
Technical Report CS04-60-12 Oregon State University September 22, 2004

 1

Effectiveness of End-User Debugging Software Features:
Are There Gender Issues?

 Laura Beckwith1, Margaret Burnett1, Susan Wiedenbeck2,
Curtis Cook1, Shraddha Sorte1, Michelle Hastings1

1Oregon State University
Corvallis, Oregon, USA

{beckwith, burnett, cook, sortes, hastingm}@cs.orst.edu

2Drexel University
Philadelphia, Pennsylvania

Susan.Wiedenbeck@cis.drexel.edu

ABSTRACT
Although gender differences in a technological world are
receiving significant research attention, much of the
research and practice has aimed at how society and
education can impact the successes and retention of female
computer science professionals—but the possibility of
gender issues within software has received almost no
attention. If gender issues exist with some types of
software features, it is possible that accommodating them
by changing these features can increase effectiveness, but
only if we know what these issues are. In this paper, we
empirically investigate gender differences for end users in
the context of debugging spreadsheets. Our results uncover
significant gender differences in feature acceptance, and
show that these differences can significantly impact
effectiveness.

Author Keywords
Gender, debugging, end-user programming, end-user
software engineering, Surprise-Explain-Reward.

ACM Classification Keywords
D.2.4 [Software Engineering]: Software/Program
Verification—Validation; H.1.2 [Information Systems]:
User/Machine Systems—Software psychology; H.4.1
[Information Systems Applications]: Office Automation—
Spreadsheets; H.5.2 [Information Interfaces and
Presentation) —User Interfaces (D.2.2, H.1.2, I.3.6)

INTRODUCTION
For some time, we have been working on a concept we call
“end-user software engineering” [7]. The essence of the
end-user software engineering concept is to tightly
intertwine into end-user programming environments

features that aid end users in guarding against errors in the
“programs” they create (e.g., spreadsheets). As part of this
work, we developed a motivational strategy called Surprise-
Explain-Reward [30]. Surprise-Explain-Reward is based
on the concept of curiosity, and aims to encourage end
users to take advantage of useful debugging features
available. Our empirical results with this strategy have
been encouraging [21, 24, 30].

Still, in our empirical work, we began to observe
differences in how males and females regarded the features
available. While individual differences, such as experience,
cognitive style, and visual ability, are more important than
group differences, such as race and ethnicity, research from
several domains has shown gender differences that are
relevant to computer usage [4]. Further, Czerwinski et al.’s
work [13, 25] has already shown that important gender
differences can exist that can be accommodated within
computer systems—but only if we know about them.

Investigating gender-related issues within software aiming
to support end-user programmers is the focus of this paper.
Although there have been gender studies meant to
understand and ameliorate the low representation of
females in the computing field [10, 20], there has been little
emphasis on software itself and how its design affects
males’ and females’ performance in computing tasks.

In this paper, we empirically consider gender differences of
end-user programmers, focusing on gender differences in
software confidence and how these differences impact end
users’ usage of debugging software features. The overall
research questions are:

RQ1: Are there gender differences in self-efficacy that
impact effective end-user debugging?

RQ2: Are there gender differences in users’ likelihood
of acceptance of unfamiliar features in end-user
programming environments?

We have used two empirical vehicles for our investigation
of these questions: exploratory empirical work to derive
appropriate subquestions for the context of end-user
debugging, followed by a summative laboratory
experiment. First we present the theoretical basis and

Technical Report CS04-60-12 Oregon State University September 22, 2004

 2

exploratory empirical work from which our experimental
subquestions were derived. We then present our controlled
laboratory experiment investigating these subquestions in
the context of an end-user programming environment.

THEORETICAL AND EMPIRICAL BASIS

Confidence and Self-Efficacy
Gender differences regarding computer confidence have
been widely studied, revealing that females (both computer
science majors and end users) have lower self-confidence
than males in their computer-related abilities [8, 16, 18, 20,
27].

Bandura’s [2, 3] self-efficacy construct helps to explain
lack of self-confidence and its effects. Self-efficacy is a
person’s judgment about his or her ability to carry out a
course of action to achieve a certain type of performance.
Bandura argues that achieving a desired type of
performance depends on two factors, the skills needed to
carry out the task and the perception of efficacy that will
allow the individuals to use their skills effectively. High
self-efficacy is critical in problem solving because self-
efficacy influences the use of cognitive strategies, the
amount of effort put forth, the level of persistence, the
coping strategies adopted in the face of obstacles, and the
final performance outcome.

In the domain of end-user computing, Busch found that at
the end of a year-long computer applications course, female
students had lower self-efficacy than male students [8].
Females lacked confidence particularly in their ability to
succeed at complex tasks in word processing and
spreadsheets. Similarly, Torkzadeh and Koufteros [26]
found that females in a business computer applications
course had lower self-efficacy than males on computer file
and software management activities. Other research has
shown that low self-efficacy affects females’ perceptions of
a software application before actual use [17], raising the
possibility that females with low self-efficacy may avoid
using it altogether.

