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The mathematical and physical connections between three different ways of

quantifying linear predictability in geophysical fluid systems are studied in a series

of analytical and numerical models. Normal modes, as they are traditionally for-

mulated in the instabilities theories of geophysical fluid dynamics, characterize the

asymptotic development of disturbances to stationary flows. Singular vectors, cur-

rently used to generate initial conditions for ensemble forecasting systems at some

operational centers, characterize the transient evolution of disturbances to flows with

arbitrary time dependence. Lyapunov vectors are an attempt to associate a physical

structure with the Lyapunov exponents, which give the rate at which the trajecto-

ries of dynamical systems diverge. It is shown that these seemingly divergent ways

of quantifying linear disturbance growth are closely related. It is argued that Lya-

punov vectors are a natural generalization of normal modes to flows with arbitrary



time dependence. Singular vectors are shown to asymptotically converge to orthog-

onalizations of the Lyapunov vectors. A direct, efficient, and norm-independent

method for constructing the n most rapidly growing Lyapunov vectors from the n

most rapidly growing forward and the n most rapidly decaying backward asymptotic

singular vectors is proposed and demonstrated using several models of geophysical

flows.

These connections are further studied using a (time-periodic) wave-mean os-

cillation in an intermediate complexity baroclinic channel model. For time-periodic

systems, normal modes may be defined in terms of Floquet vectors. It is argued

that Floquet vectors are equivalent to Lyapunov vectors for time-periodic flows. The

Floquet vectors of the wave-mean oscillation are found to split into two dynamically

distinct classes that have analogs in the classical theories of the baroclinic instability

and parallel shear flow. The singular vectors of the oscillation are found to preserve

this dynamical splitting. The representations of the singular vectors in terms of the

forward and adjoint Floquet vectors display much simpler temporal behavior than

the singular vectors or the Floquet vectors individually. It is further demonstrated

that while the Floquet vectors point ‘onto’ the local system attractor, the singular

vectors point ‘off’ the attractor.
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Quantifying Linear Disturbance Growth in Periodic and Aperiodic

Systems

1 INTRODUCTION

A series of numerical and analytical studies of linear disturbance growth are

performed using several low- to intermediate-complexity models. Of primary in-

terest are the physical and mathematical relationships between three different ap-

proaches to quantifying linear disturbance growth: normal modes, singular vectors,

and Lyapunov vectors.

Normal mode analyses form the backbone of geophysical stability theory and

are classically defined as those linear disturbances which may be factored into a part

with exponential time-dependence and a structure function with fixed (or possible

recurring) spatial structure (see, e.g., Drazin and Reid, 2004). The utility of nor-

mal mode analysis is two-fold: First, normal modes characterize asymptotic linear

stability since a flow is asymptotically unstable if any one of its normal modes are

unstable. Second, normal mode structure functions often have compelling physical

interpretations which can be used to understand the nature of a flow’s stability or

instability.

Singular vectors, also known as optimal disturbances, are structures which

optimize linear disturbance growth in a specified norm over a specified time interval

(Lorenz, 1965; Farrell, 1989). In contrast to normal modes, singular vectors charac-

terize transient, not asymptotic stability. While singular vectors generalize easily to

unsteady flows, the considerable arbitrariness in the choice of norm and optimization

interval can make their physical interpretation difficult. Singular vectors currently
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find their greatest utility in operational ensemble forecasting systems (Buizza et al.,

1993; Ehrendorfer and Tribbia, 1997).

Lyapunov exponents measure the average rate at which the phase-space trajec-

tories of dynamical systems diverge and, as such, they characterize the asymptotic

evolution of linear disturbances (Oseledec, 1968; Eckmann and Ruelle, 1985). Steady

or time-periodic trajectories with positive Lyapunov exponents are asymptotically

unstable while, for bounded aperiodic trajectories, having a positive Lyapunov ex-

ponent is often considered to be an operational definition of chaos. As geophysical

flows can be represented as high- or infinite-dimensional dynamical systems, it is

natural that Lyapunov exponents are closely related to the stability exponents of

normal modes and to singular values (the singular vector growth factors). For steady

or time-periodic flows, the Lyapunov exponents are equal to the real parts of the

stability exponents (see, e.g., Wiggins, 2003). Further, for arbitrary flows, the sin-

gular values asymptotically grow a rates given by the Lyapunov exponents as the

optimization interval extends infinitely far into the future or the past (Legras and

Vautard, 1996).

‘Lyapunov vectors’ are an attempt to associate physical structures with the

Lyapunov exponents. There are several reason why such an association is useful.

First, since Lyapunov exponents naturally generalize stability exponents to aperi-

odic systems, it is hoped that a suitable definition of the Lyapunov vectors will

naturally generalize normal modes and their physical structures may shed light on

the mechanisms sustaining chaotic behavior. Also, since the unstable (i.e. growing)

Lyapunov vectors exhibit the largest disturbance growth in the long-term, it might

be hoped that initializing ensemble forecasting systems with Lyapunov vectors also

leads to largest ensemble spread in the long-term, maximizing the utility of the
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forecast system. The different requirements of these two applications have lead to

different definitions of ‘the’ Lyapunov vectors.

For ensemble forecasting applications, all that is needed is a set of vectors

which spans the subspace of growing disturbances. This has lead some authors

to define Lyapunov vectors to be singular vectors optimized infinitely far in the

past (Legras and Vautard, 1996; Szuntogh et al., 1997), since these vectors grow at

rates given by the Lyapunov exponents. Since singular vectors are norm-dependent,

these Lyapunov vectors are also norm-dependent, but this is not a problem since

these vectors span the correct subspace. This definition is unsuitable for the first

application, however, since the norm-dependence leads same difficulties in physical

interpretation found with singular vectors. ‘Proper’ Lyapunov vectors should be

defined so that they are norm-independent. Further, it is desirable that they agree

with normal modes for the cases of stationary and time-periodic flows. Lyapunov

vectors with these properties can be defined in terms of intersecting sets of singular

vectors optimized asymptotically far in the past and the future by application of a

corollary to the Oseledec (1968) theorem (Legras and Vautard, 1996; Trevisan and

Pancotti, 1998). (Note that Legras and Vautard (1996) use the term ‘characteristic

vector’ to describe these vectors, since they apply the term ‘Lyapunov vector’ to the

norm-dependent vectors generated by the previous definition.)

It should be noted that operational forecasting centers use bred vectors instead

of Lyapunov vectors (Toth and Kalnay, 1993, 1997). Bred vectors are considered to

be a finite-amplitude generalization of Lyapunov vectors and have the advantange

over Lyapunov vectors of being generated automatically by the integration of the

(nonlinear) ensemble members. Additionally, their finite amplitude evolution is in-

tended to filter out fast-growing, but low-amplitude, instabilities of low significance
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to the large-scale forecast (e.g., convective instabilities). The present series of stud-

ies focuses on linear disturbances growth, however, and so is primarly concerned

Lyapunov vectors rather than bred vectors.

A detailed discussion of the relationship between singular vectors, normal

modes, and the two definitions of Lyapunov vectors is given in chapter 2. Addi-

tionally, a direct, efficient, and norm-independent method for constructing the n

most rapidly growing Lyapunov vectors from the n most rapidly growing forward

and the n most rapidly decaying backward asymptotic singular vectors is proposed.

An analogous method allows the construction of the n most rapidly decaying Lya-

punov vectors from n decaying forward and n growing backward singular vectors.

This method is demonstrated using two low-dimensional models.

Chapters 3 and 4 focus on a normal-mode and singular vector, respectively,

analysis of a wave-mean oscillation in an intermediate complexity, two-layer, quasi-

geostrophic spectral model. These studies build on and extend a previous analysis of

a weakly nonlinear model of the baroclinic instability (Samelson, 2001b,a). Samelson

(2001b) analyzed a stable limit cycle of the weakly nonlinear model in terms of time-

periodic normal modes (Floquet vectors) and singular vectors. It was found that

the normal modes split into two dynamical classes distinguished by spatio-temporal

structure and stability exponent (Floquet exponent). The first class was character-

ized of large-scale wave-like disturbances which grew or decayed inviscidly at rates

well separated from the damping rate; hence, this class was refered to as the ‘wave-

dynamical’ class. The second class, the ‘viscous-advective’ class, was characterized

by small-scale disturbances which were advected by the mean flow and decayed

at roughly the damping rate. The singular vectors displayed a similar dynamical

splitting, with the wave-dynamical (resp. viscous-advective) singular vectors pro-
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jecting mainly onto the wave-dynamical (resp. viscous-advective) Floquet vectors.

Furthermore, the projections were relatively simple functions of initialization and

optimization time, varying little even though both the Floquet and singular vectors

underwent large changes in spatial structure. This implies a stronger connection

between singular vectors and normal modes than is commonly appreciated.

This analysis was extended into a weakly chaotic regime using ideas from pe-

riodic cycle expansion theory, which posits that the behavior of trajectories on a

chaotic attractor can be understood in terms of a self-similar ‘skeleton’ of unstable

periodic orbits (see, e.g., Cvitanović et al., 2005). In the weakly chaotic regime, the

system displayed behavior which is essentially similar to that the logistic map. In

particular, the Poincaré first-return map took the approximate form of an asymmet-

ric quadratic function, allowing the formulation of a complete symbolic dynamics.

The symbolic dynamics and inverse iteration of the first-return map generated first-

guess initial conditions for unstable periodic orbits, which were then refined using

Newton’s method. In this manner, the orbits corresponding all possble symbol se-

quences with twelve characters or less were generated and subjected to Floquet and

singular vector analyses. The dynamical splitting first noted in disturbances to the

stable limit cycle was essentially unchanged in disturbances to the unstable periodic

orbits. Since the unstable periodic orbits visit a large fraction of the attractor, it

was concluded that the dynamical splitting of linear disturbances is likely to oc-

cur for most trajectories in the attractor. This conclusion is strengthened by the

observation that the leading Floquet vector of the lowest order orbit is a good ap-

proximation to the leading Lyapunov vector of the attractor at most locations on

the Poincaré section (Samelson, 2001a).

It was of interest to determine if similar results could be obtained in a model
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with vastly greater dimension and less constrained dynamics. The model considered

was a spectral representation of the nonlinear Phillips (1954) model with several

thousand degrees of freedom. Attention was focused on a strongly nonlinear regime

where the model possessed a moderately high-dimensional (Kaplan-Yorke dimension

≈ 7) chaotic attractor. It was not possible to find simple representation for the

Poicaré first-return map and so a ‘brute-force’ search for unstable periodic orbits

was undertaken by looking for near-recurrences in long time-series. Given the high

dimensionality of the attractor, near recurrences are rare and only a handful of

unstable periodic orbits were found. The analyses of chapters 3 and 4 focus on a

low-order periodic orbit with multiple normal-mode instabilities which resembles the

limit cycle and lowest order unstable periodic orbit studied by Samelson (2001b,a).

This orbit is also described in Samelson and Wolfe (2003), which gives a preliminary

analysis of the leading Floquet vectors.

As discussed in chapter 3, the Floquet vectors of this orbit fall into two classes

which have direct physical interpretations: wave dynamical modes and damped-

advective modes (analogous to the viscous-advective modes in the weakly nonlinear

model). The wave-dynamical modes (which include two neutral modes related to

continuous symmetries of the underlying system) have large scales and can effi-

ciently exchange energy and vorticity with the basic flow; thus, the dynamics of the

wave-dynamical modes reflects the dynamics of the wave-mean oscillation. These

modes are analogous to the normal modes of steady parallel flow. On the other

hand, the damped-advective modes have fine scales and dynamics which reduces, to

first order, to damped advection of the potential vorticity by the basic flow. While

individual wave-dynamical modes have immediate physical interpretations as dis-

crete normal modes, the damped-advective modes are best viewed, in sum, as a
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generalized solution to the damped advection problem. The asymptotic stability

of the time-periodic basic flow is determined by a small number of discrete wave-

dynamical modes and, thus, the number of independent initial disturbances which

may destabilize the basic flow is likewise small. Comparison of the Floquet expo-

nent spectrum of the wave-mean oscillation to the Lyapunov exponent spectrum

of a nearby aperiodic trajectory suggests that this result will still obtain when the

restriction to time-periodicity is relaxed.

In chapter 4, the relationship between singular vectors and Floquet vectors

(the analog of Lyapunov vectors for time-periodic systems) is analyzed in the con-

text of the nonlinear baroclinic wave-mean oscillation. It is found that the singular

vectors divide into two dynamical classes which are related to those of the Floquet

vectors. Singular vectors in the wave-dynamical class are found to asymptotically

approach constant linear combinations of Floquet vectors. The most rapidly decay-

ing singular vectors project strongly onto the most rapid decaying Floquet vectors.

In contrast, the leading singular vectors project strongly onto the leading adjoint

Floquet vectors. Examination of trajectories which are ‘near’ the basic cycle show

that the leading Floquet vectors point ‘into’ the local unstable tangent space of

the attractor while the leading initial singular vectors point ‘off’ the local attrac-

tor. The method for recovering the leading Lypaunov (here Floquet) vectors from

a small number of leading singular vectors developed in chapter 2 is additionally

demonstrated.
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2.1 Introduction

Geophysical fluid flows often exhibit complex and apparently random behavior.

One compelling explanation for this apparent randomness is that small errors in

the initial, boundary, and forcing conditions are amplified by instabilities of the

fluid motions. This is an example the so-called sensitive dependence on initial

conditions of nonlinear dynamical systems. Several techniques have been developed

to quantify linear disturbance growth in systems subject to sensitive dependence

on initial conditions, including the traditional normal-mode instability theories of

fluid dynamics (e.g., Drazin and Reid, 2004), Lyapunov vectors from dynamical

systems theory (Oseledec, 1968; Eckmann and Ruelle, 1985), and singular vectors

from ensemble forecasting (Lorenz, 1965; Farrell, 1989; Buizza and Palmer, 1995;

Buizza et al., 2005).

Normal modes, in the simplest conceptions, are linear disturbances with a

fixed spatial structure which grow at a fixed exponential rate. Singular vectors,

by contrast, optimize disturbance growth in a specified norm over a specified time-

interval, and their spatial structure is generally time-dependent. Lyapunov vectors,

which have generally received less attention in the literature than Lyapunov expo-

nents, are the time-dependent spatial structures associated with the corresponding

Lyapunov exponents, which are in turn the asymptotic exponential growth rates

of linear disturbances in general time-dependent flows. The definition of the Lya-

punov vectors given in the literature varies depending on the application. We focus

on a norm-independent definition of the Lyapunov vectors which emphasizes their

connection to normal modes.

We present an efficient, norm-independent method for constructing Lyapunov
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vectors from asymptotic singular vectors. This method generalizes and streamlines

similar methods given by Legras and Vautard (1996) and Trevisan and Pancotti

(1998). The method is demonstrated using two low-order geophysical models. The

format of the paper is as follows: We review the definitions of singular vectors, Lya-

punov vectors, and normal modes is section 2.2. The connections between singular

vectors and Lyapunov vectors are discussed in section 2.3. In section 2.4, we present

the method for constructing Lyapunov vectors from singular vectors. Two numeri-

cal examples which demonstrate the method are presented in section 2.5. Finally,

section 2.6 contains a discussion of some of the practical implications of the method

developed in section 2.4.

2.2 Definitions

2.2.1 Dynamical system and propagator

Consider a flow which, when discretized, satisfies the autonomous N -dimen-

sional dynamical system

ẋ = F(x). (2.1)

In general, N is very large. The evolution of infinitesimal disturbances y to the flow

x is governed by the tangent linearization of eq. (2.1)

ẏ = A(x(t))y (2.2)

where

A(x(t)) =
∂F(x(t))

∂x
. (2.3)
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The propagator L(t2, t1) is a matrix which takes solutions of (2.2) at time t1 to

solutions of (2.2) at time t2. It can be represented as

L(t2, t1) = Z(t2)Z(t1)−1, (2.4)

where Z is matrix whose columns form a complete set of solutions to eq. (2.2).

2.2.2 Normal modes

The traditional definition of normal modes depends on the time dependence

the flow and thus on the time dependence of the matrix A in eq. (2.2). If the

flow is stationary, the normal modes and their exponential growth rates are simply

the eigenvectors and eigenvalues of A, respectively. The normal modes are norm-

independent, time-stationary disturbances whose asymptotic stability is determined

by the corresponding growth rate. A very useful property of normal modes is that

they are often physically meaningful and facilitate the interpretation of flow insta-

bility. The normal modes will be orthogonal in a given norm if A is normal (i.e., it

commutes with its adjoint) in that norm.

If the flow is time-periodic with period T , the normal modes are Floquet vec-

tors: the eigenvectors of the one-period propagator L(t+T, t) (see, e.g., Coddington

and Levinson, 1955). The asymptotic stability of the Floquet vectors is determined

by the corresponding Floquet exponents, which are the logarithms of the eigenval-

ues of L(t+ T, t). The Floquet vectors consist of a time-periodic structure function

multiplying a part which grows or decays exponentially at the rate given by the

Floquet exponent. Like time-stationary normal modes, Floquet vectors have com-

pelling physical interpretations which shed light on the instability mechanisms of

the background flow (Wolfe and Samelson, 2006).
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Currently, there does not appear to be a consensus in the literature on a

definition of normal modes which generalizes to aperiodic flows. To be a proper

generalization, the candidate definition should reduce to stationary normal modes

or Floquet vectors for stationary or time-periodic flows, respectively, and thus should

be norm-independent and characterize the asymptotic stability of linear disturbances

to the flow. Singular vectors do not provide the required generalized due to their

(strong) dependence on norm and optimization interval. Additionally, singular vec-

tors characterize transient stability only and it is easy to construct asymptotically

stable systems which nevertheless have growing singular vectors for certain opti-

mization intervals (Farrell and Ioannou, 1996). Finite-time normal modes (FTNM),

the eigenvectors of the arbitrary-time propagator L(t2, t1) (Frederiksen, 1997), are

free from norm-dependence, but do not necessarily characterize asymptotic stability.

While FTNMs are equivalent to time-stationary normal modes for time-stationary

flows, if the flow is T -periodic, FTNMs reduce to Floquet vectors only if t2−t1 = nT ,

for some integer n 6= 0. If t2− t1 6= nT , the eigenvectors and eigenvalues of L(t2, t1)

loose their significance (Trevisan and Pancotti, 1998). For aperiodic flows, there

is no way to choose a ‘correct’ value of t2 − t1. We argue in section 2.2.4 that

Lyapunov vectors, properly defined, are a good (though, not necessarily the only)

generalization of normal modes to aperiodic flows.

2.2.3 Singular vectors

Singular vectors optimize the growth of perturbations in a specified norm over

a specified optimization interval τ = t2 − t1. It is straightforward to show that

the initial singular vectors ξ0,j(t1, t2), initialized and optimized at times t1 and t2,

respectively, are the eigenvectors of L(t2, t1)∗L(t2, t1). L(t2, t1)∗ is the adjoint of
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L(t2, t1) and is defined by the identity 〈v,Lw〉 = 〈L∗v,w〉. The singular vectors

can be evolved to any time t by application of the propagator. We will use the

notation

ξj(t; t1, t2) ≡ L(t, t1)ξ0,j(t1, t2) (2.5)

to denote the singular vector with initialization and optimization times t1 and t2

which has been evolved to time t. The final, or ‘evolved,’ singular vectors are simply

ξj(t2; t1, t2). They may also be obtained as the eigenvectors of L(t2, t1)L(t2, t1)∗.

