.9. Let p and Vv be finite measures on the same

measurable space and let X =p + V.

ap dv _
(a) an ar 1 X-a.e.
d dv
< — < -a.e. < — < -a.e.
(b)O___d}\__l A-a.e andO__dk__l A-a.e

—du ) ) dv
<= < -a.e. 0 < — < ~a.e.
(c) O ax 1 X\-a.e if and only if ax 1 \-a.e

Proof:

Part (a) follows at once from LEMMA 2. 8(a) since

-



_dh _ dlptv)

1= d dx

; dp dv
Recalling that an’ an

N-a.e.
ax | dn a-e

€ w-ll-()\), parts (b) and (c) follow at

once from part (a) of this lemma. Q.E.D.

14
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III. MAPS BETWEEN FUNCTION SPACES

Maps between Lp(p) and Lp(v)

This chapter contains two theorems which give necessary and
sufficient conditions for the equivalence of finite measures in terms
of maps between function spaces. Throughout this chapter p and
v will represent finite measures on the same measurable space
(2, &) and M\ will be the finite measure on (Q,A ) defined by
A=pptv.

The next theorern is suggested by an approach due to Neveu

(16, p. 112).

THEOREM 3.1. Let p be a real number such that 1 <p < .
A necessary and sufficient condition for the equivalence of p and Vv
is that the following hold:

(a) There exists an isometric isomorphism u of L (p)

onto L (v).

p
dp pdv de Sy P e,
®) 3% < |up(l)| ax °F ax = l“p‘“l an e

(c) g;zilu_l(l)lpg—& or El=-Y*>|L1"1(l)|p§'—% A-a.e.

dX p d\ dx —''p
Proof:
To show the necessity, we assume that W ~ v. It then follows
at once that p ~ X ~v., To save writing and simplify the notation in
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this part of the proof, we shall write x instead of [X]p All
equalities are therefore to be understood as p-a.e. (and hence also
as :v-a.e. and X-a.e.).

Since p ~ v, dp exists, and for all x ¢ Lp(p) we define

dv
u (x) = x('-d—H- l/p.

p d.v)

Now x € Lp(p) implies ‘x]p-e Ll(p), so it follows from The-

orem 2.7 that
jil; 1pdv - 51| du l/plpd Sw ‘flxlpdp < w,

and therefore, up is a map from Lp(p) into ,Lp(V)-
up is clearly a linear map. That is, up is' a vector space
homomorphism.

To see that up is one-to-one, assume u (x.)=u (x,) for

1 p 2
dp \1/p _ dp 1/p
any X, X, ¢ Lp(p). We thus have xl(dv) Z(dv) Now
-1
since 3—: exists and by LEMMA 2. 8(c) we have g{: = (j_}:) » We
dp,l/pdp,-1/p _ _(dp,l/p de\-1/p
conclude that xl(dv) (dv) = XZ(»dV) (dv) . Therefore’,
X, =X and u .is one-to-one.
1 2 p

To see that up is onto, choose any x ¢ Lp(v) and consider

x(d—v)1 /p. Since:
dp.
Svl l/plpd ﬁxlpi‘idp= ylxlpdv < o0,
dp
we have x(j: )1 /p Lp(p). By applying up to this element we get:
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dv.l/p.  dv.1/p du l/p ,dv.1/p.dv -1/p _
up(X\dH) )-x(dp) ‘dv) —x(dp) an = x.
Hence, up is onto-and it follows that up is an isoemorphism.

The map 'u_ is norm preserving since:
P

[

1P = {1l Pan

ylxlp gi:-dv = Sqlx(%%)l/p]pdv

Jla plPav = o eoll?

for all x e L (p).
P
Since up is' linear and norm preserving, it follows that up

is an isometry.

Properties (b) and (c) are obvious since dp - dpdy and

d\  dvdi
dv _dvdp . p _ dp
—_— T — E 2. s = —
ar - dp an by LEMMA 8(b), while lup(l)] qv and
-1 1P v .
u (1)]" ==—. This proves necessity.
la, M7 = 3 P y

To prove the converse, assume conditions (a), (b), and (c) hold.

~Because u is norm preserving we have:
p

RULE PRI

fdu ylgp(lﬂpdv.

Applying THEOREM 2.7, since p <X and Vv <\, we get:
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y ylu pdvd)\.

It then follows that:

-3—% ]p |p-d—)\=o \-a.e.,

S-I;: = lup(l)lpg—;—:- A-a.e
If we let :lA represent the characterisﬁc function of A ¢ QL, then
we have:

1A‘%= 1, (1)]"9_'—;:- N-a.e. forall Ae¢ @,

S‘gﬁd)\:yl |p——dx for all A ¢ (L,
A

= 5‘ [u (l)lpdv for all Ae( .
A P

Therefore, p < v.

Similarly, [|u_ b "p Hlnp implies

-1 P dr _5‘._.
j]up (1)] o 9 dxn,
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and it then foliows from condition (c) that:

dv -1 p-dp
—_ = —  \-a.
ax Illp M7 3% M-a-e
dv _ -1 p . dp
T lAlup (1)) o M-ave f01" all A <Q,

‘g‘iy'd)\=§|u—l(l)|p%-d)\ for all Aea,
N A A P dx

V(A)=51|u-1(1)‘pd|¢ for all A (..
A P

Therefore, v <pu and p-~v.
We note that because of the uniqueness of the: Radon-Nikodym

derivative we must have Iu.p(l)Ip - de vV-a.e. and

dv

|u"1(1)1p=93 L-a.e. | Q.E.D.

P dp

The following observations should be made from the proof of
THEOREM 3.1. 1In the proof of the necessity of conditions (a), (b),
and (c), the conditions (b) and (c) required no real proof s‘ince

p_dp -1yp 2 dv
lup(l)i gy M-a-e. and Iup (1)|* = an
tions (b) and (c) were really special cases of LEMMA 2. 8(b).

A-a.e. Thus, condi-

In the proof that conditions (a), (b), and (c) are sufficient, the
full strength of (a) was not used. We only needed the fact that the map
up is one-to-one and norm preserving.