This research led to the following subquestions that our
experiment sought to answer: Are there gender differences
in self-efficacy in the domain of end-user debugging? And
is self-efficacy tied to effectiveness in end-user debugging?

Potential Impacts on Feature Acceptance
Our next two research subquestions were derived as
follows. First, through self-efficacy literature and a short
survey of our own we consider how confidence and
perceived risk might be tied to feature acceptance. We then
add preliminary empirical explorations in the domain of
end-user debugging to derive these final two research
subquestions.

The studies by Busch and by Torkzadeh and Koufteros
were done a number of years ago, and software has changed
significantly since then. Thus, in part to confirm this
phenomenon in 2004-era software, and in part to consider

potential ties with feature acceptance, we ran a small
survey. Our survey looked for links between respondents’
software confidence and their self-reported willingness to
explore new features in their real-world computer usage,
with questions such as “I avoid working with new software
since it requires more time to learn,” “If something goes
wrong with the software (like the program crashes), I
believe I can fix it,” and “I enjoy exploring new features
provided with the software.” Questions were answered on
either a five-point Likert scale or a ranking of choices. The
respondents were 21 psychology and business majors: 14
females and 7 males. Our survey results were extremely
consistent with the above findings: in all ten of our
questions about software confidence and respondents’
acceptance of new or advanced software features, females’
mean scores were lower than the males’. (In fact, even with
this small sample size, many of these differences were
statistically significant.)

There are at least two levels of acceptance of unfamiliar
features in software: the initial willingness to try a feature,
which we refer to as “willingness to approach,” and
repeated genuine usage of a feature, which we refer to as
“willingness to adopt.” Research on technology acceptance
in organizational settings has shown that users’ early
perceptions of software have a long-term effect on both
their intention to use a technology and their actual usage of
it [12, 14]. Two key perceptions that influence both initial
and longer-term acceptance are the software’s perceived
usefulness and its perceived ease of use. Research on
gender differences in technology acceptance [28] suggests
that males are most strongly influenced by their perception
of usefulness, both initially and over a period of use.
Females are initially more influenced by their perceptions
of ease of use and social norms (defined in [28] as the
opinions of others), but over time the role of social norms
declines markedly and ease of use and usefulness become
their main criteria for acceptance and actual use.

Gender differences in perceptions of risk are also likely to
have close ties with an individual’s probability of
acceptance. Blackwell’s Attention Investment Model [5]
explains the role of perception of risk in problem solving.
According to the model, a user weighs four factors before
taking an action: perceived benefits, expected pay-off,
perceived cost, and perceived risks. Given a discretionary
situation in which the user has choices of alternative
courses of action, high perceived risk and cost of an action
that are not outweighed by the perceived benefits and pay-
offs are likely to result in a decision not to pursue the
action.

Research has shown that females perceive higher risk than
males in both exceptional situations and everyday activities
(e.g., explosion in a nuclear power plant vs. driving a car)
[15]. Other research on risk and gender has documented
that females are more risk-averse in their financial decisions
[19]. A meta-analysis of 150 studies on gender and risk
taking also found that females engaged in less risk taking

Technical Report CS04-60-12 Oregon State University September 22, 2004

 3

than males [9]. The meta-analysis did not address risks of
computer use directly. However, it did find that intellectual
risk taking, defined as activities involving mathematical or
spatial reasoning skills, was greater in males than in
females [9]. This is of interest to our work because the
possible risks our participants faced in completing the task
were intellectual rather than physical or financial.

In our own recent empirical work on end-user debugging
[21, 23, 24], in which we were investigating questions
unrelated to gender, we collected the gender of every
participant for later exploration. We were then able to
“mine” these data for gender differences. In addition, we
conducted a think-aloud study to help derive research
subquestions [4]. The purpose of these explorations was to
gain insights into whether investigation of gender
differences in end-user debugging would be warranted.

These preliminary explorations did point to the need for
further investigation. In fact, we found numerous gender
differences relating to measures of software confidence and
feature acceptance. For example, in our think-aloud study
the females’ confidence was not only lower, it tended to
drop over the course of the study much more than the
males’ confidence levels did. Further, the mining of our
recent experimental studies showed pronounced differences
between males and females in amount and type of activities
in which they engaged. (Figure 1 shows the profiles for one
male and one female whose activity patterns were fairly

representative of their genders.) Also, males were
interested readers of tool tips describing new features early
in the experiment, but not so later, whereas females delayed
most of their reading until much later (Figure 2).

Drawing from the previous research cited in this subsection
and the implications of our own preliminary results, we
chose to design the experiment so that it could answer the
following two additional research subquestions: Are there
gender differences in end users’ willingness to approach
new debugging features? And are there gender differences
in their willingness to then adopt these new features?

