LEE ALEXANDER STEVENS (Name)
in \qquad
EDUCATION
(Major)

DOCTOR OF EDUCATION (Degree) presented on $\frac{\text { Cle counkir 1,1901 }}{\text { (Date) }}$

Title: A COMPUTER SIMLLATION MODEL OF AN ACCOUNTING CHARGEBACK SYSTEM FOR COMMUNITY COLLEGES Redacted for Privacy
Abstract approved:
\square Lester Beals

The increasing pressure of fiscal limitations coupled with enrollment increases has left the community colleges in the difficult position of having to explore the possibility of limiting enrollment by limiting educational programs. In order to properly evaluate the factors surrounding such decisions, improved information must become available about actual instructional program costs.

The Western Interstate Commission on Higher Education has been a leading proponent in encouraging colleges to adopt programming, planning, budgeting systems (PPBS) which is a first step in education fiscal management. Other groups, including the California Junior College Association, have established task forces to study the problems of community college finance in terms of budgeting and reporting systems. Business managers within the community college field have also been actively promoting better ways to report educational expenses.

This study provides an additional educational decision making tool by developing a computer program which generates a simulation model of an accounting chargeback system. This model of a chargeback system reallocates all direct and indirect expenditures to the various instructional programs of the college. The formulas and systems by which the reallocation is made have been developed by the writer and subsequently reviewed by college fiscal officers and computer system's analysts. The data output of the computer simulation model is in the following format:

The program also lists the computational factors used in the allocation process.

Two ancillary computer programs were also developed to provide appropriate input data for the simulation model program. These subsidiary programs recapitulate the year end fiscal data and the total instructional hours for the academic year including summer sessions and evening classes.

All of the computer programs were written in COBOL language and designed to operate on a System $360-\mathrm{G} 40$ IBM computer with a disk direct access system. The study includes the computer program listings as well as the system flow charts, computer printer outputs, and data record file descriptions. The sample data used in testing the computer simulation model was made available by the Foothill Community College District.

The successful implementation of the computer model demonstrates the feasibility of using this valuable, but previously unavailable information, in the educational decision making process.

A Computer Simulation Model of an Accounting

Chargeback System for Community Colleges
by
Lee Alexander Stevens

A THESIS

submitted to
Oregon State University
in partial fulfillment of
the requirements for the degree of

Doctor of Education
June 1972

APPROVED:

Redacted for Privacy

in charge of major

Redacted for Privacy

Dean of Graduate School

Date thesis is presented

Thesis typed by Mary Lee Olson for LEE ALEXANDER STEVENS

TABLE OF CONTENTS
Chapter Page
I INTRODUCTION 1
Statement of the Problem 1
Purpose of the Study 5
Parameters of the Study 6
Definition of Terms 8
II REVIEW OF T HE LITERATURE 12
Expenditure Reporting and Cost Accounting 12
Budgeting and PPBS 17
Survey of Current Community College Expenditure Reporting 21
III METHODOLOGY 27
Charts of Accounts 27
Indirect Expenditure Allocation Assumptions 35
Schematics of the Model 44
IV SYSTEM ANALYSIS AND COMPUTER CODING 52
System Flowcharts 52
Main Program System 59
Subsystems 68
V SIMULATION PROGRAM OUTPUT 80
Basic Data Output 80
Subsidiary Data Output 84
Conclusions and Recommendations 89
BIBLIOGRAPHY 91
APPENDIX I 95
APPENDIX II 96
APPENDIX III 97
APPENDIX IV 105

A COMPUTER SIMULATION MODEL OF AN ACCOUNTING CHARGEBACK SYSTEM FOR COMMUNITY COLLEGES

CHAPTER I

INTR ODUCTION

1. 1 Statement of the Problem

The community college today is faced with an ever expanding demand for its educational services, yet at the same time it must operate with decreasing budget resources. In view of this problem, there is an increasing awareness on the part of professional educators as well as citizens in the community that educational administration is not equivalent to educational management. It is not the purpose of this study to debate the administration versus management theories, but rather to develop a model for one sub-system within the management role of the finances of most community colleges.

Any model designed to serve as an aid to management, planning, and resource allocation in institutions of education must be structured so as to relate to all levels of decision making if it is to be effective and to be used by educators (1). The ability to determine accurately the true share of resources the college dedicates to specific educational programs is now an educational management priority. There are two primary reasons for this requirement.

First, the enrollment growth in community colleges continues to accelerate nationally at an annual rate exceeding 15 percent. However, at the verysame time, the median college district's true market value of personal property valuation behind each student has risen only four and one-half percent (2). Thus, local tax funds are supporting more students with less money. The net result of the increasing pressure of this enrollment-fiscal problem is the need to examine very carefully the total costs of educational programs in view of possible program elimination. Program elimination would generally be the method of cost reduction rather than enrollment limitations since most states operate on an "open door" ${ }^{1}$ admission policy for community colleges. Hence, an alternative is to limit enrollment by not offering specific programs.

The second compelling reason for accurate total program costs is the reimbursement method used for allocation of federal funds, particularly those funds received under the Vocational Education Amendments of 1968 (P. L. 90-576).

A planning, programming, budgeting, system (PPBS) provides (3, p. 1) the information necessary (a) for planning educational programs that will meet the needs of the community; and (b) for choosing
" "Open door" means that any individual may enroll in the community college regardless of his previous academic record. In many cases this includes anyone 18 years of age or older who can profit from additional educational experiences.
among the alternative ways in which a community college can allocate resources to achieve its goals and objectives. While PPBS differs from current planning and budgeting systems in its emphasis on the defining of college needs, goals, and objectives, there still remains, after implementing PPBS, a considerable problem for the college's fiscal office and that is the process of expenditure reporting. The flow chart of Figure 1 illustrates a typical pattern of program expenditure reporting as now generally done in those community colleges surveyed (Appendix I).

FIGURE l:

Indirect Costs: Administrative salaries;
Fixed charges; physical plant, insurance, utilities, etc.

Direct Costs: Instructional salaries;
Supplies;
Equipment, etc.

The ideal situation would be the allocation of the indirect costs directly to the instructional programs which are being supported so that a complete cost figure for each of the programs will emerge. That is, the total instructional program cost of Figure 2 would be the actual dollar outlay for each of the instructional programs offered by the college.

FIGURE 2:

In summary, the broad problem is not one of designing a programming, planning, budget system since this is being adequately researched by Western Interstate Commission for Higher Education (WICHE) and others $(4,5,6)$. The need is to develop workable techniques of reporting expenditures back to the educational managers which is current, accurate, and program oriented. Almost every community college has such a reporting system for direct program expenditures. A personal on-campus visitation (Appendix II) of 26 community colleges in Washington, Idaho, Oregon, and California revealed no ongoing reporting system for allocating indirect collegewide expenditures into program areas. ${ }^{2}$

1.2 Purpose of the Study

The purpose of this study is to create a rationale and method for charging back to instructional programs those expenditures which are defined as indirect costs of the community college. Figure 3 shows more specifically the part of the expenditure reporting system which this study will treat.

FIGURE 3:

Currently being done
Purpose of this study - . . -

[^0]In addition to the more common indirect costs, the study will provide a means for charging back to the user the costs of such departments as data processing, stores, purchasing, duplicating and printing, transportation, and similar services which can be specifically allocated to the instructional program through a customer-vender approach. For example, if the physics department wishes to publish a syllabus, then there will be a method of charging that program directly for the cost of the printing.

