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ABSTRACT 
Although gender differences in a technological world are 
receiving significant research attention, much of the 
research and practice has aimed at how society and 
education can impact the successes and retention of female 
computer science professionals—but the possibility of 
gender issues within software has received almost no 
attention.  If gender issues exist with some types of 
software features, it is possible that accommodating them 
by changing these features can increase effectiveness, but 
only if we know what these issues are.  In this paper, we 
empirically investigate gender differences for end users in 
the context of debugging spreadsheets.  Our results uncover 
significant gender differences in feature acceptance, and 
show that these differences can significantly impact 
effectiveness.   
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INTRODUCTION  
For some time, we have been working on a concept we call 
“end-user software engineering” [7].  The essence of the 
end-user software engineering concept is to tightly 
intertwine into end-user programming environments 

features that aid end users in guarding against errors in the 
“programs” they create (e.g., spreadsheets).  As part of this 
work, we developed a motivational strategy called Surprise-
Explain-Reward [30].  Surprise-Explain-Reward is based 
on the concept of curiosity, and aims to encourage end 
users to take advantage of useful debugging features 
available.  Our empirical results with this strategy have 
been encouraging [21, 24, 30].   

Still, in our empirical work, we began to observe 
differences in how males and females regarded the features 
available.  While individual differences, such as experience, 
cognitive style, and visual ability, are more important than 
group differences, such as race and ethnicity, research from 
several domains has shown gender differences that are 
relevant to computer usage [4].  Further, Czerwinski et al.’s 
work [13, 25] has already shown that important gender 
differences can exist that can be accommodated within 
computer systems—but only if we know about them.   

Investigating gender-related issues within software aiming 
to support end-user programmers is the focus of this paper.  
Although there have been gender studies meant to 
understand and ameliorate the low representation of 
females in the computing field [10, 20], there has been little 
emphasis on software itself and how its design affects 
males’ and females’ performance in computing tasks.   

In this paper, we empirically consider gender differences of 
end-user programmers, focusing on gender differences in 
software confidence and how these differences impact end 
users’ usage of debugging software features.  The overall 
research questions are: 

RQ1: Are there gender differences in self-efficacy that 
impact effective end-user debugging? 

RQ2: Are there gender differences in users’ likelihood 
of acceptance of unfamiliar features in end-user 
programming environments?  

We have used two empirical vehicles for our investigation 
of these questions: exploratory empirical work to derive 
appropriate subquestions for the context of end-user 
debugging, followed by a summative laboratory 
experiment.  First we present the theoretical basis and 
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exploratory empirical work from which our experimental 
subquestions were derived.  We then present our controlled 
laboratory experiment investigating these subquestions in 
the context of an end-user programming environment.   

THEORETICAL AND EMPIRICAL BASIS 

Confidence and Self-Efficacy 
Gender differences regarding computer confidence have 
been widely studied, revealing that females (both computer 
science majors and end users) have lower self-confidence 
than males in their computer-related abilities [8, 16, 18, 20, 
27].   

Bandura’s [2, 3] self-efficacy construct helps to explain 
lack of self-confidence and its effects.  Self-efficacy is a 
person’s judgment about his or her ability to carry out a 
course of action to achieve a certain type of performance.  
Bandura argues that achieving a desired type of 
performance depends on two factors, the skills needed to 
carry out the task and the perception of efficacy that will 
allow the individuals to use their skills effectively.  High 
self-efficacy is critical in problem solving because self-
efficacy influences the use of cognitive strategies, the 
amount of effort put forth, the level of persistence, the 
coping strategies adopted in the face of obstacles, and the 
final performance outcome. 

In the domain of end-user computing, Busch found that at 
the end of a year-long computer applications course, female 
students had lower self-efficacy than male students [8].  
Females lacked confidence particularly in their ability to 
succeed at complex tasks in word processing and 
spreadsheets.  Similarly, Torkzadeh and Koufteros [26] 
found that females in a business computer applications 
course had lower self-efficacy than males on computer file 
and software management activities.  Other research has 
shown that low self-efficacy affects females’ perceptions of 
a software application before actual use [17], raising the 
possibility that females with low self-efficacy may avoid 
using it altogether.   

