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Chapter 1 – Introduction

Painting is not an easy task. We look at a subject, choose a brush with a ap-

propriate size and color, draw a stroke in a certain direction for a desired length,

and then repeat this until we are able to capture sufficient details in order for the

painted image by itself to tell what it is about. There is not a unique way to paint

an image. We rely on our intuition and sometimes subconsciousness to decide the

next strokes. Algorithmically instructing machines to simulate a process of draw-

ing like we do is not straightforward. Bringing machine-drawn paintings toward a

visually pleasing level is an additional hurdle to develop a good algorithm.

It was nearly two decades ago when Haeberli published a paper that introduces

an idea of using brush strokes to paint from a single photographs [15]. Later,

Hertzmann has developed an automatic algorithm for image paintings, achieving

various painting styles using winding strokes with different sizes [19]. Hays et

al. pushed a painting algorithm toward generating video paintings with temporal

coherency [17]. Processing a video input requires a significant amount of time since

it can consist of hundreds of static images. Temporal coherency of strokes must be

paid attention; they should not move around randomly nor appear and disappear

too frequently to be perceived as visual artifacts. Many other novel graphics papers

discussing image/video paintings have also been published. However, to the best of

my knowledge, none of them have focused on exploiting a set of multiple styles to

depict within a single image or a video; two exceptions remain. Haeberli introduced

a binary operator which takes two paintings with the same number of brush strokes

to interpolate/extrapolate them [15]. Hertzmann demonstrated a temporal style
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transition by interpolating two different sets of style parameters [19]. However, it

applies to a whole canvas, not arbitrary segmented regions.

Many painting algorithms use a template to control stroke shapes. Short line

segments or smooth spline curves are de facto a standard of stroke representation.

To add more realistic details, they can be texture-mapped with opacity maps.

Having multiple such opacity maps will give randomness to stroke appearances,

but geometry that forms strokes is still simple. Their shapes are computationally

determined by following contours from starting points. My project has started

with a motivation of achieving the computation in parallel. Stroke drawing order

must be re-ordered to diminish regular overlaps but it is the case that the order is

randomly permutated so that strokes individually appeal themselves rather than

coherently describe a content of a painting.

To summarize, this thesis provides a high-level idea of a framework that gives

a new open to users to exploit multi-style paintings, plus a different approach of

painterly rendering and a possibility of stroke drawing order. Contributions on

this thesis are the followings.

• A multi-style framework of automatic painterly rendering is proposed, which

produces both image and video paintings. The system gives to users interac-

tive abilities to design or modify painting attributes and stroke orientation,

as a form of keyframing, per segmented region. With keyframes the system

automatically computes the rest of information for unspecified regions.

• Apart from the framework is a renderer based on that multiple strokes are
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simultaneously rendered. Instead of computing stroke shapes in order, an

image based approach [55] is used to indirectly compute them. The ren-

derer is able to produce multi-layer paintings that show curved strokes with

different sizes, similar to [19].

• Color-based stroke ordering comes in renderers. By taking care of a color bias

in preference of draw order, similar colors are likely to show up in painting

results so that stroke overlap looks more coherent.

This thesis consist of eight chapters, including this introductory session. In

Chapter 2, we are going to review past related work. My framework borrows

technical ideas from some of their works that will be introduced in that chapter.

Overview on the multi-style painting framework is discussed in Chapter 3. This

contains input specifications, capabilities of the framework, and workflow examples

so readers are able to grasp pictures of what it can produce and how they use it.

More on algorithmical details are described in the following chapters. Chapter 4

shows how multi-style framework is built, including automatic computation of

styles as well as stroke orientations. Implementations of renderers and color-based

stroke orderings are described in Chapter 5. We introduce two types of renderers.

The first one, called an explicit renderer is nothing new about implementation but

it is used to compare with the other type in terms of rendering results. The second

type, which could be imagined to be called an implicit renderer, was designed in a

different perspective of generating brush strokes. Stroke ordering based on colors

has risen up during development of the implicit renderer. There are more than
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one way to define the ordering. We have populated a set of ordering rules to know

which one would stand out.

Chapter 6 exhibits rendering results generated from my framework, including

visual comparison between two renderers and different color ordering rules. A lot

of discussion comes in Chapter 7, which will be leveraged for future development.

Finally, as closing words, we spare some space to wrap up this thesis in Chapter 8.
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Chapter 2 – Related Work

Many papers have been published on the topic of non-photorealistic rendering

(NPR), but there are only a few formats as inputs they can take: 2D media such

as images/videos and 3D models. My work falls into the former category, and it is

painterly rendering using brush strokes, as opposed to other means such as using

image filters. For those who are interested in painterly rendering techniques that

are stroke-based, we refer to the survey of Hertzmann [22]. Other types of painting

methods are image analogies [23], stylization and abstraction [6,10], watercoloriza-

tion [3,4,9], charcoal sketch [2,40], pen-and-ink sketch [25,45,58], hatching [25,44],

stippling/halftoning [11,43], shard-like painting [31], and mosaics [13, 16,29].

2.1 NPR of Images

To the best of my knowledge, Haeberli is the first researcher who described an

approach to image abstraction using a set of brush strokes. He mentioned basic

rendering steps, computation of stroke attributes, and even interpolation/extrapo-

lation of two paintings with different styles. While this framework involves manual

stroke placement, the framework has inspired much research.

Automatic painting systems requiring less user interaction have been published.

Cohen has designed artificial intelligence painter, AARON, which is capable of

drawing human figures and plants [7]. Winkenbach introduced an automatic pen-

and-ink sketch system for 3D models [58], and Salisbury et al. built an interactive

pen-and-ink sketch system, where users supply a directional field to guide stroke
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orientations for image inputs [45]. Curtis et al. built automatic watercolor sim-

ulation, which is applied to an automatic watercolorization for images and 3D

models [9]. The system allows users to control pigment distribution in order to

generate pleasing results. Litwinowicz’s automatic painting system targeted for

both image and video inputs [38]. Users do not have to use mouse to specify

stroke positions nor orientations; they are instead automatically computed. Later,

Hertzmann used a set of long strokes with different stroke sizes into his automatic

painting system [19]. His idea was to capture much details from high frequency

area while preserving low frequency area as much blurred as possible, and he

achieved this introducing layers; at the bottom layer is a rough sketch painted

with the largest stroke size. At each upper layer, a new set of finer brush strokes

is generated only for regions where details are missing.

Hertzmann’s idea of using layers implicitly but partially determines stroke or-

dering. Larger strokes should be drawn first, and they are painted over by upcom-

ing strokes with smaller sizes. Collomosse leveraged salience of image feature for

the ordering. Strokes around high salience regions are rendered last so the painted

image still retains image content [8]. Other stroke based methods or stroke order

within each layer in Hertzmann’s approach just randomly permuted strokes in a

draw list to avoid regular placements [19,38].

Stroke orientations are typically determined by edges detected from a source

image. They can be normal to local gradient of a blurred image [15,19,38], or they

can be interpolated from only strong gradients [17]. Kovács extracted edges at

multi-scale levels so that orientations at each pixels is computed from the closest
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edge [34]. Gooch et al. estimated stroke orientations by finding medial axes from

features of a segmented image [14]. Zhang et al. provided an interactive framework

for both vector and tensor field design. Underlying field can be edited by putting

design elements to fix orientation, canceling two singularities of different types,

and smoothing inside a closed region [59,60].

Using different stroke shapes gives different stylistic appearance on results.

Haeberli offered a set of different geometries for brush strokes [15]. Litwinowicz

used short line segments with a constant width. If they go across an edge detected

from an input image, they are clipped to it in order to preserve details; thus

their lengths vary [38]. Thickened spline curves are used for Hertzmann’s brush

stroke model so that they form arbitrary curved shapes to always follow image

contours [19,24]. For brush strokes to appear in a more realistic way, they can be

textured with a stroke image while being rendered. Additional lighting effect can

be further added as a post processing [21].

In many painterly rendering algorithms, computing stroke positions relies on

a regular grid [19, 38], stroke areas [48] or a stochastic selection [17, 53]. Another

approach is to treat stroke placement as an optimization problem. In other words,

we look for a painting that best capture features in a source image [20]. This

takes a form of non-linear energy optimization and is computationally expensive.

Similar optimization procedure has been used for stippling [11], halftoning [43], or

tile mosaics [16].

Some perceptual models or computer vision related techniques are employed

in order to convey or analyze structure inside an source image. Santella and
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DeCarlo built a system that takes in human visual perception upon an image to

paint [10, 46]. An eye tracker records the eye movements of a user to know the

content in an image. The collected perceptual data is used to determine stroke

colors so that subjects in the image are painted in colors with more contrast and

saturated fashion; otherwise, grayish unsaturated colors are used. A work of Gooch

et al. segmented an image for medial axes estimation as mentioned above [14].

Lecot’s work produces artistic vectorized images close to an input bitmap, using

image segmentation to divide it into various regions [37].

Semet et al. built a distributed system using artificial ants [47]. Users specify

various colonies, and then ants in the colonies navigate and sense environments of

a reference image to deposit inkmarks on canvas.

2.2 NPR of 3D Models

Researches on painterly rendering have been advanced to 3D models. Kawata et

al. developed an algorithm for a point set [28]. Kolliopoulos’s painting system

segments an image rendered from a 3D scene to abstract extra details in each

object [33].

Generating an animated painting is not a simple extension from a image paint-

ing. Meier pointed out that fixing brush stroke positions for successive frames will

produce so called ‘shower-door’ effect, meaning that strokes are always sticking

onto a viewing place. Her work rather focused on making brush strokes always stick

onto moving objects, using particle systems to maintain temporal coherency [41].
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Kaplan et al. combined her work and Kowalski’s work and proposed an interactive

painting system capable of feathery rendering using geograftals [27,35].

2.3 NPR of Videos

Litwinowicz demonstrated that how brush strokes can stick onto moving objects

in a video sequence. He computed optical flow as a mean of motion estimation of

the objects. At each frame brush strokes are displaced by optical flow in order to

achieve temporal coherency. In his method, new strokes are randomized and then

uniformly distributed among an old stroke set to avoid a clear boundary between

those two sets [38]. Hertzmann et al. applied his image painting algorithm to video

inputs. Paintings on successive frames are produced by painting over the previous

frames, carefully drawing where on a canvas radical changes occur [24]. In a work

of Hays et al., brush strokes are constrained over time and added new strokes at the

end of draw order. New strokes are appearing from behind of existing strokes, and

they are smoothly faded to avoid scintillation. Similar to Hertzmann’s previous

works, their system is capable of producing different artistic styles by using a

different set of parameters [17]. Bousseau et al. used optical flow for texture

warping to make abstracted videos in a watercolor style exhibiting high temporal

coherency [4].

There are painting algorithms that are not relying on optical flow to achieve

temporal coherency. Klein et al. treated a video input as volumetric data where

time comes in as the third dimension. They defined ‘rendering solids’ to form
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shards or short brush strokes when rendered. Since they extend over intervals of

time, rendered videos maintain temporal coherency [32]. Agarwala et al. showed

how roto-curves computed from a video source can be conformed to moving brush

strokes [1]. Snavely et al. combined a video source with its depth information in

order to produce a 3D motion flow that is spatio-temporally smooth [49]. A video

tooning algorithm, a work by Wang et al., computes spatio-temporal 3D segmen-

tation from a video source to help interpolate user-specified semantic regions [57].

