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APPLICATION OF THi I t-HCrFFrNILUE
TO HALF PLANE DIFFRACTION CF CYLINnjCAL ANIS

I INTRO UCT

In 1896 Sommerfeld 3) published his classical result
on the diffraction of plane waves by a perfectly reflecting
half plane. In this problem plane waves were incident on a
perfectly reflecting half plane and the field surrounding
the plane was computed using multivalued solutions of the
wave equation. Following this development, Carslaw (3)

applied Sommerfeld's method to the half plane with cylin-
drical source excitation . in the electromagnetic case a

lino Of Hertz dipoles oriented parallel to the edge of the
half plane: in the acoustic case, a line source parallel
to the edge, In 1915 MacDonald ( 0) published a result for
the corresponding wedge problem. Since that time many

authors (2,18,22,23,26,28,29,39,40,41) have contributed
results for the wedge, In this class of problems the half
plane is a wedge with an angl of 2n, and the results
clearly apply to the half plane problem,

The Wiener-Hopf technique for the solution of a class

of integral equations was first published In 1931 (42, 31,
p, 49-67) Magnus (21) expressed the solution of the half
plane problem with incident plane waves in terms of an
integral equation of the A.ener.Hopf type which he solved
by computing coefficients in a series of Bessel functions,
Later, Copson (5) solved the same integral equation by the



2

WienereHopf technique, These developments lead the way to

a variety of papers (1,12,13,14,15,16) Which demonstrate

the power of the method for complicated diffraction grate
tags and plane wave excitation, Karp (17) gives an exposi
tory paper in Which separation of variables is combined
with Wiener-Hopf technques to yield solutions of physi
cally significant problems,

The Wienerellopf inveatiation for the half plane
problem leaves the solution in the form of contour intee
grals in a complex plane, Gast (10) chose to manipulate
the integrals along hyporLolic contours around branch cuts
taken radially from the origin (ifl the manner of Oopson),
The resulting double integrals were subsequently reduced
to the solutions of _acDonald and eoemerfeld, the plane

wave (Semmerfeld) solution being obtained by letting the
line source tend to infinity, In addition, geometric
Optics and diffraction terms emerged, and the results o
Harrington (11) for the angular variation of the far field
were expressed in terms of tabulated Fresnel integrals,
See also Oberhettinger for further asymptotic estimates,)

In the following investiaation we chose to make
branch cuts parallel to the imaginary axis and manipulate
straight line and circular contours, This choice gives
the results in the form of a single integral. Furthermore,

aside from computational value, the wave solutions can



easily be superimposed for the study of arbitrary pulses
at the source, That is, in the secondary field the fro-
quency occurs in only an exponential term which makes the

Fourier analysis for arbitrary pulses particularly simple,
The entire analysis is based upon the caxwell equa.

tions for free space

curl if

cur

where the sources are line currents (Hertz dipoles) paral-
lel to the z axis. This orientation restricts the field
so that = = H = 0, and the 'raxwell equations reducex y z
to a two dimensional wave equation,

-() 2[1,0] V24
Dt

div 0

fe A

for 4 Ez(x,y), We seek a solution for at a point
P(x,y) in the form of an inverse Laplace integral,

c+ too

[1.13 ClIC/ot 2 (Y)u( y e dYa' et t>0 , c>0

c- too

where g( Y) is the Laplace transform of a source of
strength g(t) at a source point q(x/#30). Under suitable

conditions, this amounts to a Fourier synthesis with the
time dependency e by eeictWith t expressed

.1 have formally,

3



C1,21 V tt y u ) F(y-y').

Thus, the entire problem with arbitrary pulse strengths
at the source point Q(x,50) is reduced to the solution
of equation (1,2] in the space variables subject to the
boundary condition u 0 on the perfectly conducting sur
faces.