EXPERIMENT
The experimental design is presented here. Note that the
experiment’s procedures, materials, tutorial, questionnaires,
transcripting software, and tasks have been used in or
derived from previous studies ([21, 23, 24, 30], except
where other sources are stated below). In addition, they
have been “tested” using analytical (cognitive
walkthroughs) and empirical (pilot participants) methods.

Participants and Procedures
The 27 male and 24 female participants (mostly business
students) started by filling out a pre-session questionnaire
which collected participant background data and included
the self-efficacy questions based on a slightly modified
version of Compeau and Higgins’ validated scale [11]; the
modifications made the questionnaire task-specific to end-
user debugging. Participants were asked to answer on a
five-point Likert scale their level of agreement with the
statements. For example, “I could find and fix errors… if
there was no one around to tell me what to do as I go,”
“…if I had seen someone else using it before trying it
myself,” and “…if I had a lot of time to complete the task.”

Statistical analysis of the background data showed that the
females were academically a little younger than the males1
(ANOVA F(1,48)=4.528, p<.039), but there were no
significant differences between the genders in any other
background data collected: programming experience, grade
point average, or spreadsheet experience.

All participants received the same treatment; the only
independent variable was gender. The study took place
over eight sessions conducted in February and July of 2004.
The two times do not threaten validity because the February
and July males were analyzed as a single group, which was
compared against the February and July females as a single
group. Each participant attended one session. The
participants were seated one per computer in a small lab.
After participants completed the questionnaire we
administered a 35-minute “hands-on” tutorial to familiarize

1 Post hoc analysis using the non-parametric Kruskel-Wallis
test showed that the difference in academic age was not
predictive of any of the outcome measures (performance
measures or behavior patterns) in this study.

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

Figure 1. Activity profiles of one male (left) and one female
(right). The male did more actions and used more features

than the female. The horizontal positions represent points in
time during the experimental task. Height represents

frequency of debugging feature usage.

Task 1 Task 2

N
ew

 F
ea

tu
re

 T
oo

l T
ip

s R
ea

d

Figure 2. Males’ (dark line) mean interest in tool tips

describing new features started higher than females’ (light
line) and then declined, whereas females’ interest increased.

Technical Report CS04-60-12 Oregon State University September 22, 2004

 4

participants with the environment. The participants were
then given two spreadsheet debugging tasks. We captured
their actions in electronic transcripts, as well as their final
spreadsheets. At the conclusion of each task, we
administered post-task questionnaires in which participants
self-rated their performance on the task. The second task’s
post-session questionnaire also included questions assessing
participants’ comprehension of features in the environment.

Environment
The debugging features that were present in this experiment
were WYSIWYT (“What You See Is What You Test”)
debugging features that allow users to incrementally “check
off” or “X out” values that are correct or incorrect,
respectively [7].

The underlying assumption behind WYSIWYT is that, as a
user incrementally develops a spreadsheet, he or she can
also be testing incrementally. Figure 3 shows an example
of WYSIWYT in Forms/3 [6], the research spreadsheet
environment used in this experiment. In WYSIWYT,
untested cells have red borders (light gray in this paper).
Whenever users notice a correct value, they can place a

checkmark (√) in the decision box at the corner of the cell
they observe to be correct: this communicates a successful
test. Behind the scenes, checkmarks increase the
“testedness” of a cell according to a test adequacy criterion
based on formula expression coverage (described in [22]),
and this is depicted by the cell’s border becoming more
blue (more black in this paper). Also visible in the figure,
the progress bar (top) reflects the testedness of the entire
spreadsheet, and the optional dataflow arrows are colored to
reflect testedness of specific relationships between cells and
subexpressions. (The user can turn these arrows on/off at
will.)

Instead of noticing that a cell’s value is correct, the user
might notice that the value is incorrect. In this case, instead
of checking off the value, the user can put an X-mark in the
cell’s decision box. X-marks trigger fault likelihood
calculations, which cause cells suspected of containing
faults to be colored in shades along a yellow-orange
continuum (shades of gray in this paper), with darker
orange shades given to cells with increased fault likelihood.
Figure 4 shows an example of this behavior in one of the
spreadsheets the participants debugged. The intent is to
lead the user to the faulty cell (colored darkest orange).

The way these features are supported is via the Surprise-
Explain-Reward strategy [21, 24, 30]. If a user is surprised
by or becomes curious about any of the feedback of the
debugging features, such as cell border color or interior cell
coloring, he or she can seek an explanation, available via
tool tips (Figure 4). The aim of the strategy is that, if the
user follows up as advised in the explanation, rewards will
ensue—functional rewards (such as being led directly to a
bug), affective rewards (such as increased progress in the
progress bar), or both. One aspect of interest in this ex-
periment was whether, if gender differences in confidence

Figure 4. The user notices an incorrect value in Course_Avg—the value is obviously too low—and places an X-mark in the cell.

