## AN ABSTRACT OF THE THESIS OF

Hyunik Shin for the degree of Doctor of Philosophy in Chemistry presented on January 11, 1994.

Title: An Approach Toward the Synthesis of Euonyminol and Cathedulin K-19. Abstract approved by: __Rêdacted for Privacy

U

A synthetic approach toward the two major fragments of cathedulin $\mathrm{K}-19$, euonyminol (4) and dimethyl cathate (69), was investigated. Synthesis of dimethyl cathate was accomplished in 3 steps starting from 73. Efforts directed towards the synthesis of euonyminol, a highly oxygenated dihydroagarofuran sesquiterpene, was advanced to a stage in which most of the A ring of 4 was completed. Compound 79 was used as a starting material which was obtained from a Diels-Alder reaction of $\mathbf{8 0}$ and $\mathbf{8 1}$. Subsequent bromination of $\mathbf{7 9}$ and elimination of hydrogen bromide afforded 93 in a one-pot operation. A remarkable chemo- and stereoselective reduction of 93 under Luche conditions gave 94 and the latter was epoxidized stereoselectively by m-chloroperbenzoic acid to yield 91. Introduction of an isopropenyl moiety to 91 was accomplished following Liotta's protocol to provide 145. Vanadium catalyzed epoxidation installed the epoxide moiety of 152a with good stereoselectivity. Two approaches towards 4 from the key intermediate 152a were pursued. The first approach entailed the epoxide cascade reaction of 152a. Treatment of 152a with trifluoro- or trichloroacetic acid afforded 165 and 166, respectively, which possessed most of the functionality required for 4 . The second route to 178
proceeded in 5 steps from 152a. Treatment of 152 a with titanium tetraisopropoxide afforded 168, which was cyclized to 169 under acid catalysis. The diol moiety of $\mathbf{1 6 9}$ was protected as a benzylidene acetal and subsequent hydroxylation following Davis' procedure afforded 171. Stereoselective reduction of $\mathbf{1 7 1}$ using lithium aluminum hydride in the presence of titanium tetraisopropoxide provided 178.

# An Approach Toward the Synthesis of Euonyminol and Cathedulin K-19 <br> By <br> Hyunik Shin 

A THESIS<br>submitted to Oregon State University

in partial fulfillment of the requirements for the degree of<br>Doctor of Philosophy

Completed January 11, 1994
Commencement June 1994

## Redacted for Privacy

Professor of Chemistry in charge of major
Redacted for Privacy
Chair of Department of Chemistry


Date thesis is presented January 11. 1994

Thesis prepared by Hyunik Shin

To Haegyung, Chaehee, and Jaesoon

## Acknowledgements

I would like to sincerely thank professor James D. White for the support and guidance that made this thesis possible. I would also like to thank the present and past members of the White group, particularly Frank Stappenbeck, No-soo Kim, Tae-seong Kim, Scott Jeffery, Mark Jensen, Neal Green, Steve Perri, Steve Toske for their friendship and helpful discussions.

I thank Frank Stappenbeck for X-ray crystallographic analyses and Rodger Kohnert for his advice and assistance on the NMR analyses.

The National Institutes of Health and Benedict fund are acknowledged for financial support.

Finally, I thank my wife for her love and patience and Sung-bum for unconditional support all through my stay in the United States.

## TABLE OF CONTENTS

INTRODUCTION ..... 1
RESULTS AND DISCUSSION ..... 20
Synthesis of Dimethyl Cathate ..... 20
A Synthetic Approach Toward Euonyminol ..... 22
EXPERIMENTAL SECTION ..... 74
BIBLIOGRAPHY ..... 136

## LIST OF FIGURES

Figure Page
1 Esterifying Acids of the Sesquiterpene Cores of Cathedulin Alkaloids ..... 5
2 Esterifying Acids of Euonyminol of Celastraceaeous Alkaloids ..... 13
3 Pluto Diagram from X-ray Analysis of 113 ..... 39
4 Nuclear Overhauser Effects of 127a and 127b ..... 46
5 Pluto Diagram from X-ray Analysis of 132 ..... 49
6 Pluto Diagram from X-ray Analysis of 151 ..... 57
7 Pluto Diagram from X-ray Analysis of 162 ..... 62
8 Pluto Diagram from X-ray Analysis of 176 ..... 70

## LIST OF TABLES

Table Page
1 Celastraceaeous Alkaloids Based on Euonyminol and Evoninic Acid ..... 14
2 Celastraceaeous Alkaloids Based on Euonyminol and Wilfordic, or Hydroxywilfordic Acid ..... 15

# An Approach Toward the Synthesis of Euonyminol and Cathedulin K-19 

## Introduction

Plants of the family Celastraceae produce a variety of chemically and biologically interesting secondary metabolites. In particular, maytansine ${ }^{1}$ isolated from Matenus ovatus and triptolide ${ }^{2}$ from Tripterygium wilfordii have attracted a great deal of attention due to their antitumor activity. However, the most frequently encountered class of natural products produced by plants of this family is based on the dihydroagarofuran framework. The dihydroagarofuran nucleus 1 exists at various oxidation levels and its hydroxylated derivatives are often found in nature esterified with certain alkaloids. ${ }^{3}$ These structures all contain either a nicotinate or substituted nicotinate 2, along with ester groups which include benzoate, acetate, and 3-furoate.


1


2

Several weakly basic alkaloids named cathedulins ${ }^{4}$ have been isolated from Catha edulis, a member of the Celastraceae. The cathedulins comprise a family of over fourteen macrolide - alkaloids of which K-19 (3) ${ }^{5}$ is the most highly articulated member. Although the biological activity of $\mathrm{K}-19$ is not known, its structure presents a challenging target in terms of organic synthesis. This thesis
describes efforts toward the synthesis of cathedulin K-19, and more specifically toward the two major fragments, euonyminol (4) and cathic acid (5).


Cathedulin K-19 (3)


Cathic acid (5) Euonyminol (4)

Edulinic acid (6)

Scheme 1

The tree Catha Edulis (Forsk) (Celastraceae) is approximately 3 m high and is widely cultivated in parts of East Africa and the southern part of Arabia. It is the source of a drug known as khat. ${ }^{6}$ The first account of the effects of khat appeared more than seven centuries ago in an Arabic medical treatise, in which the leaves were recommended to soldiers and messengers for suppressing the feeling of fatigue and hunger. ${ }^{7}$ Today, several million people use khat daily because of its stimulating effects, which usually results in moderate euphoria, mild excitement, and an increased alertness and energy, and because of its appetite suppressing properties. Habitual use of khat over many years causes psychic dependence and can lead to personality disorder and to an impairment of overall mental health. It also causes malnutrition due to its appetite
suppressing effect. The drug is generally administrated by chewing young fresh leaves or tender twigs, although infusion or smoked material has been employed occasionally. Being a more profitable crop than coffee, khat has displaced this traditional agricultural product in some parts and its trafficking is continuing to expand as an article of commerce. Despite its stimulant properties, its use is acceptable to Islam.

The chemistry of the khat alkaloids mainly involves two groups, the phenylalkylamines and the complex polyesters of polyhydroxylated agarofurans (the cathedulins). Triterpenoids have also been isolated from the neutral component of khat. ${ }^{8}$ Although the first attempt to isolate the active principle of the leaves of Catha edulis was made a century ago, ${ }^{9}$ it was not until 1930 that Wolfes identified cathine (7) ( ( + )-norpseudoephedrine), i.e., $(S, S)-(+)$ phenylpropanolamine among the metabolites of the plant. ${ }^{10}$ Soon afterwards, it was found that cathine is a stimulant of rather low potency and that the amount of cathine present in khat is insufficient to account for the symptoms observed after its consumption. ${ }^{11}$ In 1980 a more potent stimulating principle was isolated from fresh material by Szendrei and shown to be cathinone (8), i.e., (S)-(-)-aminopropiophenone. ${ }^{12}$ Later it was found that cathinone is a biosynthetic precursor of cathine (7) and that this intermediate accumulates in young, but not in adult leaves. ${ }^{13}$ After its identification, intensive studies ${ }^{14}$ of the pharmacological effects of cathinone (8) were carried out which showed that this substance is the major active component of khat. It was shown that cathinone stimulates the central nervous system (CNS) via a mechanism of action similar to that of amphetamine (9).

cathine (7)

cathinone (8)

amphetamine (9)

In addition to the phenylalkylamine alkaloids, khat contains the less basic cathedulin alkaloids. The major contribution to the structure elucidation of the latter group was made by Crombie and coworkers, who isolated and formulated the structures of at least 14 cathedulin alkaloids. All of the cathedulins isolated up to the present are polyesters of one of two polyol sesquiterpene frameworks, the pentahydroxyagarofuran 10 and euonyminol (4) (Figure 1). The latter is more common. Many of the cathedulin alkaloids exist as macrocyclic dilactones in which evoninic (14) or edulinic acid (6) are coupled to the C-3 and $\mathrm{C}-12$ hydroxyl groups of euonyminol. The remaining hydroxyl groups are esterified with acetic, benzoic, 2-hydroxyisobutyric, 2-acetoxyisobutiric, nicotinic (11), or tri-O-methylgallic acid (13). In a few of the cathedulin structures cathic acid (12) forms a second macrocyclic dilactone with the $\mathrm{C}-8$ and $\mathrm{C}-15$ hydroxyl groups of euonyminol. The structural feature common to the dilactone component of these alkaloids is that the aliphatic terminus of a pyridinedicarboxylic acid is connected by an ester linkage with the C-3 hydroxyl group, and the aromatic acid esterifies the C-12 hydroxyl group. Since an excellent review ${ }^{4}$ on the cathedulins has been published, only a brief discussion of the structural features of these and other Celastraceaeous alkaloids based on euonyminol will be presented in this section.



12


13


14


6

Figure 1: Esterifying Acids of the Sesquiterpene Cores of Cathedulin Alkaloids.

Although Crombie's group deserves most of the credit for unravelling structural details of the cathedulin alkaloids, earlier work on the structural elucidation of alkaloids from other members of the Celastraceae (euonyminous sieboldianus and europaus) made an important contribution to this field. In particular, Hirata's group, along with the Pailer group successfully elucidated the structure of evonine (15) and neoevonine (16) (Scheme 2). ${ }^{15}$ A single crystal X-ray analysis of bromoacetylneoevonine (17) as its monohydrate confirmed all stereochemical details including its absolute configuration. ${ }^{16}$ The absolute configuration of the sesquiterpene polyol core units of cathedulin and other Celastraceaeous alkaloids is assumed to be the same as for 17.

Subsequently, Yamada and coworkers identified euonyminol (4) from the reduction of evonine (15) by lithium aluminum hydride, which afforded both 4 and isoeuonyminol (18). ${ }^{17}$ In 1977 an unambiguous structure determination of euonyminol was accomplished by X-ray analysis ${ }^{18}$ which showed that the $B$ ring of $\mathbf{4}$ adopts a chair conformation whereas the A ring exists in a distorted chair conformation.




Scheme 2

Cathedulins can be conveniently divided into three groups based on their molecular weight. The low molecular weight group includes E-2 (19) and E-8 (20), ${ }^{19}$ both based on the core structure 10 . The medium molecular weight group (750~900) includes K-1 (21), K-2 (22), K-6 (23), K-15 (24) ${ }^{20}$ and are all based on the euonyminol nucleus in which two of the nine hydroxyl groups are linked to a dicarboxylic acid to form a macrocyclic dilactone. The high molecular weight (1100~1200) group includes E-3 (27), E-4 (28), E-5 (29), E-6
(30), K-12 (32), K-17 (33), K-19 (3), and K-20 (31). ${ }^{21,5}$ They are also based on euonyminol and contain one or two macrocylic dilactone moieties together with other esterifying acids.

As mentioned above, cathedulin $\mathrm{E}-2$ (19) and $\mathrm{E}-8(20)$ are based on the modified agarofuran core structure 10. E-8 differs from E-2 only by the absense of nicotinyl substitution at the C-8 hydroxyl group. This has led to the suggestion that $\mathrm{E}-8$ is merely the result of hydrolysis of $\mathrm{E}-2$ during isolation. However, careful hydrolysis of E-2 using triethylamine in methanol afforded 8,15-bisdenicotinylated product and a little E-8 (20). Under the conditions using sodium bicarbonate in methanol, all of the ester functions were removed except the benzoate at C-9. Therefore, these experiments provide evidence that $\mathrm{E}-8$ is not an artifact of E -2 during isolation. ${ }^{18}$


E-2 (19)


E-8 (20)

The medium molecular weight cathedulins comprising K-1 (21), K-2 (22), K-6 (23), and K-15 (24) differ from one another in the degree of esterification at the $\mathrm{C}-2$ and $\mathrm{C}-15$ positions. $\mathrm{K}-6$ lacks acetyl substitution at the $\mathrm{C}-15$ hydroxyl group present in K-2, the latter being related in the same way to K-1 by the absence of acetyl substitution at the C-2 hydroxyl group. K-15 is the only
cathedulin alkaloid in this group containing 2-hydroxyisobutyric acid as an esterifying ligand. It is noteworthy that the deacetylation of $\mathrm{K}-2$ did not produce K-6 and K-15 but isomeric structures 25 and 26, thereby providing evidence that K-6 and K-15 are not artifacts. ${ }^{19}$


|  | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | $\mathrm{R}_{3}$ |
| :--- | :---: | :---: | :---: |
| Cathedulin K-1 (21) | Ac | Ac | Ac |
| Cathedulin K-2 (22) | H | Ac | Ac |
| Cathedulin K-6 (23) | H | H | Ac |
| Cathedulin K-15 (24) | H | H | H |



25


26

The high molecular weight cathedulins E-3 (27) and E-4 (28) are closely related; acetylation of E-4 gives E-3 and partial hydrolysis of E-3 gives E-4. Both E-3 and E-4 are bismacrocyclic dilactones with cathic and evoninic acids bridging the euonyminol core. Cathedulin E-5 (29) and E-6 (30) are related to each other in the same way that E-3 and E-4 are related. Indeed, E-5 is produced on acetylation of E-6. A minor cathedulin, $\mathrm{K}-12$ (32), was isolated
which differs from $\mathrm{E}-5$ only by replacement of the $\mathrm{C}-1$ benzoate group with acetate. K-20 (31) is related to E-3 by a different esterifying ligand at C-2, in this case benzoate replacing acetate.

$\mathrm{E}-3$ (27) $\mathrm{R}=\mathrm{Ac}$
E-4 (28) $\mathrm{R}=\mathrm{H}$

$\mathrm{E}-5$ (29) $\mathrm{R}=\mathrm{Ac}$
$\mathrm{E}-6$ (30) $\mathrm{R}=\mathrm{H}$


K-12 (32)


K-19 (3)


K-17 (33)

Cathedulin K-19 (3) and K-17 (33) are unique among the cathedulin alkaloids in possessing the edulinic acid (6) moiety, a new diacid which forms the lower macrocyclic dilactone ring. Although the stereochemical assignments made for K-17 and K-19 are complete in all other aspects, the stereogenicity at C-9' was left undetermined. The absolute configuration of the C-9 position of edulinic acid was tentatively proposed to be $(S)$ based on a hypothetical biosynthetic pathway for its formation. ${ }^{5}$ Evoninic and edulinic acid reportedly share the same biogenetic origin from isoleucine (34), and both may be viewed as products of coupling at the $\mathrm{C}-2$ position of nicotinic acid with either the $\mathrm{C}-4$ or C-5 position of an intermediate derived from isoleucine. In accord with this hypothesis, the absolute configuration at $\mathrm{C}-3$ of 34 is found to be the same as at C-8 of evoninic acid (14) and the same (S) configuration is assumed for edulinic acid.


An independent study in our group has led to the synthesis of (S)edulindiol (35) starting from (R)-3-hydroxy-2-methylpropionate (Scheme 3). The same substance was also obtained upon reduction of cathedulin K -19 with lithium aluminum hydride, and comparison of the two substances proved that the corresponding center in edulinic acid, and hence at $\mathrm{C}-9$ of $\mathrm{K}-19$, possess the $(S)$ configuration. ${ }^{22}$



Scheme 3 reagents and conditions (i) (MeO) ${ }_{2} \mathrm{PON}_{2}, t$-BuOK, THF, (90\%); (ii) Methyl 2-chloronicotinate, ( $\left.\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{Cul}, \mathrm{Et}_{2} \mathrm{NH},(61 \%)$; (iii) $5 \% \mathrm{HF} / \mathrm{CH}_{3} \mathrm{CN}$ (100\%); (iv) $\mathrm{H}_{2}$, Lindlar cat. MeOH, (76\%); (vi) $\mathrm{LiAlH}_{4}, \mathrm{THF}^{2} \mathrm{Et} 2 \mathrm{O}$ (28\%)

Little is known about the pharmacological activity of the cathedulin alkaloids. However, Kubo et al. ${ }^{23}$ has reisolated cathedulins E-3, E-4, and E-5 and reports that all three compounds exhibit growth inhibitory activity against the pink bollworm at approximately 1 ppm . This activity is nearly as potent as that of azadirachtin (36), ${ }^{24}$ which is one of the most effective naturally occurring insect growth inhibitors known.


Azadirachtin (36)

In addition to the cathedulins, several structurally related alkaloids based on euonyminol have been isolated from a number of different species in the family Celastraceae (Figure 2). Most of these natural products occur as a monomacrocyclic dilactone formed from acylation of the $\mathrm{C}-3$ and $\mathrm{C}-12$ hydroxyl groups of euonyminol with evoninic (14), wilfordic (39), or hydroxywilfordic acid (40). The remaining hydroxyl groups are esterified with 3 -furoic (37), benzoic, acetic, nicotinic, and rarely by 5-carboxy-N-methylpyridonic acid (38). Although the gross structures of wilfordic and hydroxywilfordic acids have been known for more than 20 years, the absolute stereogenicity at C-9 of these acids is still undetermined.


Figure 2: Esterifying Acids of Euonyminol of Celastraceaeous Alkaloids.

Isolation of this class of alkaloids from Euonymus sieboldiana was first announced by Yamada et al. in 1971.25 The Yamada group elucidated the structure of euonymine (41) and neoeuonymine (42) and showed that they are based on a macrocyclic dilactone structure containing evoninic acid and euonyminol (Table 1). In 1986 Sousa isolated and established the structure of meyteine (48) ${ }^{26}$ from Maytenus guianensis. This alkaloid is closely related to euonymine, different only with respect to esterification at the $\mathrm{C}-1$ hydroxyl group. Subsequently, the isolation and structure determination of forrestine (49) from the root bark of Tripterygium forrestii was described by Jikai et al. ${ }^{27}$ Recently, five new alkaloids, euojaponine A (43), C (44), I (45), L (46), and M (47), were isolated from the root bark of Euonymus japonica. ${ }^{28}$ Euojaponine I,
$L$, and $M$ are characterized by the presence of a nicotinyl ester at the $C-1$ hydroxyl group.


|  | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | $\mathrm{R}_{3}$ |
| :---: | :---: | :---: | :---: |
| Euonymine (41) | Ac | Ac | Ac |
| Neoeuonymine (42) | Ac | Ac | H |
| Euojaponine A (43) | COPh | Ac | H |
| Euojaponine C (44) | COPh | H | COPh |
| Euojaponine I (45) | nicotinyl | Ac | Ac |
| Euojaponine L (46) | nicotinyl | H | COPh |
| Euojaponine M (47) | nicotinyl | H | Ac |
| Mayteine (48) | COPh | Ac | Ac |
| Forrestine (49) | Ac | COPh | Ac |

Table 1. Celastraceaeous Alkaloids Based on Euonyminol and Evoninic acid

A number of alkaloids based on wilfordic and hydroxywilfordic acids (Table 2), including wilfordine (51), wilforine (52), wilforzine (55), wilforgine (54), and wilfortrine (53), were isolated from T. wiffordii by Beroza. 29 The thunder god vine, Tripterygium wilfordii Hook, is widely distributed in southern China and is commonly used as a contact insecticide in rural China. Although its structure was unknown at the time, wilfordine (51) was an established antifeedant principle of $T$. wiffordii as early as 1950.30 Recently an Italian group
has reexamined its strong antifeedant activity in detail. ${ }^{31}$ The structure of wilfordine ${ }^{32}$ was elucidated by Yamada, and the structures of wilforine and wilfortrine which were postulated by Smith on the basis of Beroza's earlier research, were confirmed by Wu et al. ${ }^{33}$ Recently, a Chinese group has reisolated these alkaloids from $T$. wilfordii and has confirmed the structure of


|  | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | $\mathrm{R}_{3}$ | $\mathrm{R}_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| wilfordine (51) | Ac | COPh | Ac | OH |
| wilforine (52) | Ac | COPh | Ac | H |
| wilfortrine (53) | Ac | 3-furanoyl | Ac | OH |
| wilforgine (54) | Ac | 3-furanoyl | Ac | H |
| wilforzine (55) | Ac | COPh | H | H |
| wilformine (56) | Ac | Ac | Ac | H |
| wilforidine (57) | Ac | H | Ac | OH |
| 1-desacetylwilfordine (58) | H | COPh | Ac | OH |
| 1-desacetylwilfortrine (59) | H | 3-furanoyl | Ac | OH |
| 2-debenzoyl-2- | Ac | nicotinyl | Ac | H |
| nicotinylwilforine (60) |  |  |  |  |

Table 2. Celastaceaeous Alkaloids Based on Euonyminol and Wilfordic, or Hydroxywilfordic acid.
wilforgine (54) postulated earlier by Smith, as well as that of wilforzine (55). 34 An alkaloid designated wilformine (56) was found to be identical with euonine ${ }^{35}$
previously isolated from Euonymus sieboldiana. Li et al. have established the structure of a new alkaloid wilforidine (57), , ${ }^{66}$ and in 1990 three additionalalkaloids from $T$. wilfordii were reported by the same group. These were shown to be 1-desacetylwilfordine (58), 1-desacetylwilfortrine (59), and 2-debenzoyl-2-nicotinylwilforine (60). ${ }^{37}$

In 1989 emarginatine $\mathrm{A}(61),{ }^{38}$ a novel cytotoxic pyridone alkaloid was isolated from Maytenus emarginata and its structure was elucidated by means of spectroscopic analysis in conjunction with a single-crystal X-ray analysis. This compound is the first example of an euonyminol based alkaloid bearing a 5-carboxy-N-methylpyridonyl substituent. It showed strong in vitro cytotoxicity against $K B$ cells ( $E D=4.0 \mu \mathrm{~g} / \mathrm{mL}$ ). Subsequently, emarginatine $B$ (62) based on the isoeuonyminol core was isolated from the same species and was found to exhibit more potent cytotoxicity against human $K B$ cells (ED $=0.4$ $\mu \mathrm{g} / \mathrm{mL}$ )than emarginatine A. ${ }^{39}$


No synthetic work on the sesquiterpene cores of the cathedulin alkaloids has been published. However, progress has been made toward the synthesis
of structurally more simple dihydroagarofuran derivatives which is relevant to the synthesis of euonyminol. In particular, the synthesis of isocelorbicol (64)40

(iii)


63
(vi)



Scheme 4 reagents and conditions (i) ethyl vinyl ketone, NaOMe , then $\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$; (ii) m-CPBA, then $\mathrm{LiAlH}_{4}$; (iii) Jones' oxidation (overall $10 \%$ ) (iv) $m$ CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then LDA; (v) $\mathrm{HN}=\mathrm{NH}$, then $\mathrm{POCl}_{3}$, py.; (vi) $\mathrm{LiAlH}_{4}$, then $n$-BuLi, PhCOCl; (vii) m-CPBA; (viii) (PhSe) $2_{2} / \mathrm{NaBH}_{4} / E t O H$, then $m$-CPBA / Et ${ }_{2} \mathrm{NH}$; (ix) $\mathrm{OsO}_{4} / \mathrm{py}$.; (x) acetonide formation, then Barton deoxygenation; (xi) $\mathrm{Ba}(\mathrm{OH})_{2}$, then $\mathrm{H}^{+}$
by Huffman describes highly regio- and stereoselective methodology for the introduction of hydroxyl functionality into the intermediate 63 (Scheme 4). The chemistry developed in the course of this work provides useful precedent for the elaboration of the multiple hydroxyl functionality present in this class of compounds.

Precedent for the construction of the macrocyclic dilactone moiety of the Celastraceaeous alkaloids from euonyminol and the corresponding pyridinedicarboxylic acid can be found in Yamada's synthesis of evonine (15)(Scheme 5). 41 In this work, the acid 66, prepared from 15 by a series of degradation processes, was transformed to an activated mixed anhydride by treatment with ethyl chloroformate and triethylamine and was condensed with evoninol pentamethyl ether acetonide 65 to give the ester 67. The latter was detritylated, and the exposed primary alcohol group was oxidized to a carboxylic acid. Removal of acetonide, methylation of the carboxylic acid, and subsequent cyclization afforded the dilactone 68 under somewhat unusual conditions ( $\mathrm{NaH}, \mathrm{DMF}$ ) in $12 \%$ yield. Deprotection and acetylation then produced evonine (15).

Our attention was focused on the synthesis of the two major fragments of cathedulin K-19, euonyminol (4) and dimethyl cathate (69). A concise and general synthetic entry to euonyminol could also provide a platform for the synthesis of other alkaloids described earlier. The present approach represents a racemic synthetic entry into euonyminol, however an asymmetric synthesis could be designed on the basis of the experience gained in the racemic series.


15


66

15
4 (v)


68


65


67
(iii)
(iv)


Scheme 5 reagents and conditions (i) a. $\mathrm{NaOMe} / \mathrm{MeOH}, 5^{\circ} \mathrm{C}$; b. Mel, NaH , DMF; c. $\mathrm{NaOMe} / \mathrm{MeOH}, \mathrm{RT}$; d. 2,2-dimethoxypropane, $\mathrm{H}^{+}$; (ii) ethyl chloroformate, $\mathrm{Et}_{3} \mathrm{~N}$, then 65, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, 90^{\circ} \mathrm{C}$ ( $36 \%$ ); (iii) a. $80 \% \mathrm{AcOH}, 50$ ${ }^{\circ} \mathrm{C}$; b. $\mathrm{CrO}_{3}$-py, $60^{\circ} \mathrm{C}$ ( $70 \%$ ); c. $50 \% \mathrm{AcOH}, 85^{\circ} \mathrm{C}$ ( $68 \%$ ); d. $\mathrm{CH}_{2} \mathrm{~N}_{2}$; (iv) a. $\mathrm{NaH}, \mathrm{DMF}, \mathrm{RT}(12 \%) ;(\mathrm{v}) \mathrm{a} . \mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; b. $\mathrm{Ac}_{2} \mathrm{O}$, py ( $35 \%$ ).

## Results and Discussion

By retrosynthetic analysis (Scheme 6) K-195 (3) can be divided into three major fragments. One fragment is the highly oxygenated sesquiterpene unit, euonyminol (4), and the other fragments are two dicarboxylic acids. These acids, named cathic (5) and edulinic acid (6) form macrolactones by attachment to euonyminol. This section is concerned with a straightforward synthesis of dimethyl cathate and a synthetic approach towards the complex structure of euonyminol (4).


Cathedulin K-19 (3)


Cathic acid (5) Euonyminol (4)

Edulinic acid (6)

Scheme 6

## Synthesis of Dimethyl Cathate

The synthesis of dimethyl cathate (69), a known degradation product from basic methanolysis of cathedulin E-3 (27), ${ }^{20}$ was envisioned via a Williamson's coupling reaction of methyl syringate anion (70) and the nicotinic acid derivative
(71). The latter would be prepared from commercially available pyridine-3,4dicarboxylic acid (72).



72


71


70

Scheme 7

Lactone 73 was obtained from pyridine-3,4-dicarboxylic acid anhydride (10) in $50 \%$ yield following a known procedure (Scheme 8). 42 Methanolysis of lactone $\mathbf{7 3}$ gave a 1:1 mixture of hydroxyl ester 74 and recovered starting material. Since 74 was prone to relactonization on silica gel, the crude mixture was treated with methanesulfonyl chloride to afford the unstable mesylate 75 along with recovered lactone 73 after column chromatography. Coupling of mesylate 75 and the sodium salt of methyl syringate gave dimethyl cathate 69 , with spectroscopic data ( ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, and mp ) identical with the reported values. ${ }^{20}$



69

## Scheme 8

## A Synthetic Approach Toward Euonyminol (4)

Outlined is a retrosynthetic analysis of euonyminol (Scheme 9). Intermediate $\mathbf{7 6}$ would be transformed to euonyminol through a sequence of manipulations. These would include osmylation of the double bond at $\mathrm{C}-3$, hydroxyl group inversion at $\mathrm{C}-1$, and reduction of both the ketone and the lactone carbonyl group. It was envisioned that the tetrahydrofuran segment of 76 would be formed by an electrophilic cyclization of the angular hydroxyl group and the double bond of the axial isopropenyl group of 77 . Introduction of the axial isopropenyl group of 77 would be achieved via a diaxial opening of the epoxide of 78 using a cuprate reagent. The functionality of the $B$ ring portion of

77 would be available from the diene segment of 78 via an oxidation reaction with singlet oxygen or epoxidation. Epoxide 78 would be available from 79 via a sequence of reactions: nucleophilic epoxidation of the electron deficient double bond at C-7, introduction of the homodiene moiety, and subsequent reduction of the ketone at C-6. An appropriate route to 79 would be a Diels-Alder reaction of the activated dienophile carbomethoxybezoquinone (80) and 1-t-butyldimethylsilyloxypenta-1,3-diene (81).



Scheme 9

The route to euonyminol began with a Diels-Alder reaction ${ }^{43}$ of carbomethoxybenzoquinone (80), generated in situ from hydroquinone 82, with 4 equivalents of an isomeric mixture of 1-t-butyldimethylsilyloxypenta-1,3-diene . The latter was prepared from 2-pentenal by treatment with $t$-butyldimethylsilyl triflate in the presence of triethylamine. 44 A single stereoisomer 79 was
obtained in high yield from the Diels-Alder reaction, reflecting a kinetic resolution among the $(\mathrm{E}, \mathrm{E})$-diene and the other isomers since the dienes were a mixture

nettral alumina
$\mathrm{C}_{6} \mathrm{H}_{6}, 99 \%$



Scheme 10
of all four isomers containing 25 to $30 \%$ of the ( $\mathrm{E}, \mathrm{E}$ )-diene 81. The stereochemical outcome of the Diels-Alder reaction was deduced from the coupling constant ( $\mathrm{J}=4.6 \mathrm{~Hz}$ ) between $\mathrm{H}-4$ and $\mathrm{H}-5$ of enedione 79, which supported an axial-equatorial disposition of these two protons. The coupling constant of the same pair of protons ( $\mathrm{J}=9.9 \mathrm{~Hz}$ ) of the trans isomer 83, obtained by treatment of 79 with neutral alumina, indicated an axial-axial relationship of $\mathrm{H}-4$ and $\mathrm{H}-5$. This result is consistent with endo addition ${ }^{45}$ of the ( $\mathrm{E}, \mathrm{E}$ )-diene to the quinone as depicted in Scheme 10. Subsequent nucleophilic epoxidation ${ }^{46}$ of 79 afforded the epoxide 84 stereoselectively in $90 \%$ yield. The $\beta$ configuration of the epoxide moiety of 84 was assigned based on steric ${ }^{47}$
considerations which dictated that attack of $t$-butylhydroperoxide should occur at the convex face of 79 . Since epimerization at $\mathrm{C}-5$ of 79 is facile under mild basic conditions as observed, there was the possibility that epimerization occurred during the epoxidation reaction. However, analysis of the coupling constant $(\mathrm{J}=4.6 \mathrm{~Hz})$ between $\mathrm{H}-4$ and $\mathrm{H}-5$ of 84 showed no sign of epimerization at the ring junction in this compound.