If the inner product 〈·, ·〉 is characterized by the matrix N such that

〈v,w〉 = vTNw, (2.6)

then

NL(t2, t1)∗ = L(t2, t1)TN. (2.7)

If the initial and final time norms are the same, the singular vectors and their am-

plification factors (the singular values) σj satisfy the generalized eigenvalue problem

L(t2, t1)TNL(t2, t1)ξj(t1; t1, t2) = σ2
jNξj(t1; t1, t2), (2.8)

For systems where the range of singular value magnitudes is not too great, the

eigenvalue problem (2.8) may be solved directly. Otherwise, a more robust method

is singular value decomposition, which allows square matrix B to be written as

B = USVT, (2.9)

where U and V are orthogonal matrices and S is diagonal (see, e.g., Golub and

Van Loan, 1996). If eq. (2.9) is left-multiplied by BT, singular value decomposition

of B is seen to be equivalent to eigen-decomposition of BTB, since

BTB = VSUTUSVT = VS2VT. (2.10)



14

Thus, eq. (2.10) will be equivalent to eq. (2.8) if

B = N1/2L(t2, t1)N−1/2, (2.11)

vj = N1/2ξj(t1; t1, t2), (2.12)

and

Sjj = σj, (2.13)

where vj is the jth column of V. Similarly, right multiplication of eq. (2.9) by BT

shows that

uj = σ−1
j N1/2ξj(t2; t1, t2), (2.14)

where uj is the jth column of U.

The singular vectors for the examples of section 2.5 where calculated using the

singular value decomposition method.

2.2.4 Lyapunov vectors

Unlike singular values, which characterize disturbance growth over a specified

time interval, Lyapunov exponents characterize the asymptotic evolution of linear

disturbances. The Lyapunov exponents λ± can be shown to be the logarithms of

the eigenvalues of the matrix

S±(t1) = lim
t2→±∞

[L(t2, t1)∗L(t2, t1)]1/2(t2−t1) . (2.15)

This matrix exists under fairly general conditions (primarily, that the nonlinear

trajectory exists and is bounded as t→ ±∞) and its eigenvalues are independent of

norm and the initial time t1 for almost every choice of t1 (Oseledec, 1968). Further,

the forward and backward Lyapunov spectra are identical except for a change in
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sign, hence λ−i = −λ+
i . We can thus unambiguously refer to λi ≡ λ+

i as the ith

Lyapunov exponent. Note that the Lyapunov spectrum may be degenerate, so that

the total number of distinct Lyapunov exponents M may be less than the dimension

of the system N .

Comparison of eq. (2.15) to eq. (2.8) shows that the singular values must be-

come asymptotically independent of norm and initialization time as the optimization

interval τ tends to infinity. The singular vectors must become asymptotically inde-

pendent of τ as τ → ±∞ for the limit eq. (2.15) to exist, but they may retain their

dependence on norm and initialization time.

Lyapunov vectors are an attempt to associate a physical structure with Lya-

punov exponents. The precise definition of the Lyapunov vectors varies with the

applications intended for them. Some authors define Lyapunov vectors to be the

eigenvectors ξ+ of S+, equivalent to initial singular vectors optimized in the distant

future (Goldhirsch et al., 1987; Yoden and Nomura, 1993). Others define Lyapunov

vectors to be the eigenvectors ξ− of S+, equivalent to final singular vectors optimized

in the distant past (Lorenz, 1965, 1984; Shimada and Nagashima, 1979). Legras and

Vautard (1996) consider both and call the former ‘forward’ Lyapunov vectors and

the latter ‘backward’ Lyapunov vectors. These definitions produce norm-dependent

Lyapunov vectors since. while the eigenvalues of S± are independent of norm, the

eigenvectors are not (except for the first or the last eigenvector). Lyapunov vec-

tors defined in this manner are typically intended for use in predictability studies.

For these applications, all that is needed is a set of vectors which spans the same

subspace as the growing disturbances so norm-dependence is not a problem.

However, these norm-dependent definitions are unsatisfactory for candidate

aperiodic normal modes for a number of reasons. First, neither of these definitions
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reduce, in general, to stationary normal modes or Floquet vectors for stationary or

time-periodic flows. Further, the Lyapunov vectors defined as the eigenvectors of

S+ or S− do not characterize asymptotic stability forward and backward in time

since, while the eigenvector ξ+
i grows asymptotically with the rate λi as t → ∞, it

does not, in general, decay with the rate −λi as t→ −∞.

A norm-independent set of Lyapunov vectors φi, such that φi grows at the

rate ±λi as t→ ±∞, may defined using the following consequence of the Oseledec

(1968) theorem: For almost every time t, every vector y in the tangent space S+
1 (t) =

R
N of the dynamical system eq. (2.1) grows asymptotically at a rate given by the

first Lyapunov exponent λ1 as the system evolves forward in time, except those

y belonging to a set S+
2 (t) of measure zero. Similarly, every vector y ∈ S+

2 (t)

asymptotically grows at the rate λ2 except those y belonging to a set S+
3 (t) of

measure zero relative to S+
2 (t). This argument may be applied recursively to obtain

a set of nested subspaces

S+
M(t) ⊂ S+

M−1(t) ⊂ · · · ⊂ S+
1 (t) = R

N (2.16)

such than any vector y ∈ S+
i (t) \ S+

i+1(t) grows asymptotically at the rate λ̂i, where

λ̂i is the ith distinct Lyapunov exponent and M ≤ N is the number of distinct

Lyapunov exponents (Eckmann and Ruelle, 1985). The dimension of the difference

space S+
i (t) \ S+

i+1(t) is equal to the multiplicity mi of λ̂i.

A similar argument may be made as the system evolved backward in time to

obtain a similar set of nested subspaces

S−M(t) ⊂ S−M−1(t) ⊂ · · · ⊂ S−1 (t) = R
N (2.17)

such than any vector y ∈ S−i (t) \ S−i+1(t) grows at the exponential rate −λ̂i. The
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intersection space

Ti(t) = S+
i (t) ∩ S−M−i+1(t) (2.18)

is, in general, mi-dimensional, where mi is the multiplicity of the ith Lyapunov

exponent. If d = 1, then Ti may be identified as the Lyapunov vector φi since it

grows asymptotically at the rates λ̂i and −λ̂i as the system evolved forward and

backward, respectively, in time. If d > 1, then any mi linearly independent vectors

from Ti may be identified as Lyapunov vectors.

The φi defined in this manner are norm-independent and characterize the

asymptotic stability of linear disturbances as the system evolves both forward and

backward in time. Further, the φi reduce to the Floquet vectors if the flow is time-

periodic (Trevisan and Pancotti, 1998) and to the stationary normal modes if the

flow is stationary. The Lyapunov vectors φi are thus good candidates for aperiodic

normal modes.

This norm-independent definition of the Lyapunov vectors φi has been given

previously by several authors (e.g., Vastano and Moser, 1991; Legras and Vau-

tard, 1996; Trevisan and Pancotti, 1998). Note that Legras and Vautard (1996)

call the φi “characteristic vectors.” Trevisan and Pancotti (1998) show how these

Lyapunov vectors may be obtained from singular vectors in the three-dimensional

Lorenz (1963) system. Their method may, in principle, be extended to arbitrary

N -dimensional systems, but would require the knowledge of N + 1 singular vectors.

In modern forecast and process models, N is very large and this method would be

prohibitively expensive. In section 2.4, we give an efficient method for constructing

the leading n Lyapunov vectors using just 2n singular vectors.



18

2.3 Connections between Lyapunov vectors and singular

vectors

It is apparent from the discussion in the previous section that Lyapunov vec-

tors are closely related to singular vectors with long optimization intervals. Singular

vectors are, in fact, orthogonalizations of the Lyapunov vectors (Trevisan and Pan-

cotti, 1998). To see how this is so, fixed a time t and consider evolved singular

vectors initialized in the distant past (t1 � t) and optimized at t, i.e. consider

η̂j(t) ≡ lim
t1→−∞

ξj(t; t1, t). (2.19)

These singular vectors will be referred to as the ‘backward’ singular vectors since

they are equivalent to Legras and Vautard’s ‘backward’ Lyapunov vectors. Since

almost all linear disturbances rotate toward the leading Lyapunov vector, we must

have η̂1(t) = p̂11φ1(t), for some projection coefficient p̂11. The second singular vector

η̂2(t) is constrained to be orthogonal (in the selected inner product) to η̂1(t) and

thus cannot rotate toward the leading Lyapunov vector. The growth of η̂2(t) will

be instead optimized if it lies in S+
2 (t), the space spanned by the first two Lyapunov

vectors. Thus, we must have η̂2(t) = p̂21φ1(t) + p̂22φ2(t). Recursive application

of this argument gives a representation of the asymptotic evolved singular vectors

η̂j(t) in terms of the Lyapunov vectors

η̂j(t) =

j
∑

i=1

p̂jiφi. (2.20)

A similar argument can be made to show that the initial conditions of singu-

lar vectors optimized in the distant future ξ̂j(t) (called ‘forward’ singular vectors

because they are equivalent to Legras and Vautard’s ‘forward’ Lyapunov vectors),
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where

ξ̂j(t) ≡ lim
t2→∞

ξj(t; t, t2), (2.21)

are also an orthogonalization of the Lyapunov vectors. In this case, the orthog-

onalization proceeds upward from the most rapidly decaying Lyapunov vector to

obtain

ξ̂j(t) =
N∑

i=j

q̂jiφi, (2.22)

for some coefficients q̂ji.

The convergence of the singular vectors to their asymptotic forms is, in fact,

exponential. That this is a consequence of asymptotic exponential time-dependence

of the Lyapunov vectors made more clear by writing the propagator in terms of the

Lyapunov vectors. Let

L(t2, t1) = F(t2)F(t1)−1 (2.23)

for any t1, t2, where F is a matrix whose columns are the Lyapunov vectors, ordered

by decreasing Lyapunov exponent. Since the Lyapunov vectors span the space of

linear disturbances, the singular vectors may be written as a fixed sum of Lyapunov

vectors,

ξj(t; t1, t2) =
N∑

i=1

φi(t)pij(t1, t2) = F(t)p(t1, t2). (2.24)

The projection coefficients are a function of initialization and optimization time

only. With eqs. (2.23) and (2.24), eq. (2.8) becomes

F(t2)TNF(t2)pj = σ2
jF(t1)TNF(t1)pj. (2.25)

For τ = t2 − t1 � 1, the components of the LHS of eq. (2.25) grow like

[
F(t2)TNF(t2)

]

ij
∼ e(λi+λj)τ . (2.26)
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Thus, as τ →∞, the LHS of eq. (2.25) is given with exponential accuracy by a ma-

trix whose only non-zero entry is the upper right corner. The resulting eigensystem

has only one nontrivial solution, p1, whose components are p1i = 0 except for i = 1.

The rate of convergence to the asymptotic form is µ1 = |λ2 − λ1|. The remaining

eigenvectors can be recovered by working in the subspace orthogonal to the first, in

which the LHS of eq. (2.25) is again given with exponential accuracy by a matrix

whose only non-zero entry is the upper right corner. The rate of convergence in

this subspace is |λ3 − λ2|, but since the rate of convergence into this subspace is

|λ2 − λ1|, the rate of convergence of ξ2(t; t1, t) to its asymptotic form η̂2(t) is

µ2 = min {|λ3 − λ2|, |λ2 − λ1|} . (2.27)

In general, the rate of convergence of ξj(t; t1, t) to its asymptotic form η̂j(t) is

µj = min
1≤i≤j

|λi+1 − λi|. (2.28)

In a similar manner, it can be shown that the the rate of convergence of ξj(t; t, t2)

to its asymptotic form ξ̂j(t) is

σj = min
j≤i≤N

|λi − λi−1|. (2.29)

It should be noted at µj and σj only give lower bounds on the convergence rate. For

example, if two Lyapunov vectors are orthogonal in a given norm, the convergence

rate of the corresponding singular vectors in that norm may be faster than the

estimates given by µj and σj. In practice, we find that a good approximation to the

true convergence rate is

µj =







|λ2 − λ1| j = 1,

min {|λj+1 − λj|, |λj − λj−1|} 1 < j < N,

|λN − λN−1| j = N,

(2.30)
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Note that, if the Lyapunov spectrum is degenerate, there is no lower bound on the

convergence rate and some of the singular vectors may not converge.

2.4 The recovery of Lyapunov vectors from singular vectors

The ‘forward’ and ‘backward’ asymptotic singular vectors η̂j and ξ̂j, respec-

tively, furnish two different orthogonalizations of the same Lyapunov vectors. It is

possible to use these two orthogonalizations to recover the Lyapunov vectors in a

norm-independent manner.

Under fairly general conditions, for each time t, the asymptotic forward and

backward singular vectors (ξ̂j(t) and η̂j(t), respectively) are orthonormal in the

specified norm and span the space of the dynamical system. Thus, each φi(t) may

be alternately written as a linear combination of the ξ̂’s or the η̂’s. This may be

expressed compactly as

F = AX, (2.31)

F = BY, (2.32)

where F, X, and Y are matrices whose columns are the φ’s, ξ̂’s, and η̂’s, respec-

tively, and the components of the matrices A and B are

aij = 〈φi, ξ̂j〉,

bij = 〈φi, η̂j〉.

If we could determine either A or B, we could determine F and, thus, the Lyapunov

vectors.
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The relationships (2.31) and (2.32) may be inverted to find

X = A−1F, (2.33)

Y = B−1F. (2.34)

Comparison of eqs. (2.33) and (2.34) with eqs. (2.20) and (2.22) shows that A−1

is an upper triangular matrix with components q̂ji and B−1 is a lower triangular

matrix with components p̂ji. It follows that A is upper triangular and B is lower

triangular: 〈φi, ξ̂j〉 = 0 for i < j and 〈φi, η̂j〉 = 0 for i > j. Thus, (2.31) and (2.32)

may be written as

φn =
N∑

i=n

〈ξ̂i,φn〉ξ̂i, (2.35)

φn =
n∑

j=1

〈η̂j,φn〉η̂j, (2.36)

where now the dependence of all the vectors on t has been suppressed.

Setting (2.35) and (2.36) equal gives

n∑

j=1

〈η̂j,φn〉η̂j =
N∑

i=n

〈ξ̂i,φn〉ξ̂i

which, upon taking inner products alternately with ξ̂k and η̂k, yields

〈ξ̂k,φn〉 =
n∑

j=1

〈η̂j,φn〉〈ξ̂k, η̂j〉 for k ≥ n, (2.37)

〈η̂k,φn〉 =
N∑

i=n

〈ξ̂i,φn〉〈η̂k, ξ̂i〉 for k ≤ n. (2.38)

Substitution of (2.37) into (2.38) to eliminate 〈ξ̂k,φn〉 yields the following linear

system in 〈η̂k,φn〉:

〈η̂k,φn〉 =
n∑

j=1

[
N∑

i=n

〈η̂k, ξ̂i〉〈ξ̂i, η̂j〉
]

〈η̂j,φn〉 k ≤ n. (2.39)
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The solution to this system gives the expansion coefficients of the Lyapunov vectors

in terms of the backward singular vectors which, in turn, determines the Lyapunov

vectors themselves. However, the solution of eq. (2.39) for any n requires the knowl-

edge of N+1 asymptotic singular vectors and the accuracy of the solution is limited

by the accuracy of the singular vector with the slowest slowest convergence rate. If

the Lyapunov spectrum is degenerate, convergence of eq. (2.39) is not assured for

any finite optimization interval τ .

The bracketed term in eq. (2.39) can be simplified and the convergence problem

circumvented by noting that for any two complete orthonormal sets of vectors ei

and f i,
N∑

k=1

〈f i, ek〉〈ek,f j〉 = δij.

Thus,

N∑

i=n

〈η̂k, ξ̂i〉〈ξ̂i, η̂j〉 = δkj −
n−1∑

i=1

〈η̂k, ξ̂i〉〈ξ̂i, η̂j〉

and therefore,

n∑

j=1

n−1∑

i=1

〈η̂k, ξ̂i〉〈ξ̂i, η̂j〉〈η̂j,φn〉 = 0 k ≤ n. (2.40)

That this is indeed a simplification becomes apparent when it is noted that eq. (2.40)

involves only the first n (forward and backward) asymptotic singular vectors.

Eq. (2.39) and (2.40) can be cast into a more familiar form by defining

y
(n)
k = 〈η̂k,φn〉 k = 1, 2, . . . , n, (2.41)

D
(n)
kj =

n−1∑

i=1

〈η̂k, ξ̂i〉〈ξ̂i, η̂j〉 k, j ≤ n. (2.42)

Then eq. (2.40) takes the form

D(n)y(n) = 0, (2.43)
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and the desired expansion coefficients y(n) are seen to be the null vector of D(n). The

problem (2.43) can thus be solved to obtain the n leading Lyapunov vectors from

just the first n forward and n backward singular vectors. In contrast, the expansion

(2.39) requires the knowledge ofN+1 singular vectors. In many ensemble forecasting

examples, 2n� N + 1.

A similar method for recovering the last n Lyapunov vectors from the last n

forward and n backward singular vectors may be obtained by substituting (2.38)

into (2.37) to eliminate 〈η̂k,φn〉 and proceeding as above. The trailing Lyapunov

vectors are then the null vectors of

C(n)x(n) = 0, (2.44)

where

x
(n)
k = 〈ξ̂k+n−1,φn〉 k = 1, 2, . . . , N − n+ 1, (2.45)

and

C
(n)
ki =

N∑

j=n+1

〈ξ̂k+n−1, η̂j〉〈η̂j, ξ̂i+n−1〉 k, i ≤ N − n+ 1. (2.46)

The uniqueness of the recovered Lyapunov vectors (the solution to eqs. (2.43)

and (2.44)) follows from the uniqueness of the representations (2.35) and (2.36)

which, in turn, follows from the completeness of the asymptotic singular vectors

and assumed uniqueness of the Lyapunov vectors in question. As discussed in sec-

tions 2.2.4 and 2.3, the Lyapunov vectors associated with Lyapunov exponents with

multiplicity mi > 1 are not uniquely defined and the above method may produce

unpredictable results when applied to these Lyapunov vectors. The extension of

these results to the case of degenerate Lyapunov vectors is a subject of future work.
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Note that the η̂j could be replaced with any orthogonal set of linear distur-

bances initialized sufficiently far in the past, although the singular vectors are, by

definition, optimal. The same is not true for the ξ̂j since the efficiency of this algo-

rithm depends crucially on the fact that the ξ̂j are initial conditions which optimize

disturbance growth in the future. This is necessary to ensure that the ξ̂j are a

proper orthogonalization of the Lyapunov vectors (i.e., one which proceeds upward

from the most rapidly decaying Lyapunov vector). Replacement of the ξ̂j with a

different, non-optimal, set of linear disturbances would require using a complete set

of linear disturbances initialized in the distant future and integrated backward to t

in order to obtain the correct orthogonalization. Evolving a complete set of linear

disturbances would negate the efficiency of this method.

2.5 Numerical examples

2.5.1 Lorenz model

The Lorenz model is perhaps the simplest nontrivial system with which to

demonstrate the principles discussed in section 2.3 and the algorithm presented in

section 2.4. The development and characteristics of this model are well studied,

and the reader is referred to the extensive literature (e.g., Sparrow, 1982) regarding

this model for further details. Further, since the linear disturbance dynamics of this

model have been discussed in detail by other authors (e.g., Legras and Vautard, 1996;

Trevisan and Legnani, 1995; Trevisan and Pancotti, 1998), the present treatment of

the Lorenz model will be brief.

We use the standard parameter values σ = 10, ρ = 28, and β = 8/3, for which
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the model possesses a strange attractor with Lyapunov exponents

λ1 = 0.91± 0.01,

λ2 = 0,

λ3 = −14.58± 0.01.

That λ2 is exactly zero is a consequence of the fact that the model equations do

not explicitly depend on time. Further, it can be shown that, if the Lyapunov

vectors are defined in terms of intersecting forward and backward subspaces (as is

section 2.2.4), the second Lyapunov vector φ2 is proportional to the time derivative

(i.e., the tangent vector) of the nonlinear trajectory. Since φ2 is the only Lyapunov

vector that requires a non-trivial application of the method described in section 2.4

for three-dimensional systems, this result will prove to be a useful check of the

calculation.