The solution for u ed o be of the form

[1,3) u = u us ) Y-Y1)23

4

Where u Is the incident field at a point i(x y) due to a
unit source at Q.(0,y1) and us, the secondary field, is
re8U1ar throughout the entire region under consideration,

Thus under suitable conditions we find that the solution
for can be reduced to the construction of the secondary
field, u5. Chapters 2 and 3 are devoted primarily to this
purpose for the infinite reflectinz plane and the half
plane respectively. Chapter 4 presents an asymptotic

analysis of the current induced in the half plane by the
incident radiation,



duced current is often identified with surface cur.
On the two sides of the plane, In either case, the

vent ion of a current explains the discontinuous tangen-
tial component Hx at the surface of the perfect conductor,

5

or FROT-'1 LZT

The analysis for an infinite reflecting plane is
inserted here to form a basis for some of the assumptions
needed in the half plane case, In particular, we wish to
study the induced current distribution in the conducting
plane at large distances from the source, That is, one
-expects currents to flow in the conducting plane in accord-
ance with the laws of electromagnetic induction, Ance the
incident field has no H component, the currents low
parallel to the ?1 axis, These currents act like sources
of new radiation and re-radiate the energy incident upon
the plane to create a secondary field us, Thus, in these
problems for the conduct ng planes, the secondary field
can be constructed in terms of the induced current distri
bution,

To be more precise, cc-insider a cylindrical source

parallel to the z axis at a point ( yl) radiating on
infinite, perfectly conducting plane of zero thickness,

y = 0, - oo < x < oo In Figure 1, if currents are induced
in the plane in the amount I(f) per unit length In the x
direction, then the total contribution to the field from



all increments is

2,0)

[2 Oa]

where -f s the Four transform of

+00

Here we have used a Fourier transform representation (7,
1 1, p. 7) for K0( V(x- 5)2+2) and exchanged the

order of the integrations to get equation [2,0a), Natu.

tally we assume that 7(a) exists and that the inversion of
the integrations is valid, To proceed, io may express the

total field, equation (1,3 by

x) ,

6



(2.13

and determine

[2.51

rr Koix \/(x Y-Y

I(f) F)2412)

rom the boundary condition u(x110)

df =
O(Y

This integral equation is readily solved by the Fourier
transform since the integral on the left ic a convolution
integral. If the exchange of orders of integration is per-
mitted, we have (7. vol. 1, p. 56)

x-x ) y

From the asympto s of K as 1

. Y1

+y oo<x<oo

we obtain

for

33
Iy

Inversion of 7(a) gives (7, vo P. 56)
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The secondary field, using equations [2, and [2.0a)

may be expressed by

(2.73 SS' v

with

0)dcdn =

y$ It

and we recognize that this is th field due to an image of
opposite s gn at (x y ), The total field becomes

(2.63 u = IKo1 Y (x-. )

Current-Field Relationship
The connection between the ield and the current

density in the plane is obtained by setting up the integral
equation in another way. If we apply Green's formula,

4)d

to a semicircular r on in the upper half plane and let
the radius tend to Infinity, we obtain



-D us d f
ui T,Fc,

9

Thus, can be IdentifIed wit y



THE HALF PLANE FIELD.

Wiener-110,f Theory

The half plane problem in its formulation is
similar to that of the full plane The difference lies
in the integral equation for I( In the full plane
ease, I( f) was to be determined for all f knowing the
field u(x40) for all x. In the half plane case, I( f) = 0
for < 0 and u(x,0) = 0 for x 0, The problem is to

determine I( ) for f 0 and u(x,0) for x 0. These

requirements are expressed in the following way.
Consider the half plane y = 0, 0 < x < Co In Figure 2,

Figure 2

10



(31)

(Y vi(x-xl)2 (y.0

When we insert the boundary condition u x10 0, x > 0,
we have

2n u(x1,0)

That is, this is a dual pair of integral equations in which
we have to find I(f) for f > 0 and u(x,0) for x < 0 know-
lag I(ffor f < 0 and u(x,0) for x 0, This equation
can be east into the form

+00

3 3] )(if g(x) + h(x) ...004CX<O0

.00

by the relations

+y

1+y2

1

In the manner of Chapter 2 we obtain for the tot d,



+co

(o) y x
op

0 < 0

f ) f > 0

lax

o[ Y/
2v u( ,0) x < 0

0 x > 0

The technique of solution con1stR of exauiinin the
Ourier transform in the complex a plane and making deduc-

tions about the form of the transformed eouation, To be
more precise consider the transform of equation 33,