1. 3 Parameters of the Study

As mentioned in the Introduction, almost every community college differs somewhat in the operation of their accounting system. To create a charge back system which could be guaranteed to fit smoothly into every community college accounting system would end up being so general it would be completely ineffective. Thus, the chargeback system is patterned on a model which will have the greatest possibility for universal acceptance and use. The programming, planning, budgeting system of WICHE provides such a model since, as Hirsch (7) points out, a useful education budget program includes end-product orientation and ease of meaningful breakdown into program elements and these are the strengths of PPBS.

The committee of WICHE which is developing management information systems includes two community colleges. Of the two, California's Foothill Community College District (Seattle is the
other) has been chosen to serve as the model for the chargeback
system. The primary reasons are eight in number:

1. The system employed by California is basically a program cost system and parallels the concept of programming, planning, budget system (PPBS) which is now beginning to emerge in educational institutional management. In addition, since one out of every three community college students in the United States is in a California Community College (3), a cost system to meet the require:ments of these colleges will provide the largest degree of usability;
2. The Foothill District is multi-campus which provides a two level chargeback system - thus a model for both single and multi-campus districts;
3. The accounting system used by the Foothill District is dual in that it employs both its own program budget format and the California state mandated object classification chart of accounts - thus a suable model for those colleges employing either system;
4. The District agreed to cooperate in the testing and implementation of the chargebook system.
5. The District is well know for its educational program;
6. The District is locally tax supported and state subscribed;
7. The District has been experiencing the problems of increasing enrollments and decreasing operational funds.
8. The writer served in the fiscal office at the District and was in a position to obtain the systems development data.

Appendix III is a copy of the district's chart of accounts which forms the systems base of the study.

Since the study is an expenditure allocation problem, the means of budget creation is omitted.

The computer chargeback system is developed and is designed to operate on an IBM 360-40 Model G computer, with all disc memory.

The chargeback program will be a sub-system of the current operating monthly budget expenditure reporting system of the District. A companion sub-system dealing with classroom use, masters schedules, and weekly student contact hours (WSCH) will provide input data for the chargeback system. The flowchart criteria and the documentation (Chapters IV and V) will conform to the specifications required by the Data Services Department of the Foothill District (8).

1.4 Definition of Terms

The definitions listed below apply to accounting terms which are peculiar to community college accounting. In addition, general accounting terms which often bear special meanings when applied to institutional accounting are also included. Several of these terms are adapted from Volume I of College and University Business Administration (9, p. 137). Other terms which have
specific meanings, but are not necessarily accounting terms are
also included in this section. While no universality of use is claimed for these latter definitions, they are in the large part accepted by most community college administrators and fiscal managers.(Appendix II)

Appropriation - An authorization to incur obligations and to make expenditures of not to exceed the amount stated for a specified purpose.

Appropriation Account - An account set up for budgetary control, to which is credited the amount authorized to meet expenditures, and to which are charged encumbrances and expenditures.

Budget - A statement of the estimated income and expenditures during a fixed period or for a specific project. When approved by proper authorities, budgets become authorizations to incur expenditures and to collect the income as set forth therein.

Encumbrances - Obligations in the form of orders, contracts, and similar items which are incurred and which will become payable when goods are delivered or services rendered. This term is synonymous with commitments.

Expenditures - The cost of goods delivered or services rendered, whether actually paid or unpaid, for the operation of an institution and for additions to its plant.

Functional Classification - The grouping of expense items according to purpose for which the expenditure was incurred, for example, general administration, instruction, libraries, maintenance, etc.

General Administration Expenditures - Expenditures of the general executive and administrative offices of the institution, including all costs of Board of Trustees, the chief executive officer and his staff, the business office and other general staff personnel.

Instructional Expenditures - Expenditures of instructional departments including salaries, office expense and equipment, travel, supplies, and related expenses.

Instructional Programs - Those curriculum course offerings which are taught by an instructional department or division. The program may be universal in concept such as the chemistry program, or it may be occupationally oriented such as a dental hygiene program.

Object Classification - A method of classifying expenditures according to that which is received in return for expenditures, for example, personal services, materials, supplies, and equipment.

Plant - The physical property owned by the institution and used for institutional purposes. That is, land, buildings, improvements other than buildings and equipment.

The terms which follow are used to develop the rationale for the chargeback system procedure. The majority of these definitions have been compiled from the Handbook of Definitions issued by the Office of the Chancellor, California Community Colleges (10). Terms which have common understanding are not included.

Community Services - Those services provided by a community college district for the community as a whole or for some segment of the community, excluding public school and adult education programs operated by the district for which a state apportionment is received.

Day Classes - Those classes usually beginning before $4: 30 \mathrm{p} . \mathrm{m}$.
District - A school district maintaining or formed to maintain one or more community colleges.

FTE - Full time equivalent student is one who is enrolled for exactly 15 contact hours of course work per week. (Contact hours as opposed to credit hours gives more reliable information. Not every college gives one credit for every contact hour in class.)

Instructional Space - This is that space in which organized class instruction takes place, that is, classroom, laboratory, seminar, shop and ancillary space only.

WSCH - Weekly student contact hours.
Other terms may be used which are highly specific to the subject at hand and will be defined in footnotes where used.

CHAPTER 2

REVIEW OF THE LITERATURE

2. 1 Expenditure Reporting and Cost Accounting

A review of the literature indicates that expenditure reporting by program is generally referred to as "cost accounting". However, cost accounting for industry is not the same as expenditure reporting for educational institutions. There are two basic differences. First, as Scheps (11) points out, expenditure reporting (accounting) is designed primarily to account for cash payments or the incurring of obligations, while cost accounting is concerned with that portion of material or services which has been consumed. Secondly, expenditure reporting is concerned with funds paid out without specific reference to the work performed, whereas cost accounting attempts to relate costs to units of work. Moreover, according to Scheps, expenditure reporting provides for a distribution of costs by department, but does not indicate what has been accomplished by incurring these costs.

The definition of cost accounting proposed by the Committee on Governmental Cost Accounting (12) provides a base to which amendments can be made to develop a usable definition of expenditure reporting for this study. The Committee proposed,
that method of accounting which provides for the assembling and recording of all the elements of cost incurred, to accomplish a purpose, to carry on an activity or operation, or to complete a unit of work or specific job.

As indicated in the Introduction, total expenditures, which includes all indirect costs of the institution, must be borne by the instructional programs which the community college offers. Thus, the definition of total expenditure reporting for this study will be:
that method of accounting which provides for the assembling and recording of all the elements of costs, direct and indirect, which are incurred in the operation of a specific educational program.

Business officers and instructional administrators agreed (Appendix II) that a specific educational program is one which has identity either by the commonality of courses offered (i. e., physics) or by its occupational orientation (i.e., auto mechanics). In either case, the college delineates a given instructional program by assigning to it a budget classification number (or code) to which will be assessed all the expenses incurred in its operation.

The argument between those who advocate the use of expenditures per student contact hour and those who advocate the use of gross expenditures per program ${ }^{3}$ is an on-going one. From the literature there emerge four reasons for supporting the expenditures per student contact hour approach:

[^1](1) As Morey (13, p. 184) points out, comparisons between similar departments of the institution are possible;
(2) They (unit costs) provide for a complete analysis and survey of the administrative and financial policies of the institution (9, p. l26);
(3) Unit costs are helpful in long range reorganization of departments within an institution (ll, p. 293);
(4) Unit costs can provide comparisons between departments and institutions.

The four arguments given above for the student contact hour concept are vulnerable in the community college setting. Scheps (ll, p. 293) points out that unit costs do not solve financial and administrative problems since differences in instruction cannot be accounted for, and thus, lower per unit student cost does not mean a more efficient operation. Measurements between colleges on this basis are also generally irrelevant due to staffing policies and facility differences as well as student enrollment (7). In addition, no college visited by the writer (Appendix II) was willing, for example, to abandon all laboratory courses because laboratory courses cost per student unit were more than the cost per student unit for large lecture courses.

