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APPLICATION OF THE WIENER-HOPF TECHNIQUE
TO HALF FLANE DIFFRACTION OF CYLINDRICAL WAVES

1. INTRCDUCTICH

In 1896 sommerfeld (33) published his classical result
on the diffraction of plane waves by a perfectly reflecting
half plane, In thls problem plane waves were incident on a
perfectly reflecting half plane, and the field surrounding
the plane waa computed using multivalued solutions of the
wave equation, Following this development, Carslaw (3)
applied Sommerfeld's method to the half plane with eyline
driecal source excitation - in the electromagnetic case, a
line of Hertz dipoles oriented parallel to the edge of the
half plane; in the acoustic case, a line source parallel
to the edge, In 1915 MacDonald (20) published a result for
the eorresponding wedge problem, Since that time many
authors (2,18,22,23,26,28,29,39,40,41) have contributed
results for the wedge, In this class of problems the half
rlane 1s & wedge with an angle of 2n, and the results
olearly apply to the half plane problem,

The Wiener-Hopf technique for the solution of a class
of integral equations was first published in 1931 (42, 31,
P. 49«67), Magnus (21) expressed the solution of the half
plane problem with incident plane waves in terms of an
integral equation of the Wiener-Hopf type which he solved
by computing coeffilcients in a serles of Bessel functions,
Later, Copsen (5) solved the same integral equation by the
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Wiener-Hopf technique, These developments lead the way to
a varlety of papers (1,12,13,14,15,16) which demonstrate
the power of the method for complicated diffraction grate
inga and plana wave excitation, Karp (17) gives an exposie
tary paper in which separation of wvariables is combined
with ﬁianarnﬁapf technques to yield solutions of physi-
Qaiiy'slsnifieanx problens,

The Wiener<liopf investigatlon for the half plane
problem laavwa the golution in the form of contowr inte-
grals in a aﬁmpiax plane, Gast (10] chose to manipulate
the integrals along hyperbolic contours around branch cuts
taken radially from the origin (in the manner of Copson),
The resulting double integrals were subsequently reduced
to the seluti@ns of Maebonald and Sommerfeld, the plane
wvave (Sommerfeld) solution being obtained by letting the
klino source tend to infinity, In addition, geometric
#pt&es‘ana éiffraetian terms emerged, and the results of
Harrington {11) for the angular variation of the far fileld
vere expressed in terme of tabulated Fresnel integrals,
(see also Oberhettinger for further asymptotiec estimates,)

In the followlng investigetion we chose to make
branch outs parallel to the imaginary axis and menjipulate
straight line and circular contours, This choice gilves
the results In the form of a single integral, Furthermore,

aside from computational value, the wave solutions can
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easlily be superimposed for the study of arbitrary pulses
at the source, That is, in the secondary field the fre
quency ocewrs in only an exponentlal term which makes the
Fourier analysis for arbitrary pulses particularly simple,

The entire analysis 1s based upon the Maxwell equém
tions for free space,

wrlfi= £E9F awfi=o
em’l'ﬁ’:m~%%-fé divEi=0

where the sources are line currents (Hertz dipoles) parale
lel to the z axis, This orientation restricts the fleld
80 that Ex = E = H, =0, and the Maxwell equations reduce

y
to a two dimensional wave equation,

. ; 2
1.0] 2 = 1 ;}—-—q : o v
{ ] "4 é ';'é’ 91}2 ’ L] —

for ¢ = E,(x,¥). We seek a solution for § at a point
P{x,y) in the form of an inverse Laplace integral,
¢+ loo

[1.1] $(PiQt) = -5%] r)u(y)e? ey , t»0 , o0

¢= 100
where () ) 1s the Laplace transform of a source of
strength g(t) at a source point G(x',y'). Under suitable
conditione, this amounts to a Fourler synthesls with the
Wi replaced by e V%Y, yith $ expressed
by (1,1}, we have formally,

time dependency o



[1.2] V2 - y2u= §(x=x') J(3-3").