As a result of this X and the checkmark in Exam_Avg, eight cells are identified as being possible sources of the incorrect value,
with some deemed more likely than others.

Figure 3. An example of WYSIWYT in Forms/3.

Technical Report CS04-60-12 Oregon State University September 22, 2004

 5

were present, they might impact Surprise-Explain-Reward’s
success in encouraging users to accept new features.

Tutorial
In the tutorial, participants performed actions on their own
machines with guidance at each step. The tutorial did some
teaching of the checkmark feature (including its associated
testedness-colored arrows feature), but did not include any
debugging or testing strategy instruction. The tutorial did
no teaching of the X-mark feature. Instead, participants
were simply shown that it was possible to place X-marks
and given time to figure out any aspects of the feedback
that they found interesting. This design allowed us to
gather information on three types of “newness” of software
features: one type corresponding to the traditional way of
thinking about formula errors (namely, formula editing),
another type not previously encountered but explicitly
taught (checkmarks and arrows), and a third type
completely untaught (X-marks).

Half of the tutorial sessions were presented by a male
graduate student and half were presented by a female
graduate student. This design ensured that approximately
50% of males were instructed by a same-gender instructor
and 50% by an opposite-gender instructor (and likewise for
the females) [29], serving to distribute any gender effect of
the tutorial presenter equally over the two genders.

Tasks
The experiment consisted of two spreadsheets, Grade-
book and Payroll (Figure 4 and Figure 5). To make the
spreadsheets representative of real end-user spreadsheets,
Gradebook was derived from an Excel spreadsheet of an
(end-user) instructor, which we ported into an equivalent
Forms/3 spreadsheet. Payroll was a spreadsheet
designed by two Forms/3 researchers using a payroll
description from a real company.

These spreadsheets were each seeded with five faults cre-
ated by real end users. To obtain these faults, we provided
three end users with the following: (1) a “template”
spreadsheet for each task with cells and cell names, but no
cell formulas; and (2) a description of how each spreadsheet

should work, which included sample values and correct
results for some cells. Each person was given as much time
as he or she needed to design the spreadsheet using the
template and the description.

From the collection of faults left in these end users’ final
spreadsheets, we chose five that provided coverage of all
categories in Allwood’s classification system [1]. Under
Allwood’s system, mechanical faults include simple
typographical errors or wrong cell references. Logical
faults are mistakes in reasoning and are more difficult than
mechanical faults. An omission fault is information that
has never been entered into a cell formula, and is the most
difficult [1]. We seeded Gradebook with three of the
users’ mechanical faults, one logical fault, and one
omission fault, and Payroll with two mechanical faults,
two logical faults, and one omission fault. Payroll was
intended to be the more difficult task due to its larger size,
greater length of dataflow chains, intertwined dataflow
relationships, and more difficult faults.

The participants were provided these Gradebook and
Payroll spreadsheets and descriptions, with time limits
of 22 and 35 minutes, respectively. (The debugging tasks
necessarily involved time limits to ensure participants
worked on both spreadsheets, and to remove possible peer
influence of some participants leaving early.) The use of
two spreadsheets reduced the chances of the results being
due to any one spreadsheet’s particular characteristics. The
experiment was counterbalanced with respect to task order
so as to distribute learning effects evenly. The participants
were instructed, “Test the … spreadsheet to see if it works
correctly and correct any errors you find.”

RQ1 RESULTS: GENDER DIFFERENCES IN SELF-
EFFICACY AND EFFECTIVE DEBUGGING

Gender Differences in Self-Efficacy
As discussed earlier, gender differences in computer self-
efficacy have been found in several computing situations.
Our analysis of the pre-session self-efficacy questionnaire
revealed that these differences were also present for debug-
ging: females had significantly lower self-efficacy than the

Figure 5. The Payroll spreadsheet.

Technical Report CS04-60-12 Oregon State University September 22, 2004

 6

males (Mann Whitney: U=181, tied p<0.018). See Figure 6
and Table 1. Cronbach’s alpha for the ten-item question-
naire was .879 on 49 cases, indicating high reliability. Self-
efficacy literature suggests that high self-efficacy is critical
for problem solving [2, 3], which predicts that for our
results, high self-efficacy will be tied with high debugging
effectiveness, a point we will return to shortly.

The self-efficacy literature further suggests that previous
experience is one of the factors determining self-efficacy.
To consider whether this held in our domain, we examined
the participants’ previous spreadsheet experience as a
predictor of self-efficacy. The relationships for the whole
group—and for females—were significant (linear
regression: all: F(1,45)=8.721, β=.403, R2=.162, p<.005;
males: F(1,23)=4.002, β=.385, R2=.148, p<.057; females:
F(1,20)=5.751, β=.473, R2=.223, p<.026). This relationship
raises the possibility that, at least for females, low self-
efficacy may be addressable by finding ways to increase
their experience level.