The propagator L is obtained on a fine temporal grid (∆t = 0.02) by direct

integration of the tangent linearization of the Lorenz equations about a nonlinear,

aperiodic trajectory encompassing 8 time units. The singular vectors in the identity

norm are then calculated by singular value decomposition of L. The asymptotic

forms of the singular vectors are obtained by, at each point in the temporal grid,

systematically increasing the optimization interval τ until the singular vectors are

constant to within a specified tolerance (here, 10−6). As discussed in section 2.3,

the convergence of the singular vectors to their asymptotic forms is expected to be

asymptotically exponential. According to the estimate (2.30), the average conver-

gence rate of the first and second singular vectors is expected to be λ1−λ2 = λ1 while

the expected average convergence rate of the third singular vector is λ2−λ3 = −λ3.

The observed numerical convergence rates (Fig. 2.1) match these expectations quite
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well.

The Lyapunov vectors φj were calculated from the singular vectors using the

method described in section 2.4. The second Lyapunov vector φ2 was found to

subtend an angle of only 0.02◦±0.01◦ with the tangent vector of the trajectory. The

numerically determined second Lyapunov vector was thus nearly collinear with the

tangent vector of the trajectory, which indicated that the algorithm was operating

correctly.

The local Lyapunov exponents (LLEs),

LLEj(t) =
1

‖φj(t)‖
d

dt
‖φj(t)‖, (2.47)

of the first two Lyapunov vectors are of comparable magnitude and show marked os-

cillations in phase with the growth and decay of the underlying trajectory (Fig. 2.2b).

The LLE of the last, rapidly decaying, Lyapunov vector shows similar oscillations

roughly 180◦ out of phase with the leading two Lyapunov vectors, indicating that the

growth phase of the underlying trajectory is favorable for enhanced transient decay

as well as growth. Note that the first two Lyapunov vectors exhibit many periods of

so-called ‘super-Lyapunov’ growth, that is, their local growth rates are larger than

the leading Lyapunov exponent. While super-Lyapunov growth is sometimes taken

as evidence of non-modal dynamics, the dynamics here are modal by definition.

Thus, the normal modes themselves are capable of transient growth exceeding that

of the first Lyapunov exponent; only their long-time average growth rate is bounded

by the Lyapunov exponents. The relationship between super-Lyapunov growth and

modal dynamics is discussed in detail by Trevisan and Pancotti (1998).

The projections of the Lyapunov vectors onto each other also oscillate with

the nonlinear trajectory (Fig. 2.2c). The first two Lyapunov vectors are nearly
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(b) give the Lyapunov exponent associated with each Lyapunov vector. Compare
(c) to Trevisan and Pancotti (1998), figure 4.
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collinear during the trajectory maxima and nearly orthogonal during the trajectory

minima. The projections of φ1 and φ2 onto the third, decaying, Lyapunov vector

φ3 are of similar magnitude and are generally smaller than their projections onto

each other. The time evolution of the projections are very similar to that found by

Trevisan and Pancotti (1998), although the detailed behavior is different because

those authors focused on a time-periodic trajectory of the Lorenz model while the

current trajectory is aperiodic.

2.5.2 Weakly nonlinear Phillips model

The weakly nonlinear Phillips model of the baroclinic instability (Pedlosky,

1971) can be formally considered to be an extension of the Lorenz model (Pedlosky

and Frenzen, 1980). It has the advantage of being a consistent asymptotic limit of a

geophysical process, whereas the Lorenz equations result from an ad hoc truncation

of the equations of motion. This enables us to interpret the convergence time-scale

of the singular vectors in terms of a physically relevant time-scale.

The weakly nonlinear model is described in detail in Pedlosky (1987, section

7.16). It takes the form of a system of nonlinear ordinary differential equations

for the amplitude A (proportional to the barotropic streamfunction) and inter-layer

phase shift B (proportional to the baroclinic streamfunction) of a baroclinic wave.

The presence of the wave induces a change in the zonal mean flow which is described

by the mean flow corrections Vj. While there are, in principle, an infinite number

of mean flow correction terms, in practice, only a finite number J are retained. We

use J = 6, the same value used by Samelson (2001a,b); the system considered here

is thus 8-dimensional. The behavior of the model is controlled by three parameters:

the zonal and meridional wavenumbers (k,m) of the fundamental wave and the
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dissipation parameter γ. For (k,m) = (π, 1) and γ = 0.1315, the model undergoes

a baroclinic wave-mean oscillation of chaotically vacillating amplitude with mean

period Tp ≈ 24.4 (for details, see Samelson, 2001a,b).

Direct calculation of the Lyapunov exponents λi, using standard methods (e.g.,

Bennetin et al., 1980), yields

λ1 = 0.0178± 0.0002,

λ2 = 0,

λ3 = −0.0797± 0.0001,

λ8 = −0.2877± 0.0002,

while λi ≈ −γ for i = 4, 5, 6, 7. The differences between the exponents λ4 through

λ7 are thus small and, by the convergence rate estimate (2.30), the corresponding

singular vectors can be expected to converge very slowly. The other singular vectors

show a range of expected convergence times, from about a quarter period for ξ̂8 to

more than 2.5Tp for ξ̂1 and ξ̂2. The expected convergence time for singular vectors

ξ̂4 through ξ̂7 is greater than 10Tp (Fig. 2.3), and we therefore omit calculating ξ̂4

through ξ̂7.

The asymptotic singular vectors ξ̂1, ξ̂2, ξ̂3, and ξ̂8 in the identity norm were

calculated on a coarse temporal grid (∆t = 5) using the same method as in sec-

tion 2.5.1, with a convergence tolerance of 10−4. The singular vectors converged to

their asymptotic forms slightly faster than predicted (Fig. 2.3).

The first three Lyapunov vectors were recovered from the asymptotic singular

vector on the coarse grid using the method of section 2.4. Integration of the tangent

linear equations using the recovered Lyapunov vectors as initial conditions was used

to determine the Lyapunov vectors on a refined temporal grid (∆t = 0.1). The
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advantage of this method was two-fold: First, it allowed the transient growth and

decay of the Lyapunov vectors to be determined (the method of section 2.4 cannot

determine the amplitude of the Lyapunov vectors). Second, integration of the tan-

gent linear equations was much more efficient than calculating asymptotic singular

vectors on a fine temporal grid. Since the Lyapunov vectors were not determined

to perfect accuracy, the tangent linear integration could be performed for only a

finite time before all of the vectors began to rotate toward the leading Lyapunov

vector. It was found, through trail-and-error, that restarting the tangent linear in-

tegration every ∆t = 5 gave a good trade-off between accuracy and computational

effort. The resulting Lyapunov vectors grew or decayed at the correct rate, as given

by the Lyapunov exponents (Fig. 2.4). Further, the second Lyapunov vector φ2

tracked the transient growth and decay of the tangent to the background trajectory
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quite well (gray dash-dotted line in fig. 2.4). It should be noted that the decaying

Lyapunov vector φ3 could not have been obtained by long forward or backward

integration (which gives only the first or last Lyapunov vectors, respectively), nor

could it have been obtained using the straightforward extension of the method pre-

sented in Trevisan and Pancotti (1998) due to the unavailability of the asymptotic

singular vectors ξ̂4 through ξ̂7.

The leading three Lyapunov vectors give an interesting picture of the dynamics

of linear disturbances to the aperiodic trajectory. φ2, since it is proportional to

the time-derivative of the background trajectory, grows and decays in phase with
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the growth and decay phases of the background trajectory (Fig. 2.5b) and directly

reflects the dynamics of the aperiodic trajectory itself. φ1 and φ3 have similar local

growth rates and grow and decay roughly in phase with φ2; there are, however,

important differences. φ1 goes through periods of high and low activity which are

associated with times when the background trajectory achieves relatively high or

low amplitude, respectively, on the Poincaré section B = γA, A > 0 (compare

fig. 2.5a with fig. 2.5b). In contrast, φ3 is most active when φ1 is least active.

The projections of the Lyapunov vectors onto each other are of interest be-

cause systems with highly non-orthogonal Lyapunov vectors are capable of rapid

transient growth due to the interference of the Lyapunov vectors (Farrell and Ioan-

nou, 1996). Following a high-activity period, φ1 spends an extended period of time

nearly collinear with φ2 (Fig. 2.5c). Thus, while disturbances with strong projec-

tions onto φ1 will grow during a high-activity period simply because φ1 is growing,

disturbances made after a high-activity period may still grow through interference

of φ1 and φ2, even when all of the LLEs are negative. The temporal evolution of

the projection of φ1 onto φ2 is more structured following a low-activity period and

contains several periods of orthogonality (Fig. 2.5c). The projections of both φ1

and φ2 onto φ3 are of similar magnitude and generally smaller than their projec-

tions onto each other. However, all three Lyapunov vectors are nearly orthogonal

approximately 5 time units ahead of a low-activity Poincaré section but rotate to

become nearly collinear on the low-activity Poincaré sections (t ≈ 0, 50, 100).

The above observations were derived from a short segment of an aperiodic

trajectory. In order to test if they held more generally, Lyapunov vectors where

calculated from a long trajectory (T = 20 000) at equal intervals of ∆t = 5. 4000

points was sufficient to give good coverage of the attractor, which may be conve-
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niently visualized in the (A,B − γA) plane (Fig. 2.6). In this representation, the

wave-mean oscillation takes the form of a ‘dog-bone’ shaped structure. The sense

of motion on the attractor is clockwise. The amplitude vacillation is strongest on

the right-hand side of the dog-bone, where the trajectories show the most spread.

Most of the following discussion will focus on this region of the attractor.

The Lyapunov vector φ2, which is proportional to the time-derivative of the

aperiodic trajectory, grows and decays as the background trajectory grows and

decays and shows little variation transverse to the attractor (Fig. 2.6c). The growth

of φ1 starts earlier than that of φ2 and is slightly stronger on the ‘outside’ edge

of the attractor (Fig. 2.6a); thus, the high-activity phases of φ1 coincide with the

high-amplitude phases of the background trajectory. In contrast, growth of φ3 is

weaker and starts later than the growth of φ2 (Fig. 2.6e). Both growth and decay

of φ3 are strongest on the inside edge of the attractor.

The behavior of the projections between the Lyapunov vectors is similar, in

general, to that deduced from the short aperiodic segment. The first two Lyapunov

vectors are nearly collinear at most points on the attractor, with a brief episode of

near-orthogonality near the beginning of the right-hand growth cycle (Fig. 2.6b).

There is an addition region of near-orthogonality near the beginning of the left-hand

growth cycle, but this region is localized on the inward-facing part of the attractor.

Thus, a period of near-orthogonality follows a low-amplitude phase, but not a high

amplitude phase. The projections of both φ1 and φ2 onto φ3 are again of similar

magnitude and generally smaller than their projections onto each other, with near-

orthogonality prevalent during high-amplitude phases and near-collinearity preva-

lent during low-amplitude phases.



38

2.6 Discussion

The method described in this paper allows the first n Lyapunov vectors to

be constructed in a norm-independent manner from the first n asymptotic forward

and backward singular vectors. The method has been demonstrated here for two

idealized geophysical examples and are found to provide a useful picture of the

phase-space dynamics of linear disturbances.

Several studies have successfully used the leading Lyapunov vector to under-

stand the physics of aperiodic flow and the maintenance of chaotic behavior (e.g.,

Vastano and Moser, 1991; Vannitsem and Nicolis, 1997; Wei and Frederiksen, 2004).

Even though Lyapunov exponents and thus Lyapunov vectors are defined asymp-

totically, Lyapunov vectors can be surprising useful for understanding short-time

dynamics, such has transient error growth (Trevisan and Pancotti, 1998). Next-to-

leading and even decaying Floquet vectors capture interesting dynamical processes

in time-periodic systems (Wolfe and Samelson, 2006). As demonstrated in sec-

tion 2.5.2 non-leading, but norm-independent, Lyapunov vectors are be similarly

useful in the analysis of aperiodic flow. The algorithm presented here allows these

Lyapunov vectors to be obtained in an efficient manner.

It is interesting to consider whether a version of this method might be obtained

to estimate atmospheric Lyapunov vectors from operational forecast models, for

which forward singular vectors are routinely calculated (e.g., Buizza and Palmer,

1995). It should be noted that the ensemble initialization cycle usually includes an

analysis phase which adjusts the nonlinear trajectory in a manner which may be

inconsistent with the dynamical equations, and the effect of this on the convergence

of the singular vectors is not yet known.
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A practical obstacle to the extraction of atmospheric Lyapunov vectors from

operational singular vectors will be the limited degree to which operational singu-

lar vectors can be considered asymptotic, as the simple baroclinic wave example

suggests that the required optimization times may span more than one baroclinic

life cycle. However, the method may still yield interesting approximate results and

future work may lead to useful extensions and refinements of the approach.
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3.1 Introduction

The stability theory of geophysical flows has traditionally focused on stationary

flows. While great strides toward understanding the variability of the atmosphere

and oceans have been made by studying stationary flows (e.g., Charney, 1947; Eady,

1949), the assumption of stationarity is clearly an artifice since all physical flows

exhibit time-variability on a range of scales, from the sub-inertial to the millennial.

It is thus desirable to relax the stationarity assumption and it is expected that a

stability theory of time-dependent flows will allow similar fundamental insights into

atmospheric and oceanic variability. A time-dependent stability theory is also of

great interest to the forecasting community, as a significant portion of the forecast

error at moderate lead times is ascribed to large-scale instabilities growing on the

evolving flow (Toth and Kalnay, 1993, 1997).

An important first step toward a stability theory of flows with arbitrary time-

dependence is the study of time-periodic flows. Time-periodic flows offer many of

the same challenges—and potential for new insights—as flows with arbitrary time-

dependence, but are more computationally tractable since full information about

the evolution of disturbances to a time-periodic flow may be obtained by model

integration over a single period. A number of recent studies have examined peri-

odic flows in geophysical models (Itoh and Kimoto, 1996; Kazantsev, 1998, 2001)

and their stability (Samelson, 2001b; Pedlosky and Thomson, 2003; Poulin et al.,

2003). Samelson and Wolfe (2003, hereafter SW03), reported some preliminary

results concerning the model currently under study.

The present study gives the first complete numerical normal-mode analysis

of the linear stability of a strongly nonlinear wave-mean oscillation in a two-layer
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channel model of the baroclinic instability. Although unstable, the basic wave-mean

oscillation is periodic in time. The time-dependent normal modes (Floquet vectors)

of a time-periodic flow can be obtained numerically using standard methods for the

solution of linear differential equations with periodic coefficients (e.g., Coddington

and Levinson, 1955, chap. 3). As for steady parallel flow, these normal modes are

intrinsic dynamical objects that can provide physical insight into the mechanisms

of disturbance growth and decay.

The mathematical elements of stability theory for steady parallel flow gener-

ally involve solutions to ordinary differential equations and are well known for many

geophysically relevant examples (e.g., Drazin and Reid, 2004, chap. 4). Along with

regular normal modes, they sometimes require singular neutral modes, which may

fail to be continuously differentiable, for a complete description of the disturbance

evolution. When the basic flow is both time-periodic and non-parallel, the normal-

mode problem is generally non-separable. The corresponding mathematical theory

for the Floquet analysis of partial differential equations is not as well established as

that for ordinary differential equations, although some results are available (Kuch-

ment, 1993). For example, the possibility that analogs of singular neutral modes

may exist in such flows has received limited attention. One goal of the present study

is to examine this possibility in a specific geophysical model.

The format of the paper is as follows: In section 3.2, we discuss the model

formulation and review some basic elements of Floquet theory. We then briefly

describe the basic wave-mean oscillation and its relation to the general behavior of

the model in section 3.3. Section 3.4 is devoted to a detailed discussion of the results

of the Floquet analysis. The sensitivity of the results to changes in resolution are

discussed in section 3.5. The significance of the results are discussed in section 3.6.
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Finally, we summarize in section 3.7.

3.2 Formulation

3.2.1 Model

The model studied here is the well known Phillips (1954) quasi-geostrophic

channel model and is described extensively in Pedlosky (1987, chap. 7). For the

present study, the Coriolis parameter f is constant, the equilibrium layer depths

are equal, and the background flow is steady, uniform, and zonal. The evolution of

disturbances to the background flow is governed by

∂qn
∂t

+ Un
∂qn
∂x

+ J(ψn, qn)− (−1)nFUs
∂ψn
∂x

= −r∇2ψn n = 1, 2, (3.1)

where the ψn and qn are the disturbance streamfunctions and potential vorticities,

respectively, and the background flow has been chosen so that U1 = −U2 = Us/2.

The two parameters controlling the behavior of the system are the Froude number

F and the Ekman dissipation parameter r. (Note that we have absorbed a factor

of two which appears in Pedlosky (1987, chap. 7) into the definition of r.)

These equations are solved in a periodic channel of nondimensional zonal and

meridional extents 2 and 1, respectively. This is the same geometry as that studied

by Klein and Pedlosky (1986). The disturbance streamfunctions are represented

using the spectral expansion

ψn(x, y, t) =

Nk∑

|k|=1

Nl∑

l=1

A n
kl (t)eiπkx sin lπy +

Nl∑

l=1

A n
0l (t) cos lπy, (3.2)

where A n
−kl = A n

kl since ψn is real. The linear terms in eq. (3.1) are evaluated

directly, while the Jacobian term is evaluated on the physical grid. The time-
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differencing algorithm is Runge-Kutta order two, unless otherwise noted. The pri-

mary results of this paper were obtained using Nx = 72 zonal and Ny = 62 merid-

ional grid points (note Nk ≡ Nx/2 + 1, Nl ≡ Ny), for a total of 8928 variables,

and a time step of ∆t = 0.003. Numerical convergence properties are discussed in

section 3.5.

The evolution of linear disturbances to an arbitrary basic flow (ψn, qn) satis-

fying eq. (3.1) is governed by

∂q′n
∂t

︸︷︷︸

+

A

Un
∂q′n
∂x

+ J(ψn, q
′
n)

︸ ︷︷ ︸

B

− (−1)nFUs
∂ψ′n
∂x

+ J(ψ′n, qn)
︸ ︷︷ ︸

C

= −r∇2ψ′n
︸ ︷︷ ︸

D

n = 1, 2,

(3.3)

where ψ′n and q′n are the perturbation streamfunctions and potential vorticities,

respectively. The labeled terms in the above equation represent (A) local change

of disturbance PV, (B) advection of disturbance PV by the background flow, (C)

advection of background PV by the disturbance flow, and (D) Ekman dissipation of

the disturbance flow. These term labels will appear in the term-balance analysis of

section 3.4. Equation (3.3) is solved using the same spectral decomposition used to

solve equation (3.1).

Note that equations (3.1) and (3.3) are invariant under the exchanges







ψ1(x)→ −ψ2(−x),

ψ2(x)→ −ψ1(−x),

(3.4)







ψ′1(x)→ ±ψ′2(−x),

ψ′2(x)→ ±ψ′1(−x).

(3.5)

The existence of these symmetries implies that there exist solutions to the evolution

equations with the same properties. The nonlinear solutions discussed in section 3.3



48

satisfy the symmetry (3.4) exactly, as does the basic cycle. Additionally, most of

the Floquet vectors described in section 3.4 satisfy one of the two symmetries (3.5).