Thus, the entlre problem with arbitrary pulse strengths
at the source point Q(x',y') is reduced to the solutlon
of equation [1,2] in the space varlables subjeet to the
hana&gry condition u = 0 on the perfectly conducting sur«
faces,

The solution for u is assumed to0 be of the form

(131 u=u +u , u =- 3= & 0¥ /(x=x")2e(3-3")%

whara~u1 is the incident field at a point P(x,y) due to a
unit source at Q(x',y') and ug, the secondary field, 1s
regular throughout the entire region under consideration,
 Thus, under suitable conditions we find that the solution
for ¢ can be reduced to the construction of the secondary
field, Uge Chapters 2 and 3 are devoted primarily to this
purpose for the infinite reflecting plane and the half
plane respectively, Chapler 4 presents an asymptotic
annlysis of the current induced in the half plane by the
inelident radiation,



2, REFLECIION FROM AN INFINITE PLANE

The analysis for an infinite refleeting plane 1s
inserted here to form a basis for some of the assumptions
needed in the half plane cage, In particular, we wish to
study the induced current distribution in the conducting

1 That is, one

plane at large distances from the source,
expects currents to flow in the conducting plane in accord-
~anee with the laws of electromagnetic induction, Since the
ineldent fleld has no H, component, the currents flow
parallel to the z axis, These currents act like sources

of new radistion and re-radiate the energy ineident upon
the plane to ereate & secondary field Uge Thus, in these
problems for the conducting planes, the secondary fleld
ecan hareqnatrueted in terms of the induced current distri.
bution,

To be more precise, consilder a cylindrical source

parallel to the 2z axis at a point Q(x',y') radiating on

an infinite, perfectly conducting plane of zero thickness,
Y =0, - 00 < x< 00 1n Figure 1, If currents are induced
in the plane in the amount I(f‘} per unit length in the x
airecﬁiam,’th$n the total contribution to the field from
Trhe induced current is often ldentified with surface cur
rents on the two sides of the plane, In elther case, the

invention of & current explains the discontinuous tangens
tial component ﬁy at the surface of the perfect conductor,




all increments is

| 400
(200 wy= -k [ 1(f)egw Vim )2

-

‘1 +00 giaxmfyfm

-00 a2+ 3’2

T(a)da

where I(a) is the Fourier transform of I(x),

+00 |
T(a) = f I(x)e"1%%3x,
~00

Here we have used & Fourler transform representation (7,

vol, 1, p. 17) for Kol 4 \/ { % f)a-ryz] and exchanged the
order of t.ixa integrations to get equation (2.0a}, Natue
tally we assume that I(a) exists and that the inversion of
the Integrations is valld, To proceed, we may express the
total fleld, equation [1,3], by

¥

P, ¥)
.Q(x‘,y‘)

Flgure 1
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(2.1] U= - gg Kl ﬂx'x') +(y-37')°1
0
) %?%’ f I(j’ )KQ{X W}af
- 00

and determine I({ ) from the boundary condition u(x,0) = 0,

. +00 .
[2,2] j ()KL Y |x= f[1af = =K ) ﬁx.-x‘)aﬁy'g »=00<XLO0,

This integral equation is readily solved by the Fourier
trmsfom gince the integral on the left is a convolution
integral, If the exchange of orders of integration is per-
mitted, we have (7, vol, 1, p. 56)

T(a)'n -rre“i“x"" iry' v a?e ¥2
Jaé*yﬁ ;;ag-ﬁ Xg

or

Es.}] Y(C‘) - __8-3.(;3('-' ’y‘ o o+ Y .