[3.4) Iv( )1-(a) 601) E(a

where

00<x<00
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We see that certain assumptions about the forms of
VI) and u(x,0) are necessary before we can proceed,
First, we require that I( f) be absolutely Integrable
over any finite ienth, In addition, we want the behavior
for large distances from the source to be like that of the
full reflecting plane in Chapter 1

Then,

1?(a) 1 ( ) Id/ + C

%EY Ix1) behaves like

for

?? f

and vie see that7F(a) represents an analytic function which
is regular in a lower halt plane, Im a < Re e We also

see that 1r(a) is bounded in a proper half plane,
Im a - e < Re Y Y > 0. In a similar way
find that t(a) is regular in an upper half plane
Im a > . Re Y and bounded for Im a + 6 S if we

require the field to be absolutely integrable and decrease
exponentially for The functions .1-(a) and g(a)
in the integral forms represent regular functions in the
strip -Re < Im < ReeY since the ;:.essel function

?ix' for 1 x op ;

the closed forms however give the analytic continuations

into the Whole a plane when the plane is cut from I to co
and m4 to oo along lines parallel to the ina inary axis
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(Figure 3). The branches of he square roots en

such that

arg(

If this can be accomplished,

and

From the behavior of F

be able to deduce that

When we put this Information together,

the transformed equation [3.4) only applies
-Re y < Im a < 1-:43 Y which is the overlapping region of
regularity of 7(a) and E(a).

The aim now is to separate equation 13,4) Into two

functions, P(a) and Ff(a), such that F_() is regular in
a lower half a plane and F ( ) is reclaar in an upper half
a plane, and F.((k) = F+(a) in a strip about the real axis,

and F (a) will be
4.

analytic continuations of one another and define a function
P(a) in the entire cc plane such that

P(a) F (a) in a lower half plane

and F(a)

) F (a) in an upper half plane,

find that
the strip

(a) for we will
fro.i thich it follows that
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in their respective half planes, ;',:o F (a) will contain
11(a) and F,(a) will contain E( ), These two results enable

us to solve for .?(a) and E(a) individually, and the prob-
em with the aid of equation [2,0a), will be solved.

If we multiply equation 3,4) by Vafi? , we obtain

[3.53 I/ 762)
V le

[3.63

The first and last terms are regular in the two half planes
im a < Re a, and Im a > respectively. The middle

term however can be decomposed into termsA+( and A(a)
so that

where A4(a) and A (a) are regular in the upper and lower,

over.lapping half planes, :,quation 3,5) separates to give

V zr

Here F.(a) is expressed by the left side and F (a) by the
right side, ]r(a) and E(a) being tagged with . and 4.

respectively to denote their half planes of regularity,
In order to proceed with the analytic behavior of

P(a), defined implicitly by equation D. we need to

a+IA E(4).

+ A (a)

compute At(a) and A (a) and show that they are bounded in



proper half planes Irnc> dIina<TeY
respectively, If we apply Cauchy theorem to cto( on a

rectangular contour of Fiure6 take the limit as
we obtain

where C and C are straight line contours parallel to the
real axis, We shall identify A4( and A(a) with the
integrals

(3.7

and show that each is bounded in a proper half pl
Ima -aspe and Ima>a-e- a>e > 0 respectively,
We note again that these half planes overlap, The real

formulations for A+(z) and A(a) are given When
X x 4. I. a respectively, Then,

511±1ALx and A (a)

.1dz and A dz
2

the Cauchy3chwarz inequality gives



It u iv, we obta

jAf(

Thus, A

+00

x- ia,

17

bounded for v 1m a > 6 E > 0 and

IA(a) 0 (a+I iy for
1

the same way, we see that A (a) is bounded for

a < a 6 and



Thus, we have all of the quantities , a), A(a)
and A6(a) bounded in their respective half planes, It
follows from equation 0.6) that