Initially introduction of the homodiene moiety of 87 was planned via bromination of the double bond of 84 and a sequence of elimination reactions using base i.e., trans 1,2-elimination of hydrogen bromide from 85 and subsequent 1,4-elimination of hydrogen bromide from 86.


84

then base


85


86

87

## Scheme 11

Unexpectedly bromination of 84 using bromine in carbon tetrachloride afforded the allylic bromide 86 instead of the dibromide 85 . The stereochemisty
of the introduced bromide of 86 was assumed to be as shown on the basis of the well known diaxial opening of the intermediate bromonium ion 48 to form 85 and a subsequent trans elimination. ${ }^{49}$ The same product could also be obtained by allylic bromination of 84 with $N$-bromosuccinimide 50 in the presence of a catalytic amount of benzoyl peroxide (Scheme 12).


84

94\%

Scheme 12

A 1,4-elimination of hydrogen bromide from 86 using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) ${ }^{51}$ provided the homoannular diene 87, and reduction of the latter under Luche conditions ${ }^{52}$ gave 78 as a single isomer in a chemo- and steroselective manner (Scheme 13). The $\alpha$ configuration of the resultant hydroxyl group of 78 was rationalized based on steric considerations. Close examination of the MM2 energy minimized structure of 87 predicted that the A ring adopted a boat conformation making the top face of the ketone at $\mathrm{C}-6$ more accessible to hydride attack. The chemoselectivity of the reduction of 87 in which the conjugate ketone group is reduced in preference to the saturated ketone group ${ }^{53}$ is also an interesting result and is discussed below.



Scheme 13

According to a mechanistic study by Luche and Gemal, 54 the major effect of ceric ion in the Luche reduction is catalysis of borohydride decomposition by the hydroxylic solvent to give a more reactive alkoxyborohydride (equation 1). In addition, the Lewis acidic ceric ion coordinates to the Lewis basic hydroxyl solvent, making the medium more acidic. The latter effect presumably accelerates reaction by a coordination of the Lewis acidic hydrogen of the hydroxylic solvent to the carbonyl group (equation 2). Since it is known that the Lewis basicity of an $\alpha, \beta$-unsaturated ketone is greater than that of a saturated ketone, ${ }^{55}$ the observed selectivity may be the result of a difference in the relative basicity between the two ketone groups. This would result in selective activation by the cerium (III) coordinated hydroxylic
solvent of the $\alpha, \beta$-unsaturated ketone leading to more rapid attack at the $\mathrm{C}-6$ carbonyl group of $\mathbf{8 7}$.

$$
\begin{equation*}
\mathrm{NaBH}_{4}+\mathrm{ROH} \underset{ }{\stackrel{\mathrm{Ce}^{+3}}{\rightleftarrows}} \mathrm{NaBH}_{n}(\mathrm{OR})_{4-n} \tag{1}
\end{equation*}
$$



## Scheme 14

With this efficient route to 78 established, opening of the epoxide ${ }^{56}$ was attempted with cuprate reagents under a variety of conditions. Our expectation was that opening of the epoxide and subsequent lactone formation would lead to 88. However, all attempts to effect this transformation proved unsuccessful.


78


Scheme 15

Functionalization of the diene moiety of 78 with singlet oxygen ${ }^{57}$ was also examined as an entry to the B ring of euonyminol. It was hoped that singlet oxygen would undergo [4+2] cycloaddition with 78. This transformation would not only introduce the angular hydroxyl group but would also generate a direct precursor of the B ring of $\mathbf{4}$. We also hoped that the allylic hydroxyl group of 78 would direct the incoming dienophilic singlet oxygen syn to the hydroxyl group
(Scheme 16) since a recent detailed study of the directing effect of an allylic hydroxyl group on the ene and [4+2] cycloaddition reactions of singlet oxygen provides exellent precendence for this result. 58


Scheme 16

However, treatment of 78 with singlet oxygen afforded the ene product 90 after reduction of intermediate hydroperoxide 89 with triphenylphosphine rather than the desired endo peroxide resulting from [4+2] cycloaddition. The stereochemistry of 90 is based on an assumed hydroxyl group directing effect which would lead to a cis diol.


Scheme 17

The inability to effect the epoxide opening of 78 with cuprate reagents prompted to turn our attention to an alternative route that would accomplish the same overall transformation (Scheme 18). This plan called for the preparation of epoxy enone 91, which would be functionalized to yield 92 via a Michael
addition and subsequent capture of the intermediate enolate by a hydroxylating reagent.


Scheme 18

Allylic bromination of Diels-Alder adduct 79 with N -bromosuccinimide, followed by elimination of the unstable allylic bromide using triethylamine, afforded trienedione 93 in a single-pot operation (Scheme 19). Reduction of 93 with the Luche reagent ${ }^{52}$ afforded $\gamma$-hydroxy enone 94 with complete regio- and stereoselectivity. The selective reduction of the C-6 ketone group of $\mathbf{9 3}$ can again be explained assuming greater basicity of the cross conjugated ketone group relative to the $\alpha, \beta$-unsaturated ketone group as proposed for the reduction of 87 . However, there is no pertinent literature data for the relative basicities of these two ketone groups. A further interesting feature of the reduction of 93 is that a highly dilute solution of the reagents relative to the standard Luche reduction conditions and slow addition of sodium borohydride was found to be crucial for good yields. Subsequent epoxidation of 94 with $m$ -chloroperbenzoic acid gave epoxy enone 91 as a single stereoisomer. This is a result of the directing influence of the $6 \alpha$-hydroxyl substituent (Henbest effect) ${ }^{59}$ on the epoxidation.




Scheme 19

It was found that the vinyl epoxide functionality of 91 could be manipulated in a variety of ways. Thus, treatment of 91 with acetic acid at $60^{\circ} \mathrm{C}$ for 4 h gave allylic acetate 95 which has much of the functionality required for the B ring of euonyminol. When the more acidic trifluoroacetic acid was used at room temperature for 2 h , trifluoroacetate 96 and its deprotected derivative 97 was obtained in a ratio of 1:2 (Scheme 20).


## Scheme 20

When the hydroxy enone 91 was treated with titanium tetraisopropoxide, the conjugated diene 98 was obtained as a single product. 60 This transformation probably resulted from tertiary carbocation formation assisted by a hydroxyl-directed internal coordination of titanium tetraisopropoxide to the epoxide moiety as depicted in Scheme 21. This presumed activation of epoxide 91 by titanium tetraisopropoxide led us to examine the possibility of intercepting the tertiary carbocation intermediate with nucleophiles. Surprisingly, thiophenol led to the allyl sulfide 99 together with 98 in a ratio of $2: 1$. The mechanistic pathway for the formation of allyl sulfide 99 is not yet known. However, the independent conversion of 98 to 99 under the same reaction conditions implies that diene 98 is an intermediate. When benzoic acid was used in the reaction with 91,98 was formed exclusively. The formation of cyclic carbonate 100 from 98 by treatment with carbonyl diimidazole ${ }^{61}$ confirmed the cis 1,2 -diol relationship and thus established the cis relationship of the secondary hydroxyl
and epoxide group in 91. Epoxidation of 98 with $m$-chloroperbenzoic acid afforded a 1:1 mixture of epoxides 101 which were not examined further due to the poor stereoselectivity. In principle, the $\alpha$-epoxide from this reaction could afford a means of access to the B ring functionality of euonyminol but subsequent development with 101 was not appealing.



98
$\mathrm{Ti}(\mathrm{O}-\mathrm{Pr})_{4}$
toluene
$75 \%$


98




Scheme 21

Further exploration of the chemistry of 91 led to the discovery that lactone 102 was formed with pyridium p-toluenesulfonate in acetone. On the other
hand, when methanol was used as the solvent, the methyl ether 103 was obtained. This was transformed to 102 under prolonged exposure to these conditions. In less polar solvents such as methylene chloride, there was little reaction and most of the starting material was recovered. A combination of $p$ toluenesufonic acid in acetone with 91 produced a mixture of allylic alcohol 104 and lactone 102 in a ratio of $2: 1$. The alcohol 104 underwent lactionization to give 105 in refluxing toluene.(Scheme 22).


103


91

PPTS , acetone 60\%


102


104


102
toluene reflux, 4h
85\%


105

Scheme 22

In summary, the vinyl epoxide moiety of 91 was functionalized in various ways under mild acidic conditions. Acetic acid opened the vinyl epoxide moiety in an anti $S_{N} 2$ ' fashion to give 95. Similarly, trifluoroacetic acid afforded 96 and 97. On the other hand, methanol attacked in an $\mathrm{S}_{\mathrm{N}} 2$ fashion to form 103 in the presence of pyridinium p-toluenesulfonate. In the absence of an external nucleophile the participation of the angular ester group was observed to form
102. Hydroxyl directed internal coordination of epoxide of 91 by titanium tetraisopropoxide afforded diene 98. Unexpectedly, sulfide 99 was obtained in the presence of thiophenol.

Having acquired a good understanding of the reactivity of the epoxide 91, we next turned our attention towards introduction of the requisite three-carbon unit into ring A. Initially, cuprate addition to the enone moiety of 91 was envisioned for this purpose. Unfortunately, addition to 91 could not be accomplished with the higher order isopropenyl cuprate reagent. Nor was the protected enone 106 responsive to the cuprate reagent in the presence of boron trifluoride etherate. However, isopropenyl cuprate added smoothly to the enone of 91 in the presence of trimethylsilyl chloride (TMSCI) ${ }^{62}$ to yield the enol ether 107 in which the $\mathrm{C}-6$ alcohol had also been silylated. (Scheme 23). An initial attempt to remove the two trimethylsilyl groups of 107 by acidic hydrolysis failed and instead gave an unidentified product. However, this conversion was accomplished cleanly following Rubottom's procedure ${ }^{63}$ using the triethylaminehydrofluoric acid complex ${ }^{64}$ in methylene chloride and afforded isopropenyl ketone 108 in good yield.

$\underset{\mathrm{Et}_{3} \mathrm{~N}}{\text { TESOTf, }}\left(\begin{array}{ll}91, & \mathrm{R}=\mathrm{H} \\ 106, & \mathrm{R}=\mathrm{TES}\end{array}\right.$


| xs. $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HF}$, |
| :---: | :---: |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |$\downarrow 60 \%$



## Scheme 23

The configuration of the isopropenyl substituent of 108 was not clear from the available NMR data. In particular, the coupling constant ( $\mathrm{J}=6.2 \mathrm{~Hz}$ ) between $\mathrm{H}-6$ and $\mathrm{H}-7$ represents a value which is intermediate between axialaxial ( $\mathrm{J}=11-15 \mathrm{~Hz}$ ) and axial-equatorial coupling constants ( $\mathrm{J}=2-6 \mathrm{~Hz}$ ) for vicinal protons of a cyclohexane in a chair conformation. However, even though the stereochemical outcome of conjugate addition to 91 was uncertain, further functionalization of the epoxide moiety was attempted with 108 in the same way as for 91 (Scheme 24). Thus, treatment of 108 with acetic acid at $60^{\circ} \mathrm{C}$ afforded the allylic acetate 109 and with titanium tetraisopropoxide, 108 gave diene 110. The coupling constant ( $\mathrm{J}=12.4 \mathrm{~Hz}$ ) between $\mathrm{H}-6$ and $\mathrm{H}-7$ of 110 showed a value typical of diaxial protons indicating $\beta$-configuration of the isopropenyl group. When 108 was treated with titanium tetraisopropoxide and thiophenol at $-5^{\circ} \mathrm{C}$ for 15 days, the allylic sulfide 111 was obtained in good yield
which similarly gave evidence for the undesired $\beta$ configuration of the isopropenyl substituent. Although these results seemed discouraging from the perspective of an approach to euonyminol, it was decided to investigate the chemical properties of 107 in order to gain experience in manipulating functionality in this structure.


109


108
$T\left(\mathrm{~F}_{\mathrm{OPr}}\right)_{4}, \mathrm{PhSH}$ toluene, $81 \%$


110


111

Scheme 24

Exposure of enol ether 107 to $m$-chloroperbenzoic acid, followed by treatment with triethylamine-hydrofluoric acid complex, gave epoxy diol 112 as a 3:1 mixture of stereoisomers at the epoxide (Scheme 25). Subsequent treatment of 112 with pyridinium p-toluenesulfonate in acetone afforded orthoester admixed with its epoxide isomer in the same $3: 1$ ratio. The major isomer 113 was purified and showed a ${ }^{13} \mathrm{C}$ NMR resonance for the orthoester carbon at 118 ppm and a ketone carbonyl frequency at $1779 \mathrm{~cm}^{-1}$ consistent
with an alkoxy substituent adjacent to a carbonyl contained in a 5-membered ring. Finally, an X-ray analysis of crystalline 113 confirmed the structure shown and proved unambiguously that the isopropenyl group occupied the undesired equatorial ( $\beta$ ) position (Figure 3 ). Thus, our assumption that a cuprate reagent would attack the enone moiety of 91 from the axial ( $\alpha$ ) direction on stereoelectronic grounds ${ }^{65}$ proved ill founded and the experimental result indicates that there is still much to be learned about this class of reactions. Possibly, the $\alpha$ orientation of the $\gamma$-hydroxyl substituent 66 of 91 interferes with delivery of the isopropenyl group or perhaps the mechanism ${ }^{67}$ is more complex than we envision.




Scheme 25


Figure 3: Pluto Diagram from X-ray Analysis of 113

Two relevant studies on the stereochemical outcome of the conjugate addition to enones similar to 91 were found in the literature. In a study of the role of TMSCI in cuprate addition, Corey and Boaz reported on the basis of a ${ }^{1} \mathrm{H}$ NMR study that TMSCI and cuprates are mutually compatible from $-78^{\circ} \mathrm{C}$ to -50 ${ }^{\circ} \mathrm{C}$ and that the presence of TMSCI not only enhanced the rate of conjugate addition but also affected the stereoselectivity. The addition of dimethyl cuprate to the enone 114 showed a complete reversal of stereoselectivity in the presence ( $A: B=97: 3$ ), or absence ( $A: B=8: 92$ ) of $T M S C l$ as shown in Scheme 26. They speculated from these results that the specific action of TMSCI was the capture of a $(\beta)-\eta^{3}-d, \pi^{*}$-complex 115a which could equilibrate with the thermodynamically more stable $(\alpha)-\eta^{3}-d, \pi^{*}$-complex 115b in the absence of TMSCI. The exclusive attack anti to the $\gamma$-oxygen group in the presence of TMSCI was thought to be a result of the interaction of the $\sigma^{*}$ orbital of the C-O

$T \mathrm{MSCl}$





114

115b


115 b

A


Scheme 26
bond with the ( $\beta$ ) $-\eta^{3}-\mathrm{d}, \pi^{*}$-complex 115a hyperconjugatively. Consistent with Corey's proposal, Danishefsky and coworkers ${ }^{68}$ reported that lithium dimethylcuprate added in an anti fashion to the $\gamma$-silyloxy group of $\mathbf{1 1 6}$ to give 117 exclusively in the presence of TMSCI. Danishefsky also found that Lewis acid-catalyzed 1,4-addition of silylketene acetal 118 to 116 showed a completely reversed stereoselectivity, resulting in a syn relationship with the silyloxy group in constrast to anti attack observed with cuprate reagent (Scheme 27). Trimethylallylsilane also added syn to the silyloxy group of $\mathbf{1 1 6}$ under titanium tetrachloride catalysis.



Scheme 27


119


Scheme 28

With these data in mind, various Lewis acid-catalyzed 1,4-additions to 106 were attempted (Scheme 28). First, however, it was ascertained through a model study that silylketene acetal 118 added smoothly to ( $R$ )-carvone to form the silylenol ether 119 as a single isomer in $83 \%$ yield. However, most of the reactant was recovered when the same conditions were applied to the enone 106. Addition of 118 to 106 also proved unsuccessful with Grieco's procedure ${ }^{69}$ using 5 M lithium perchlorate in diethyl ether as the reaction medium.


91


107

$$
\begin{gathered}
>-\mathrm{MgBr} \\
\text { cat. } \mathrm{CuBroSMe}{ }_{2} \\
\text { THF }-\mathrm{HMPA},-78^{\circ} \mathrm{C}
\end{gathered}
$$



Scheme 29

There are several reports ${ }^{70}$ indicating that the stereochemical outcome of cuprate addition to enones is dependent not only on the cuprate species but also on the solvent. To explore the effect of reaction parameters on the cuprate addition reaction, cuprous bromide dimethylsulfide complex ${ }^{71}$ catalyzed conjugate addition of isopropenylmagnesium bromide to 91 was attempted
(Scheme 29). In the absence of TMSCI, the isopropenyl group added to the vinyl epoxide moiety in SN2' fashion to form enone 120, presumably via internal activation of the vinyl epoxide moiety of 91 by an alkoxymagnesium bromide species. On the other hand, in the presence of TMSCI72 the $\beta$-adduct 107 was obtained as the sole product.


Scheme 30

The cuprous bromide-catalyzed addition of isopropenylmagnesium bromide was also examined with other enones including 98 (Scheme 30) and allylic acetate 95 (Scheme 31). Unfortunately, conjugate addition to 95 and 98 resulted in the formation of $\beta$-adducts exclusively as was observed with 91. Conjugate addition proceeded smoothly with 98 to form enol ether 121 in high yield, but in the case of allylic acetate 95 the reaction did not go to completion even with excess Grignard reagent. Cleavage of the trimethylsilyl ether of 121 with triethylamine-hydrofluoric acid complex partially removed the $t$ -
butyldimethyisilyl group to give 122 and 110. In an attempt to remove the trimethylsilyl groups of 123 with aqueous acetic acid solution, the selective deprotection of the trimethylsilyl ether of the secondary alcohol occurred in preference to the trimethylsilylenol ether. The resulting alcohol 124 was treated with triethylamine-hydrofluoric acid complex to give a $4: 1$ mixture of 109 and 125. The configuration of the isopropenyl substituent was then unambiguously determined by comparison with authentic compounds, 109 and 110 prepared from 108.




Scheme 31

The disappointing stereochemical outcome in the addition of an isopropenyl substituent to 91,95 , and 98 with cuprates made it necessary to
plan an alternative strategy for introducing this group. Toward this end, intramolecular radical cyclization of bromoacetal 126 was envisioned as a means of establishing the desired $\alpha$ configuration of the isopropenyl group. ${ }^{73}$ The resulting cis fused $\gamma$-lactol could then be used for installing an $\alpha$ isopropenyl group.

Intramolecular radical cyclization of a mixture of diastereomeric bromoacetals ${ }^{74} 126$ prepared from 91 was initiated with tri-n-butyltin hydride in the presence of 2,2 '-azobisisobutyronitrile (AIBN) and afforded a mixture of 127a, 127b, and 127c in the ratio of 2:5:3. (Scheme 32). Pure 127a and 127b were obtained after column chromatography, along with an inseparable mixture of the two diastereomers which corresponded to 127 c .


The stereochemistry of 127 a and $\mathbf{1 2 7} \mathrm{b}$ was determined by a series of nuclear Overhauser experiments (Figure 4). Irradiation of the C-12 methyl signal and $\mathrm{H}-13$ proton of 127a caused enhancement of the signals due to the protons $\mathrm{H}-7$ and $\mathrm{H}-11$ ( 3.1 and $3.5 \%$,respectively). In addition, irradiation of the

C-12 methyl signal of $\mathbf{1 2 7 b}$ induced peak enhancement of the equatorial $\mathrm{H}-8$ and $\mathrm{H}-13$ ( $1.1 \%$ and $1.4 \%$, respectively). These experiments defined the relative configuration of substituents around the perimeter of the $\gamma$-lactol segment and confirmed the cis fusion of the ring junction. The formation of 127 b as the major product in the cyclization of 126 is also consistent with the preferred transition state ${ }^{75}$ proposed by Houk et al. for these radical cyclizations. According to Houk's hypothesis the preferred transition state for cyclization of the radical derived from 126 would be represented as 128.


128


127a


127b

Figure 4: Nuclear Overhauser Effects of 127a and 127b

The hydroxylation of 127b following Davis' protocol using sodium hexamethyldisilazide and Davis' oxaziridine ${ }^{76}$ afforded only $19 \%$ of $\beta$ hydroxy ketone 129 (Scheme 33). The same result was obtained using potassium
hexamethyldisilazide. The presumed $\beta$ configuration of the introduced hydroxyl group was at odds with the coupling constant ( $\mathrm{J}=11.4 \mathrm{~Hz}$ ) between $\mathrm{H}-7$ and H 8 of 129 if the 6 -membered ketone ring was present in a chair conformation. On the other hand, the coupling constant could be rationalized by a MM2 energy minimized conformation of 129 which showed the dihedral angle between $\mathrm{H}-7$ and $\mathrm{H}-8$ to be approximately $180^{\circ}$. Since TLC analysis showed very clean conversion of $\mathbf{1 2 7 b}$ to 129 in spite of the low yield, the aqueous layer

$\|\|$



in aqueous layer

Scheme 33
was acidified to pH 1 and extracted to afford an acidic product. Treatment of this product with diazomethane gave enol ether 130. The structure of 130 was deduced by spectroscopic analysis. In particular, the ${ }^{13} \mathrm{C}$ NMR spectrum showed two carbonyl signals at 173 and 166 ppm corresponding to the vinylogous methoxy ketone and methyl ester carbonyls.


127a




$\mathrm{AcOH}, 60^{\circ} \mathrm{C}$
25 \%



131

Scheme 34

Opening of the vinyl epoxide moieties of 127a and 127b was found to be less efficient than that of 91 and 108 (Scheme 34). Thus, treatment of 127b with acetic acid at $60^{\circ} \mathrm{C}$ afforded the desired allylic acetate 131 in only $25 \%$ yield along with unidentified side products. An attempt to open the lactol
fragment of 127a with thiophenol and boron trifluoride etherate resulted in the formation of the crystalline mixed acetal 132 with concomitant deprotection of the $t$-butyldimethylsilyl group. An X-ray analysis of $\mathbf{1 3 2}$ unambiguously proved the stereochemistry which is now seen to be consistent with the nuclear Overhauser experiments (Figure 5). When 127a was treated with boron trifluoride etherate, diene 133 was formed in $30 \%$ yield. The latter was not stable and decomposed to a more polar compound even at low temperature.


Figure 5: Pluto Diagram from X-ray Analysis of 132

On account of these difficulties with functionalization of the vinyl epoxide moiety of 127 a and 127 b , we next attempted radical cyclization of the bromoacetal derived from 95 (Scheme 35). Following the protocol used with 91, 134 was obtained as a diastereomeric mixture in $50 \%$ yield. Efforts to open
the $\gamma$-lactol of 134 with excess thiophenol and boron trifluoride etherate afforded the mixed acetal 135 with simultaneous deprotection of the $t$-butyldimethylsilyl group. When thiophenol was replaced by ethanedithiol, the dithiane 136 was obtained in $49 \%$ yield as a single isomer.


xs. $\mathrm{PhSH}, \mathrm{BF}_{3}{ }^{\circ} \mathrm{Et}_{2} \mathrm{O}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$


136


135

Scheme 35

The difficulties encountered in the attempted transformation of the lactol fragment of 127 a and 127 b to an $\alpha$-isopropenyl group indicated that a more highly functionalized precursor for the intramolecular cyclization was needed. This consideration led to an alternative route as depicted in Scheme 36. In addition to the formation of a cis ring fusion, this route would also control the configuration at C -11 via cyclization of the angular hydroxyl group on to the exo double bond of the lactol 138.


Scheme 36

Unfortunately, attempts to prepare 137 using a modification of Moriya's procedure ${ }^{77}$ were not successful and only a complex mixture was obtained when 91 was treated with excess of 1 -ethoxyallene ${ }^{78}$ in the presence of N bromosuccimide. Moreover, a serious disadvantage to this reaction was the fact that the allene component must be used as a limiting reagent. Attempt to prepare propynoyl ester 140 by acylation of 91 with propiolic acid following a known procedure ${ }^{79}$ resulted in recovery of the reactant.



Scheme 37

A more promising substrate for cyclization appeared to be the 1 bromoacrylate 141 which was obtained in good yield when 91 was treated with 1,2-dibromopropanoyl chloride in the presence of triethylamine followed by1,2elimination of hydrogen bromide. ${ }^{80}$ However, attempts to effect intramolecular radical cyclization of 141 resulted in the formation of a complex mixture. This is probably due to the fact that the radical cyclization is much slower than competing side reactions such as 1,4 -reduction of the enone moiety or reduction of initially formed radical species. The decelerating effect of a $\mathrm{sp}^{2}$ center on the tethered chain on the intramolecular radical cyclization is well known. 81


Scheme 38

Although the radical cyclization route provided a method to introduce functionality at the C-7 position with good stereochemical control, the difficulties encountered in the further manipulation of the lactol fragment as well as the vinyl epoxide moiety of the cyclized products made further progress along these lines impossible. Hence, it was necessary to reconsider our earlier strategy involving direct introduction of the isopropenyl group via conjugate addition.

In 1989 Liotta and coworkers reported that chelation controlled conjugate addition ${ }^{82}$ of Grignard reagents to quinoxide 142 proceeded with high syn selectivity with respect to the hydroxyl group (Scheme 39). According to the
authors, the first step of the process iinvolves formation of a naked quinoxide anion by addition of a chelating species such as 1,3-dimethyl-3,4,5,6-tetrahydro-2 $(1 \mathrm{H})$-pyrimidinone (DMPU) or crown ether. Subsequent addition of the Grignard reagent produces a quinoxide-Grignard binary complex 143 which equilibrates with a ternary ate complex 144 via a Schlenk equilibrium. It was suggested that the more reactive ate complex leads to chelation controlled conjugate addition at $-78^{\circ} \mathrm{C}$ with high 1,2 -selectivity, whereas the binary complex undergoes conjugate addition above $-25^{\circ} \mathrm{C}$. The ratio of 1,2 vs 1,4 addition was only slightly affected by the reaction conditions (chelating additives, counter ion of the quinoxide 142, and Grignard reagent). However, complete diastereoselectivity was observed in both 1,2 and 1,4-additions, the Grignard reagent entering syn with respect to the hydroxyl group.


142


143

144

fast


upon


1,2-adduct


1,4-adduct


Scheme 39

After considerable experimentation, the conjugate addition of isopropenyl magnesium bromide to 91 was achieved following Liotta's procedure in 61\% yield when lithium diisopropylamide (LDA) was used in the presence of 15 -crown-5 (Scheme 40). The stereochemical outcome of the addition was easily determined by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of 145 with that of the undesired $\beta$-isomer 108. Interestingly, a long range $W$-coupling ( $\mathrm{J}=1.7 \mathrm{~Hz}$ ) between $\mathrm{H}-6$ and $\mathrm{H}-8$ indicated that the six-membered ring bearing the isopropenyl group had adopted a boat conformation. The $\alpha$-isopropenyl group could also be introduced into enone 94 when LDA and DMPU were used. However, the yield was low (23\%) and a substantial quantity of starting material was recovered. Replacement of DMPU by 15 -crown- 5 resulted in a complex mixture. Only dienone 146 was obtained in low yield and none of the desired product 147 was detected.


91


94

LDA, 15-C-5,


145




146

Scheme 40

With an efficient route to 145 at hand, construction of the tetrahydrofuran ring of euonyminol (3) was the next objective. Towards this end, 145 was treated with titanium tetraisopropoxide for 24 h at room temperature to give diene 148 as the sole product (Scheme 41). On the other hand, when 145 was treated with acetic acid at $60^{\circ} \mathrm{C}$, a 7:3 mixture of allyl acetate 149 and 148 were obtained. These results are to be contrasted with the exclusive formation of 109 from the $\beta$-isopropenyl isomer 108 under the same reaction conditions and it is clear that the reversed stereochemistry of the isopropenyl group influences the course of these reactions.

AcOH
$60^{\circ} \mathrm{C}, 4 \mathrm{~h}, 86 \%$


149


148

Scheme 41

An initial attempt to construct the tetrahydrofuran moiety via cyclization of the angular hydroxyl group and the isopropenyl group of $\mathbf{1 4 9}$ with phenylselenyl chloride ${ }^{83}$ was unsuccessful and gave only recovered starting material. However, iodoetherification ${ }^{84}$ of 149 afforded a pair of iodides 150a and 150b in
a 4:1 ratio based on ${ }^{1} \mathrm{H}$ NMR analysis (Scheme 42). This mixture was inseparable by column chromatography and the stereochemical outcome of the cyclization could not be dertermined at this stage. In an attempt to transform the primary iodide of 150 a and 150 b to a hydroxyl functionality, these substances were treated with potassium superoxide in dimethyl sulfoxide in the presence of 18-crown-6.85 Unexpectedly, the major product was cyclobutane 151. A similar result was obtained upon the treatment of 150 a and 150 b with cesium acetate in dimethylformamide in the presence of 18 -crown-686 and afforded 151 in $47 \%$ yield. The formation of 151 clearly arises from intramolecular alkylation ${ }^{87}$ of the enolate of 150a, reflecting the strongly basic character of the reagents, and thus indicates that the major product from the iodoetherification of 149 is the undesired endo iodomethyl isomer. The structure of 151 was first characterized by spectroscopic means. Thus, only one methylene carbon signal and six methine carbon signals were observed in the DEPT (Distortionless Ehancement Polarization Transfer) analysis. In the long range HETCOSY (Heteronuclear Chemical Shift Correlation Spectroscopy), one of the methylene protons showed two three-bond couplings, one of which was the methyl group on the tetrahydrofuran moiety and the other with the ketone carbon. This strongly hinted at the presence of a cyclobutane. Subsequently, an X-ray crystal structure of 151 confirmed the presence of the cyclobutane (Figure 6) and therefore the structure of the major stereoisomer from 149 to be 150a.