Inversion of I(a) gives (7, vol. 1, p. 56)

[2.4] CI(x) = " yiy'l Klw \/(xux')a*y'zl .

o ;(xm-x')ﬁ ¥ y'§

From the asymptotics of X,(z) as jz]—»>-00, we obtain

Y o~ Vlxl
[2,5] I{(x) v = }y'} rr- ﬁ% for Ix{—n—oo.
x
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The secondary field, using equations {2,3] and [2,0a]
may be expressed by

u, = 33 KLYV (x=x") 2+ (lyle 1y D2,

and we recognize that thieg 1s the field due to an image of
opposite sign at (x',-y'). The total field becomes

(261 w= g {x 0V V(xx")2(Iylely' 1)2)

- KLYV (ex) 2 (3-30) P}

The commection between the fileld and the cwrent
density in the plane is obtained by setting up the integral

equation in another way, If we apply Green's formulas,

2 || v - v v2mage, = fuz - v 3yas
R

with
B(x,3) = u, = u - uy

W(xey) = uy = = 3= K1YV (x=x") 2 (3-5") %)
V3 - 72 = 5 (x-x') $(y-y")
v - % =0 , u(x,0) =0

to a aomieireular reglon in the upper half plane and let
the radiug tend to infinity, we obtain



00 gu Fgu
_ 1 s|af
%“L [‘“sﬁ"*“i'ﬁ‘]ﬂ“@
or
+*00 ‘
weuy == ge a0 Ve )% [-—;Mff Jimj;
-0

Thus, I(x) can be identifled with (?u/éy)y‘_o*,
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3., THE HALF FLANE FIELD

Wiener~Hopf Theory
The half plane problem in its formulation is very

gimilear to that of the full plane, The difference lies

in the integral equation for I( §{)., 1In the full plane
cage, I({ ) was to be determined for all [ knowing the
rield u(x,0) for all x, In the half plane case, I{({) = O
for § « O and u(x,0) = 0 for x > O, The problem is to
determine I(§) for § > 0 and u(x,0) for x < 0, These
requirements are expressed in the following way,

Consider the half plane y = 0, 0 < x < 60 in Figure 2,

JP(x,¥)
Jalx'y")

Figure 2
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In the manner of Chapter 2 we obtain for the total field,

TEE ERCACRULNTRTL

[3,1] w
G S ENVRVITTSIR LT

o

L

When we insert the boundary condition u(x,0) = 0, x » 0,
we have

| 00
(3.2] f I FIRLY Ix= §11a§ # KLY v/ (x=x")24y'3)
o
f
27 u(x,0) x<0

0 x>0,
L _
That 1ls, this 1s a dual pair of integral equations in which
we have to find I(f) for jf > 0 and u(x,0) for x < 0 knowe
ing 1(§') for { < O and u(x,0) for x > O, Thie equation
ean be cast into the form
+00

{3.3] L@[ f(f)f(% fla¢ = g(x) + h(x) =00 <X<00

« Q0

by the relations
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0 f<o0
”f)g{z(f) §>0

A=) = x,[¥ Ix]1 ~00<x<00
8(x) = = K Y \/(x~x')2+:?'g} - 00 <L KCO0
2w u(x,0) x <0
hix) = {
0 x»0

The technique of solution consists of examining the
Fourler transform in the complex a plane and meking deduce
tions about the form of the transformed equation, To be

more precise, conslder the transform of equation [3,3],
(3.4 T(a) L(a) = E(a) + H(a)

wvhere
: 00

Ta) = J I(f}s""f af

00
(@ = [ Kol Ix|16™ax = —f
o0 o ) |

E

+00 7
- , -iax's |y! [Va * 52
g(a) = = f K Ly V(xax")2ay' 2™ 10%qy - 20O ‘ ‘

- 00 \/cz2 4 b’ﬁ

0
fi(a) = 2 j u(x,om"i“xdx.
~00
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We see that certaln assumptions about the formes of
I(f )‘ and u(x,0) are necessary before we can proceed,
First, we rmWe that I( f) be absolutely integrable
over any finite length, In addition, we want the behavior
for large distances from the source to be like that of the
" full reflecting plane in Chapter 1,