An additional argument in favor of the gross program expenditures concept adopted by this study is that of intent. In the field of community college education, authors such as Thornton, Blocker, and Cohen ($14,15,16$) each make a strong case for their position that if a community college student takes just one course which
meets his educational needs, then the college has fulfilled one of its important functions. Thus, gross student contact hours and the accompanying cost per contact hour do not necessarily measure the end product of the community college. Instead, contact hours measure only student use of the instructional program and use is an outcome of a more basic condition. That is, use (student attendance) indicates a program which was needed either partially or in its entirety by one or many students. Thus student needs for programs will determine the instructional hours that will be offered by the college and thus directly affect costs in community colleges. This study, for the reasons outlined above and which were emphasized in the literature, will use the expenditure per program concept as previously defined. Two additional considerations make the expenditure per program choice even more compelling. That is, as stated in the introduction, there is an on-going need (17) for determining total program costs for vocational education as well as a requirement for knowing the fiscal impact of program elimination.

The literature has one major source for information on expenditure reporting. This source is the reference previously used (ll) of Scheps' book, Accounting for Colleges and Universities. This book is generally acknowledged by most college and university business managers as the "Bible" in the field of institutional
accounting. The second, and only other recent ${ }^{4}$ comprehensive reference in this area, is published by the American Council on Education and called College and University Business Administration
(9). Each book offers a chapter on expenditure accounting for institutions. Scheps offers the most information on this subject.

He suggests three phases of expenditure accounting for educational institutions. They are (11, p. 266)
(1) cost expenditures for certain service departments and auxiliary activities;
(2) cost expenditures for the operation and maintenance departments; and
(3) cost expenditures for instruction in terms of the students taught.

The first two of these are internal accounting procedures used for effective management of the departments concerned. The third relates to the subject of this study. However, in place of expenditures in terms of students taught, this study deals with expenditures in terms of programs offered. In dealing with the third phase, costs are classified according to the following outline by Scheps:

1. Departmental or college expenditures;
a. salaries,
b. teaching supplies,
c. departmental or college administration.

[^2]2. Overhead;
a. institutional administration,
b. library,
c. physical plant.

The study adopts most of this approach in its expenditure breakdown system (Chapter 3). The balance of this reference concerned itself with a manual technique for determining unit costs per student hour and contributed little to the problems of this study.

The emphasis in the literature on the cost of instructional programs per student contact hour cannot be completely ignored. Therefore, this study will make the cost-per-hour computation. However, its meaning and use must be tempered by arguments presented in the foregoing paragraphs.

2. 2 Budgeting and PPBS

The Western Interstate Commission for Higher Education and the American Council on Education have been devoting considerable effort to the problem of effective educational management (5). They currently are more interested in the areas of information systems and analytical models than in expenditure reporting. Their studies have, however, pointed up a problem which has been succinctly stated by Burkhead (18, p. 139).

There is no precise definition of performance (program) budgeting . . . it has come to mean something different in every jurisdiction which puts it into operation.

The literature supports this statement many times over. (To help deal with this problem, the previous section on definition of terms was included.)

This study, as indicated in the previous chapter, has taken the view that budgeting and expenditure reporting are not similar terms. Using Wildavsky's (19, p. 1) definition that: ... since funds are limited and have to be
divided in one way or another, the budget
becomes a mechanism for making choices
among alternative expenditures...,
we see that expenditure reports are those actual costs which are compared with the budget "figures" to determine how well the management process is proceeding. Budgeting is estimation in terms of the data being reported while expenditure reporting is actual.

In the literature there are many books, articles, studies, and conferences which deal with the problems of budgeting. In particular, since the advent of PPBS, the educational literature on this subject has almost reached the point of saturation. ERIC alone has several pages of listings each year about school finance and PPBS. However, almost without exception, these reports on budgeting and PPBS do not discuss one of the essential characteristics of a useful accounting system in that it "should facilitate meaningful measurement of the total (emphasis the writer) money costs of accomplishing defined objectives" (20).

The terms "cost-effectiveness" and "program costs" primarily mean budget allocation in the literature. And, more importantly, these terms almost always exclude indirect costs from consideration. For example, when the Western New York School Study Council (21) studied PPBS in local schools, there was considerable discussion about cost-effectiveness. However, there was no mention of expenditure reporting or allocation of indirect costs to the instructional program. A similar situation occurs in a series of readings in school finance and business management edited by Benson (22). Even the educational consulting firm Research for Better Schools Incorporated, did not see fit to mention expenditure reporting or indirect cost allocation when promoting a theory of cost effectiveness (23). Writers in the field of school finance such as Finch, Corbally, and others $(24,25,26,27)$ spend a great deal of time discussing budget and the budgeting process, but little or no time offering suggestions on expenditure reporting systems which would give total costs for instructional programs.

Several authors have developed systems of instructional costs through some unit of measure. Hubbard (28) used cost per student credit hour but he did not include indirect costs. Wohlferd (29), writing in the Educational Forum, makes a strong case for program cost allocation, but does not suggest a method for its implementation. Scales (30) and Cage (et al), (31) used cost per full time equivalent
student and cost per student contact hour respectively.
The studies by Scales and Cage (30, 31) were the only two found in the literature which were both community college oriented and concerned with instructional costs. The research by Cage involved a comparison of selected educational programs in the community colleges of Iowa. He chose to use cost per student contact hour and arrived at this ratio by arbitrarily assigning all costs on a pro-rated basis. Scales, in his study, developed costs per FTE student for each category of school operation (such as administration, instruction, supplies, etc.). This was accomplished by dividing the total FTE into the appropriate budgeted figures. There was no attempt to assign these costs into specific program totals.

These foregoing examples illustrate what is to be found in the literature on the subject of expenditure reporting and indirect cost allocation. That is, (a) there have been many studies done on the implementation of programming, planning, budget systems, and (b) there is little or no research in expenditure reporting systems or indirect cost allocation procedures for community colleges. There are, however, studies such as that done by the Systems Research Group of Toronto Canada (32) which point up the need for such allocation and reporting systems including textbooks
in the field such as the one published by the American Council on Education (9, p. 120). The result of the search of the literature leads to the conclusion that the topic of this study

1. Duplicates no previous efforts;
2. Has very little precedent from which it can draw its methodology; and
3. Should make a significant contribution to the fiscal management of community colleges.

In order to verify the findings in the literature, a cross section of community college budget and reporting systems was carefully analyzed. The result of this analysis is presented in the following section.

2. 3 Survey of Current Community College Expenditure Reporting

Community college members of the Western Association of College and University Business Officers in California were polled as to their suggestions for representative community college districts in terms of their fiscal accounting procedures. From those districts suggested, nine were chosen as most representative using as guidelines (1) district size (enrollment), (2) whether urban, suburban, or rural, (3) whether primarily academic or vocationally oriented, and (4) whether the districts had some definitive budget and expenditure reporting documents.

The budget documents and expenditure reporting systems of these nine California community colleges (representing thirteen
campuses) were examined in detail to determine (1) if gross expenditure reporting by instructional program was in use at the colleges, and (2) if the budgeting process being employed was adaptable to the procedure developed by this study. The college districts involved in this review are listed in Appendix I.

The answer as to whether gross expenditure reporting by program is being implemented in the community colleges surveyed is generally a negative one. Only one district representing two colleges is moving in the direction of total program cost reporting. A study done by Brannigan (33) at Fresno City College (State Center Junior College District) developed rationale and procedures for the allocation of facility costs to instructional programs. He made no attempt to allocate other indirect costs such as administrative expenses, fixed charges, or out-of-district district tuition ${ }^{5}$.