3.2.2 Floquet Theory

When the basic flow (ψn, qn) is T -periodic, equation (3.3) is a linear, homoge-

neous partial differential equation with T -periodic coefficients which, after expansion

into zonal and meridional Fourier modes, is amenable to analysis using Floquet the-

ory. Floquet’s theorem (Coddington and Levinson, 1955, chap. 3) states that any

solution to the truncated spectral expansion of eq. (3.3) may be written as a fixed

sum of the 2NxNy Floquet eigenvectors Φj
n(x, y, t), where (for non-degenerate sys-

tems) Φj
n(x, y, t) = φjn(x, y, t)eλjt. The Floquet structure function φjn(x, y, t) is T -(or

2T -)periodic and affects the transient growth and decay of the Floquet vector, while

the (possibly complex) Floquet exponent λj determines the asymptotic stability of

the vector. If Im [λj]T/2π is a rational number of the form p/q (where p > 0,

and p and q are relatively prime), then the real and imaginary parts of φj(t)eiIm[λj ]t

have period qT . If Im [λj]T/2π is irrational, then the real and imaginary parts of

φj(t)eiIm[λj ]t are quasi-periodic. Since eq. (3.3) is unchanged by complex conjugation,

complex Floquet vectors necessarily come in conjugate pairs.

The Floquet vectors were calculated by integrating a complete set of initial

conditions to eq. (3.3) over one period T of a periodic basic cycle to construct

the monodromy matrix M. In practice, M was non-degenerate. The eigenvectors

and eigenvalues of M are the Floquet vectors Φj
n(x, y, t) and the so-called Floquet

multipliers µj, respectively. The Floquet exponents are given by λj = 1
T

log µj.

The number of operations required to compute M grows like N 5, so that increasing

the model resolution by a factor of two increases the computational burden of the
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Floquet calculation by a factor of 32. There exist methods for computing subsets

of the Floquet vectors iteratively (e.g., Lust et al., 1998); a calculation which scales

like N 3 per Floquet vector. These methods were used to obtain some of the results

discussed in SW03, however, our present interest in obtaining a complete set of

Floquet vectors precludes the use of such methods.

As Floquet exponents characterize the asymptotic growth of disturbances to

a periodic trajectory, they are intimately related to the Lyapunov exponents of that

trajectory. Consider an arbitrary linear disturbance ξ0 to a trajectory x(t) of an

N -dimensional dynamical system. Under fairly general conditions (primarily, that

x(t) exists and is bounded as t→ ±∞), the limit

χ± = lim
t→±∞

1

t
ln
‖ξ(t)‖
‖ξ0‖

(3.6)

exists and is finite (Oseledec, 1968). Further χ+ = λ+
1 (the leading forward Lyapunov

exponent) independent of ξ0, unless ξ0 belongs to a set S+
2 of measure zero . If

ξ0 ∈ S2, then χ+ = λ+
2 < λ+

1 , where λ+
2 is the second forward Lyapunov exponent,

unless—again—ξ0 belongs to a set S+
3 of measure zero relative to S+

2 . This argument

may be applied recursively to obtain M nested subspaces {S+
n }, each associated

with a forward Lyapunov exponent λ+
n , where M ≤ N and λ+

n+1 < λ+
n . Similar

set of M nested subspaces {S−n } is obtained as t → −∞, with an associated set of

backward Lyapunov exponents λ−n , where λ−n = −λ+
M−n+1. If the intersection space

Sn = S+
n ∩ S−M−n+1 is one-dimensional, then Sn defines a Lyapunov vector, which

grows at the rate λn = λ+
n as t → +∞ and decays at the rate −λn = λ−M−n+1 as

t → −∞. If dimSn = d > 1, then d linearly-independent Lyapunov vectors may

be chosen arbitrarily from this space; in this case it is customary to assign d equal

Lyapunov exponents to Sn so that the Lyapunov spectrum contains N (degenerate)
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(k, l) growth rate

1 (2, 1) 1.6502

2 (1, 1) 1.0561

3 (2, 2) 0.9712

4 (3, 1) 0.8230

5 (1, 2) 0.6804

6 (1, 3) 0.0596

TABLE 3.1: Zonal and meridional wavenumbers k and l, respectively, and growth
rates of the six unstable linear disturbances to the zonally uniform state.

exponents.

For a periodic trajectory, the Lyapunov exponents of the trajectory are given

by the real parts of the Floquet exponents. Further, if the Floquet exponent λi

is real, then the ith Lyapunov vector is equal to the ith Floquet vector, and if the

Floquet exponents {λi, λi+1} form a complex conjugate pair, then the ith and (i+1)th

Lyapunov vectors lie in the subspace spanned by the real and imaginary parts of

the ith Floquet vector. In this sense, Lyapunov vectors generalize Floquet vectors

to trajectories of arbitrary time-dependence.
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3.3 Nonlinear Wave-Mean Oscillations

3.3.1 Aperiodic Trajectory

For the present study, we considered the most strongly supercritical set of

parameters studied by Klein and Pedlosky (1986): γ = 0.20 and ∆ = 45, where

∆ = F − π2 − 4r2, (3.7a)

γ = r

√

8

∆
. (3.7b)

This corresponds here to Us = 1, r ≈ 0.4743, and F ≈ 55.77. For these param-

eters, the zonally uniform solution ψ1 = ψ2 = 0 of (3.1) is unstable to six linear

disturbances (Table 3.1). The most rapidly growing linear mode (2, 1) dominates

the early evolution of random disturbances to the zonally uniform state, but the

(k, l) = (1, 1) Fourier mode eventually dominates the subsequent evolution of the

flow. The eventual dominance of a mode with larger scales than the most rapidly

growing linear mode is often seen in nonlinear models of the baroclinic instability

(Hart, 1981; Pedlosky, 1981).

For large times, the solution approaches a chaotic attractor. The dominance of

the (1, 1) mode allows the trajectory to be conveniently represented in the (A, ∂tA)

phase plane, where A is the amplitude of the (1, 1) mode (Fig. 3.1). Numerical

estimates based on a long integration (T ∼ 104, using a resolution of 48 × 40)

indicate that the first three Lyapunov exponents, calculated using standard methods

(Shimada and Nagashima, 1979; Bennetin et al., 1980), are positive, confirming

that the attractor is chaotic (Fig. 3.2). The resulting Kaplan-Yorke dimension

(Grassberger and Procaccia, 1983) for this attractor is 7.008± 0.004.
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FIGURE 3.1: Chaotic attractor (gray) and the unstable periodic cycle of sec-
tion 3.3.2 (solid black) plotted in the (A, ∂tA) phase plane, where A is proportional
to the amplitude of the (1, 1) Fourier mode. For clarity, only a small portion of the
very long (t ∼ 104) chaotic trajectory is shown.
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FIGURE 3.2: The first 24 Lyapunov exponents (◦’s) of the attractor and the unsta-
ble periodic orbit (+’s) shown in figure 3.1, in order of decreasing magnitude. Also
shown are the real parts of the first 24 Floquet exponents of the unstable periodic
orbit (�’s). The fifth Lyapunov and Floquet exponents have been set to zero, as
explained in section 3.4.3. The errors associated with the Lyapunov exponents are
smaller than the symbols used to plot them.

3.3.2 Periodic Basic Cycle

Chaotic attractors, such as that discussed above, are often accompanied by a

set of unstable periodic cycles which “fill out” (more precisely, and under specific

technical conditions which may or may not hold in the present case, are dense in)

the attractor. Certain mean properties of the flow on the chaotic attractor (e.g.,

Lyapunov exponents, heat flux, etc) may be recovered by constructing suitable

averages over unstable periodic cycles (Cvitanović et al., 2005). Often, surprisingly

good results are obtained using just a few low-order cycles (Kazantsev, 1998, 2001).

The basic cycle and the methods used to obtain it were described in detail in

SW03; a brief recapitulation is provided here for completeness. A low-order unstable

periodic cycle associated with the above attractor was found by first searching for
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near recurrences in a long aperiodic trajectory, and then refining the resulting first-

guess initial condition using the Newton-Picard iteration code PDEcont (Lust et al.,

1998). The orbit obtained by this code returns to its initial condition with a relative

error of less than 10−8. The periodic orbit so obtained forms the basis for the

following Floquet analysis and will henceforth be referred to as “the basic cycle.”

It has a period of T ≈ 38.488 and, like the attractor, is dominated by the (1, 1)

Fourier components and so may be plotted in the same (A, ∂tA) phase plane as the

attractor (Fig. 3.1).

The basic cycle begins as a nearly-zonal flow with a small super-imposed per-

turbation (Fig. 3.3, top panels). This perturbation grows into a pair of eddies

which grow in amplitude as they advect heat (proportional to ψT = ψ1−ψ2) down-

gradient, across the channel. By t/T = 15/50, the cross-channel heat flux reduces

the background potential vorticity gradient sufficiently to halt and then reverse the

growth of the eddies (Fig. 3.3, middle panels). Toward the end of the decay phase,

the weakening eddies advect heat up-gradient, extracting energy from the wave and

re-establishing the nearly-zonal initial state, now shifted down-channel by one-half

the channel length (Fig. 3.3, bottom panels). After passing through a second growth

and decay phase the flow returns to its initial state.

As expected, the leading Lyapunov exponents of the cycle are good approx-

imations to the leading Lyapunov vectors of the chaotic attractor (Fig. 3.2), with

a relative error in the Lyapunov multipliers eλj of less than 10%. Further, the

time-averaged heat flux for the basic cycle FT = 0.1554, where

FT =
F

2
lim
T→∞

1

T

∫ T∫∫
∂ψ2

∂x
ψ1 dx dy dt, (3.8)

which approximates that of the chaotic attractor (FT = 0.1531 ± 0.0004) to better
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FIGURE 3.3: Contours of the upper- (lhs) and lower-layer (rhs) streamfunction vs x
(horizontal axis) and y (vertical axis) during the evolution of the unstable periodic
orbit. Negative contours are dashed. For t/T > 25/50, the cycle repeats itself
shifted half-way down the channel.
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than 2%. This suggests that mean quantities may be obtained fairly accurately by

averaging over the basic cycle rather than long trajectories on the attractor.

3.4 Time-Dependent Normal Modes

3.4.1 Overview

The time-dependent normal modes for linear disturbances to the basic cycle

described in section 3.3.2 are the Floquet vectors (FVs), described in section 3.2.2,

which completely characterize the evolution of these disturbances. The spatio-

temporal characteristics and asymptotic stability of the FVs thus determine if and

how the basic cycle is unstable. In the present case, three of the FVs are unstable

and two are neutral, indicating that the basic cycle is, in fact, unstable. The number

of unstable and neutral modes found here is independent of resolution and thus is

a characteristic of the basic cycle only. The rest of the Floquet spectrum is com-

pleted by a large number of decaying modes, the exact number of which depends

on resolution. As in Samelson (2001b), the FVs in the present study fall into two

physically meaningful classes, described below.

The real parts of the Floquet exponents are equal to the Lyapunov exponents

of the basic cycle to within the accuracy of the Lyapunov exponents for all the

cases that were checked (Fig. 3.2). That this must necessarily be the case follows

from the discussion of the relationship between Lyapunov and Floquet exponents in

section 3.2.2. Thus, the numerical equality between these two quantities provides a

useful check of the consistency of the numerics.

The majority of the 8928 Floquet vectors of the 72×62 model have exponents

whose real parts which lie near, but slightly above, the dissipation rate r, while
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a small number of vectors have exponents whose real parts which are significantly

greater (the “leading” vectors), or less (the “trailing” vectors), than the dissipation

rate (Fig. 3.4a). Thus, the bulk of the Floquet vectors are stable and decay at rates

near the dissipation rate of the model. The leading vectors either grow or decay

weakly while the trailing vectors decay much more rapidly than the dissipation rate.

Floquet vectors with decay rates well separated from the dissipation rate tend

to be dominated by disturbances with large scales, while those with decay rates near

the dissipation rate have much smaller scales, where the scale is measured by the

time-averaged mean wavenumber K (Fig. 3.4), defined by

(k̄, l̄) =

∑
π(|k|, |l|)|A n

kl |2
∑ |A n

kl |2
, (3.9a)

K =
1

T

∫ T

0

[
k̄2 + l̄2

]1/2
dt, (3.9b)

where the sums are taken over all possible values of k, l, and n. These two classes

will be referred to as the “wave-dynamical” and “damped-advective” classes, re-

spectively, and will be discussed in sections 3.4.2 and 3.4.4. Those Floquet vectors

with large scales have—with few exceptions—purely real Floquet exponents (i.e.

they are frequency-locked to the basic cycle). Two Floquet vectors have expo-

nents exactly equal to zero (Fig. 3.4a). These neutral modes, which are a subset

of the wave-dynamical class, arise from continuous symmetries of the basic system

and are described in section 3.4.3. While the large scale FVs are dominated by a

small number of Fourier components, the fine-scale FVs tend to contain significant

contributions from many Fourier components. These FVs have complex Floquet

exponents with real parts that lie near the dissipation rate and imaginary parts

which are distributed approximately uniformly between ±π/T . For most of the

complex Floquet exponents, Im [λj]T/2π is not well approximated (to within 10−6)
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by any rational number with denominator smaller than 100. The associated Flo-

quet vector structure functions φjn thus either have long periods (& 100T ) or may

be quasi-periodic.

The transition from wave-dynamical behavior to damped-advective behavior

is gradual and there are modes at intermediate wavenumbers (3π ≤ K ≤ 4π) which

show characteristics of both classes. Nevertheless, the modes with K < 3π show

characteristics which clearly place them in the wave-dynamical class whereas those

with K > 4π clearly belong to the damped-advective class. These dividing lines

are shown in figure 3.4. The intermediate class will not be discussed in a separate

section, since these modes do not have any features which clearly distinguish them

from the modes in the other classes. There are 62 wave-dynamical, 831 intermediate,

and 8035 damped-advective modes at the resolution considered here (72× 62).

3.4.2 Wave-Dynamical Modes

The wave-dynamical (WD) Floquet vectors are characterized by large-scale,

quasi-stationary wave-patterns, decay rates well separated from the model dissi-

pation rate (Fig. 3.4), and large, transient amplitude fluctuations. These modes

depend on the vertical shear of the background flow for their growth and main-

tenance. The characteristics of the leading ten and trailing nine WD modes are

summarized in table 3.2.

The leading twelve WD modes, of which the first three are unstable, are de-

scribed in Samelson and Wolfe (2003). That study used an approximate monodromy

matrix constructed from and projected into the subspace spanned by the gravest

36 zonal and 40 meridional Fourier modes of a 48 × 40 resolution model to obtain

the Floquet vectors, instead of the full monodromy matrix at 72 × 62 resolution.
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index λ K/π (k, l)

1 0.0277 2.2 (2, 1)

2 0.0215 1.3 (1, 1)

3 0.0073 2.0 (2, 2)

4 0.0000 1.7 (1, 1)

5 0.0000 1.2 (1, 1)

6 -0.0289 2.1 (2, 1)

7 -0.0378 2.2 (1, 2)

8 -0.0736 2.1 (2, 2)

9 -0.1207 2.0 (1, 1)

10 -0.1393 2.6 (1, 3)

...
...

...
...

8920 -0.5167 2.6 (2, 1)

8921 -0.5273 2.7 (3, 1)

8922 -0.5590 3.3 (2, 2)

8923 -0.6338 2.3 (3, 1)

8924 -0.6487 2.4 (1, 2)

8925 -0.6488 2.4 (1, 2)

8926 -0.6956 2.5 (2, 1)

8927 -0.7006 1.5 (1, 1)

8928 -0.7358 2.4 (2, 1)

TABLE 3.2: Floquet exponent λ, mean wavenumber K, and dominate Fourier
component (k, l) of the leading ten and trailing nine wave dynamical modes. The
temporal and zonal-translation neutral modes (section 3.4.3) are entries four and
five, respectively.
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The approximate method was only able to obtain the leading twelve WD vectors

accurate to within a 10% first-return error. In contrast, the first twelve WD modes

obtained by the current method return to their initial conditions to within 10−10.

Despite the relative inaccuracy of the method and lower resolution used by SW03,

the large scale structures of the leading WD modes obtained using the two methods

are remarkably similar. In general, the leading WD modes appear to be robust to

changes in resolution or computational method. Modes obtained with one resolution

or method can be identified in the spectrum determined using another resolution or

method with only modest changes in structure or Floquet exponent.

Since the leading modes obtained in the present study are similar to those

described in SW03, only the leading WD mode will be described here as an example

(Fig. 3.5, compare to SW03’s Fig. 5). This mode is dominated by the second

along-channel Fourier component, which is also the most unstable normal mode

of the spatially homogeneous system. Comparison with the basic cycle (Fig. 3.3)

shows that this disturbance grows and decays in phase with the basic cycle and

represents an intensification and down-channel shift of one eddy and a weakening

and up-channel shift of the other. The net effect is to narrow and intensify one

cross-channel jet while broadening and weakening the other.

The other growing and weakly decaying WD modes show a similar pattern:

They are dominated by large scales and grow and decay nearly in phase with the

basic cycle (Fig. 3.6). In spatial structure, the third growing mode is similar to the

first, as it is dominated by the second along-channel Fourier component (as well

as the second cross-channel Fourier component), while the second growing mode

has the (1, 1) Fourier component as its primary component and thus has a spatial

structure similar to that of the basic cycle (table 3.2).
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While the leading WD mode structure function φ1 is growing during the basic

cycle growth phase, the perturbation dynamics are dominated by the exchange of

PV with the mean flow (Fig. 3.7; terms B and C in (3.3)). During this time, the

perturbation PV flux is strongly down the background flow PV gradient (Fig. 3.8b),

as measured by the normalized perturbation enstrophy production

u′q′ ?∇q ≡
∫∫
u′q′ · ∇q dxdy

[∫∫
‖u′q′‖ dxdy

∫∫
‖∇q‖ dxdy

]1/2
, (3.10)

where u′ and q′ are computed from the Floquet structure functions. Between growth

phases, the leading Floquet vectors are advected by the background flow and eroded

by Ekman dissipation (Fig. 3.7b). During this time, the perturbation PV flux is

only weakly down-gradient. The leading FVs do not appear to undergo an inviscid

decay phase like that seen in the basic cycle. The growth-phase counter-gradient PV

flux is largest in the growing FVs (φ1 through φ3), smaller in the weakly decaying

FVs, and insignificant for φn, n ≥ 18. The behavior of the perturbation heat flux

(not shown) is similar.

In addition to the growing and weakly decaying modes, there is a comple-

mentary set of inviscidly damped WD modes (Fig. 3.9). These modes have spatial

scales similar to the leading Floquet vectors, but decay at rates much greater than

the frictional dissipation rate. Samelson (2001b) found a similar inviscidly damped

mode in a weakly nonlinear model of the baroclinic instability. SW03 could not

compute these modes because of limitations in their computational method.

The spatial scales of three most rapidly decaying Floquet vectors follow a

pattern similar to the leading three Floquet vectors, with the structure functions

φ8926 and φ8928 dominated by the second along-channel Fourier component and φ8927

dominated by the first along-channel Fourier component (Table 3.2). These trailing
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modes are nearly completely out of phase with the basic flow (Fig 3.6) and obtain

their maximum amplitude while the basic cycle is most zonally homogeneous. Thus,

the leading modes grow while the basic cycle is growing, and the trailing modes

grow while the basic cycle is either decaying or at very low amplitude. For t/T ≥

25/50, φ8926 and φ8928 repeat their growth/decay cycle shifted halfway down-channel;

φ8927 repeats its growth/decay cycle shifted halfway down-channel with the opposite

sign. These disturbances have a slight eastward phase shift with height, which is

unfavorable for baroclinic growth, and decay rapidly as the basic cycle enters its

growth phase. Note that the eastward phase shift of the modes shown in fig. 3.9

is not as dramatic as the westward phase shift of the leading WD mode shown in

fig. 3.5. This is in fact consistent with the classical Phillips model with dissipation:

Growing modes must have a significant westward phase shift merely to maintain

themselves against dissipation. A small eastward phase shift can result in a large

decay rate because the inviscid decay created by the unfavorable phase shift is added

to the already large viscous decay rate of the mode. The apparent north/south phase

shift seen in fig. 3.9 is likely due to the north/south asymmetry of the basic cycle.