!I(f){gﬁe"xfg for f —— oo,

Then,

A o0
Byl s [ I1(f)lap + ¢ [ oo “i“)éf
A
and we see that F(a) represents an analytic function which
is regular in a lower half plane, Im a < Re ¥ , We &lso
see that T(a) i1s bounded in a proper half plane,
Ima~ € «ReY ,Re ¥ > € » 0, In a similar way we
£ind that H({a) is regular in an upper half plane
In a >« Re Y and bounded for Im a4 € > -~ Re ¥ Af we
require the field to be absolutely integrable and decrease
exponentially for x— « 0o, The functions .Z{a) and &(a)
in the integral forms represent regular funetions in the
strip -He Y « Im a < e 7 since the Dessel funection
KQ[X |%|] behaves like /7 ¢” X‘X’/ 2 Y [x] for |x|——o0;
- the closed forms however give the analytlc continustions
into the whole a plane when the plane is cut from 1Y to o
and ~1 Y to 00 along lines parallel to the imaginary axis
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(Flgure 3). The branches of the square roots are taken
such that

-~ $% < arg(a-1y ) g §

-3 ﬁarg{mih’)xgﬁ.

wWhen we put this information together, we find that
the transformed equation [3,4] only applies in the strip
«Re ) < Im & < Ke ¥ which is the overlapping region of
ra@l&rgty of T(a) and Bi(a),

The aim now iz to separate equation [3.4] into two
funetions, ¥ (a) and F {a), such that F_(a) is regular in
& lower half a plane and F.P( a) 1s regular in an upper half
a x&lﬁ&, and F’*(t&) = F *(a) in a strip about the real axis,
If this ecan be accomplished, F_(a) and F *(a) will be
analytic continuations of one another and define a funetion
P(a) in the entire o plane such that

P(a) = F_(a) in a lower half plane
and
P{a) = P *( @) in an upper half plane,

From the behavior of F_{a) and F’*( ) for a--—o00, we will
be able to deduce thet P{g) = O from which it follows that

F (a) =0 and F**(a‘} = 0
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in their respective half planes, DNow, F_(a) will contain
F(a) and F_(a) will contain Ki(a), These two results enable
us t0 solve for T(¢) and R{a) individually, and the probe
lem, with the aid of equation [2,0a], will be solved,

If we multiply equation [3.4] by Ja+lyY , we obtain

‘ - t_ly! 2 U2
[3.5]) ‘R’?ggi - T8 lax'-|y'| \/:‘;;—

Vamiy /@13 + Vil Ba).

The first and last terms are regular in the two half planes
Ima<Re)y and Im a » - Re ) respectively, The middle
term however can be decomposed into terms A (a) and A _(a)
80 that

~lax'e|y'| Va4 v 2

9(a) = L2
Va=iYy

= A (a) + A_(a),

where A‘,(u‘) and A (o) ere regular in the upper and lower,
over-lapping half planes, ZEquation [3,5] separates to give

[3.6] Bt & A_(a) =~ & (a) + Voeld E (a).

Here Fﬂ(a) is expressed by the left side and F*(u) by the
right side, T(o) and Hi(a) being tagged with - and +
respectively to denote their half planes of regularity,
In order to proceed with the analytie behavior of
P{a), defined impliecitly by equation [3,6], we need to
gompute A*(u) and A (a) and show that they are bounded in
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proper half planes Im ¢ > - e ) and Im & < Re J
respectively, If we apply Cauchy's theorem to ®(g) on a
rectangular econtour of Figure 3, and take the limit as
b—0; we obtain

‘ 1 f (2 1 j\ ®(z) .
®a) = - my ) Ra e gy ) pe o

, ¢ o

- *

vhere C_and C . are straight line contours parallel to the
real axis, We ghall identify A*( a) and A_(a) with the

integrals

x ; 1 | ez _=1 | oz
(3.7 A () = 577 f #2) 4z ana A_(a) = 3hy 5 T2 e

¢ c

L -
and show that each 1s bounded in a proper half plane
Imar=-8+ ¢ andImas>a-¢c, a> € » 0 respectively,
We note again that these half planes overlap, The real |
formulations for A _(a) and A (a) are given when