2.4 Painting as Visualization

While painting is artistic representation of an image, it also provides a way to

describe geometric structure embedded in the image. Scientific visualization has

been developed to display scientific models in a meaningful way. For example,

temperature distribution can be color-coded, or a vector field can be visualized by

drawing trajectories or streamlines in evenly spaced fashion [39]. LIC achieved to

visualize arbitrary 2D vector fields in a continuous smooth fashion [5]. At each

point a noise texture is sampled along a trajectory in both forward and backward

directions and convolved with a filter. The method was also demonstrated to

process an image into a pictorial version. Later IBFV has been introduced by

Wijk; it can emulate a wide variety of visualization technique, including LIC and

arrow plots, in a high performance on machines with standard graphics features.

Idea behind this technique is that within each iteration a current texture is warped

along a vector field by some amount, and it is then combined with a noise texture
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to create a new texture for the next iteration [55]. Zhang et al. developed a tensor

field visualization method based on IBFV, which has inspired this thesis [59].

Some researchers have integrated artistic essence into scientific visualization

in order to display data in more pleasing way. In non-photorealistic visualization

technique of Healey, et al., multiple strokes are used to represent each element of

a given data set. Those strokes’ appearance depend on element’s attributes [18].

Interrante has focused on visualizing multivariate data field, using a partially or-

dered multidimensional palette of natural textures [26]. Laidlaw attacked the same

problem but instead used brush strokes, referred to as human-processed textures.

He has put ideas after observations on Van Gogh paintings into visualization ex-

periments [36].
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Chapter 3 – System Overview

My system provides an ability of creating image/video paintings, where the style

parameters and stroke orientations can be designed in both space and time. A still

image or a video clip is acceptable as input. Users will be working with the user

interface shown in Figure 3.1. A sub-window on upper-left is provided where the

current painting can be displayed and some types of editing (described in short)

are performed. Tabular panels on right organizes a set of editing operations.

Figure 3.1: User interface of painting program
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My painterly rendering framework is summarized as shown in Figure 3.2. With

this framework, we are able to do the following items:

• Region creation

• Style parameter design

• Edge field design

• Stroke ordering

• Rendering

In this chapter we are stepping through each item, describing capabilities and

ideas of my system. Possible workflows are discussed afterwards. For the rest of

this thesis, we first discuss the design of style parameters and stroke orientations in

Chapter 4 before describing a new rendering algorithm for both images and videos

in Chapter 5.

Figure 3.2: Block diagram of multi-style rendering system
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3.1 Region Creation

In my system, a region is a subset of a rectangular canvas, which represents an

object in a scene or background. In other words, a canvas is made up of disjoint

regions each containing pixels. Region creation takes an important role of achieving

spatially varying style paintings. To do this, users need to supply a segmentation

file for an input. For image input, it is possible to create such data over a view

window in my system. One way is to manually draw closed curves, each bisecting

a region into smaller ones. A better way is use an automatic segmentation tool

with computer vision technique and user interaction for refinement (Figure 3.3).

For video inputs, a video segmentation tool is used as an offline process to create

a set of segmentation files for each frame. We are not going to step in any detail

about segmentation algorithm since it is outside of my achievement for this thesis.

For my system to know which region will be modified through style parameter

or edge field design, the region must be clicked to select. Regions not selected will

be dehighlighted. Clicking on a selected region will deselect it so the view window

shows all regions highlighted.

3.2 Style Parameter Design

For artists to start painting, they have to decide a number of attributes for a

style such as brush size, length, color choice, and so on. It is the same for my

framework as well. At least one style definition needs to be specified. We call

the definition ‘style parameters’. It is merely a collection of numerical values each
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(a)

(b) (c) (d)

Figure 3.3: An example of region creation. (a): Hand drawing tool for image seg-
mentation. (b): Input image. (c): Segmentation using the hand drawing tool. (d):
Segmentation using computer vision algorithm. Original image from FreeFoto.com.

defining painting attributes such as stroke attributes, multi-layer settings, and post

processing.

There are a number of stroke attributes (See Figure 3.4). In my system, we

use a term ‘stroke size’ for width (a). Both width and length can change style

appearance. Some styles such as Impressionism tend to have long strokes whereas

Pointillism has zero-length strokes, or dots (b). Density is how strokes should be

close to each other. If density is too low then they can leave many gaps uncovered

(c). Opacity decides the transparency of a stroke. Giving lower opacity will look

wash-style paintings (d). Strokes are usually placed in the center of regular grids,

which makes artificial looking. Thus a control to jitter those grids are also given
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to reduce it (e). It is possible for users to jitter stroke colors (f) as well as shift

them by some amount (g∼i). Note that these types of techniques such as using

jittered grid and stroke colors have already been suggested in several painting

papers [15, 17,19,38].
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(reference)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Stroke attributes include (a) size, (b) length, (c) density, (d) opacity,
(e) position jitter, (f) color jitter, and (g∼i) color change in HSV values.
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Multi-layer option introduces additional layers over the underlying painting and

fix areas where the result deviates from the original input over some threshold. Two

parameters are given – the number of layers and error tolerance. Each upper layer

uses a smaller stroke size. This means that it can add more details that have not

captured in lower layers (Figure 3.5). How much details should be added depends

on the error tolerance. If it does not allow any error, then upper layer could hide

whatever is drawn onto the underlying painting. The idea of using multi-layers is

originally from Hertzmann [19].

(a) (b) (c)

Figure 3.5: Multi-layer example. Smaller strokes are added to upper layers, giving
finer details. Images above are rendered with different number of layers. (a): 1
layer, (b): 2 layers, and (c): 3 layers.

Post processing gives a lighting effect on color paintings to give more realistic

appearance. This includes light angle, stroke texture scale and roughness, and

stroke height (Figure 3.6). This is the idea from Hertzmann [21].

As users can expect, there are many parameters to make up one single style.

Those not familiar with my framework can apply one of style presets which it
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(a) (b)

Figure 3.6: Post processing example. (a): a color image without lighting. (b): the
same image with lighting applied.

provides. If they are not satisfied, specific parameters can be controlled from text

boxes (Figure 3.7).

Style design is performed in region basis, but it does not mean that each single

region must have its own style. If there is some region without any style assigned

to it, my system automatically computes a style for the region by using ‘style

propagation’. It is similar to the idea of heat diffusion. Any region to which some

style is assigned is considered as a heat source. Heat will propagate through entire

region until heat distribution is stabilized. Thus style within unassigned regions

seems to become style transition among those heat source (Figure 3.8).

Another issue about style parameters is that they can be keyframed. Creating a

painting video with style transition over time can be achieved by assigning multiple

style parameters to different frames. Any style between two keyframes can be

derived from interpolation over the keyframes.
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(a)

(b)

Figure 3.7: User interface of style parameter design. (a) Style can be applied from
one of presets, and (b) can be further modified through edit boxes.

Example: We show a sequence of style design process. See Figure 3.9 for visual

guidance. (a) Suppose an input image with a corresponding segmentation data

dividing the input into three regions. (b) To apply a style, we select a region

and then chooses one of presets (Figure 3.7(a)). (c) A style has been applied.

Note that styles are observed even outside the selected region. This is due to the

aforementioned style propagation through heat diffusion. (d∼f) We repeat this

for other regions. In this example, a style for each region is specified, in order of

petals, background, and the center of a flower.

3.3 Edge Field Design

We use the edge field which dictates stroke orientation over input domain, and it

is typically computed from an input source, using the tensor field design frame-
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(a) (b)

Figure 3.8: Spatial interpolation. (a): Heat sources are shown as color squares
(red and blue) and the rest of areas are empty (black). (b): The empty area is
filled with values from surrounding sources.

work [59]. However, one might sometimes think it is necessary to fix the orientation

in some area or to add special effects such as ripples on water where a dolphin comes

out. To do this, we rely on a design tool developed by Zhang et al. [59]. In their

approach, a group of special units called ‘design elements’ are used to guide stroke

orientations. Stroke orientations can be locally modified by using them. All type

of design elements and operations can be selected from user interface as shown in

Figure 3.10. Users will be using a mouse to add, modify or delete elements over a

selected region on a view window.

Like style parameter design, edge field design can be performed per region. Re-

gions with specified design elements will propagate its edge field outwards. Design

elements are treated as keyframeable objects as well as style parameters. Elements

specified at any frame also affects all other frames. Objects specified at different

keyframes are interpolated to make a smooth transition from one to another.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: An example of style design process. Original video courtesy of Art-
beats.

Example: We show a sequence of edge design process. See Figure 3.11 for visual

guidance. (a) Suppose we have an input image. (b) The system computes an edge

field from the input. (c) Orientation can be fixed by putting a design element.

Each element is visualized as either a color box or an arrow. (d) We repeat this

process until we fully modify orientation for other regions. (e) The modified edge

field is then used in a renderer to produce a painting.
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Figure 3.10: Edge field design pane. Various types of design elements and edit
operations are accessible from this pane.

3.4 Stroke Ordering

Stroke ordering determines draw order of all strokes that are generated based on

all style parameter settings. This setting is accessible from a stroke ordering pane

(Figure 3.11), and users can choose one from the following three options:

• Random: Strokes are sorted in ascending order based on random numbers
assigned to each stroke.

• RGB : Strokes are sorted according to an ordering function based on RGB
channels

• HSV : Strokes are sorted according to an ordering function based on their
HSV values.

A function for a color-based ordering is customized via an option dialog (Fig-

ure 3.12). By default, ordering applies to newly spawned strokes. However, it can

extend to a whole set of strokes as well.
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: An example of edge field design. (a)∼(d): A sequence of the design
process. (e): Result. (f): Another painting with no design elements added (for a
comparison with (e)). Original image courtesy of Greg Turk.

3.5 Rendering

Two different renderers have been implemented for my system and can be toggled

before painting production (Figure 3.13(a)). The first one is a geometry-based

(explicit) renderer, where spline curves represent long curved strokes. The work

has already been introduced in a multi-layer image painting paper authored by

Hertzmann [19]. My version of an explicit renderer deals with video inputs, and we

also borrowed some ideas from Hays’s video painting paper [17]. For convenience,
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Figure 3.11: Stroke ordering pane.

(a) (b)

Figure 3.12: Customization dialog for color functions. (a): RGB. (b): HSV.

we use a term ‘explicit’ for this approach.

The other renderer is an image-based renderer, inspired from Image Based Flow

Visualization [55], which has been a primary subject of my thesis. The aim was to

simultaneously render a set of strokes, instead of placing strokes one after another

like in an explicit method. It turned out that brush strokes produced from this

looked more natural than spline curves. As opposed to the former approach, we

call this ‘implicit’.

My renderers are capable of creating two different images based on given style

parameters. One is a color painting, and the other is a height image that is used

at a post processing stage.
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Figure 3.13: Renderer pane. ‘IBFV’ refers to an implicit method whereas ‘Spline’
is an explicit method.

3.6 Workflow

Considering all aforementioned items, we describe some case scenarios using my

framework. Depending on which case to go with, users need to pass in additional

data along with an input image/video.