The systems employed by Brannigan are based on the WICHE programming, planning, budgeting model and have applications to this study. While he made no attempt to generalize beyond Fresno City College, several of his basic assumptions in the allocation of facility costs support those made later in Chapter 3. In addition, Brannigan employed a manual method to arrive at his figures, although he did stress that a computer system for allocation of all

[^3]costs to instructional programs was feasible and highly desirable. The expenditure reporting systems of all the colleges were, in a sense, a mirror image of their budgeting programs. That is, those accounts which were line-itemed ${ }^{6}$ in the budget were also the accounts where expenditures were reported. While this is adequate accounting procedure, it does not lend itself to determining gross expenditures for the instructional programs. The reason is that up to 49% of the total budget of most California community colleges (34) is not directly related to instructional program costs and thus these expenses are not budgeted nor reported as program costs. For example, maintenance is generally budgeted as maintenance for a campus as a whole and the resulting expenditures are reported for the entire campus in a single account. That is, these campus-wide expenditures are not reported as instructional program expenses. Hence, the original problem of how to determine total instructional program costs remains, assuming that the colleges maintain current budgeting and expenditure reporting practices.

In reviewing this dilemma of indirect costs with business
officers in the community college field (Appendix II), two alternatives became consistently clear. One alternative was to promote a change
${ }^{6}$ Line-itemmeans, in this context, an activity or expense which uniquely carries its own cost in the budget. For example, $\$ 50$ for supplies for the physics department would be a line item, while $\$ 10,000$ for the physics department would not be considered a detailed line item.
in the chart of accounts and budgeting procedure of each institution to reflect total instructional program costs. This alternative was rejected on the basis of (1) reluctance towards the suggestion by some twenty-five community college business managers with whom the idea was discussed, and (2) the relatively slow progress that WICHE (5), with all its prestige, has made in convincing institutions of higher education to incorporate PPBS. A secondary reas on for rejecting this alternative is the situation in California community colleges. The California State Education Code mandates an accounting system along with a prescribed chart of accounts. However, many community colleges (including Foothill College the example for this study) develop their own unique chart of accounts and use the state mandated accounting codes only when reporting to the Department of Education. Thus, even when conformity is required, community colleges find a way to be unique and independent. The second alternative to this task of obtaining gross instructional program costs is one of creating a method which takes expenditures from where they are reported in the chart of accounts and reassigns them on some reasonable basis to instructional program accounts. This alternative is the one which this study implements. That is, the computer model that is developed in following chapters accomplishes the task of reassignment of indirect costs to instructional program areas within an existing chart of accounts. The
support for this alternative comes not only from the impracticality of the first alternative, but from the examination of community college budget documents (Appendix I) as well as in depth discussions with community college business managers (Appendix II). Almost without exception, the budgeting process being used by the community colleges studied were adaptable to the model developed in this study, and the respective business managers were receptive to an eventual implementation of the proposed model.

The key elements of the model's adaptability are (l) a chart of accounts which lists instructional programs, (2) a method of assigning instructors to those programs, delineation of instructional supplies, travel, and secretarial support by program, and (3) a method for determining capital outlay costs by program. In addition, a master teaching schedule indicating rooms, instructors, and contact hours of instruction must be available as well as a facilities report indicating square footage by room for the entire college. This latter requirement was met automatically by the California community colleges as facility information is a state mandated report. The other colleges of Appendix II indicated an ability to develop this facility data.

A report developed by DeRicco (35) of San Joaquin Delta College (a community college) underlines the current move towards program budgeting and the use of the computer in achieving this goal
in community colleges. For example, twenty-one of thirty-four community colleges not now employing PPBS planned to move into a PPBS format within the near future. In answer to the question of whether their community college would start maintaining separate expenditure accounts for each program, another twenty-one colleges not now having instructional program accounts indicated that program accounting was their goal. In addition, eleven community colleges said they planned to implement data processing procedures into their budget preparation and reporting.

The results of the investigation of current trends and practices in community college budgeting and expenditure reporting as revealed above and in more than a hundred hours of on-site discussions with community college business managers leads to the same conclusions drawn at the end of the previous section. That is, a need exists for a method of reassigning indirect cost in community colleges, there has been very little effort made in this area, and there would be general acceptance of a usable computer model which accurately allocated indirect expenditures and thus allow reporting of a program's total instructional costs.

CHAPTER 3

METHODOLOGY

3. 1 Charts of Accounts

The last section of the previous chapter discribed a viable method of assigning total instructional program costs within current community college budget and expenditure reporting systems. In brief, this method is one in which a reassignment of indirect expenditures is made to specific instructional programs. In order to build a model which accomplishes this reassignment of expenditures, three considerations must first be dealt with. That is, there must be:

1. A chart of accounts upon which the model can be built;
2. A set of assumptions by which the model allocates the indirect expenditures to specific instructional program areas and;
3. A systems plan from which computer programs can be written and tested.

This chapter deals with the three tasks outlined above.
A chart of accounts essentially has two parts which, when working together, provide a location in the expenditure report for each expense regardless of its nature. The first of these parts are "area" codes. Area codes generally are attached to specific management jurisdictions or functional operations. For example,
the president's office, the physics department, or the nursing program would each have its own area code. Often area codes are numbered in a manner which provides a hierarchy of jurisdiction. That is, a college might have an area code 6274 where:

6--- indicates School of Education;
62--- indicates Community College Division;
627 -- - indicates Vocational Education Department;
6274 --- indicates Vocational Education ICE 7 program.
The second part of a chart of accounts are the "type" codes. Type codes tell the kind (or type) of expenditure which was made. That is, salaries, rent, supplies, travel, insurance, and so on are illustrations of type codes. A type code must always be assigned to an area code. For example,

(area code)	3010	Mathematics Department
(type code)	050	supplies
(type code)	070	travel

While there are many different charts of accounts used in community college accounting systems, they all include area and type codes as does the model developed in this study.

As previously discussed in Section 1. 3, Foothill College District is being used as the source for the data, accounting procedures, and computer implementation. Therefore, the chart of accounts used in this model is the one in use in the Foothill Community College District. It is reproduced in its entirety in

A ppendix III. The area and type code numbers which appear in Appendix III are those used in the balance of this study. The schematics, flow-charts, and computer program explanations will often use the chart of account code numbers. The computer model, of course, can use only the code numbers in its computations.

The method of reassigning indirect expenditures to instructional programs becomes one of making certain area codes become type codes for instructional programs. For example, the expenses assigned to the area code "administration" would become a type code expense assigned to an area code "vocational nursing program". That is, the expenditures under vocational nursing would be increased by its share of the expenditures which had been reported under administration.