Z = x+ 1 & respectively, Then,

: +00 400 :
N | P(x~ia ) o =1 P(xs+la
A,(e) = 551 f Siaislax and 4 (a) = 33y | HEilex.
-0l -0

For .&*(a), the Cauchy-Schwarz inequality gives
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d
. ‘a)
C. (0,a) ‘ -
? |
1 .o
-b0) (b, ©)
| l
|
c, { 1
-y (0,~-a)
Figure 3
., 00 00
Ia_(a)}]? < -2 f |9(x-18) | 2ax dx__,
+00
«< Bg j “‘”“'@‘&“‘5 o
- %0 [x~ia~al

If a= u+ lv, we obtain

]A (a) -7{———-1 where B ~--3'-§ L [9(x=1a) | é.x.

Ay
Thus, A (a) is bounded for v = Imu:m- a +€ ,€ »0 and
M*(ﬁ)i = T—r-.'f> for |al—

In the same way, we see that A_(a) is bounded for

Inaga~¢c and
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1
2
la_(a)] =0 <z;5:%5~§%> for |a|—=—oo,

Thus, we have all of the quantities T_(a), 'ﬁ*(u), A (a)
and A (a) bounded in their respective half planes, It
follows from equation [3,6] that

1

P(a) = 0(|al?

)} for |aj-—+~—o0, IMmaz-a+ ,

[3.8]

Pla) = 0(1) for |a|]—o00, Imaga- |,

an extension of Liouville's theorem states that if P(a)
is analytic for all finite values of a and if, as

la] —o0, Pla) = O(«Im}k), then P{a) is a polynomial of
degres < k, From (3.8] we see that P(a) 1s of degree

< %. It follows that P(a} is a constant, Purthermore,
a8 o] —o00 ‘aleng the negative imaginary axis we see from
equation [3,6] that P(a)—0, This means that P(a) = 0,
Thus, we have in each of the hall planes,

F (a) = wi\/%% + 4 (a) =0, F (a) = =4 (a)+ Vas iy Eﬁa)zﬁ,

and it follows that

A (a)
El’h?} Y{ﬁ)w"-'* yomiy A(a):ﬁ(a)*ﬁ.
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Since we shall be interested in the current distribu~
tion in addition to the gsecondary field, we need only to
work with ¥ (a) and use relation [2.0a] for the secondary
fleld,

; ; e
[3:10) u, = 35 T

00 2 2
1oy Va“+ Y
[= vl Ve <1 Xu;*% az> da
o Va+ 17 - |

c

-

and invert ?;(a) for I(x),

, * ‘
[3.11] I(x) = 3= f ot % /a1y <§ﬁ j :-:_%)-dz> aa,
-00 C_

from this point onward, we will have oceasions to
invert the order of integrations, We recall that if f{x,y)
is a measursble function and if each of the Cauchy-Riemann
integrals

+00 400 00 $00
ffﬂmmw, ffﬂmwh
wl) w00 w00 w00

exists, and one ls absolutely convergent, then the two
integrals are equal, This theorem can be used to Justify
changes in the order of integrations in all cases,

In this sectlion we consider only the secondary fleld
and Gefer the consideration of I(x) for Chapter 4, Our
alm here 1s to reduce the contour integral along C_ to a
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real integral by applying Cauchy's theorem to one of the
contours of Figures 4 or 5,

_\l
] Y
CC- a , .
oC
P
e \\
-~ ~
7. ~
e “(y ~
- ~
P ~
- \\
- ~
-
| e ~ 4
~
-
7~ \\
-
Figure 4
~ e
~ /‘
F~ o
\\ //
~ -
~ ”~
~ -
\\ . LY -
C_ z ‘a

Figure 5
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The asymptotic estimates

—~ ,
o ix'z=ly' |z -4 < arg(z-17 ) < §
2
@(ﬁ) n t ! !I g}!
o ki
< &rg(z*ﬁf) < 4
L. 2 5 )

for large (Z) show that the lines (2 = u + 1iv)