Finally, the constant function 1 1is not as significant as it
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might appear. The entire theorem may be restated as follows:

THEOREM 3.1'. p and Vv are equivalent if and only if there

exists an X € Lp(p.) with ”Xo”p = 1, and the following hold:

(a') There exists an isometric isomorphism u of L ()

p

y dB p du pd Q

®) 3x < lutx] )P S w@) or S 2 fa e ) [P @) N-ae.
dv dv pd

() 3% _<_[X |p-—- v() or E-)-\-i lxol E% V() \-a.e.

Maps from Lp()\) into Lp(p) and Lp(_\_/_)

The approach used in this section is suggested by Feldman's
result on the equivalence of Gaussian processes (8). Several lemmas

are needed for our next result and we state them now.

LEMMA 3.2. let p and & be measures on (9,0.) such
that p <6. If p>1 and xe :fp(sz,a,a), it follows that
X € xp(ﬂ,a,p) and S‘fxlpdp iylx|pd6.

Proof:

See (12, p. 313).

LEMMA 3.3. Let p and v be finite measures on the meas-
urable space (2, ) and define X\ = pt+tv. For 1 <p<o,

there is a well-defined map Gp : Lp()\) — L (p) given by
pP
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o ([x]) =[x] .
p A b
Proof:
Since X =p + v, it follows that p < X\.

If [x], e Lp(x), it follows from LEMMA 3.2 that

X
p SI p Py ]
x| dp < x|"d\  and hence - 6 ([x )e L (n). Thus, © is a
S‘ [Fdp <) 1= p{lxl) € L (n >
map from L (\ into ‘L (n).
p LS ) in pp)

To see that Op is well-defined, suppose [xl] and [XZ])\’

A

are elements of L (\) and assume [x,] #[x.;] . Then there
P 1 p 27

exists a set A € a such that p(A) >0 and xl(w) # xz(w) for

weA. But, p(A) >0 implies A(A) >0 and hence [xl]x # [xz]x'

Therefore, Gp is a well-defined map. Q.E.D.

The map Gp 3 [X]x > [x]}JL 18 often referred to as thek induced
identity map.
The next lemma provides th;»major part of the proof of the

theorem of this section.

LEMMA 3.4. - A necessary and sufficient condition for p ~ X\
is that the map Gp defined in- LEMMA 3.3 be one-to-one.
Proof: -

Assume p ~\X and [xl])\ # [x for two elements

2])\

[Xl]x’ [XZ])\ of Lp(k). However, n ~ X means that p and -\

have exactly the same sets of measure zero, so that [Xl]p. = [xl ])\

and [XZ]p:[XZ])\' 'I‘herefore, [xl]paf[xz]p, and Gp is one-
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to-one.
Now assume Gp is one-to-one. Since p <\ implies

B << N, it suffices to show that A ¢ a and p(A) =0 imply

A
yll |Pax = yl dh = NMA) <®. If p(A) =0, then [I ]HL = [o]p.

=0. If Aea then [IA])\ € Lp()\) since ll

However, e (1. ]1.)=11 = [0] and- since 0 'is one-to-one and
P L AT\ ['A]u [ B P
0 = s . = . , =
Gp([ ])\) [O]H we must have [IA])\ [O])\ Therefore NMA) =0

and N K u. Hence, p~\. Q.E.D.

Since X\ =p + v, a completely analogous procedure, or a
direct application of the preceding lemmas, allows us to define a map

¢p : Lp()\) - Lp(v) by ¢p([x])\) = [X]v and conclude:

LEMMA 3.5. A necessary and sufficient condition for v~ X

is that the map ¢p be one-to-one.

Combining the last three lemmas we obtain necessary and suffi-
cient conditions for the equivalence of p and Vv in the next

theorem.

THEOREM 3.6. ILet p and v be finite measures on the

same measurable space (£, a) and'let AN =p +v. The measures

‘M and Vv are equivalent if and only if both the maps »Gp -and ¢p

defined above are one-to-one.
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Proof:
p~v ifand onlyif p~\X and v~\. But, p-~\N and
v ~ N if and only if Gp and ¢p are one-to-one by LEMMA 3.4

and LEMMA 3.5 respectively. Q.E.D.

It should be observed that Gp and ¢  are continuous linéar
maps, but they are not in general norm preserving.

An examination of the proofs of this section also shows that
THEOREM 3. 6 is still valid if Lp(Q, a . p), Lp(Q, a.,v), and
Lp(Q, (., \) are replaced by the vector spaces of equivalence classes
of bounded measurable functions on (2, a, L), (2, a, v) and
(€, A, \) respectively.

Finally, we make some observations about THEOREM 3. 6 in
comparison to THEOREM 3.1. The maps in THEOREM 3. 6 will
always exist, while the existence of the map in THEOREM 3.1 is not
guaranteed in one direction. On the other hand, Lp()\) must be used
in THEOREM 3. 6, so we have maps between three spaces while

THEOREM 3.1 requires maps between only two spaces. However,

dp

L.(\) 1is used in THEOREM 3.1 since we have conditions on ar

1
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Iv. A RADON-NIKODYM DERIVATIVE

Conditions on the Derivative

In this chapter we give necessary and sufficient conditions for
the equivalence of finite measures on the same measurable space in
terms of a Radon-Nikodym derivative, - As before, p and v willy
represent finite measures on (2, A ) and | AN=p+tv. Now, p<NA
and v <\, sothat p < X and v < \. It therefore follows from
THEOREM 2.7 that "—3% and -3% exist in ?q(x).

The first theorem of this section requires two. lemmas. The

next lemma is a. modified form of THEOREM 2. 7.

LEMMA 4.1. The measures p and Vv are equivalent if and

+
only if there exist functions xo € I(p) and Y, € xl(V) such that
du _  dv v de
an Yo an M2wer and oeEx ol h-ae
Proof:

If w~v, then p~\~v. Itfollows from THEOREM 2.7

that f]]% and 3—5 both exist and by LEMMA 2. 8(b) we have

du_du dv av _av dp

d\  dv di A-a.e. and a~  dp dn A-a,e, Thus, we let
- de -4y

Yo Tqv V%€ and %5 L p-a.e.