The task then, is to separate the area codes in the chart of accounts into those identified with indirect costs and those identified with specific instructional programs (direct costs). The chart of accounts of Appendix III provides the necessary information.
A. Indirect Costs

District Administration
0101 Superintendent's office expenses
0102 Board of Trustees expenses
0103 Miscellaneous district-wide expenses
0201 Director of educational services office
0211 Certificated personnel expenses
0212 Classified personnel expenses
0221 Instructional research and analysis
0228 Grant application expenses
${ }^{7}$ ICE represents Individualized Curriculum in Electronics.
$\underline{\text { District Business Services }}$
0401 Business office general expenses
0402 Accounting service expenses
0403 Purchasing office
0801 Fixed charges-insurance
$\underline{\text { District }}$ Community Services
0261 Short courses
0262 Community chorus
0263 Community chamber orchestra
0264 Community symphony orchestra
District Technical Education Administration
0231 Technical education general office expenses
$\underline{\text { District }} \underline{\text { Wide }} \underline{\text { Tuition }}{ }^{8}$
1439 Tuition expenses
District Plant Operation
6106-6901 Plant operation expenses
District Maintenance Services
7101-7302 Plant maintenance expenses
Campus Administration
2001 President's office expenses
2002 Dean of Instruction office expenses
2005 Evening and summer administration
2006 Evening and summer counseling
2008 Evening and summer clerical expenses
2010 Non-departmental faculty expenses
2015 Faculty senate expenses
2016 Campus committee expenses
2017-2029 Miscellaneous campus-wide expenses
Campus Student Personnel Services
2031 Dean of Student's office expense
2032 Registrar's office
2034 Testing service expense
${ }^{8}$ Tuition expense for district residents attending the community colleges. See footnote 5.
Campus Student Personnel Services (Cont'd)2035 Counselor's expense (salaries)2036 Student financial aids office expense
2037 Student activities expenses
2038 Graduation expenses
2039 Placement office expenses
Campus Library Services
2050 Library operation expenses2055 Audio visual operation expenses
Campus Plant Operation
6101-6901 Plant operation expenses
Campus Maintenance Services
7101-7302 Plant maintenance expenses
Division Administration
$2 * 01$ Division office general expenses$2 * 02$ Division miscellaneous expenses
(* is replaced by $1,2,3,4,5,6,7,8,9$ respectively)
Health Services
4101 Athletic training expenses
4201 School nurse expenses
B. Direct Costs
2112-2127 Biological and health science instructionalprograms;

2220-2250 Business and data processing instructional programs;
2311-2391 Engineering and technology instructional programs;

2411-2434 Fine arts instructional programs;
2510-2540 Language arts instructional programs;
2611 Ethnic studies instructional programs;

Direct Costs (Cont'd.)

2711-2729 Physical education and athletic instructional programs;

2810-2861 Physical science instructional programs;
2905-2956 Social science instructional programs.
This division of the area codes of the chart of accounts into indirect and direct expenditures does not include all the area codes listed in Appendix III. The balance of the area codes not categorized above fall into two groups. The first group includes area codes not considered in this study since they are specially funded administrative departments. They are:

1101-1171 Community services;
1201-1270 Building program.
The second group includes area codes that will show a zero expenditure balance at the end of the fiscal year through the process of their direct billing to other departments. Thus these area code expenditures will have already been accounted for in the list of indirect and direct area codes developed above. That is, they are area codes for internal accounting purposes only. These area codes are:

$$
\begin{aligned}
& \text { 0802-0804 Payroll charges; } \\
& \text { 0921-0930 Campus center; } \\
& \text { 1191-1199 Auxiliary services; } \\
& \text { 3001-3100 Stores; } \\
& 0404 \text { Data services; } \\
& 0109 \text { Undistributed reserves; } \\
& \text { 2011 Instructional salaries. }
\end{aligned}
$$

This foregoing classification of area codes can be summarized as categories as illustrated in the chart of Figure 4. The intent of the model is to reassign

FIGURE 4.

these area code categories illustrated in Figure 4 to those categories of Figure 5. The process of reassigning internal accounting area codes is always an automatic function of the current accounting system. Its relationship is shown for the sake of completeness.

FIGURE 5:

Type codes have been ignored since the expenditures listed under these codes are subsidiary to the area codes. That is, the sum of the type code expenditures assigned to an area code becomes the total expenditure for that given area code. The following example illustrates area and type codes in an instructional program expenditure account as it would appear in an expense report.

(area code)	2116		
(type code)		013	Certifical Assisting
	030	Supplies	
		048	Uniforms

The indirect expense allocation model developed in this chapter and the following chapter would determine an appropriate indirect expenditure allocation for the Medical Assisting program. This indirect expense allocation would then be assigned to area code 2116 and the adjusted report would appear similar to the following:

2116 Medical Assisting
013 Certificated contract salaries \$13,000.00
030 Supplies
500.00

048 Uniforms
30.00

081 Consultants
150. 00

Indirect expenditures ${ }^{9}$
233.30

2116 Area total-gross expenditures \$13,913.30
However, the foregoing example would be applicable to the Foothill District only and would not provide a very large measure of wide use among community colleges. Therefore, the simulation model develops a more general program allocation report which
can be adapted by many different community colleges (Appendix II). An example of the format of this generalized report is as follows ${ }^{9}$: Program 2951

Division Overhead
Campus Administration Overhead
District Overhead
Vocational Education Administration
Field Maintenance
Pool Maintenance
\$xxxx. $x x$

Campus Maintenance
Subtotal - Indirect Costs
Evening Salaries
Program Direct Costs
xxxx. xx
xxxx. xx
xxxx: xx
xxxx. xx
xxxx. xx
xxxx. xx
xxxx. $x x$
xxxx. xx
xxxx. xx
Program Total Costs
Total Instructional Hours
xxxx. xx
xxxx. xx
Cost Per Instructional Hour
$\mathbf{x x x x}, \mathbf{x x}$

Section 3. 2 deals with the assumptions by which the total indirect expenditures are allocated to the various instructional programs (similar to the manner illustrated above).

3. 2 Indirect Expenditure Allocation Assumptions

The basic assumptions for the system of allocation came from the review of the literature of Chapter 2, in depth interviews with community college business officers and educational administrators (Appendix II) as well as the work done by WICHE (5) and Brannigan (33). In addition, a final review of these assumptions and their implications for indirect expenditure allocation was made to a jury of community college experts. The individuals on this panel were

[^4]chosen for their particular expertise in either accounting or computer science as well as providing a typical cross section of community college fiscal management systems. The panel consisted of:

Foothill College District ${ }^{10}$
Director of Business Services
Controller of Accounting Services
Director of Data Processing
Systems Engineer, Accounting Services
Senior Programmer, Data Services
Administrative Analyst, Educational Services

Others
Associate Chancellor for Finance, California Community Colleges
President, Lane Community College
Administrative Assistant, Central Oregon Community College
Administrative Assistant, Ohlone Community College Business Manager, Lassen Community College District

The suggestions of this jury have been incorporated into the following assumptions: (where appropriate for clarity, a rationale is stated)
A. The end product of the college is education of students in specific instructional programs. This education is generally achieved through participation in a classroom activity. A classroom is "used" when scheduled for class instruction regardless of the number of students in attendance. (That is, no other class may use that room for that particular period of time.)

10 The model was implemented, tested, and corrected with Foothill College's data and computer.
B. The total of all classes scheduled and taught for a fiscal year from 8:00 a. m. to 11:00 p. m. or other appropriate time blocks generates a gross total of instructional hours the college (or district) provides the community.

Note: This gross total of instructional hours will be called the TIH of the college.

Rationale: The evening college and summer session uses all campus facilities in the same manner as the day school. These sessions are an integral part of the instructional package which the districts offer the community.
C. The district administration (with exceptions outlined below) and the district physical plant operation and maintenance expenditures should be allocated on the basis of total instructional hours. This allocation creates a rate per instructional hour for the district's contribution to the total expense of the end product (instructional program).

Note: This rate for the district's administrative and operational expenditures per instructional hour will be referred to as $\mathrm{DE} / \mathrm{IH}$.

Rationale: District wide expenditures relate directly to the common denominator of the college which is hours of instruction in program areas. (Further discussion of this position is found in Assumption D.)
D. The district administrative and operational expenditures in the $\mathrm{DE} / \mathrm{IH}$ include the following areas:

1. Tuition expense: rationale - the cost of not operating an instructional program should be borne by those programs being operated;
2. District wide expense, Board of Trustees, superintendents office: rationale - these officers have responsibility under the Education Code for the totality of the district's educational program;
3. Educational services, research, adult community activities: $\underline{\text { rationale }-t h e s e ~ s e r v i c e s ~ g e n e r a l l y ~}$ account for only $6 / 10$ of 1% of total budget. A minimal effect is created when spread across total instructional hours.
4. Business services, accounting, material services, grants: rationale - these services benefit total districts;
5. Fixed charges (insurance): rationale - insurance (non-salary) generally is in blanket form thus there is no way to separate liability from property - less than 1% of total budget;
6. Operation and maintenance of district office facilities: rationale - these facilities are required to support the above activities and thus are a part of their cost.