$\mathrm{KO}_{2}, \mathrm{DMSO}, 18-\mathrm{crown}-6$
or
CsOAc, DMF, 18-C-6, 47\%
three bond coupling


Scheme 42


Figure 6: Pluto Diagram from X-ray Analysis of 151

This disappointing stereochemical result coupled with the difficulties associatiated with manipulation of the iodide functionality of $\mathbf{1 5 0}$ indicated that a different strategy would be necessary to construct the tetrahydrofuran segment of euonyminol (3). In this regard, a sequence involving consecutive opening of epoxides in a structure such as 152a was considered to be an alternative strategy as depicted in Scheme 43. It was hoped that this epoxide "cascade" could be triggered by an anti $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ opening of the vinyl epoxide moiety with a suitable alkoxy nucleophile to give 153, which would then initiate opening of the second epoxide ${ }^{88}$ to form 154. Formation of the tetrahydrofuran ring of 154 by this process brings forth two crucial stereochemical issues, the configuration of the disubstituted epoxide in 152a and the assumption that the epoxide in 153 undergoes attack by the angular hydroxy group in a 5 -exo-tet fashion with inversion at the quarternary carbon.


Scheme 43

With the isopropenyl substituent of 145 now correctly installed, this ketone became a focal point for introduction of the remaining oxygen substituents. To this end, treatment of $\mathbf{1 4 5}$ with LDA and TMSCI afforded enol ether 155 in $82 \%$ yield. Simultaneous epoxidation of the enol ether and the isopropenyl double bond of 155 with $m$-chloroperbenzoic acid, followed by exposure to the triethylamine-hydrofluoric acid complex, gave a mixture of 156 and 157 in a ratio of 2:1 (Scheme 44). The epoxidation was, as expected,
highly stereoselective at the enol ether placing the hydroxyl substituent in the $\beta$ configuration exclusively. To our surprise, the terminal epoxide moiety was also formed with high stereoselectivity since 156 and 157 had the same epoxide configuration as evidenced by the conversion of 156 to 157 with triethylaminehydrofluoric acid complex. However, the configuration could not be determined at this stage. Subsequently, it was found later that the undesired isomer was predominant by comparison of the minor product to authentic 157 prepared independently by hydroxylation of 152b.



1. m -CPBA, hexane
2. $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$60 \%$


Scheme 44

When the major product 156 was treated with acetic acid at $60^{\circ} \mathrm{C}$ in the hope of initiating the epoxide "cascade", only a low yield of the orthoester 158 was obtained (Scheme 45). It was thought that the failure to obtain the desired tetrahydrofuran 159 could be due to the blocked hydroxyl group at C-6 and
therefore 157 was subjected to the same conditions. However a complex mixture resulted. A careful conformational analysis of these results suggested that the $\alpha$-hydroxy ketone moiety of $\mathbf{1 5 6}$ may prevent the saturated sixmembered ring from adopting the chair conformation required for the cascade cyclization to take place. Accordingly, the hydroxyl group of 156 was protected as acetate 160, but attempted cyclization of this material was unproductive below $60^{\circ} \mathrm{C}$ and yielded a complex mixture when the reaction temperature was raised to $100^{\circ} \mathrm{C}$.


Scheme 45

Since the $\alpha$-hydroxy ketone moiety of $\mathbf{1 5 6}, 157$, and 160 appeared to interfere with the epoxide cascade reaction, we turned our attention to the diepoxide 152a and 152b (Scheme 46). These diepoxides were initially
prepared in quantitative yield as a $1: 1$ mixture by treatment of 145 with $m$ chloroperbenzoic acid. The pure stereoisomers 152a and 152b were isolated after column chromatography, however with the stereochemistry at C-11 still undetermined.


145


152a


152b

Scheme 46

When pure 152b was treated with acetic acid at $60^{\circ} \mathrm{C}$, diol 161 was isolated in $44 \%$ yield (Scheme 47). The configuration of the newly formed quaternary center at C -11 of 161 was initially deduced by from a nuclear Overhauser experiment in which peak enhancement of the equatorial proton at C-8 was observed by irradiation of the methylene protons adjacent to the primary hydroxyl group. Subsequently, the structure of 161 was unambiguously confirmed by X-ray analysis of $p$-nitrobenzoate derivative 162 (Figure 7). Assuming that the stereochemical integrity of the epoxide was preserved in the tetrahydrofuran formation step, the configuration of the parent epoxide could be deduced as 152b. In a separate experiment, Davis' hydroxylation of 152b and comparison of the ${ }^{1} \mathrm{H}$ NMR of the product with that of minor product 157 obtained from the enol ether 155 established the configuration of the epoxide moiety of 156 and 157 as shown (Scheme 44).



$\left.\begin{gathered}p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl} \\ \mathrm{Et} \mathrm{N}, \mathrm{DMAP}\end{gathered} \right\rvert\,$


157


Scheme 47


Figure 7: Pluto Diagram from X-ray Analysis of 162

Having identified the configuration of the terminal epoxide of 152b as the result of our intended cyclization, albeit with the wrong stereochemistry, attention was next turned to 152a as a substrate for this epoxide cascade. Under the same reaction conditions as for 152b, 152a gave a mixture of products, which contained $30 \%$ of 163 along with unidentified side products inseparable by column chromatography (Scheme 48).


Scheme 48

The efficient conversion of 145 to 149 demonstrated that the first epoxide opening step of the cascade reaction proceeded smoothly, implying that formation of the tetrahydrofuran ring was the cause of the low yield. With the goal of improving this latter transformation, acetate 149 was epoxidized using 1.1 equivalents of $m$-chloroperbenzoic acid to afford a $1: 1$ stereoisomeric mixture of epoxides 164a and 164b (Scheme 49). Selective epoxidation of the isopropenyl double bond in preference to the trisubstituted double bond to this reagent is noteworthy since more substituted olefins are generally more reactive. In particular, trisubstituted double bonds are usually much more easily epoxidized than 1,1 -disubstituted alkenes. The low reactivity of the trisubstituted double bond in this case may be the result of reduced electron density caused by the two adjacent hydroxyl groups through $\pi \longrightarrow \sigma^{*}$ interaction or it could be due to a steric effect. When a mixture of isomers of 164a and

164b was kept in deuterated chloroform at room temperature for 5 h , one of the two isomers 164 a was completely consumed to afford 163 in pure form after chromatography, while the isomer 164b was recovered largely unchanged under these conditions.


149

$+$

164b


164ab
$\mathrm{CDCl}_{3}, 5 \mathrm{~h}$
$64 \%$


163

Scheme 49

The foregoing results indicate that if 164a could be prepared selectively, then the epoxide cascade sequence leading to $\mathbf{1 6 3}$ could become highly efficient. However, it turned out that the C-6 homoallylic hydroxyl group directed epoxidation of the isopropenyl double bond under vanadium catalysis ${ }^{89}$ resulted in the formation of a complex mixture. Due to the failure of the stereoselective epoxidation of 149 , it was necessary to reexamine the epoxide cascade reaction of diepoxide 152a. Crucial to the success of this strategy is the selective formation of 152a and optimization of the epoxide cascade reaction of this diepoxide. After a series of optimizations, the stereoselectivity of the epoxidation of 145 was increased to 3:1 in favor of the desired epoxide

152a when vanadium oxyacetylacetonate in the presence of $t$-butyl hydrogen peroxide and 2,6 -lutidine ${ }^{90}$ was used. A plausible representation of the transition state in the boat conformation leading to the major isomer 152a is shown in Scheme 50. This transition state presumes a boat conformation of the cyclohexanone ring of 145 since the W-coupling between $\mathrm{H}-6$ and $\mathrm{H}-8$ supports a boat conformation and this is the only conformer which permits directed epoxidation to the $\alpha(\mathrm{si})$ face of the isopropenyl substituent. It is also worthy of note that the presence of 2,6 -lutidine was found to be essential for a good yield in this epoxidation.


149


Scheme 50

The modified conditions that were developed for the earlier conversion of 91 to 96 were now applied to 152a and were found to be remarkably efficient (Scheme 51). Thus, treatment of diepoxide 152 a with 1.5 equivalent of trifluoroacetic acid in chloroform gave trifluoroacetate 165 in $55 \%$ yield. When trifluoroacetic acid was replaced by trichloroacetic acid, trichloroacetate 166 was obtained in $66 \%$ yield. Unexpectedly, di-trifluoroacetate 167 was isolated when trimethylsilyl trifluoroacetate ${ }^{91}$ was employed. An obvious advantage in the use of these trifluoro and trichloro esters is the facile cleavage which can be expected under basic conditions for 165 and 166.



Scheme 51

In parallel with these investigations, another route to euonyminol starting from the diene 168 was explored. This diene was obtained from 152a by treatment with titanium tetraisopropoxide in toluene (Scheme 52). Cyclization of 168 was accomplished in acidic chloroform solution to give diol 169 in good yield. The crude product was treated with benzaldehyde dimethyl acetal in the presence of a catalytic amount of pyridinium $p$-toluenesulfonate to afford the benzylidene acetal 170 as a single isomer. By contrast, an attempt to form an acetonide of 169 was completely unsuccessful.

$75 \%$



Scheme 52

The efficient preparation of 170 made available a substrate upon which further structural modifications in the direction of euonyminol could be examined. One of these was introduction of the axial hydroxyl substituent at C 8, for which the adjacent ketone was conveniently at hand. To our pleasant surprise, hydroxylation of the enolate of $\mathbf{1 7 0}$, generated with sodium
hexamethyldisilazide, with Davis' oxaziridine afforded 171 with high diastereoselectivity (Scheme 53). Under similar conditions using 3.2 equivalent of sodium hexamethyldisilazide, the unprotected diol 169 could also be hydroxylated to form triol 172 in $71 \%$ yield. The coupling constant ( $\mathrm{J}=0 \mathrm{~Hz}$ ) between $\mathrm{H}-7$ and $\mathrm{H}-8$ indicated initially the $\beta$ configuration of the introduced hydroxyl group at C-8. Subsequently, an X-ray analysis of a later intermediate confirmed this assignment.


170

$70 \%$


171


Scheme 53

Reduction of the C-9 ketone of 171 to form the desired $9 \beta-\mathrm{ol} 177$ appeared to be problematic at the outset due to the steric congestion surrounding the bottom face of the molecule. A report ${ }^{92}$ by Huffman provides an illustrative example of this steric impedence in the reduction of 173. With lithium aluminum hydride this dihydroagarofuran system afforded $9 \alpha$-alcohol 174 exclusively, whereas a dissolving metal reduction gave the $9 \beta$-alcohol. Unfortunately, a dissolving metal reduction would be incompatible with the
functionalities present in 171, including diene, benzyl and $\alpha$-hydroxy ketone moieties. Although selective formation of the $9 \beta$-alcohol 178 from 171 with metal hydride reducing reagents appeared unpromising for steric reasons, there


(CO) $\mathrm{Im}_{2}$ toluene


## Scheme 54

remained possibility that attack by hydride from the $\alpha$ face of the hydroxy ketone moiety of $\mathbf{1 7 1}$ could be induced if the six-membered ring exist in a distorted chair conformation. In the event, reduction of 171 by sodium
borohydride in methanol afforded a diol (Scheme 54). Although the stereochemical outcome of the reduction could not be established from the coupling constant ( $\mathrm{J}=5.1 \mathrm{~Hz}$ ) between $\mathrm{H}-8$ and $\mathrm{H}-9$, our assignment was based on precedent favored trans diol 175. In agreement with this assignment, treatment of 175 with carbonyl diimidazole afforded imidazolide 176 rather than a cyclic carbonate. Finally, X-ray analysis of $\mathbf{1 7 6}$ provided unambiguous proof of the trans configuration of 175 and also showed that the six-membered ring bearing the two hydroxyl groups occupied a boat conformation (Figure 8).


Figure 8: Pluto Diagram from X-ray Analysis of 176

The exclusive formation of the undesired stereoisomer 175 from the reduction of 171 with sodium borohydride prompted a search for alternative reducing systems which might reverse this stereoselectivity. It was speculated that reduction of 171 in the presence of a system which allowed for chelation between the $\alpha$-hydroxyl group and the ketone would lead to hydride delivery
from the bottom face if the chelation of the resultant cis diol was energetically more favorable than that of trans diol in the transition state (Scheme 55). Following this rationale, 171 was exposed to a combination of titanium tetraisopropoxide and sodium borohydride. ${ }^{93}$ The choice of titanium tetraisopropoxide as chelating agent was based on the known complexation of this reagent with the $\alpha$-hydroxyl carbonyl moiety of tartarate in the Sharpless asymmetric epoxidation ${ }^{94}$ of allylic alcohols. This reducing system operated smoothly on 171 to afford the desired cis diol 177 in $50 \%$ yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of 177 showed a coupling constant ( $\mathrm{J}=10.4 \mathrm{~Hz}$ ) between $\mathrm{H}-8$ and $\mathrm{H}-9$ significantly larger than that $(\mathrm{J}=5.1 \mathrm{~Hz})$ of the trans diol 175.


171

toluene
50\%


177


## Scheme 55

An attempt to reduce both the ketone and ester groups of 171 with lithium aluminum hydride and titanium tetraisopropoxide afforded triol 178 in $30 \%$ yield (Scheme 56). The low yield was thought to be the result of slow decomposition of the tetrahedral intermediate 179 formed by the hydride
addition to the ester group. In the TLC analysis of reaction's progress, an unidentified major spot was detected in addition to the cis diol 177 and the triol 178. It was speculated that the unidentified product was the aldehyde formed by decomposition of 179 on silica gel. Accordingly, an excess of methanol and sodium borohydride (10 equiv.) was added at the end of reaction to induce breakdown of tetrahedral intermediate 179 and reduce the subsequently formed aldehyde. 95 Using this modified workup procedure, the yield of triol 178 was increased to 50\%.

171

178




Scheme 56

This sequence completes the functionalization of the A ring of euonyminol and leaves only relatively minor transformations in the B ring for the final assault on 4. Among these is the need to invert the hydroxyl groups at C-1 and the introduction of hydroxyl groups from the $\alpha$ face at $\mathrm{C}-3$ and $\mathrm{C}-4$. These
last steps remain for others to execute, and while they may appear relatively trivial it is likely that surprises lurk in the densely functionalized framework of this molecule.

In summary, the synthesis of the A ring of euonyminol (4) has been completed. Several substances already prepared, including 178 and intermediates such as 165 and $\mathbf{1 6 6}$ can be envisioned as a direct precursors to euonyminol. In addition, some noteworthy transformations were found along the synthetic routes investigated. These include the chemo- and stereoselective reduction of 93 to 94 , the complementary stereocontrol in the conjugate addition to 91, a remarkably efficient construction of the dihydroagarofuran framework of euonyminol via the epoxide cascade reaction, and a stereoselective reduction of ketol 171 to 177 or to triol 178 using a hydride reagent in the presence of titanium tetraisopropoxide. The synthesis of euonyminol, while not yet complete, has been advanced to a stage where a plausible finale can be foreseen. When a synthetic route to this core unit of Cathedulin K-19 (3) has been established, the second phase of the project, which will involve selective acylation of the nine hydroxyl group of $\mathbf{4}$ with cathic and edulinic acids, can begin.

## Experimental Section

## General

Starting materials and reagents were obtained from commercial sources and, unless stated otherwise, were used without further purification. Solvents were dried by distillation from the appropriate drying agent immediately prior to use. Toluene, tetrahydrofuran, and ether were distilled from potassium and benzophenone under an argon atmosphere. Diisopropylamine, triethylamine, diisopropylethylamine, dimethylformamide, acetonitrile, pyridine and dichloromethane were distilled from calcium hydride under argon. All solvents used for routine isolation of products and chromatography were reagent grade and glass distilled. Moisture and air sensitive reactions were carried out under an atmosphere of argon. Alkyllithium reagents, sodium hexamethyldisilazide, and potasium hexamethyldisilazide were titrated following Kofron's procedure. ${ }^{96}$

Concentration in vacuo refers to the use of a rotary evaporator at water aspirator pressure. Residual solvent was removed by vacuum pump at pressures less than 2 torr. Reaction flasks were flame dried under a stream of argon. Syringes were oven dried at $200^{\circ} \mathrm{C}$ and cooled to room temperature in a desiccator over anhydrous calcium sulfate.

Analytical thin layer chromatography (TLC) was conducted using E . Merck precoated glass TLC plates ( 0.25 mm layer thickness of silica gel 60 F 254). Spots were visualized by ultraviolet light, or by heating the plate after dipping in a $3-5 \%$ solution of phosphomolybdic acid in ethanol, $10 \%$ ammonium molybdate, or a $1 \%$ solution of vanillin in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol. Flash chromatography was carried out using E. Merck silica gel 60 (230-400 mesh ASTM). Radial chromatography was carried out on individually prepared rotors
with layer thickness of 1,2 or 4 mm using a Chromatotron manufactured by Harrison Research, Palo Alto, California.

Melting points were measured using a Büchi melting point apparatus. Infared (IR) spectra were recorded with a Nicolet 5DXB FT-IR spectrometer. Proton and carbon nuclear magnetic resonance (NMR) spectra were obtained using either a Bruker AC-300, or Bruker AM-400 spectrometer. All chemical shifts are reported in parts per million ( ppm ) downfield from tetramethylsilane using the $\delta$ scale. ${ }^{1} \mathrm{H}$ NMR spectral data are reported in the order: chemical shift, multiplicity, $(s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $m=$ multiplet, and $\mathrm{br}=\mathrm{broad})$, coupling constant $(\mathrm{J})$ in Hertz, and number of protons. Chemical ionization mass spectra $\mathrm{MS}(\mathrm{Cl})$ were obtained using a Finnigan 4023 quadrupole GC-MS 4500 spectrometer with a source temperature of $140^{\circ} \mathrm{C}$ and a pressure of 0.7 torr. Electron impact mass spectra MS(EI) were obtained using a Varian MAT311 spectrometer with an ionization potential of 70 eV . High resolution mass spectra were obtained using a Kratos MS-50 RF spectrometer. X-ray crystallographic data were collected using a Rigaku AFC6R and Siemens P4 diffractometer. Structures were solved using the direct method contained in TEXAN (VAX/VMS) and SHELXTL (Silicon Graphics/UNIX) software package. Elemental analyses were performed by Desert Analytics, Tucson, Arizona.

Methyl 3-(Methanesulfonyloxy)methylnicotinate (75). A mixture of 73 (50
 $\mathrm{mg}, 0.74 \mathrm{mmol}$ ) and sulfuric acid ( $24 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$ ) in 2.5 mL of methanol was refluxed for 10 h . The mixture was cooled to ice bath temperature, solid sodium bicarbonate ( $50 \mathrm{mg}, 1.3$ equiv. to $\mathrm{H}_{2} \mathrm{SO}_{4}$ ) was added, and the mixture was stirred for 15 min . Methanol was removed in vacuo and the residue was diluted with methylene
chloride. The deposited solid was filtered through a Celite pad and concentrated to give 58 mg of a $1: 1$ mixture of 74 and 73 based on ${ }^{1} \mathrm{H}$ NMR analysis.

The crude mixture was dissolved in 2 mL of methylene chloride containing triethylamine ( $40.3 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$ ) and was treated with methanesulfonyl chloride ( $16.3 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After 30 min a few drops of methanol and a small quantity of silica gel was added and the volatile material was evaporated. Column chromatography of the absorbed silica gel (hexane-ethyl acetate, $5: 1$ to $2: 1$ ) afforded 41 mg ( $93 \%$ based on recovered starting material) of 75: IR (film) 1722, 1356, 1292, 1175, 1115, 991, 964, 845, $813 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,153.6,151.7,145.6,122.5,121.0,68.0,52.5,37.7$; MS (EI) $m / z$ (rel. intensity) 166 (70), 150 (20), 134 (100), 120 (5), 106 (27), 92 (11). This was used immediately for the next reaction due to its instability

Dimethyl Cathate (69). To a stirred suspension of sodium hydride ( 4.8 mg ,
 $60 \%, 0.120 \mathrm{mmol}$ ) in 1 mL of acetonitrile was added methyl syringate ( $25.7 \mathrm{mg}, 0.120 \mathrm{mmol}$ ) at room temperature. After the evolution of hydrogen was complete, a solution of 75 (20 $\mathrm{mg}, 0.082 \mathrm{mmol}$ ) in 0.5 mL of acetonitrile and 0.5 mL of dimethyl formamide was added. After 17 h at room temperature the mixture was refluxed for 1 h and cooled to room temperature. Water was added and the mixture was extracted with methylene chloride ( $2 \times 10 \mathrm{~mL}$ ). The separated organic layer was washed with brine, dried, and concentrated in vacuo. Column chromatography of the residue (methylene chloride to hexane-ethyl acetate,

1:2) afforded $22 \mathrm{mg}(74 \%)$ of 69 as a colorless solid: mp $163-164{ }^{\circ} \mathrm{C}$ (lit. ${ }^{20} 162$ - $162.5^{\circ} \mathrm{C}$ ); IR (KBr) 1721, 1592, 1412, 1341, 1290, 1227, 1218, 1132, 1113 $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.16$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.78 (d, J=5.0 Hz, 1H), 8.09 (d, $\mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.31 (s, 2H), 5.48 (s, 2H), 3.92 (s, 3H), 3.91 (s, 3H), 3.87 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 166.6,166.0,153.1,152.9,151.2,150.3,140.8$, 125.6, 122.4, 121.5, 106.6, 71.7, 56.1, 52.2; MS(EI) m/z (rel. intensity) 361 $\left(M^{+}, 2\right), 330(7), 211$ (29), 196 (1), 183 (5), 179 (2), 151 (33), 150 (100), 140 (2), 135 (2), 134 (2), 125 (6), 124 (3), 120 (8), 109 (3); HRMS m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~N}(\mathrm{M}+1): 361.1156$. Found: 361.1161 .
(E,E)-1-(t-Butyldimethylsilyl)oxypenta-1,3-diene (81). To a stirred solution of trans 2-pentenal ( $10 \mathrm{~g}, 118.8 \mathrm{mmol}$ ) and triethylamine ( $24.8 \mathrm{~mL}, 142.6 \mathrm{mmol}$ ) in 200 mL of methylene chloride was added dropwise $t$-butyldimethylsilyl triflate ( $26.4 \mathrm{~mL}, 115.2 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After the addition was complete, the mixture was refluxed for 4 h . To the resulting mixture was added aqueous sodium bicarbonate solution and the organic layer was separated. The separated organic layer was washed with saturated brine, dried and concentrated in vacuo. Vacuum distillation ( $1 \mathrm{~mm} \mathrm{Hg}, 100-110^{\circ} \mathrm{C}$ ) of the residue afforded $17.6 \mathrm{~g}(89 \%)$ of a mixture of stereoisomeric $1-t$-butyldimethylsilyl)oxypenta-1,3dienes which contained $25 \sim 30 \%$ of the ( $E, E$ ) isomer.

Methyl (4aß,5 $\alpha, 8 \alpha, 8 a \beta)-1,5,8,8 a-T e t r a h y d r o-5-(\not t b u t y l d i m e t h y l s i l y l) o x y-1,4-$ dioxo-8-methyl-4a(4H)-naphthalenecarboxylate (79). To a stirred solution of
 methyl gentisate ( $\mathbf{8 2}, 4.28 \mathrm{~g}, 25.5 \mathrm{mmol}$ ) and $1-\mathrm{t}$ -butyldimethylsilyloxypenta-1,3-diene ( $16 \mathrm{~g}, 80.6 \mathrm{mmol}$, mixture of stereoisomers) in 24 mL of toluene at $10^{\circ} \mathrm{C}$. was added silver (I) oxide ( $11.8 \mathrm{~g}, 50.9 \mathrm{mmol}$ ) in one portion. The mixture was warmed to room temperature and stirred for 19 h , then was diluted with diethyl ether ( 100 mL ) and filtered through Celite. The Celite was washed thoroughly with diethyl ether and the filtrate was concentrated in vacuo. The residue was purified by chromatography (hexane-ethyl acetate, $6=1$ ) to give $8.2 \mathrm{~g}(88 \%)$ of 79 as a yellowish solid: m.p. $57^{\circ}-59^{\circ} \mathrm{C}$; IR (film) 1749, 1710, 1686, 1253, 1227, 1089, 1058, 1037, $842 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}), 4.77$ ( $\mathrm{m}, 1 \mathrm{H}$ ), 3.76 (s, 3H), 3.64 (d, J=4.7 Hz, 1H), 2.17 (m, 1H), 1.42 (d, J=7.5 Hz, 3H), 0.73 (s, 9H), 0.01 (s, 3H), $-0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 196.0, 169.1, 144.3, 138.4, 132.7, 125.8, 67.1, 66.2, 53.0, 50.4, 30.0, 25.5, 17.7, 17.1, -4.6, -5.2; MS (CI) m/z (rel. intensity) 365 ( $\mathrm{M}+1,100$ ), 349 (43), 307 (65); HRMS $m / z$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{Si}: 365.1784$. Found: 365.1786.; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 62.59 ; \mathrm{H}, 7.76$. Found: $\mathrm{C}, 62.79 ; \mathrm{H}, 7.67$.

Methyl (4a $\beta, 5 \alpha, 8 \alpha, 8 \mathrm{a} \alpha$ )-1,5,8,8a-Tetrahydro-5-( $t$-butyldimethylsilyl)oxy-1,4-dioxo-8-methyl-4a(4H)-naphthalenecarboxylate (83). A mixture of 79 (117
 $\mathrm{mg}, 0.321 \mathrm{mmol}$ ) and neutral alumina ( 3 g , Brockman, activity 1, $80-100$ mesh) in 8 mL of benzene was stirred for 4 h at room temperature. The resulting mixture was filtered through Celite and the Celite was washed with ethyl acetate ( 20 mL ). Concentration of the filtrate afforded $113 \mathrm{mg}(99 \%)$ of 83 as a
viscous oil ( trans:cis > 30:1 based on ${ }^{1} \mathrm{H}$ NMR analysis): IR (film) 1748, 1733, 1697, 1273, 1252, 1212, 1180, 1073, 1047, 1009, 991, 864, 850, 839, $779 \mathrm{~cm}^{-}$ 1; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.81(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}$, 1 H ), $5.79(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{dd}, \mathrm{J}=9.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}$, 3 H ), $3.32(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H})$, $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.8,191.6,167.1$, 142.6, 137.5, 136.2, 125.7, 68.0, 65.1, 53.0, 50.3, 29.9, 25.6, 20.7, 17.8, -4.0, $-5.0 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel. intensity) $365(\mathrm{M}+1,26), 363(5), 351$ ( 3 ), 350 ( 8 ), 349 (34), 308 (8), 307 (44), 234 (14), 233 (100); HRMS m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}$ $(M+1): 365.1784$. Found: 365.1785 .

Methyl ( $2 \beta, 3 \beta, 4 \mathrm{a} \beta, 5 \alpha, 8 \alpha, 8 a \beta$ )-1,2,3,5,8,8a-Hexahydro-5-(t-butyldimethylsil-yl)oxy-1,4-dioxo-8-methyl-4a(4H)-2,3-epoxynaphthalenecarboxylate (84).

To a stirred solution of 79 ( $650 \mathrm{mg}, 1.72 \mathrm{mmol}$ ) and $70 \%$ t-butyl
 hydrogen peroxide ( $1.2 \mathrm{~mL}, 8.76 \mathrm{mmol}$ ) in 10 mL of tetrahydrofuran was added 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) $(257 \mu \mathrm{~L}, 1.72 \mathrm{mmol})$ in three portions over 5 min at $0^{\circ} \mathrm{C}$. After 20 min at this temperature the mixture was passed through a pad of neutral alumina (hexane-ethyl acetate, 5:1) and the eluent was concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 8:1) of the residue afforded 604 mg ( $89 \%$ ) of 84 as a colorless solid: IR (film) 1750, 1741, 1720, 1260, 1248, 1231, 1054, 1032, 854, $838 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.74$ (br.d, J=10.3 Hz, 1H), $5.63(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=4.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 3.75 (s, 3H), 3.66 (d, J=4 Hz, 1H), 3.57 (d, J=4.0 Hz, 1H), 2.09 (m, 1H), 1.29 (d, J=7.5 Hz, 3H), 0.80 (s, 9H), 0.31 (s, 3H), -0.01 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 200.2,198.0,168.1,133.3,124.7,68.1,65.6,61.5,56.8$, $53.1,41.8,28.4,25.53,25.47,17.8,17.1,-4.5,-5.2 ; \mathrm{MS}$ (Cl) $\mathrm{m} / \mathrm{z}$ (rel. intensity)

381 ( $\mathrm{M}+1,44$ ), 365 (68), 323 (100), 249 (87), 211 (17), 189 (31), 177 (87); HRMS $m / z$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 380.1655. Found: 380.1655.

## Methyl (2 $2,3 \beta, 4 \mathrm{a} \beta, 5 \alpha, 8 \mathrm{a} \beta)$-1,2,3,5,6,8a-Hexahydro-6-bromo-5-( $t$-butyldime-

 thylsilyl)oxy-8-methyl-1,4-dioxo-4a(4H)-2,3-epoxynaphthalenecarboxylate (86). A mixture of 84 ( $100 \mathrm{mg}, 0.253 \mathrm{mmol}$ ), N -bromosuccinimide ( 50 mg , 0.279 mmol ), and a catalytic amount of benzoyl peroxide ( $\approx 1$ mg ) in 3 mL of carbon tetrachloride was refluxed for 1.5 h . The mixture was cooled to room temperature and was concentrated in vacuo. Column chromatography (hexaneethyl acetate, $6: 1$ ) of the residue afforded $114 \mathrm{mg}(94 \%)$ of 86 as a colorless solid: IR (film) 1735, 1725, 1252, 1235, 1069, $861,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.73(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H})$, 3.78 ( $\mathrm{s}, 3 \mathrm{H}$ ), $3.70(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.6 \sim 3.7(1 \mathrm{H}), 1.90(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.76$ $(\mathrm{s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 199.2$, 196.4, $165.2,133.8,121.7,63.1,56.5,53.2,46.0,44.6,25.3,23.7,17.6,-4.6,-5.5$; MS (CI) $m / z$ (rel. intensity) $458(M+1,100), 407(13), 379(34), 377$ (39), 321 (16), 299 (23), 297 (21); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{SiBr}(\mathrm{M}+1)$ : 458.0760. Found: 458.0760.