To prove the converse, suppose X and Yo exist. Then we

have:
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dp. _  dv
arn Yo an Ma2-eo

de g odv o |
TN 1Ayod,)\ N-a.e. forall A,

5 g};\—'d)\=§y %d)\ forall A e,
) d y ©d

M(A) = yy dv forall A (.
AO

We thus have p < v.
A completely analogous argument starting from
dv dp

- = - -a.e. < u. , ~ V. .E.D.
ar - %o an A-a.e. showsthat v M Therefore, p ~v Q. E.D

Our next lemma requires that p and v be complete meas-
ures. Note that if p and v are complete, then \ is also

complete.

LEMMA 4.2. Suppose . and Vv are complete finite meas-

ures. If 0 < g’% <1 X\-a.e., then there exists a v, € x;(v)
dp _ dv
and an X € -i;(p) such that ar o Y, ax A-a.e. and
dv _ dp
ar - Xoax Ma-e
Proof:

Define the real-valued fanction z on & by:

dp

d—{(w) if E;\'(w) 40
z(w) =
1 P R
> if an (w) = 0.
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. . . du . .
Since z is everywhere nonzero and since Ix is measurable, it

follows (12, p. 151) that §= z is measurable. Because M\ is

complete and because 0 < dp <1 \-a.e. gives us

dx
-1 - -
z = (QI:L) 1 A-a.e., it follows (12, p. 155) that (Sl—'&) 1 is
dx d\
measurable.
Since (%I;\i)_l and 3—:' are nonnegative measurable functions

and the product of measurable functions is measurable (12, p. 153),

it follows that (%%)(S‘-I;%)'l is measurable and nonnegative.
Since v i:]-Ii)“1 dp . dv A-a.e., we have:

ygl (g‘&)-ldp= dv (g-&) -Glt{- S'—-—dx V() < w

Therefore, 'j—% ("3‘%)_1 ei‘{(p) and has the desired property. Thus,

-dv o dp,-l
we take X = ax (d)\) A-a.e.

It follows from LEMMA 2.9(c) that 0 < -j—*; <1 X\-a.e,
implies that 0 < %-;f <1 X-a.e., so a similar argument shows
dp(dvy-l o, :
y, can be taken to be ax (dx) A-a.e. Q.E.D.

We now may prove the following theorem which gives a condi-

tion for equivalence in terms of g% .

THEOREM 4.3. If p and Vv are complete finite measures

on (Q,a) and N =p+v, then p and Vv are equivalent if and
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only if 0 < é—;’-f- <1 \-a.e.
Proof:

Suppose p ~V,. sothat p~X~v. Since LEMMA 2.9(b)

i3

shows that 0 < <1 X-a.e. 1in every case, we need only show

A

o

that f]i% assumes the values zero and one only on sets of
A-measure zero.

Suppose g%(w) =0 forall weA ea . Then we have
p(A) = ‘y g%dk = 0. Now since W~ N\, wehave \A)=0.

A

On the other hand, if S—%(w) =1 for all we A, we have

N T - - i}
L(A) = dx = d\ = NMA) = u(A) + v(A) and hence v(A) = 0.

A

But, v~\ implies that X(A) = 0. Therefore, p ~ v implies

0<® o yae.

d\
dp
To prove the converse, assume 0 < ar <1 X\-a.e. By
+ +
LEMMA 4.2, there must exist yo eSCl(v) and Xo € sﬁl(u) such
d dv dv dp
== = —= \-a.e. _—= —= X-a.e. It then fol
that ar yo ar a.e and ar Xo ar a.e en follows
at once from LEMMA 4.1 that . ~ v. Q.E.D.

Completeness can be discarded in the last theorem. If booois
not equivalent to v, then either p is not absolutely continuous
with respectto v or Vv is not absolutely continuous with respect
to W. Without loss of generality, we assume that b is not abso-
lutely continuous with respect to v. Then there must exist a set

Ac( suchthat v(A)=0 and p(A)>o0.
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Since v <\, we have 0= v(A)= S' g-'}-}-dk = 5\1 s]*}id.\.
" A A dx
dv dv
= ~a.e. i m— > ~-a.e.
It follows that 1A ax 0 X-a.e since lA an >0 XN-a.e
Because 1A =1 on A and XA) = p(A) + v(A) = n(A) >0, it
cannot be the case that lA =0 \-a.e. Consequently, we must have
dv dpu dv
——— 0 . 2. — - —— >\—- . .3
Ty on A. By LEMMA 2.9(a) we have a 1 TN a.e
dp dp y
so that I 1 on A. Thus, we have an 1 on a set of posi-
tive A\-measure, so it cannot be the case that 0 < g—-‘;— <1l X-a.e.
Since the proof that p ~ v implies 0 < ax <1 X-a.e. did

not require completeness, we have proved the following result:

THEOREM 4.4. If p and Vv are finite measures on (Q,a)

and N =p + v, then pn is equivalentto v if and only if

It should be pointed out that by LEMMA 2. 9(c) we have

0 < -3-% <1 X-a.e. ifandonlyif 0 < g—% <1 X\-a.e. This fact

together with THEOREM 4. 4 allows us to state the following result.

COROLLARY 4.5. If p and Vv are finite measures on the

measurable space (2, ) and X\ = M+ v, then p is equivalent
to v ifandonlyif 0< H <1 xae or 0<% <
(o] 11 an n Y d}\ -a. . d>\ ~a. e.

Special Cases

In this section we examine special cases in which the
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measurable space (R, ) is of such a nature that it is possible to
define finite measures of the form dpl{w) = f(w)dw and dv(w) = glw)dw.
Of particular interest are the cases where represents the real
numbers R, finite subintervals of R, or n-dimensional Euclidean
space R" and QA represents the respective Borel sets. Cc;nse-
quéntly, throughout this section (R, () will be considered to be a
space so that finite measures of the form dp(w) = flw)dw do exist on
it.

If p and v are finite measures such that dp(w) = flw)dw
and dv(w) = g(w)dw and X =p + v, then

di(w) = dp(w) + dv(w) = (f(w)+g(w))dw. Since

f(w) :
A) = Sy d - y f dw = ‘S‘ — (f + d
(A) p(w) (w)dw flo)tg (@) (fw)tg(w))dw

for all A ¢, it follows that:

Similarly:

f(w)

< ————— e
Note that 0 fo)tg (o)

<1 X-a.e. may be restated as

o) fo)
0< f(w)'*'g(w) <1 wherever f(w)+g(w) is defined.