District expenditures which are not included in the $\mathrm{DE} / \mathrm{IH}$ are as follows:

1. Undistributed reserve: rationale - this is a contingency account from which funds are allocated to an area code account before the funds are expended;
2. Technical education: rationale - see rationale of Assumption E;
3. Data services, field trips, duplicating services, stores: rationale - these expenditures are charged directly to the consumer;
4. Payroll charges: rationale - see Assumption F.
E. Technical education administration is a special interest service and its cost should be borne only by those courses identified as vocational education. These expenditures will be allocated on a per instructional hour basis for those instructional hours identified as vocational education.

Note: The rate of vocational administration expenditures per instructional hour of vocational education instruction will be referred to as VE/VIH;

Rationale: This expense is reimbursable in each vocational program under the Vocational Education Act Amendments of 1968.
F. Payroll charges are directly related to individuals employed. These expenses should be charged to the same instructional program or service area where the respective salaries are carried as a direct expense.
G. All classrooms, regardless of type, should be treated equally in terms of maintenance and custodial effort with the only distinction being size.

Rationale: (a) The cost of utilities generated by laboratories is negligible when compared to the total utilities expenditure of the district;
(b) There is little custodial expenditure difference between laboratories and general purpose classrooms since most laboratories have technicians who perform some custodial tasks (and these technicians are already a direct expense to that instructional program); and
(c) To allow all instructional programs to share in all maintenance costs is equitable since many programs often require a basic laboratory for graduation (i. e. mathematics requires physics).
H. Field facilities and swimming pool indirect expenditures for operation and maintenance will not be included in the general maintenance costs of classrooms and laboratories discussed in Assumption G above.
I. A cost factor based on instructional hours and classroom assignable square footage will be used to allocate maintenance costs to instructional programs. The following are the formulas used:
$\mathrm{CMCF}^{11}=\frac{\sum \text { (campus operation/maintenance costs) }}{\text { All college classes }}$

$$
\sum_{i=1}\left(\text { class }_{i} T I H\right) \times\left(\text { classroom }{ }_{i} \text { ASF }\right)
$$

Program
Maintenance Program classes
allocation $=(\mathrm{CMCF}) \times\left(\sum_{j=1}^{\text {(class }}{ }_{j} \mathrm{TIH}\right) \times\left(\right.$ classroom $_{\mathrm{j}}$ ASF $\left.)\right)$;

Rationale: (a) A room needs maintenance in terms of actual use;
(b) Increased use of the facilities would lower the hourly rate - a fixed charge would not have this advantage;
(c) This cost procedure parallels the allocation method of other indirect expenditures in its use of instructional hours; and
(d) The maintenance costs of ancillary ASF (all floor space not used for instructional classrooms) must be borne by the instructional programs of the college.
J. There will be a campus administrative rate per instructional hour similar to the DE/IH. This rate will include:

1. President's office, Dean of Instructions' office, evening college administration, and miscellaneous campus wide services; rationale - these activities are all related to the implementation of the instructional program and the resulting hours of instruction.
${ }^{11} \mathrm{CMCF}=$ campus maintenance cost factor.
2. Student personnel services, health services; rationale these activities services students who are enrolled in the instructional program, thus they become an expense of instruction.
3. Library services, audio visual services; rationale library operation is an outcome of instructional classes offered (in a community college) rather than number of students enrolled. Use of the library tends to be self equalizing in that the programs offering the most instructional hours tend to need the library services the most (i. e., language arts versus physics).

Note: This rate of campus administration expenditures per instructional hour will be referred to as $\mathrm{CE} / \mathrm{IH}$.
K. Salaries of certificated instructors assigned to an instructional division will be pro-rated on the basis of actual courses taught to the instructional programs of that division. (These salaries are considered direct expenditures.)
L. Salaries of classified employees and general office expenditures of an instructional division will be considered as indirect expenditures for that division. These indirect expenditures will be allocated on a per-instructional-hour basis to the instructional programs offered by that division.

Note: This rate per instructional hour for indirect expenditures of a division will be referred to as DIE/DIH.
M. There will be a master schedule of classes and facilities which will provide the necessary identification data to isolate general instructional programs, classrooms, ASF, and vocational programs.
N. The chart of accounts and master schedules of class rooms, classes, and facilities will be in the form of a matrix to provide flexibility for change. That is, any change in this type of data will cause a change only in the respective matrix, rather than in the manipulative process of the computer program.
O. The implementation of the indirect expenditure allocation will be based on the fiscal year end (June 30th) monthly budget report.
P. The master schedules of classrooms, classes, and facilities will be summed over the three academic quarters and summer session to provide a total of fiscal year instructional activity.
Q. Ancillary computer program outputs will be available at the discretion of the user. These optional outputs will be provided for in the computer model, but their implementation and format will not be a part of this study.

12 This process of summarizing master schedules is a separate computer program and not part of this study.
${ }^{13}$ Two ancillary programs are included in the study. The programs are found in Section 4.3 while the data output from these programs is found in Section 5.2.
R. The adaptability of the model to a single campus operation will be provided. The primary difference is allocation of maintenance costs and the distinction between $\mathrm{DE} / \mathrm{IH}$ and $\mathrm{CE} / \mathrm{IH}$. In a single campus district, $\mathrm{DE}=\mathrm{CE}$.

The foregoing assumptions provide the problem definition and parameters for building the computer program. These assumptions, along with the chart of accounts, are illustrated in a schematic fashion in the following section.

3. 3 Schematics of the Model

A review of the symbols developed in the previous section yields:

1. $\mathrm{DE} / \mathrm{IH}=$ district administrative expenditures per instructional hour;
2. $\mathrm{CE} / \mathrm{IH}=$ campus administrative expenditures per instructional hour;
3. $\mathrm{CM} / \mathrm{CF}=$ campus maintenance cost factor;
4. VE/VIH = vocational education administration expenditures per instructional hour of vocational education instruction; and
5. DIE/DIH =instructional division indirect expenditures per instructional hour of that division.

The following schematics illustrate the functional implementa-
tion of the model. They are arranged as:

Part A:	Total program expenditures are summed in this chart. Each subsystem input is diagrammed in
Part B:	Parts B, C, D, E and F.
District administration expenditures which	
Part C: \quadgenerates DE/IH;	
	District vocational education administration expenditures which generates VE/VIH;

Part D:	Campus administration expenditures which generates CE/IH;
Part E:	Campus operation and maintenance expenditures which generates CM/ASF/IH; and
Part F:	Special expenses for field facilities and swimming pools.

DISTRICT VOCA TIONAL EDUCATION AD MINISTRATION

PART C

PARTD

CHAPTER 4

SYSTEM ANALYSIS AND COMPUTER CODING

4. 1 System Flowcharts

The data output (Section 5. 1) of the simulation model is derived from a basic computer program which uses as input data the data output results of two subsidiary computer programs. The following names have been given to these programs:
A. MER (monthly expenditure report) Data Summary Report;
B. Class Master File Data Summary Report;
C. Instructional Program Total Cost Report.

The system flowcharts were developed to help facilitate an appropriate analysis of the logic involved in the writing of the computer programs found in the following two sections of this study.