Methyl ( $2 \beta, 3 \beta, 4 a \beta, 5 \alpha$ )-1,2,3,5-Tetrahydro-5-(t-butyldimethylsilyl)oxy-1,4-dioxo-8-methyl-4a(4H)-2,3-epoxynaphthalenecarboxylate (87). To a stirred solution of 86 ( $47 \mathrm{mg}, 0.10 \mathrm{mmol}$ ) in 2 mL of methylene
 chloride was added 1,8 -diazabicyclo[5.4.0]undec-7-ene (DBU) ( $23 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$ ) dropwise at $0^{\circ} \mathrm{C}$. After 1 h an additional quantity of DBU $(23 \mu \mathrm{~L})$ was added and stirring was continued for 1 h . The mixture was filtered through a short pad of silica
gel with ethyl acetate and the filtrate was concentrated in vacuo. Column chromatography of the residue (hexane-ethyl acetate, $6: 1$ ) afforded 19 mg $(49 \%)$ of 87 as an oil and $6 \mathrm{mg}(13 \%)$ of recovered 86 . Spectroscopic data for 87: IR (film) $1738,1675,1549,1253,1084,857,839 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.17$ (dd, J=9.4, $\left.5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.11(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (dd, J=4.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $193.7,190.5,166.2,151.5,134.1,131.7,121.7,64.9,63.2,60.0,59.1,53.6$, $25.6,21.7,17.8,-4.5,-4.8$.

Methyl ( $1 \alpha, 2 \beta, 3 \beta, 4 a \beta, 5 \alpha)-1,2,3,5-$ Tetrahydro-5-(t-butyldimethylsilyl)oxy-1-hydroxy-8-methyl-4-oxo-4a(4H)-2,3-epoxynaphthalenecarboxylate (78). To a stirred solution of 87 ( $19 \mathrm{mg}, 0.050 \mathrm{mmol}$ ) and cerium
 chloride heptahydrate ( 0.4 M in $\mathrm{MeOH}, 137 \mu \mathrm{~L}, 0.055 \mathrm{mmol}$ ) in 1 mL of methanol was added dropwise a solution of sodium borohydride ( 0.5 M in diglyme, $110 \mu \mathrm{~L}, 0.055 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After the addition was complete, the mixture was allowed to warm to room temperature and stirred for 5 min . A few drops of acetone was added to destroy residual sodium borohydride and the mixture was diluted with water and ethyl acetate ( 5 mL ). The organic layer was separated and was washed with saturated brine, dried, and concentrated in vacuo to give 17 mg ( $90 \%$ ) of 78: IR (film) 3450, 1742, 1725, 1251, 1232, 1211, 1198, 1078, 1011, $859,837,778,609 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.94(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.95 (dd, J=10.7, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.77 (m, 1H), 3.87 (dd, J=3.8 Hz, 1H), 3.71 (s, 3H), 3.56 (d, J=3.8 Hz, 1H), 2.90 (d, J=10.7 Hz, 1H, OH), 2.06 (s, 3H), 0.76 (s, 9 H ), $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 194.8, 168.1, $136.5,132.0,126.4,126.0,65.9,64.8,63.3,60.2,58.0,53.7,25.7,18.3,17.9$,
$-4.4,-4.8 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel. intensity) 381 ( $\mathrm{M}+1,10$ ), 363 (100), 323 (22), 305 (12), 249 (55), 231 (15), 207 (12), 189 (9), 173 (28), 147 (60), 133 (35), 117 (45), 99 (40); HRMS $m / z$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 381.1725 . Found: 381.1740.

Methyl ( $1 \alpha, 2 \beta, 3 \beta, 4 a \beta, 5 \alpha, 8 a \alpha)-1,2,3,5,8,8 a-H e x a h y d r o-5-(t b u t y l d i m e t h y l s i l-$ yl)oxy-1,8a-dihydroxy-8-methylene-4-oxo-4a(4H)-2,3-epoxynaphthalenecarboxylate (90). A mixture of $68(30 \mathrm{mg}, 0.080 \mathrm{mmol})$ and 6 mg of rose bengal in 5 mL of methylene chloride was irradiated with a
 sunlamp for 22 h at room temperature. The mixture was concentrated in vacuo and the residue was passed through a short pad of silica gel (hexane-ethyl acetate, 4:1) to give 5.6 mg of 89.

Hydroperoxide 89 was treated with an excess of triphenylphosphine in ethyl acetate ( 3 mL ) for 12 h at room temperature. The mixture was concentrated in vacuo and the residue was purified by column chromatography (hexane-ethyl acetate, $4: 1$ ) to give 5.5 mg ( $28 \%$ ) of 90 : IR (film) 3397, 3381, 1744, 1721, 1253, 1236, 1185, 1077, 1035, 1006, 852, $842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.36(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{dd}, \mathrm{J}=9.8,6.0 \mathrm{~Hz}$, 1H), 5.70 (d, J=1.2 Hz, 1H), 5.59 ( $\mathrm{s}, 1 \mathrm{H}$ ), 4.89 (d, J=6.0 Hz, 1H), 4.44 (d, J=11.5 $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.30 ( dd, J=11.5, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.93(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 3.64 (d, J=4.0 Hz, 1H), 0.82 (s, 9H), 0.24 (s, 3H), 0.17 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.4,168.5,141.4,134.5,123.3,122.0,77.6,69.2,67.4,62.6$, $60.0,58.5,53.7,25.6,17.8,-4.4,-5.2 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel. intensity) $397(\mathrm{M}+1$, 5), 381 (3), 365 (2), 349 (7), 339 (4), 307 (8), 293 (6), 266 (15), 265 (100), 189 (13), 187 (12), 177 (32), 161 (18), 159 (14), 133 (32); HRMS m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+1): 397.1682$. Found: 397.1683.

## Methyl (4aß, $5 \alpha$ )-1,5-Dihydro-5-(t-butyldimethyIsilyl)oxy-8-methyl-1,4-di-

 oxo-4a(4H)-naphthalene carboxylate (93). A solution of 79 ( $7.51 \mathrm{~g}, 20.6$ mmol ), N -bromosuccinimide ( $3.86 \mathrm{~g}, 21.7 \mathrm{mmol}$ ) and a catalytic amount of benzoyl peroxide in 140 mL of carbon tetrachloride was refluxed for 3 h . To the mixture was added 8 mL of triethylamine and reflux was continued for an additional 2 h . The mixture was cooled to room temperature and poured into aqueous saturated sodium bicarbonate solution ( 100 mL ). The resulting mixture was extracted with methylene chloride ( 150 mL ) and the separated organic layer was dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, $5: 1)$ of the residue afforded $7.29 \mathrm{~g}(98 \%)$ of 93 which slowly solidified in the refrigerator to give a yellow solid: IR (film) 1745, 1685, 1661, 1559, 1074, 839 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.89$ (d, J=10.1 Hz, 1H), 6.68 (d, J=10.1 Hz, 1 H ), 6.32 (dd, J=5.5, $9.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.05 (d, J=9.6 Hz, 1H), 5.06 (d, J=5.5 Hz, 1 H ), 3.59 (s, 3H), 2.32 (s, 3H), 0.74 (s, 9H), $0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 191.8,186.6,166.8,145.0,144.3,137.1,133.4,131.4,122.9,65.8$, 63.8, 53.3, 25.5, 20.7, 17.8, -4.0, -5.1; MS (CI) m/z (rel. intensity) 363 ( $\mathrm{M}+1$, $53), 347$ (28), 305 (24), 231 (100), 198 (15), 170 (96); HRMS m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1): 363.1627$. Found: 363.1627.

Methyl ( $1 \alpha, 4 a \beta, 5 \alpha)-1,5$-Dihydro-5-(t-butyldimethylsilyl)oxy-1-hydroxy-8-methyl-4-oxo-4a(4H)-naphthalenecarboxylate (94). To a stirred solution of $93(7.29 \mathrm{~g}, 20.1 \mathrm{mmol})$ and cerium chloride hexahydrate $(7.84 \mathrm{~g}$,

 22.1 mmol ) in 1.4 L of methanol was added solid sodium borohydride ( $0.76 \mathrm{~g}, 20.1 \mathrm{mmol}$ ) portionwise during 30 min at 0 ${ }^{\circ} \mathrm{C}$. After the addition was complete, the mixture was warmed to room temperature and stirring was continued for 30 min . Acetone ( 5 mL ) was added to destroy residual sodium borhydride and the volatile material was evaporated in vacuo. The residue was diluted with methylene chloride ( 150 mL ) and washed with water ( 200 mL ). The separated aqueous layer was extracted with methylene chloride ( 50 mL X 2 ) and the combined organic layer was washed with saturated brine, dried, and concentrated in vacuo to give crude 94 ( $6.6 \mathrm{~g}, 90 \%$ ) which was used in the next step without further purification. A pure sample of 94 was obtained by column chromatography (hexane-ethyl acetate, 5:1): IR (KBr) 3463, 1727, 1663, 1466, 1440, 1253, 1224, 1099, $839 \mathrm{~cm}^{-1}$; 1 H NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.95$ (dd, J=4, $10.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.14 (dd, J=1.5, 10.3 Hz, 1H), 6.00 (dd, J=5.4, $9.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.85 (d, J=9.4 Hz, 1H), 5.20 (br. d, J=11.6 Hz, 1H), 3.60 (s, 3H), 2.07 (d, J=1.3 Hz, 3 H ), $0.76(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.0,168.0$, 149.3, 133.8, 131.1, 127.9, 127.5, 126.5, 65.8, 64.1, 53.1, 25.7, 19.8, 17.9, -4.1, $-5.1 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (rel. intensity) 365 ( $\mathrm{M}+1,12$ ), 349 (39), 347 (86), 331 (24), 317 (20), 289 (22), 275 (15), 235 (20), 233 (100), 201 (75), 175 (30), 173 (70); HRMS $m / z$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1)$ : 365.1776 . Found: 365.1783.

Methyl ( $1 \alpha, 4 \mathrm{a} \beta, 5 \alpha, 8 \mathrm{a}, 8 \mathrm{a} \alpha$ )-1,5-Dihydro-5-( $t$-butyldimethyIsilyl)oxy-1-hy-droxy-8( $\beta$ )-methyl-4-oxo-4a(4H)-8,8a-epoxynaphthalenecarboxylate (91).

To a stirred solution of crude $94(6.6 \mathrm{~g})$ in 400 mL of methylene
 chloride and 800 mL of aqueous phosphate buffer ( pH 8 ) was added $m$-chloroperbenzoic acid ( $6.0 \mathrm{~g}, 60.2 \mathrm{mmol}$ ) portionwise at $0^{\circ} \mathrm{C}$. After the addition was complete, the mixture was warmed to room temperature and stirred for 50 min . Excess dimethyl sulfide was added to remove residual $m$-chloroperbenzoic acid and stirring was continued for 15 min . The organic layer was separated and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 4:1) of the residue gave 5.19 g ( $68 \%$ based on 93 ) of 91 as a colorless solid: mp $89.5-90.5^{\circ} \mathrm{C}$; IR (film) 3487, 1731, 1691, 1253, 1213, 1109, 1091, 1046, 840, $813 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.93$ (dd, J=10.5, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $6.10(\mathrm{dd}, \mathrm{J}=10.5,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.76$ (s, 3H), 0.79 (s, 9H), $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 188.9, 167.2, 152.2, 134.4, 132.1, 127.2, 67.7, 67.5, 63.0 (two peaks), 58.3, 53.3, 25.6, 17.8, 17, -4.0, -5.0 ; MS (CI) m/z (rel. intensity) $381(\mathrm{M}+1,100)$, 365 (98), 323 (79), 331 (33), 277 (10), 249 (80), 217 (22); HRMS m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 381.1725. Found: 381.1732.; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 59.96 ; \mathrm{H}, 7.43$. Found: C, 59.63; H, 7.54.

Methyl ( $1 \alpha, 4 \mathrm{a} \beta, 5 \alpha, 8 \mathrm{a}, 8 \mathrm{a} \alpha$ )-1,5-Dihydro-5-(t-butyldimethylsilyl)oxy-1-(tri-ethylsilyl)oxy-8( $\beta$ )-methyl-4-oxo-4a(4H)-8,8a-epoxynaphthalenecarboxylate (106). To a stirred solution of triethylamine ( $14 \mu \mathrm{~L}, 0.098 \mathrm{mmol}$ ) and 91 ( 26 $\mathrm{mg}, 0.066 \mathrm{mmol}$ ) in 0.5 mL of methylene chloride was added

 triethylsilyltrifluoromethansulfonate ( $18 \mu \mathrm{~L}, 0.078 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After 45 min the mixture was purified by a short column of silica gel (hexane-ethyl acetate, 2:1) to give 30 mg ( $99 \%$ ) of 106 as a colorless solid: IR (film) 1687, 1253, 1209, 837, 774, 739, 723 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.87$ ( $\mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.08 (dd, J=10.4, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 1.76 (s, 3H), 0.98 (t, J=8.0 Hz, 9H), 0.79 (s, 9H), 0.69 ( $\mathrm{m}, 6 \mathrm{H}$ ), 0.06 ( $\mathrm{s}, 3 \mathrm{H}$ ), 0.02 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 189.9,167.6,153.8,136.0,131.2$, 127.8, 68.6, 68.5, 66.1, 63.9, 58.0, 53.1, 25.6, 17.8, 6.9, 5.4, -3.9, -5.1; MS (Cl ) m/z (rel. intensity) $494(M+1,30), 479$ (25), 437 (95), 433 (45), 419 (20), 409 (20), 405 (62), 377 (33), 363 (20), 339 (32), 331 (35), 305 (40), 303 (100), 279 (63), 217 (38), 203 (24), 199 (20), 189 (24), 185 (25), 153 (20), 125 (20); HRMS $\mathrm{m} / \mathrm{z}$ Calcd. for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Si}_{2}(\mathrm{M}+1)$ : 494.2520. Found: 494.2520.

## Methyl ( $1 \alpha, 4 \mathrm{a} \beta, 5 \alpha, 6 \beta, 8 \mathrm{a} \alpha)$-1,5,6,8a-Tetrahydro-6-acetoxy-5-(t-butyldimeth-

 ylsilyl)oxy-1,8a-dihydroxy-8-methyl-4a(4H)-naphthalenecarboxylate (95). A solution of 91 ( $145 \mathrm{mg}, 0.3810 \mathrm{mmol}$ ) in 2 mL of acetic acid was refluxed for 5 h . The mixture was cooled to room temperature and the volatile material was removed in vacuo. Column chromatogrphy (hexane-ethyl aceate, 3:1) of the residue afforded 119 mg ( $71 \%$ ) of 95 as a colorless oil: IR (film) 3421, 3399, 1737, 1701, 1371, 1251, 1226, 1031, 838, $784 \mathrm{~cm}^{-1}$; 1 H NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.66$ (dd, J=10.5, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.00 (dd, J=10.5, 1.8 Hz ,
$1 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.16 \sim 5.07(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.62 (s, 3H), 3.18 (d, J=11.7 Hz, 1H, OH), 2.14 (br. s, 3H), 2.00 (s, 3H), 0.85 (s, 3H), 0.31 ( $\mathrm{s}, 3 \mathrm{H}$ ), $0.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 190.1,169.6$, 166.8, 149.2, 144.8, 126.5, 117.9, 75.3, 71.0, 69.2, 68.7, 63.7, 52.7, 25.7, 21.4, 20.9, 17.9, -4.9, -5.3; MS (CI) m/z (rel. intensity) 441 ( $\mathrm{M}+1,24$ ), 425 ( 31 ), 424 (25), 422 (100), 407 (14), 383 (35), 382 (24), 381 (99), 367 (12), 365 (32), 364 (18), 363 (70), 323 (27), 249 (11), 231 (15); HRMS m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{Si}$ $(M+1): 441.1944$. Found: 441.1944.

Methyl ( $1 \alpha, 4 a \beta, 5 \alpha, 6 \beta, 8 a \alpha)$-1,5,6,8a-Tetrahydro-5-(t-butyldimethylsilyl)oxy-1,8a-dihydroxy-8-methyl-4-oxo-6-trifluoroacetoxy-4a(4H)-naphthalenecarboxylate (96). A solution of 91 ( $24.4 \mathrm{mg}, 0.0641 \mathrm{mmol}$ ) in 0.2 mL of
 trifluoroacetic acid was stirred for 2 h at room temperature. The resulting mixture was diluted with diethyl ether ( 10 mL ) and washed with aqueous sodium bicarbonate solution. The separated organic layer was washed with brine, dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, $3: 1$ to $2: 1$ ) of the residue afforded $6.5 \mathrm{mg}(33 \%)$ of 96 and $10 \mathrm{mg}(67 \%)$ of 97 . Spectroscopic data for 97 : IR (film) 3425, 1785, 1745, 1697, 1378, 1252, 1221, 1172, 1149, 1095, 1031, $925 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{dd}, \mathrm{J}=10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, \mathrm{J}=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.61 (m, 1H), 5.44 (m, 1H), 5.12 (dt, J=14.4, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.95 (m, 1H), 4.46 (d, $\mathrm{J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), 3.78 (d, J=4.5 HZ, 1H, OH), 3.62 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.15 (d, J=11.7 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), $2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 193.8,165.9,150.1$, $146.5,126.3,116.4,116.1,75.7,72.4,69.9,68.5,63.9,53.7,52.9,52.8,21.3 ;$ MS (CI) $m / z$ (rel. intensity) 381 ( $\mathrm{M}+1,6$ ), 379 (2), 363 (14), 345 (3), 313 (1), 301 (2), 295 (2), 268 (15), 267 (100), 250 (11), 249 (71), 231 (14), 221 (18), 217
(29), 189 (14), 115 (63); HRMS $m / z$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{8}(\mathrm{M}+1)$ : 381.0797. Found: 381.0797.

Spectroscopic data for 96: IR (film) 3416, 1784, 1745, 1703, 1375, 1253, 1223, 1176, 1145, 1101, 1026, 1032, 935, 837, $785 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.68(\mathrm{dd}, \mathrm{J}=10.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, \mathrm{J}=10.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~m}$, 1H), 5.29 ( $\mathrm{m}, 2 \mathrm{H}$ ), 5.11 (br. d, J=11.7 Hz, 1H), 4.94 (t, J=1.7 Hz, 1H), 3.59 (s, 3H), 3.16 (d, J=11.7 Hz, 1H, OH), 2.18 (t, J=1.8 Hz, 3H), 0.86 (s, 9H), 0.32 (s, 3H), $0.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 189.6,166.1,149.3,147.7$, 126.4, 115.5, 75.0, 73.2, 70.5, 68.6, 63.6, 53.0, 25.7, 21.5, 17.9, -5.0, -5.2; MS (CI) $m / z$ (rel. intensity) $495(M+1,20), 479$ (17), 478 (11), 477 (40), 437 (16), 383 (14), 382 (30), 381 ( $\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}, 100$ ), 365 (13), 363 (35), 249 (20), 115 (38); HRMS $m / z$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{O}_{8} \mathrm{Si}(\mathrm{M}+1)$ : 495.1662. Found: 495.1662.

Lactone 102. A mixture of 91 ( $7 \mathrm{mg}, 0.0184 \mathrm{mmol}$ ) and pyridium p -
 toluenesulfonate ( $4 \mathrm{mg}, 0.016 \mathrm{mmol}$ ) in reagent grade acetone ( 1 mL ) was stirred for 24 h at room temperature. The mixture was concentrated in vacuo and was purified by column chromatography (hexane-ethyl acetate, 2:1) to give $4 \mathrm{mg}(57 \%)$ of 102 as a colorless solid: IR (film) 3390, 1777, 1692, 1385, 1257, $1228,1202,1081,1054,1001,905,843,787 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.98$ (dd, J=10.5, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (dd, $J=10.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~m}, 2 \mathrm{H})$, $5.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{dt}, \mathrm{J}=11.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.8,167.1,152.8,134.6,130.8,128.0,83.6,81.8,67.6,65.3$, $60.5,26.9,25.4,18.2,17.7,-4.6,-5.5 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / z$ (rel. intensity) $367(\mathrm{M}+1$, 100), 351 (11), 235 (22), 191 (27); HRMS m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 367.1569. Found: 367.1575.

Methyl ( $\left.1 \alpha, 4 a \beta, 5 \alpha, 8 S^{*}\right)-1,5,8,8 a-T e t r a h y d r o-5-(t$ butyldimethyisilyl)-oxy-1,8a-dihydroxy-8-methoxy-8-methyl-4a(4H)-naphthalenecarboxylate (103). A solution of 91 ( $37 \mathrm{mg}, 0.0972 \mathrm{mmol}$ ) in 0.5 mL of methanol
 containing a catalytic amount of pyridinium p-toluenesulfonate was stirred for 20 h at room temperature. The mixture was concentrated in vacuo and was purified by column chromatography (hexane-ethyl acetate, 3:1) to give 10 mg (25\%) of slightly impure 103. A pure sample of 103 was obtained as a colorless solid by recrystalization from hexane-diethyl ether: IR (film) 3548, 3405, 1682, 1386, 1257, 1189, 1157, 1128, 1071, 1034, 1010, 939, 914, 838, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.78$ (dd, J=10.0, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.06 (dd, J=10.0, 2.3 Hz , 1 H ), 5.99 (dd, J=9.6, 4.2 Hz, 1H), 5.82 (d, J=9.5 Hz, 1H), 5.79 (s, 1H), 4.88 (d, J=4.1 Hz, 1H), 4.66 (dt, J=11.4, 2.1 Hz, 1H), 3.32 (s, 3H), 3.21 (s, 3H), 3.16 (d, $\mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.9,182.3,152.8,133.8,130.2,129.0,116.2,81.4,81.3$, $68.8,66.7,62.1,52.0,49.0,25.6,19.5,17.7,-4.3,-5.5$; MS (CI) m/z (rel. intensity) 413 ( $M+1,21$ ), 395 (16), 383 (8), 382 (23), 381 (92), 323 (14), 309 (14), 307 (21), 305 (12), 282 (20), 281 (100), 280 (15), 277 (12), 265 (15), 263 (13), 261 (13), 249 (50), 231 (19), 219 (15), 191 (28); HRMS m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+1): 413.1995$. Found: 413.1997.

Sulfide 99. To a stirred solution of $91(9.5 \mathrm{mg}, 0.0250 \mathrm{mmol})$ and thiophenol ( $7.7 \mu \mathrm{~L}, 0.0749 \mathrm{mmol}$ ) in 0.5 mL of toluene was added titanium
 tetraisopropoxide ( $22.3 \mu \mathrm{~L}, 0.0749 \mathrm{mmol}$ ) at room temperature. After 7 h the mixture was passed through a short pad of silica gel (hexane-ethyl acetate, $9: 1$ to $6: 1$ ) and the eluent was concentrated in vacuo. Purification by thin layer chromatography
( 0.25 mm , hexane-ethyl acetate, $6: 1$, two fold elution) of the residue to give 4.8 $\mathrm{mg}(42 \%)$ of 99 and $2 \mathrm{mg}(21 \%)$ of 98. Spectroscopic data for 99; IR (film) $3400,1782,1691,1163,842,786,740 . \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.32$ (m, 5H), 6.83 (dd, J=10.5, 2.1 Hz, 1H), 6.30 (dd, J=10.5, 2.1 Hz, 1H), 6.0 (dd, $\mathrm{J}=6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.18 (dd, J=5.0, 1.0 Hz, 1H), 4.71 (br.s, 1H), 4.69 (s, 1H), 4.62 (dd, J=6.0, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.01 (dd, $J=15.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.84 (dd, $J=15.3$, $\left.1.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl}_{3}\right)$ $\delta 190.1,168.6,149.5,143.5,135.3,130.6,129.0,128.1,126.9,124.5,76.0$, $72.6,70.4,69.7,62.0,36.6,25.4,17.7,-5.1,-5.2 ; \mathrm{MS}(\mathrm{CI}) m / z$ (rel. intensity) 475 (M + 1, 34), 457 (29), 439 (10), 413 (30), 397 (16), 396 (28), 395 (92), 383 (10), 371 (31), 344 (22), 343 (100), 325 (17), 305 (19), 299 (35), 226 (25), 224 (24); HRMS $m / z$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1): 475.1602$. Found: 475.1608.

Spectroscopic data for 98; IR (film) 3541, 3369, 1739, 1688, 1388, 1255, 1229, 1191, 1098, 1060, 1039, 1012, 844, $781 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{dd}, \mathrm{J}=10.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.24(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.06$ (dd, J=10.5, 1.8 Hz, 1H), $5.98(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{dd}, \mathrm{J}=11.0,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.33 (br. d, J=11.0 Hz, 1H), 5.29 (s, 1H), 5.24 (d, J=5.7 Hz, 1H), 3.60 (s, 3H), $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 189.4, 166.2, 152.0, 143.4. 131.6, 126.3, 125.9, 118.2, 76.0, 69.1, 68.0, 64.7, 53.1, 25.6, 17.8, -4.4, -5.3; MS (CI) m/z (rel. intensity) $381(\mathrm{M}+1,13), 365$ (34), 323 (28), 250 (15), 249 (100), 231 (34), 217 (13), 203 (14), 173 (6); HRMS m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 381.1725. Found: 381.1732.

Carbonate 100. A mixture of 98 ( $18.5 \mathrm{mg}, 0.486 \mathrm{mmol}$ ) and
 carbonyldiimidazole ( $15.8 \mathrm{mg}, 0.972 \mathrm{mmol}$ ) in 1.5 mL of toluene was refluxed for 6 h . The mixture was cooled to room temperature and was purified by column chromatography (hexane-ethyl acetate, 6:1 to 2:1) to give $15 \mathrm{mg}(76 \%)$ of $\mathbf{1 0 0}$ as a colorless solid: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.81$ (dd, $\mathrm{J}=10.4$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (s, 1H), $6.22(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H})$, 6.01 (dd, J=10.2, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.86 (d, J=5.4 Hz, 1H), 5.61 (s, 1H), 5.38 (s, 1H), 5.25 (d, J=5.4 Hz, 1H), 3.63 (s, 3H), 0.83 (s, 9 H ), 0.17 (s, 3H), 0.13 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ) $\delta 186.1,166.0,152.3,139.5,139.1,129.26,129.22$, 128.5, 117.1, 83.6, 74.2, 65.2, 64.8, 53.8, 25.6, 17.9, -3.9, -5.1; MS (CI) m/z 407 (M + 1, 100 ), 391 (31), 349 (54), 275 (44), 231 (46), 203 (39); HRMS (CI) $m / z$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+1)$ : 407.1527. Found: 407.1526.; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 59.09 ; \mathrm{H}, 6.45$. Found: C, 59.07; H, 6.38.

Epoxide 101. To a stirred solution of 98 ( $13 \mathrm{mg}, 0.0341 \mathrm{mmol}$ ) in 0.5 mL of
 methylene chloride was added $m$-chloroperbenzoic acid (1.5 equiv., $10.7 \mathrm{mg}, 0.0512 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After 0.5 h the mixture was warmed to room temperature and stirring was continued for 7 h. A few drops of dimethylsulfide was added to destroy residual $m$-chloroperbenzoic acid and aqueous sodium bicarbonate solution was added subsequently. After 2 h of vigorous stirring, the mixture was extracted with diethyl ether ( 10 mL ) and the separated organic layer was washed with saturated brine, dried and concentrated in vacuo. Thin layer chromatography ( 0.25 mm , hexane-ethyl acetate, 3:1) of the residue afforded 6.5 mg of high $\mathrm{Rf}_{\mathrm{f}}$ isomer 101a and 6.0 mg of lower $\mathrm{R}_{\mathrm{f}}$ isomer 101b in $93 \%$ yield. Spectroscopic data for 101a: IR (film) 3528, 3382, 1738, 1689, 1254,

1229, 1188, 1100, 1058, 1045, 1017, 933, 844, $783 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{dd}, \mathrm{J}=10.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dd}, \mathrm{J}=10.0,5.4 \mathrm{~Hz}$, 1 H ), 6.05 (dd, J=10.4, 1.8 Hz, 1H), 5.37 (d, J=10.0 Hz, 1H), 5.26 (d, J=5.4 Hz, 1 H ), 4.95 ( $\mathrm{dt}, \mathrm{J}=11.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.93 ( $\mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.65 (s, 3H), 2.98 (d, $\mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 188.6,166.2,152.0,131.9,131.2,126.2,75.6,68.6,67.9,64.7$, 61.4, 54.6, 53.3, 25.6, 17.8, 14.2, -4.4, -5.3; MS (CI) m/z (rel. intensity) 397 (M + 1, 17 ), 381 (25), 379 (17), 363 (13), 347 (21), 339 (31), 305 (11), 293 (22), 266 (11), 265 ( 80 ), 249 (17), 247 (88), 231 (13), 229 (24), 219 (37), 215 (44), 187 (100), 171 (11), 159 (12), 133 (20), 117 (11) ; HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{Si}$ $(M+1): 397.1682$. Found: 397.1681.

Spectroscopic data for 101b: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.77$ (dd, $\mathrm{J}=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.22 ( $\mathrm{s}, 1 \mathrm{H}$ ), 6.18 ( $\mathrm{dd}, \mathrm{J}=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.04 (dd, $J=10.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.30 (d, J=10.2 Hz, 1H), 5.23 (d, J=5.2 Hz, 1H), 5.13 (br. d, J=6.8 Hz, 1H), 3.63 (s, 3H), 3.57 (d, J=4.2 Hz, 1H), 3.19 (d, J=6.8 Hz, 1H), 2.91 (d, J=4.2 Hz, 1H), $0.82(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H})$.

## Methyl ( $1 \alpha, 4 \mathrm{a} \beta, 5 \alpha, 6 \beta, 8 \mathrm{a} \alpha$ )-1,5,6,8a-Tetrahydro-5-(t-butyldimethylsilyl)oxy-

 8-methyl-4-oxo-1,6,8a-trihydroxy-4a(4H)-naphthalenecarboxylate (104). A mixture of 91 ( $62 \mathrm{mg}, 0.163 \mathrm{mmol}$ ) and $p$-toluenesulfonic acid monohydrate ( $10 \mathrm{mg}, 0.0526 \mathrm{mmol}$ ) in 2 mL of acetone was stirred for 30 min at room temperature. The mixture was neutralized by a few drop of triethylamine and was passed through a short pad of silica gel with diethyl ether as eluent. Column chromatography (hexane-ethyl aceate, 3:1 to 2:1) of the concentrated eluent afforded 27 mg of $\mathbf{1 0 2}$ and 16 mg of 104 in $\mathbf{7 0 \%}$ yield. Spectroscopic data for 104: IR (KBr) 3453, 3427, 3381, 1743, 1685, 1466, 1431, 1391, 1258,

1220, 1174, 1084, 1034, 841, $783 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.60$ (dd, $\mathrm{J}=10.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 5.00 (d, J=11.8 Hz, 1H), 4.82 (m, 1H), 4.05 (br. s, 1H), 3.56 (s, 3H), 3.12 (d, $\mathrm{J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.09 (s, 3H), 1.48 (d, J=4.5 Hz, 1H, OH), 0.81 (s, 9H), 0.25 (s, 3 H ), $0.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 190.6,148.7,142.7,126.9$, 121.4, 75.5, 73.2, 68.8, 68.4, 63.3, 52.8, 25.7, 21.3, 17.9,-5.0, -5.1; MS (CI) $\mathrm{m} / \mathrm{z}$ (rel. intensity) $399(\mathrm{M}+1,23), 383(29), 382$ (22), 381 (100), 363 (65), 341 (28), 305 (20), 249 (23), 231 (22); HRMS $m / z$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+1$ ): 399.1839. Found: 399.1840.