This research led to the following subquestions that our 
experiment sought to answer: Are there gender differences 
in self-efficacy in the domain of end-user debugging? And 
is self-efficacy tied to effectiveness in end-user debugging? 

Potential Impacts on Feature Acceptance 
Our next two research subquestions were derived as 
follows.  First, through self-efficacy literature and a short 
survey of our own we consider how confidence and 
perceived risk might be tied to feature acceptance.  We then 
add preliminary empirical explorations in the domain of 
end-user debugging to derive these final two research 
subquestions. 

The studies by Busch and by Torkzadeh and Koufteros 
were done a number of years ago, and software has changed 
significantly since then.  Thus, in part to confirm this 
phenomenon in 2004-era software, and in part to consider 

potential ties with feature acceptance, we ran a small 
survey.  Our survey looked for links between respondents’ 
software confidence and their self-reported willingness to 
explore new features in their real-world computer usage, 
with questions such as “I avoid working with new software 
since it requires more time to learn,” “If something goes 
wrong with the software (like the program crashes), I 
believe I can fix it,” and “I enjoy exploring new features 
provided with the software.” Questions were answered on 
either a five-point Likert scale or a ranking of choices.  The 
respondents were 21 psychology and business majors: 14 
females and 7 males.  Our survey results were extremely 
consistent with the above findings: in all ten of our 
questions about software confidence and respondents’ 
acceptance of new or advanced software features, females’ 
mean scores were lower than the males’.  (In fact, even with 
this small sample size, many of these differences were 
statistically significant.) 

There are at least two levels of acceptance of unfamiliar 
features in software: the initial willingness to try a feature, 
which we refer to as “willingness to approach,” and 
repeated genuine usage of a feature, which we refer to as 
“willingness to adopt.” Research on technology acceptance 
in organizational settings has shown that users’ early 
perceptions of software have a long-term effect on both 
their intention to use a technology and their actual usage of 
it [12, 14].  Two key perceptions that influence both initial 
and longer-term acceptance are the software’s perceived 
usefulness and its perceived ease of use.  Research on 
gender differences in technology acceptance [28] suggests 
that males are most strongly influenced by their perception 
of usefulness, both initially and over a period of use.  
Females are initially more influenced by their perceptions 
of ease of use and social norms (defined in [28] as the 
opinions of others), but over time the role of social norms 
declines markedly and ease of use and usefulness become 
their main criteria for acceptance and actual use. 

Gender differences in perceptions of risk are also likely to 
have close ties with an individual’s probability of 
acceptance.  Blackwell’s Attention Investment Model [5] 
explains the role of perception of risk in problem solving.  
According to the model, a user weighs four factors before 
taking an action: perceived benefits, expected pay-off, 
perceived cost, and perceived risks.  Given a discretionary 
situation in which the user has choices of alternative 
courses of action, high perceived risk and cost of an action 
that are not outweighed by the perceived benefits and pay-
offs are likely to result in a decision not to pursue the 
action.   

Research has shown that females perceive higher risk than 
males in both exceptional situations and everyday activities 
(e.g., explosion in a nuclear power plant vs. driving a car) 
[15].  Other research on risk and gender has documented 
that females are more risk-averse in their financial decisions 
[19].  A meta-analysis of 150 studies on gender and risk 
taking also found that females engaged in less risk taking 
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than males [9].  The meta-analysis did not address risks of 
computer use directly.  However, it did find that intellectual 
risk taking, defined as activities involving mathematical or 
spatial reasoning skills, was greater in males than in 
females [9].  This is of interest to our work because the 
possible risks our participants faced in completing the task 
were intellectual rather than physical or financial. 

In our own recent empirical work on end-user debugging 
[21, 23, 24], in which we were investigating questions 
unrelated to gender, we collected the gender of every 
participant for later exploration.  We were then able to 
“mine” these data for gender differences.  In addition, we 
conducted a think-aloud study to help derive research 
subquestions [4].  The purpose of these explorations was to 
gain insights into whether investigation of gender 
differences in end-user debugging would be warranted.   