With the notation introduced above, it is now possible to restate
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COROLLARY 4.5 in the context of this section.

COROLLARY 4.6. If p and v are finite measures on

€, ) having the form dp(w) = f(w)Jdo and dv(w) = g(w)dw and

AN=p+v, then p~v ifand onlyif 0 < Ff)%é)z:) <1 wherever
f(w) . . g(w) glw)

——————————— <

flo)tg(w) is defined or 0 < florg(@) 1 wherever flw)te (o)

is defined.

If dp(w) = flw)dw and dv(w) = glw)dw and it is the case that

b ~ Vv, then it is possible to use LEMMA 2.8 to find '3'5- . Thus:

.._E i&.‘.i_)i E]_E (.@.)'lz—i— ﬁ—& :-f- v-a.e.
dv d\x dv  d\x  d\ f+g g g

Therefore, %%- = wheréver é is defined..
We conclude this chapter by giving two specific examples.
EXAMPLE 4.7. Let § = [-1,1] and let B be the Borel
sets of [-1,1]. On (. B), Ilet i be Lebesgue measure so that

dp(w) = 1dw and let v be the measure defined by dv(w) = e dw.
‘ 1

w
l+e
on . It therefore follows from COROLLARY 4.6 that p ~ v.

Since e’ >0 forall weR, wehave 0 < <1 everywhere

We also have QE-(w) =e .
dv
Our final example makes use of Gaussian density functions.

'EXAMPLE 4.8. Let =R andlet B be the Borel sets of

R. Iet m, o0 €eR suchthat o >0 and suppose they are fixed.
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For any w € R, define the function N(o, m, w) by:

N(o’,m,w)=\,§7§c exp[-%(w;m)z]

This is the density function of a nondegenerate Gaussian distribution
. . 2
with mean ‘m and variance o°.
Define the measures p and Vv on Q. B) by

dp(w) = N{o sw)dw where e, >0

m._,w)dw and dviw) = N(O'Z,m 1

1’1 2

and o, >0. Since exp{w) >0 for all weR, it follows that:

‘ N(o'l, my, w)

- <
,w)+N(o’1,m 1

0 <

,» w)

N(o,. m 1

)

for all we R. Therefore, p ~Vv and:
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V. REPRESENTATIONS OF RADON-NIKODYM DERIVATIVES

The Riesz Theorem

The first representation of a Radon-Nikodym derivative given
in this chapter makes extensive use of the Riesz representation theo-
rem. For completeness and later reference we give the Riesz

theorem and its proof here as found in Horvith (13, p. 42).

THEOREM 5.1. Let E be a Hilbert space and g a contin-
uous linear form on E. Then there exists a unique element a ¢ E
such that g(x) = <x,a> forall x e E.

Proof:

If g 1is identically zero, choose a=0. If g is not

identically zero, then (ker g) 1is distinct from E and there must

exist a nonzero vector b e E which is orthogonal to (ker g). Let:
(%) a = b (b)Z .
el

Then g(a) = Ha”z = ]g(b)lz/“bnz. Since (ker g) is a hyperplane,
every vector x € E can be written in the form y + aa where

y € (ker g) and a is a real number. Thus:

g(x) = g(ytaa) = ag(a) = a"a”z = <aa,a>= <y+taa, a> = <x,a>.
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The uniqueness of a is clear. Q.E.D.

The next proposition introduces a continuous linear form on an

Lz-space.

PROPOSITION 5.2.  Let B and N Dbe finite measures de-
fined on the same measurable space (£2, Q) such that p <\
Then the map g defined by g([x] )\) = <[X,])\,[1]‘)\>H= yxd.p is a con-
tinuous linear form on L, @.\).

Proof:

Let [x] e LZ()\). Then xeaaz()\), and since p <\, it

A
follows from LEMMA 3.2 that x ¢ fz(p). By the Schwarz inequality

we have:

1/2 1/2
lyxdpl < flxldp. ﬁ@lxlzdp) (yldp>
1/2
- lelzdu> w@n'’? < w.

The map g is thus defined and real-valued on L N).

5

To see that g is well-defined, let [xl] and [XZ] be

A A

elements of LZ()\) such that g([xl])\) # g(l[ This means that

x, )\).
j‘xldp 7 xzdp, so there must exist a set A ¢ G. such that

p(A) >0 and xl(w) # xz(w) for all we¢ A. However, p <\

and p(A) >0 imply X(A) >0. Therefore, x and x

1 differ

2
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on a set of positive A\-measure. Thus, [Xl])\ # [XZ])\ and g is
well-defined.

The fact that g 1is linear on LZ()\) follows from the fact that
g is linear on L_(p) and LEMMA 3.2 which shows that if

2
X € fz(x), then x e fz(p).
To see that g 1is continuous on L_(\), choose [x] € L (\)

2

and use the Schwarz inequality to get:

1/2
lg([x])\), = ,de}LI <M (S‘lxlzdp)

where M = (L(R2))

By LEMMA 3.2 we have ‘S‘lxlzdp. < j‘lxlzd)\, so:

v 1/2
Ig([X])\)‘ < M( !xlzd)\) = M”[X]

x”x'
Thus, g is continuous on LZ()\). Q.E.D.

Since LZ()\) is a . real Hilbert space and the function g
defined in PROPOSITION 5.2 is a continuous linear form on LZ()\),
THEOREM 5.1 applies directly to this case. We restate it here in

this context.

THEOREM 5.3. If p and \ are finite measures on the

same measurable space (£, a) such that p <X and g is the
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continuous linear form defined on LZ(X) by g([x]x) = < [x]x, [l]x >‘p,
then there exists a unique element [a]x € L2(>\) such that

g( [X])\) =< [X])\’ [a]>\>>\ for every [X])\ € 1,

We are now in a position to state and prove the theorem which

relates the Radon-Nikodym derivative g—% and the Riesz vector a.