Lactone 105. A mixture of 104 ( $16 \mathrm{mg}, 0.0415 \mathrm{mmol}$ ) in 1 mL of toluene was
 refluxed for 6 h . The mixture was cooled to room temperature and was passed through a short pad of silica gel with hexaneethyl acetate (4:1) as eluent to give 12.1 mg ( $84 \%$ ) of 105 as a colorless solid: IR (film) 3462, 1781, 1691, 1388, 1259, 1164, $1135,1053,962,942,813,786 . \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.79$ (dd, J=10.3, 2.1 Hz, 1H), 6.27 (dd, J=10.3, 2.1 Hz, 1H), 5.91 (d, J=5.3 $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.62 (dd, J=5.6, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 2.82$ (d, $\mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), 2.05 (d, J=1.2 Hz, 3H), 0.87 (s, 9 H ), 0.22 (s, 6 H ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 190.5,168.9,149.6,145.4,127.9,122.2,76.2,73.0$, 70.4, 69.9, 62.1, 25.4, 20.0, 17.7, -5.1.; MS (CI) m/z (rel. intensity) 367 ( $\mathrm{M}+1$, 61 ), 349 (21), 321 (21), 305 (28), 235 (10), 191 (11), 59 (30), 41 (100); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 367.1577. Found: 367.1578.; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 58.99 ; \mathrm{H}, 7.16$. Found: $\mathrm{C}, 58.61 ; \mathrm{H}, 6.97$.

Enol ether 119. To a stirred solution of (R)-carvone ( $50 \mathrm{mg}, 0.33 \mathrm{mmol}$ ) in 2 mL of diethyl ether was added solid mecuric iodide (7.7
 $\mathrm{mg}, 0.017 \mathrm{mmol}$ ) and the mixture was stirred at room temperature until the mecuric iodide was dissolved (10 $\mathrm{min})$. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and ethyl $t$ butyldimethylsilyl ketene acetal (118, $100 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$ ) was added during 15 min . After 2.5 h the mixture was quenched with triethylamine ( $5 \mu \mathrm{~L}, 4$ equiv. to $\mathrm{Hgl}_{2}$ ) and was passed through a short pad of silica gel with $5 \%$ triethylamine solution in hexane-ethyl acetate ( $8: 1$ ) and the eluent was concentrated in vacuo. Column chromatography (hexane-ethyl acetate, $30: 1$ ) of the residue afforded 96 mg ( $83 \%$ ) of 119 as a colorless oil: IR (film) 1737, 1255, 1194, 1172, 924, 837, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.73$ (br. d, J=5.7Hz, 2H), 4.14 (q, J=7.1Hz, 2H), 1.9-2.2 (6H), 1.73 (s, 3H), 1.61 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.26 (t, J=7.1 Hz, 3H), 0.94 (s, 9H), 0.12 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,148.7,144.2,113.0,109.0,60.2,38.0,37.0,36.3,35.6$, $31.9,25.8,20.7,18.2,14.6,14.2,-3.7,-3.9$.

Methyl ( $1 \alpha, 2 \beta, 4 \mathrm{a} \beta, 5 \alpha, 8 \alpha, 8 \mathrm{a} \alpha$ )-1,2,3,5,8,8a-Hexahydro-5-(t-butyldimethyl-silyl)oxy-1-hydroxy-8( 3 )-methyl-2-(1-methyl)ethenyl-4-oxo-4a(4H)-8,8aepoxynaphthalenecarboxylate (108). To a stirred solution of 2-bromopropene ( $121 \mu \mathrm{~L}, 1.366 \mathrm{mmol}$ ) in 4 mL of tetrahydrofuran at $-78^{\circ} \mathrm{C}$
 was added dropwise t-butyllithium (1.7 M in pentane, 1.61 $\mathrm{mL}, 2.732 \mathrm{mmol}$ ) via the wall of the flask. After 45 min the resulting pale yellow solution of 2 -lithiopropene was immediately transferred via cannula to a suspension of cuprous cyanide in 2 mL of tetrahydrofuran which was cooled to $-78^{\circ} \mathrm{C}$. After the transfer was complete, the mixture was allowed to warm slowly by removing
the cooling bath until the solution became homogeneous ( 3 to 5 min ). The mixture was then re-cooled to $-78^{\circ} \mathrm{C}$. To the resulting light yellow solution was added slowly via the wall of the flask a solution of trimethylsilyl chloride ( 1 M in THF, $3.4 \mathrm{~mL}, 3.416 \mathrm{mmol})$. Immediately after the addition of trimethylsilyl chloride was complete, a solution of 91 in 1 mL of tetrahydrofuran was added to the yellowish orange solution via cannula and the mixture was stirred for 50 $\min$. Saturated ammonium chloride ( 4 mL ), saturated ammonium hydroxide ( 4 mL ), and diethyl ether ( 10 mL ) were added, the mixture was allowed to warm to ice-bath temperature and stirring was continued until the solution became clear. The organic layer was separated and washed with saturated sodium bicarbonate solution, saturated brine, dried and concentrated to give 50 mg of crude 107.

To a stirred solution of crude $\mathbf{1 0 7}(50 \mathrm{mg})$ in 2 mL of methylene chloride was added excess triethylamine-hydrofluoric acid complex at room temperature. The mixture was kept overnight (17 h) and was passed through a short pad of silica gel with diethyl ether ( 25 mL ) as eluent. Column chromatography (hexane-ethyl acetate, 4:1) of the concentrated eluent afforded 30 mg (60\%) of 108 as a colorless solid: IR (film) 3509, 1748, 1723, 1250, 1224, 1195, 1098, 1060, $840,776 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.81$ (d, $\mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (dd, J=9.4, 6.0 Hz, 1H), 4.98 (d, J=6.0 Hz, 1H), 4.83 (s, 1 H ), 4.56 (dd, J=7.7, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.61 (s, 3H), 2.73 ( $\mathrm{m}, 3 \mathrm{H}$ ), 2.55 (d, J=7.7 Hz, $1 \mathrm{H}, \mathrm{OH}$ ), 1.81 (s,3H), 1.74 (s, 3H), $0.82(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $) \delta 200.6,167.1,144.4,135.4,131.4,113.1,68.7,68.0$, $66.2,64.7,59.4,53 . .2,48.3,42.1,25.7,19.9,17.8,17.3,-4.0,-5.0 ; \mathrm{MS}$ (CI) $m / z$ (rel. intensity) $407(\mathrm{M}+1,100), 409$ (6), 408 (16), 407 (59), 406 (23), 405 (79), 392 (10), 391 (38), 389 (36), 387 (22), 381 (14), 375 (15), 374 (9), 373 (26), 366 (17), 365 (69), 363 (13), 357 (14), 348 (11), 347 (41), 333 (15), 331
(19), 323 (12), 319 (17), 315 (11), 309 (15), 292 (13), 291 (75), 279 (10), 277(40), 273 (84), 259 (37), 249 (15), 245 (14), 241 (21), 237 (21), 229 (14), 227 (15), 213 (39), 199 (10), 197 (14), 177(31), 167 (19); HRMS m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 423.2203. Found: 423.2202.; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Si}$ : C, 62.53; H, 8.11. Found: C, 62.30; H, 7.98.

## Methyl ( $1 \alpha, 2 \beta, 4 a \beta, 5 \alpha, 6 \beta, 8 a \alpha)-1,5,6,8 a-T e t r a h y d r o-6-a c e t o x y-5-(t-b u t y I d i-$

 methylsilyl)oxy-1,8a-dihydroxy-8-methyl-2-(1-methyl)ethenyl-4-oxo-4a(4H)naphthalenecarboxylate (109). A solution of $108(5.2 \mathrm{mg}, 0.0123 \mathrm{mmol})$ in 0.5 mL of acetic acid was heated at $60-65^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled to room temperature and the volatile material was evaporated in vacuo. Column chromatography (hexane-ethyl acetate, $4: 1$ to $3: 1$ ) of the residue afforded 4.9 mg ( $78 \%$ ) of 109: IR (film) 3541, 3501, 3395, 1736, 1430, 1370, 1231, 1111, 1072, 1018, 839; ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{br} . \mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ $(\mathrm{m}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~m}$, 1H), 2.37 (m, 3H), 2.22 (d, J=10.3 Hz, 1H, OH), 2.16 (s, 3H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 0.88$ (s, 9H), $0.32(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 200.1, 169.5, 167.3, 146.7, 144.3, 118.1, 113.7, 76.1, 71.6, 70.8, 69.6, 64.5, 52.7, 48.7, 41.5, 25.7, 22.6, 20.9, 18.9, 17.8, -4.9, -5.4; MS (CI) m/z (rel. intensity) $483(\mathrm{M}+1$, 24), 465 (38), 449 (23), 425 (19), 424 (29), 423 (100), 409 (7), 408 (10), 407 (37), 406 (14), 405 (45), 391 (17), 389 (15), 365 (17), 333 (22), 273 (99), 257 (10), 255 (14), 237 (11), 142 (24), 123 (18); HRMS $m / z$ Calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{8} \mathrm{Si}$ $(M+1): 483.2414$. Found: 483.2412.

Sulfide 111. To a stirred solution of $108(27 \mathrm{mg}, 0.0639 \mathrm{mmol})$ and thiophenol
 ( $26 \mu \mathrm{~L}, 0.256 \mathrm{mmol}$ ) in 1.5 mL of toluene was added neat titanium tetraisopropoxide ( $76 \mu \mathrm{~L}, 0.256 \mathrm{mmol}$ ) at room temperature. After standing overnight the mixture was stored for 15 d at $-5^{\circ} \mathrm{C}$. The resulting mixture was passed through a short pad of silica gel with diethyl ether as eluent ( 10 mL ) and the opaque filtrate was passed through Celite. The filtrate was concentrated in vacuo and the residue was purified by radial chromatography ( 1 mm , hexane to hexane-ethyl acetate, $4: 1$ ) to give 24.2 mg of 111 as a viscous oil: IR (film) 3446, 1775, 1723, 1259, 1163, 1125, 972, 838, $785 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~m}, 5 \mathrm{H}), 6.17$ (dd, J=6.1, 1.0 Hz , 1 H ), $5.01(\mathrm{~m}, 1 \mathrm{H}), 4.98$ (dd, J=4.9, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (dd, J=6.1, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H})$, 2.53 (dd, J=15.1, $5.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.23 (d, J=6.2 Hz, 1H, OH), $1.86(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}$, $9 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 201.3,169.6$, $145.3,143.7,136.0,129.5,129.0,126.3,124.8,115.7,72.3,71.4,70.5,63.5$, $47.6,41.3,36.3,25.4,17.8,17.7,-5.1,-5.2 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (rel. intensity) 517 (M + 1, 4) , 499 (2), 385 (2), 323 (2), 255 (4), 219 (3), 173 (3), 143 (2), 133 (3), 129 (6), 117 (100); HRMS $m / z$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{SSi}(M+1): 517.2080$. Found: 517.2087.

Methyl (1 $\alpha, 2 \beta, 4 a \beta, 5 \alpha, 8 \mathrm{a} \alpha)-1,2,3,5,8,8 \mathrm{a}-\mathrm{Hexahydro-5-(tbutyldimethylsilyl)-}$ oxy-1,8a-dihydroxy-8-methylene-2-(1-methyl)ethenyl-4-0x0-4a(4H)-naphthalenecarboxylate (110). To a stirred solution of 108 ( $5.7 \mathrm{mg}, 0.0135 \mathrm{mmol}$ ) in 1 mL of toluene was added neat titanium tetraisopropoxide
 ( $16 \mu \mathrm{~L}, 0.0540 \mathrm{mmol}$ ) at room temperature. After 7 h the mixture was passed through a short pad of silca gel with diethyl ether as eluent and the concentrated eluent was purified by column chromatography (hexane-ethyl acetate, $6: 1$ to $3: 1$ ) to give $4.2 \mathrm{mg}(74 \%)$ of 110 : IR (film) $3356,3508,1723,1467,1235$, $1190,1044,1014,1005,843,783 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.74(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}$ ), $6.17(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{dd}, \mathrm{J}=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.26(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H})$, $2.64(\mathrm{dd}, \mathrm{J}=15.3,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35\left(\mathrm{~m}, 2 \mathrm{H}, 1\right.$ proton exchangeable with $\mathrm{D}_{2} \mathrm{O}$ ), $1.83(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 200.8,166.9,144.5,144.0,132.7,125.4,119.4,113.8,71.1,68.0,67.4,53.2$, 48.1, 42.2, 25.7, 18.9, 17.9, -4.5, -5.1 ; $\mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (rel. intensity) $423(\mathrm{M}+1$, 17), 407 (31), 405 (11), 389 (5), 366 (7), 365 (30), 331 (7), 319 (20), 293 (9), 292 (18), 291 (100), 274 (11), 273 (61), 259 (10), 213 (10), 177 (44), 133 (24); HRMS, $m / z$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 423.2203. Found: 423.2202.

Epoxide 112. To a stirred solution of m-chloroperbenzoic acid ( $172 \mathrm{mg}, 0.800$
 mmol ) in 5 mL of hexane was added dropwise a solution of
 107 (205 $\mathrm{mg}, 0.3616 \mathrm{mmol}$ ) in 5 mL of hexane at $0^{\circ} \mathrm{C}$. After the addition was complete the mixture was warmed to room temperature and stirring was continued for 19 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and the deposited solid was filtered and was washed with pentane ( $3 \mathrm{~mL} \times 2$ ). The filtrate was concentrated
in vacuo and the residue was diluted with methylene chloride ( 8 mL ), then treated with triethylamine-hydrofluoric acid complex ( $350 \mathrm{mg}, 2.9 \mathrm{mmol}$ ). After 22 h the mixture was passed through a short pad of silica gel with diethyl ether as eluent, and the concentrated eluent was purified by column chromatography (silica gel 10 g , hexane-ethyl acetate, 2:1 to $3: 2$ ) to give $104 \mathrm{mg}(64 \%)$ of 112 as an epimeric mixture at the terminal epoxide in a $3: 1$ ratio based on ${ }^{1} \mathrm{H}$ NMR analysis.

Orthoester 113. A mixture of $112(4.8 \mathrm{mg}, 0.0106 \mathrm{mmol})$ and pyridinium $p$ -
 toluenesulfonate ( $10 \mathrm{mg}, 0.040 \mathrm{mmol}$ ) in 1 mL of acetone was stirred for 1.5 h at room temperature. The mixture was passed through a short pad of silica gel with diethyl ether as eluent and the concentrated eluent was purified by column chromatography (hexane-ethyl acetate, 6:1) to give 2.1 mg ( $48 \%$ ) of 113 as a colorless solid: mp $141-141.5^{\circ} \mathrm{C}$; IR (film) 3500, 1778, 1256, 1197, 1177, 1088, 1045, 1020, 951, $901,839,814 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.19 (s, 1H, OH), 5.92 (dd, J=9.5, 4.3 Hz, 1H), 5.80 (d, J=9.5 Hz, 1H), 4.57 (d, $\mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.44(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{t}, \mathrm{J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=9.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), $2.82(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.47$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.1, 133.8, 129.1, 119.8, 86.1, 84.9, 79.8, 68.3, 65.7, 59.3, 57.7, 56.9, 55.3, 49.8, 25.7, 18.1, 17.8, 17.7, 15.2, -4.5, -5.1; MS (CI) m/z (rel. intensity) 455 (M $+1,80$ ), 439 (12), 437 (25), 423 (34), 421 (12), 405 (11), 379 (12), 365 (15), 363 (15), 351 (27), 324 (15), 323 (86), 322 (18), 302 (63), 287 (15), 277 (19), 273 (19), 247 (30), 229 (42), 201 (34), 167 (46), 60 (100); HRMS m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{8} \mathrm{Si}(\mathrm{M}+1)$ : 455.2101. Found: 455.2103 .

Compound 113 crystallized from octane in the space group P2(1)/c with $a=11.696$ (3) $\AA, b=14.867$ (2) $\AA, c=14.541$ (2) $\AA, \beta=93.77$ (2) $)^{\circ}, z=4$ and $d_{\text {calcd }}=1.197 \mathrm{~g} / \mathrm{cm}^{3}$. The intensity data were measured on a Rikagu AFC6R diffractometer (Mo K $\alpha$ radiation). There were 2168 observed reflections [l>3.00 (I)] and the structure was solved by direct methods. The final discrepancy indices were $\mathrm{R}=0.066$ and $\mathrm{Rw}=0.095$.

Isopropenylmagnesium Bromide. To a suspension of magnesium turnings ( $1.22 \mathrm{~g}, 50.5 \mathrm{mmol}$ ) cut into small pieces in 80 mL of tetrahydrofuran was added a small amount of 2 -bromopropene under sonication. After 2 min the reaction was initiated and 2-bromopropene ( $3.74 \mathrm{~mL}, 42.1 \mathrm{mmol}$ ) was added at a rate to maintain the reaction mixture at ca $45^{\circ} \mathrm{C}$. After the addition was complete, stirring was continued until the mixture had cooled to room temperature. The solution was then transferred to a serum bottle. Titration of this solution following Waston's procedure ${ }^{97}$ gave a concentration of 0.39 M . The solution was stable for a month at room temperature. However, it was found that at a higher concentration than 0.4 M , isopropenylmagnesium bromide crystallized from the solution on standing.

Methyl ( $1 \alpha, 2 \beta, 4 \mathrm{a} \beta, 5 \alpha, 8 \mathrm{a} \alpha$ )-1,2,3,5,8,8a-Hexahydro-8-methylene-2-(1-me-thyl)ethenyl-4-oxo-1,5,8a-trihydroxy-4a(4H)-naphthalenecarboxylate (122). To a stirred solution of isopropenylmagnesium bromide ( 0.39


M in THF, $0.57 \mathrm{~mL}, 0.221 \mathrm{mmol}$ ) in 0.5 mL of tetrahydrofuran was added solid cuprous bromide dimethylsulfide complex (3 $\mathrm{mg}, 0.0142 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. After 3 min a yellowish solution resulted and a solution of 98 ( $13.5 \mathrm{mg}, 0.0355 \mathrm{mmol}$ ), hexamethylphosporic triamide ( $74 \mu \mathrm{~L}, 0.426 \mathrm{mmol}$ ), and trimethylsilyl chloride
( $54 \mu \mathrm{~L}, 0.426 \mathrm{mmol}$ ) in 1 mL of tetrahydrofuran was added dropwise via the wall of the flask through a double-tipped needle. Stirring was continued for 15 min and the mixture was quenched with aqueous ammonium chloride and was extracted with diethyl ether $(10 \mathrm{~mL})$. The separated organic layer was dried and concentrated in vacuo to give crude 121.

The crude 121- was dissolved in 2 mL of methylene chloride and was treated with excess of triethylamine-hydrofluoric acid complex at room temperature. After 15 h the mixture was passed through a short pad of silica gel with diethyl ether as eluent. and the concentrated eluent was purified by column chromatography (hexane-ethyl acetate, $6: 1$ to $2: 1$ ) to give $2.7 \mathrm{mg}(25 \%)$ of 122 and $6 \mathrm{mg}(50 \%)$ of 110. Spectroscopic data for 122: IR (film) 3482, 3436, 3397, 1716, 1430, 1236, 1194, 1109, 1077, 1038, 998, $907 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.27$ (d, J=10.0 Hz, 1 H ), $6.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.90$ (dd, $\mathrm{J}=10.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H})$, 4.87 (dd, J=9.9, $9.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.12 (d, J=4.1 Hz, 1H, OH), 3.67 (s, 3H), 2.95 (m, 1 H ), 2.72 (t, J=14.5 Hz, 1H), 2.40 (dd, J=13.8, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.35 (d, J=9.7 Hz, $1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.6,166.6,143.7,143.2$, 133.6, 123.5, 119.9, 114.4, 78.2, 70.5, 67.5, 66.5, 53.2, 49.4, 42.3, 18.6; MS (CI) $m / z$ (rel. intensity) $309(M+1,9), 308(M, 10), 292(15), 291$ (81), 287 (4), 275 (5), 274 (15), 273 (83), 259 (21), 255 (10), 245 (11), 241 (34), 231 (10), 213 (35), 197 (19), 177 (100); HRMS $m / z$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{6}(M+1): 309.1338$. Found: 309.1310.

Enol ether 124. To a stirred solution of isopropenylmagnesium bromide ( 0.39 M in THF, $0.54 \mathrm{~mL}, 0.204 \mathrm{mmol}$ ) in 0.5 mL of
 tetrahydrofuran was added solid cuprous bromide dimethyl sulfide complex ( $4.2 \mathrm{mg}, 0.0204 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. After 2~3 min a yellowish solution resulted and a solution of 95 ( $22.5 \mathrm{mg}, 0.0511 \mathrm{mmol}$ ), hexamethylphophoric triamide ( $107 \mu \mathrm{~L}, 0.613 \mathrm{mmol}$ ), and trimethylsilyl chloride ( $78 \mu \mathrm{~L}, 0.613 \mathrm{mmol}$ ) in 0.5 mL of terahydrofuran was added slowly via the wall of flask through a double-tipped needle. After 15 min an additional quantity of isopropenylmagnesium bromide ( 0.5 M in THF, $100 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$ ) was added and stirring was continued for 50 min . The mixture was quenched with aqueous ammonium chloride solution and extracted with diethyl ether ( 10 mL ). The separated organic layer was washed with saturated brine, dried and concentrated in vacuo. The resulting crude 123 was dissolved in 1 mL of a solution of acetic acid, tetrahydrofuran, and water (8:8:1) at room temperature and stirred for 5 h . The mixture was concentrated in vacuo and the residue was purified by column chromatography (hexane-ethyl acetate, $4: 1$ to $3: 1$ ) to give 13 $\mathrm{mg}(46 \%)$ of 124 as an oil: IR (film) 3429, 1737, 1244, 1193, 1115, 1083, 1023, $962,937,895,843,783 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.29$ (br. s, 1H), $4.90(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, \mathrm{J}=11.0,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.60 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.04 (dd, J=7.6, 2.7 Hz, 1H), 2.14 (d, J=11.0 Hz, 1H, OH), 2.07 (s, 5 H ), $1.71(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 15 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 170.1,169.7,146.6,146.1,144.7,121.0,113.4,109.4,73.9,73.6$, $73.3,70.8,58.3,51.8,51.7,25.6,21.9,21.1,19.6,18.0,0.3,-4.6,-5.5$.

Methyl ( $1 \alpha, 2 \beta, 4 a \beta, 5 \alpha, 6 \beta, 8 a \alpha$ )-1,5,6,8a-Tetrahydro-6-acetoxy-1,5,8a-trihy-droxy-8-methyl-2-(1-methyl)ethenyl-4-oxo-4a(4H)-naphthalenecarboxylate (125). To a stirred solution of triethylamine-hydrofluoric acid complex ( 9.2 mg ,
0.0570 mmol ) in 0.5 mL of methylene chloride was added

a solution of 124 ( $10 \mathrm{mg}, 0.0190 \mathrm{mmol}$ ) in 0.5 mL of methylene chloride at room temperature. After 3 d the mixture was passed through a short pad of silica gel with diethyl ether as eluent and the concentrated eluent was purified by column chromatography (hexane-ethyl acetate, $3: 1$ to $2: 1$ ) to give $5.1 \mathrm{mg}(55 \%)$ of 109 and 1.1 mg of 125 (16\%). Spectroscopic data for 125: IR (film) 3483, 3456, 3431, 1725, 1435, 1373, 1233, 1101, 1042, 1022, 999, 969, $934,903,736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.48(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H})$, 4.96 (t, J=1.5 Hz, 1H), 4.92 (s, 1H), 4.79 (m, 1H), 4.63 (m, 1H), 4.03 (d, J=3.8 Hz, 1H), 2.85 (m, 1H), 2.49 (dd, J=13.8, 13.2 Hz, 1H), 2.38 (dd, J=13.8, 5.8 Hz, 1H), 2.15 (dd, J=1.4, $1.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), 2.10 (d, J=10.5 Hz, 1H), 2.00 (s, 3H), 1.77 (s, 3 H ); MS (CI) $m / z$ (rel. intensity) $369(M+1,16), 368\left(M^{+}, 4\right), 352$ (10), 351 (53), 346 (7), 345 (30), 333 (6), 329 (8), 310 (18), 307 (100), 292 (11), 291 (58), 273 (46), 259 (20), 241 (16), 231 (11), 213 (22), 195 (17), 177 (26), 167 (20), 151 (16); HRMS $m / z$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{8}(\mathrm{M}+1)$ : 369.1549 . Found: 369.1548.

Methyl ( $1 \alpha, 4 a \beta, 5 \alpha, 6 \beta, 8 a \alpha)$-1,5,6,8a-Tetrahydro-5-(tbutyldimethylsilyl)oxy-1,8a-dihydroxy-8-methyl-6-(1-methyl)ethenyl-4-oxo-4a(4H)-naphthalenecarboxylate (120). To a stirred solution of isopropenylmagnsium bromide (0.39
 M in THF, $365 \mu \mathrm{~L}, 0.142 \mathrm{mmol}$ ) in 1 mL of tetrahydrofuran was added solid cuprous bromide dimethyl sulfide ( $6 \mathrm{mg}, 0.2$ equiv. to the Grignard reagent) at $-78^{\circ} \mathrm{C}$. After 3 min a yellowish solution resulted and a solution of 91 ( 36 mg ,
$0.0946 \mathrm{mmol})$ and hexamethylphosphoric triamide ( $100 \mu \mathrm{~L}, 0.568 \mathrm{mmol}$ ) in 1 mL of tetrahydrofuran was added dropwise through a double-tipped needle. The resulting mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and slowly warmed to room temperature during 2 h . The mixture was quenched with aqueous ammonium chloride solution and was extracted with diethyl ether. The separated organic layer was dried and concentrated in vacuo. Column chromatography (hexaneethyl acetate, $4: 1$ to $3: 1$ ) of the residue afforded $10 \mathrm{mg}(25 \%)$ of 120 and 24 mg (66\%) of recovered 91. Spectroscopic data for 120: IR (film) 3543, 3403, 1742, $1700,1384,1252,1219,1176,1142,1090,1033,837,782 \mathrm{~cm}{ }^{-1}$; ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.66(\mathrm{dd}, \mathrm{J}=10.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, \mathrm{J}=10.3,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.39(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}$, $\mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.88$ (br.s, 1H), $2.12(t, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.27$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.1,166.3,149.9,138.2,125.8,122.5$, 114.2, 75.6, 69.8, 68.9, 64.4, 51.5, 50.6, 25.8, 21.8, 21.3, 17.9, -4.6, -4.9; MS (CI) $m / z$ (rel. intensity) $423(M+1,12), 422\left(M^{+}, 2\right), 408(6), 407(23), 406(27)$, 405 (100), 389 (14), 365 (23), 347 (11), 301 (6), 291 (10), 273 (50), 259 (4), 241 (14), 207 (12); HRMS $m / z$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{M}^{+}\right)$: 422.2124. Found: 422.2123.

Methyl ( $\left.1 \alpha, 4 \alpha, 5 \alpha, 6 \alpha, 11 R^{*}, 12 R^{*}\right)$-1-(t-Butyldimethylsilyl)oxy-4,5-epoxy( $7 \beta \mathrm{H}$ )-6,12-epoxy-12-ethoxy-4-oxo-2-eudesmen-14-oate (127b). To a stirred
 solution of 91 ( $272 \mathrm{mg}, 0.715 \mathrm{mmol}$ ) in 4 mL of propenyl ethyl ether (distilled over sodium) was added N bromosuccinimide ( $636 \mathrm{mg}, 3.574 \mathrm{mmol}$ ) in four portions over 10 min at $0^{\circ} \mathrm{C}$. After 30 min the mixture was passed through a short pad of silica gel $(10 \mathrm{~g})$ with hexane-ethyl
acetate ( $6: 1$ ) as eluent, and the concentrated eluent was purified by column chromatography (hexane-ethyl acetate, $9: 1$ to $6: 1$ ) to give 317 mg ( $81 \%$ ) of 126 as a diastereomeric mixture.

A mixture of 126 ( $317 \mathrm{mg}, 0.581 \mathrm{mmol}$ ), tri- $n$-butyltin hydride $(203 \mu \mathrm{~L}$, 0.7554 mmol ), and 2,2'-azobisisobutyronitrile (AIBN, $6 \mathrm{mg}, 0.0378 \mathrm{mmol}$ ) in 25 mL of benzene was refluxed for 4 h . The mixture was cooled to room temperature and the volatile material was removed in vacuo. The residue was dissolved in 5 mL of reagent grade diethyl ether and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, $124 \mu \mathrm{~L}, 0.831 \mathrm{mmol}$ ) was added with shaking. ${ }^{98}$ After 2~3 min the mixture was passed through a short pad of silica gel with diethyl ether as eluent, and the concentrated eluent was purified by radial chromatography ( 2 mm , hexane-ethyl acetate, $10: 1$ to $6: 1$ ) to give 36.2 mg of $127 \mathrm{a}, 58.7 \mathrm{mg}$ of $127 \mathrm{c}, 71.1 \mathrm{mg}$ of 127 b , and 68 mg of a mixture in $86 \%$ yield. Spectroscopic data for 127b ; IR (film) 1747, 1723, 1254, 1214, 1139, 1084, 979, 966, 858, 838, 862, $778 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.01$ (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, \mathrm{J}=9.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}$, $\mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 3.47 (m, 1H), 2.77 (m, 1H), 2.65 (dd, J=15.7, $13.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.38(\mathrm{~m}, 2 \mathrm{H}), 1.70$ (s, 3H), 1.20 (t, J=7.0 Hz, 3H), 1.02 (d, J=7.4 Hz, 3H), $0.80(\mathrm{~s}, 9 \mathrm{H}), 0.01$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 204.5,167.6,135.4,131.11,109.3,73.6,70.0$, $67.2,65.8,63.5,63.1,57.3,53.0,41.7,39.9,38.6,25.6,17.8,16.9,15.2,12.8$, -3.8, -5.1; MS (CI) $m / z$ (rel. intensity) $467(M+1,25), 465$ (9), 452 (10), 451 (32), 450 (10), 449 (29), 435 (15), 423 (11), 422 (30), 421 (100), 409 (21), 405 (27), 390 (10), 389 (34), 363 (28), 335 (17), 289 (18), 253 (30), 213 (18), 143 (16), 133 (20), 59 (77), 57 (88); HRMS m/z Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+1)$ : 467.2465. Found: 467.2462.