Re(ix'z«|y'|2) = 0 ; (Re(-ix'zs]y'iz) =0

v = i%;l u u >0 3 V= - li;i& s u<0

are boundaries between regions of exponential growth and

or

oxpanantialyﬁaaay for 9(z), These regions are separated
by dashed lines in Figures 4 and 5 with arrows pointing
toward the regions of exponential decay for x' < 0 and
x' » 0 respeetively, Thus, in order to obtain convergent
integrals in the complex plane, there are two cases to
consider,

Cage I, x' < O, If we apply Cauchy's theorem to the
contour of Figure 4 and let H—o00, it follows that

‘ i oo t
" Zwg *

& § VT (re ¥ +la)

The substitution r = - Y # ‘Vp2¢ Y2 converts the right side
to
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o0
. ¢ /2. 2
igf v ¥ p cosly'|p dp .
~Y4 Vp2s ¥2 Vp2+ ¥ [la + Vpok ¥ ]

o

This integral 1s a Fourler cosine transform and can be put
‘into & more convenient form with the ald of the integral
(7! vol, 15’ P. 17).

00
f -«va-&Xngs}: lp a ” X\/vqu
[ Yevets 1 [Zai? m« ve Vylay'2

Multiplying both sides by e~ iav and integrating v over the

*

interval (-x',00), we have

00
' 2. .12 ‘
m(xa»x ) o~ Lav- Y Vvesy av da,
4‘« Vo
et Vvleyt? \/-W Vvlay!?

Replaeing v by vex' and inverting the order of integrations

glives
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. w.‘l'l = 3 \[(v»x’)‘?**y'g
&y 211

J(v 212632 | o (vex")a | (vox') 2y

+00

ol |

aia(xuv)-lyl Va2s 32
~ dg dv,
asl
~00
The integral
X
| “tapely| Vals ¥ 2 :;:zzf lo- X\/sw

[3.12]} L - da = Yorr e —lx

ozt (e spele®er

is obtained from the contours of Figures 4 and 5 and»the
mmﬁsbs of references (7, vol, 1, p., 17) and (7, vol, 1,
P. 75), The final expression for Uge %' < 0 18

(3.131 o ,
ly !'“lx" | f,«»b’t\/(v'm')éw'%x/(v‘«-x)g;y_‘?-}mv,x.’y,)g(v,x’y)dv

where

g(?fy) = 1 k »

Vv*y \/ -V v*y

AR
case II, X" 2 O 1ne analytical details of this case

are very similar to those above, except that we use the

gontour of Figuwre 5 to evaluate
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: e" Ir Vel
?3?! S:: dz _ @(a}*edx K"j x sinly'| Yroe2 ) r ar,
, ¢ Vr42Y (re) «ia)

.

Again, kw use the substitution r = - ) + Vp : 2 to reduce
the second term to
a1 P [ %
a%'fe p*ygaml'ip

\/g*\/p*ﬁ\/g@y (ia*\/}f’*b’)

This integral 1s a Fourier sine transform and can be

obteined by manipulating the result (7, vol. 1, p, 75)
o0
f v le” ¥V v 4«3
0 \/ Y #yp2s y2)p2s 3 2 (v25y'2 Y vav *y'z

Here we multiply both sides by emv, integrate v over

S
o T psinlyp 4, . \[—g

{x',00), replace v by v + x' on the right and obtain

.
! faiu(x*-x')-»(iylﬂx' D Va®s y2

\/ﬁaq: 32

} ixa !’%' S.ax~ Ve *sz o lav- )/»/(*Wx')e#y'a av_da

4y Von Vasly
OO

\/(v-c-x'} *y'z\/vwx *\/TW'X )2¢y'2



25
If we evaluate the first intesral (7, vol, 1, p. 17) end
apply equation [3,12] to the inverted integrals in the

second term, we have

[3.14]

- |y .!ﬂxz ! {ji»y{ {(vex') 24324 (vax) 2*29”23»1:(1:4-;:' v ¥ ¥ (vex,y)av
where
¥(v,y) = > T
Pay? v [Pey?
The Total Field

The Total Field expressions, using equations [1,3],
[3.13], and [3,14], assume the forms

L I
x' < O

(3.15] === il Y/ (ex") P (yey")®
® 3.2, 3_2
lrlle'l j IV (v=x") 24y 20 f(v=x) 2ay 1g (vex?, 348 (vox, 7) &V
¢
x>0

(336 w= g (K00 Vi=x")2e(Iylely' D?