1 Note that the number of participants does not sum to 51.
Some participants did not complete the questionnaire.
Incomplete questionnaires were also the reason for other
sample sizes in this paper that do not sum to 51.

Ties to Effectiveness
We first considered the relationship between self-efficacy
and effective usage of WYSIWYT debugging features. We
chose final percent testedness (refer back to the progress
bar in Figure 3) as our measure of effective usage for two
reasons. First, percent testedness can only increase through
strategically checking off input/output value combinations.
(Recall, input values must be chosen that actually add
testing coverage of formula expressions.) Second, final
percent testedness in previous experiments has been
significantly tied with success in debugging [7].

As Figure 7 shows, females’ self-efficacy was indeed a
significant predictor of their final percent testedness. For
the males, however, self-efficacy was not a predictor of
their effective usage of the debugging features (linear
regression: males: F(1,25)=.365, β=-.569, R2=.015, p<.551;
females: F(1,22)=4.52, β=2.09, R2=.177, p<.046). From
this we can conclude that self-efficacy had important
implications for females’ problem-solving choices.

These choices of how much to use WYSIWYT testing
features mattered: as in our previous studies, effective
usage of the testing features (as measured through percent
testedness) was predictive of the number of bugs fixed.
The results of linear regression analysis of percent
testedness on the number of bugs fixed were significant
over all participants and also were significant for each
gender (linear regression: all: F(1,49)=21.701, β=.554,

Males Females
25

30

35

40

45

50

Se
lf-

Ef
fic

ac
y

Figure 6. Males’ and females’ pre-session self-efficacy.

(Maximum possible self-efficacy was 50.) The center line of
each box represents the median self-efficacy score. The boxes

show the ranges encompassed by 50% of the scores of each
gender. The whiskers extending above and below the boxes

show the remaining upper and lower 25% of the scores.

Gender Self-Efficacy Final Percent
Testedness

Males 42.27 (4.69)
n=26

62.85 (21.36)
n=27

Females 38.96 (5.11)
n=23

54.79 (25.04)
n=24

Table 1. Mean (standard deviation) and number of
participants1 for males’ and females’ self-efficacy and final

percent testedness.

0

20

40

60

80

100

Self-Efficacy

O
ve

ra
ll

Pe
rc

en
t T

es
te

dn
es

s

30 35 40 45 50

Males

Self-Efficacy
30 35 40 45 50

O
ve

ra
ll

Pe
rc

en
t T

es
te

dn
es

s
 Females

0

20

40

60

80

100

Figure 7. Self-efficacy as a predictor of final spreadsheet
testedness. The regression lines show the females’ positive

relationship of self-efficacy to spreadsheet testedness and also
suggest greater variability among females. The means are

given in Table 1.

Technical Report CS04-60-12 Oregon State University September 22, 2004

 7

R2=.307, p<.0001; males: F(1,25)=16.60, β=.632, R2=.399,
p<.0004; females: F(1,22)=6.818, β=.486, R2=.237,
p<.016).

Finally, we considered the “bottom line” via two measures
of debugging effectiveness: bugs fixed, and new bugs
introduced. Recall that we had seeded each spreadsheet
with five bugs. For purposes of this paper, we count as
“bugs fixed” those seeded bugs that were no longer present
by the end of the task. “Bugs introduced” are bugs that
were not seeded, but were present at the end of the task.

Although there was no significant difference between the
females’ and males’ performance in fixing the seeded bugs
(Mann Whitney: U=300.5, p<0.651), the females
introduced significantly more bugs than the males did
(Mann Whitney: U=227.5, p<0.011). See Table 2. The
gender difference in bugs introduced is confirmed by a
gender difference in participants introducing the bugs: 9 of
the 24 females introduced bugs, which is significantly
greater than the 2 males (out of 27 total) who introduced
bugs (Fishers Exact Test: p<.015). Note that these new
bugs were never fixed.

RQ2 RESULTS: GENDER DIFFERENCES IN
ACCEPTANCE OF UNFAMILIAR FEATURES
Was females’ lower self-efficacy tied to lower acceptance
of the debugging features that might have helped their
effectiveness? As mentioned earlier, participants had access
to three types of features: (1) the ability to edit formulas,
which is a feature common to all spreadsheet environments,
(2) the WYSIWYT features we taught in the tutorial
(checkmarks and arrows), and (3) the fault localization (X-
mark) feature, which was not taught at all. We will label
these three types of features as Type Familiar, Type Taught,
and Type Untaught, respectively. We use these types to
consider two forms of feature acceptance: willingness to
initially approach a feature, and then willingness to adopt it
(i.e., commit to repeated genuine usage during debugging).