Spectroscopic data for 127a: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.00$ (d, J=9.6 $\mathrm{Hz}, 1 \mathrm{H}), 5.89$ (dd, J=9.6, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.02 (d, J=4.7 Hz, 1H), 4.95 (d, J=8.8 Hz, 1 H ), 4.90 (d, J=6.0 Hz, 1H), 3.72 ( $\mathrm{m}, 1 \mathrm{H}$ ), 3.69 (s, 3H), 3.46 ( $\mathrm{m}, 2 \mathrm{H}$ ), 2.65 ( m , 2 H ), $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$ ), $0.80(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H})$.

Acetal 134. Following the same procedure as used for the conversion of 91 to 127, 95 ( $34.2 \mathrm{mg}, 0.0776 \mathrm{mmol}$ ) produced $38 \mathrm{mg}(82 \%)$ of the bromoacetal. Cyclization of the bromoacetal yielded $21 \mathrm{mg}(55 \%)$ of 134 as an inseparable mixture of diastereomers.

Methyl $\left(1 \alpha, 4 \alpha, 5 \alpha, 6 \alpha, 8 \beta, 11 R^{*}, 12 R^{*}\right)$-1-( $t$-Butyldimethylsilyl)oxy-4,5-epoxy-(7ßH)-6,12-epoxy-12-ethoxy-8-hydroxy-4-oxo-2-eudesmen-14-oate (129).


To a stirred solution of sodium hexamethyldisilazide ( 1 M in THF, $72 \mu \mathrm{~L}, 0.072 \mathrm{mmol}$ ) in 0.5 mL of tetrahydrofuran was added a solution of $\mathbf{1 2 7 b}$ ( $26 \mathrm{mg}, 0.0557 \mathrm{mmol}$ ) in 0.5 mL of tetrahydrofuran at $-78^{\circ} \mathrm{C}$. After 30 min a solution of trans-2-(phenylsulfonyl)-3-phenyloxaziridine ( $22 \mathrm{mg}, 0.084 \mathrm{mmol}$ ) in 0.5 mL of tertahydrofuran was added via a double-tipped needle and stirring was continued for 15 min at $-78^{\circ} \mathrm{C}$. The mixture was quenched with aqueous ammonium chloride solution and was extracted with diethyl ether ( $5 \mathrm{~mL} \times 2$ ). The combined organic layer was dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, $9: 1$ to $6: 1$ ) of the residue afforded 5.1 mg (19\%) of 129 as an oil: IR (film) 3501, 1748, 1727, 1391, 1379, 1252, 1111, $1081,1008,969,851,839,778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.02$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (dd, J=9.8, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.96 (d, J=9.8 Hz, 1H), 4.89 (d, $\mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.85 (s, 1H), 4.59 (dd, J=11.7, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.73 (s, 3H), 3.67 (m,
$1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 1.75$ $(\mathrm{s}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 5 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 207.2, 167.3, 136.2, 130.7, 109.4, 73.8, 72.1, 70.4, 67.3, 62.6, $61.8,58.9,53.2,46.1,40.5,25.5,17.7,17.1,15.1,13.0,-3.8,-5.2$; MS (CI) m/z (rel. intensity) 483 ( $M+1,33$ ), 467 (40), 465 (23), 438 (28), 437 (100), 425 (29), 405 (26), 389 (21), 363 (25), 351 (66), 277 (20), 253 (27), 213 (74), 133 (22); HRMS $m / z$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{8} \mathrm{Si}(\mathrm{M}+1)$ : 483.2414. Found: 483.2414.

The separated aqueous layer was acidified to pH 1 by addition of 2 N hydrochloric acid solution and was extracted with diethyl ether ( 10 mL X 2 ). The combined organic layer was dried and concentrated in vacuo, and the residue was passed through a short pad of silica gel with ethyl acetate as eluent. The concentrated eluent was dissolved in diethyl ether ( 1 mL ) and treated with excess diazomethane at room temperature, then concentrated in vacuo. Thin layer chromatography ( 0.25 mm , hexane-ethyl acetate, $3: 1$ ) of the residue afforded 5 mg ( $24 \%$ ) of 130 as a yellowish oil: IR (film) 1738, 1717, 1437, 1257, 1215, 1161, 1104, 1056, $986 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 6.30 (d, J=11.0 Hz, 1H), 6.11 (dd, J=11.0, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.46(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, $3.42(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.00 ( $\mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.1,166.9,159.8,156.7$, 129.7, 126.6, 122.4, 113.1, 110.0, 76.3, 62.8, 52.2, 51.5, 41.8, 39.7, 31.2, 20.0, 15.2, 12.2.

## Methyl ( $\left.1 \alpha, 2 \beta, 5 \alpha, 6 \alpha, 11 S^{*}, 12 R^{*}\right)-1,5-$ Dihydroxy-(7 $\beta H$ )-6,12-epoxy-2,12-di-

phenylthio-4-oxo-2-eudesmen-14-oate (132). To a stirred solution of 127a ( $8.4 \mathrm{mg}, 0.0180 \mathrm{mmol}$ ) and thiophenol ( $7.9 \mu \mathrm{~L}, 0.072$
 mmol ) in 0.5 mL of methylene chloride was added neat boron trifluoride etherate ( $8.8 \mu \mathrm{~L}, 0.072 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After 30 min the mixture was neutralized with a few drops of triethylamine and was passed through a short pad of silica gel with methylene chloride as eluent. Column chromatography (hexane-ethyl acetate, 6:1 to 3:1) of the concentrated eluent afforded 4 mg ( $42 \%$ ) of 132 as a colorless solid: IR (film) 3452, 3440, 1722, 1438, 1231, 1207, 1185, 1090, 1016, 999, 975, 912, 739, $692 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.5 \sim 7.2(\mathrm{~m}, 10 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.06 (d, J=7.1 Hz, 1H), 4.90 (d, J=8.1 Hz, 1H), 4.35 (s, 1H, OH), 4.12 (d, J=7.1 Hz, 1H, OH), 3.74 (s, 3H), 2.82 (dd, J=18.1, 11.1 Hz, 1H), 2.65 (dd, J=18.1, 6.6 $\mathrm{Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{t}, \mathrm{J}=1.5 \mathrm{HZ}, 3 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.6,166.5,139.3,135.3,134.8,129.3,129.2,127.4$, 127.1, 120.6, 94.2, 80.2, 72.8, 71.5, 64.5, 52.9, 49.6, 46.7, 42.3, 40.8, 19.7, 18.5; MS (CI) m/z (rel. intensity) 527 ( $\mathrm{M}+1,0.25$ ), 509 ( $\mathrm{M}-\mathrm{OH}, 2$ ), 461 (3), 433 (3), 399 (23), 351 (12), 323 (75), 307 (29), 215 (16), 139 (31), 111 (100); HRMS $m / z$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~S}_{2}$ (M-OH): 509.1456. Found: 509.1436.

Compound 132 crystallized from octane in the space group P -1 with $a=8.354$ (2) $\AA, b=12.569$ (3) $\AA, c=112.934$ (2) $\AA, \alpha=91.33$ (3) $)^{\circ}, \beta=93.77$ (2) ${ }^{\circ}$, $\gamma=94.11(3)^{\circ}, \mathrm{z}=2$ and $\mathrm{d}_{\text {calcd }}=1.363 \mathrm{~g} / \mathrm{cm}^{3}$. The intensity data were measured on a Siemens P4 diffractometer ( $\mathrm{Cu} \mathrm{K} \alpha$ radiation). There were 3328 unique reflections and the structure was solved by direct methods. The final discrepancy indices were $R=0.0688$ and $R w=0.0672$.

Methyl ( $\left.1 \alpha, 2 \alpha, 5 \alpha, 6 \alpha, 11 R^{*}, 12 R^{*}\right)-2-A c e t o x y-1-(t$-butyldimethylsilyI)oxy-5-hydroxy-(7ßH)-6,12-epoxy-12-ethoxy-4-oxo-3-eudesmen-14-oate (131). A solution of 127b ( $36.2 \mathrm{mg}, 0.0776 \mathrm{mmol}$ ) in 1 mL of acetic
 acid was stirred overnight ( 20 h ) at room temperature and then was heated to $70^{\circ} \mathrm{C}$ for 1 h and concentrated in vacuo. Radial chromatography ( 1 mm , hexane-ethyl acetate, $9: 1$ to $6: 1$ ) of the residue afforded $10 \mathrm{mg}(25 \%)$ of 131 and 13 mg of an unidentified side product. Spectroscopic data for 131: IR (film) 3436, 1731, 1234, 1077, 1021, 973,839 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.45(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~m}, 3 \mathrm{H})$, 3.76 (m, 1H), 3.62 (s, 3H), 3.48 (m, 1H), 2.63 (d, J=10.0 Hz, 2H), 2.10 (s, 3H), $2.05 \sim 1.8(2 \mathrm{H}), 1.97$ (s, 3H), 1.20 (t, J=7.3 Hz, 3H), 1.05 (d, J=7.3 Hz, 3H), 0.79 (s, 9H), $0.27(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 201.6, 169.6, 165.6, 145.3, 116.7, 104.1, 75.7, 72.8, 72.1, 69.5, 64.5, 62.7, 52.8, 46.8, 42.9, 39.7, 25.7, 20.9, 20.3, 17.8, 15.1, 12.8, -4.9, -5.5 ; MS (CI) $m / z$ (rel. intensity) 527 (M - OH, 14), 497 (18), 493 (24), 467 (19), 465 (15), 452 (18), 421 (64), 437 (48), 423 (62), 421 (30), 419 (23), 407 (23), 405 (50), 305 (100), 287 (50), 259 (35); HRMS $m / z$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{Si}(\mathrm{M}-\mathrm{OH}): 509.2571$. Found: 509.2346.

Methyl ( $\left.1 \alpha, 5 \alpha, 6 \alpha, 11 R^{*}, 12 R^{*}\right)$-1-( $t$-Butyldimethylsilyl)oxy-5-hydroxy-(7 $\beta \mathrm{H}$ )-6,12-epoxy-12-ethoxy-4-0x0-2,4(15)-eudesmadien-14-oate (133). To a
 stirred solution of 127a ( $22.5 \mathrm{mg}, 0.0482 \mathrm{mmol}$ ) in 2 mL of methylene chloride was added neat boron trifluoride diethyl etherate ( $18 \mu \mathrm{~L}, 0.145 \mathrm{mmol}$ ) at $-40^{\circ} \mathrm{C}$. After 20 min the mixture was warmed to $-10^{\circ} \mathrm{C}$ over 20 min and was quenched with a few drops of triethylamine. The resulting
mixture was passed through a short pad of silica gel with hexane -ethyl acetate $(3: 1)$ as eluent and the concentrated eluent was purified by thin layer chromatography ( 0.25 mm , hexane-ethyl acetate, $3: 1$ ) to give $6 \mathrm{mg}(27 \%)$ of 133: IR (film) $3425,1746,1719,1248,1215,1156,1107,1075,1037,1016$, 987, 916, 842, $782 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $86.229 \mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.91 (dd, J=10.0, 5.6 Hz, 1H), $5.75(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H})$, 5.11 (d, J=4.4 Hz, 1H), 5.00 (d, J=5.3 Hz, 1H), 4.81 (dd, J=9.8, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.78(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}$, $1 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H})$, 0.10 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.6,167.6,143.1,130.6,126.4$, $117.6,104.9,76.7,74.7,69.6,63.7,62.8,52.8,47.5,44.3,40.3,25.5,17.7$, 15.2, 12.1, -4.4, -5.5; MS (CI) $m / z$ (rel. intensity) $467(M+1,5), 449(45), 433$ (10), 421 (39), 405 (30), 375 (10), 363 (33), 335 (100), 317 (59), 289 (83), 177 (20); HRMS $m / z$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+1)$ : 467.2465. Found: 467.2465.

Dithioacetal 136. To a stirred solution of 134 ( $8 \mathrm{mg}, 0.0157 \mathrm{mmol}$ ) and
 ethanedithiol ( $6 \mu \mathrm{~L}, 0.0626 \mathrm{mmol}$ ) in 0.5 mL of methylene chloride was added boron trifluoride etherate ( $7.7 \mu \mathrm{~L}, 0.0626 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After 5 min the mixture was quenched with saturated aqueous ammonium chloride solution and was extracted with diethyl ether ( $2 \times 5 \mathrm{~mL}$ ). The combined organic layer was washed with saturated brine, dried and concentrated, and the residue was purified by column chromatography (hexane-ethyl acetate, $3: 1$ to $1: 1$ ) to give $3.5 \mathrm{mg}(49 \%)$ of 136 as a single diastereomer: IR (film) 3481, 3438, 3428, 3403, 1735, 1432, 1405, $1371,1233,1181,1157,1057,1017,973,936,733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.54(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}$,
$\mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.46 (s, 1H, OH), 4.43 (dd, J=5.2, $9.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.56$ (d, J=4.6 Hz, 1H, OH), $3.44(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.20(\mathrm{~s}, 4 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2$. 27 (m, 1H), $2.05 \mathrm{~s}, 3 \mathrm{H}$ ), 1.98 (s, 3H), 1.06 (d, J=6.8 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ( 75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.0,169.3,166.4,143.4,118.4,71.9,70.8,68.5,68.4,64.2$, $57.2,53.0,39.6,39.1,38.9,38.6,37.0,20.9,19.2,13.1 ; \mathrm{MS}$ (CI) $\mathrm{m} / \mathrm{z}$ (rel. intensity) 461 ( $M+1,4$ ), 445 (11), 444 (17), 443 ( 71 ), 425 (38), 401 ( 38 ), 384 (23), 383 (100), 365 (33), 359 (55), 351 (32), 307 (30), 289 (20), 233 (15), 217 (44), 167 (44), 157 (23); HRMS $\mathrm{m} / \mathrm{z}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{8} \mathrm{~S}_{2}(\mathrm{M}+1): 461.1304$. Found: 462.1303.

Methyl ( $1 \alpha, 4 \mathrm{a} \beta, 5 \alpha, 8 \alpha, 8 \mathrm{a} \alpha)$-1,5-Dihydro-5-(tbutyldimethylsilyl)oxy-1-(2-bro-moethenyl)carbonyloxy-8( $\beta$ )-methyl-4-oxo-4a(4H)-8,8a-epoxynaphthalenecarboxylate (141). To a stirred solution of 91 ( $38 \mathrm{mg}, 0.0999 \mathrm{mmol}$ ), triethylamine ( $42 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$ ), and a catalytic amount of
 $\mathrm{N}, \mathrm{N}$-dimethylaminopyridine in 0.5 mL of methylene chloride was added 2,3-dibromopropionyl chloride ( $17.2 \mu \mathrm{~L}, 0.150$ mmol ) at $0^{\circ} \mathrm{C}$. After 2.5 h at $0^{\circ} \mathrm{C}$ aqueous sodium bicarbonate solution was added and the mixture was extracted with diethyl ether ( 8 mL ). The separated organic layer was washed with brine, dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 9:1) of the residue afforded 32.5 mg (64\%) of 141 and 3.5 mg ( $10 \%$ ) of recovered 91 . Spectroscopic data for 141 : IR (film) 1731, 1693, 1253, 1209, 1097, 1035, 857, 839, $776 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.11$ (d, J=2.2 Hz, 1H), 6.77 (dd, J=10.3, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.55 (t, J=2.2 Hz, 1H), 6.41 ( $d, J=2.0 \mathrm{HZ}, 1 \mathrm{H}$ ), 6.21 ( $\mathrm{dd}, \mathrm{J}=10.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.95 (m, 2H), 5.10 (dd, J=3.8, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.69 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.58 (s, 3H), $0.80(\mathrm{~s}, 3 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 188.6,166.9,160.7,146.9,135.2$,
132.7, 131.8, 129.4, 120.7, 68.1, 67.7, 66.8, 63.9, 57.1, 53.4, 25.7, 17.9, 17.5, -4.0, -5.0.

Methyl ( $1 \alpha, 2 \alpha, 4 a \beta, 5 \alpha)-1,2,3,5$-Tetrahydro-5-(t-butyldimethylsilyl)oxy-1-hydroxy-8-methyl-2-(1-methyl)ethenyl-4-oxo-4a(4H)-naphthalenecarboxylate (147). To a stirred solution of diisopropylamine ( $13 \mu \mathrm{~L}, 0.0921 \mathrm{mmol}$ ) was added dropwise $n$-butyllithium ( 1.6 M in hexane, $58 \mu \mathrm{~L}$,
 0.0921 mmol ) at $0^{\circ} \mathrm{C}$. After $30 \mathrm{~min} 94(35 \mathrm{mg}, 0.0960 \mathrm{mmol})$ was added portionwise to the resulting lithium diisopropylamide solution at $-78^{\circ} \mathrm{C}$. After 5 min neat $1,3-$ dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU, 110 $\mu \mathrm{L}, 0.920 \mathrm{mmol}$ ) was added dropwise and stirring was continued for 15 min . To the mixture was added dropwise a solution of isopropenylmagnesium bromide ( $460 \mu \mathrm{~L}, 0.4 \mathrm{M}$ in THF) and stirring was continued for 21 h at $-78^{\circ} \mathrm{C}$. The mixture was quenched with aqueous ammonium chloride solution and was extracted with diethyl ether ( 6 mL X 2 ). The combined organic layer was washed with saturated brine, dried and concentrated. Column chromatography (hexane-ethyl acetate, 6:1 to $3: 1$ ) of the residue afforded $8 \mathrm{mg}(21 \%)$ of 147 and $8.6 \mathrm{mg}(25 \%)$ of recovered 94 . Spectroscopic data for 147: IR (film) 3548, $3508,1743,1716,1251,1225,1073,1049,841,775 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ( 300 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 5.97(\mathrm{dd}, \mathrm{J}=9.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.96$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 4.89 (d, J=5.3 Hz, 1H), 4.81 ( $\mathrm{s}, 1 \mathrm{H}$ ), 3.63 ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.93 (br. d, J=14.0 $\mathrm{Hz}, 1 \mathrm{H}$ ), 2.75 (dd, J=16.0, $13.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.45 (m, 1H), 2.01 (s, 3H), 1.91 (s, 3H), $1.40(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 204.1,168.3,143.8,133.3,131.3,128.9,127.7,112.8,67.3$, 64.6, 52.9, 42.0, 39.1, 25.5, 22.2, 18.0, 17.8, -4.2, -5.2; MS (CI) m/z (rel. intensity) 407 ( $M+1,11$ ), 391 (20), 390 (12), 389 (46), 373 (19), 371 (19), 349
(27), 341 (26), 331 (21), 299 (23), 275 (100), 271 (17), 257 (91), 243 (62); HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1): 407.2253$. Found: 407.2252.

Methyl ( $1 \alpha, 2 \alpha, 4 a \beta, 5 \alpha, 8 \alpha, 8 a \alpha)-1,2,3,5,8,8 a-H e x a h y d r o-5-(t-b u t y l d i m e t h y l-~$ silyl)oxy-1-hydroxy-8( $\beta$ )-methyl-2-(1-methyl)ethenyl-4-oxo-4a(4H)-8,8aepoxynaphthalenecarboxylate (145). To a stirred solution of
 diisopropylamine ( $1.89 \mathrm{~mL}, 0.0921 \mathrm{mmol}$ ) in 30 mL of tetrahydrofuran was added $n$-butyllithium ( 1.6 M in hexane, $1.89 \mathrm{~mL}, 13.46 \mathrm{mmol}$ ) dropwise at $0^{\circ} \mathrm{C}$. After 30 min the resulting lithium diisopropylamide solution was added to a stirred solution of $91(4.88 \mathrm{~g}, 12.82 \mathrm{mmol})$ in 30 mL of tetrahydrofuran which was cooled to $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . A solution of $15-$ crown-5 ( $3.05 \mathrm{~mL}, 15.38 \mathrm{mmol}$ ) in 10 mL of tetrahydrofuran was added and stirring was continued for 15 min . To the mixture was added isopropylmagnesium bromide ( 0.39 M in THF, $34.4 \mathrm{~mL}, 15.38 \mathrm{mmol}$ ) and stirring was continued for 30 min at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and stirred for 1 h . The mixture was quenched with aqueous ammonium chloride solution and was extracted with diethyl ether ( 50 $\mathrm{mL} X 2$ ). The combined organic layer was washed with brine, dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 4:1)of the residue afforded $3.23 \mathrm{~g}(60 \%)$ of 145 and $1.24 \mathrm{~g}(25 \%)$ of recovered 91. Spectroscopic data for 145: IR (film) 3479, 1752, 1723, 1251, 1203, 1096, 841, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.02$ ( $\mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.91 ( $\mathrm{dd}, \mathrm{J}=9.6$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (d, J=6.1 Hz, 1H), 5.00 (d, J=0.9 Hz, 1H), 4.72 (s, 1H), 4.51 (ddd, J=4.3, 4.3, 1.7 Hz, 1H), 3.69 (s, 3H), 2.93 (d, J=4.4 Hz, 1H, OH), 2.69 (d, $\mathrm{J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, 3H), 0.03 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 200.8,167.3,143.2,133.9$,
$131.4,112.1,69.1,67.1,63.89,63.80,58.3,53.3,42.9,39.9,25.5,21.9,17.7$, 16.6, -4.0, -5.1 ; MS (CI) $m / z$ (rel. intensity) 423 ( $\mathrm{M}+1,66$ ), 407 (48), 406 (25), 405 (83), 391 (20), 389 (22), 373 (26), 291 (51), 277 (32), 273 (31), 259 (32), 249 (23), 241 (25), 231 (22), 213 (31), 177 (39), 165 (24), 59 (100); HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 423.2203. Found: 423.2202.

## Methyl ( $1 \alpha, 2 \alpha, 4 a \beta, 5 \alpha, 8 a \alpha)-1,2,3,5,8,8 a-H e x a h y d r o-5-(\not t b u t y I d i m e t h y l s i l y l)-$

 oxy-1,8a-dihydroxy-8-methylene-2-(1-methyl)ethenyl-4-oxo-4a(4H)-naphthalenecarboxylate (148). To a stirred solution of 145 ( $4.3 \mathrm{mg}, 0.0108 \mathrm{mmol}$ ) in 0.5 mL of toluene was added neat titanium tetraisopropoxide ( $12 \mu \mathrm{~L}, 0.0407 \mathrm{mmol}$ ) at room temperature. After 18 h the mixture was passed through a short pad of silica gel with methylene chloride as eluent to give 3.7 mg ( $86 \%$ ) of 148: IR (film) 3535, 3356, 1724, 1404, 1241, 1184, 1149, 1108, 1076, 1036, 1011, 884, 844, $785 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.28(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.84$ (dd, J=9.7, $5.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.32 ( $\mathrm{s}, 1 \mathrm{H}$ ), 5.22 (d, J=5.6 Hz, 1H), 4.97 (s, 1H), 4.90 (dd, J=10.4, 6.0 Hz, 1H), 4.66 (s, 1H), 3.64 (s, 3H), 3.54 (d, J=10.4 Hz, 1H, OH ), 3.03 (t, J=15.5 Hz, 1H), 2.73 ( $\mathrm{m}, 1 \mathrm{H}$ ), 2.43 ( $\mathrm{d}, \mathrm{J}=16.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.92 ( s , 3H), 0.84 (s, 9H), $0.20(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 202.3$, 166.3, 145.6, 144.0, 133.0, 124.2, 118.4, 111.2, 73.6, 69.7, 68.9, 65.7, 53.1, 42.1, 39.1, 25.5, 22.5, 17.7, -4.5, -5.5; LRMS (CI) $\mathrm{m} / \mathrm{z}$ (relative intensity) 423 ( $M+1,5$ ), 407 (13), 389 (5), 365 (14), 347 (6), 319 (5), 301 (40), 291 (26), 273 (18), 259 (10), 241 (33), 227 (14), 213 (20), 177 (100), 133 (12); HRMS m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 423.2203. Found: 423.2202.

Methyl ( $1 \alpha, 2 \alpha, 4 \mathrm{a} \beta, 5 \alpha, 6 \beta, 8 \mathrm{a} \alpha)$-1,5,6,8a-Tetrahydro-6-acetoxy-5-(t-butyldime-thylsilyl)oxy-1,8a-dihydroxy-8-methyl-2-(1-methylethenyl)-4-0xo-4a(4H)naphthalenecarboxylate (149). A solution of 145 ( $5.2 \mathrm{mg}, 0.0123 \mathrm{mmol}$ ) in

0.5 mL of acetic acid was heated at $60-65{ }^{\circ} \mathrm{C}$ for 4 h . All of the volatile material was evaporated in vacuo and the residue was purified by column chromatography (hexaneethyl acetate, $4: 1$ to $3: 1$ ) to give $4.0 \mathrm{mg}(67 \%)$ of 149 and $1.5 \mathrm{mg}(19 \%)$ of 148. Spectroscopic data for 149: IR (film) 3535, 3384, 1735, 1438, 1370, 1231, 1153, 1104, 1071, 1020, 838, 785 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.43(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, 3 H ), 3.33 (br. d, J=10.4 Hz, 1H), 2.87 (dd, J=17.5, $15.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.50 (m, 2H), $2.08(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 201.0,169.6,166.6,144.9,143.7,117.1,111.4$, 72.3, 72.0, 69.2, 68.0, 64.5, 52.7, 41.7, 38.3, 25.7, 22.3, 20.9, 19.4, 17.8, -4.9, -5.5; LRMS (CI) m/z (relative intensity) $483(\mathrm{M}+1,12), 467(10), 466(22), 465$ (65), 449 (24), 433 (10), 425 (11), 424 (22), 423 (72), 409 (17), 408 (10), 407 (41), 406 (17), 405 (58), 391 (17), 389 (22), 381 (16), 373 (10), 366 (12), 365 (49), 351 (33), 349 (12), 347 (23), 335 (11), 333 (39), 323 (29), 301 (13), 291 (22), 273 (100), 267 (12), 259 (12), 249 (77), 219 (44), 177 (33); HRMS m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1)$ : 423.2203. Found: 423.2202 .

Methyl ( $\left.1 \alpha, 2 \beta, 6 \alpha, 11 \mathrm{R}^{*}\right)-2$-Acetoxy-1-(t-butyldimethylsilyl)oxy-6-hydroxy-13-iodo-9-oxo-(7ßH)-5,11-epoxy-8-eudesmen-14-oate (150a). To a stirred solution of 149 ( $37 \mathrm{mg}, 0.766 \mathrm{mmol}$ ) and solid sodium
 bicarbonate ( $64 \mathrm{mg}, 0.766 \mathrm{mmol}$ ) in 1 mL of acetonitrile in an amber colored bottle was added iodine ( $49 \mathrm{mg}, 0.192$ mmol ) at room temperature. After 10 h , the mixture was treated with aqueous sodium bisulfite solution and was extracted with diethyl ether ( 10 mL ). The separated organic layer was washed with saturated brine, dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, $3: 1$ ) of the residue afforded $30 \mathrm{mg}(64 \%)$ of 150 as a $4: 1$ diastereomeric mixture based on ${ }^{1} \mathrm{H}$ NMR analysis: MS (CI) $\mathrm{m} / \mathrm{z}$ (rel. intensity) 609 ( $M+1,16$ ), 550 (14), 549 (49), 533 (25), 531 (16), 491 (34), 482 (22), 481 (68), 465 (13), 424 (23), 422 (47), 421 (100), 407 (34), 405 (64), 403 (28), 389 (42), 365 (40), 363 (22), 349 (22), 333 (22), 309 (27), 307 (22), 291 (61), 289 (38), 277 (38), 177 (52); HRMS m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{IO}_{8} \mathrm{Si}(\mathrm{M}+1)$ : 609.1381 . Found: 609.1383.

Methyl ( $1 \alpha, 2 \beta, 6 \alpha, 11 R^{*}$ )-2-Acetoxy-1-(t-butyldimethylsilyl)oxy-(7 $\beta \mathrm{H}$ )-5,11-epoxy-6-hydroxy-8,11-methano-9-oxo-8-eudesmen-14-oate (151). To a

stirred solution of 150 ( $15 \mathrm{mg}, 0.0247 \mathrm{mmol}$ ) and 18 -crown-6 ( $7.8 \mathrm{mg}, 0.0296 \mathrm{mmol}$ ) in 0.2 mL of toluene was added solid cesium acetate ( $19 \mathrm{mg}, 0.0986 \mathrm{mmol}$ ) at room temperature. After the addition was complete, the mixture was heated at $60-65{ }^{\circ} \mathrm{C}$ for 90 h . The mixture was quenched with aqueous sodium bicarbonate and was extracted with diethyl ether ( 10 mL ). The separated organic layer was dried and concentrated in vacuo, and the residue was purified by column chromatography (hexane-ethyl acetate, $5: 1$ to $2: 1$ ) to give
$5.5 \mathrm{mg}(47 \%)$ of 151 as a colorless solid: mp $154-155^{\circ} \mathrm{C}$; IR (film) 3537, 1737, $1229,1114,1087,1010,980,947,840,780,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.60(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}$, 1H), 3.69 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.00 (m, 3H), 2.28 (dd, J=11.8, $9.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.11 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.97 (t, J=1.9 Hz, 3H), 1.47 (s, 3H), $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.14$ (s, 3H), $-0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 205.4,170.5,168.9,137.3,130.1,89.0,85.3,77.4$, $75.0,74.3,71.3,52.9,50.7,45.2,35.3,25.9,25.5,21.3,20.7,18.2,-4.4,-5.3 ;$ MS (CI) m/z (rel. intensity) 527 ( $\mathrm{M}+1,33$ ), 463 (11), 423 (15), 422 (30), 421 (100), 406 (30), 405 (54), 403 (30), 390 (23), 389 (72), 373 (29), 371 (58), 363 (61), 331 (19), 289 (28), 261 (47), 229 (27); HRMS, $m / z$ Calcd. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{8} \mathrm{Si}$ $(\mathrm{M}+1)$ : 481.2258. Found: 481.2257; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Si}$ : C, 59.97; H , 7.56. Found: $\mathrm{C}, 59.66$; $\mathrm{H}, 7.66$.

Compound 151 crystallized from octane in the space group P2(1)/c with $a=11.151$ (2) $\AA, b=12.740$ (3) $\AA, c=19.203$ (4) $\AA, \beta=103.39$ (3) $)^{\circ}, z=4$ and $d_{\text {calcd }}=1.203 \mathrm{~g} / \mathrm{cm}^{3}$. The intensity data were measured on a Siemens P4 diffractometer ( $\mathrm{Cu} \mathrm{K} \alpha$ radiation). There were 3071 unique reflections and the structure was solved by direct methods. The final discrepancy indices were $R=0.0608$ and $\mathrm{Rw}=0.0596$.