In contrast to the leading FVs, the peak in PV exchange (terms B and C in

(3.3)) for the trailing FVs occurs before the growth phase of the basic cycle, while

the basic cycle is most zonally uniform (Fig. 3.7d shows φ8928; the other trailing FVs

are similar), and results in strong up-gradient flux of PV (Fig. 3.8). The up-gradient

PV flux is at a minimum when the basic cycle reaches its maximum amplitude, then

rebounds to moderate levels during the decay phase of the basic cycle. The trailing

modes are thus inviscidly damped throughout most of the basic cycle.

In summary, the leading WD modes grow by advecting PV and heat down-

gradient while the basic cycle is growing and are able to continue to do so even when
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the background flow is highly zonally inhomogeneous (Figs. 3.6 & 3.8). The down-

gradient PV and heat flux becomes weak during the decay phase of the basic cycle,

during which time the disturbances amplified during the growth phase are advected

and distorted by the background flow. The trailing FVs reach their largest amplitude

when the background flow is most zonal and advect PV and heat up-gradient, leading

to rapid inviscid decay (Figs. 3.6 & 3.8). Dissipation is never a leading order effect

(Fig. 3.7), but acts continuously and is sufficient to reduce the growth rates of the

three leading FVs and stabilize the others. Note, however, that, since the basic

flow has neither temporal nor spatial symmetry, a physically consistent quadratic

disturbance quantity cannot be defined, and the rigor of this interpretation of the

wave-mean interaction is necessarily limited.

3.4.3 Neutral Modes

Two of the wave-dynamical modes are neutral, with Floquet exponent exactly

equal to zero (Table 3.2). These modes exist as a consequence of the two continuous

symmetries—time and zonal translation—of the nonlinear evolution equation (3.1).

The temporal neutral mode has larger scales than the zonal-translation neutral

mode. The spatio-temporal structure of these modes is described in SW03, where

the temporal and zonal-translation modes are referred to as Φ4 and Φ5, respectively.

SW03, however, did not identify Φ5 as a neutral mode.

To see how these neutral modes arise from continuous symmetries of the non-

linear evolution equation, represent a general nonlinear equation for the evolution

of the state vector ψ by

ψt = N (ψ), (3.11)

where N is the nonlinear evolution operator and ψ is either steady, time-periodic,
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or uniformly bounded in time t and may depend on space x. Linear disturbances

ψ′ to ψ satisfy

ψ′t = Lψψ′, (3.12)

where Lψ is the linearization of N about ψ. Particular interest attaches to ‘normal-

mode type’ solutions to eq. (3.12), i.e., solutions of the form

ψ′(x, t) = φ(x, t)eλt, (3.13)

where the structure function φ is steady, time-periodic, or uniformly bounded in

time depending on the time-dependence of ψ. The evolution of φ is governed by the

(linear) equation

φt + λφ = Lψφ. (3.14)

Suppose now that N is invariant to changes in the continuous variable ξ,

which may be, for example, x or t. Then, if ψ(ξ) is a solution to (3.11), so also is

ψ(ξ + δξ) for any value of δξ. (The dependence of ψ on variables other than ξ has

been suppressed.) If δξ is small, then

ψ(ξ + δξ) = ψ(ξ) + δξψξ(ξ) +O(|δξ|2). (3.15)

Substitution into (3.11) gives

ψt + δξψξt = N (ψ + δξψξ) +O(|δξ|2) (3.16a)

= N (ψ) + δξLψψξ +O(|δξ|2), (3.16b)

which simplifies to

(ψξ)t = Lψ (ψξ) (3.17)

after the limit δξ → 0 is taken. Note that ψξ is steady, time-periodic, or uniformly

bounded in time if ψ is.
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Comparison of eq. (3.17) to eq. (3.14) shows that φ = ψξ is a solution to

eq. (3.14) with λ = 0. Thus, if N is invariant to changes in ξ, ψξ can be identified

as the structure function of a neutral normal mode. If the nonlinear solution ψ is

time-periodic, then so is the structure function ψξ and we can thus identify ψξ as a

neutral Floquet vector. Since (3.1) is invariant to translations in time t and the zonal

coordinate x, neutral modes will exist that are proportional to temporal and along-

channel derivatives of the basic cycle. The former corresponds to an infinitesimal

shift in time of the basic wave-mean oscillation while the later corresponds to an

infinitesimal along-channel shift in the position of the oscillation.

In practice, neither of the numerically determined neutral modes have Floquet

exponents exactly equal to zero due to numerical errors. For the temporal neutral

mode, small departures of the basic cycle from exact periodicity break the time

translation invariance of the basic cycle leading to small departures of the mode

from neutrality. The departures from exact periodicity are small (< 10−6) so the

magnitude of the corresponding exponent is less than 10−8.

The precision with which the zonal-translation neutral mode is determined is

limited both by the ability of the space-differencing scheme to resolve the fourth

derivative of the basic cycle (three from the gradient of the potential vorticity and

one from the neutral mode itself) and by the fact that imposing a numerical grid

transforms the continuous zonal symmetry into a discrete symmetry. The basic cycle

contains enough power at high wavenumbers and the numerical grid is course enough

even at the relatively high resolution of 72×62 that the magnitude of the numerically

determined Floquet exponent is greater than 10−3. Numerical experiments which

computed a subset of the Floquet vectors show that, when the resolution is increased

to 128×64, Φ5 converges to neutrality to within 10−4 (almost 100 times smaller than
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the next largest Floquet exponent). For consistency with the rest of the calculations,

the solution of Φ5 has been held at 72× 62, but the numerically determined zonal-

translation neutral vector has been replaced by the along-channel derivative of the

basic cycle, and the corresponding exponent has been set to zero.

3.4.4 Damped-Advective Modes

The vast majority (≈ 95% at 72 × 62 resolution) of the Floquet spectrum is

made up of vectors with small, irregular spatial features that are advected by the

mean flow and decay nearly at the dissipation rate r; they are thus called ‘damped-

advective’ (DA) modes (Fig. 3.4). Samelson (2001b) found a related set of damped

modes in the weakly nonlinear problem. SW03 did not find a set of DA in the fully

nonlinear problem due to limitations of their numerical method.

The evolution of the structure function φ4464, which is representative of this
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class, is characterized by the creation, decay, and advection of incoherent fine-scale

eddies (Fig. 3.10). These modes do not appear to have any coherent phase shift

with height. The perturbation PV flux of this mode is uncorrelated with the back-

ground PV gradient (Fig. 3.8); the perturbation heat flux (not shown) is similarly

uncorrelated with the background temperature gradient. This mode is thus unable

to effectively exchange vorticity or energy with the background flow and can only

decay by Ekman dissipation. Consistent with this fact, analysis of the term balance

for this mode shows that the dynamics reduces to passive advection of the distur-

bance PV by the background flow (Fig. 3.7c). Although the dissipation term (D)

remains small throughout the evolution of this mode, it remains larger than the only

term which can affect growth (term C). The dominance of terms A and B reflects

the leading order passive advective dynamics of the mode. The net effect of the

relatively small, continuous viscous decay is a large reduction in the amplitude of

the mode over the basic cycle.

The other DA modes are similar: they have complex exponents, little or no

phase shift with height or correlation between the perturbation PV (heat) fluxes with

the background PV (temperature) gradient, and term balances dominated by passive

advection. For a given mode amplitude, the dissipation term for the DA modes

is generally larger than for the WD modes, because the DA modes have smaller

scales. A few DA modes with very fine spatial scales (off the right-hand side of

figure 3.4) decay significantly slower than the dissipation rate (Re [λ] ∼ −0.4) due to

the fact that the Runge-Kutta time-stepping algorithm anomalously amplifies high

wavenumber Fourier modes (e.g., Durran, 1998, chap. 2). In a subset of numerical

solutions using the Adams-Bashforth scheme, which does not amplify these Fourier

modes, these vectors had the same spatial structures as those found with the Runge-
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Kutta scheme, but decayed with rates near r like the other DA modes.

In addition to having small spatial scales (i.e., large values of K), the DA

modes typically have broad wavenumber spectra (Fig. 3.11). For example, the

potential enstrophy wavenumber spectrum of φ4464 is essentially flat (Fig 3.11b), as

is the case for almost all of the DA modes, as evidenced by the fact that the energy

and potential enstrophy wavenumber spectra averaged over all DA modes with 4π <

K < 8π (8291 modes) are almost identical to the spectra of φ4464 (Fig 3.11). This

result is not specific to the choice of φ4464, as nearly all of the DA modes are

statistically similar to each other. Note that, if the enstrophy wavenumber spectra

remain flat in the continuum limit, the integral of the spectra (the total enstrophy)

will be unbounded.

Many of the features of the DA modes are similar to those of the continuum

modes which are frequently encountered in the study of scalar advection and the

stability of shear flow (e.g., Drazin and Reid, 2004, chap. 4). In models with con-

tinuous shear—such as the model discussed here—the spectrum of discrete normal

modes is generally not complete and must be supplemented by a set of continuum

normal modes in order to describe the evolution of arbitrary initial disturbances

(Orr, 1907). Such continuum modes are “weak” solutions to the governing equa-

tions because, while their streamfunctions fields are continuous, their vorticity fields

contain singular structures and the associated enstrophy is unbounded. From one

point of view, the continuum modes appear as a consequence of applying the normal-

mode formalism to a system which may be alternatively formulated as an advective

solution to an initial value problem (Orr, 1907; Case, 1960). The two formalisms

are equivalent for steady parallel shear flow, but the physical interpretation of the

advective solution is intuitively more appealing.
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When represented by a finite dimensional numerical model, the continuous

spectrum is artificially truncated and rendered discrete. The spatial structures of

the resulting numerically determined continuum modes are generally sensitive to the

exact nature of the numerical model, but the wavenumber spectra may often contain

significant contributions at high wavenumber; in particular, if the PV wavenumber

spectrum is nearly flat, it may indicate that the numerical model is attempting to

resolve singular structures in the PV. Thus, it is tempting to view the DA modes

obtained here as representing generalizations of the classical singular modes to time-

dependent background flows. The DA modes appear to have unbounded enstrophies

in the continuum limit and, consistent with the expected sensitivity of continuum

modes to the details of the numerical model, they are not robust to changes in

resolution. Floquet spectra calculated at slightly different resolutions produce sets

of DA modes which are statistically similar, but there is no direct correspondence

between the individual vectors produced at different resolutions (see section 3.5).

However, such a view is necessarily speculative, since it is based in part on the lack

of convergence of the numerical results to individually well-defined modes, and since

it is not known whether the time-dependent basic flow should possess an analogous

set of singular continuum modes. Consequently, the DA modes are best viewed as

representing, as a class, a generalized solution to the damped-advective initial value

problem. This point is discussed further in section 3.6.

3.5 Convergence of the Numerical Method

The continuous limit of the basic cycle possesses, in principle, an infinite set

of Floquet vectors. It would be of interest to determine, in the continuous limit,
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the number of FVs in each class and whether either class contains a continuum

of modes. There are few theoretical results which would constrain the number of

discrete normal modes in the continuous limit, so estimates of this number must be

obtained as part of the numerical solution.

Full Floquet spectra were obtained for resolutions of 24× 22, 36× 32, 48× 40,

54× 45, and 72× 62. As resolution increases, the corresponding distributions of λ

and Kφ rapidly approach limiting distributions dominated by the damped-advective

modes (Figs 3.12, 3.13). The spike at Im [λ] = 0 (Fig. 3.12b) and its disappearance

as the resolution is increased indicates that the number of wave-dynamical modes

with Im [λ] = 0, NRe, increases much more slowly than the total number of Floquet

vectors. The rate with which NRe increases becomes slower at high resolutions

(Fig 3.13). This suggests that NRe may be finite in the continuous limit.

The distribution of potential-vorticity-mean wavenumber K q (Fig. 3.12d) does

not converge to a limiting distribution, but takes the form of a series of spikes at

progressively higher wavenumber. The positions of the maxima are consistent with

a white enstrophy spectra for the damped-advective modes (see Fig. 3.11), for which

the expected value of the mean wavenumber is Kq = Kmax/2, where Kmax is the

maximum resolved wavenumber (Fig. 3.12d).

The total number of WD modes (i.e., those with K < 3π), NWD fluctuates

at low resolutions, but appears to have reached a limiting value NWD = 62 at the

highest two resolutions considered (Fig. 3.13). It is not clear whether this represents

the true number of WD modes in the continuum limit or whether more WD modes

will appear at higher resolution. Nevertheless, this result strongly suggests that the

number of WD modes is bounded in the limit of an infinitely finely resolved model.

In contrast to NWD and NRe, the number of intermediate and DA modes increases



78

−0.5 −0.45 −0.4
0

20

40

60

80

100

120

−0.1 −0.05 0 0.05 0.1
0

5

10

15

20

25

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

PSfrag replacements

Re[λ] Im[λ]
nn

nn

Kφ/π Kq/π

(a) (b)

(c) (d)

FIGURE 3.12: Normalized histograms of (a) Floquet vector growth rate Re[λ], (b)
imaginary part of the Floquet vector Im[λ], (c) mean total wavenumber Kφ of the
streamfunction φ, and (d) mean total wavenumber Kq of the potential vorticity q.
The line style gives the model resolution: 24× 22 (dash-dot black), 36× 32 (dashed
gray), 48 × 40 (dashed black), 54 × 45 (solid gray), and 72 × 62 (solid black). In
panel (a), the dashed vertical line gives the frictional dissipation rate −r. In panel
(b), the dashed vertical lines are at ±π/T . In panel (d), the dashed vertical lines
are at Kmax/2. The PDFs have negligible amplitude outside the ranges shown. 50
bins where used in all cases.
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rapidly as resolution increases. Whether the DA modes eventually merge into a

continuum is an open question.

3.6 Discussion

We have obtained a complete set of Floquet vectors for a baroclinic wave-mean

oscillation at high resolution. The Floquet vectors fall into two classes that have

direct physical interpretations, the wave-dynamical (WD) and damped-advective

(DA) modes.

The WD class (which includes the two neutral modes) consists of two groups,

one which contains vectors which grow or weakly decay (the leading vectors) and one
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which contains vectors which rapidly decay (the trailing vectors). The two groups

are distinguished primarily by their phase-shift with height and their growth-phase

relationship with the basic cycle: the leading vectors have a westward phase shift

and grow while the basic cycle is growing while the trailing vectors are tilted slightly

eastward and decay during the basic cycle growth phase. The leading vectors are

important for determining the asymptotic stability of the oscillation and, indeed,

the existence of three WD modes with Re [λ] > 0 confirms that the basic cycle is

unstable.

The DA class has many more members than the wave-dynamical class, but

they are all similar in spatial structure and decay rate. Due to their dominance of

the Floquet spectrum, any initial disturbance which contains small scale features

will excite a large number of DA modes. These modes will then describe most of the

variance at small scales before the asymptotic growth of the leading wave-dynamical

modes begins to dominate. This occurs very quickly since the e-folding decay time

of each DA mode is ∼ 1/r ≈ 0.05T . The dynamics of the damped-advective modes

are, to first order, advection of the PV field by the background flow. These modes

share many characteristics with the singular modes of parallel shear flow, including

flat PV wavenumber spectra and sensitivity to the details of the model configuration.

The existence of these two classes of normal-mode solutions to the numer-

ical Floquet eigenvalue problem indicates a dynamical splitting of the linear dis-

turbance problem for this time- and space-dependent baroclinic flow. On the one

hand, a small set of discrete, large-scale, growing or decaying normal-mode struc-

tures is easily identified. These modes have immediate physical interpretations and

are analogous to the familiar normal modes of steady parallel flow. They appear

naturally as intrinsic time-dependent eigenmodes of the linear disturbance flow. In
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contrast, the individual members of the large set of damped-advective modes should

be interpreted to represent, in sum, the frictionally damped advection of small-scale

potential vorticity anomalies by the basic flow. From a physical point of view, the

solution of this portion of the linear-disturbance initial value problem might be most

appropriately conceptualized, and perhaps even quantitatively computed, by using

the method of characteristics to follow initial disturbances along Lagrangian fluid

trajectories. This would be a natural extension of Orr’s (1907) characteristic-based

solution for advective motions in parallel shear flow, which provides an intuitive al-

ternative to the singular neutral mode description that arises from the corresponding

normal-mode eigenvalue problem (Case, 1960).

As discussed in SW03, the unstable wave-dynamical modes have intriguing

similarities to the unstable modes of the spatially homogeneous flow ψn = 0. In

particular, the dominant Fourier component of these modes corresponds, respec-

tively, to the first three normal modes of the spatially homogeneous flow (compare

tables 3.1 & 3.2). Both occur in the order (2, 1), (1, 1), (2, 2) although the leading

WD modes also contain strong contributions from other Fourier components. The

correspondence of the three most rapidly decaying wave-dynamical modes with the

three most stable modes of the homogeneous flow (which occur in the reverse order

of the unstable modes) is even stronger, since the trailing WD modes have their

largest amplitude when the background flow is most zonally uniform. The growth

(resp. decay) rates of the leading (resp. trailing) WD modes are greatly reduced

from those of the homogeneous, steady flow. This is evidently primarily due to

a reduction in the time-mean vertical shear from its undisturbed value of Us = 1

and the introduction of a time-mean barotropic shear due to modifications to the

mean flow by the basic cycle. The former effect reduces the potential energy avail-
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able for growing disturbances, while the latter reduces the ability of disturbances

to maintain the proper phase shift necessary to extract energy (i.e., the ‘barotropic

governor’ effect (James, 1987)).

It is interesting to note that the spatially homogeneous state ψn = 0 appears to

be a better predictor of the spatial structure and ordering of the leading WD modes

than the time- and zonal-mean of the basic cycle. The latter state is unstable to

a single linear disturbance (not shown) which is dominated by the (1, 1) Fourier

component and closely resembles WD mode φ2. The growth rate of this mode is

0.0763, only slightly greater than the growth rate of φ2 (0.0215). Disturbances to

the time- and zonal-mean flow which resemble WD modes φ1 and φ3 are both stable,

with the analog of φ1 more stable than that of φ3. The analogs to the trailing WD

modes are also disordered, with the first, second, and third most stable disturbances

to the time- and zonal-mean flow corresponding, respectively, to the second, third,

and first mode stable WD modes. While an analysis of the time-mean of a non-

stationary flow often does not provide a good estimate of the stability characteristics

of the non-stationary flow, it is perhaps surprising that this estimate is even worse,

with regard to mode structure and ordering, than that provided by the analysis of

the ψn = 0 state.

While the addition of high order (proportional to∇nψ, with n ≥ 4) dissipation

is known to remove singular modes from the spectrum of fluid stability problems

(Case, 1960), the Ekman dissipation—which reduces to Rayleigh damping of the

PV at high wavenumbers—used here is compatible with the existence of singular

modes. Numerical experiments at low resolution show that the addition of weak

damping proportional to ∇4ψ produced no systematic change in the general spatial

structure of the DA modes. The decay rates of the DA modes were enhanced, but
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the mean PV spectra of the DA modes remained white.

With the reasonable assumption that averages over the basic cycle provide

useful estimates of averages over the chaotic attractor (Samelson, 2001a), we may

cautiously generalize several of the results. The scales of the unstable modes on

the attractor should be similar to the scales of the background flow and have PV

fluxes which are strongly correlated to the background PV gradient, especially when

the background PV gradient is large. Disturbances which have scales significantly

smaller than those of the background flow will tend to project onto the general-

izations of the DA modes; thus, these disturbances will be simply advected and

rapidly damped. As a consequence, an arbitrary initial disturbance should become

dominated by large scale structures correlated with the background PV gradient in

a time which is short compared to the time-scales of the background flow. This

would greatly reduce the size of the space which must be searched to find initial

disturbances with a large impact on the flow at moderate lead times.