Willingness to Approach New Features
Females were inclined to approach the Type Familiar
feature earliest, using it significantly earlier than the males
did (ANOVA: F(1,49)=5.33, p<.025). In contrast to this,
males were much earlier to approach the new features
(Type Taught and Type Untaught): the gender difference
was significant for Type Taught features (ANOVA: Taught:
F(1,49)=8.694, p<.005; Untaught: F(1,40)=3.40, p<.073).
Figure 8 shows the mean time of first usage for each of
these feature types.

Willingness to Adopt New Features
Our criterion of adoption was repeated genuine usage.
Measuring genuineness required somewhat different
measures for each feature type. For the Type Familiar
feature (formula edits), we simply used frequency of edits.
This was a reasonable measure of genuine usage because
editing a formula requires intellectual investment and
pertains directly to debugging. However, for Type Taught
features (checkmarks and arrows), the intellectual cost of
usage was low, a single click. Furthermore, the effects on
debugging are only indirect, because after a checkmark a
formula edit was not necessarily expected (since placing a
checkmark indicated belief that a cell’s value was correct).
For these features, it was not possible to determine presence
of intellectual involvement, but there were patterns for
which its absence could be inferred. We thus omitted Type
Taught actions toggled again and again on the same cell by
the participants after they had stopped editing formulas.
After filtering these out, we then used frequency of the
Type Taught actions as our measure.

For the Type Untaught feature (X-marks), intellectual cost
was low, but there was a detectable route from genuine
usage of the feature to debugging: following the advice of
an X-mark’s feedback leads eventually to formula edits on
a colored cell. Thus, for Type Untaught features, a
participant was counted as adopting X-marks if he or she
placed more than one X-mark in at least one task, and then
eventually followed up by editing a colored cell’s formula.
Since only about 60% of the participants exhibited this
behavior and their frequency of usage according to this
definition was necessarily low (1 or 2 was typical),
counting participants rather than frequency was the right
measure for Type Untaught feature adoption.

By these measures, the only type of feature for which
females had a higher adoption rate was the Type Familiar
feature of formula editing (ANOVA: F(1,49)=4.979,

Gender Seeded Bugs Fixed
(10 possible)

New Bugs
Introduced

Males (n=27) 5.815 (2.167) .111 (.424)
Females (n=24) 5.667 (2.014) .583 (.974)

Table 2. Mean (standard deviation) performance of males and
females on bugs fixed and new bugs introduced that still

remained at the end of the task.

0:00

4:00

8:00

12:00

16:00

20:00

Type
Familiar

Type
Taught

Type
Untaught

Ti
m

e
to

 F
irs

t

Figure 8. Males (dark bars) first used new (taught and
untaught) features much earlier than females (light bars).

Technical Report CS04-60-12 Oregon State University September 22, 2004

 8

p<.03). See Table 3. Males, however, were more willing to
adopt the new features: they performed significantly more
Type Taught actions than females, as Table 4 shows
(ANOVA: F(1,49)=4.971, p<.03). Furthermore,
significantly more males used Type Untaught features than
females did, as Table 5 shows (Fisher’s Exact Test: p<.01).

The gender difference in adoption of the Type Untaught
feature may be partially explained by the answers (on a
five-point Likert scale) to a statement included on the post-
task questionnaire. The statement said: “... I was afraid I
would take too long to learn [X-marks].” Females agreed
with this statement significantly more than the males (Mann
Whitney: U=157, p<.017).

Interestingly, despite the gender differences in expectation
of their ability to learn the Type Untaught feature, there
were no gender differences in actual learning of the
feature—even though the males were able to practice it
more through their greater adoption of it. In the post-task
questionnaire, participants answered nine prediction and
interpretation questions related to the Type Untaught
feature. Males answered 60% of these questions correctly,
and females answered 53% correctly (ANOVA:
F(1,49)=.929, p<.34). This seems to be a clear case of
inappropriately low self-efficacy of the females inhibiting
their use of this feature.

DISCUSSION
The results of this study establish ties from the well known
gender differences in computer-related confidence to end
users’ debugging behaviors. The females, whose self-
efficacy was significantly lower than the males, were less
willing to accept the new debugging features in the
software environment—which is unfortunate, because these
features, which explicitly support testing and debugging,

were statistically significant predictors of debugging
success.

Females’ low self-efficacy may be related to perceptions of
risk, exacerbating the problem. Studies have documented
females’ high perception of risk in intellectual activities
involving mathematical or spatial reasoning skills [9].
Applying this to our study, an individual with low beliefs in
her ability to succeed at debugging may hesitate to use new
debugging features because of the risk they may not pay off
in better debugging performance. Further, she may believe
that her cost of using them will be high, due to her low
opinion of her own capabilities. As predicted by the
Attention Investment Model [5] and borne out by the
females’ questionnaire responses and actions performed in
our study, she may decide to forego the new features and
use the debugging feature she already knows, formula
editing.