- K LY /(x-X')2¢(y-y’)g}}

00
.llyl_l"' - - f LA Wvext)2ey'2s ‘/(Wx)e*yglﬂf‘(wx',y')\if{wx,y)év
0
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with
| 1
g(vty) = ——
VQ*XRV»V¢J;§;;§
and
V(v,y) = 3 .

¢v2¢y3vv¢¢v2*y2

It is appropriate now to observe that these formulae
apply for Re Y > O and that this is jJust the requirement
in order to apply equation [1,1], Cne can show that the
boundary eondition u(x,0) = 0 , x > 0 is indeed satisfiled
by examining the terms

{3;3,7} N 4 T , ! as y——0.

J - (ymx) e /{ v—-x%&a \/ (vex)s /(vex) 2«@:{2

For x' » O and x » O the first expression results in

0 0gvex

V2{vex) X< V<00

and we verifly the identity

KLY Y (x=x") 2032
00
‘ ennX{\/(v--x'}e#y’z#v«x}
iy : : av

Vomx \(vax' ) 2432/« (vext ) Ve y2ayt?

X
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arising from equation [3,15] by the substitution

g = YoX # VQv~x')2¢zi3
y&x»x')z * y'2

and the results of equation [29] of reference (7, vol, 1,

P. 140), For x' < O and x > O the second limit in [3,17)
is zero and the total fleld expressed by equation [3,16]
is zero for y = 0, Ve note also that the expression for
the full plane case of Chapter 1 appears as & leading ternm
in squation [3,16], so that the first term is identically

zero for y< O and y' >0 or y > 0 and y' < O,
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4, ASYMPTCTICS FOR I(x)

The purpose of this chapter is to compute asymptotle
forms for I(x) for both large and smell x and to exhibit
the current.field relationships for the half plane, Ve
start with equation [3,11],

+00
[4.0] I(x) = 3= f o1 Vo1 <—2-}H j%’%laa da,
c
~

and exchange the order of integrations,

‘ *00
[T Y=
oo

['@.1] 1(1) -4 m
i1

Vz~ix

c -

-

The integrand In o is not absolutely integrable, hut we
eircumvent this difficulty in the inversion process by
deforming the path (~o00, 00) to the contours of Plgures
6 and 7, The second integral beconmes

[4.2]

and I(x) for x » O may be written in the form
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(£, (R,0)

(R,0)

Flgure 7

3 I = - L j 12(x=x")= |y V2P %,
c

-y

...Xx%' 1 j‘ -ix’zwly' Nazw‘?
g. VX Vz=-1Y

(2.3
- i j otiB(xx')= 3" V220y® o Vx(¥ +iz)daz , x>0

2
C.
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vhen the Laplace transformation on the right in (4.2} is
evaluated (7, vol, 1, p, 1236), The contours along C_ can
be deformed into the real axis by Cauchy's theorem, and we
see lmmediately with the help of equation [3,12] that

ry o LTSl
nmax
Vx'z‘ry'ax/x'qr x' -&y

since all other integrale are bounded in x as x—0 -
Furthermore, the first integral in equation {4,3]

is equal to (7, vol, 1, p., 56)

gl A e

" Vix=x")24y'2

and is asymptotic to

s P @“Xx
e ly ] 35 ;m for x—o00,
The asymptotice for the last integral are obtained from
the asymptotics for erfec z,

(«1)2[ (ne}) ,
eri‘uzwﬁﬁ E gm ’ -g«sargx<‘gﬁ.