3.7 Summary

The Floquet vectors (FVs) obtained here are the time-dependent normal modes

for linear disturbances to the time-periodic background flow. The FVs split into two

dynamical classes which have direct physical interpretations: wave dynamical (WD)

modes and damped-advective (DA) modes. The WD modes are dominated by large-

scale disturbances which are frequency-locked to the basic cycle. These vectors grow

and decay via the same mechanisms as the basic cycle, by advecting heat (resp. vor-

ticity) across the background temperature (resp. PV) gradient. The number of WD

modes is much smaller than the total number of numerically determined FVs and
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these modes appear to form a discrete set. By contrast, the DA modes dominate the

numerical FV spectrum and the DA class, taken as a whole, appears to represent a

generalized solution to the damped advection problem, but individual DA modes do

not appear to have natural physical interpretations. These modes have fine scales

and decay at or near the frictional damping rate, but the detailed spatial structures

of individual modes are not stable with respect to small changes in resolution or

numerical method.

Accurate ensemble forecasting requires that the ensembles be initialized in such

a way that their subsequent evolution is representative of the possible future states

of the atmosphere or ocean. This initialization should also be economical, so that the

broadest possible set of future states is achieved by the smallest possible ensemble.

In the present case, the asymptotic stability of the basic cycle is determined by

the leading WD modes so these modes are a natural choice for the ensemble initial

conditions. These modes have the advantage that they are few in number and that

they are fluid instabilities which are related, in a straightforward manner, to the

background flow. This implies that the modes which are most interesting from the

standpoint of geophysical fluid dynamical instability theory are also natural choices

for ensemble initial conditions. Extensions of this work are in progress to address

these questions also from the point of view of optimal disturbance theory.
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4.1 Introduction

Geophysical flows are continually subjected to disturbances on a wide range

of temporal, spatial, and amplitude scales. These disturbances often excite insta-

bilities which cause the flows to evolve away from their previously observed or ex-

pected states. Classical studies of disturbance growth, encompassing the well-known

normal-mode instability theories of fluid dynamics, concentrated on the asymptotic

development of disturbances to idealized flows. Since the development of operational

numerical forecasting, increasing attention has focused on the transient development

of disturbances. For flows with complex time-dependence, however, the distinction

between asymptotic and transient stability is often not clear. For example, many

forced-dissipative flows evolve toward aperiodic attractors where all trajectories are

asymptotically unstable, yet disturbances to these trajectories may go through pe-

riods of dramatic transient growth and decay.

The transient development of disturbances is typically quantified using singu-

lar values and their associated singular vectors. Singular vectors are disturbances

which produce the greatest linear growth in a specified inner product over a specified

optimization time interval (Lorenz, 1965; Farrell, 1989). The asymptotic stability

of trajectories on aperiodic attractors is described (under suitable mathematical

conditions) by Lyapunov exponents which give the average growth rate of volume

elements in the attractor. In contrast to singular vectors, Lyapunov vectors associ-

ated with the Lyapunov exponents may be defined in a manner which is indepen-

dent of inner product or time-interval (e.g., Eckmann and Ruelle, 1985; Trevisan

and Pancotti, 1998; Wolfe and Samelson, 2006b). Lyapunov vectors often undergo

significant transient growth and decay in addition to their asymptotic, exponential
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evolution.

Both singular vectors and an analog of Lyapunov vectors, bred vectors, are

currently in use at operational forecasting centers as initial conditions for ensem-

ble forecasting systems (Buizza et al., 2005). Bred vectors are generated through

a repeated ‘breeding’ cycle by which the differences between the analysis and the

ensemble members are rescaled and added back to the analysis to generate a new

set of ensemble initial conditions (Toth and Kalnay, 1993, 1997). Since the ensem-

ble forecast models are nonlinear, bred vectors of sufficient magnitude are nonlinear

disturbances. If the amplitude of the bred vectors is constrained so that they distur-

bances remain linear, the process by which bred vectors are generated is analogous

to the methods used to estimate the Lyapunov exponents of dynamical systems

(Oseledec, 1968; Eckmann and Ruelle, 1985).

In the present contribution, we examine the mathematical and physical rela-

tionships between singular vectors and Lyapunov vectors. The relationship between

these quantities is of interest not only because of the connections to ensemble fore-

casting, but also because Lyapunov exponents and vectors are intrinsic, asymptotic

properties of a dynamical system’s attractor, whereas singular values and vectors

depend both on the choice of inner product and the time-interval of interest. Fur-

ther, the connection between transient and asymptotic stability in strongly time-

dependent systems has primarily been studied using either highly simplified, low-

order models (e.g. Lorenz, 1965; Trevisan and Pancotti, 1998; Samelson, 2001b) or

models with complexity comparable to global circulation models (e.g. Buizza and

Palmer, 1995; Palmer, 1996; Wei and Frederiksen, 2004). Examples of accessible,

intermediate complexity models are few (with exceptions; see, e.g., Moore and Mar-

iano, 1999; Samelson and Tziperman, 2001; Miller and Ehret, 2002). One goal of
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the present contribution is to present an accessible system wherein the relationships

between asymptotic and transient stability may be examined in detail.

The system under study is the nonlinear Phillips (1954) model. This model

is chosen because it is relatively well understood and occupies a middle ground

in complexity between the low-dimensional models used in classical predictability

studies and operational forecast models. The intermediate complexity of the model

allows the representation of non-trivial physics while still admitting a relatively

complete analysis.

Most of the present analysis focuses on a single unstable, nonlinear, time-

periodic oscillation (cycle) of the model. Periodic cycles are convenient because

full information about the evolution of linear disturbances can be obtained by a

single integration over the cycle. Additionally, time-periodicity imposes a definite

modal structure on the linear space tangent to the cycle in the form of Floquet

vectors, which are intrinsic quantities that completely characterize the evolution of

linear disturbances to the cycle. Floquet vectors may be unambiguously identified as

both normal modes and Lyapunov vectors. The wave-mean oscillation that will be

considered here and the associated Floquet vectors are described in detail in Wolfe

and Samelson (2006a, hereafter WS), which should be considered a companion to

the present contribution.

The format of the paper is as follows: In section 4.2, we briefly describe the

model and basic cycle used for the present analysis. We then briefly review the

characteristics of the Floquet vectors associated with the basic cycle in section 4.3.

Section 4.4 is devoted to a detailed discussion of the singular vectors and their

relationship to the Floquet vectors. In section 4.5, we examine the relationship

of the Floquet vectors and singular vectors to the local structure of the system’s
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attractor. A method for recovering the Floquet vectors from the singular vectors

is described and demonstrated in section 4.6. The significance of the results are

discussed in section 4.7. Finally, we summarize in section 4.8.

4.2 Model and Basic Cycle

The model studied here is the Phillips (1954) quasigeostrophic channel model

and is described in Pedlosky (1987, §7). For the present study, the Coriolis param-

eter f is constant, the equilibrium layer depths are equal, and the background flow

is steady, uniform, and zonal. The evolution of arbitrary amplitude disturbances to

the background flow is governed by

∂qn
∂t

+ Un
∂qn
∂x

+ J(ψn, qn)− (−1)nFUs
∂ψn
∂x

= −r∇2ψn

qn = ∇2ψn + (−1)nF (ψ1 − ψ2)

n = 1, 2 (4.1)

where ψn and qn are the disturbance streamfunctions and potential vorticities, re-

spectively, and the background flow has been chosen so that U1 = −U2 = Us/2.

The two parameters controlling the behavior of the system are the Froude number

F and the Ekman dissipation parameter r. In the notation of Klein and Pedlosky

(1986), we use

∆ ≡ F − π2 − 4r2 = 45,

γ ≡ r

√

8

∆
= 0.20

for the present study, which corresponds to the most strongly supercritical set of

parameters considered by Klein and Pedlosky (1986).

The equations were solved in the manner described in WS, except that Adams-

Bashforth three-level time-differencing scheme was used throughout. Also, since the
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singular vector calculation is numerically more stable than the Floquet problem, we

were able to use a slightly lower resolution than WS. Thus, the results of the present

study were obtained using Nx = 48 zonal and Ny = 40 meridional grid points, for a

total of 3840 variables, and a time step of ∆t = 0.0015.

The wave-mean oscillation considered here is a fully nonlinear, time-periodic

solution to (4.1) and will henceforth be referred to as the “basic cycle.” It has

a period of T ≈ 38.498, and begins as a nearly-zonal flow with a small super-

imposed perturbation. This perturbation grows into a pair of eddies which grow

in amplitude as they advect heat (proportional to ψT = ψ1 − ψ2) down-gradient,

across the channel. By t = 0.3T , these eddies are strongly nonlinear and have

closed streamfunction contours. The cross-channel heat flux produced by these

eddies reduces the background potential vorticity gradient sufficiently to halt and

then reverse the growth of the eddies. Toward the end of the decay phase, the

weakening eddies advect heat up-gradient, extracting energy from the wave and re-

establishing the nearly-zonal initial state, now shifted down-channel by one-half the

channel length. After passing through a second growth and decay phase the flow

returns to its initial state.

The period of the basic cycle is much longer than either the advective or

viscous time scales,

Ta =
1

Umax

≈ 0.02T (4.2)

Tv =
1

r
≈ 0.05T, (4.3)

respectively. Since the basic cycle undergoes two growth and decay episodes in each

period, the characteristic time scale for baroclinic wave growth is

Tw ≈ 0.25T. (4.4)
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Based on the above scales, we expect advective alignment of disturbances to be

important only on extremely short time scales. Baroclinic processes related to the

growth and maintenance of the basic cycle are expected to dominate disturbance

growth for moderate to long time scales.

4.3 Floquet Vectors

For a detailed discussion of the Floquet vectors and their spatio-temporal

structure, see WS. A short summary of the results of WS is included here for com-

pleteness.

Floquet vectors (FVs) φi are the eigenvectors of the one-period linear distur-

bance propagator L(T ) and completely characterize the evolution of linear distur-

bances to a time-periodic cycle. The spatio-temporal characteristics and asymptotic

stability of the FVs thus determine if and how the basic cycle becomes unstable. In

the present case, three of the FVs are unstable and two are neutral, indicating that

the basic cycle is, in fact, unstable. The number of unstable and neutral modes is

independent of resolution and thus is a characteristic of the basic cycle only. The

rest of the Floquet spectrum is completed by a large number of decaying modes, the

exact number of which depends on resolution.

The exponential growth of the unstable FVs is relatively slow, with e-folding

times of

T1 ≈ 0.9T,

T2 ≈ 1.2T,

T3 ≈ 3.6T,
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for the first, second, and third FVs, respectively. While these time scales are longer

than the transient baroclinic wave growth time scale Tw, the leading FVs undergo

significant transient growth and decay in phase with the basic cycle. The maximum

transient growth rate of the unstable FVs is inner product dependent, but is on

average about ten times faster than the exponential growth rate in most physically

motivated inner products.

In addition to the three unstable FVs, the Floquet spectrum contains two

neutral modes φ4 and φ5 which are proportional to the time and zonal, respectively,

derivatives of the basic cycle. These neutral modes arise as a consequence of the

two continuous symmetries, temporal- and zonal-translation, of (4.1).

The majority of the FVs have exponents whose real parts lie near the dissi-

pation rate r, while a small number of vectors have exponents whose real parts are

significantly greater, or less, than the dissipation rate. Thus, the bulk of the FVs

are stable and decay at rates near the dissipation rate of the model. The leading

vectors either grow or decay weakly while the trailing vectors decay much more

rapidly than the dissipation rate.

FVs with decay rates well separated from the dissipation rate tend to be

dominated by disturbances with large scales, while those with decay rates near the

dissipation rate have much smaller scales. These two classes will be referred to as the

“wave-dynamical” (WD) and “damped-advective” (DA) classes, respectively. Those

FVs with large scales have—with few exceptions—purely real Floquet exponents

(i.e. they are frequency-locked to the basic cycle). While the large scale FVs are

dominated by a small number of Fourier components, the fine-scale FVs tend to

contain significant contributions from many Fourier components. These FVs have

complex Floquet exponents with real parts that lie near the dissipation rate and
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imaginary parts which are distributed approximately uniformly between ±π/T (i.e.,

their periods differ from that of the basic cycle).

An important property of these FVs from the point of optimal disturbances

(singular vectors) is that they are non-orthogonal in the inner products considered in

section 4.4. This follows from the fact that the one-period propagator L(T ) is non-

normal (i.e., it does not commute with its adjoint L(T )†) in these inner products.

A further consequence of the non-normality of L(T ) is that the adjoint FVs θi, the

eigenvectors of the adjoint propagator, are distinct from the ‘forward’ FVs φi. The

θi are non-orthogonal, as well, but can be ordered so that they satisfy the following

orthogonality relationship with the φi:

〈θi,φj〉 = Π−1
ij δij, (4.5)

where Π is a diagonal matrix whose nonzero entries are the ‘projectabilities’ of the

adjoint FVs onto the forward FVs (Zhang, 1988).

If the chosen inner product 〈·, ·〉 is characterized by the matrix N such that

〈v,w〉 = vTNw, (4.6)

then the adjoint propagator satisfies

NL(T )† = L(T )TN. (4.7)

The θi may then be defined in terms of the φi as

T = N−1F−TΠ−1, (4.8)

where T and F are matrices whose columns are the θi and φi, respectively. While

matrix inversion is not necessarily more efficient then eigenvalue decomposition,
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computation of the adjoint FVs via (4.8) ensures that they are automatically sorted

properly.

The primary property of the θi which will be of use in the present study is

that, for large optimization times, the adjoint FV θi is the optimal excitation of φi

with respect to the inner product defining the adjoint. (Farrell (1989) and Buizza

and Palmer (1995) demonstrate this fact for stationary flows. The extension to

time-periodic flows is straightforward.) That is, θi is the smallest perturbation at

time t0 which will produce an excitation of φi at unit amplitude at a later time t1.

4.4 Singular Vectors

4.4.1 Formulation

Singular vectors (SVs) optimize the growth of perturbations in a specified inner

product over a specified optimization interval τ = t1 − t0. Let ξj(t) represent the

jth most rapidly growing SV. Since the FVs span the space of linear disturbances,

ξj(t) may be written as a fixed sum of FVs,

ξj(t) =
N∑

i=1

φi(t)pij = F(t)pj. (4.9)

The projection coefficients pj are independent of time, so if the φi(t) are known,

ξj(t) is determined for all time. The SV optimization problem leads, in the usual

way (e.g. Buizza et al., 1993), to the generalized eigenvalue problem

F(t1)TNF(t1)pj = σ2
jF(t0)TNF(t0)pj (4.10)

for the SVs and the singular values σj, where N is the matrix which characterizes

the specified inner product. Note that the pj are not invariant under an arbitrary
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rescaling of the FVs; in what follows, we have chosen the FVs to have unit amplitude

in the specified norm at the initialization time t0.

The SV ξj may equivalently be written as a fixed sum of adjoint FVs θi(t),

ξj(t) =
N∑

i=1

θi(t)qij = T(t)qj. (4.11)

Such an expansion is useful since, for large optimization intervals, the optimal exci-

tation of the normal mode φi is the corresponding adjoint normal mode θi (Farrell,

1989; Buizza and Palmer, 1995). The qj satisfy the generalized eigenvalue problem

T(t1)TNT(t1)qj = σ−2
j T(t0)TNT(t0)qj, (4.12)

but if—as in the present case—the complete set of FVs is available, the qj may be

more efficiently computed using

qj = T(t0)−1F(t0)pj = ΠF(t0)TNF(t0)pj, (4.13)

where the last equality follows from (4.8). Note that the RHS of (4.13) is merely

the RHS of (4.10) weighted by the projectability factors Π.

The SVs depend on the initialization and optimization times t0 and t1 as well

as on the inner products defined by the matrix N. We have calculated SVs using

inner products 〈·, ·〉 corresponding to the streamfunction variance (SA), wave energy

(WE), and potential enstrophy (PV). These inner products are defined as follows:

〈v,w〉SA =
2∑

n=1

∫∫

ψ(v)
n ψ(w)

n dx dy, (4.14)

〈v,w〉WE =
2∑

n=1

1

2

∫∫

∇ψ(v)
n · ∇ψ(w)

n dx dy

+
F

2

∫∫

(ψ
(v)
1 − ψ(v)

2 )(ψ
(w)
1 − ψ(w)

2 ) dx dy, (4.15)

〈v,w〉PV =
2∑

n=1

∫∫

q(v)
n q(w)

n dx dy, (4.16)
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where ψ(v,w) and q(v,w) denote the streamfunction and potential vorticity associated

with the state vectors v and w and the integrals are taken over the entire domain.

4.4.2 Results

Singular vectors are computed for the unstable basic cycle. The dependence

on both the initialization time t0 and optimization interval τ is investigated by

computing SVs with fixed t0, but variable τ , and fixed τ , but variable t0. The

eigenvalue problem eq. (4.10) for the SVs yields as many SVs as model variables

(in this case, 3840). A subset of the calculations were repeated at higher resolution

with little change in the structure of the extremal (i.e., most rapidly growing and

decaying) SVs. The SVs in the middle of the spectrum—which are not the focus of

the present contribution—changed in number and detailed physical structure with

changes in resolution, but their overall statistical character remained the same. See

WS for a detailed discussion of the effects of resolution on the structure of linear

disturbances to the basic cycle.

4.4.2.1 Fixed initialization time

The singular values undergo a short period of super-Lyapunov (i.e., faster than

the exponential growth rate of the FVs) growth and decay for short optimization

intervals (Fig. 4.1). The rapid transient growth period is more pronounced in the

SA inner product than in the WE inner product, while the SVs in the WE inner

product similarly show more transient growth than the SVs in the PV inner product

(Fig. 4.2). In all cases the growth rate singular values becomes comparable to the

effective exponential growth rate of the FVs,

λeff,j(t2) =
1

t2 − t1
ln
‖φj(t2)‖
‖φj(t1)‖ , (4.17)
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FIGURE 4.1: Effective exponential growth rate λeff = lnσ(τ)/τ of the first (upper
panel) and last (lower panel) ten SVs (solid) and FVs (dashed) in the WE norm,
as well as the respective Floquet exponents (dotted) as a function of optimization
interval τ/T . The growth rates have been offset from each other by 0.1 clarity. The
least rapidly growing (upper panel) and decaying (lower panel) vectors have zero
offset. The indices of the FVs and SVs are given to the right of the panels.
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for optimization intervals greater than a few advective time scales Ta, or roughly one

baroclinic growth time scale Tw ≈ 0.25T (Fig. 4.1). Further, the growth rates of the

SVs asymptotically approach the Floquet exponents as the optimization interval τ

increases.

Once τ & Tw, the SVs in each inner product divide into two classes much like

the FVs. The first class, which may be identified with the wave-dynamical (WD)

class, is made up of vectors whose singular values either grow or decay at rates which

are significantly different than the dissipation rate. The second class is made up of

a large number of SVs which decay at or near the dissipation rate, and SVs may be

identified with the damped-advective (DA) class. These SVs were calculated, but

are omitted from figure 4.2 for clarity. The WD singular values show pronounced

oscillations on the time scale of the basic cycle wave growth time scale Tw. These

oscillations are in phase with the basic cycle in the SA inner product, but slightly

trail the basic cycle in the WE and PV inner product. This difference is most likely

due to the fact that energy and PV disturbances continue to sharpen during the

early parts of the basic cycle decay phase.

While the WD singular values are well separated relative to the DA singular

values, the separation is not perfect and the SVs exchange stability frequently, which

makes the ranking of the SVs ambiguous. For this section, the numerical ranking

of the SVs is based on the ranking of the corresponding singular values at the

largest optimization interval considered (τ = 2T ). Thus, ξ1 is the leading SV at

time τ = 2T , but since the SVs exchange stability as the optimization interval is

changed, ξ1 may not be the leading SV for τ < 2T . Since the physical structures of

the SVs change continuously as the optimization interval is varied, the individual

SVs may be consistently identified even if the singular values cross.
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For the remainder of this section, the discussion will focus on the SVs com-

puted in the WE inner product, with comments on the SA and PV SVs only when

their behavior differs significantly from the WE SVs. This focus on the WE SVs

is reasonable both because they typically show behavior which is intermediate be-

tween the SA and PV SVs and because the WE inner product is the analog, in

the Phillips model, of the ‘total energy’ inner product commonly used to compute

singular vectors in atmospheric global circulation models (Buizza and Palmer, 1995;

Palmer, 1996).