In the present study, females spent the time they “gained”
through foregoing the new features by editing more
formulas. This resulted in significantly more new bugs,
perhaps because, without the new features, they had less
ammunition to use in tracking down the introduced bugs.
As several previous studies have shown, users do benefit in
effectiveness from the debugging features [7]. However,
the data presented in this paper indicate that the degree of
benefit is not equal for males and females. This is a
troubling result.

Our data also indicate that previous experience with
spreadsheets has an important influence on self-efficacy.
According to Bandura [2, 3], the most important way of
increasing self-efficacy is direct performance experiences.
Lower self-efficacy of females for spreadsheet debugging
may be remediated by greater experience. Thus, as a
female gets more experience, including experience with
end-user debugging features, her self-efficacy can be
expected to rise, with corresponding increases in effective
usage of features that increase performance.

However, there is a circular dependency here—a female
may never gain the experience needed to raise her self-
efficacy and performance capabilities if she has already
concluded that it is too risky or costly due to her perceived
capabilities being too low. In this situation time itself is not
enough to produce the needed experience to raise self-
efficacy. Consequently, looking to other, more aggressive,
methods seems warranted.

The relationship between experience and willingness to use
new features suggests that a good design strategy may be to
focus on how to initially attract females to try the features,
thereby increasing their experience level. Our research has
shown that the Surprise-Explain-Reward strategy
effectively draws users to new features [30]. Further, our
research has shown that an effective interruption
mechanism for communicating surprises has been
interruptions to which the user can attend on their own
schedule (as opposed to being interrupted in a more direct,

Gender Type Familiar Features
Males (n=27) 23.8 (9.58)
Females (n=24) 29.8 (9.66)

Table 3. Mean (standard deviation) number of Type Familiar
features.

Gender Type Taught Features
Males (n=27) 123.41 (68.27)
Females (n=24) 87.54 (47.67)

Table 4. Mean (standard deviation) number of actions
associated with Type Taught features.

Gender Adopted Did Not Adopt
Males (n=27) 22 5
Females (n=24) 11 13

Table 5. Number of participants who adopted Type Untaught
features.

Technical Report CS04-60-12 Oregon State University September 22, 2004

 9

aggressive manner, such as with pop-up boxes) [21].
However, the data also revealed indications of gender
differences in reactions to aggressive manner interruptions.
Further research into interactions between gender and
interruption style in the domain of complex problem-
solving tasks such as debugging may provide useful keys to
how best to attract females to trying new features.

CONCLUSION
To date research regarding computer-related gender
differences has not considered how the design of software
interacts with gender differences. Our investigation of this
issue was performed in the context of end-user debugging.
The main results were:

• Females had lower self-efficacy than males did about
their abilities to debug. Further, females’ self-efficacy
was predictive of their effectiveness at using the
debugging features (which was not the case for the
males).

• Females were less likely than males were to accept the
new debugging features. One reason females stated for
this was that they thought the features would take them
too long to learn. Yet, there was no real difference in the
males’ and females’ ability to learn the new features.

• Although there was no gender difference in fixing the
seeded bugs, females introduced more new bugs—which
remained unfixed. This is probably explained by low
acceptance of the debugging features: high effective
usage was a significant predictor of ability to fix bugs.

We believe these findings have implications far beyond
debugging. They suggest to designers of software products
for end users that, unless appropriate accommodations can
be made, there are likely to be important gender differences
in the users’ willingness to accept new features and to
benefit from them.

ACKNOWLEDGMENTS
We thank the participants of our study. This work was sup-
ported in part by Microsoft Research, by NSF grant CNS-
0420533, and by the EUSES Consortium via NSF grant
ITR-0325273. Michelle Hastings was supported by
Saturday Academy’s Apprenticeships in Science and
Engineering Program.

REFERENCES
1. Allwood, C. Error detection processes in statistical

problem solving. Cognitive Science 8, 4 (1984), 413-
437.

2. Bandura, A. Self-efficacy: Toward a unifying theory of
behavioral change. Psychological Review 8, 2 (1977),
191-215.

3. Bandura, A. Social Foundations of Thought and
Action. Prentice Hall, Englewood Cliffs NJ, 1986.

4. Beckwith, L. and Burnett M. Gender: An important
factor in end-user programming environments? In

Proc. IEEE Symposium on Visual Languages and
Human-Centric Computing 2004, to appear. Avail. at
http://web.engr.oregonstate.edu/~burnett/reprints.html.

5. Blackwell, A. First steps in programming: a rationale
for attention investment models. In Proc. IEEE
Human-Centric Computing Languages and
Environments 2002, 2-10.

6. Burnett, M., Atwood, J., Djang, R., Gottfried, H.,
Reichwein, J. and Yang, S. Forms/3: A first-order
visual language to explore the boundaries of the
spreadsheet paradigm. Journal of Functional
Programming 11, 2 (2001), 155-206.