THEOREM 5.4. Let p and Vv be finite measures defined

on the same measurable space (Q,a_) and let A= p+v. If

(A\) guaranteed by THEOREM 5. 3,

[a]x is the unique element of L2

g& = - '
then an a A-a.e.
Proof:

It follows from THEOREM 5.3 that S‘xdp, = yxad)\ for all
xz()\ . Since lA € xz()\) for all A e a, we have
S‘IAdp = S‘l ad\ for all A e a . Therefore, n(A)= jﬁadx for
: A
all A e

But, by THEOREM 2.7 we must have p(A) = y Eti'dx for all
A

€ a It therefore follows by the uniqueness of g% that

A
o
ar a \A-a.e. Q.E.D.

By using formula (*) of the proof of THEOREM 5.1 to express
the Riesz vector a, we may restate THEOREM 5.4 in the following

form:

COROLLARY 5.5. Let @ and Vv be finite measures on the
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same measurable space (Q,a) and let X =p+v. Then
b |
AL
dX

< 3 A-a.e.,
;‘ b2dn ‘

where [b]x ‘isanynonzeroelementof (ker g)'LQ LZ()\) and g isthe

continuouslinear functionalon LZ()\) defined by g([x])\) = < [x])\,[l])\ >H.

The last result together with THEOREM 4. 4 allows us to give
necessary and sufficient conditions for the equivalence of finite meas-

ures p and Vv interms of the element b.

We know that p ~ v if and only if 0 < g% <1 \-a.e. by
THEOREM 4.4. Using the representation of g sgiven by

COROLLARY 5.5, we have B equivalent to v if and only if

b.jﬁbdp
0 < > <1 \-a.e.
;b dx

-2
This reduces at once to ‘b ~v ifand only if 0 < bybdp < jib d\

A-a.e. We may therefore state the following theorem.

THEOREM 5.6. ILet p and v be finite measures on the
Same measurable space (2,(l) and let X\ = pt+v. Then p-~v

if and only if 0 < b ybdp < ybzd)\ A-a.e., where [b])\‘ is any
i ) . .
) and g is the continuous linear form

nonzero element of (ker g




defined on L,(\) by g([x]x)=<[x]>\,[1]>\>g

The last result of this section gives a representation for (—C;—

v

in the case where B~ v,

THEOREM 5.7. Let M and Vv be finite measures on the

Same measurable space (2, ) and let )\ = Mtv.e If p~v,

then

bybdu
” = > A-a.e.,
yb d)\-bybdp

where [b]x is any nonzero element of (ker g)'L and g is the

d

Fe

[N
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continuous linear form defined on LZ(X) by g( [X]x) =< [X]x, [1]>\ > N

Proof:

If p~v, then u~v~\ It then follows from LEMMA 2.8

that:

di _ dw dh _dp dv -1
av ~ ax av ax ‘an) h-a.e
v dp
By LEMMA 2.9(a) we have T 1. I A-a.e., so that

du_du | dp -1
av - an (l-d)\) A-a.e.

[}
K

Using the representation of —~ given by COROLLARY 5. 5,

o
>~

we have:
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. -1 '
b S‘bdp b S‘bd " b fbd " S‘bzd}\
= ]l - = 8
bzd)\ bzd)\ bzd)\ szd)\'-b S'bd e

b ybd,p
> A-a.e.
S\b d)\-b,ybdp

[
E=

[«
<

Q.E.D.

Fourier Representations

In this section we give a representation of -3—)\“ in terms of any
complete orthonormal system of LZ()\).
DEFINITION 5.8. Let E be a Hilbert space with inner pro-

duct <-,->. A family of elements {gaj}j J of E is called a

complete orthonormal system of E if
g.,p >=
J

and there does not exist any other nonzero element of E which is
orthogonal to all the elements of {gaj}. <J

The following theorem gives a representation of every element
of E interms of any complete orthonormal system of E. This
representation of x ¢ E is usually called the Fourier representation

of x.
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THEOREM 5.9. Let {gaj }j ¢7 Pe a complete orthonormal sys-

tem of the Hilbert space E. Then for every x.€¢ E we have
x = <x, ¢,>¢..
Z J )
je
Proof:

See (13, p. 34).

Using the results of THEOREM 5.4, or for that matter LEMMA

2.9(b), we note that [g%])\ € LZ()\). It follows that THEQREM 5.9

may be applied to find a Fourier representation for g_)%]h This is

done in the next theorem.

THEOREM 5.10. Let p and v be finite measures on the

same measurable space (R, 0.) and let X\ = M+ v, If {[¢j]h}'

jeJ
is any complete orthonormal system of LZ()\), then
=S|
- = A-a.e.
ar ( gajdp gaj a.e
je
Proof:

Since [%J)\ € LZ()\), it follows from THEOREM 5. 9 that:
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d d
(28] = ) <[00, 5, [

jeJ
“ dp
= ——dXx
Z (f‘pj a ) ["’j]x
jel
= cp.d}>[¢.]
Z(yJ /TN
jeJ
Therefore du = z S. d A-a.e Q.E.D
TS (pj v (pj -a.e. .E.D.

jed

The Gram-Schmidt orthonormalization process (12, p. 240) is
available for the generation of complete orthonormal systems of

LZ(M’ provided linearly independent subsets which span LZ()\) can

be found. The usefulness of THEOREM 5. 10 depends much, therefore

?

on the structure of LZ()\).

Analogs of THEOREM 4.4 and THEOREM 5.7 may be stated by

using the Fourier representation of They are simply a matter

dr
ar’

of substitution and we shall not state them here.
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VI. COMPLETE ORTHONORMAL SYSTEMS

Computing Complete Orthonormal Systems

ILet m and v Dbe finite measures on the same measurable
space (Q,a) such that p is equivalentto v. If a complete
orthonormal system is known for Lz(p) and g% is known, then a
method is given in this section for finding a complete orthonormal

system for Lz(v). This method of computing complete orthonormal

systems is given by the following theorem.

THEOREM 6.1. Let p and Vv be equivalent finite meas-

ures on the same measurable space (£, a). If {cpj}j . is a com-
1/2
plete orthonormal system for Lz(p), then {cpj(g—v}i) / }j 7 is a
complete orthonormal system for Lz(v).
Proof:
Since M is equivalent to v, and to simplify the notation, we

shall write x in place of [x]“.