3.6.1 Single Style

The simplest case is a single style painting, which consists only two stages as shown

in (Figure 3.14). Since only one style dominates in both time and space domains,

there is no need to process segmentation and only one keyframe suffices. Output

is either an image or a video sequence where a single style dominates from the

beginning to the end.
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Figure 3.14: Single style workflow.



28

3.6.2 Spatial Multi-Style

For spatially varying paintings, segmentation data needs to be supplied as an

additional input along with an image. It is still possible to create a segmentation

data on my system, instead of not passing it as an external file. In this case, the

segmentation pattern applies to all frames. Design process is iterative since there

are multiple regions. Figure 3.15 shows workflow for this case.

Figure 3.15: Spatial multi-style workflow.
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3.6.3 Temporal Multi-Style

For this type of painting, input is typically a video sequence. However, it is still

possible to use a still image, treating it as a video sequence with the same image

content at each frame. Design process is again iterative but it resides in temporal

domain (Figure3.16). For a video input, motion data of objects in the input also

needs to be supplied. This data will be used to move brush strokes at each frame

to follow corresponding objects.

Figure 3.16: Temporal multi-style workflow.
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3.6.4 Spatial and Temporal Multi-Style

Combining subsections 3.6.2 and 3.6.3, we obtain a complete workflow for space-

time varying multi-style workflow as shown in Figure 3.17. Note that it also inherits

extra input requirements.

Figure 3.17: Spatial and temporal multi-style workflow.
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Chapter 4 – Style Specification

Recall from Chapter 3 that spatially varying paintings can be created through

the idea of keyframing. The technique is widely used in animation where several

‘key’ poses are assigned to objects at particular frames so that motion at the rest

of frames are synthesized [1, 51]. The similar idea is used here. Two different

environments for keyframing in my painting system are style and an edge field.

Style parameters are used as keyframeable objects for the former whereas design

elements play the same role for the latter.

Users might want to assign style parameters to every region. However, it can

become a tedious work if there are tens of regions, or users may want to have an

effect of style transition from one place to another. My system addresses this by

propagating style parameters from assigned regions to regions without specified

style parameters. This propagation technique is also used in edge field design.

For style propagation, the idea of heat diffusion is employed. An environment is

initialized with a zero temperature, to which multiple heat/cold sources represent-

ing one of the style parameters are put into various locations in the environment.

Once stabilized, the distribution of the parameters covers the whole domain which

matches the values at assigned regions. There are several numbers of numerically

stable methods to simulate it, such as the Gauss-Seidel method or the Conjugate

Gradient method [42]. For this thesis, the Gauss-Seidel approach is used [50]. Any

region with keyframes is marked as ‘fixed’ so that its value will not be overridden

from the propagation. A direct approach is to solve a heat equation in a 3D space

where the time comes in as the third coordinate:
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∂u

∂t
= κ∇2u = κ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(4.1)

, where κ is some constant and u is a scalar function defined on volume.

However, this volumetric diffusion requires much space since each pixel needs to

have values of both style parameters and edge fields. Consider a case of propagating

style parameters for a video sequence with a dimension 512×512 pixels2 and 100

frames. 17 values of type either an integer or a floating point number make up a

single style. Assume each value takes up 4 bytes of memory. Thus style parameters

at each pixel requires 68 bytes. This follows that there must be 17 megabytes of

data to store for each frame, which eventually leads to approximately 1.7 gigabytes

to save for all frames. This number proportionally increases as a video input has

more number of frames. Direct implementation of a stable diffusion method results

in setting up a huge linear system, which also requires additional space to save

updated style parameters. Another issue is that the propagation must be carried

out every time a keyframe is updated. My system needs to be responsible for

giving feedback at promising interactive rate.

To avoid such computational and memory cost, a two-step approach is taken

which divides the three-dimensional problem into temporal and spatial subprob-

lems. Given a frame number k, we first compute style parameters or the edge field

of every region where corresponding keyframes are defined. In the second step,

those computed values are propagated through the rest of regions at that frame.

Thus, that propagation turns into two-dimensional heat diffusion, which requires
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less memory space. We can also expect that reasonable computation time since

area necessary for diffusion is typically smaller than the whole canvas.

For the rest of this chapter, we show details of propagation algorithms for both

style parameters and an edge field, respectively.

4.1 Style Parameters

As mentioned before, style parameters are just a collection of numeric values. Thus,

applying heat diffusion technique is straightforward, using Equation 4.1 for each

value. However, there are two issues to note. First, some of style parameters are

of integer type, such as the number of layers used in rendering. However, they are

more discretized than floating point numbers so that using a tiny step size has no

effect to diffuse them. Such values must be temporarily treated as floating point

numbers before entering a diffusion step and snapped back to the closest integer

afterwards. Second, for some algorithmical reason on my renderers, we fix a value

of stroke density for multi-style painting for both space and time domains. Once

the stroke density in one keyframe is changed, it affects other keyframes. Thus all

style parameters except the density will be propagated. Chapter 5 lists attributes

of the parameters and describes where they are used to render a painting.
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4.1.1 Approach

Given a frame number k0, a style applied to a canvas needs to be computed. The

pseudocode is given as follows.

computeStyle(R = {R0, R1, ...Rn}, k0) {
for (each region Ri in R) {

i f (Ri has no keyframe for style parameters) {
// Style will be computed in diffuse step.
updateDiffusionFlag(true, Ri)

}
else {

i f (Ri has a keyframe at k0 ) {
S0 ← style parameters at k0

}
else {
Sn ← style parameters at the closest keyframe after k0

Sp ← style parameters at the closest keyframe before k0

i f (Sn exists and Sp exists) {
n0 ← frame number of Sn

p0 ← frame number of Sp

ω ← (n0 − k0)/(n0 − p0)

S0 ← ωSp + (1− ω)Sn // Interpolate over two keyframes.
}
else i f (Sn exists) {
S0 ← Sn // Use from a forward keyframe.

}
else {
S0 ← Sp // Use from a backward keyframe.

}
}

// Update a painting style of Ri.
udpateStyle(S0, Ri)
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// Styles of pixels in Ri will not be modified
updateDiffusionFlag(false, Ri)

}
}

// Propagate styles to regions marked as true.
diffuseStyle(R)

return
}

This operation takes a region set R, which are segmentations of a whole canvas.

It checks each region in R to see whether it has any keyframe assigned for the

region; if not, a ‘true’ flag is set by updateDiffusionFlag() function, showing that

style parameters for the region will be computed later. Otherwise, a ‘false’ flag is

set and styles are computed from keyframes. If there is a keyframe at a specified

frame, then values of the frame will be used. Otherwise, it looks for the two

closest keyframes: one from forward and the other from backward. If both are

found, styles are computed by linearly interpolating over them. If not, that means

only one keyframe is found. Thus style parameters from the keyframe are used.

Once all styles for every region with keyframes are identified, styles for rest of

regions (i.e., those marked as ‘true’) will be computed from two dimensional heat

diffusion (equivalent to diffuseStyle() function in pseudocode). Thus Equation 4.1

reduces to the two-dimensional version:

∂u

∂t
= κ

(
∂2u

∂x2
+
∂2u

∂y2

)
(4.2)
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To compute this, a canvas is discretized into a two-dimensional grid, where

each cell corresponds to a pixel. We denote values in a cell as Un
i,j, meaning the

values after n-th time step of a cell at the i-th row and the j-th column. With

this notation, heat diffusion can be visualized as shown in Figure 4.1. At each

moment, the center cell Un
i,j diffuses outward so a fraction of a value it stores is

given to neighboring cells. On the other hand, those cells also give some fraction

of values to the center cell. Therefore, values at each cell can be computed as a

simple explicit scheme:

Un+1
i,j = Un

i,j +
(
Un

i,j+1 + Un
i,j−1 + Un

i+1,j + Un
i−1,j − 4Un

i,j

)
∆t (4.3)

, where ∆t is step size. However, this method is numerically unstable against

a larger step size. A better approach is to apply an implicit scheme shown as

Equation 4.4. The Gauss-Seidel method is used to solve a linear system of such

equations for each cell, which is relatively easy to implement and stable against

arbitrary step size although additional iterations are required in order to values

converge under some threshold.

Un+1
i,j =

1

1 + 4∆t

{
Un

i,j + ∆t
(
Un+1

i,j+1 + Un+1
i,j−1 + Un+1

i+1,j + Un+1
i−1,j

)}
(4.4)

Even though the Gauss-Seidel method is stable against large step size, it is

not fast due to many iterations if we want a grid such that style parameters are

completely diffused over it. To reduce such iteration amount, we beforehand assign

an initial guess of style parameters to each cell, using a push-pull method.
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Figure 4.1: 2D heat diffusion in a discrete case. Adjacent cells exchange values by
a small amount.

A push-pull method is a pyramid method used for image processing such as

interpolation over scattered pixel data to fill missing pixels. The method we used

is described in [52]. The idea is to build a pyramidal structure, where the original

data sits in the bottom. In the push process, low resolution of a grid is constructed

at each level such that each cell is computed by averaging known cells. In the

pull process, undefined cells are determined from its upper level. Our method

involves heat diffusion at each level before filling values. This means diffusion

flags need be assigned to upper levels. If there is no known cell to average, then

a corresponding pixel at upper level will have a ‘true’ flag; otherwise a ‘false.’

Once initial guess values are computed, heat diffusion is applied for the final style

parameter distribution for a canvas.
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4.2 Edge Field and Design Elements

To the best of my knowledge, there are two ways to represent an edge field. One

way is to represent each orientation in terms of a vector. Another approach is

encode it as a tensor as shown in [59]. Let me spare some space to briefly review

what a tensor is. A tensor is a way to represent a quantity, like a scalar or a vector.

With a simple example, a second-order tensor is represented as follows.

T =

t00 t01

t10 t11

 (4.5)

Notice that it is actually a 2-by-2 matrix. It is symmetric if t01 = t10. It can be

decomposed into a unique combination of an isotropic part S and an anisotropic

part A such as

T = S + A = λ

1 0

0 1

+ µ

cos 2θ sin 2θ

sin 2θ − cos 2θ

 (4.6)

, where µ ≥ 0. It typically has two orthogonal eigenvectors equal to the ones

of A. Unlike a vector which shows one direction, eigenvectors of a tensor are

bidirectional. The major eigenvector v0 is written as

v0 =

cos θ

sin θ

 (4.7)
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, and its eigenvalue is equal to µ. On the other hand, the minor eigenvector v1

looks

v1 =

cos (θ − π/2)

sin (θ − π/2)

 (4.8)

with its eigenvalue −µ. Analogous to a vector field, there is also a tensor field

where at each point a tensor value is defined. Any point with two equal eigenvalues

is called a degenerate point, or a singularity. Singularities are important aspect of

the tensor field topology, and there are several types of such points. Some of them

are described as design elements, which will be introduced shortly.

The edge field in my system is the second-order symmetric tensor field, and

consists of only the anisotropic part. Namely, T = A. Its eigenvectors, v0 and

v1, correspond to stroke orientation and gradient direction, respectively. Tensor

is considered as a good choice of representing edge information or modifying it

since propagating or smoothing a tensor field is less likely to introduce additional

singularities than vector field propagation [59]. Figure 4.2 describes an example

for this.