The leading WE SVs show significant contributions from a large number of

FVs (Fig. 4.3). The largest contributions often come from weakly decaying WD FVs

or from DA FVs, while the leading FVs are typically subdominant. By contrast,

the leading SVs are relatively simple functions of a small number of the adjoint FVs

(Fig. 4.4). In fact, for τ & 2Tw, the leading SVs are nearly optimal excitations of

the leading FVs. Thus, by the optimization time, the leading SVs will be nearly

collinear with the leading FVs. Note that both ξ2 and ξ5 (resp. ξ3 and ξ6) have

large projections onto θ2 and θ4 (resp. θ3 and θ6), but the roles of the adjoint FVs

are reversed. This occurs because θ2 and θ4 (resp. θ3 and θ6) are orthogonal, or

nearly so, in all three inner products, to all of the leading adjoint FVs except each

other.

For short optimization intervals τ ≈ Ta, the leading WE SVs show the classic

‘chevron’ shape formed by the disturbances leaning into the horizontal shear (Zeng,

1983; Buizza and Palmer, 1995), which is maximum at the channel walls (Fig. 4.5a

shows ξ1, the other leading SVs are similar). By the optimization time, the shear

has straightened out the disturbances (Fig. 4.5b). Once the optimization interval

approaches Tw (Figs. 4.5c–h), the leading SVs show little sensitivity to the precise
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value of the optimization time, consistent with their FV decompositions (Figs 4.3

& 4.4). While baroclinic processes dominate the growth processes for longer opti-

mization intervals, the initial disturbances still show some tendency to lean into the

shear, forming distorted chevron shapes (Figs. 4.5c, e, & g). Interestingly, all of the

leading SVs show a westward phase shift with height, even those whose optimization

intervals are much less than the baroclinic time scale Tw. Thus, even those distur-

bances which obtain most of their transient growth through advective alignment are

set up to continue their growth due to baroclinic processes. As expected from the

adjoint Floquet decomposition q1 (Fig. 4.4), the final conditions of the leading SV

(Figs. 4.5d, f & h) strongly resemble the leading FV (see WS, figure 5).

For optimization intervals τ & 2Tw, the most rapidly damped SVs project

onto only the most rapidly damped FVs (Fig. 4.6). This is a consequence of the

optimization problem which defines the SVs: the most rapidly damped SVs can

only project onto the most rapidly damped FVs, since if they did not they would

decay less rapidly. As with the leading SVs, the FV components of the most rapidly

decaying SVs tend to occur in alternating pairs due to the fact that the FV pairs

φ3835,3839, φ3836,3840, and φ3837,3838 are orthogonal (to within numerical precision),

in all three inner products, to all the other rapidly decaying FVs except each other.

For τ ≈ Ta (Fig. 4.7a), the initial conditions for the rapidly decaying SVs are

localized in regions of strong shear and take the form of very fine-scale disturbances

which tilt ‘out’ of the shear (i.e., in the opposite sense as the leading SVs). By the

optimization time, these disturbances have been advected downstream and extended

by the shear into thin filaments (Fig. 4.7b). The initial conditions of the rapidly

decaying SVs become independent of the optimization interval even more quickly

than the leading SVs and, by τ ≈ Tw strongly resemble the most rapidly decaying
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norm ‖F0NF0 − I‖2

SA 153

WE 46.9

PV 12.8

TABLE 4.1: 2-norm of the off-diagonal part of the matrix of inner products F0NF0

in the three inner products. The extremal possibilities are ‖F0NF0 − I‖2 = 0 if all
FVs are orthogonal and ‖F0NF0 − I‖2 = 3839 if all FVs are collinear.

FVs (compare figs. 4.7c, e, & g to WS fig. 9). The final conditions at moderate to

long optimization intervals appear filamented (Fig. 4.7d) or ragged (Figs. 4.7f & h).

These structures are not very meaningful physically because they are determined

by the very small amplitude Floquet components that are left after the trailing

FVs decay away. These components are primarily determined by the requirement

that the final conditions of the decaying SVs are orthogonal to all the less rapidly

decaying SVs and their small amplitude makes them subject to numerical noise.

Both the leading and most rapidly decaying SVs appear to be converging to

constant linear combinations of FVs as τ increases, for all inner products considered

(Figs. 4.3, 4.4, & 4.6). The rate of convergence, however, is different for different

SVs, as ξ4 and ξ5 still show marked oscillations in their (adjoint) FV decompositions

for the largest optimization intervals shown. In fact, the SVs converge exponentially

at a rate which may be estimated from the Floquet exponents to orthogonalizations

of the FVs as the optimization time |τ | → ∞ (Wolfe and Samelson, 2006b). This

convergence will be explored more fully in in section 4.6.

The Floquet decompositions of the SVs in the other two inner products are

qualitatively similar. The primary difference is that, as the number of derivatives in
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the inner product decreases, the number of FVs contributing significantly to each

SV increases. This is due to the fact that the FVs themselves become closer to

orthogonal as the number of derivatives in the inner product increases (Table 4.1).

Additionally, the physical structures of the SVs in the SA inner product are of

significantly finer scale, while those in the PV inner product take the form of channel-

scale disturbances. The scale evolution of the SVs in all three inner products is

explored more fully in section 4.4.2.2.

Essentially identical results obtain if the initialization time is chosen to be

near a cycle maximum, except that the initial, advective growth is more rapid due

to the stronger shear field present near the cycle maximum.

4.4.2.2 Fixed optimization interval τ = T

The results of the previous section show that, for a fixed initialization time,

the leading SVs rapidly approach optimal excitations of the leading FVs while the

rapidly decaying SVs tend toward the rapidly deacying FVs. It is not immediately

clear, however, that this result holds for arbitrary initialization times. Further,

the background flow and FVs undergo significant changes in spatial structure as

the basic cycle evolves. The SVs may be expected to undergo similar changes in

structure as the initialization time varies throughout the basic cycle. It is of interest

to determine if the SVs remain relatively simple functions of the FVs even though

both are repectively strongly time-dependent.

To this end, we examine the SVs as a function of initialization time with

optimization interval fixed to τ = T , the period of the basic cycle. This choice of the

optimization interval simplifies the interpretation of changes in the SVs initial and

final conditions because the state of the basic cycle is identical at the initialization
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and optimization times. The interval τ = T encompases two baroclinic life cycles

and falls within the ‘medium-range’ time scale of operational forecasting (about

6–10 days). It should be noted that realistic forecast errors are unlikely to remain

linear over this time scale, so direct application of the results of this section to

forecasting problems must be made with care. Nevertheless, this time scale remains

interesting from the point of view of the general theory of linear disturbance growth.

The ‘short-range’ case of τ = Tw, over which forecast errors are likely evolve linearly,

is discussed in section 4.4.2.3.

For the present section, the numerical ranking of the SVs is based on the

ranking of the corresponding singular values the largest initialization time considered

(t0 = T ). Thus, ξ1 is the leading SV at time t0 = T , but since the SVs exchange

stability as the initialization time changes, ξ1 may not be the leading SV for t0 < T .

The SVs again divide into the WD and DA classes. The WD singular values

show large (factor of 10) oscillations on the time scales of the basic cycle. The WE

singular values lag slightly behind the basic cycle (Fig. 4.8) as do the PV singular

values (not shown), while the singular values in SA inner product oscillate in phase

with the basic cycle. The singular value structure is qualitatively similar for all

three inner products. Quantitatively, the maximum growth factors for the WE and

PV inner products are similar (21 and 35, respectively), while the maximum growth

possible in the SA inner product is 5 times larger than for the PV inner product.

While the most rapidly growing SV varies with initialization interval, the five most

rapidly growing SVs always have singular values greater than unity. ξ6 sometimes

grows and sometimes decays. This basic result holds in the all three inner products.

As with the fixed initialization time calculations, the leading SVs have signifi-

cant contributions from a large number of FVs (not shown). In addition, the Floquet
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decompositions are strong functions of time, showing significant oscillations on the

time scale of the basic cycle. By contrast, the leading SVs are relatively simple func-

tions of a small number of the adjoint FVs (Fig. 4.9). In fact, for each initialization

time, the leading five SVs are nearly optimal excitations of same FVs. Both ξ2 and

ξ5 (resp. ξ4 and ξ6) have large projections onto θ1 and θ7 (resp. θ2 and θ4), but

the roles of the adjoint FVs are reversed. As in the previous sections, this occurs

because θ1 and θ7 (resp. θ2 and θ4) are orthogonal, in all three inner products, to

all of the leading adjoint FVs except each other.

The most rapidly decaying SVs also project onto the same FVs, regardless of

initialization time (Fig. 4.10). ξ3836 and ξ3838 project strongly onto the same FVs,

but with their roles exchanged.

Despite the qualitative similarity of the singular values and Floquet decom-

positions of SVs calculated in the three inner products, the temporal evolution of

their spatial scales is remarkable different. The leading SVs in the SA inner product

are dominated by very small structures at the initialization time, but systematically

evolve toward larger scales by the optimization time (Fig. 4.11a), where scale is

measured by the mean wavenumber K, defined by

K
2

=

∫
|∇ψ1|2 + |∇ψ2|2 dx

∫
ψ2

1 + ψ2
2 dx

. (4.18)

The leading WE SVs show similar behavior, but the initial SVs are larger scale

and the up-scale evolution is significantly weaker (Fig. 4.11c, see also figs. 4.5 &

4.14). The PV SVs, by contrast, are nearly channel scale (the largest possible wave

has K = π) at both the initialization and optimization times and evolve toward

slightly smaller scales (Fig. 4.11e). In all three cases, the most rapidly decaying SVs

show evolution in the opposite sense as the leading SVs (Fig. 4.11b, d & f, see also
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fig. 4.7).

4.4.2.3 Fixed optimization interval τ = Tw

As mentioned in the previous section, τ = T is a relatively long lead time

for operational forecasts and realistic forecast errors are unlikely to evolve linearly

over this time interval. However, error growth is expected to remain linear over

the ‘short-range’ forecasting time scale, encompasing approximately one baroclinic

growth time scale Tw. The impact of varying initialization time is thus examined

for the case of the optimization interval fixed at τ = Tw.

Remarkably, the SVs with τ = Tw do not have significantly lower growth

factors than those with τ = T (Fig. 4.12). This is consistent with the observation

that most of the super-Lyapunov growth in the singular values occurs for τ ≤ Tw,

after which the growth rate of the singular values closely matches that of the FVs

(Fig. 4.1). As with the case τ = T , the WD singular values oscillate on the time scale

of the basic cycle growth and decay phases, but in the present case the oscillations

lead the basic cycle by approximately 90◦. Thus, disturbances made at the beginning

of the basic cycle growth phase have the greatest capacity for growth over the

interval τ = Tw because they evolve with the growth of the basic cycle. Conversely,

disturbances made at the beginning of the basic cycle decay phase have a poor

capacity for growth because they evolve against the decay of the basic cycle. An

alternative viewpoint is that small changes to the background flow made at the

beginning of the basic cycle growth (resp. decay) phase evolve into small changes

relative to the background flow by the basic cycle maximum (resp. minimum), but

since the amplitude of the basic cycle has significantly increased (resp. decreased) the

small changes correspond to disturbances of increased (resp. decreased) amplitude.
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The less dominant singular values exhibit progressively smaller oscillations and

decreased lead times compared to the leading singular values, most likely due the

increased contribution of decaying FVs to the corresponding SVs. These SVs thus

have less time in which to grow with the basic cycle before the asymptotic decay of

the FVs begins to dominate. (This also occurs for τ = T , but the effect is too small

to be seen in figure 4.8.)

The modal structure of the SVs with τ = Tw is not as clear as those at

longer optimization intervals. The Floquet decompositions of both the leading and

rapidly damped SVs have a large number of components of roughly equal magnitude

which are complicated functions of initialization time. However, the leading SVs are

still relatively simple functions of a few adjoint FVs (Fig. 4.13), although a larger

number of adjoint FVs have significant magnitude than at τ = T . The simplicity of

the adjoint representation is reflected in the physical structures of the SVs as well,

which resemble the leading FVs at the optimization time t1 (Fig. 4.14). Note that

figure 4.14 shows ξ4 which, due to differences in ranking, is the same as ξ1 shown

in figure 4.5c & d for t0 = 0.

The chevron-shaped structures (see Fig. 4.5) are present in the initial SVs

when the basic flow is predominately zonal. As the basic cycle evolves the flow be-

comes increasingly non-zonal and the chevron structures become difficult to discern,

completely disappearing for initialization times 0.2T ≤ t0 ≤ 0.3T . Further, at these

times the scale of the basic flow nearly matches the scale of the singular vectors.

The chevron shapes are predicted from a WKBJ analysis which requires the flow to

vary slowly on the scale of the disturbances (Zeng, 1983; Buizza and Palmer, 1995),

so it is not surprising that they should disappear precisely when the basic flow vi-

olates the WKBJ assumptions. During these times, the initial SV disturbances are
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located near where the basic flow undergoes rapid changes in direction. These areas

are regions of high strain which are conducive to rapid disturbance growth through

barotropic processes (Moore and Mariano, 1999). This growth mechanism is suffi-

ciently effective that the leading SVs obtain their largest growth during these times

(Fig. 4.12).

Despite the complexity of their Floquet decomposition, the initial conditions

of the most rapidly decaying SVs (not shown) maintain a strong visual resemblance

to the most rapidly decaying FVs. The final conditions of these SVs, on the other

hand, are dominated by filamented and patchy structures similar to those seen in

figure 4.7.

4.5 Relationship to the local attractor structure

If model used for ensemble forecasting is a faithful representation of the true

dynamics of the atmosphere, the attractor of the model should resemble the attractor

of the atmosphere. In that case, errors in the forecast should primarily be errors of

placement within the attractor. For lead times sufficiently short that disturbance

dynamics are linear (2–3 days in the atmosphere), the initialization error should

then lie in the unstable tangent linear space of the attractor. Thus, a common

argument against using SVs in ensemble forecasting schemes is that the SV initial

conditions point off (i.e., they are not geometrically tangent to) the attractor and

that much of their growth is due to rapid rotation of the disturbances back onto the

attractor (e.g., Kalnay, 2003, §6.3). The growing Lyapunov vectors (the aperiodic

analog of FVs), on the other hand, determine local unstable tangent linear space

which, since attractors are unions of unstable manifolds, determines the geometric
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with dSA < 0.04.

tangent of the local attractor.

These statements can be examined in a quantitative manner in the present

context, both with regard to the unstable cycle and to the more complex chaotic

attractor itself. The leading FVs define the local unstable tangent space to the basic

cycle and it is clear from results of section 4.4 that the leading SVs do not project

strongly into the subspace of the leading FVs, but instead have strong projections

onto the adjoint FVs. Thus, the leading SVs point ‘off’ the basic cycle and much

of their initial growth comes from rapid rotation into the unstable subspace defined

by the leading FVs.
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It is of interest to determine if these results generalize to the attractor at

large. We focus on trajectories within the attractor which are near the basic cycle

in following sense: Let the state vector formed by the basic cycle at the first cycle

maximum be denoted by Pb and define a Poincaré section by the hyperplane passing

through Pb with normal equal to the tangent to the basic cycle ∂tPb. Define ∆Pj ≡

Pj − Pb as the difference between the Poincaré intersections and the basic cycle.

The Poincaré intersections Pj with relative distance to Pb

dSA ≡
‖∆Pj‖SA

‖Pb‖SA

≤ 0.1, (4.19)

where ‖ · ‖SA is the norm induced by the SA inner product, are considered to be

‘near’ the basic cycle. Out of 120 000 Poincaré intersections, generated from a long

integration on the attractor, 210 near approaches to the basic cycle satisfying (4.19)

were found (Fig. 4.15). Since the attractor of the present system is a fairly high

dimensional object (Kaplan-Yorke dimension ≈ 7), any low period orbit represents

only a part of the attractor, and this small number of returns is not a surprise. The

210 returns are sufficient to furnish a useful description of the local structure of the

attractor. Note that these and the following calculations were performed using a

reduced resolution of 24× 22 for computational expediency.

The extent to which the leading FVs describe the variability of nearby trajec-

tories can be quantified by attempting to expand ∆Pj in an orthonormalization of

the leading n FVs φ̂:

∆Pj =
n∑

i=1

〈φ̂i,∆Pj〉SAφ̂i + ρ
(n)
j , (4.20)

where ρ
(n)
j is the residual after expanding ∆Pj in the first n FVs. The relative
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magnitude of the ρ
(n)
j ,

f
(n)
SA,j =

‖ρ(n)
j ‖SA

‖∆Pj‖SA

, (4.21)

gives the fraction of the variance of nearby Poincaré intersections explained by the

leading n FVs. It is found that the leading 10 FVs explain approximately 90% of

the local variance of ∆Pj, although there is significant point-to-point variability

(Fig. 4.16). The leading FVs thus point ‘onto’ the local attractor. Note that very

little improvement results from adding the fourth FV φ4. This FV is the neutral

mode proportional to ∂tPb, which defines the normal to the Poincaré section. The

∆Pj are thus orthogonal to φ4 by construction.

The fraction of the local variability on the Poincaré section explained by the

leading SVs may be similarly assessed by expanding ∆Pj in terms of the leading

SVs. The details of the calculation are unchanged, except that the inner product

use to calculate the SVs was also used to calculate the inner product in (4.20) and

to assess the magnitude of the residual. The initial conditions of the leading SVs

do a poor job of describing the local variation on the Poincaré section, with little

more than 10% of the variance captured by the WE and PV SVs and only about

2% captured by the SA SVs (Fig 4.17, left panels). The SV final conditions, on the

other hand, capture as much of the variance as the FVs (Fig 4.17, right panels).

The leading SV initial conditions thus point ‘off’ the local attractor, but rotate into

the attractor by the optimization time.
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4.6 Recovering Floquet vectors from singular vectors

4.6.1 Formulation

The case under present consideration is unusual in studies of linear distur-

bance growth, since the norm-independent quantities characterizing asymptotic dis-

turbance growth (i.e., Floquet/Lyapunov vectors) are known a priori and are used

to calculate the SVs. In most situations, a subset of the SVs are calculated directly

while the Lyapunov vectors may be difficult to obtain. Wolfe and Samelson (2006b)

have presented an efficient method for constructing the extremal n Lyapunov vectors

using just 2n SVs and demonstrated the effectiveness of this method using two low-

dimensional numerical examples. It is of interest to determine whether the method

remains effective when applied to a more complex model with thousands or millions

of variables. The present model, with 3840 variables, provides an ideal system with

which to begin answering this question. Furthermore, since the Floquet vectors are

already known, they may used to check the calculations. For a detailed discussion

and justification of the method for recovering Floquet vectors from SVs, see Wolfe

and Samelson (2006b). A brief recapitulation is given here for completeness.

Fix a time t. Under fairly general conditions, SVs converge exponentially as

τ → ∞ to constant linear combinations of the Lyapunov (here, Floquet) vectors

such that

F(t) = AX, (4.22)

F(t) = BY, (4.23)

where X is a matrix whose columns are the initial conditions ξ̂ of SVs initialized at

time t, Y is a matrix whose columns are the final conditions η̂ of SVs optimized at
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time t, F is as in sections 4.3 & 4.4, and A and B are upper and lower triangular,

respectively. The time dependence of X, Y, A, and B has been suppressed for

clarity. The convergence rate of the nth SV is given by the difference between the

real parts of the nth Floquet exponent and the nearest Floquet exponent associated

with a non-orthogonal FV. If the Floquet spectrum is degenerate, the SVs associated

with the multiple Floquet exponents will not exhibit exponential convergence to

constant vectors and may not converge at all. Note that complex conjugate Floquet

exponents are considered degenerate according to this definition.