These preliminary explorations did point to the need for 
further investigation.  In fact, we found numerous gender 
differences relating to measures of software confidence and 
feature acceptance.  For example, in our think-aloud study 
the females’ confidence was not only lower, it tended to 
drop over the course of the study much more than the 
males’ confidence levels did.  Further, the mining of our 
recent experimental studies showed pronounced differences 
between males and females in amount and type of activities 
in which they engaged.  (Figure 1 shows the profiles for one 
male and one female whose activity patterns were fairly 

representative of their genders.)  Also, males were 
interested readers of tool tips describing new features early 
in the experiment, but not so later, whereas females delayed 
most of their reading until much later (Figure 2). 

Drawing from the previous research cited in this subsection 
and the implications of our own preliminary results, we 
chose to design the experiment so that it could answer the 
following two additional research subquestions: Are there 
gender differences in end users’ willingness to approach 
new debugging features? And are there gender differences 
in their willingness to then adopt these new features?     

EXPERIMENT  
The experimental design is presented here.  Note that the 
experiment’s procedures, materials, tutorial, questionnaires, 
transcripting software, and tasks have been used in or 
derived from previous studies ([21, 23, 24, 30], except 
where other sources are stated below).  In addition, they 
have been “tested” using analytical (cognitive 
walkthroughs) and empirical (pilot participants) methods.   

Participants and Procedures 
The 27 male and 24 female participants (mostly business 
students) started by filling out a pre-session questionnaire 
which collected participant background data and included 
the self-efficacy questions based on a slightly modified 
version of Compeau and Higgins’ validated scale [11]; the 
modifications made the questionnaire task-specific to end-
user debugging.  Participants were asked to answer on a 
five-point Likert scale their level of agreement with the 
statements.  For example, “I could find and fix errors… if 
there was no one around to tell me what to do as I go,” 
“…if I had seen someone else using it before trying it 
myself,” and “…if I had a lot of time to complete the task.”   

Statistical analysis of the background data showed that the 
females were academically a little younger than the males1 
(ANOVA F(1,48)=4.528, p<.039), but there were no 
significant differences between the genders in any other 
background data collected: programming experience, grade 
point average, or spreadsheet experience.   

All participants received the same treatment; the only 
independent variable was gender.  The study took place 
over eight sessions conducted in February and July of 2004.  
The two times do not threaten validity because the February 
and July males were analyzed as a single group, which was 
compared against the February and July females as a single 
group.  Each participant attended one session.  The 
participants were seated one per computer in a small lab.  
After participants completed the questionnaire we 
administered a 35-minute “hands-on” tutorial to familiarize 
                                                           
1 Post hoc analysis using the non-parametric Kruskel-Wallis 
test showed that the difference in academic age was not 
predictive of any of the outcome measures (performance 
measures or behavior patterns) in this study.   
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Figure 1.  Activity profiles of one male (left) and one female 
(right).  The male did more actions and used more features 

than the female.  The horizontal positions represent points in 
time during the experimental task.  Height represents 

frequency of debugging feature usage. 
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Figure 2.  Males’ (dark line) mean interest in tool tips 

describing new features started higher than females’ (light 
line) and then declined, whereas females’ interest increased.  
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participants with the environment.  The participants were 
then given two spreadsheet debugging tasks.  We captured 
their actions in electronic transcripts, as well as their final 
spreadsheets.  At the conclusion of each task, we 
administered post-task questionnaires in which participants 
self-rated their performance on the task.  The second task’s 
post-session questionnaire also included questions assessing 
participants’ comprehension of features in the environment.   

Environment 
The debugging features that were present in this experiment 
were WYSIWYT (“What You See Is What You Test”) 
debugging features that allow users to incrementally “check 
off” or “X out” values that are correct or incorrect, 
respectively [7].    