Computing our edge field not only involves propagation but also tracking of

design elements. Those elements need to follow assigned regions. For instance,

if a region moves, all of associated design elements must follow it. If it rotates,

they should also move such that they stay in the same position with the same

orientation relative to the region (see Figure 4.3 for detail).
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(a) (b) (c)

Figure 4.2: An example of smoothing on vector/tensor-based edge fields. (a):
Original image. (b) and (c): Vector/Tensor-based edge fields after smoothing,
respectively. Color dots show different types of singularities. Notice that the
vector-based edge field contains more number of singularities than the other.

4.2.1 Design Element Types

Design elements locally modify the underlying edge field. In other words, they

add either a degenerate point or a regular flow. Such elements doing the former

are called ‘singular elements’ and elements of the latter kind are called ‘regular

elements’ [59]. We now introduce all types of design elements with shapes and

mathematical forms. Figure 4.4 shows screenshots of each type.

4.2.1.1 Wedge

It is one of primitive singularities in a tensor field. Given a point at p0 = (x0, y0),

the wedge pattern at p = (xp, yp) is described as follows.
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(a) (b)

Figure 4.3: Design elements must follow motion of assigned regions in terms of (a)
translation and (b) rotation. In this example, a square with a label D corresponds
to a design element and a blue area with a label R is a region.

T(p) = e−d‖p−p0‖
2

x y

y −x

 (4.9)

, where d is a decay factor and (x, y) = (xp − x0, yp − y0). This element will

be useful to enhance edges of objects with sharp ends.

4.2.1.2 Trisector

It is another primitive singularity, which divides a plane into three hyperbolic

sectors.

T(p) = e−d‖p−p0‖
2

 x −y

−y −x

 (4.10)
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4.2.1.3 Node

A node pattern resembles sink/source patterns in a vector field. This would be

useful to add explosion effects.

T(p) = e−d‖p−p0‖
2

x2 − y2 2xy

2xy −(y2 − x2)

 (4.11)

4.2.1.4 Center

Ring patterns exhibit within a center. This element is useful to enhance an edge

field of circular objects such as the moon and eyes.

T(p) = e−d‖p−p0‖
2

y2 − x2 −2xy

−2xy −(y2 − x2)

 (4.12)

4.2.1.5 Saddle

A saddle is made up of four hyperbolic sectors. Due to its distinctive pattern,

usage might be limited.

T(p) = e−d‖p−p0‖
2

x2 − y2 −2xy

−2xy −(y2 − x2)

 (4.13)
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4.2.1.6 Regular

A regular element adds a straight orientation to a tensor field. It is different from

aforementioned items in that it does not contain a degenerate point. Given a

direction (Vx, Vy) defined at p0,

T(p) = e−d‖p−p0‖
2

µ

cos θ sin θ

sin θ − cos θ

 (4.14)

, where θ = 2 tan−1

(
Vy

Vx

)
, and µ =

√
V 2

x + V 2
y . This element might be useful

to sweep out complex patterns on background.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Design element types. (a): Wedge. (b): Trisector. (c): Node. (d):
Center. (e): Saddle. (f): Regular.
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4.2.2 Edge Field Computation

To the best of my knowledge, there are two ways to compute an edge field – local

and RBF. With a local method, an image gradient at each pixel is estimated using

the Sobel filter. A gradient field is a vector field describing in which direction

change in intensity is the greatest. Note that its perpendicular direction shows a

direction with the least intensity change, which corresponds to edge orientation.

Thus each vector in the gradient field needs to be rotated by 90 degrees. This

approach is used in works of Litwinowicz and Hertzmann [19, 38]. On the other

hand, Hays believed that using only strong edges for a whole domain would produce

a more coherent result. Regions with weak edges are updated by using a radial

basis function (RBF) which propagates strong edges into weak areas [17].

We use the latter approach but it needs to be accustomed to a tensor field

version. To begin with, a gradient field is estimated by using the Sobel filter with a

kernel size 3x3 pixels2. We take the rotated gradient field as the major eigenvectors

of our edge field. In summary, given a gradient < Gx, Gy >, we compute a tensor

T:

µ =
√
G2

x +G2
y (4.15)

θ = 2 (atan2(Gy, Gx) + π/2) (4.16)

T = µ

cos θ sin θ

sin θ − cos θ

 (4.17)



46

Then we use a discrete Laplacian operator to propagate strong edges:

T n+1
0 = T n

0 +
∑
j∈J

(
T n

j − T n
0

)
∆t (4.18)

, where J is a set of neighboring pixels. We want to modify only pixels with

small magnitude so pixels with strong values are fixed to prevent the smoothing

operation from modifying values.

This method considers only a single frame, rather than taking neighborhoods

into account. It makes edge fields of a video input discontinuous over time. This

will give visual artifact in which every stroke shakes instead of rotating in a pleasing

way. To remedy this, we smooth out the edge field in both spatial and temporal

domains. Given a frame number k, we compute edge fields from 5 contiguous

frames: (k − 2), (k − 1), k, (k + 1), and (k + 2). An edge field at the frame is

then calculated by smoothing them with a 3D Gaussian filter with a kernel size

5× 5× 5 pixels3.

Another option would be to apply angular constraints, which originally comes

from Hays and Essa [17]. Their idea is to set angular constraints to strokes so that

they will not rotate more than a specified threshold. We instead modified our edge

field so that at each pixel tensor is recomputed if angular difference of eigenvectors

between consecutive two frames is beyond a threshold. We have experimented with

various thresholds but found that it was not working better than just smoothing

out the edge field.
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4.2.3 Approach

Pseudocode for computing an edge field has a similar structure to the one com-

puting style parameters. Thus the code looks as follows.

computeEdgeField(R = {R0, R1, ...Rn}, k0) {
for (each region Ri in R) {
Ri.edgefield← the edge field from input frame at k0 or the zero field

i f (Ri has no keyframe for design elements) {
updateDiffusionFlag(true, Ri)
continue

}
else {
Dk ← Ri.key elements[k0]

// At keyframe
i f (Dk.size() > 0) {

for (each design element Dj in D )
applyElement(Dj, Ri)

updateDiffusionFlag(false, Ri)
}
else {
Df ← Ri.forward elements[k0]
Db ← Ri.backward elements[k0]

i f (Df .size() > 0 and Db.size() > 0) {
// Interpolate over forward/backward elements.
for (each design element Dj in Df )

applyElement(Ri.weight[i]×Dj, Ri)

for (each design element Dj in Db )
applyElement((1−Ri.weight[i])×Dj, Ri)

}
else i f (Df .size() > 0) {
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// Apply only forward elements.
for (each design element Dj in Df )

applyElement(Dj, Ri)
}
else {

// Apply only backward elements.
for (each design element Dj in Db )

applyElement(Dj, Ri)
}

updateDiffusionFlag(false, Ri)
}

}
}

// Propagate the edge field to regions marked as true.
diffuseEdgeField(R)

return
}

An option is given for users to assign either the edge field computed from input

or the zero field to each region. Unlike the code in the previous subsection, de-

sign elements and their rotations/translations at each frame are pre-computed and

stored in key elements, forward elements, backward elements lists. The first

one holds only design elements at keyframes. If the frame number k is a keyframe,

then key elements[k] should contain a list of design elements; otherwise it is an

empty list. The latter two are lists of design elements warped forward/backward

in time from the nearest keyframe. Those warped design elements tend to have

different positions and orientations. Each design element assigned to a region

will modify the edge field within the region, which corresponds to invoking ap-



49

plyElement() function. If there are both forward and backward elements, they are

multiplied by weight factors before modifying the edge field. Those three lists and

weight factors for all frames are updated each time design elements are added,

modified, or deleted. Below is the algorithm to compute all such data.

propagateDesignElement(R = {R0, R1, ...Rn}, D = {D0, D1, ...Dm}) {
// Initialize all frames to have no design elements.
for (each region Rj in R) {

for ( i← 0; i < number of frames; i+ +) {
Rj.forward elements[i]← empty list
Rj.backward elements[i]← empty list
Rj.key elements[i]← empty list

}
}

// assign design elements D1 . . . Dm to lists for appropriate regions
for (each element Dj in D ) {
Rp ← Dj.region
frame← Dj.frame number
Rp.key elements[frame].append(Dj)

}

// Traverse through to fill in all design elements and record the
// distance of each frame from its nearest keyframe
for (each region Rj in R) {
prev keyframe← −1 // no previous keyframe
next keyframe← −1 // no next keyframe

// Step 1: Traverse the video forward
for ( i← 0; i < number of frames; i+ +) {

i f (Rj.key elements[i].size() > 0) {
// A new keyframe is encountered
prev keyframe← i
Rj.dist from prev keyframe[i]← 0
continue

}
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i f (prev keyframe ≥ 0) { // There was a keyframe before this one
Rj.dist from prev keyframe[i]
← Rj.dist from prev keyframe[i− 1] + 1

i f ( i == prev keyframe+ 1)
Ep ← Rj.key elements[i− 1]

else
Ep ← Rj.forward elements[i− 1]

for (each element Ej in Ep ) {
Rj.forward elements[i].append(Ej)
Rj.updateGeometry(Ej)

}
}

}

// Step 2: Traverse the video backward
for ( i← number of frames− 1; i ≥ 0; i−−) {

i f (Rj.key elements[i].size() > 0) {
// A new keyframe is encountered
next keyframe← i
Rj.dist from next keyframe[i]← 0
continue

}

i f (next keyframe ≥ 0) { // There was a keyframe after this one
Rj.dist from next keyframe[i]
← Rj.dist from next keyframe[i+ 1] + 1

i f ( i == next keyframe− 1)
Ep ← Rj.key elements[i+ 1]

else
Ep ← Rj.backward elements[i+ 1]

for (each element Ej in Ep ) {
Rj.backward elements[i].append(Ej)
Rj.updateGeometry(Ej)
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}
}

}

// Step 3: Compute a weight factor for each frame
for ( i← 0; i < number of frames; i+ +) {

i f (Rj.key elements[i].size() > 0) continue
i f (Rj.forwardelements[i].size() == 0) continue
i f (Rj.backwardelements[i].size() == 0) continue

Rj.weight[i]
← Rj.dist from next keyframe[i]/
(Rj.dist from next keyframe[i] +Rj.dist from prev keyframe[i])

}
}

}

Inputs are a set of regions and design elements. We assume that each design

element already has a reference to a region where it is assigned. forward elements

and backward elements are computed based on a result of the key elements list.

To make a list of the first kind, a search for a keyframe starts from the beginning of a

video sequence. Each time it is found, its frame number is recorded and its elements

are copied to the forward elements list for successive frames until a new keyframe

is found. updateGeometry() corresponds to updating a design elements’ position

as well as orientation, in order to make them follow moving regions. Transitional

and rotational components for this update are from a segmentation input, where

regions are approximated to deforming ellipses for estimation of frame-to-frame

transformations.