1/2
To see that {(pj(":'i:’) / } is an orthogonal system for

jed
LZ(V), assume j 7 k- Then:

du 1/2 du.1/2 5 dp ‘S‘
< ——— Lo = — = =
(pj(dv) ’ (pk(dv) >v (pj dv (pj(pkd“ 0,

since {cpj }.

i eJ is an orthogonal system for Lz(p)-
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To see that {op (S]-E)l/z}

i‘av i eJ is a normal system for L_(v),

2

we observe:

dp.1/2  dp 172 _yzg._& _yz _
<<Pj(dv) ’(pj(dv) >, e dv = (pjdp—l,

since {(pJ}J T is a normal system for L_(u).
Since M is equivalent to v, it follows from THEOREM 3.1

that L_(p) is isometrically isomorphic to L_(v) via the map

2’ 2
- dp1/2 dp. 1/2
:x o ox(=—— . —
u, : X X(dv) It therefore follows that {(pj(dv) }J T (; LZ(V)°
It remains to show that {¢ (Q—E)l/z} is a complete system
j av jeJ P Y
of Lz(v). Suppose that this is not the case. Then there exists a
nonzero y € LZ(V) which is orthogonal to all the element of
dp.1/2 . . .
{(pj(dv) }j T Since u, is one-to-one and onto, there exists a
. _ _,dup l1/2
unique nonzero X € L2(|~L) such that vy = U‘Z(X) = x(a;) .  Then by

our assumption aboeut y we have:

dp,1/2 _ dp.1/2  dp,1/2 _5“ dp.
0= (pj(dv) Y2, F (pj(dv) ’X(d_v) >, = cpjx dvdv

o.xdp =< ¢,,x > |
yJ J M

for all (pj, j€J. We thus have a nonzero element x ¢ L2(|~L) which

is orthogonal to {0.} But, this contradicts the fact that

ijer
{(pj}j 7 is a complete orthonormal system of Lz(p). Thus,
{ (g‘ﬂ)l/z} is a complete orthonormal system for L (v).Q.E.D
<Pj dv ieJ P al sy > . Q.E.D.
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Examgle s

This section presents several applications of THEOREM 6. 1.
These applications make use of the classical complete orthonormal
systems known as the trigonometric functions, the Legendre func-
tions, the Hermite functions, and the Laguerre functions. These
systems have many applications in applied mathematics and mathe-
matical physics. They have been studied extensively, and for further
information the reader is referred tothe works by N.N. Lebedev (15),
G. Sansone (20), and Gabor Szeg6~(22).

Inallthe examples which follow, we shall be in the situation dis-
cussed in Chapter IV under Special Cases. The finite measures
and Vv will be defined on a measurable space (£, a) so that they
have the form dp(w) = f(w)dw and dv(w) = g(w)dw. Recall that in

this context, COROLLARY 4.6 showed that p ~ v if and only if

f(w) f(w) _ _
——— ] h ———— . 11 that
flw)tg (@) wherever flo)tg (@) is defined. Also recall tha
. . dp fw) L .
B~ v implies that a;-(w) = g_(-w_). wherever the fraction is defined.

Since we will be dealing with equivalent measures in our
examples, the functions are to be understood as being defined only
almost everywhere and we write ¢ in place of [e¢].

In our first example, we make use of the trigonometric functions.

EXAMPLE 6.2. Let € =[0,2n] andlet (. be the Lebesgue

measurable sets of [0,2w]. Let b be Lebesgue measure on



({o,2r), ), sothat dp(x)=dx, The trigonometric functions:

cCos nXx .sin nx

oNT :F‘TT

10 < x < 2m, n=1,2,3,...}

—~
3
3

are a complete orthonormal system (20, p. 43-46) for

L,([0, 2n], A, w).
Let v Dbe another finite measure on ([0, 2n], a) such that
dv(x) = f(x)dx and assume that v is equivalentto p. Then we

have:

oy - L i 172 1
dv(X)‘f(x)' sa that (d_v(x)) G

It then follows at once from THEOREM 6.1 that a complete orthonor

mal system for LZ( [0, 2x], AL, v) will be given by the set:

{ 1 cos nx gip nx
NZnf(x) " Nmf(x)’ Qw%(x)

:0 <x <2m n= 1,23,... }.

Our next example makes use of the Legendre functions.

EXAMPLE 6.3. Let € =[-},1] and let (I represent the
Lebesgue measurable sets of [-1,1]. Let p be Lebesgue meas-
ure on ([-1, 1], a_) so that d.p(x) =dx. If Pn(x) represent the
Legendre polynomials ‘(15,’ p- 44)on [-1,1], then the Legendfe

functions are defined on [—1, 1] by:

44
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The set of Legendre functions {(pn(x) :n=0,1,2,...} is a-complete
orthonormal system (20, p.189-193) for the space LZ([-l, 1],a, o).
If v 1is any other finite measure defined on ([-1, 1], aA)
which is equivalent to | and has the form dv(x) = f(x)dx,  so that
1

g'li(x) = —— then it follows from THEOREM 6.1 that:
dv f(x)

“n) =0,1,2 - /»Zn“p()- =0,1,2
"m.n— ,1,2,...Fb = 21 (%) nx,.n-— , 1,2, ..

is a complete orthonormal system for LZ( [-1,1], a, v).

- The next example makes use of the Hermite functions.

EXAMPLE 6.4. Let £ =R = (-®,+o) andlet (L be the

L.ebesgue measurable sets of R. Let | be the measure on
2 +00 XZ
(R, a,) defined by dp(x) = e * dx. Since ..Y e dx=Nm, P s
-0

a finite measure on (R, Q).

If Hn(x) represent the Hermite polynomials (20, p. 306) on

R, then the Hermite functions are defined on ‘R by:
H (x)
n
¢n(X) = 2 n = O, 1, 2,
2" nINT
The set of Hermite functions {(pn(x) n=0,1,2,...} 1is a complete

orthonormal system (20, p. 351-355) for LZ(R,a, ).
Now, let Vv be a finite measure on (R,a_) which has the

form dv(x) = f(x)dx and is equivalent to p. Then:
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2
-x
dp e du 1/2 1
-——dv(x)- T so that (—dv(x)) = >
X
e f(x)

It then follows at once from THEOREM 6.1 that a complete

orthonormal system for LZ(R’a’ v) is given by:

Our final example makes use of the Laguerre functions.