The underlying assumption behind WYSIWYT is that, as a 
user incrementally develops a spreadsheet, he or she can 
also be testing incrementally.  Figure 3 shows an example 
of WYSIWYT in Forms/3 [6], the research spreadsheet 
environment used in this experiment.  In WYSIWYT, 
untested cells have red borders (light gray in this paper).  
Whenever users notice a correct value, they can place a 

checkmark (√) in the decision box at the corner of the cell 
they observe to be correct: this communicates a successful 
test.  Behind the scenes, checkmarks increase the 
“testedness” of a cell according to a test adequacy criterion 
based on formula expression coverage (described in [22]), 
and this is depicted by the cell’s border becoming more 
blue (more black in this paper).  Also visible in the figure, 
the progress bar (top) reflects the testedness of the entire 
spreadsheet, and the optional dataflow arrows are colored to 
reflect testedness of specific relationships between cells and 
subexpressions.  (The user can turn these arrows on/off at 
will.)  

Instead of noticing that a cell’s value is correct, the user 
might notice that the value is incorrect.  In this case, instead 
of checking off the value, the user can put an X-mark in the 
cell’s decision box.  X-marks trigger fault likelihood 
calculations, which cause cells suspected of containing 
faults to be colored in shades along a yellow-orange 
continuum (shades of gray in this paper), with darker 
orange shades given to cells with increased fault likelihood.  
Figure 4 shows an example of this behavior in one of the 
spreadsheets the participants debugged.  The intent is to 
lead the user to the faulty cell (colored darkest orange). 

The way these features are supported is via the Surprise-
Explain-Reward strategy [21, 24, 30].  If a user is surprised 
by or becomes curious about any of the feedback of the 
debugging features, such as cell border color or interior cell 
coloring, he or she can seek an explanation, available via 
tool tips (Figure 4).  The aim of the strategy is that, if the 
user follows up as advised in the explanation, rewards will 
ensue—functional rewards (such as being led directly to a 
bug), affective rewards (such as increased progress in the 
progress bar), or both.  One aspect of interest in this ex-
periment was whether, if gender differences in confidence 

 
Figure 4.  The user notices an incorrect value in Course_Avg—the value is obviously too low—and places an X-mark in the cell.  

As a result of this X and the checkmark in Exam_Avg, eight cells are identified as being possible sources of the incorrect value, 
with some deemed more likely than others. 

 
Figure 3.  An example of WYSIWYT in Forms/3. 
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were present, they might impact Surprise-Explain-Reward’s 
success in encouraging users to accept new features. 

Tutorial 
In the tutorial, participants performed actions on their own 
machines with guidance at each step.  The tutorial did some 
teaching of the checkmark feature (including its associated 
testedness-colored arrows feature), but did not include any 
debugging or testing strategy instruction.  The tutorial did 
no teaching of the X-mark feature.  Instead, participants 
were simply shown that it was possible to place X-marks 
and given time to figure out any aspects of the feedback 
that they found interesting.  This design allowed us to 
gather information on three types of “newness” of software 
features: one type corresponding to the traditional way of 
thinking about formula errors (namely, formula editing), 
another type not previously encountered but explicitly 
taught (checkmarks and arrows), and a third type 
completely untaught (X-marks).   

Half of the tutorial sessions were presented by a male 
graduate student and half were presented by a female 
graduate student.  This design ensured that approximately 
50% of males were instructed by a same-gender instructor 
and 50% by an opposite-gender instructor (and likewise for 
the females) [29], serving to distribute any gender effect of 
the tutorial presenter equally over the two genders. 

Tasks 
The experiment consisted of two spreadsheets, Grade-
book and Payroll (Figure 4 and Figure 5).  To make the 
spreadsheets representative of real end-user spreadsheets, 
Gradebook was derived from an Excel spreadsheet of an 
(end-user) instructor, which we ported into an equivalent 
Forms/3 spreadsheet.  Payroll was a spreadsheet 
designed by two Forms/3 researchers using a payroll 
description from a real company.   