Each transformation is performed in a frame local to regions. Two positions,
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starting and ending points, need to be updated for regular elements. Let Pi and

T be positions of a regular element and the center of an ellipse E approximating

a region, and (∆T , ∆θ) be translation and rotation of E from the current to the

next frame. Then position of Pi for the next frame can be found from the equation:

Pf = R(∆θ)(Pi − T ) + T + ∆T (4.19)

, where R is a transformation matrix. For singular elements, center positions

and orientations need to be changed. To find a new orientation of a singular

element, we simply add ∆θ to its current orientation.
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Chapter 5 – Painterly Rendering

Basic process of my paint rendering algorithm is as follows which is based on

Hertzmann’s idea [19].

paint() {
Initialize a canvas.

for (each layer) {
Create a reference image from input.
Compute a stroke list.
Call renderLayer().

}
}

As described earlier, three types of input need to be given beforehand for an

image painting: input image, edge field, and style parameters. For video painting,

optical flow is required as an additional input. Input image is used to generate

reference images for each layer as well as compute stroke colors. Curvy strokes

with various lengths are generated from edge field and style parameters. Style

parameters are defined at each pixel and aggregated into a two-dimensional array.

They should have reference to regions to which they belong to. In video paintings,

it is preferred that strokes should follow moving objects instead of sitting at a

place all the way. Optical flow is a way to estimate how far each stroke can move

at each frame.

In this section for a rendering process, names of style parameters are often

referenced. The following list are aliases for style parameters which altogether

define a single painting style P :
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dw : stroke size

lmin, lmax : minimum/maximum stroke length (explicit renderer only)

ldisp : stroke length (implicit renderer only)

µ : stroke density

αinit : initial opacity

jpos : position jitterness

jrand : random color jitterness in RGB color space

jh, js, jv : color shift in HSV color space

nlayers : number of layers to use

∆c : area error (tolerance)

pp1. . .pp4 : post processing parameters

, plus a reference to a region.

At the beginning of our rendering routine, a canvas is initialized by filling

a constant color (r, g, b) = (1.0, 1.0, 1.0). Then a loop iterates to start from the

bottom layer through upper layers. The number of iterations is computed by

taking a maximum of nlayers among regions with style parameter keyframes.

5.1 Reference Image Generation

A reference image is an image to which we want to approximate, using the current

stroke size. This means that the image shows only details that are at least as large

as the stroke size [19]. To compute a reference image, the Gaussian filter is applied

at each section of an input image corresponding to a region (see Figure 5.1). The

kernel size for each region is determined to be a value of dw of a single pixel of the
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region. The value is rounded off to some integer. If it is even, then it is snapped

to an odd number. However, this approach looks awkward if a region has no style

parameter keyframe, since dw varies within the region.

(a) (b) (c)

Figure 5.1: An example of reference image creation. (a): Input image. (b): Two
regions where the Gaussian filter is applied with different kernel sizes: 3x3 pixels2

for R1, and 15x15 pixels2 for R2. (c): Result.

5.2 Stroke List Computation

A single painting consists of a number of brush strokes. They are not rendered

onto a canvas unless a list of such strokes is ready at each layer. Each element in

the stroke list contains some stroke attributes such as position and color, etc.

5.2.1 Image Painting

For seeding points of strokes at a bottom layer (or, the 0th layer), centers of cells

in a regular grid, each separated by stroke density µ, are calculated. They are
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then jittered by some amount based on jpos to be seeding points, where jpos is a

parameter value at grid centers. For upper layers, strokes should be generated at

places where errors caused by a painting at lower layers are large. To identify such

areas for the i-th layer (i ≥ 1), a canvas is subdivided into a finer grid where each

cell is separated by µ/2i. Next, a difference image is built by computing color

difference between the current painting and a reference image for the (i− 1)-th

layer. At each cell, a threshold ∆c and the number of layers nlayers are read from

its center. A new stroke is created for each cell if area error exceeding ∆c as well

as i < nlayers. Stroke location is then determined to a pixel with the largest error

inside the cell.

Once stroke position is found, style parameters Pp and a tensor value Tp are

read from the position. Stroke size should depend on which layer we are painting

at, which leads to dw/2
i. Stroke color is computed such that each HSV component

of a primary color sampled from a reference image is shifted by amount of jh, js,

and jv, respectively unless a hue value is undefined, followed by that each RGB

component is then jittered by jrand · p, where p is a random number in [−1, 1]. We

also store the jitter amount in RGB channels to each stroke. Finally, orientation

of a stroke is determined by finding the major eigenvector of Tp.

5.2.2 Video Painting

Generating a list for the first frame is identical to the way for image painting,

but a different routine must proceed for successive frames in order to maintain
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temporal coherency. That means a stroke list needs to be updated rather than

regenerated, which results in more strokes added into a list for each layer. However,

having too many strokes raises two problems. First, too many brush strokes in

upper layers from the previous frames can clutter and overlap to obscure strokes

in lower layers [17]. Second, holding increasing number of strokes slows down

rendering speed for subsequent frames. Thus it is necessary to cull strokes that are

longer contributing to a final painting. In order to prevent upper layers from being

crowded by too many strokes, each stroke is given a certain amount of lifetime,

which is decremented at each frame [17].

Basic process of updating a list is a sequence of move, removal, update, and

addition. In the first phase, seeding point of each stroke is updated by optical

flow. Any stroke whose position is pushed away from a canvas will be subject to a

removal.

In the removal phase, a stroke is removed if it is now outside a canvas, its

lifetime goes to zero, or it is considered to be in a cluster with other strokes. The

first two cases are trivial to identify and the last one requires a simple spatial

binning. A canvas is divided into grid cells. Separation between the cells differs at

each layer; for the bottom layer, a constant proportional to the minimum stroke

size is used (see Figure 5.2) whereas µ/2i is used for other layers. Each stroke is

binned into cells according to their seeding positions. If there are exceeding number

of strokes more than the maximum capacity of each cell, then extra strokes to be

rendered early are removed.

After unnecessary strokes are removed, remaining ones are updated. Each
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Figure 5.2: Given a minimum stroke size dmin, density for the bottom layer µ is
set to dmin/2

√
2. This ensures that strokes are seeded enough to hide gaps.

stroke color is recomputed by using a primary color and color shift values sampled

at a new position, plus a jitter value carried by the stroke. Orientation is updated

in the same way for the image painting. However, eigenvectors of a tensor are

bidirectional so that one additional check is necessary; a direction is flipped if

newly sampled and old eigenvectors make some angle larger than 90 degrees.

Now new strokes are added as follows. At each layer a stroke image is rendered

to a temporary buffer, where background and strokes are colored as white and

black with their assigned opacity, respectively. This image will be used to locate

uncovered regions on canvas. Finding stroke positions is the same as the one for the

image painting except two things. First, grid cells in the previous spatial binning

is used instead. Second, one additional check comes in to see whether the seeding

position p is already covered by other strokes by looking up to a stroke image,

using a following function:
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isCovered(p) =

 false if stroke image[p] > cbgfg

true otherwise
(5.1)

, where cbgfg is a threshold kept constant. Finally, new strokes are added to

back of stroke list for temporal coherency.

5.3 Stroke Ordering

New strokes are generated in scanline order, from left to right and from top to

bottom, and they are sequentially stored in a list. Those strokes are sequentially

rendered in backward order. Therefore, stroke overlap would look too regular if

there were no permutation in our stroke list (see Figure 5.3). Thus sorting strokes

according to some rule is necessary. Typically the sorting is applied to all strokes

that are generated at each frame. It is still possible to sort in a whole set after

each time of list update, but flickering will result due to recomputation of stroke

colors at every frame.

A simple but effective way is to assign a random depth value to each of strokes

and sort them in order.

Random: A random value is used as stroke depth. All strokes in a list are sorted

in ascending order according to the assigned depth values.

Another way to sort strokes is to use their colors. There are several color

representations, in which RGB and HSV color spaces are commonly used for artistic

design or graphics purpose. We have designed ordering rules for each color space.
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(a) (b)

Figure 5.3: An example of the stroke order. (a): Drawing strokes in sequence is
unpleasant due to a regular overlap. (b): Changing draw order gives natural stroke
placements.

RGB: Ordering based on RGB color space originated from a paper [54]. Their

original idea is to employ the ordering as a part of hiding data into an image. Our

stroke ordering follows their idea but takes a slightly different form. Suppose we

have two colors C1 = (r1, g1, b1) and C2 = (r2, g2, b2). The min function is defined

as follows.

min(C1, C2) {
// Compute squared color intensity
I1 ← r2

1 + g2
1 + b21

I2 ← r2
2 + g2

2 + b22

i f (I1 < I2 ) return true
else i f (I2 < I1 ) return false
else {

i f (g1 < g2 ) return true
else i f (g1 == g2 and r1 < r2 ) return true
else i f (g1 == g2 and r1 == r2 and b1 < b2 ) return true
else return false
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}
}

This basically suggests that we bring a darker color in front of lighter colors.

If they have the same intensity, we look at each color channel. If a green value of

one color is smaller than the other, then the first color is considered smaller. If

they are equal again, then we compare red channels, and so on (Figure 5.4).

(a)

(b)

Figure 5.4: An example of stroke ordering. Color disks represent stroke primitives.
(a): Unsorted stroke list. (b): Sorted list after color ordering.

The max function is defined in a similar fashion.

max(C1, C2) {
// Compute squared color intensity
I1 ← r2

1 + g2
1 + b21

I2 ← r2
2 + g2

2 + b22

i f (I1 > I2 ) return true
else i f (I2 > I1 ) return false
else {

i f (g1 > g2 ) return true
else i f (g1 == g2 and r1 > r2 ) return true
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else i f (g1 == g2 and r1 == r2 and b1 > b2 ) return true
else return false

}
}

HSV: Ordering in HSV space is designed in more complex way than the RGB

ordering. The each color component (hue, saturation, and value) is evaluated in

some evaluation order. There are six possible permutations: HSV, HVS, SVH,

SHV, VHS, and VSH. Two colors C1 = (h1, s1, v1) and C2 = (h2, s2, v2) are evalu-

ated component-wise by using corresponding evaluators.

evalHSV(C1, C2) {
// Evaluate each color component.
// eval order[] is an array containing an evaluation order.
result[0]← evalComponent(eval order[0], C1, C2)
result[1]← evalComponent(eval order[1], C1, C2)
result[2]← evalComponent(eval order[2], C1, C2)

i f (result[0] == 1)
return true

else i f (result[0] == 0 and result[1] == 1)
return true

else i f (result[0] == 0 and result[1] == 0 and result[2] == 1)
return true

else
return false

}

evalComponent(channel, C1, C2) {
switch (channel ) {

case HUE :
return evalHue(h1, h2)

case SATURATION :
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return evalSat(s1, s2)

case VALUE :
return evalVal(v1, v2)

}
}

The code above shows how two color are evaluated in HSV color space. eval-

Hue(), evalSat(), and evalVal() are evaluators for hue, saturation, and value, re-

spectively. The latter two provides two options to evaluate colors:

min(α1, α2) =


1 if α1 > α2

0 if α1 == α2

−1 otherwise

(5.2)

max(α1, α2) =


1 if α1 > α2

0 if α1 == α2

−1 otherwise

(5.3)

, where α is s for saturation, or v for value.