The representations (4.22) & (4.23) and the method of Wolfe and Samelson

(2006b) allow the first n FVs to be recovered from 2n asymptotic SVs by finding

the non-trivial solution to

D(n)y(n) = 0, (4.24)

where

y
(n)
k = 〈η̂k,φn〉 k = 1, 2, . . . , n, (4.25)

D
(n)
kj =

n−1∑

i=1

〈η̂k, ξ̂i〉〈ξ̂i, η̂j〉 k, j ≤ n. (4.26)

The last n FVs may be obtained in a similar manner by finding the non-trivial

solution to

C(n)x(n) = 0, (4.27)

where

x
(n)
k = 〈ξ̂k+n−1,φn〉 k = 1, 2, . . . , N − n+ 1, (4.28)

C
(n)
ki =

N∑

j=n+1

〈ξ̂k+n−1, η̂j〉〈η̂j, ξ̂i+n−1〉 k, i ≤ N − n+ 1, (4.29)
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4.6.2 Results

The Floquet spectrum shows that a large number (∼ 3000) exponents cluster

near the dissipation rate (WS), and, thus, the associated SVs are expected con-

verge very slowly to their asymptotic forms. Further, unlike the examples in Wolfe

and Samelson (2006b), the Floquet spectrum contains a large number of exponents

which form complex conjugate pairs, so that the associate Lyapunov spectrum is,

in fact, degenerate. There is no formal reason to expect that the SVs associated

with degenerate Lyapunov exponents will assume an asymptotic form for any finite

optimization interval. Fortunately, the Floquet exponents on the extreme upper

and lower ends of the spectrum are distinct and well separated, with the exception

of the two neutral modes for which λ4 = λ5 = 0. The two neutral modes are, how-

ever, orthogonal in the inner products used here, so the degeneracy of the Floquet

exponents does not effect the convergence of the associated SVs.

The first and last ten SVs were calculated in the PV inner product for a fixed

set of optimization intervals, with the longest interval τ = 3T . The order of mag-

nitude of the convergence times is correct (Fig. 4.18), but they do not agree with

the expected convergence time to the same degree as with the low-order examples

of Wolfe and Samelson (2006b). Some of the discrepancy may be due to the fact

that—in contrast with the previous study—the present model is sufficiently com-

putationally burdensome that the optimization interval was not systematically in-

creased until convergence within a specified tolerance was observed. Thus, for some

of the SVs, there may not be sufficient data to accurately estimate the observed

convergence rate.

The FVs φ̂ recovered from the asymptotic SVs compare well with the FVs

calculated directly from the one-period propagator φ (Fig. 4.19). This agreement
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demonstrates that the efficient method of Wolfe and Samelson (2006b) can be used

successfully to computer Lyapunov vectors from SVs in a model with several thou-

sand degrees of freedom and multiple unstable modes. Curiously, while the leading

ten recovered FVs show a systematic improvement in accuracy as the optimization

interval is increased, a number of the trailing FVs do not. This may be due to the

fact the trailing FVs decay so rapidly (by more than 10−37 after three periods) that

the numerical stability of the tangent linear integration and eigenvalue calculation

are compromised for long optimization intervals.
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4.7 Discussion

A significant advantage of the present calculations is that they allow the con-

nection between normal mode disturbances (Floquet vectors) and optimal distur-

bances (singular vectors) to be explicitly displayed. The leading singular vectors are

non-modal disturbances: they have significant contributions from a large number of

damped FVs (Fig. 4.3) and owe a significant portion of their initial growth to the

rapid decay of the damped FVs. Further, as shown in section 4.5, the initial lead-

ing SVs point ‘off’ the local attractor. It appears (Figs. 4.6 & 4.10) that the most

rapidly damped SVs are modal, or nearly so, but this an illusion. The largest com-

ponents of the most rapidly damped SVs decay so quickly that, by the optimization

time, the physical structure of these SVs will be dominated by less rapidly decaying

FVs, no matter how small their initial projection onto the SVs. This view of the

most rapidly decaying SVs is consistent with the down-scale evolution of these SVs

(Fig. 4.11) which is due to the domination of the large-scale, but rapidly decaying,

FVs by smaller scale, less rapidly decaying, FVs as the disturbance evolves.

The non-modal character of the optimal disturbances is due entirely to the

non-orthogonality of the FVs, so it is worth examining the projections of the FVs

onto each other in some detail. While the leading 10 WD modes have significant

projections onto the DA modes—with pattern correlations greater than 0.75 in

the SA inner product at certain times—the temporal structure is interesting: The

leading WD modes are nearly orthogonal to the DA modes during the basic cycle

growth phase, while baroclinic dynamics are most pronounced. In contrast, large

projections of the WD modes onto the DA modes occur during the basic cycle decay

phase, when the dynamics are primarily viscous and advective. This behavior is
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more complicated than studied by Samelson (2001b) where the relative orientations

of the FVs were maintained throughout the cycle and advective dynamics were

never dominant, allowing the WD modes to remain nearly orthogonal to the DA

modes throughout the cycle. As the number of derivatives in the inner product

increases, the leading WD modes become progressively more orthogonal to the DA

modes. In the WE inner product, the maximum pattern correlation is 0.33, while it

is less than 0.07 in the PV norm. This explains why the transient, super-Lyapunov

growth is less apparent in the PV SV spectrum than in the WE and SA SV spectra.

The most rapidly damped WD modes show more complicated behavior, with some

modes projecting maximally onto the DA modes during the cycle decay phase, some

modes during the growth phase, and some modes during both phases. Further, the

pattern correlations are larger, with maximum PCs of at least 0.92, 0.61, and 0.39

in the SA, WE, and PV inner products, respectively.

Some of the apparent simplicity of the results discussed in section 4.4 may be

the result of the fact that the WD modes are nearly mutually orthogonal, in the

sense that a given WD mode has large projections on only a few other WD modes.

For example, the first three unstable FVs form a mutually orthogonal set in all

three inner products (to within numerical accuracy), as do the three most rapidly

decaying FVs. This orthogonality may be a result of the simplified geometry and the

dynamical constraints imposed by quasigeostrophy. Additionally, all of the unstable

modes supported by this system are of a single class (predominately baroclinic) and

evolve on similar time scales, whereas operational forecast models typically support

multiple competing modes of instability which may have a wide range of time scales.

Calculations similar to the present using less highly constrained models are likely

to produce more complicated results.
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The results of the present study are broadly consistent with those of Buizza

and Palmer (1995) who identify a systematic evolution of leading kinetic energy

SVs to larger scales, while PV SVs are dominated at initialization and optimization

time by planetary-scale disturbances. In the present study, the both the leading

SA and WE SVs show an evolution toward larger scales, with the scale change

more significant for the SA SVs. The PV SVs are dominated by channel-scale

disturbances at both the initialization and optimization times and actually evolve

toward slightly smaller scales. For the SA and WE SVs, the evolution to larger

scales occurs because the small scale components project strongly onto decaying

FVs. The PV SVs project primarily onto the leading and most rapidly damped

FVs, which have similar scales. The evolution of rapidly decaying SVs is essentially

opposite to that of the leading SVs in all three inner products: the SA and WE SVs

evolve toward smaller scales by the optimization while the PV SVs are similarly

dominated by channel-scale disturbances. Further, the decaying SVs show either

eastward or neutral phase shifts with height, in contrast to the leading SVs, which

have westward phase shifts. Reynolds and Palmer (1998) observed a very similar

relationship between the leading and decaying SVs in a simplified global forecast

model with 1449 degrees of freedom.

In contrast to results found by Vannitsem and Nicolis (1997) for a 3-layer

quasigeostrophic model, there does not appear to be a clear demarcation between

the scales of the growing SVs (indices 1–5) and the weakly decaying SVs (indices

6–25). This is perhaps a reflection of the structure of the underlying FVs, where

both the growing and weakly decaying FVs belong to the WD class and have very

similar scales.

Szuntogh et al. (1997) notes that the choice of the optimization interval leads
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to little significant change in the SVs once the optimization interval exceeds about

72 hours, or roughly one baroclinic growth time scale. This is consistent with what

we observe in the present system, where the SVs become approximately independent

of optimization interval once τ & Tw. As pointed out in section 4.6, the exponential

convergence of SVs to an asymptotic form independent of optimization interval is a

generic property of SVs, even when the underlying flow is time-dependent.

The dynamical splitting observed in the present system is not as clear as that

observed by Samelson (2001a,b) in a similar study of a weakly nonlinear model

of the baroclinic instability. In that system, the dynamical splitting was so pro-

nounced that the WD SVs projected strongly onto only the WD FVs. In that case,

the primary transient growth mechanism for the leading SVs was interference be-

tween the inviscidly growing (leading) and inviscidly decaying (trailing) WD modes,

which lead Samelson to conjecture that inviscidly damped modes might be impor-

tant for understanding the dynamics of transient error growth. In the present, less

constrained system, we find that while the PV SVs have large projections onto the

trailing WD FVs, the SA and WE SVs do not. This is due to the fact that PV SVs

are channel-scale disturbances and thus can only project strongly onto channel-scale

WD FVs. The SA and WE SVs, on the other hand, have smaller scales and can

project onto the small-scale DA modes. Thus, it appears that the importance of

the inviscidly damped FVs to transient disturbance growth is norm-dependent. It

should be noted, however, that all of the SVs have strong projections onto FVs (ei-

ther DA or WD modes) which decay at or faster than the dissipation rate, implying

that the calculation of SVs from a leading subspace of normal modes is likely to

produce highly sub-optimal SVs.

An essential question regarding SVs and Lyapunov (here Floquet) vectors is
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their relative utility in ensemble forecasting schemes. As noted in section 4.5 and by

other authors (e.g., Kalnay, 2003, §6.3 and references therein), the initial SVs point

‘off’ the attractor and thus represent ‘unlikely’ perturbations provided the forecast

model is a reasonably good representation of the atmosphere. This may indicate

that initial SVs are not a good choice for initial perturbations of ensemble members.

On the other hand, the results of the present study seem to indicate that the lead-

ing final, or ‘evolved,’ SVs with τ & Tw are approximately an orthogonalization of

the leading Lyapunov vectors. Thus, ensemble forecasting systems using Lyapunov

vectors and evolved SVs should behave roughly equivalently, all other things begin

equal. The choice between SVs and Lyapunov vectors then becomes one of compu-

tational expediency. SVs require the solution of either a large eigenvalue problem

or repeated integrations of a tangent linear model (Buizza et al., 2005) and, thus,

represent a significantly more expensive computation than Lyapunov vectors, which

can be computed at little additional cost to the ensemble forecast (Toth and Kalnay,

1993).

It should be noted that the present system is dominated by a single instability

with a single time scale Tw. In the atmosphere, multiple instabilities with multiple

time scales are present and there exists some evidence (Lorenz, 1996) that the lead-

ing Lyapunov vectors will be dominated by fast-growing, low-amplitude, instabilities

(e.g., convective instabilities) which do not have a large impact on the large-scale

flow. The breeding method, outlined in the introduction, attempts to circumvent

this problem by allowing the disturbances to reach sufficient amplitude that the

fast-growing, low-amplitude, disturbances saturate. The resulting bred vectors then

capture the dynamics of the slower-growing, but larger-amplitude, baroclinic dis-

turbances (Toth and Kalnay, 1993, 1997). The conclusions on the relative merits
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of SVs and Lyapunov vectors apply to bred vectors to the extent that bred vectors

are ‘proper’ nonlinear generalizations of Lyapunov vectors. That is, to the extent

that they capture the same patterns of variability that the leading Lyapunov vectors

would capture if the fast-growing, low-amplitude, disturbances were not present in

the system.

4.8 Summary

The singular vectors obtained in the present study characterize the transient

growth of disturbances to a nonlinear wave-mean oscillation of a 2-layer quasi-

geostrophic model. The model is simple enough to admit complete numerical solu-

tion in terms of time-dependent normal modes, but, with several thousand degrees

of freedom, complex enough to allow connections to be made to realistic operational

forecast models. Much like the Floquet vectors of the same system (WS), the singu-

lar vectors divide into two dynamical classes. Singular vectors in the wave-dynamical

(WD) class grow or decay at rates significantly different from the dissipation rate and

exhibit large oscillations on the time scale of the baroclinic wave mean oscillation.

The singular vector spectrum is completed by a large number of damped-advective

modes which decay at rates near the dissipation rate.

For optimization times greater than the baroclinic wave growth time scale,

the WD singular vectors asymptotically approach constant linear combinations of

Floquet vectors. The most rapidly decaying singular vectors project strongly onto

the most rapidly decaying Floquet vectors. In contrast, the leading singular vectors

project strongly onto the leading adjoint Floquet vectors. The leading singular

vectors are thus optimal excitations of the leading Floquet vectors. Calculations
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where the initialization time was allowed to vary while the optimization interval

was fixed to τ = T show that, while changes in the initialization time have a large

impact on the singular values, they cause little change in the projection of the

singular vectors onto the Floquet vectors. If the optimization interval is shortened

to τ = Tw, the decompositions of the SVs in terms of the forward SVs become

complicated functions of initialization time, but the leading SVs remain relatively

simple functions of the adjoint SVs.

Examination of Poincaré intersections near the basic cycle show that the lead-

ing FVs of the basic cycle point ‘into’ the local unstable tangent space of the at-

tractor. The leading initial SVs, by contrast, point ‘off’ the attractor, but rotate

into the local unstable tangent space by the optimization time. This demonstrates

the value of Lyapunov vectors (here FVs) for describing the local structure of the

attractor in a model of intermediate complexity, and suggests they may be useful

for even more complex models.

A method for recovering the leading Floquet vectors from a relatively small

number singular vectors was demonstrated using the present calculations. While this

system used in the present study is significantly more complex than those considered

by Wolfe and Samelson (2006b), the method was able to recover the leading Floquet

vectors at a relative accuracy of 1% using singular vectors with τ = T . Increasing

the optimization time generally lead to significantly improved accuracy. This result

suggests that the method may be robust enough for use in models with complexity

comparable to operational forecast models.
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5 SUMMARY

The study of disturbance growth is fundamental to the understanding of geo-

physical fluid instabilities and the forecasting of geophysical fluid flows. This dis-

sertation presented a series of studies examining three ways of describing linear

disturbances growth: normal modes, singular vectors, and Lyapunov vectors.

Chapter 2 gave a detailed discussion of the definitions of and relationships

between normal modes, singular vectors, and Lyapunov vectors. It was argued that

Lyapunov vectors provide a natural generalization of normal modes to aperiodic

flows. Based on the results of a two-dimensional example problem, it was concluded

that, under farly general conditions, singular vectors converge exponentially to con-

stant linear combinations of Lyapunov vectors. Based on this conclusion, a direct

and efficient method was developed which allows the first n Lyapunov vectors to

be constructed in a norm-independent manner from the first n asymptotic forward

and backward singular vectors. The method was demonstrated for two idealized

geophysical examples and was shown to give correct results.

The next two chapters presented a detailed study of the normal modes (Flo-

quet vectors) and singular vectors of a wave-mean oscillation in an intermediate

complexity geophysical model.

The Floquet vectors obtained in chapter 3 characterized the asymptotic sta-

bility of the wave-mean oscillation. These Floquet vectors split into two dynamical

classes which are analogous to those found by Samelson (2001b) in a weakly nonlin-

ear model of the baroclinic instability. The wave-dynamical class was characterized

by large-scale disturbances which are frequency-locked to the basic cycle and grow



148

or decay at rates which are well separated from the dissipation rate. These modes

were interpreted as a time-dependent analog of the inviscidly growing and decay-

ing modes of the classic Phillips (1954) model. The number of wave-dynamical

modes was much smaller than the total number of numerically determined Flo-

quet vectors and these modes appeared to form a discrete set. By contrast, the

damped-advective class, characterized by small-scale disturbances advected by the

background flow and damped at a rate near the dissipation rate, dominated the

numerical Floquet spectrum. Individual damped-advective modes did not have nat-

ural physical interpretations, but the class, taken as a whole, appeared to represents

a generalized solution to the damped advection problem. In this sense, the damped-

advective class resembled a numerical approximation to the continous spectrum of

normal modes often seen in problems with continous horizontal or veritical shear

(Case, 1960).

The singular vectors obtained in chapter 4 characterize the transient growth of

disturbances to the wave-mean oscillation. The singular vectors divided into same

dynamical classes as the Floquet vectors, indicating that the dynamical splitting

of the normal modes was preserved in the structure of the singular vectors spec-

trum. Consistent with the results of chapter 2, the wave-dynamical singular vectors

approached constant linear combinations of Floquet vectors for optimization times

greater than the baroclinic wave growth time scale. The most rapidly decaying

singular vectors projected strongly onto the most rapidly decaying Floquet vectors,

while the leading singular vectors projected strongly onto the leading adjoint Flo-

quet vectors. The leading singular vectors were thus optimal excitations of the

leading Floquet vectors. For optimization times on the order of the period of the

wave-mean oscillation, both the singular values and singular vectors were strong
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functions of the initialization time. However, the projections of the singular vectors

onto the Floquet vectors were almost independent of initialization time, confirming

that the strong connection between the normal modes and singular vectors observed

in the weakly nonlinear baroclinic instability model is preserved in the present, much

less constrained, model.

Examination of Poincaré intersections near the wave-mean oscillation showed

that the leading Floquet vectors pointed ‘into’ the local unstable tangent space of

the attractor. The leading initial singular vectors, by contrast, pointed ‘off’ the

attractor, but rotated into the local unstable tangent space by the optimization

time.

The method for recovering the leading Floquet vectors from a relatively small

number singular vectors developed in chapter 2 was demonstrated using the Floquet

and singular vectors of the wave-mean oscillation. While this system used in the

present study is significantly more complex than those considered in chapter 2, the

method was able to recover the leading Floquet vectors at a relative accuracy of 1%

using singular vectors with optimization intervals equal to the period of the wave-

mean oscillation. Increasing the optimization time generally lead to significantly

improved accuracy. This result suggests that the method may be robust enough for

use in models with complexity comparable to operational forecast models.

Accurate ensemble forecasting requires that the ensembles be initialized in

such a way that their subsequent evolution is representative of the possible future

states of the atmosphere or ocean. This initialization should also be economical, so

that the broadest possible set of future states is achieved by the smallest possible

ensemble. In the present case, the asymptotic stability of the basic cycle is deter-

mined by the leading wave-dynamical modes so these modes are a natural choice for
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the ensemble initial conditions. These modes have the advantage that they are few

in number and that they are fluid instabilities which are related, in a straightfor-

ward manner, to the background flow. This implies that the modes which are most

interesting from the standpoint of geophysical fluid dynamical instability theory are

also natural choices for ensemble initial conditions. The results of chapters 2 & 4 in-

dicate that, for optimization intervals greater than or equal to the baroclinic growth

time scale, the leading final, or ‘evolved,’ singular vectors are approximately an or-

thogonalization of the leading wave-dynamical modes. Thus, ensemble forecasting

systems using the wave-dynamical modes and evolved singular vectors should be-

have roughly equivalently, all other things being equal. The choice between singular

vectors and the leading wave-dynamical modes then becomes one of computational

expediency. Singular vectors require the solution of either a large eigenvalue prob-

lem or repeated integrations of a tangent linear model (Buizza et al., 2005) and,

thus, represent a significant computation while the leading wave-dynamical modes

can be computed at little additional cost to the ensemble forecast.

As noted in section 4.5 and by other authors (e.g., Kalnay, 2003, §6.3 and

references therein), the initial singular vectors point ‘off’ the attractor and thus

represent ‘unlikely’ perturbations provided the forecast model is a reasonably good

representation of the atmosphere. This may indicate that initial singular vectors

are not a good choice for initial perturbations of ensemble members.
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