These spreadsheets were each seeded with five faults cre-
ated by real end users.  To obtain these faults, we provided 
three end users with the following: (1) a “template” 
spreadsheet for each task with cells and cell names, but no 
cell formulas; and (2) a description of how each spreadsheet 

should work, which included sample values and correct 
results for some cells.  Each person was given as much time 
as he or she needed to design the spreadsheet using the 
template and the description.   

From the collection of faults left in these end users’ final 
spreadsheets, we chose five that provided coverage of all 
categories in Allwood’s classification system [1].  Under 
Allwood’s system, mechanical faults include simple 
typographical errors or wrong cell references.  Logical 
faults are mistakes in reasoning and are more difficult than 
mechanical faults.  An omission fault is information that 
has never been entered into a cell formula, and is the most 
difficult [1].  We seeded Gradebook with three of the 
users’ mechanical faults, one logical fault, and one 
omission fault, and Payroll with two mechanical faults, 
two logical faults, and one omission fault.  Payroll was 
intended to be the more difficult task due to its larger size, 
greater length of dataflow chains, intertwined dataflow 
relationships, and more difficult faults. 

The participants were provided these Gradebook and 
Payroll spreadsheets and descriptions, with time limits 
of 22 and 35 minutes, respectively.  (The debugging tasks 
necessarily involved time limits to ensure participants 
worked on both spreadsheets, and to remove possible peer 
influence of some participants leaving early.) The use of 
two spreadsheets reduced the chances of the results being 
due to any one spreadsheet’s particular characteristics.  The 
experiment was counterbalanced with respect to task order 
so as to distribute learning effects evenly.  The participants 
were instructed, “Test the … spreadsheet to see if it works 
correctly and correct any errors you find.” 

RQ1 RESULTS: GENDER DIFFERENCES IN SELF-
EFFICACY AND EFFECTIVE DEBUGGING 

Gender Differences in Self-Efficacy 
As discussed earlier, gender differences in computer self-
efficacy have been found in several computing situations.  
Our analysis of the pre-session self-efficacy questionnaire 
revealed that these differences were also present for debug-
ging:  females had significantly lower self-efficacy than the 

 
Figure 5.  The Payroll spreadsheet. 
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males (Mann Whitney: U=181, tied p<0.018).  See Figure 6 
and Table 1.  Cronbach’s alpha for the ten-item question-
naire was .879 on 49 cases, indicating high reliability.  Self-
efficacy literature suggests that high self-efficacy is critical 
for problem solving [2, 3], which predicts that for our 
results, high self-efficacy will be tied with high debugging 
effectiveness, a point we will return to shortly.   

The self-efficacy literature further suggests that previous 
experience is one of the factors determining self-efficacy.  
To consider whether this held in our domain, we examined 
the participants’ previous spreadsheet experience as a 
predictor of self-efficacy.  The relationships for the whole 
group—and for females—were significant (linear 
regression: all: F(1,45)=8.721, β=.403, R2=.162, p<.005; 
males: F(1,23)=4.002, β=.385, R2=.148, p<.057; females: 
F(1,20)=5.751, β=.473, R2=.223, p<.026).  This relationship 
raises the possibility that, at least for females, low self-
efficacy may be addressable by finding ways to increase 
their experience level.   

                                                           
1 Note that the number of participants does not sum to 51.  
Some participants did not complete the questionnaire.  
Incomplete questionnaires were also the reason for other 
sample sizes in this paper that do not sum to 51. 

Ties to Effectiveness  
We first considered the relationship between self-efficacy 
and effective usage of WYSIWYT debugging features.  We 
chose final percent testedness (refer back to the progress 
bar in Figure 3) as our measure of effective usage for two 
reasons.  First, percent testedness can only increase through 
strategically checking off input/output value combinations.  
(Recall, input values must be chosen that actually add 
testing coverage of formula expressions.)  Second, final 
percent testedness in previous experiments has been 
significantly tied with success in debugging [7]. 

As Figure 7 shows, females’ self-efficacy was indeed a 
significant predictor of their final percent testedness.  For 
the males, however, self-efficacy was not a predictor of 
their effective usage of the debugging features (linear 
regression: males: F(1,25)=.365, β=-.569, R2=.015, p<.551; 
females: F(1,22)=4.52,  β=2.09, R2=.177, p<.046).  From 
this we can conclude that self-efficacy had important 
implications for females’ problem-solving choices.   