F (

01)

and it follows that

[3.9) ?..( 44.14 A

A (a

for a 4,

m a a

An extension of Liouvilleis theorem states that if P(a)
is analytic for all finite values of a and if, as
Ial r(a) 0 lalk then P(a) is a polynomial of
degree < k. From (3,8] we see that a) is of degree

1< T. It follows that (a) is a constant Furthermore,

as 141-4.-oo along the negative imaginary axis we see from

equation [3.6] that P(a) 0, This means that P(u) E 0,
Thus, we have in each of the half planes,



The Secondary Field

Since we shall be interested in the current distribu-
tion in addition to the secondary field, we need only to
work with ?(a) and use relation [2,0a) for the secondary
field,

[3,10]

and invert ? ) for I

+00 +op

ff( )dx dy
oo co

z 4:4) da,

19

da

From this point onward, we will have occasions to

invert the order of interat ions, We recall that if f(x,y)
is a measurable function and if each of the Cauchy.Biemann

integrals

+op +oo

ff f(x,y)d dx
-oo .co

exists, and one is absolutely convergent, then the two
tategrals are equal, This theorem can be used to justify
changes in the order of integrations In all cases,

In this section we consider only the secondary field
and defer the consideration of I(x) for Chapter 4, 0

aim here is to reduce the contour integral along q. t
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real integral by applying 0auch s theorem to one of the
contours of Figure 4 or

Z.

z

z a,

4

sure 5

oc



The asymptotic eat1riates

to

for large (Z) show that the lines

are boundaries between resions of exponential growth and
exponential decay for 9(z). These regions are separated
by dashed lines in Figures 4 and 5 with arrows pointing
toward the regions of exponential decay for xt < 0 and
x > 0 respectively. Thus, in order to obtain convergent
Integrals in the complex plane, there are two cases to
consider.

Case I, xl <0. It we apply Cauchyls theorem to the

Contour of Figure 4 and let ---oo it follows that

u > 0

ly )

ars z iy )

= u

ly lz)

The substitution r P
2 converts the side



2
el..Y+VP+

Multiplying both sides by e
interval (.'x' ) we have

22

v2+y12 I Vv2+y
V and integrating v over the

dvda,

This intes is a Fourier cosine transform and can be put
into a more convenient form with the aid of the integr 1
(7, vol P* 17)*

Replacing v b and Izwertin the order of inteations
gives

p + e12 CO



Case

Va4.1`

The integral

0-1Y
L23 J

da = e

V(v...x1)2+y12+Av..._ 2x +y 0

is obtained from the contours of Eures 4 and 5 and the

results of references (7, vol, 1, p, 17) and (7, vol I,
p, 75). The final expression for us, xl < 0 is
(3.13)

da dv,

The analytical details of this case
are very similar to those above, except that we use the
contour of Figure 5 to evaluate

1/v v y2

Y')0(v-x dv



This integral is a Fourier sine transform and can be
obtained by manipulat n the result (7, vol. 1, p. 75)

d 2

Here we multiply both sides by integrate v over
(xlsoo), replace v by v + x/ on the right and obtain

24

dp,

Again, we use the substitution p2+ X2 to reduce

the second term to
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If we evaluate the first. In e ra7 (7, VOle 1, p, 17) and
apply equation (3,12] to the inverted intea1s in the
second term, we have

[3,143

5]

(3.16)

en-4( 'IC

)1((v, OK.

I

X Nhx

I 2 12 ,2x +y + vor-oci +y

Y-Y

0(v a' .x,y)dv

yl+Iy'

hx- 3r-Yi)2

4.x,y)dv

424,y2 Iv

The Total Field

The Total Field expressions, us equations (1,3],
(3.13), and (3,14], assume the forms