It naturally makes sense that both saturation and value components can be

ordered. However, one might question that how to make a similar ordering for

hue, which is generally visualized as a color wheel. One way is cut the wheel at

some degree hc to open up as a ribbon as shown in Figure 5.5. We use angles

measured from hc to some hue counterclockwise, and call it map1 function. Thus

the min/max functions can be defined as follows.
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min(h1, h2) =


1 if map1(h1) < map1(h2)

0 if map1(h1) == map1(h2)

−1 otherwise

(5.4)

max(h1, h2) =


1 if map1(h1) > map1(h2)

0 if map1(h1) == map1(h2)

−1 otherwise

(5.5)

Figure 5.5: A color wheel representing hue (left) is cut at hc, and opened into a
ribbon (right).

Other possible way is compare warmness of hues. Suppose hc refers to the

warmest hue and create a function map2, which returns a smaller angle between

hc and a given hue. Then the warm/cool functions look like
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warm(h1, h2) =


1 if map2(h1) < map2(h2)

0 if map2(h1) == map2(h2)

−1 otherwise

(5.6)

cool(h1, h2) =


1 if map2(h1) > map2(h2)

0 if map2(h1) == map2(h2)

−1 otherwise

(5.7)

5.4 Rendering

After draw order of stroke lists is finalized, they are used to make a painting for the

current frame. In this stage, stroke shapes are computed before they are rendered

onto a canvas. Those shapes are computed by finding trajectories from seeding

points. In a tensor field, those trajectories are called hyperstreamlines, which

are curves along an eigenvector field and analogous to streamlines in a vector

field [59]. Two different renderers have been implemented: explicit and implicit.

The former explicitly computes each stroke shape by tracing a hyperstreamline of

major eigenvector field, whereas the latter simultaneously warps stroke attributes

along the field to draw multiple strokes.

5.4.1 Explicit Approach

Mainframe of our explicit approach is based on algorithms described in Hertz-

mann’s papers [19, 21]. Curvy strokes are represented as trianlge strips whose
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spines are uniform B-spline curves traced from a seeding point. Below are steps to

render a painting per layer.

renderLayer() {
Call traceStrokes() to generate all stroke shapes.
Render strokes onto a canvas.

}

traceStrokes() {
for (each stroke S in stroke list) {
P ← style parameters at seeding point of S
min itr ← P.lmin

max itr ← P.lmax

(x0, y0)← seeding position of S
(last dx, last dy)← (0, 0)
R0 ← reference to a region containing (x0, y0)
l← current layer
step size← P.dw/2

l+1

// Calculate alpha
S.color.α← calcAlpha(S.lifetime, P.oinit)

for ( i← 1; i < max itr; i+ +) {
d0 ← colorDifference(reference image[x0, y0].rgb, S.color.rgb)
d1 ← colorDifference(reference image[x0, y0].rgb, canvas[x0, y0].rgb)

// Stroke color is deviated from the color in a reference image
i f ( i > min itr and d0 < d1 )

continue

// Stroke is at a vanishing point
i f (major eigenvector at (x0, y0) == 0)

continue

// Stroke goes beyond a region
i f (reference to a region containing (x0, y0) is not equal to R0 )
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continue

// Outside of a canvas
i f ((x0, y0) is outside a canvas)

continue

(dx, dy)← major eigenvector at (x0, y0)
normalize(dx, dy)

// Flip a direction if necessary.
i f ( last dx · dx+ last dy · dy < 0)

(dx, dy)← (−dx,−dy)

// Find a new control point.
(x0, y0)← (x0 + step size · dx, y0 + step size · dy)

(last dx, last dy)← (dx, dy)

// Add a control point.
S.append(x0, y0)

}

// Build a triangle strip
S.tessellate()

}
}

This approach is inherited from Hertzmann’s multi-layer painting [19]. The

inner loop iterates to find a new control point until it reaches max itr unless it is

terminated from several break conditions. It stops when the current stroke color

does not approximate a reference image better or the current control point is right

at a degenerate point. Curves are clipped at the boundary of a region to maintain

its shape detail and to prevent curves from overriding styles at neighboring regions.
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Triangle strips are computed after all spline curves are generated from each set

of control points. Each curve is thickened so its width to be that of a stroke. Strip

width corresponds to its stroke size. Once all shapes become available, they are

rendered with alpha-blending onto a canvas in backward order. Opacity map is

textured on each strip to depict a realistic brush stroke appearance (Figure 5.6).

Note that this idea is originally from Hertzmann [21].

(a)

(b)

Figure 5.6: An illustration of stroke rendering in the explicit renderer. (a): Opacity
map. (b): A tessellated strip (top) is textured with an opacity map, giving a brush
stroke shape (bottom).
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5.4.2 Implicit Approach

Main difference from the previous explicit renderer is that our implicit render

generates a number of strokes at once instead of sequentially draw them. To make

this happen, we borrow an idea from Image Based Flow Visualization (IBFV). The

method renders continuous hyperstreamlines by warping an image on a screen space

to visualize a vector field, which has been further extended to support on a tensor

field as well [55, 59]. In our implicit renderer, a texture mapped on a triangular

mesh is repeatedly warped along an edge field. At each time, the warped texture is

composited with an initial image to add lengths to growing strokes. Initial image

contains discs with various colors and sizes according to stroke attributes. Such

circular objects become winding long strokes as they get stretched. Basic steps to

render a painting per layer is described as follows.

renderLayer() {
Create an initial image.
Render an image to a temporary canvas.
Composite the image with a canvas.

}

Initial image is a RGBA texture where some stroke attributes reside as circular

discs. To create this, it is first initialized to (r, b, g, a) = (1.0, 1.0, 1.0, 0.0) for all

pixels. The last alpha component is used to determine whether a pixel belongs to

a stroke (i.e. foreground) or is just background. It is foreground if the alpha value

of a color c exceeds a threshold αbgfg; otherwise background. This is described in

terms of a function as follows.
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b(c) =

 foreground if c.a > αbgfg

background otherwise
(5.8)

In the rendering step, we use the initial image to create a four different images,

which are later combined into one single image as a result of painting on the current

layer.

renderImage() {
n← warp iterations
I ← initial image
edge field[0]← Vx+, edge field[1]← Vx−
edge field[2]← Vy+, edge field[3]← Vy−

// Initialize each current image with the initial image.
for ( i← 0; i < 4; i+ +) {
J [i]← I

}

// Repeat warp and composite for each current image.
for (j ← 0; j < n; j + +) {

for ( i← 0; i < 4; i+ +) {
tmp← Warp J [i] with edge field[i].
J [i]← compositeImages(tmp, I)

}
}

// Combine all four current images.
return combineImages(J [0], J [1], J [2], J [3])

}

Note that texture warping is performed on a triangular mesh whereas all com-

positions and combination of images are performed on pixel-basis. As preparation,

four vector fields, Vx+, Vx−, Vy+, and Vy− are computed from a major eigen-
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vector field of the current tensor based edge field T. Each of them is defined as

follows.

Vx+ =



cos θ

sin θ

 if cos θ ≥ 0

− cos θ

− sin θ

 otherwise

Vx− = −Vx+ (5.9)

Vy+ =



cos θ

sin θ

 if sin θ ≥ 0

− cos θ

− sin θ

 otherwise

Vy− = −Vy+ (5.10)

This approach is similar to the idea of tensor field visualization [59]. Compo-

nents of computed vector fields are normalized, and reverse flows of Vx+ and Vy+

are also used to grow strokes in both directions during texture warping. To warp

a texture, we compute texture coordinates on each vertex [56]. Suppose r is a

position of a vertex on a mesh and v is a vector value at r of some vector field V.

Thus the texture coordinate t can be computed as

t = T (r− v∆t) (5.11)

, where T is a function to convert into a texture space from a mesh space.

Since multiple vector fields are used to produce separate images, a set of texture

coordinates for each edge field needs to be computed for all vertices. Equation 5.11
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is applied, substituting ldisp at tech vertex for ∆t. Notice that stroke length is pro-

portional to the parameter value. If the scaling factor is zero, that means texture

is not warped at all, giving the Pointillism style, whereas a larger number for the

parameter makes longer strokes. A new image Jk+1 is synthesized by warping its

previous image Jk along a corresponding vector field V and then combining the

warped image with the initial image I with a composite function compositeIm-

ages().

Figure 5.7 explains how strokes are simultaneously generated. The initial state

is (a), which is J0 = I. J0 is warped by a horizontal vector field (b), and J1 is

created as an image of the warped J0 and I under the composite function (c). The

new image is warped again (d) to produce J1 (e), which will be further used to get

J2 (f).
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(a) (c) (e)

(b) (d) (f)

Figure 5.7: An illustration of stroke generation. For clarity of how two images
are composited, the alpha-blending function is used in this example. A process
of rendering is shown as a sequence from (a) to (f) (top to bottom, left to right).
Stroke tips are faded out so quickly and this cannot be solved by changing a
blending factor.
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It is equivalent to how the original IBFV generates an image for one flow if a

composite function is a linear blending function which is

compositeImages(I0, I1) = αI0 + (1− α)I1 (5.12)

, where α is constant and input parameters I0 and I1 are images. However, it

fails to create strokes each having consistent colors because of the color blending.

Our composition function needs be based on color selection of two different colors

at each pixel. Thereby, our heuristic approach has been designed as follows.

compositeImages(I0, I1) {
for (each pixel p) {
c0 ← I0(p)
c1 ← I1(p)

i f (b(c0) is background) {
result(p) ← c1

}
else i f (b(c1) is background) {

result(p) ← c0
}
else {

// Evaluate with one of color order functions described in Section 5.3
i f (colorFunc(c0, c1) == true)

result(p) ← c0
else

result(p) ← c1
}

}

return result
}
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Our color selection starts with checking whether each pixel in two images is

background. If exactly one of them is background, then a color of the other is

used. If both are background, then the pixel for output is also background but

color values are copied from one of input images. If they are both foreground,

then a color-based ordering function is used to compare colors in either RGB

or HSV space to determine a color to select. The function helps with how two

simultaneously growing strokes should be overlapped.

This heuristic approach has an issue. While this composition method supports

color-based ordering, it does not support depth-based ordering. It is somehow

possible to convert each depth value into a unique color and use a set of those

encoded colors to generate an initial image. However, a crucial part is that the

value can be easily changed when a texture image is warped. Color at a pixel is

determined by computing a weighted average over texel colors close to the pixel’s

texture coordinate. For example, an average over white and black texels bleeds a

gray. What it means is that color-coded depth can be easily changed. To avoid

this, one could instead select a texel color closest to a pixel’s texture coordinate.

This eliminates the color bleeding effect, but introduces an artifact in which in-

dividual strokes suffer from making natural orientations. Figure 5.8 describes an

example of rendering results, using different color sampling methods. Even though

the weighted average exhibits color bleeding, it is in fact not that obvious. Fur-

thermore, stroke edges are made soft due to the color bleeding, which makes brush

strokes more coherent with each other.

After four different stroke images are rendered, they are combined into a one
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(a) (b)

Figure 5.8: Different texture filtering during texture warp. (a) Weighted average
filtering. Colors are bled around stroke edges. (b): Nearest filtering. Stroke
orientations look unnatural.

single painting for the current layer. This is simply done by repeatedly calling a

composition function three times.