These choices of how much to use WYSIWYT testing 
features mattered: as in our previous studies, effective 
usage of the testing features (as measured through percent 
testedness) was predictive of the number of bugs fixed.  
The results of linear regression analysis of percent 
testedness on the number of bugs fixed were significant 
over all participants and also were significant for each 
gender (linear regression: all: F(1,49)=21.701, β=.554, 
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Figure 6.  Males’ and females’ pre-session self-efficacy.  

(Maximum possible self-efficacy was 50.)  The center line of 
each box represents the median self-efficacy score.  The boxes 

show the ranges encompassed by 50% of the scores of each 
gender.  The whiskers extending above and below the boxes 

show the remaining upper and lower 25% of the scores. 

 

Gender Self-Efficacy Final Percent 
Testedness 

Males  42.27 (4.69) 
n=26 

62.85 (21.36) 
n=27 

Females 38.96 (5.11) 
n=23 

54.79 (25.04) 
n=24 

Table 1.  Mean (standard deviation) and number of 
participants1 for males’ and females’ self-efficacy and final 

percent testedness.   
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Figure 7.  Self-efficacy as a predictor of final spreadsheet 
testedness.  The regression lines show the females’ positive 

relationship of self-efficacy to spreadsheet testedness and also 
suggest greater variability among females.  The means are 

given in Table 1. 
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R2=.307, p<.0001; males: F(1,25)=16.60, β=.632, R2=.399, 
p<.0004; females: F(1,22)=6.818, β=.486, R2=.237, 
p<.016). 

Finally, we considered the “bottom line” via two measures 
of debugging effectiveness: bugs fixed, and new bugs 
introduced.  Recall that we had seeded each spreadsheet 
with five bugs.  For purposes of this paper, we count as 
“bugs fixed” those seeded bugs that were no longer present 
by the end of the task.  “Bugs introduced” are bugs that 
were not seeded, but were present at the end of the task. 

Although there was no significant difference between the 
females’ and males’ performance in fixing the seeded bugs 
(Mann Whitney: U=300.5, p<0.651), the females 
introduced significantly more bugs than the males did 
(Mann Whitney: U=227.5, p<0.011).  See Table 2.  The 
gender difference in bugs introduced is confirmed by a 
gender difference in participants introducing the bugs: 9 of 
the 24 females introduced bugs, which is significantly 
greater than the 2 males (out of 27 total) who introduced 
bugs (Fishers Exact Test: p<.015).  Note that these new 
bugs were never fixed. 

RQ2 RESULTS: GENDER DIFFERENCES IN 
ACCEPTANCE OF UNFAMILIAR FEATURES 
Was females’ lower self-efficacy tied to lower acceptance 
of the debugging features that might have helped their 
effectiveness? As mentioned earlier, participants had access 
to three types of features: (1) the ability to edit formulas, 
which is a feature common to all spreadsheet environments, 
(2) the WYSIWYT features we taught in the tutorial 
(checkmarks and arrows), and (3) the fault localization (X-
mark) feature, which was not taught at all.  We will label 
these three types of features as Type Familiar, Type Taught, 
and Type Untaught, respectively.  We use these types to 
consider two forms of feature acceptance:  willingness to 
initially approach a feature, and then willingness to adopt it 
(i.e., commit to repeated genuine usage during debugging). 

Willingness to Approach New Features 
Females were inclined to approach the Type Familiar 
feature earliest, using it significantly earlier than the males 
did (ANOVA: F(1,49)=5.33, p<.025).  In contrast to this, 
males were much earlier to approach the new features 
(Type Taught and Type Untaught): the gender difference 
was significant for Type Taught features (ANOVA: Taught: 
F(1,49)=8.694, p<.005; Untaught: F(1,40)=3.40, p<.073).   
Figure 8 shows the mean time of first usage for each of 
these feature types.   