In the schematics of Section 3.3, the MER Data Summary Report flow chart and computer program generates as output the data segment entitled 'June 30th Monthly Budget Report Input'. That is, the output of the MER Data Summary Report program is input to the Instructional Program Total Cost Report computer program. Similarly, the Class Master File Summary Data Report flowchart and computer program generates as its output the data segment found in the schematics entitled 'Input Master Schedule'. Again, the output of this particular computer program is input to a succeeding
computer program. The Instructional Program Total Cost Report computer program is the succeeding program of both the previous cases and is the program which collates all the schematics of Section 3. 3 and yields the basic simulation data output of Schematic A. Thus the system flowcharts which follow are an integral part of the computer simulation model.

In order to verify that the simulation model logic is correct and that the output data accurately reflects the input data being handled, various data control checks were established. These data checks are a part of the system $360 / \mathrm{COBOL}$ logic and verified that the output data was accurate.

The reading of the simulation program output requires the use of the Chart of Accounts found in Appendix III. The input data files of "LAS3" are found in Appendix IV.

4. 2 Main Program System

The Instructional Program Total Cost Report computer program follows. ${ }^{14}$ This computer program generates the basic data report described in Section 3.1. The program was developed and written in COBOL/360. COBOL is a specific computer coding language named after the Conference on Business Oriented Languages. The 360 signifies the IBM- 360 computer for which specific COBOL computer coding procedures are required.

The program language, spelling, and punctuation which appears on the succeeding pages of this section and the following sections is exact and a characteristic of the COBOL programming language. The logic of the program follows the assumptions and formulas developed in Chapter 3. The language of COBOL is very similar to normal grammatical statements and the thrust of the logic of the program can be determined with the use of the system flow charts of Section 4. 1.
${ }^{14}$ The computer identification for this program is "LAS3".

```
PMAP=0,OMAP=0
    icentification oivisicn.
    PrRGRAM-IO. LlAS3..
    instaliaticn. feg siEvens.
    installaticN. fguthill ccmmlnity ccllege oistrict
    oatemRIIIEN.
    REMARKS.
    OCICBEL, [CMN
    IHIS PRGGRAM ALLCCAIES bCTH MER ClSTS AN
        luIAL INSTKLCIICN HCUKS TC INSTKUCTION
    environment civisica.
    cCNFIGURAIION SECTICN.
    SCURCE-CGMPUIER: IBM-3EC G4C
    IAPLI-DUIPLI SECTICN.
    file-contrcl.
        SELECI MER-TOTALS ASSIGN IC :SYSOIOD UNIT-RECURO 2540R.
            SELECI TIH-TCTALS ASSIGN IC 'SYSDIA', UNII-RECROD 2540K.
            SELECI PROGR-COST-FILE ASSIGN TU 'SYSO14' UTILITY 2314.
        SELECELECI PROGR-HR-FILE ASSIGN IO SYSOIS' UTILITY 23
    dAIA DIVISION.
    fc mer-iotals
    RECCROING MOCE is F
    *)
    label reccrds are cmitieg
    O
\begin{tabular}{|c|c|c|c|}
\hline 02 & caro-cooe & PICTLAE & x(3). \\
\hline 02 & filler & PICIURE & \(\times(1)\). \\
\hline 02 & CAM-COOE & picture & \\
\hline c2 & filler & piciure & \(\times(5)\). \\
\hline 02 & civ-ccoe & PICTURE & \\
\hline c2 & FILler & picture & \(\times(5)\). \\
\hline 02 & area-cide & pictire & \(x(4)\). \\
\hline 02 & FILLER & PICTLRE & \(\times(5)\). \\
\hline 02 & dischp & picture & \(\times\) (3c) \\
\hline c2 & filler & pictire & \(\times(4)\). \\
\hline 02 & amclent & picture & scuivas \\
\hline 02 & filler & picture & x(8). \\
\hline
\end{tabular}
fc tim-totals
```

```
RECOROING MCOE IS F
```

RECOROING MCOE IS F
ABEL RECGROS ARE CMITECTERS
ABEL RECGROS ARE CMITECTERS
gata recoro is ithmodita.
01
fo

02	caro-cooen	picture	x.
C^{2}	Filler	picilre	
02	cam-ccoen	pictire	
02	fillek	pictile	$\times 15$
02	OIv-ccoe	pictire	
02	flller	picture	$\times(5)$
02	area-cioer	PicIlre	$\times(4)$
c2	filler	PICILRE	$\times(5)$
02	CISCRP-H	pictire	$\times(30)$.
c^{2}	FILLER	picture	$x(4)$.
C2	AMI-HRS	picture	9 (10)
02	FILLER	pictire	$\times(8)$.
Progr-cost-file			
reccrling mooe is f			
BLECGR CLAIAIAS 17 CHARACTERS			
Label records are stanoaru			