## Methyl ( $1 \alpha, 2 \alpha, 3 \beta, 4 a \beta, 5 \alpha, 8 \alpha, 8 a \alpha)-1,2,3,5,8,8 a-H e x a h y d r o-5-(t b u t y l d i m e t h y l-~$

 silyl)oxy-1,3-dihydroxy-8( $\beta$ )-methyl-2-[1(S*)-methyl]epoxyethenyl-4-oxo-4a(4H)-8,8a-epoxynaphthalenecarboxylate (157). Trimethylsilyl chloride ( $1.27 \mathrm{~mL}, 10.0 \mathrm{mmol}$, freshly distilled from $\mathrm{CaH}_{2}$ ) was dissolved in tetrahydrofuran ( 5 mL ) in a dry 15 mL centrifuge tube fitted with a rubber septum. Triethylamine ( 0.1 mL ) was added and the solution was diluted to the 10 mL mark with tetrahydrofuran. After 10 min the
mixture was centrifuged and the supernatant used immediately. 99
To a stirred solution of diisopropylamine ( $75 \mu \mathrm{~L}, 0.537 \mathrm{mmol}$ ) in 0.5 mL of tetrahydrofuran was added $n$-butyllithium ( 1.6 M in hexane, $335 \mu \mathrm{~L}, 0.537$ mmol ) dropwise at $0^{\circ} \mathrm{C}$. After 30 min the resulting lithium diisopropylamide solution was cooled to $-78^{\circ} \mathrm{C}$ and the stock solution of trimethylsilyl chloride ( 1 $M$ in THF, $1.28 \mathrm{~mL}, 1.278 \mathrm{mmol}$ ) was added dropwise via the wall of the flask. Immediately after the addition of trimethylsilyl chloride, a solution of 145 (108 $\mathrm{mg}, 0.226 \mathrm{mmol}$ ) in 2 mL of tetrahydrofuran was added dropwise. Since the reactant was not completely comsumed after 1 h , additional lithium diisopropylamide ( 1.5 M in cyclohexane, $100 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$ ) was added dropwise via the wall of the flask and stirring was continued for 20 min . The mixture was quenched with aqueous sodium bicarbonate solution and was warmed to room temperature and extracted with diethyl ether ( 15 mL ). The separated organic layer was washed with saturated brine, dried and concentrated in vacuo to give 121 mg of 155 .

To a stirred solution of 155 ( $121 \mathrm{mg}, 0.209 \mathrm{mmol}$ ) in 4 mL of hexane was added $m$-chloroperbenzoic acid ( $100 \mathrm{mg}, 0.48 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. After the addition was complete the mixture was warmed to room temperature and stirring was continued for 19 h . The mixture was diluted with hexane ( 10 mL ) and saturated sodium bicarbonate and was stirred vigorously for 10 min . The organic layer was separated, washed with brine, dried, and concentrated in vacuo. The resulting crude product was dissolved in 1.5 mL of methylene chloride and treated with triethylamine-hydrofluoric acid complex ( $200 \mathrm{mg}, 1.65 \mathrm{mmol}$ ). Stirring was continued for 10 h at room temperature. The mixture was passed through a short pad of silica gel with diethyl ether as eluent, and the concentrated eluent was purified by column chromatography (hexane-ethyl acetate, $9: 1$ to $2: 1$ ) to give $21 \mathrm{mg}(23 \%)$ of 157 and $43 \mathrm{mg}(40 \%)$ of 156 .

Spectroscopic data for 157: IR (film) 3531, 1754, 1725, 1390, 1252, 1112, $1085,1010,884,810,776,732 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.01$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, \mathrm{J}=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{t}$, $J=5.2 \mathrm{~Hz}$ ), 4.42 (dd, J=13.9, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.85(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ), 3.68 (s, 3H), 2.97 (d, J=5.3 Hz, 1H, OH), $2.74(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{dd}, \mathrm{J}=13.9,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 201.9,166.4,134.2,131.4,73.0,69.6,65.8,64.3,62.8,58.6$, $57.9,56.4,53.6,47.9,25.5,20.7,17.7,16.3,-4.0,-5.1 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel. intensity) $455(M+1,8), 439(16), 437(40), 421$ (21), 419 (32), 405 (30), 397 (15), 391 (17), 389 (17), 387 (23), 379 (21), 361 (22), 347 (23), 343 (22), 333 (23), 323 (34), 305 (81), 303 (26), 291 (24), 287 (40), 277 (100), 273 (62), 259 (32), 245 (59), 231 (28), 229 (55), 227 (25), 213 (39), 209 (29), 201 (39), 177 (38), 167 (52); HRMS m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{8} \mathrm{Si}(\mathrm{M}+1): 455.2101$. Found: 455.2103.

Spectroscopic data for 156: IR (film) 3501, 1750, 1726, 1219, 1150, $1099,956,937,897 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.00(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.80 (dd, J=9.6, 6.1 Hz, 1H), 4.97 (d, J=9.6 Hz, 1H), 4.86 (d, J=6.1 Hz, 1H), 4.80 (dd, J=9.6, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.79$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.55(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.7 \sim 1.8(1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$, $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 206.0,167.3,137.5,130.2,74.7,70.9,69.7,67.4,63.6,59.3,55.9$, $55.6,53.1,52.4,25.5,20.5,18.7,17.7,-0.2,-4.2,-5.2$; MS (CI) $m / z$ (rel. intensity) 527 ( $M+1,9$ ), 511 (22), 495 (10), 493 (11), 479 (11), 451 (11), 437 (41), 419 (66), 405 (22), 395 (30), 391 (19), 379 (31), 363 (30), 345 (22), 331 (20), 313 (22), 305 (45), 295 (23), 281 (31), 277 (38), 245 (28), 243 (21), 212 (59), 133 (43), 75 (100); HRMS $m / z$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O}_{8} \mathrm{Si}_{2}(M+1): 527.2496$. Found: 527.2496.

Methyl ( $1 \alpha, 2 \alpha, 3 \beta, 4 a \beta, 5 \alpha, 8 \alpha, 8 a \alpha)$-1,2,3,5,8,8a-Hexahydro-3-acetoxy-5-(t-bu-tyldimethylsilyl)oxy-1-trimethylsilyloxy-8( $\beta$ )-methyl-2-[1(S*)-methyl]epoxy-ethenyl-4-oxo-4a(4H)-8,8a-epoxynaphthalenecarboxylate (160). A mixture
 of 156 ( $31 \mathrm{mg}, 0.0589 \mathrm{mmol}$ ), acetic anhydride ( $160 \mu \mathrm{~L}$, 0.15 mmol ) in pyridine ( $200 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$ ) was stirred for 16 h at room temperature. The mixture was diluted with diethyl ether ( 10 mL ) and poured into cold aqueous 1 N sulfuric acid solution with vigorous stirring. The organic layer was separated, washed with saturated sodium bicarbonate solution, dried, and concentrated in vacuo to give 31 mg (92\%) of 160: IR (film) 1758, 1727, 1252, 1227, 1152, 1120, 1087, 1010, 961, 900, 843, $783,764 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.97(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.82(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}$, 1H), 4.89 (d, J=6.1 Hz, 1H), 3.71 (s, 3H), 2.55 (d, J=5.0 Hz, 1H), 2.42 (d, J=5.0 $\mathrm{Hz}, 1 \mathrm{H}$ ), 2.13 (s, 3H), 2.1~2.2 (1H), 1.55 (s, 3H), 0.85 (s, 9H), 0.19 (s, 9H), 0.05 ( $\mathrm{s}, 3 \mathrm{H}$ ), -0.03 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 199.1,168.6,167.5,137.1$, $131.0,75.2,71.0,69.1,67.7,64.4,59.5,55.3,53.1,52.6,51.7,25.8,20.9,20.5$, 18.8, 18.2, $-0.1,-4.4,-4.6$; MS (CI) m/z (rel. intensity) $569(M+1,26), 554$ (24), 553 (63), 537 (14), 511(45), 509 (18), 493 (30), 479 (54), 477 (26), 461 (26), 447 (27), 437 (31), 435 (26), 419 (100), 405 (34), 403 (31), 377 (36), 295 (47), 213 (75); HRMS $m / z$ Calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{45} \mathrm{O}_{9} \mathrm{Si}_{2}(\mathrm{M}+1): 569.2602$. Found: 569.2600.

 was heated at $60-65^{\circ} \mathrm{C}$ for 9 h . The volatile material was removed in vacuo and the residue was purified by column chromatography (hexane-ethyl acetate, 10:1 to $3: 1$ ) to give $0.7 \mathrm{mg}(10 \%)$ of 158: IR (film) 3431, 1777, 1254, 1229,

1201, 1159, 1130, 1064, 1041, 1023, 908, 842, $781 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.97$ ( $\mathrm{dd}, \mathrm{J}=9.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.73(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.66$ (d, J=4.3 Hz, 1H), $4.23(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{~m}$, 1H), 2.63 (m, 2H), $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}$, 3H), 0.09 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 201.1, 133.6, 131.6, 121.6, 87.1, 83.6, 75.3, 68.1, 67.2, 55.6, 55.1, 53.8, 51.5, 50.0, 25.8, 20.9, 18.3, 17.0, $0.9,-4.5,-5.3 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel. intensity) 527 ( $\mathrm{M}+1,14$ ), 511 (12), 509 (14), 495 (24), 437 (20), 435 (11), 419 (22), 396 (18), 395 (69), 379 (38), 377 (32), 363 (15), 347 (18), 319 (100), 305 (37), 303 (47), 301 (58), 291 (34), 273 (43), 229 (74), 213 (31), 201 (49), 193 (84), 173 (27); HRMS m/z Calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O}_{8} \mathrm{Si}_{2}(\mathrm{M}+1): 527.2496$. Found: 527.2496.

Methyl ( $1 \alpha, 2 \alpha, 4 a \beta, 5 \alpha, 8 \alpha, 8 \mathrm{a} \alpha)-1,2,3,5,8,8 \mathrm{a}-\mathrm{Hexahydro-5-(t-butyldimethylsil-}$ yl)oxy-1-hydroxy-8( $\beta$ )-methyl-2-[1( $\mathrm{R}^{*}$ )-methyl]epoxyethenyl-4-oxo-4a(4H)-8,8a-epoxynaphthalenecarboxylate (152a). To a stirred solution of 145 (36
 $\mathrm{mg}, 0.0852 \mathrm{mmol}$ ), 2,6-lutidine ( $10 \mu \mathrm{~L}, 0.0852 \mathrm{mmol}$ ), and $t$-butyl hydroperoxide $(5.0 \sim 6.0 \mathrm{M}$ in isooctane, $51 \mu \mathrm{~L}$, 0.256 mmol ) in 1 mL of toluene was added solid vanadium oxyacetylacetonate ( $0.7 \mathrm{mg}, 0.00256 \mathrm{mmol}$ ) at room temperature. After 2 d the mixture was passed through a short pad of silica gel with diethyl ether as eluent and the eluent was concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 6:1 to $3: 1$ ) of the residue afforded $19.2 \mathrm{mg}(53 \%)$ of $\mathbf{1 5 2 a}$ and $6.8 \mathrm{mg}(19 \%)$ of $\mathbf{1 5 2 b}$. Spectroscopic data for 152a: IR (film) 3469, 1752, 1723, 1437, 1391, 1252, 1202, 1144, 1097, 910, 842, $776 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.98$ ( d , $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.89 (dd, J=9.6, 6.2 Hz, 1H), 5.01 (d, J=6.1 Hz, 1H), 4.67 (ddd, J=4.5, 4.5, 1.7 Hz, 1H), 3.65 (s, 3H), 3.07 (d, J=4.5 Hz, 1H), 2.81 (d, J=4.4 Hz,

1 H ), 2.66 ( $\mathrm{m}, 2 \mathrm{H}$ ), 2.51 (ddd, J=15.3, 2.1, 2.1 Hz, 1H), 1.82 (ddd, J=14.2, 4.2, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 199.8,167.3,133.9,131.5,69.0,66.8,64.6$, $64.0,58.5,57.1,53.4,52.2,43.2,38.1,25.6,20.0,17.8,16.6,04.0,-5.1$; MS (CI) $m / z$ (rel. intensity) $439(M+1,43), 423(42), 421$ (100), 407 (49), 403 (40), 389 (87), 381 (50), 373 (44), 363 (57), 345 (37), 331 (36), 307 (85), 277 (58), 275 (82), 247 (42), 243 (50), 229 (71), 213 (42), 167 (33); HRMS m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+1): 439.2152$. Found: 439.2152.; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 60.25 ; \mathrm{H}, 7.81$. Found: C, $60.10 ; \mathrm{H}, 7.80$.

Spectroscopic data for 152b; IR (film) 3474, 1753, 1723, 1253, 1200, 1096, 1064, 842, 814, $776 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.99$ (d, J=9.7 $\mathrm{Hz}, 1 \mathrm{H}$ ), 5.90 (dd, J=9.7, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.00 (d, J=6.4 Hz, 1H), 4.51 (m, 1H), 3.68 ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.95 ( $\mathrm{d}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.67 (d, J=4.1 Hz, 1H), $2.63(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.32(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 199.8,167.3,133.7,131.6,69.1,67.2,64.0,63.8$, $58.5,56.6,53.4,51.1,41.3,36.0,25.6,21.1,17.8,16.7,-4.0,-5.1$.

## Methyl ( $\left.1 \alpha, 2 \beta, 6 \alpha, 11 R^{*}\right)$-2-Acetoxy-1-(t-butyldimethylsilyl)oxy-6,13-dihydro-

 xy-9-oxo-(73H)-5,11-epoxy-8-eudesmen-14-oate (161). A solution of 152b ( $16.6 \mathrm{mg}, 0.0379 \mathrm{mmol}$ ) in 1 mL of acetic acid was heated at $60-65^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled to room temperature and the volatile material was removed in vacuo. Column chromatography (hexane-ethyl acetate, $2: 3$ to $1: 2$ ) of the residue afforded $8.2 \mathrm{mg}(44 \%)$ of 161: IR (film) 3510, 3477, 1718, 11236, 1143, 1112, 1085, 1026, 992, 963, $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.59$ (d, J=4.3 Hz, 1H), 5.24 (d, J=2.0 $\mathrm{Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$
(d, J=11.5 Hz, 1H), 2.97 (dd, J=17.9, 3.3 Hz, 1H), 2.49 (dd, J=17.9, 4.3 Hz, 1H), $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H})$, 0.14 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 200.5,169.4,168.2,139.5,123.4$, 84.9, 84.6, 84.7, 72.7, 72.0, 69.8, 67.4, 52.8, 47.8, 44.0, 25.8, 24.3, 21.7, 21.0, 18.2, -4.3, -6.1; MS (CI) m/z (rel. intensity) 499 ( $M+1,16$ ), $498(\mathrm{M}, 2), 481$ (10), 441 (16), 440 (31), 439 (100), 425 (8), 424 (15), 423 (53), 422 (15), 421 (46), 407 (32), 405 (15), 403 (25), 391 (25), 382 (17), 381 (68), 367 (27), 349 (33), 307 (44), 289 (58), 275 (55), 257 (51), 243 (22), 233 (22), 231 (25), 229 (21), 177 (56), 141 (30), 133 (31); HRMS, $m / z$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{9} \mathrm{Si}(\mathrm{M}+1$ ): 499.2363. Found: 499.2361.

Methyl ( $\left.1 \alpha, 2 \beta, 6 \alpha, 11 R^{*}\right)$-2-Acetoxy-1-(t-butyldimethylisilyl)oxy-6-hydroxy-13-p-nitrobenzoyloxy-9-oxo-(7ßH)-5,11-epoxy-8-eudesmen-14-oate (162).

To a stirred solution of 161 ( $8 \mathrm{mg}, 0.190 \mathrm{mmol}$ ), triethylamine ( $7 \mu \mathrm{~L}, 0.0481 \mathrm{mmol}$ ), and $p$-nitrobenzoyl chloride ( $6 \mathrm{mg}, 0.0321 \mathrm{mmol}$ ) in 0.2 mL of methylene chloride was added a catalytic amount of $\mathrm{N}, \mathrm{N}$ dimethylaminopyridine (DMAP) at room temperature.

After 6 h aqueous sodium bicarbonate was added and the mixture was extracted with diethyl ether ( 8 mL ). The separated organic layer was dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 3:1 to 1:1) of the residue afforded 5 mg ( $55 \%$ ) of 162 as a colorless solid: mp 213 $214{ }^{\circ} \mathrm{C}$; IR (film) 35011, 1728, 1529, 1349, 1273, 1264, 1259, 1235, 1142, 1110, 1017, 993, 840, $724 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.29$ ( $\mathrm{d}, \mathrm{J}=8.8$ Hz, 2H), 8.17 (d, J=8.8 Hz, 2H), 5.63 (d, J=6.3 Hz, 1H), 5.24 (br. s, 2H), 4.79 (s, 1H), 4.30 (d, J=11.4 Hz, 1H), 4.25 (d, J=11.4 Hz, 1H), 3.69 (s, 3H), 2.81 (dd, $\mathrm{J}=16.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 0.85$
(s, 9H), $0.20(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 201.0, 169.6, 168.1, 163.9, 150.6, 138.9, 135.1, 130.6, 124.6, 124.6, 123.5, 85.6, 83.2, 82.8, 72.2, 70.2, 69.8, 52.9, 47.7, 43.6, 25.8, 24.9, 21.7, 21.0, 18.2, -4.4, -6.1; MS (CI) $m / z$ (rel. intensity) $648(M+1,13), 589$ (17), 588 (47), 572 (17), 570 (34), 556 (14), 531 (11), 530 (23), 456 (35), 422 (11), 421 (32), 403 (14), 333 (16), 307 (14), 289 (35), 257 (14), 224 (19), 177 (100), 168 (35), 159 (15); HRMS $\mathrm{m} / \mathrm{z}$ Calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{13} \mathrm{NSi}(\mathrm{M}+1)$ : 648.2476 . Found: 648.2476.

Compound $\mathbf{1 6 2}$ crystallized from octane-ethyl acetate in the space group $P 2(1) / c$ with $a=13.361$ (3) $\AA, b=13.611$ (2) $\AA, c=18.573$ (2) $\AA, \beta=91.57$ (2) ${ }^{\circ}, z=4$ and $d_{\text {calcd }}=1.306 \mathrm{~g} / \mathrm{cm}^{3}$. The intensity data were measured on a Siemens P4 diffractometer ( $\mathrm{Cu} \mathrm{K} \alpha$ radiation). There were 3118 unique reflections and the structure was solved by direct methods. The final discrepancy indices were $R=0.0535$ and $R w=0.0546$.

## Methyl ( $1 \alpha, 2 \beta, 6 \alpha, 11 R^{*}$ )-2-Acetoxy-1-(tbutyldimethylsilyl)oxy-6,13-dihydro-

 xy-9-oxo-(7ßH)-5,11-epoxy-8-eudesmen-14-oate (163). To a stirred solution of 149 ( $5.3 \mathrm{mg}, 0.0110 \mathrm{mmol}$ ) in 0.3 mL of methylene chloride was added $m$-chloroperbenzoic acid $(2.5 \mathrm{mg}$, 0.0121 mmol ) at room temperature. After 3 d the mixture was diluted with diethyl ether ( 6 mL ) and aqueous sodium bicarbonate solution and was stirred vigorously for 1 h . The organic layer was separated, dried and concentrated in vacuo to give crude 164 as a $1: 1$ mixture of stereoisomers based on ${ }^{1} \mathrm{H}$ NMR analysis.

Crude mixture 164 was dissolved in 0.5 mL of deuterated chloroform in a NMR tube. After 5 h the mixture was concentrated in vacuo and the residue was purified by column chromatography (hexane-ethyl acetate, $5: 1$ to $1: 2$ ) to give $1.5 \mathrm{mg}(\mathbf{2 8 \%})$ of 163 and $1.9 \mathrm{mg}(36 \%)$ of recovered $\mathbf{1 6 4 b}$. Spectroscopic
data for 163: IR (film) 3321, 1740, 1723, 1375, 1230, 1113, 1020, 980, 968, $839,781 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.51(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~m}, 1 \mathrm{H}), 5.05$ (s, 1H), $4.88(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68 \sim 3.64(2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=18.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.70(\mathrm{dd}, \mathrm{J}=18.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}$, 9 H ), $0.19(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 202.6,170.2$, $168.2,138.3,126.6,86.0,83.9,80.3,75.0,73.3,70.7,69.6,52.9,47.7,44.8$, 25.9, 22.2, 21.7, 18.3, -4.3, -5.9 ; $\mathrm{MS}(\mathrm{Cl}) m / z$ (rel. intensity) $499(\mathrm{M}+1,43$ ), 481 (10), 467 (9), 440 (19), 439 (66), 423 (35), 421 (58), 407 (31), 405 (16), 391 (28), 389 (38), 381 (32), 349 (33), 307 (45), 289 (100), 275 (33), 259 (15), 257 (39), 243 (18), 233 (19), 177 (75); HRMS m/z Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{9} \mathrm{Si}(\mathrm{M}+$ 1): 499.2363. Found: 499.2361.

Spectroscopic data for 164b: IR (film) 3529, 3384, 1735, 1439, 1370, 1232, 1152, 1132, 1104, 1071, 1022, 971, 942, 839, 786, $736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~m}$, 1 H ), $3.48(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}$, 3 H ), $1.54(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H})$; $\mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel. intensity) $499(M+1,10), 483$ (10), 481 (18), 441 (9), 439 (30), 423 (23), 422 (27), 421 (98), 405 (19), 403 (64), 349 (10), 307 (11), 289 (24), 257 (18), 181 (16), 153 (100); HRMS $m / z$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{9} \mathrm{Si}(\mathrm{M}+1): 499.2363$. Found: 499.2361.

Methyl ( $\left.1 \alpha, 2 \beta, 6 \alpha, 11 R^{*}\right)-1-(t-B u t y l d i m e t h y l s i l y l) o x y-6,13$-dihydroxy-( $7 \beta \mathrm{H}$ )-5,11-epoxy-9-oxo-2-trifluoroacetoxy-8-eudesmen-14-oate (165). To a stirred solution of 152a ( $16.5 \mathrm{mg}, 0.0376 \mathrm{mmol}$ ) in 0.4 mL of deuterated chloroform in a NMR tube was added trifluoroacetic acid ( $4.4 \mu \mathrm{~L}, 0.0564 \mathrm{mmol}$ ) at room temperature. After 30 min the reaction was complete as determined by ${ }^{1} \mathrm{H}$ NMR analysis. The mixture was diluted with diethyl ether and washed with aqueous sodium bicarbonate. The separated organic layer was dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, $2: 1$ to 1:1) of the residue afforded 11.5 $\mathrm{mg}(55 \%)$ of 165: IR (film) 3292, 1782, 1721, 1379, 1221, 1151, 1115, 1039, 966, 934, 840, $779 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.51$ (s, 1H), 5.46 (br.s, $1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}$, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.67 ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.81 (dd, J=18.5, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.72 ( $\mathrm{dd}, \mathrm{J}=18.5$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.18$ (s, 3H), 0.09 (s, 3H); MS (Cl) m/z (rel. intensity) $553(\mathrm{M}+1,1$ ), 440 (1), 439 (4), 423 (2), 381 (2), 307 (1), 289 (7), 177 (14), 133 (5), 129 (5), 115 (100); HRMS, $m / z$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{O}_{9} \mathrm{Si}(\mathrm{M}+1): 553.2080$. Found: 553.2078.

Methyl ( $1 \alpha, 2 \beta, 6 \alpha, 11 R^{\star}$ )-1-(*Butyldimethylsilyl)oxy-6-hydroxy-(7ßH)-5,11-epoxy-9-oxo-2,12-di-trifluoroacetoxy-8-eudesmen-14-oate (167). To a solution of 152 a ( $5.6 \mathrm{mg}, 0.0128 \mathrm{mmol}$ ) in 0.4 mL of
 deuterated chloroform in a NMR tube was added trimethylsilyl trifluoroacetate ( $6 \mu \mathrm{~L}, 0.035 \mathrm{mmol}$ ) at room temperature. After 24 h the mixture was concentrated in vacuo and the residue was purified by column chromatography (hexane-ethyl acetate, 2:1 to $1: 1$ ) to give $4.0 \mathrm{mg}(48 \%)$ of 167 :

IR (film) 3540, 1784, 1721, 1222, 1149, 995, 933, 840, 778, $733 \mathrm{~cm}-1 ;{ }^{1}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.62(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.82(\mathrm{t}, \mathrm{J}=1.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.75 (d, J=10.6 Hz, 1H), 4.62 (d, J=10.6 Hz, 1H), 3.67 (s, 3H), 2.79 (dd, J=17.6, 2.8 Hz, 1H), 2.57 (dd, J=17.6, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.50(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.13(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$, reference to trifluoromethyltoluene) $\delta-75.92,-76.29$; MS (CI) m/z (rel. intensity) 591 (5), 563 (5), 537 (12), 536 (34), 535 (M $\mathrm{F}_{3} \mathrm{CCO}_{2}, 97$ ), 520 (12), 519 (35), 518 (14), 517 (44), 503 (13), 478 (19), 477 (63), 421 (39), 403 (39), 389 (12), 385 (19), 289 (41), 271 (8), 257 (12), 178 (13), 177 (89), 115 (100); HRMS, $m / z$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{O}_{8} \mathrm{Si}\left(\mathrm{M}-\mathrm{F}_{3} \mathrm{CCO}_{2}\right)$ : 535.1975. Found: 535.1976.

Methyl ( $\left.1 \alpha, 2 \beta, 6 \alpha, 11 R^{\star}\right)-1$-(tButyldimethylsilyl)oxy-6,13-dihydroxy-(7 $\beta \mathrm{H}$ )-5,11-epoxy-9-oxo-2-trichloroacetoxy-3-eudesmen-14-oate (166). Tо а
 solution of 152a ( $13.2 \mathrm{mg}, 0.030 \mathrm{mmol}$ ) in 0.4 mL of deuterated chloroform in a NMR tube was added a solution of trichloroacetic acid ( 1 M in chloroform, $45 \mu \mathrm{~L}$, 0.045 mmol ) at room temperature. After 2.5 h the reaction was complete as dertermined by ${ }^{1} \mathrm{H}$ NMR analysis. The mixture was diluted with ethyl acetate ( 8 mL ) and washed with aqueous sodium bicarbonate. The separated organic layer was dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 2:1 to 1:1) of the residue afforded 12 mg ( $67 \%$ ) of 166: IR (film) 3290, 3230, 1760, 1720, 1233, 1151, 1113, 1037, 986, 934, 915, 838, 779, 733, $680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.52(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~m}$, 1 H ), 3.68~3.71 (2H), 3.70 (s, 3H), 2.81 (dd, J=18.6, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.73 (dd, $\mathrm{J}=18.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.13(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}$,

3H), $0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 202.2, 167.8, 161.4, 140.7, $123.4,85.4,84.5,80.8,80.0,72.6,70.3,69.8,53.3,47.6,44.9,25.9,22.2,22.1$, 18.3, -4.2, -6.2; MS (CI) m/z (rel. intensity) 601 ( $M+1,3$ ), 479 (2), 475 (4), 439 ( $\mathrm{M}-\mathrm{Cl}_{3} \mathrm{CCO}_{2}, 33$ ), 425 (10), 423 (14), 421 (21), 407 (22), 391 (9), 390 (8), 389 (27), 381 (29), 363 (9), 307 (16), 290 (12), 289 (65), 275 (13), 257 (19), 231 (12), 178 (11), 177 (100); HRMS, $m / z$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{M}-\mathrm{Cl}_{3} \mathrm{CCO}_{2}\right.$ ): 439.2152. Found: 439.2152.

Methyl ( $\left.1 \alpha, 6 \alpha, 11 S^{*}\right)$-1-( $t$-Butyldimethylsilyl)oxy-6,13-dihydroxy-(7 $\beta \mathrm{H}$ )-5,11-epoxy-9-oxo-2,4(15)-eudesmadien-14-oate (169). To a stirred solution of
 152a ( $126 \mathrm{mg}, 0.287 \mathrm{mmol}$ ) in 3 mL of toluene was added neat titanium tetraisopropoxide ( $257 \mu \mathrm{~L}, 0.862 \mathrm{mmol}$ ) at room temperature. After 19 h the mixture was cooled to $0^{\circ} \mathrm{C}$, diluted with diethyl ether ( 10 mL ) and 1 N sulfuric acid, and stirred vigorously until the mixture became clear. The organic layer was separated, washed with saturated sodium bicarbonate solution and concentrated in vacuo to give crude 168: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 6.52$ ( s , 1 H ), 6.20 (d, J=9.8 Hz, 1H), 5.61 ( $\mathrm{dd}, \mathrm{J}=9.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.40 (d, J=5.8 Hz, $1 \mathrm{H}), 5.12(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}$, $3 H$ ), $2.52(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (ddd, $J=16.6,6.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.20$ (s, 3H), 0.04 (s, 3H).

Crude 168 was dissolved in a $0.1 \%$ hydrochloric acid solution in chloroform at room temperature. After 15 min the mixture was diluted with diethyl ether, washed with saturated sodium bicarbonate solution and with saturated brine, and concentrated in vacuo to give 92 mg ( $73 \%$ ) of 169: IR (film) 3291, 1742, 1714, 1468, 1381, 1250, 1166, 1111, 1083, 1035, 995, 916, 841,
$779,734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}$, 1H), 5.84 (dd, J=10.1, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.20(\mathrm{~s}, 2 \mathrm{H}), 4.92$ (d, J=4.8 Hz, 1H), 3.66 (d, $\mathrm{J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.63 (s, 3H), 3.58 (d, J=12.5 Hz, 1H), 2.95 (dd, J=8.9, 4.1 Hz , 1H), 2.83 (dd, J=8.9, 2.3 Hz, 1H), 2.49 (t, J=3.3 Hz, 1H), 1.20 ( $\mathrm{s}, 3 \mathrm{H}$ ), 0.88 ( s , 9 H ), 0.18 (s, 3H), 0.08 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 203.4,168.4$, $138.5,129.7,128.7,118.4,84.9,84.2,77.6,70.8,69.8,68.8,53.0,48.9,45.1$, 26.1, 22.6, 18.3, -4.3, -5.4; MS (Cl) m/z (rel. intensity) 439 ( $\mathrm{M}+1,35$ ), 423 (75), 389 (25), 381 (64), 335 (15), 307 (24), 289 (80), 257 (23), 177 (100); HRMS $m / z$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+1): 439.2152$. Found: 439.2152 .