// Called within renderImage()
combineImages(Jx+, Jx−, Jy+, Jy−) {
Jx ← compositeImages(Jx+, Jx−)
Jy ← compositeImages(Jy+, Jy−)
return compositeImages(Jx, Jy)

}

Zhang et al. used a weight function based on eigenvector directions to combine

two images generated from Vx+ and Vy+. This eliminates discontinuities and creates

smooth tensor field visualization [59]. In the implicit renderer, a stroke color is

kept constant so a color selection is necessary rather than weighted blending.

At the last step of rendering, a layer image on a temporary buffer is composited

onto a canvas. The image for the bottom layer is copied over, and images for upper
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layers are alpha-blended to avoid aliasing effects around stroke edges.

compositeLayers() {
C ← canvas
L← rendered image for current layer
β ← fall off factor ∈ [0, 1)

i f (L is rendered for the bottom layer) {
// Just copy over from each pixel
for (each pixel p) {
C(p).rgb← L(p).rgb

}
}
else {

// Alpha-blend L with C
for (each pixel p) {
S ← style parameters at p

i f (S.αinit < L(p).a) r ← 1
else r ← L(p).a/S.αinit

// Compute a blending factor α.
i f (r > β ) α← S.αinit · (r − β)/(1− β)
else α← 0

C(p).rgb← (1− α) · C(p).rgb+ α · L(p).rgb
}

}
}

It basically checks that if the opacity of L exceeds β · S.αinit at each pixel.

If it is not, the color at a pixel on a canvas is left unchanged; otherwise, the

color on L is considered to be a part of a stroke so that it is composited over a

corresponding pixel on a canvas, and L.a is linearly mapped to [0, S.αinit], which

will be a blending factor α. A falloff value β is a constant that has been empirically
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determined. Lowering the value means that more pixels on L will be blended, but

it reveals visual artifact as shown in Figure 5.9.

(a) (b)

Figure 5.9: An example of layer composition. The second layer is put over the
first layer. (a): Default falloff value is used. (b): Extremely low falloff also reveals
colors too close to background.

5.5 Post Processing

Lighting effect is added to enhance realistic appearance of paintings. The algorithm

is based on [21]. Basic steps are the following (see Figure 5.10); a color image is

first rendered from a set of tessellated brush stroke models with stroke colors (a).

A height field is then generated from the same set of strokes with a height texture

plus offset values (b). Finally, each pixel of a color image is illuminated according

to the Phong shading model, with the height information of the second image (c).

In my system, each style owns four style parameters for post processing (pp1. . .pp4)

that are lighting angle, brush scale, brush height, and stroke height scale. The first
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parameter is determines an azimuth of a directional light source, which illuminates

a canvas at 45-degree zenith. The second parameter is to scale height texture

within its space. The last two parameters are used for height exaggeration of

brush texture and stroke shape, respectively. Setting the values to zero eliminates

shading effect.

(a) (b) (c)

Figure 5.10: Workflow of lighting algorithm. (a): Color image. (b): Height field.
(c): Shading result.

With the explicit renderer, it is straightforward to produce a height field simply

by replacing a texture and giving a constant color as offset. On the other hand,

it is not applicable to our implicit renderer. Remember the renderer makes a

decision of stroke overlapping based on stroke colors, not a seeding order. Because

of that, overlap appearance on image painting is not always consistent with that

on its height field. To resolve this issue, we instead use an intensity map as a

replacement of a height field. First off, a height texture is attached to each stroke

during the initial image creation. The texture is used to add color variations within

each stroke (Figure 5.11). Then the same rendering routine is used to generate the
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second color image. Afterwards, that image is grayscaled by computing intensity

at each pixel (Figure 5.12). This way is compatible with our explicit renderer so

this pseudo-height map approach is set by default in our framework.

(a) (b) (c)

Figure 5.11: An illustration of the initial image creation for the post processing.
(a): Initial image for a color image. (b): Height texture is used to add color
variations in each stroke. (c): Initial image to render the second color image.
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(a) (b) (c)

Figure 5.12: Height field creation in our implicit renderer. (a): Color image with
height texture. (b): Intensity of (a) as height field. (c): Shading result.
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Chapter 6 – Results

6.1 Painting Styles

We have designed 5 different style presets: Van Gogh, Colorist Wash, Impres-

sionism, Pointillism, and Fracture. Each of them is accessible from my painting

framework to apply onto regions. Each style is numerically defined by style pa-

rameters based on the following observations.

Van Gogh:

• Stroke Attributes: short, opaque, moderate amount of stroke position/color

jittering, no HSV color shift.

• Multi-layering: 1 layer.

• Post Processing: Both stroke edges and inner texture are highlighted.

Colorist Wash:

• Stroke Attributes: long, semi-translucent, moderate amount of stroke posi-

tion/color jittering, no HSV color shift.

• Multi-layering: 3 layers.

• Post Processing: Only stroke edges are highlighted.

Impressionism:

• Stroke Attributes: long, opaque, moderate amount of stroke position/color

jittering, no HSV color shift.
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• Multi-layering: 3 layers.

• Post Processing: Both stroke edges and inner texture are highlighted.

Pointillism:

• Stroke Attributes: rounded, opaque, large position jitter, small color jitter,

no HSV color shift.

• Multi-layering: 1 layer.

• Post Processing: Neither stroke edges nor inner texture is highlighted.

Fracture:

• Stroke Attributes: rounded, opaque, large position jitter, small color jitter,

no HSV color shift.

• Multi-layering: 1 layer.

• Post Processing: Both stroke edges and inner texture are highlighted.

6.2 Single-Style Painting

Painted results from explicit and implicit renderers are shown in Figure 6.1. For a

comparison between two renderers, the same style parameters and stroke ordering

were used. With the first three styles (Pointillism, Fracture, and Van Gogh), both

renderers clearly show individual strokes. Visual difference is much more obvious
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on multi-layer styles (Impressionism and Colorist Wash). With an implicit ren-

derer, strokes seems more fluidic than the ones from an explicit renderer. However,

they are appearing as clusters on upper layers, which makes it harder to distinguish

each shape of them.

Figure 6.1: Image painting result of the explicit method (left) and the implicit
method (right). Top: Colorist Wash. Bottom: Impressionism.
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Figure 6.1: (Continued) Image painting result of the explicit method (left) and the
implicit method (right). Top: Pointillism. Middle: Fracture. Bottom: Van Gogh.
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6.3 Multi-Style Painting

One effective way of multi-style painting is to pay viewer’s attention to a main

object in a scene by choosing a style for background different from foreground.

Figure 6.2 shows an example of a single flower image.

(a) (b)

(c) (d)

Figure 6.2: Multi-style painting result. (a): Input image. (b): Segmentation
data. Background is colored with green. (c): Single-style painting. (d): A multi-
Style result. Background is painted with punctate strokes of desaturated colors to
enhance a flower. Original image from FreeFoto.com.

In Figure 6.2, (c) was generated by applying a single style to a whole image,
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and (d) was generated by using different styles to each segmented region according

to (b). With a background scene having a style containing desaturated colors, the

flower object can stand out more than (c).

Another positive usage of multi-style is focusing/defocusing multiple targets in

a video clip. For example, smaller strokes are used to finely describe objects to be

focused whereas larger strokes are applied to get out of viewer’s focus. Our video

painting example shows that a lady and a child are alternately focused over time

(Figure 6.3).

(a) (b) (c)

Figure 6.3: Using multi-style technique to change targets to be focused. (a): A
lady is focused. (b): Focus is changed to a child by changing stroke sizes for a lady
and a child. (c): Both figures are focused. Original video courtesy of Artbeats.

Figure 6.4 shows a style interpolation within a single image. Different styles

were applied to two regions on sides (green and purple) as shown in (b), and the last

region has left unspecified. The result (c) shows that the two styles are smoothly

blended to define a varying style within the third region.

Benefit from using design elements is that stroke orientations can be modified
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(a) (b) (c)

Figure 6.4: Spatial interpolation on style parameters. (a): Input. (b): Segmen-
tation image (3 regions). (c) Painting result after each region colored in green
and purple is assigned a different style. See how a beak color and stroke length
spatially change.

to remove undesirable noise or introduce new features. Figure 6.5 shows snapshots

of a video painting result along with edge fields. One regular element has been set

for a dolphin to create a regular flow inside the object. Multiple design elements

have been spread over time for a water region to simulate animating ripples when

a dolphin jumps into and out of the surface. Quality of design element’s object

tracking depends on accuracy of motion data supplied from segmentation data.

For example, a regular element for a dolphin reasonably follows her. On the other

hand, although we could add moving ripple patterns to water surface, we also saw

that some elements were pushed as opposed to our expectation. It required further

user interaction to fix the issue. In our example, additional elements were set to

relocate a ripple center.
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Figure 6.5: Painting video result (top) and its edge field (bottom). Design ele-
ments are represented as green boxes and cyan arrows. Original video courtesy of
Artbeats.
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6.4 Stroke Ordering

Figures 6.6 ∼ 6.8 show painting results with different stroke ordering applied to

an image and a video. The first figure contains image paintings with the explicit

renderer displaying random, RGB-based, and 8 different HSV-based stroke order-

ings. Note that this shows only a part of all possible orderings. HSV ordering has

six ways to evaluate in order, and there are four functions to compare hue and two

for the other components. This means we have (3!·4·2·2) = 96 combinations for

HSV-based stroke ordering. Moreover, the warmest hue hc can be set any value

between 0 and 360, which means there are a quite number of HSV-based color or-

dering. The painted results from the color-based ordering gives an effect of strokes

with similar colors coherently appearing on a canvas.

Choice of stroke ordering affects overall appearance such as brightness, contrast

and color variations. Moreover, it matters under the implicit renderer in terms of

quality. We observed that certain types of orderings based on HSV color space give

granular look. For example, it fails to produce slick strokes when hue is evaluated

first with warm/cool functions or saturation is evaluated first with a min function

(Figure 6.7). Interestingly, we did not encounter this kind of obvious artifact with

RGB-based ordering rules.

The effect of color ordering is predominant on image paintings as well as very

beginning frames in video paintings. However, it diminishes in successive frames

so rendered videos with different ordering methods eventually get to similar visual

appearance (Figure 6.8). To avoid this, a whole set of strokes in a stroke list,
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instead of ones that are newly created, could be sorted at every a certain number

of frames, but it would be inevitable that some strokes would pop up. Another

way would be to make a stroke color static. In other words, once a new stroke is

generated, its color should be fixed. Unfortunately we have never experimented

the latter approach and it is unsure that how much effectively it would alleviate

the disappearance of color ordering effect.
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Input Random RGB(min)

RGB(max) H(min) S(min) V(min) H(max) S(min) V(min)

H(warm) S(min) V(min) H(cool) S(min) V(min) S(min) V(min) H(min)

S(max) V(min) H(min) V(min) H(min) S(min) V(max) H(min) S(min)

Figure 6.6: Image paintings generated by the explicit renderer with different color
ordering. The same Van Gogh style has been applied with parameter values un-
changed. hc = 0◦ was used for HSV-based ordering.
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H(warm) S(min) V(min) H(cool) S(min) V(min) S(min) V(min) H(min)

RGB(min) H(min) S(min) V(min) V(min) H(min) S(min)

Figure 6.7: Examples of stroke ordering that produce high granularity on an im-
plicit renderer (top) and that does not (bottom).
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Figure 6.8: Snapshots of video paintings (Frame 0, 100, and 190) generated by an
explicit renderer with different color ordering. Top: Random. Middle: RGB(min).
Bottom: H(max) S(min) V(min). Original video courtesy of Artbeats.
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Chapter 7 – Discussion

7.1 Implementation

Our rendering system was built based on OpenGL and OpenCV. Both implicit

and explicit renderers were implemented to run on a fixed graphics pipeline as

well as programmable shaders. The implicit renderer benefits from GLSL to avoid

pixel reads from texture memory during warping, compositing, and combining

texture images. OpenCV provides a set of functionalities suited for computer

vision research, such as image smoothing, optical flow computation, and even

video loading/saving.