Willingness to Adopt New Features  
Our criterion of adoption was repeated genuine usage.  
Measuring genuineness required somewhat different 
measures for each feature type.  For the Type Familiar 
feature (formula edits), we simply used frequency of edits.  
This was a reasonable measure of genuine usage because 
editing a formula requires intellectual investment and 
pertains directly to debugging.  However, for Type Taught 
features (checkmarks and arrows), the intellectual cost of 
usage was low, a single click.  Furthermore, the effects on 
debugging are only indirect, because after a checkmark a 
formula edit was not necessarily expected (since placing a 
checkmark indicated belief that a cell’s value was correct).  
For these features, it was not possible to determine presence 
of intellectual involvement, but there were patterns for 
which its absence could be inferred.  We thus omitted Type 
Taught actions toggled again and again on the same cell by 
the participants after they had stopped editing formulas.  
After filtering these out, we then used frequency of the 
Type Taught actions as our measure. 

For the Type Untaught feature (X-marks), intellectual cost 
was low, but there was a detectable route from genuine 
usage of the feature to debugging: following the advice of 
an X-mark’s feedback leads eventually to formula edits on 
a colored cell.  Thus, for Type Untaught features, a 
participant was counted as adopting X-marks if he or she 
placed more than one X-mark in at least one task, and then 
eventually followed up by editing a colored cell’s formula.  
Since only about 60% of the participants exhibited this 
behavior and their frequency of usage according to this 
definition was necessarily low (1 or 2 was typical), 
counting participants rather than frequency was the right 
measure for Type Untaught feature adoption. 

By these measures, the only type of feature for which 
females had a higher adoption rate was the Type Familiar 
feature of formula editing (ANOVA: F(1,49)=4.979, 

Gender Seeded Bugs Fixed 
(10 possible) 

New Bugs 
Introduced  

Males (n=27) 5.815 (2.167) .111 (.424) 
Females (n=24) 5.667 (2.014) .583 (.974) 

Table 2.  Mean (standard deviation) performance of males and 
females on bugs fixed and new bugs introduced that still 

remained at the end of the task. 
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Figure 8.  Males (dark bars) first used new (taught and 
untaught) features much earlier than females (light bars).   
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p<.03).  See Table 3.  Males, however, were more willing to 
adopt the new features: they performed significantly more 
Type Taught actions than females, as Table 4 shows 
(ANOVA: F(1,49)=4.971, p<.03).  Furthermore, 
significantly more males used Type Untaught features than 
females did, as Table 5 shows (Fisher’s Exact Test: p<.01).   

The gender difference in adoption of the Type Untaught 
feature may be partially explained by the answers (on a 
five-point Likert scale) to a statement included on the post-
task questionnaire.  The statement said: “...  I was afraid I 
would take too long to learn [X-marks].” Females agreed 
with this statement significantly more than the males (Mann 
Whitney: U=157, p<.017). 

Interestingly, despite the gender differences in expectation 
of their ability to learn the Type Untaught feature, there 
were no gender differences in actual learning of the 
feature—even though the males were able to practice it 
more through their greater adoption of it.  In the post-task 
questionnaire, participants answered nine prediction and 
interpretation questions related to the Type Untaught 
feature.  Males answered 60% of these questions correctly, 
and females answered 53% correctly (ANOVA: 
F(1,49)=.929, p<.34).  This seems to be a clear case of 
inappropriately low self-efficacy of the females inhibiting 
their use of this feature.   

DISCUSSION  
The results of this study establish ties from the well known 
gender differences in computer-related confidence to end 
users’ debugging behaviors.  The females, whose self-
efficacy was significantly lower than the males, were less 
willing to accept the new debugging features in the 
software environment—which is unfortunate, because these 
features, which explicitly support testing and debugging, 

were statistically significant predictors of debugging 
success.   