n=0
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Thus,

[4,4] erfe \/;x—(x +1iz)

| gixgetex (-1)"] (ned)

T s =27 < arg(z=1¥) <

T T
St I st T PO bt
=0

and if we use equation [3,12] for n = 0, we have

ilxtfﬂlfB'J(xﬁX')a*Y'23

J(x»x')gw‘z

I{x) v =

*

..X::z {ul}nF(n *Re -mx' y'li %Q«Ya

dz
24 im-z m-- (21 )ml

n=1 -

upon inverting the sum and integral, This result is also
an asymptotie expansion for the integral since the order

relation in [4,4] to N terms holds uniformly in z (6, p.

16),

(e ixgmtzx (=1)" (e el X )” (ﬁ%
0| < ﬂ, ’; é 4»3 = 0
1745 N5 (5.1y)543

It follows that

PP 4
I(x) ~ mg}g——- for x——00,
x

if higher order terms are negleeted,
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gurrent-Field Relationship

If we apply Green's formula [2,7] t0 the region of

FPilgure 2, we obtain a current-field relationship just as
we 41d in Chapter 1, Thus, with the relationships

Wy =wy o, vy = e = KLY Vixex") 2 (y-y") 2
u(x,0) = 0, ©0; v2u;- yu, = + 5(x-x') T (3-3').

Green's formula gives

o0

u(x,y) = u, - 5= f Ko[Y Vix-F)2ey?] [%’%ﬂ;} @%)ﬂw] af
S i i

and we 1dentify I(x) with

= (33) 0, Bz 03 L C3)
s * TN

The closed forms for I(x) can be obtained from the field

expressions,
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A DIRECT APPRCACH 70 T(a)

Equation [3,5] relating T(a) and h(a) can be separated
by the method of Harrington (11), In this reference, the
Laplace transformation was used, but it is interesting to
soe tha eorresponding Fourler analysis and the relationship
to the wiener-Hopf geparation, We re-write equation [3,5],

*"W’;" A Naz*ya

(1.0 & = e, Iy B(a).

a=1Y a3

If we apply the inverse transform at this stage, we obtain

+00

103 .
1 f & GX’f(a)da %30
a1y
) ; 1a(x~x')«-{y'l\/62¢32 -0
-00 ? fei“‘",/aux h(a)da x<0
- 00

Just how the right side of [I,1] comes about can be seen by
taking a semi.circular contour of radius R about the lower
hell a plane for x < 0 and its reflection in the real axis

for x » 0,  In the linmit as R =00we oObtain

4691 +00
f%&i =0 , x< 0 and f&mx\/aﬁz h{a)da = O » X0,
-

Here we have used the assumptions that T(«) and h{a) are

regular and bounded in their respective half planes, Thus,
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we have the integral involving T(a) for all x,

+00 0 s X<O
b |
(2] |&—flaly, - .
am1Y 1 eiz(x-x')~ly'!Vz§¢X§
n Vz=1Y
- 00

The Fourier transform of the funetion on the left gives

oo
R » 12 (x-x')=ly' VzgﬁXi
{1.3} zm“ . }-2__ feﬁimfe (X X ) ‘y ! dz dx
Vam 1Y " Vz=1)

gsince by Cauchy's theorem on the rectangular contour of
Pigure 8 with b-—oo0,

400

j‘aiz(x-»x‘)u ¢z§¢x§ m(x--x )=ly Nzﬁ*xz
y . 9} Y Ze i)

dz,

- 00

We Justify the exchange of 1ntegrala in {I,.3] by absolute
convergence if Im a < Im 3z,

Q0
w1y | &X' 224v2 ,

Vz=is
0
and
; e wix!ze|y! ¢z§¢Xz
(1.5] (o) = (& otxely'

dz,
V2=1f (z=a)

<3
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Figure 8
The oconditlon Im a < Im 2z is no longer a restriection since
the function 1/(2z-a) gives the analytic continuation of
the second integral in a in [I.4] for all « ¥ 2z, Inverw
sion of [I.5] gives equation [3,11].