'EXAMPLE 6.5. Let € =[0,+%) andlet (I be the

Lebesgue measurable sets of [0, +%). Define the measures pa
-X a .
on [0, +) by dpa(x) =e xdx for a>-1. Since

+00
y e_xxadx = I'(a+l), I being the Gamma function (20, p. 392),
0

My, is a finite measure on ([0, +°0),a) for each a > -1.
(a)

If Ln (x) represent the Laguerre polynomials (20, p. 295)

on [0, +%), then the Laguerre functions are defined on [0, +o0) by:

(a) _ ] T(n+l1)

n T'(n+a+l) n
The collection {¢La)(x) in=0,1,2,...} is a complete orthonormal
system (20, p. 349-351) for »LZ([0,+°°),,a, Ha)-

ILet v Dbe a finite measure on ([O,+°°), a) which has the

form dv(x) = f(x)dx. Suppose Vv is equivalent to ‘. Then we
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have:

-X a o

dp _e % dp 1/2  [x
v (x) = =) so that (-—dv (%)) = 5
e f(x)

It then follows from THEOREM 6. 1 that a complete orthonormal

system for —LZ( [O, +°0),~a, v) is given by the set:
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VII. GAUSSIAN PROCESSES

Background

In this chapter we give necessary and sufficient conditions for
the equivalence of Gaussian processes, with countable index sets, in
terms of the finite dimensional distributions of the processes. The
proof of this résult fequires the application of Kakhtani's theorem
together with the results of Chapter IV .

We first introduce the necessary terminology of Gaussian pro-
cesses. As for notation, R will denote the real numbers, ,@
will denote the Borel sets of R, and P will be used to represent
probability measures when there is no danger of confusion.

DEFINITION 7. 1. Let (2, A, ) be any probability space.

If x 1is a measurable function from (£, a, M)  into (R,.@), then
x 1is called a realrandom variable or simply a random variable.

A random variable x is called a Gaussian random variable
if one of the following holds:

(a) x has a distribution with a density function of the form:

1 1 - 2
NZmo eXp[_E(wo-m) I

N(r, m, w) =

r
where ¢ >0. Thatis, P(x <r)= f N(o, m, w)dw. (This case
)

will be called the nonsingular case.)
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(b) x has a point mass at some point m. (This case will be
called the singular case.)
DEFINITION 7.2. Let T be an arbitrary set. The collection
{xt :teT} is called a stochastic process on the probability space
«, 4., ) provided each x, is a random variable on (R, A, u).

t

If each:finite linear combination = ax, is a Gaussian random
variable, then {xt:t»eT} is' called a Gaussian process..

If T 1is a finite set and {xt:teT} is a stochastic process, |
then there is a natural way (5, p. 32-33) to define a ¢ -algebra and

T . . s

measure on ‘'R . This leads to the following definition.

DEFINITION 7.3. If T is a finite setand {x :teT} isa
stochastic process, then its joint distribution is the measure on R

which is determined by assigning P{xt €A ite T} to 1 A

teT

and bt being extended real numbers.

where At = (at, bt), at

In particular, if {xt :t € T} 1is a finite Gaussian process and

each X is nonsingular and At = (-00, at), then:

P{xtsAt:teT} P{xt iat:teT}

a a
1 n
‘g‘y N (w,,.+.,w )Jdw,...dw ,
n 1 n 1 n
) )

t

where Nn represents the n-dimensional Gaussian density function

(5, p. 26).
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DEFINITION 7.4. If T 1is an arbitrary set and {xt:t ¢ T}

is a stochastic process, then for each finite subset To C T, we
T

o .
‘may obtain a joint distribution on R by considering

M
Ts
{Xt itoe To} and using DEFINITION 7.3 to define

nn = : . : ini
Mo ( At) P{xteAt t e To} The set {pT TOC T, T, finite }
o tGTo o

is called the family of finite joint distributions of {Xt :t € T} or the
family of finite dimensional distributions of {Xt it e T}

If two stochastic processes X and Y on the same index set
have the same family of finite joint distributions, then X and Y
are called isomorphic.

As a matter of notation, we shall let )@ be fhe ¢ -algebra

T
T o
of R ° on which the measure v is defined. It should be noted

T
o

that if T C T are finite subsets of T, then there exists an
embedding of ’@T into /@T defined by the map
1

¢: II A v ITI B, where B = A for teTo and ‘Bt=R

teT teT t t t
o 1
for t e T1 - T . We thus may write /@ C ,@
° To Tl
DEFINITION 7.5. If To C T1 are finite subsets of T,

then the finite joint distributions of the stochastic process {Xt it e T}
are said to satisfy the consistency condition if the restriction of Mep
1

to the o-algebra ,@ is equal to

T

M
(0] (0]

LEMMA 7.6. The finite joint distributions of a Gaussian pro-

cess satisfy the consistency condition.
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Proof:
Let To C T1 be finite subsets of T such that
T, = {tl, cees tn}. Without loss of generality we assume

T = {tl, e, tm}, where m < n. Then we need only show that

HT( 0 A)=p, (I A)

t t
o teT 1l teT
o o

where 'At = (at,bt). This follows since:

o teT a a a
o v

H

b b b
t t t +00 +00
1 2 m
N (W, seeerw )dw, .o.dw
; n 1 n 1 n
2. * a - - |
1 2 m

( I At).

v
Tl teT
o

Q.E.D.
We are now in a position to state the Kolmogorov theorem.,

"THEOREM 7.7. Suppose that for each finite subset To C T
we are given the finite joint distribution M of the stochastic pro-
o
cess {xt :t € T} and suppose that these finite joint distributions

satisfy the consistency condition. Then there exists a measure

on the o-algebra generated by the cylinder sets of RT making the
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coordinate functions into a stochastic process with the preassigned

measures [ as its set of finite joint distributions.

T
o

Proof:

See (16, p. 79-83) or (5, p. 34-37).

Some general remarks about the proof of the Kolmogorov
theorem are in order. The probability space we obtain is (RT,ﬁ, M),
where € is the infinite product c-algebra generated by the cylinder
sets (16, p. 80), and the measure p is the infinite producf measure
generated by the finite joint distributions. The process defined on
(RT,E, M) is called the path space version of the process and is
isomorphic to the original process.