7. Burnett, M., Cook, C. and Rothermel G. End-user
software engineering. Communications of the ACM 47,
9 (2004), 53-58.

8. Busch, T. Gender differences in self-efficacy and
attitudes toward computers. Journal of Educational
Computing Research 12, 2 (1995), 147-158.

9. Byrnes, J. P., Miller, D. C. and Schafer W. D. Gender
differences in risk taking: A meta-analysis.
Psychological Bulletin 125, (1999), 367-383.

10. Camp, T. The incredible shrinking pipeline.
Communications of the ACM 40, 10 (1997), 103-110.

11. Compeau, D. and Higgins, C. Computer self-efficacy:
development of a measure and initial test. MIS
Quarterly 19, 2 (1995), 189-211.

12. Compeau, D., Higgins, C. A. and Huff, S. Social
cognitive theory and individual reactions to computing
technology: a longitudinal study. MIS Quarterly 23, 2
(1999), 145-158.

13. Czerwinski, M., Tan, D. S. and Robertson, G. G.
Women take a wider view. In Proc. CHI 2002, ACM
Press (2002), 195-202.

14. Davis, F. D. Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS Quarterly 13, 3 (1989), 319-340.

15. Finucane, M., Slovic, P., Merz., C-K., Flynn, J. and
Satterfield, T. Gender, race and perceived risk: the
white male effect. Health, Risk and Society 2, 2 (2000),
159-172.

16. Fisher, A., Margolis, J. and Miller, F. Undergraduate
women in computer science: Experience, motivation,
and culture. In Proc. SIGCSE Technical Symposium on
Computer Science Education, ACM Press (1997), 106-
110.

17. Hartzel, K. How self-efficacy and gender issues affect
software adoption and use. Communications of the
ACM 46, 9 (2003), 167-171.

18. Huff, C. Gender, software design, and occupational
equity. ACM SIGCSE Bulletin 34, 2 (2002), 112-115.

19. Jiankoplos, N. A. and Bernasek, A. Are women more
risk averse? Economic Inquiry 36, 4 (1998), 620-630.

Technical Report CS04-60-12 Oregon State University September 22, 2004

 10

20. Margolis, J., Fisher, A., Miller, F., Caring about
connections: Gender and computing, IEEE Technology
and Society Magazine 18, 4 (1999), 13-20.

21. Robertson, T. J., Prabhakararao, S., Burnett, M., Cook,
C., Ruthruff, J., Beckwith, L. and Phalgune, A. Impact
of interruption style on end-user debugging. In Proc.
CHI 2004, ACM Press (2004), 287-294.

22. Rothermel G., Burnett M., Li L., Dupuis, C. and
Sheretov, A. A methodology for testing spreadsheets,
ACM Transactions on Software Engineering and
Methodology 10, 1 (2001), 110-147.

23. Ruthruff, J. and Burnett, M. Interactive fault localiza-
tion techniques to empower the debugging efforts of
end-user programmers. Technical Report #04-60-10,
School of Electrical Engineering and Computer
Science, Oregon State University, July 2004. Avail. at
http://eecs.oregonstate.edu/library/?call=2004-61.

24. Ruthruff, J., Phalgune, A., Beckwith, L., Burnett, M.
and Cook, C. Rewarding ‘good’ behavior: End-user de-
bugging and rewards. In Proc. IEEE Visual Languages
and Human-Centric Computing 2004, to appear. Avail.
at web.engr.oregonstate.edu/~burnett/reprints.html.

25. Tan D. S., Czerwinski, M., and Robertson, G. G.
Women go with the (optical) flow. In Proc. CHI 2003,
ACM Press (2003), 209-215.

26. Torkzadeh, G. and Koufteros, X. Factorial validity of a
computer self-efficacy scale and the impact of
computer training. Educational and Psychological
Measurement 54, 3 (1994), 813-821.

27. Torkzadeh, G. and Van Dyke, T. Effects of training on
internet self-efficacy and computer user attitudes.
Computers in Human Behavior 18, (2002), 479-494.

28. Venkatesh, V. and Morris M. G. Why don’t men ever
stop to ask for directions? Gender, social influence, and
their role in technology acceptance and usage behavior.
MIS Quarterly 24, 1 (2000), 115-139.

29. Whitworth, J. E., Price, B. A. and Randall, C. H.
Factors that affect college of business student opinion
of teaching and learning. Journal of Education for
Business 77, 5 (2002), 282-289.

30. Wilson, A., Burnett, M., Beckwith, L., Granatir, O.,
Casburn, L., Cook, C., Durham, M. and Rothermel, G.
Harnessing curiosity to increase correctness in end-user
programming. In Proc. CHI 2003, ACM Press (2003),
305–312.