Acetal 170. To a stirred solution of 169 ( $30 \mathrm{mg}, 0.0684 \mathrm{mmol}$ ) and benzaldehyde dimethyl acetal ( $52 \mu \mathrm{~L}, 0.342 \mathrm{mmol}$ ) in 1 mL of
 methylene chloride was added solid pyridinium $p$ toluenesulfonate ( $1 \mathrm{mg}, 0.004 \mathrm{mmol}$ ) at room temperature. After 24 h an additional quantity of benzaldehyde dimethyl acetal ( $52 \mu \mathrm{~L}, 0.342 \mathrm{mmol}$ ) was added and stirring was continued for 24 h . The mixture was concentrated in vacuo and the residue was purified by column chromatography (hexane-ethyl acetate, $9: 1$ to $1: 2$ ) to give $25 \mathrm{mg}(70 \%)$ of 170 as a single diastereomer: IR (film) 1742, 1713, 1251, 1223, 1175, 1124, 1086, 1031, 1003, 912, 839, 778, $734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 3 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H})$, 5.83 (dd, J=10.0, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.76 (s, 1H), 5.75 (s, 1H), 5.21 (s, 1H), 4.95 (d, $\mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.83(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.12(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}$, 3H), 0.09 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 203.2,168.5,139.1,138.3$, 130.4, 128.6, 128.3, 126.2, 118.6, 99.8, 84.6, 84.4, 82.4, 76.7, 71.4, 69.4, 53.0, 43.2, 41.4, 26.1, 20.1, 18.4, -4.2, -5.3; MS (CI) m/z (rel. intensity) 527 ( $M+1$,
40), 512 (12), 511 (35), 470 (15), 469 (47), 450 (10), 449 (35), 421 (25), 405 (28), 395 (42), 317 (25), 289 (100); HRMS $m / z$ Calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{Si}(M+1)$ : 527.2465. Found: 527.2462.

Ketol 171. To a stirred solution of 170 ( $82 \mathrm{mg}, 0.156 \mathrm{mmol}$ ) in 1 mL of tetrahydrofuran was added dropwise sodium hexamethyldisilazide ( 1 M in THF, $171 \mu \mathrm{~L}, 0.171 \mathrm{mmol}$ ) at -78 ${ }^{\circ} \mathrm{C}$. After 30 min a solution of trans-2-(phenylsulfonyl)-3phenyloxaziridine ( $64 \mathrm{mg}, 0.234 \mathrm{mmol}$ ) in 1 mL of tetrahydrofuran was added and the resulting mixture was stirred for 30 min . The mixture was quenched by the addition of $200 \mu \mathrm{~L}$ of water and $200 \mu \mathrm{~L}$ of triethylamine at $-78^{\circ} \mathrm{C}$ and was allowed to warm to room temperature. After 20 min with vigorous stirring the mixture was extracted with diethyl ether ( 10 mL ) and the separated organic layer was concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 3:1) of the residue afforded $58 \mathrm{mg}(70 \%)$ of 171 as a colorless solid: IR (film) $3435,1736,1250$, 1222, 1169, 1128, 1084, 1044, 1005, $777 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.51 (m, 2H), 7.36 (m, 3H), 6.22 (d, J=10.0 Hz, 1H), 6.11 (s, 1H), 5.88 (s, 1H), 5.81 (dd, J=10.0, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.75 (s, 1H), 5.19 (s, 1 H ), 5.03 (d, J=4.5 Hz, 1H), $4.36(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}$, 1 H ), 3.17 (d, J=1.6 Hz, 1H), 2.94 (d, J=2.9 Hz, 1H), 1.33 (s, 3H), 0.87 (s, 9H), $0.15(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.7,168.4,138.9$, 138.3, 131.0, 128.6, 128.2, 127.6, 126.2, 118.5, 100.2, 84.4, 82.9, 79.9, 74.6, $71.3,70.2,53.2,48.2,26.0,19.6,18.4,-4.3,-5.0 ; \mathrm{MS}$ (CI) $\mathrm{m} / \mathrm{z}$ (rel. intensity) 543 ( $M+1,23$ ), 465 (11), 437 (13), 412 (8), 411 (31), 379 (11), 363 (11), 333 (11), 306 (14), 305 ( 80 ), 287 (21), 273 (8), 213 (16), 177 (76), 163 (25), 135 (12), 133 (26), 107 (100); HRMS $m / z$ Calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{8} \mathrm{Si}(M+1): 543.2414$.

Found: 543.2413.; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{Si}: \mathrm{C}, 64.18$; $\mathrm{H}, 7.06$. Found: C , 63.79; H,6.97.

Methyl ( $\left.1 \alpha, 6 \alpha, 8 \beta, 11 S^{*}\right)$-1-( $t$-Butyldimethylsilyl)oxy-( $7 \beta \mathrm{H}$ )-5,11-epoxy-9-oxo--6,8,13-trihydroxy-2,4(15)-eudesmadien-14-oate (172). To a stirred solution of 169 ( $26 \mathrm{mg}, 0.0593 \mathrm{mmol}$ ) in 1.5 mL of tetrahydrofuran was
 added dropwise sodium hexamethyldisilazide (1M in THF, 190 $\mu \mathrm{L}, 0.190 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. After 30 min a solution of trans-2-(phenylsulfonyl)-3-phenyloxaziridine ( $24 \mathrm{mg}, 0.089 \mathrm{mmol}$ ) in 1 mL of tetrahydrofuran was added slowly and stirring was continued for 30 min . The mixture was quenched with saturated aqueous ammonium chloride solution and was extracted with diethyl ether ( $7 \mathrm{~mL} \times 2$ ). The separated organic layer was dried and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 2:1 to 1:1) of the residue afforded 19 $\mathrm{mg}(70 \%)$ of 172: IR (film) 3427, 3370, 3338, 1721, 1250, 1229, 1111, 1034, $1000,915,778,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~d}$, $\mathrm{J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.79 (dd, J=10.4, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.43 (s, 1H), $5.24(\mathrm{~s}, 1 \mathrm{H}), 4.96$ (d, J=4.8 Hz, 1H), 4.28 (d, J=3.0 Hz, 1H), 3.64 (s, 5 H ), 2.60 (d, J=3.0 Hz, 1H), $1.18(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 204.9,168.6,139.0,130.8,127.7,119.0,84.7,82.6,75.6,74.2,70.6$, $70.1,69.3,54.8,53.3,26.1,22.0,18.4,-4.3,-5.2 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel. intensity) $455(M+1,3), 426(6), 425(22), 407(11), 382(7), 381(29), 305(19), 289(10)$, 275 (11), 231 (13), 178 (12), 177 (100), 133 (16); HRMS m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{8} \mathrm{Si}(\mathrm{M}+1): 455.2101$. Found: 455.2102 .
trans Diol 175. To a stirred solution of 171 ( $10 \mathrm{mg}, 0.0184 \mathrm{mmol}$ ) in 1 mL of methanol was added solid sodium borohydride ( $5 \mathrm{mg}, 0.133$ mmol ) at room temperature. After 30 min the mixture was diluted with diethyl ether ( 10 mL ) and washed with 0.1 M hydrochloric acid solution. The separated organic layer was washed with saturated sodium bicarbonate solution, dried, and concentrated. Column chromatography (hexane-ethyl acetate, $4: 1$ to $2: 1$ ) of the residue afforded $4.6 \mathrm{mg}(46 \%)$ of $\mathbf{1 7 5}$ : ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{dd}, \mathrm{J}=10.0$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (d, J=9.5 Hz, 1H, OH), $4.36(d, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (dd, J=9.5, 5.1 Hz, 1H), 3.79 (d, J=12.9 Hz, 1H), $3.61(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.42$ (br. $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H})$.

Imidazolide 176. A solution of $175(4.6 \mathrm{mg}, 0.00848 \mathrm{mmol})$ and carbonyldiimidazole ( $3 \mathrm{mg}, 0.0170 \mathrm{mmol}$ ) in 0.3 mL of
 toluene was heated at $60-65{ }^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the mixture was purified by column chromatography (hexane-ethyl acetate, 6:1 to 1:1) to give $3.7 \mathrm{mg}(69 \%)$ of $\mathbf{1 7 6}$ as a colorless solid: IR (film) 3276, 1764, 1731, 1391, 1289, 1243, 1175, 1136, 1114, 1091, 1042, 1003, $975,918,837,775,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~d}, \mathrm{~J}=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.60$ (dd, J=10.0, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H})$, $5.26(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ ( $\mathrm{dd}, \mathrm{J}=9.4,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}$, $1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (rel.
intensity) 571 (5), 507 ( $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OSi}, 10$ ), 475 (8), 429 (8), 405 (15), 402 (12), 401 (49), 395 (24), 364 (6), 363 (18), 317 (10), 290 (18), 289 (100), 271 (17), 243 (6), 229 (6), 183 (13), 177 (42), 163 (17), 133 (27), 117 (24), 115 (27), 107 (75), 97 (56); HRMS $m / z$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{8}$ ( $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OSi}$ ): 507.1767. Found: 507.1769.

Compound 176 crystallized from octane in the space group P -1 with $a=8.866$ (2) $\AA, b=11.007$ (2) $\AA, c=18.616$ (4) $\AA, \alpha=73.86$ (3) $)^{\circ}, \beta=93.77$ (2) $)^{\circ}$, $\gamma=73.02(3)^{\circ}, \mathrm{z}=2$ and $\mathrm{d}_{\text {calcd }}=1.272 \mathrm{~g} / \mathrm{cm}^{3}$. The intensity data were measured on a Siemens P4 diffractometer ( $\mathrm{Cu} \mathrm{K} \alpha$ radiation). There were 3174 unique reflections and the structure was solved by direct methods. The final discrepancy indices were $R=0.0750$ and $R w=0.0730$.
cis Diol 177. To a stirred solution of 171 ( $40 \mathrm{mg}, 0.0737 \mathrm{mmol}$ ) in 2 mL of tetrahydrofuran was added neat titanium tetraisopropoxide (66
 $\mathrm{mL}, 0.221 \mathrm{mmol}$ ) at room temperature. After 15 min the mixture was cooled to $-78^{\circ} \mathrm{C}$ and solid sodium borohydride $(8.4 \mathrm{mg}, 0.221 \mathrm{mmol}$ ) was added. The mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ and warmed to room temperature, and stirring was continued for 30 min . The residual sodium borohydride was destroyed with a few drops of acetone and the mixture was concentrated in vacuo. The residue was passed through a short pad of silica gel with ethyl acetate as eluent, and the concentrated eluent was purified by column chromatography (hexane-ethyl acetate, $2: 1$ to $1: 1$ ) to give 18 mg ( $49 \%$ ) of 177 : IR (film) 3473, $3454,1719,1460,1455,1382,1306,1252,1217,1130,1107,1073,1025,963$, $912,864,838,777,731,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.33 (m, 3H), 6.28 (s, 1H), 6.22 (dd, J=10.0, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.71 (s, 1H), 5.21 (s, 1H), 5.00 (t, J=10.1 Hz, 1H), 4.74 (s, 1H), 4.42 (d, J=4.9 Hz, 1H), 4.29 (dd,
$J=9.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}$, 1 H ), 3.14 (d, J=3.0 Hz, 1H), 3.10 (d, J=11.2 Hz, 1H, OH), 2.65 (br.s, 1H, OH), $1.53(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.2,138.9,138.8,132.4,128.5,128.2,126.1,125.8,121.1,99.6,85.3$, 84.8, 83.4, 78.1, 75.5, 71.2, 66.8, 61.0, 52.5, 47.2, 25.9, 18.5, 18.2, -4.2, -4.9; MS (CI) m/z (rel. intensity) $545(M+1,36), 544$ ( $M, 6$ ), 529 ( 9 ), 487 (14), 469 (5), 467 (10), 439 (13), 423 (26), 421 (15), 413 (19), 395 (13), 381 (17), 290 (10), 289 (57), 271 (11), 178 (11), 177 (100), 117 (14), 107 (48); HRMS, m/z Calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{Si}(\mathrm{M}+1)$ : 545.2570. Found: 545.2571.

Triol 178. To a stirred solution of 171 ( $34.2 \mathrm{mg}, 0.0630 \mathrm{mmol}$ ) in 1.5 mL of tetrahydrofuran was added titanium tetraisopropoxide ( $28 \mu \mathrm{~L}$,
 0.0945 mmol ) at room temperature. After 30 min the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of lithium aluminum hydride ( 1 M in toluene, $252 \mu \mathrm{~L}, 0.252 \mathrm{mmol}$ ) was added dropwise. Stirring was continued for 30 min and the mixture was warmed to $-25^{\circ} \mathrm{C}$. After 6 h at $-25^{\circ} \mathrm{C}$ an additional quantity of lithium aluminum hydride ( 1 M in toluene, $100 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$ ) was added and the mixture was stirred for 12 h at this temperature. The mixture was re-cooled to $-78^{\circ} \mathrm{C}$ and quenched by sequential addition of 0.1 mL of ethyl acetate, 0.35 mL of methanol, and solid sodium borohydride ( $25 \mathrm{mg}, 0.95 \mathrm{mmol}$ ). The mixture was warmed to $0^{\circ} \mathrm{C}$ and diluted with 10 mL of diethyl ether, and 10 mL of 1 N sulfuric acid solution was added slowly. After 30 min of vigorous stirring the organic layer was separated and the aqueous layer was extracted with diethyl ether ( $10 \mathrm{~mL} \times 2$ ). The combined organic layer was washed with saturated sodium bicarbonate solution and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 2:1 to 1:1) of the residue afforded 16
$\mathrm{mg}(50 \%)$ of 178: IR (film) 3425, 3396, 1461, 1380, 1253, 1164, 1135, 1088, $1070,1028,924,858,839,778 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.50(\mathrm{~m}$, 2 H ), $7.34(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~s}$, 1 H ), $5.04(\mathrm{~m}, 2 \mathrm{H}), 4.38$ (br. dd, J=9.4, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (d, J=12.5 Hz, 1H), 3.63 (br. dd, J=11.9, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.43 (m, 3H), 3.11 (d, $\mathrm{J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.60 (br. d, 2H, OH), 2.41 (br. s, 1H, OH), 1.50 (s, 3H), 0.94 (s, 9 H ), 0.16 (s, 3H), 0.14 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 139.0,138.9$, 133.4, 128.4, 128.2, 126.1, 125.5, 124.6, 99.2, 84.4, 81.9, 78.2, 76.2, 73.2, $67.8,66.4,51.1,48.3,26.0,19.1,18.3,-4.2,-4.4 ; \mathrm{MS}(\mathrm{Cl}) m / z$ (rel. intensity) 517 ( $M+1,5$ ), 411 (13), 395 (8), 385 (12), 367 (9), 337 (10), 319 (8), 307 (7), 289 (14), 261 (21), 249 (10), 232 (9), 231 (58), 213 (24), 163 (11), 161 (14), 133 (57), 117 (44), 115 (49), 107 (100); HRMS, $m / z$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+1$ ): 517.2622. Found: 517.2619.

## Bibliography

1. Kupchan, S. M.; Komoda, Y.; Court, W. A.; Thomas, G. J.; Smith, P. M.; Gilmore, C. J.; Haltiwanger, R. C.; Bryan, R. S. J. Am. Chem. Soc. 1972, 94, 1354.
2. Kupchan, S. M.; Court, W. A.; Daily, R. G.; Gilmore, C. J.; Bryan, R. S. J. Am. Chem. Soc. 1972, 94, 7194.
3. Smith, R. M. The Alkaloids ; Manske, R. H. F. Ed.; Academic Press; New York, 1977, Vol. 16, pp 215-248.
4. Crombie, L.; Crombie, W. M. L.; Whiting, D. A. The Alkaloids; Manske, R. H. F. Ed.; Academic Press; New York, 1990, Vol. 39, pp 139-164.
5. Crombie, L.; Toplis, D.; Whiting, D. A.; Rozsa, Z.; Hofmann, J.; Szendrei, K. J. Chem.Soc. Perkin Trans.I, 1986, 531.
6. Getahun, A.; Kriokorian, A. D. Econ. Bot. 1973, 27, 353.
7. Legras, M.; Fretillere, Y. Med. Trop. 1965, 25, 720.
8. Baxter, R. L.; Crombie, L.; Simmonds, D. J.; Whiting, D. A.; Braenden, O. J.; Szendrei, K. J. Chem Soc. Perkin Trans.I, 1979, 2965.
9. Fluckiger, F.; Gerock, J. Pharmac. J. Trans. 1887, 18, 221.

10 Wolfes, O. Arch. Pharm. 1930, 268, 81.
11. Von Bruche, F. Arch. exp. Path. Pharmak. 1941, 198, 100.
12. Szendrei, K. Bull. Narc. 1980, 32, 5.
13. Schorono, X.; Brenneisen, R.; Steingger, E. Pharm. Acta Helv. 1982, 57, 168.
14. (a) Kalix, P. Pharmac. Ther. 1990, 48, 397. (b) Kalix, P. Pharmac \& Toxicol. 1992, 70, 77.
15. (a)Sugiura, K.; Yamada, K.; Hirata, Y. Tetrahedron Lett. 1973, 113. (b) Pailer, M.; Streicher, W.; Leitch, J. Monatsh. Chem. 1971, 102, 1873.
16. Sasaki, K.; Hirata, Y. J. Chem. Soc. Perkin Trans.ll 1972, 1268.
17. Shizuri, Y.; Wada, H.; Sugiura, K.; Yamda, K.; Hirata, Y. Tetrahedron 1973, 29, 1795.
18. Taylor, I. F. Jr.; Watson, W. H. Acta Cryst. 1977, B33, 3176.
19. Baxter, R. L.; Crombie, L.; Simmonds, D. J.; Whiting, D. A. J. Chem Soc. Perkin Trans.I, 1979, 2972.
20. Crombie, L.; Crombie, W. M. L.; Crombie, L.; Whiting, D. A. J. Chem Soc. Perkin Trans.I, 1979, 2976.
21. Baxter, R. L.; Crombie, W. M. L.; Crombie, L.; Simmonds, D. J.; Whiting, D. A. J. Chem.Soc. Perkin Trans.l, 1979, 2982.
22. Kim, T.-S.; White, J. D. Tetrahedron Lett. 1993, 34, 5535.
23. Kubo,I.; Kim, M.; De Boer, G. J. Chromatogr. 1987; 402, 354
24. Kolb, H. C.; Ley, S. V.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc. Perkin Trans.l, 1992, 2735. and references cited therein.
25. Sugiura, K.; Shizuri, Y.; Wada, H.; Yamada, K.; Hirata, Y. Tetrahedron Lett. 1971, 2733.
26. Sousa, J. R.;Pinheiro, J. A.; Ribeiro, E. F.; Souza, E.; Maia, J. G. S. Phytochemistry 1986, 25, 1776.
27. Chunquan, C.; Jikai, L.; Dagang, W. Phytochemistry 1992, 31, 4391.
28. Han, B. H.; Park, M. M.; Ryu, J. R.; Park, J. H.; Naoki, H. Phytochemistry 1990, 29, 2303.
29. (a) Beroza, M. J. Am. Chem. Soc. 1951, 73, 3656. (b) Beroza, M. J. Am. Chem. Soc. 1953, 75, 44. (c) Beroza, M. J. Org. Chem. 1963, 28, 3562.
30. Acree, F. J.; Haller, H. L. J. Am. Chem. Soc. 1950, 72, 1608.
31. DelleMonache, F.; Bettlo; J. B, Marini; Bernays, E. A. Z. Angew. Entomol. 1984, 97, 406.
32. Shizuri, Y.; Yamada, K.; Hirata, Y. Tetrahedron Lett. 1973, 741.
33. (a) Wu, D. G.; Liu, L.; Chen, K.-C. Acta Bot. Yunnanica 1987, 3, 471. (b) Wu, D. G. Acta Bot. Yunnanica 1986, 8, 343.
34. He, Z.-S.; Hong, S.-H.; Li, Y.; Sha, H.; Yu, X.-G. Acta Chim. Sin. 1987, 45, 510.
35. Sugiura, K.; Yamada, K.; Hirata, Y. Tetrahedron Lett. 1973, 113.
36. He, Z.-S.; Hong, S.-H. Li, Y.; Sha, H.; Yu, X.-G. Acta Chim. Sin. 1985, 43, 593.
37. Li, Y.; Strutz, G. M.; Calhoun, L. A. Can. J. Chem. 1990, 68, 371.
38. Kuo, Y.-H.; Chen, C.-H.; Kuo, L.-M.; King, M.-L.; Wu, T.-S.; Lu, S.-T.; Chen, I.-S.; McPhail, D. R.; McPhail, A. T.; Lee, K.-H. Heterocycles 1989, 29, 1465
39. Kuo, Y.-H.; Chen, C.-H.; Kuo, L.-M. Y.; King, M.-L.; Wu, T.-S.; Haruna, M.; Lee, K.-H. J. Nat. Prod. 1990, 53, 422.
40. (a) Huffman, J. W.; Desai, R. C.; Hillenbrand, G. F. J. Org. Chem. 1984, 49, 982. (b) Huffman, J. W.; Raveendranath, P. C. J. Org. Chem. 1986, 51, 2148. (c) Huffman, J. W.; Raveendranath, P. C. Tetrahedron 1987, 43, 5557.
41. Sugiura, K.; Yamada, K.; Hirata, Y. Chem. Lett. 1975, 579.
42. Maclean, J. D. B.; Holland, H. L. Can. J. Chem. 1986, 64, 1031.
43. Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175.
44. Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1984, 25, 5953.
45. (a) Goldsmith, D. J.; Kwong, C. J. Org. Chem. 1978, 43, 3182 (b) Kraus, G. A.: Taschner, M. J. J. Org. Chem. J. Org. Chem. 1980, 45, 1175. (c) Bhakuni, D. S. Pure \& Appl. Chem. 1990, 1389
46. Schlessinger, R. H.; Bebernitz, G. R.; Lin, P.; Poss, A. T. J. Am. Chem. Soc. 1985, 107, 1777
47. Kienzle, F.; Stadiwieser, J.; Rank, W.; Schonholzer, P. He/v. Cheim. Acta 1990, 73, 1108.
48. Barton, D. H. R.; Cookson, R. C. Quart. Rev. 1956, 10, 44.
49. Zavada, J.; Krupicka, J.; Sicher, J. Coll. Czech. Chem. Comm. 1968, 33, 1393.
50. Greenwood, T. L.; Kellert, M. D.; Sedlock, J. Org. Syn. Coll. Vol 4, 1963, 108
51. (a) Wolff, S.; Huecas, M. E.; Agosta, W. C. J. Org. Chem. 1982, 47, 4358. (b) Corey, E. J.; Myers, A. G. J. Am. Chem. Soc. 1985, 107, 5574
52. Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226.
53. Gemal, A. L.; Luche, J. L. J. Org. Chem. 1979, 44, 4187.
54. Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454.
55. (a) Schuster, R. E.; Bennett, R. D. J. Org. Chem. 1973, 38, 2309. (b) Fratiello, A.; Stover, C. S. J. Org. Chem. 1975, 40, 1244.
56. (a) Lipshutz, B. H. Synthesis 1987, 325. (b) Lipshultz, B. H.; Parker, D. A.; Kozlowski, J. A.; Nguyen, S. L. Tetrahedron Lett. 1984, 25, 5959. (c) Lipshultz, B. H.; Wilhelm, R. S.; Kozlowski, J. A.; Parker, D. J. Org. Chem. 1984, 49, 3928.
57. Reviews ; (a) Clennan, E. L. Tetrahedron 1991, 47, 1343. (b) Wasserman, H. H.; Ives, J. L. Tetrahedron 1981, 37, 1825. (c) Balci, M. Chem. Rev. 1981, 81, 91.
58. (a) Adam, W.; Prein, M. J. Am. Chem. Soc. 1993, 115, 3766. (b) Adam, W.; Nestler, B. J. Am. Chem. Soc. 1992, 114, 6549.
59. Henbest, H. B.; Wilson, R. A. J. Chem. Soc. 1957, 1958. (b) Berti, G. Top. Stereochem. 1973, 9, 93. (c) Hirayama, M.; Gamoh, K.; Ikeyama, N. Tetrahedron Lett. 1982, 23, 4725.
60. (a) Caron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1557. (b) Masaki, Y.; Hashimoto, K.; Serizawa, Y.; Koji, K. Bull. Chem. Soc. Jpn. 1984, 57, 3476.
61. Kutney, J. P.; Ratcliffe, A. H. Syn. Comm. 1975, 47.
62. For mechanistic speculation regarding variations in stereoselectivity in organocopper additions to carbocyclic enones in the presence of trimethylsilyl chloride, see : (a) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6015. (b) Horiguchi, Y.; Komatu, M.; Kuwajima, I. Tetrahedron Lett. 1989, 30, 7087. (c) Corey, E. J.; Hannon, F. J. Tetrahedron Lett. 1990, 31, 1393. (d) Corey, E. J.; Boaz, N. W. Tetrahedron 1989, 45, 545.

63 Rubottom. G. M.; Gruber, J. M. J. Org. Chem. 1978, 43, 1599.
64. Hunig, S.; Wehner, G. Synthesis 1975, 181.
65. (a) Toromanoff, E. Bull. Soc. Chim. Fr. 1962, 708. (b) Delongshamps,P.Stereoelectronic Effects in Organic Chemistry, Pergamon Press: Oxford, 1983; chapter 6.
66. (a) Jeroncic, L. O.; Cabal, M.-P.; Danishefsky, S. J.; Shuttle, G. M. J. Org. Chem. 1991, 56, 387. (b) For a study of the stereoselectivity of cuprate addition to acyclic $\gamma$-hydroxy-enones, see : Yamamoto, Y.; Chounan, Y.; Nishii, S.; Ibuka, T.; Kitahara, H. J. Am. Chem. Soc. 1992, 114, 7652.
67. (a) House, H. O.; Wilkins, J. M. J. Org. Chem. 1978, 43, 2443. (b)

House, H. O. Acc. Chem. Res. 1976, 9, 59. (c) Krauss, S. R.; Smith, S. J. J. Am. Chem. Soc. 1981, 103, 141. (d) Hallnemo, J.; Olson, T.; Ullenius, T. J. Organomet. Chem. 1985, 282, 133.
68. Jones, A. B.; Yamaguchi, M.; Patten, A.; Danishefsky, S. J.; Ragan, J. A.; Smith, D.B.; Schreiber, S. L. J. Org. Chem. 1989, 54, 17.
69. Grieco, P. A.; Cooke, R. J.; Henry, K. J.; VandeRoest, J. M. Tetrahetron Lett. 1991, 32, 4665
70. (a) Crimmins, M. T.; Bankaitis-Davis, D. M.; Hollis, W. G. J. Org. Chem. 1988, 53, 652. (b) Zhao, S. K.; Helquist, P. Tetrahedron Lett. 1991, 32, 447. (c) Goodwin, T. E.; Rothman, N. M.; Salazar, K. L.; Sorrets, S. L. J. Org. Chem. 1992, 57, 2469.
71. For the preparation of CuBroSMe2, see House, H. O.; Chu, C. Y.; Wilkins, J. M.; Umen, M. J. J. Org. Chem. 1975, 40, 1460.
72. Horiguchi, Y.; Satoshi, M.; Eiichi, N.; Kuwajima, I. Tetrahedron Lett. 1986, 27, 4025.
73. Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237.
74. Ihara, M.; Yasui, K.; Tamiguchi, N.; Fukumoto, K. J. Chem. Soc. Perkin Trans.1, 1990, 1469.
75. Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1987, 52, 959.
76. (a) Davis, F. A.; Sheppard, A. C. Tetrahedron 1989, 45, 5703. (b) Davis, F. A.; Vishwakarma, L. C.; Billmers, J. G.; Finn, J. J. Org. Chem. 1984, 49, 3241
77. (a) Moriya, O.; Okawara, M.; Ueno, Y. Chem. Lett. 1984, 1437. (b) Ali, A.; Harrowver, D. C.; Pattenden, G. Tetrahedron Lett. 1992, 33, 2851.
78. Reppe, W. Ann. 1955, 596, 74.
79. Gousseaume, L. B. B.; Langwost, B. Tetrahedron Lett. 1989, 30, 4525.
80. Marvel, C. S.; Dec, J.; Cooke, J. H. G.; Cowan, J. C. J. Am. Chem. Soc. 1940, 62, 3495.
81. (a) Curran, D.P.; Tamine, J. J. Org. Chem. 1991, 56, 2746. (b) Curran, D. P.; Chang, C. T. J. Org. Chem. 1989, 54, 3140.
82. (a) Solomon, M.; Jamison, C. L.; McCormick, M.; Liotta, D. C.; Cherry, D.
A.; Mills, J. E.; Shah, R. D.; Rodgers, J. D.; Maryanoff, C. A. J. Am.

Chem. Soc. 1988, 110, 3702. (b) Swiss, K. A.; Liotta, D. C.; Maryanoff, C. A. J. Am. Chem Soc. 1990, 112, 9393. (c) Swiss, K. A.; Hinkley, W.; Maryanoff, C. A.; Liotta, D. C. Synthesis 1992, 127.
83. Nicolau, K. C.; Magolda, R. L.; Sipio, W. J.; Barnette, W. E.; Lysenko, Z.; Joullie, M. M. J. Am. Chem. Soc. 1980, 102, 3784.
84. Bartlett, P. A. In "Asymmetric Synthesis"; Morrison, J. D., Ed.; Academic Press: New York, 1984; Chapter 6, Vol 3.
85. Corey, E. J.; Nicolau, K. C.; Shibasaki, M.; Machida, Y.; Shiner, C. S. Tetrahedron Lett. 1975, 3183.
86. Torisawa, Y.; Okabe, H.; Ikegami, S. Chem. Lett. 1984, 1555.
87. Larson, S. D.; Monti, S. A. J. Am. Chem. Soc. 1977, 99, 8015
88. Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C. K. J. Am. Chem. Soc. 1989, 111, 5330.
89. Sharpless, K. B.; Verhoeven, T. R. Aldrichimica Acta 1979, 12, 63
90. Corey, E. J.; Singh, A. K.; Bakshi, R. K. J. Am. Chem. Soc. 1987, 109, 6187.
91. Demuth, M.; Mikhail, G.; George, M. V. Helv. Chim. Acta 1981, 64, 2759
92. Huffman, J. W.; Desai, R. C.; LaPrade, J. E. J. Org. Chem. 1983, 48, 1474.
93. (a)Bonadies, F.; Fabio, R. D.; Gubbiotti, A.; Mecozzi, S.; Bonini, C. Tetrahedron Lett. 1987, 28, 703. (b) For a reducing system based on titanium tetrachloride and lithium aluminum hydride, see Barluenga, J.; Resa, J. G.; Olano, B.; Fustero, S. J. Org. Chem. 1987, 52, 1425.
94. (a) Pedersen, S. F.; Dewan, J. C.; Eckman, R. R.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 1279. (b) Corey, E. J. J. Org. Chem. 1990, 55, 1693
95. Kim, S.; Ahn, K. H. J. Org. Chem. 1984, 49, 1717.
96. Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41, 1876.
97. Waston, S. C.; Eastham, J. F. J. Organomet. Chem. 1967, 9, 165.
98. Curran, D. P.; Chang, C.-T. J.Org. Chem. 1989, 54, 3140.
99. Turos, E.; Audia, J. E.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 8231.