7.2 Image Dimension

The current version of my painting framework automatically adjusts the input

image size into 512×512 pixels2. Extra rows/columns are automatically added to

any input smaller than the size, but rendered outputs have the same dimension as

the inputs. Any input exceeding 512 pixels in one dimension will be cropped, and

the possible output size is limited to at most 512×512 pixels2.
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7.3 Style Specification

7.3.1 Diffusion

Push-pull method helps with fast spatial propagation of style parameters and an

edge field, but it still takes a while to compute if one wants to define styles for

vast areas, using style parameters defined at a tiny fractional regions. In addition

to that, the method uses a pyramidal approach where upper levels are in the half

the size of their one lower levels. This forces us to introduce additional rows and

columns to make a grid size be in the power-of-two only for a diffusion process. If

arbitrary size for input will be allowed, we need to allocate extra memory for those

padded pixels as well as for pixels corresponding to the input size.

Style propagation works if style parameters are assigned to at least one region;

otherwise it fails since there is nothing to transmit. Consider a scenario of a video

sequence in which a dolphin keeps jumping out of water and diving back. Suppose

the video’s segmentation data shows two distinct regions describing a foreground

object (a dolphin) and a background scene. If a style is applied to a dolphin, the

style for background will be determined with the propagation from the animal,

but what happens if the animal completely hides under the water at some frame?

The frame contains nothing to propagate for the background so we are unable to

generate a painting consistent with other frames. One way to avoid the situation

is to make sure at least one style is defined and always visible on a canvas at all

frames.
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7.3.2 Segmentation

Video segmentation is processed at the offline stage, and the precomputed result

is passed to my framework, which assumes that the input is well enough defined;

both the segmentation is perfect and motion data associated to each region are

promising. If a user wants to change the current segmentation data completely,

the worst scenario is that all the design processes must be started over. Such a

case happens when segmentation structure in the new data is different from the

old one: for example, a different number of regions. Redoing video segmentation

several times will become a lot of user intervention to generate a single video

painting.

Even if one could produce the best segmentation, another concern is quality of

motion estimation for each segmented region. For example, when we were designing

edge field for a dolphin video, design elements assigned to a dolphin reasonably

tracked the animal. However, at some frames design elements simulating water

ripples were displaced to the opposite direction of our expectation, which made us

to introduce additional elements to relocate the ripples at a right position.

For some video inputs, estimated rotations are noisy and we observed unpleas-

ant angular oscillation back and forth. This will not visually influence under certain

kinds of design elements such as a center and a focus. If elements of the other type

are used, we will observe unwilling stroke orientation changes. Exploration of a

better region-wise motion estimation algorithm will be one of the next steps to

push our painting results better in temporal coherency.
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7.3.3 Style Parameter Design

In my opinion, shifting a stroke color on a region is powerful in that stroke colors are

directly manipulated by users. For instance, a dusk image can be easily converted

into the night sky by changing a color hue from red to bluish purple. We opted

to HSV color space for this operation since it is commonly used in major graphics

application and it is easily converted to the RGB color space back and forth. In

the HSV space, a color is described as three attributes: hue, saturation, and value.

Within the space, colors are more intuitively and easily controlled than in the RGB

space which more or less measures content of red, green, and blue components.

One concern on color shifting is that we are not able to perturb any grayish

color. Consider how the HSV color space can be visualized as a single cone. At

the bottom rim corresponds to hue color wheel. Saturation is namely a distance

from the center of a color wheel, and value is a length of a altitude measured from

a cone vertex. Any grayish color lies on the altitude, where hue is really undefined.

Thus visual artifact shows up when color shift is applied to a region containing

any zero-saturation color: a glare from the sun, for instance. Possibly pre-filtering

input to avoid inclusion of such colors would help.

In the current version of my framework, only a single regular grid is used to

compute all stroke positions at a layer, even though different stroke density values

can be defined at each style. An alternative way could be to repeat the compu-

tation for each region, using grids with different resolutions, but this works only

if every region has its own style parameters. One way to think about this com-
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putational problem is that we treat it as a particle-based glyph packing problem,

which is for instance described in [30]; stroke density could be interpreted as an

isotropic second-order tensor field. Particle systems are used to represent glyph

locations, having potential energy field formed by local tensor values. Alignment

of the particle systems is iteratively updated to minimize glyph overlaps. Then its

stabilized solution can be used as a set of seeding points of all strokes. However,

computational speed is an issue; the method will require thousands of iterations

until the systems are stabilized, which is less favoring if we want to make our

framework interactive.

7.3.4 Edge Field Design

Design elements are provided to users in order to modify local stroke orientations,

such as adding circular curves or streamline flows. However, they do not have a

strong control to shape an edge field into arbitrary forms. Combination of multiple

design elements would solve this issue, but it is likely that users would be asked

to study formula of such element combination for patterns they want to achieve.

One could suggest to use a brush-based interface discussed in [12].

Smoothing an edge field over consecutive frames increases temporal coherency

of stroke orientations, but many rendered strokes are still jumping around over

frames. Hays put constraints on brush strokes so that they cannot rotate more

than a specified amount. This is not applicable to the implicit renderer since

strokes are generated by warping an image, instead of explicit curve computations.
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As I explained earlier, applying the angular constraint on an edge field is not a

successful solution for the approach.

7.4 Painterly Rendering

7.4.1 Reference Image

Remember that a reference image is generated from an input image by applying a

Gaussian filter with varying window sizes proportional to local stroke sizes. Typi-

cally the widow size of such a filter remains fixed within a single operation. This

means multiple iterations are required to apply the filter with different window

sizes to each region. If every segmented region has its own style parameters, then

the number of iterations is exactly the number of the regions. However, what if

some region needing style propagation also exists? More number of iterations is

necessary, but obviously it is not a novel approach. One way is to use as a window

size an average of stroke sizes within a region. This will not charge extra iterations

and choice of the size is more reasonable than my current approach. Another pos-

sibility is to use a summed area table [24]. It gives a box-filtering but it is possible

to specify different window sizes at pixel level. Thereby only one iteration suffices

although constructing an image integral is required as a pre-processing step.
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7.4.2 Stroke Shapes

In the explicit renderer, every stroke is represented as a tessellated strip with a

shape texture mapped on. Reusing a single texture for all strips does not create

stroke variation at all. An easy way to resolve this issue is we create multiple

textures each depicting a different stroke shape. Textures are loaded from files by

a painting program so that it is easy to replace the current shapes with a new

one if users do not like them. However, it remains that each stroke still keeps its

constant width.

On the other hand, with the implicit method, stroke width can vary around de-

generate points. For example, strokes are tapered as they are approaching toward

a wedge point, or they can be blown up or even split at a trisector. Inputs for my

painting system are images or videos that are photographed or captured from real

scenes. Thus edge fields computed from those inputs are topologically complex so

they exhibit many spreading degenerate points, which gives more random varieties

on stroke shapes.

7.4.3 Color Bleeding

Each time after image warping in the implicit renderer, new colors easily appear

at places where different colors are facing: i.e. around stroke edges. On one side,

this is gladsome that strokes nicely and coherently overlap. Brush strokes are still

individually recognized but they altogether serve themselves as a whole painting

image without each stroke shape standing out too much for viewers. On the other
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(a) (b) (c)

Figure 7.1: Stroke shapes rendered from different renderers. (a): A wedge as a
sharp edge field (b): The explicit method keeps stroke width constant. (c): With
the implicit method, stroke width varies under the edge field topology.

hand, it is a nuisance because it is hard to render completely solid-colored strokes.

To see why that happens, consider two strokes with a color of the first larger

than the other. As they get warped, new colors are introduced around their edges.

Then the warped image will be composited with the initial image. At some pixel,

the new color of the first stroke will be compared with the original color of the

second. It can happen that the former is now smaller than the latter. This causes

splotchy dots within a single stroke or a banding effect as shown in Figure 7.2.

It would be difficult to render blur-edged strokes without having the visual

artifact. With the implicit renderer, stroke shapes are neither computed nor stored

in some other place so some novel image operation is necessary to help our hands.

Due to limited knowledge of image editing, I have not found a good candidate.

However, although such stroke color interference is one visual drawback of our

implicit renderer, they do not stand out by themselves and they happen under
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Figure 7.2: Banding effect occurs during composition stages of an implicit renderer.
Images above show a process of stroke rendering where an image is warped to the
left.

only some color combinations.

7.4.4 Stroke Ordering

As mentioned in the previous chapter, it is difficult to maintain visual effect of

color-based ordering as well as temporal coherency. If we prefer to stroke color

coherency at each frame, the ordering must apply to a whole stroke set, which

leads to stroke scintillation. If we want to avoid such an effect, then strokes are

not getting locally color-coherent. Another thing to note is that the color-based

ordering is not controlled per region, which might be argued for more flexibilities on

my multi-style framework or might be not that important since there are already a

number of controllable style parameters to design. Additional controls would give

users more freedom to seek for better painting designs; on the other hand, it could

introduce more user interaction that could lead to a more time-consuming task.
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Chapter 8 – Conclusion

We have described our multi-style interactive framework. Images and videos are

processed to manufacture still or moving paintings with multiple different styles.

We have shown how design elements are defined and how they are useful to fix

a given edge field. Parameterizing stroke attributes and other properties makes

it possible to have a wide variety of different styles. They can be keyframed per

region so that they change over time within a region. Styles and fixed edge field

are propagated to fill values for regions with no keyframe assigned.

It has been shown that stroke generation in our implicit renderer is based on

image warping. The renderer can produce paintings as many varieties of different

styles as an explicit renderer. It also adds randomness on stroke shapes so that

they do not always have constant width, as opposed to the other.

The color-based stroke ordering can be made in various ways; it can be com-

paring intensities followed by each color channel, or a comparison can be made in

HSV space in any favorite order. The resulting paintings give different impressions

from the same input and style settings, and strokes with similar colors coherently

appear.

There are, however, several issues to be addressed. Style propagation fails

if no defined style is available. In the implicit renderer, color bleeding causes a

visual artifact such as color bands within brush strokes. Since stroke computation

is image-based that involves warping, depths cannot be encoded into colors; this

means that the implicit renderer is dependent on the color-based stroke ordering.

Bringing the ordering to videos still remains as a challenging problem. If strokes
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are partially sorted, the effect of color-based ordering fades away. If an entire stroke

set is sorted to enforce the order, scintillation is inevitable. Other issues should

be resolved; fast diffusion method for non-square region, better reference image

computation, better computation for edge field smoother in both space and time

domains, and so on. They will be left for any improved version of a multi-style

painting framework in future development.
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