Females’ low self-efficacy may be related to perceptions of 
risk, exacerbating the problem.  Studies have documented 
females’ high perception of risk in intellectual activities 
involving mathematical or spatial reasoning skills [9].  
Applying this to our study, an individual with low beliefs in 
her ability to succeed at debugging may hesitate to use new 
debugging features because of the risk they may not pay off 
in better debugging performance.  Further, she may believe 
that her cost of using them will be high, due to her low 
opinion of her own capabilities.  As predicted by the 
Attention Investment Model [5] and borne out by the 
females’ questionnaire responses and actions performed in 
our study, she may decide to forego the new features and 
use the debugging feature she already knows, formula 
editing.   

In the present study, females spent the time they “gained” 
through foregoing the new features by editing more 
formulas.  This resulted in significantly more new bugs, 
perhaps because, without the new features, they had less 
ammunition to use in tracking down the introduced bugs.  
As several previous studies have shown, users do benefit in 
effectiveness from the debugging features [7].  However, 
the data presented in this paper indicate that the degree of 
benefit is not equal for males and females.  This is a 
troubling result. 

Our data also indicate that previous experience with 
spreadsheets has an important influence on self-efficacy.  
According to Bandura [2, 3], the most important way of 
increasing self-efficacy is direct performance experiences.  
Lower self-efficacy of females for spreadsheet debugging 
may be remediated by greater experience.  Thus, as a 
female gets more experience, including experience with 
end-user debugging features, her self-efficacy can be 
expected to rise, with corresponding increases in effective 
usage of features that increase performance. 

However, there is a circular dependency here—a female 
may never gain the experience needed to raise her self-
efficacy and performance capabilities if she has already 
concluded that it is too risky or costly due to her perceived 
capabilities being too low.  In this situation time itself is not 
enough to produce the needed experience to raise self-
efficacy.  Consequently, looking to other, more aggressive, 
methods seems warranted.   

The relationship between experience and willingness to use 
new features suggests that a good design strategy may be to 
focus on how to initially attract females to try the features, 
thereby increasing their experience level.  Our research has 
shown that the Surprise-Explain-Reward strategy 
effectively draws users to new features [30].  Further, our 
research has shown that an effective interruption 
mechanism for communicating surprises has been 
interruptions to which the user can attend on their own 
schedule (as opposed to being interrupted in a more direct, 

Gender Type Familiar Features 
Males (n=27) 23.8 (9.58) 
Females (n=24) 29.8 (9.66) 

Table 3.  Mean (standard deviation) number of Type Familiar 
features. 

 

Gender Type Taught Features 
Males (n=27) 123.41 (68.27) 
Females (n=24) 87.54 (47.67) 

Table 4.  Mean (standard deviation) number of actions 
associated with Type Taught features. 

 

Gender Adopted Did Not Adopt 
Males (n=27) 22 5 
Females (n=24) 11 13 

Table 5.  Number of participants who adopted Type Untaught 
features. 
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aggressive manner, such as with pop-up boxes) [21].  
However, the data also revealed indications of gender 
differences in reactions to aggressive manner interruptions.  
Further research into interactions between gender and 
interruption style in the domain of complex problem-
solving tasks such as debugging may provide useful keys to 
how best to attract females to trying new features.   

CONCLUSION  
To date research regarding computer-related gender 
differences has not considered how the design of software 
interacts with gender differences.  Our investigation of this 
issue was performed in the context of end-user debugging.  
The main results were: 

• Females had lower self-efficacy than males did about 
their abilities to debug.  Further, females’ self-efficacy 
was predictive of their effectiveness at using the 
debugging features (which was not the case for the 
males).   

• Females were less likely than males were to accept the 
new debugging features.  One reason females stated for 
this was that they thought the features would take them 
too long to learn.  Yet, there was no real difference in the 
males’ and females’ ability to learn the new features. 

• Although there was no gender difference in fixing the 
seeded bugs, females introduced more new bugs—which 
remained unfixed.  This is probably explained by low 
acceptance of the debugging features: high effective 
usage was a significant predictor of ability to fix bugs. 

We believe these findings have implications far beyond 
debugging.  They suggest to designers of software products 
for end users that, unless appropriate accommodations can 
be made, there are likely to be important gender differences 
in the users’ willingness to accept new features and to 
benefit from them.   
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