DEFINITION 7.8. Let X and Y be Gaussian processes
with the same index set, and let B and Vv be the measures gen-
erated on (RT,E) respectively by X and Y via the Kolmogorov
theorem. We shall say X is equivalentto Y if and only if n
is equivalent to - v.

The final background result we need is Kakutani's theorem and

we now state it:

THEOREM 7.9. Let J be a countable set. Let a_] be a

o-algebra of ‘Qj and let a be the product o-algebra generated by

the O'j on the product = I £, . Let Hj and Vj be proba-
jed

bility measures on (Qj, aj) with I"Lj ~ Vj. Let H:jréJ }.Lj and
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v= I vj bé the product measures on (Q,a). Then either p~ v
jed
or uptv. A necessary and sufficient condition for p ~ v is that:

dp.
1 5(—1)1/2dv>o
] dv.
jeJ J

Proof:

See (14) or (12, p. 453-455).

Conditions for -Equivalence

Throughout this section we shall let X = {xt :teT} and
Y = {yt it € T} be Gaussian processes with countable index set T.
Let {HT :TOC T, To finite} be the finite joint distributions of X
o

and let {VT :TOC T, To finite} be those of Y. We shall write
o
b in.place of H{to} and vt in place of v{tv} for {to}C T.
o o -
It then follows that the measures p and v on (R ,€) gener.-

M

ated by X and Y respectively via the Kolmogorov theorem are

the infinite product measures = I My and v= I v.
teT teT

Our result requires the following lemma.

~ vV for all finite

LEMMA 7.10. If p~v, then g
To T,

TOC T.
Proof:

We prove the contrapositive. Suppose there exists a finite

TOCT such that kT, is not equivalent to YT, Since p and
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v are Gaussian measures, it follows that p and Vv are
‘ To To

Gaussian, so that |J.T _L vT by THEOREM 1.3. Thus, there
o

° T
exists a set A e '@T , the o-algebra of R °  on which Mo and
o o
v are defined, so that u_ (A)=0=v_ (AS). But, B is
T, ’ T, T, T,

embedded in the o-algebra e of RT via amap ¢, where .
¢(A) has restrictions only on the coordinates t ¢ To and is unre-
stricted in the coordinates t e T - —To. Then ((d(A)) = Mo (A) =0

©

and v(¢(AC)) =y (AC) = 0. Thus, pJdv, andthe lemma follows.

TO

Q.E.D.
With the aid of this lemma, THEOREM 7.9, and COROLLARY

4.6, we can now prove the following theorem:.

THEOREM 7,11. Let X and Y be Gaussian processes
with the sbame countable index set T. A necessary and sufficient
condition for the equivalence of X and Y is that there exist
disjoint sets U and V suchthat T =Uw V and the following
hold:

(a) for each teU, x and y_ are nonsingular Gaussian
random variables,

(b) for each t eV, x, and y, are singular Gaussian ran-
dom variables with point mass at the same point m,,

dp
(¢) W S.(—"‘E)l/zdv > 0.

teu ¥ Y



55
Proof:
-Assume X ~Y sothat p~ v. Itthen follows by LEMMA
7.10 that Ht = v ‘for all teT. Then for each teT, we con-
sider four cases: (i) Ht and vt both have nonsingular distribu-

tions, (i1) Ht is nonsingular while vt is singular, (iii) Ht is

singular while vt is nonsingular, and (iv) both M and vt are

singular.
In case (i), Ht must have a density function of the form

N(o’l,ml), with ,0'1>0, and vt will have N(o’z,mz), with

T, >0, for its density function. It then follows at once from

EXAMPLE 4.8 that g~ v,.

In case (ii), pt has a density function of the form N(o, m),

with ¢ >0, while vy has point mass at some point m, . Let

A = (a,b) such that m, ¢ A. Then pt(A) = ‘S‘bN(o',m,w)dw >0
and vt(A) = 0. Thus, My is not equivalent toa v, and case (ii)
must be ruled out.

In a similar manner, case (iii) must also be ruled out.

In case (iv), let Ht have peint mass at mt and let Vt

have point mass at n, . If m # n, we let A = (a,+%) so that

nt ¢ A while -mt § A. Then p(A)=0=v (AC), contradicting

t t
Ht ~ vt- If, however, mt = nt, then “t and vt have exactly
the same distribution function -and we must have Ht = vt and hence
~ VvV .
Me ¢
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Consequently, if p ~ v we must have conditions (a) and (b).

Condition (c) is' also necessary by THEOREM 7.9. The product

dv, l for teV.

need be taken only over U since
To prove the converse, assume (a), (b), and (c) hold.

In case (a), P, has a density of the form N(crl, ml) with

t

oy >0 and vt has a density of the form N(O'Z,mz) W]':th 0'2 > 0.

If N =n + v, then

t t t
dp, i N(o;,m))
d)xt N(o-l, m1)+N(0'2, mZ)
dpt
so that 0 < T < 1 every where. It then follows from COROLLARY
't

4. 6 that M~ vt for all te U.

In case (b), b, = vt forall te V.

It therefore follows that Ht ~ Vt for all teT. Since (c)

also holds, it follows at once from THEOREM 7.9 that (VIR

Therefore, X ~ Y. Q.E.D.

If T is finite, condition (c) of the last theorem may be
omitted. To see this we need only show that conditions (a) and (b)

imply (c) in this case.
. dy, Nlo,,m,)
If teU, it follows from EXAMPLE 4.8 that =
dv N(s.,, m,)
t 2’2
and since the exponential function is always positive, we have

dpg
= >0 forall teU.
dvt )

s
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is finite, then of course U 1is finite so
d”t /2 . .
( dv >0 is always true. Thus, (a) and (b) do imply (c)
teU

when T is finite and we have proved the following corollary.

COROLILARY 7.12. Iet X and Y be Gaussian processes
defined on the same finite index set T. A necessary and sufficient
condition for equivalence of X and Y is the existence of disjoint
sets U and V suchthat T =Uw V and the following hold:

(a) for each t €U, Xt and yt are nonsingular Gaussian
random wvariables,

{(b) for each teV, Xt and Yt are singular Gaussian ran-

dom variables with point mass at the same point m, .
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