00

1 o

t is appropriate now to observe that those formulae
apply for Re y > 0 and that his is just the requirement
in order to apply equation 11 One can show that the

boundary condition u(x,0) = 0 > 0 Indeed satisfied
by examining the terms

73 VI
V.(1r-z Av.xffy (v+x) Avpx)

For xl 0 the f t expression results in

0

V2 v.x) x < v < oo

and we verify he identity

ot

249....x)

x 4....Y4TmX1 241 /-(v-x1)40, a 2

dv



sing from squation [3,153 by the substitutto

2x ) y'2

27

and the results of equation 2 of reference vol, 1

P. 140). For < 0 and x> 0 the second limit [3.17]
is zero and the total field expressed by equation (3,16)
is zero for y = 0, We note also that the expression for
the full plane case of Chapter 1 appears as a leading term
in equation (3.16), so that the first term is identically
zero for y < 0 and ye > 0 or y > 0 and y' < 0,



(4.2)

and

2

( 1

and exchange the order of interations,

The integrand in a is not absolutely in e able, but we
circumvent this difficulty in the inversion process by
deforming the path (-oo, oo) to the contours of Figures
6 and 7,. The second integral becomes

V z

0

0 may be written in the form

x<0

AS yr x)

The purpose of this chapter is to compute asymptotic

forms for I(x) for both large and small x and to exhibit
the current-field relationships for the half plane. We

start with equation 13.111
+oo

4.0] I(x



e4,1z(x.xl

-at

Figure 7

z(x-xt) X2 4.12dz

2tY \/x0? Z dZ

dz

x > 0

29

1
(R,0)



id is ymptotic to

since all other integrals are bounded in x as x Of

Furthermore, the first Integral in equation (4,3)
equal to (7, vol p, 56)

?)/(x.x1) +y12

Voc.x, 29712

for

The asymptotics for the last inter a1 obtain on

the asymptotics for erfc z,

when the Laplace

evaluated (7, vol P. 136) The contours along C. can
be deformed into the real ax by Cauchy's theorem, and we

see immediately with the help of equation 3.12] that

30

nformat ionon the right in [4.2) iis



Thus,

[4,4) erfc 64?

and if we use equation 2 n 0, we have

It follows that

\ x.
I x,

upon inverting the sum and integral, This result s also
an asymptotic expansion for the integral since the order
relation in (4,4) to N terms holds uniformly in z 6 p

16)*

higher order terms are negleoted,

< arg(z-iY) <

dz



tY) =

u(x,0) 21: 0,

Green's formula gives

u xty .. ri DI Ax () u) .0(

\D /
1

6

and we identify I(x) with

(x) l' u\ 4,.. ('D u)IT / , +
D us)

y=04,

The closed forms for I(x) can be obtained from the field
expressions.

72u y ui x'2

y2usus

xl)2+(Y-Y

32

Current.Field Relationship
If we apply Green's formula 2.7) to the region of

Figure 2, we obtain a current.field relationship lust as
we did in Chapter I Thus, with the relationships
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apply the inverse transform at this stage, we obtain
+00

rr
e7" f(a)da

Va-iY

fe

A DIRECT APPR ACH TO 11(

Equation (3,5] relating (a) and E be separated

by the method of Harrington 1 In this reference, the
Laplace transformation was used, but it is Interesting to
see the corresponding Fourier analysis and the relationship
to the Wiener-Hopf separation, e re-write equation (3,5],

Va -1Y

Ys

=0 tx<Oand

I 2
Va +X

ad +00

Va+IY E(a),

da x<0

Just how the right side of [1,1] comes ,,bout can be seen by
taking a semi-circular contour of radius R about the lower
half a plane for x < 0 and its reflection in the real axis
for x > 0, In the limit as ra-0wwe obtain

da
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regular and bounded in their respective half planes, Thus,

Here we have used the assumptions that and E(a) are



volving it(a) for all xo

The Fourier trRnsform of the function on the left ive9

0

since by Cauchyls theorem

Figure 8 with b---co
+co

(I.4) ?(*)

and

EI.53

the rectangular contour of

dz

dz.

38

x<0

dx

We justify the exchange of inter by absolute

onvergence if im a < Im a,



8

The condition mi a < Im z Ia n longer a restriction since
the function 1/(z.a) gives the analytic continuation of
the second integral in a in (I.4] for all a z inver-

sion of (1.5) gives equation [3.11),