1 progr-cost-cata

```
```

C2 LR-CAN PICTLRE 首.
C2 CR-AREA PICTURE X(4).
prCgr-hr-file m
blcck cuntains 20 reccris
RECCRD CCNIAINS IJS CHARACIEHS
LABEL RECCROS ARE STAACARC
OI PHOGR-HR-DATA.
C4 HRCAM (PICTLRE X.
02
MRR

```

fC
    recording maile is
    RECORDING MGDE 15 F
BLECK CONIAINS 23 RECORCS
    RECCRO CCNTAIAS 147 Characters
    label recoros are siandaro
oata recoro is merge-oisk.

01
MERGE-CISK.
02 COST-RECORO.

CR C-AMI
PICTURE gliol.

\(\begin{array}{ll}04 & \text { H-EVYRS } \\ \text { C4 } \\ \text { H-EA-HASF }\end{array}\)
\(\begin{array}{ll}\mathrm{CH}_{4} & \text { H-CA-HASF } \\ \text { O4 H-CV-HASF } & \text { PICTURE } \\ \text { O4 } & \text { PICTURE } \\ \text { H-EA-HASF } & \text { PICTURE } \\ \text { H(10) }\end{array}\)

\(04 \begin{aligned} & \text { OPPROGR-IIM } \\ & \text { C4 } \\ & \text { H-PROGR-HSF }\end{aligned}\)
Picture g(10):
PICTURE
PICTURE
PICIURE
g(10):
piciure gitio.
fc prinie
RECCRDING MCDE 15 F
RECCRO CONIAINS 133 CHARACTERS RECCREL RECRROS ARE CNIITEC
CAAIA RECORC IS PRAT-LIAE.
cata recurc is prat-liae.

Cl prat-line.
PICTURE X(133).
\begin{tabular}{|c|c|c|c|c|c|}
\hline 71 & las3--x pictire & \(\times(25)\) Valle & RXI \(\wedge\) & ora & RA \\
\hline 71 & OISTR-AOM-IL & Picile & g181v99 & Value & zerc. \\
\hline 71 & OIvi20Ch & picilure & 9(8) vs9 & value & zerc. \\
\hline 71 & OIvi2ich & picilure & s(8)w9 & value & zerc. \\
\hline 77 & OIV1220H & picilure & g(a) vyy & value & zerc. \\
\hline 71 & OIV123CH & picilire & s(8)wgy & value & zerc. \\
\hline 17 & oivi24CH & picture & g(8)v99 & value & lerc. \\
\hline 77 & OIV125CH & picture & \(9(8)\) v99 & value & zerc. \\
\hline 71 & OIV126CH & piciure & s(9)v9s & value & zerc. \\
\hline 77 & OIV127CH & picture & s(a)v99 & value & IERC. \\
\hline 77 & OIV128CH & picilire & 9(8) v99 & value & zerc. \\
\hline 71 & OIV1290H & picture & 9 (8) V 99 & value & lerc. \\
\hline 77 & OIV2200h & pictire & g(8)v99 & value & zerc. \\
\hline 77 & OIV 2210 H & picture & 9(8)v99 & value & zerc. \\
\hline 77 & Oiv2220H & picture & g(a)ves & value & zerc. \\
\hline 71 & OIV223CH & picilire & ¢(a)v99 & value & zerc. \\
\hline 71 & OIv224LH & piciure & 9(8)vsy & value & zerc. \\
\hline 17 & OIV2250h & picture & graives & value & zero. \\
\hline 71 & civ 2260 H & Picture & g(t)v99 & value & zerc. \\
\hline 71 & Oiv227CH & pictlre & ¢(8)v99 & value & zerc. \\
\hline 77 & OIV2280H & picture & staveg & value & zero. \\
\hline 77 & Civ229CH & picilire & 9(8) v99 & value & zerc. \\
\hline 77 & CAMI-AOM & piciure & slyivg & value & zerc. \\
\hline 71 & CAML-AOM & picture & ¢¢8)v99 & value & \(z\) ERC. \\
\hline 77 & cami-fielo & PICTURE & ¢(a)v99 & value & zerc. \\
\hline 77 & camz-fielo & picture & sibivge & value & lero. \\
\hline 77 & CAMI-PCOL & picture 9 & 9 (d) \({ }^{\text {ges }}\) & value & lerc. \\
\hline 77 & CAm2-pCOL & picilae & gisives & value & zerc. \\
\hline 17 & oist-vcc-il & Picilure & 9tarv99 & value & zerc. \\
\hline 77 & cami-maint & Piciure & ¢(8).v99 & value 1 & zerc. \\
\hline 77 & camz-maini & picture & 918)V99 & value & zero. \\
\hline 77 & Cami-EvESAL & PICIURE & 918)V99 & value 1 & zero. \\
\hline 77 & CAM2-EVESAL & PICIURE & 9(8) \(\mathrm{v9} 9\) & value & 1ero. \\
\hline 77 & OIST-İH & picilre & \(9(10)\) & value 1 & zeric. \\
\hline 71 & oist-vars & pictire & 9(10) & value \(z\) & zerc. \\
\hline 77 & PEEI-HRS & picture & \(9(10)\) & value 2 & \(z E R C\). \\
\hline 77 & PE2-HRS & picture & \(9(10)\) & value 1 & zero. \\
\hline 77 & CAML-HRS & Picture & \(9(10)\) & value 2 & Lero. \\
\hline 77 & cam2-hrs & picture & 9(ic) & value 1 & zerc. \\
\hline 17 & cama-eve & picture & \(9(101\) & value 1 & zero. \\
\hline 77 & CAM2-EvE & PICTİRE & 9(1C) & value 2 & zero. \\
\hline 77 & CAmL-hasf & PICTLRE & \(9(16)\) & value 2 & zerc. \\
\hline 17 & CAM2-hasf & PICTURE & 91161 & value 2 & LERO. \\
\hline 77 & Oivizohrs & pictire & \(9(10)\) & value 2 & zerc. \\
\hline 17 & OIVI21HRS & pictlre & \(9(16)\) & value \(z\) & zerc. \\
\hline 17 & oivizarss & PICTLRE & 9(10) & value 2 & zerc. \\
\hline 77 & oiviz3ars & Picilre & 9(1c) & value \(z\) & zerc. \\
\hline 77 & OIVI26hrs & PICTURE & \(9(16)\) & value 2 & Lerc. \\
\hline 77 & 0ivi25hrs & picture & \(9(10)\) & value 2 & zerc. \\
\hline 77 & Oiviziohrs & picture & \(9(10)\) & value 2 & \(z\) erc. \\
\hline 77 & oiviz7trs & picture & 9(ic) & value \(z\) & \(z\) erc. \\
\hline 77 & oivizahrs & PICTURE & \(9(10)\) & value 2 & Lerc. \\
\hline 17 & oiviz9hrs & PICTLRE & \(9(16)\) & value 2 & zerc. \\
\hline 71 & Oivzzohrs & Picture & \(9(10)\) & value 2 & LERC. \\
\hline 17 & OIv22IHRS & picture & \(9(10)\) & value 2 & zerc. \\
\hline 17 & OIV222HRS & picture & \(9(10)\) & value & zerc. \\
\hline 17 & Oiv223HRS & picture & \(9(10)\) val & value 2 & zero. \\
\hline 17 & OIV224hRS & Picture & \(9(16)\) & value & IERC. \\
\hline 77 & OIv225hrs & PICTure & 9(ic) & value 2 & zerci. \\
\hline 17 & Oivz26hrs & PICTLRE & \(9(10)\) & value & LERC. \\
\hline 17 & oivz2ithrs & PICTLRE & \(9(10)\) & value \(z\) & zerc. \\
\hline 77 & OIVくzahrs & Picture g & g(10) Val & value \(z\) & zerc. \\
\hline 77 & Ofv229hrs & picture & 9(10) & value 2 & zerc. \\
\hline 17 & voca-factior & picture & st8)V99 & value \(z\) & \(z\) ERC. \\
\hline 77 & AOM4-FACIOR & picture & 9 (8) \(\mathrm{v9}\) & value 2 & lenc. \\
\hline 17 & AOMi-FACICR & picture & scibug & value & zero. \\
\hline 77 & aumz-facticr & picture & gis)v99 & value \(z\) & \(z\) ero. \\
\hline
\end{tabular}


FLOI-FACICR
FLO2-FACIOR SFMAINIL-FACTCR
 VESAL 2 FACIOR
VESAL 2 FACICR ERECKK
LEOCFACIOR
120-FACIOR
121-FACIOR
121-FACIOR
122-FACIOR
\(123-F A C T O R\)
\(124-F A C T\)
\(125-F A C T O\)
\(126-F A C T C\)
126-FACTO
127-FACTO
\(128-F A C T C\)
\(128-F A C T C R\)
\(220-F C\) IOR
\(129-F A T I O R\)
\(221-F A C I C R\)
221-FACTCR
\(222-F A C I O\)
\(223-F A C T O\)
224-FACTO
\(225-F A C J O\)
\(226-F A C I O R\)
\(227-F A C T O R\)
\(228-F A C\) OR
\(229-F A C V R\)
\(C-A M T-H L O\)
C-AMT-HLO
H-CAM-HLO
H-OIV-HLO

H-PROGR-
OISI-OAO
OISI-VOC
OISI-GAO
ISI-CADM
IST-MAIN
OISTFLO
OIST-POO
OSIT
IST-POO
IST-JL
IST-OH
\(151-01\)
OIST-OH
OIST-CPH
OIST-CPHR
OISTOOHL
OISTEEVESAL
C-AMTHLO2
STOPSHTCHB
STOP-SHTCHA
CI
 PICTURE \(\times(22)\) VALUE OBUSINESS ANO
PICTLRE
PICTURE
PICTURE X(G) VALUE EFINE ARISC.
PICTURE X(13) VALUE CLANGURTEARTS':
PICTURE X(14) VALUE -EINNIC STUCIES:
PICTURE XIIB) VALLE 'PHYICAL ECUCATICN.
PICTLRE XIBI VALLE PPHSICAL SCIEACE:
PICTLRE X(I4) VALUE SOCIAL SCIENCE:
PICTLRE X(14) VALUE SOCIAL SCIENCE.
PICTURE XXX PICTURE \(x \times x\)
PICIRE \(x \mathrm{x}\)
PICIRE
\begin{tabular}{|c|}
\hline \multirow[t]{9}{*}{\begin{tabular}{l}
PICTURE \\
picilre \\
PICTURE \\
picture \\
PICTURE \\
picture
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
PICTLRE
PIXx
PICTLRE
\(x \times x\)
VALUE 'CHR:
VALUE HSF
VALUE \(\cdot \mathrm{TDH:}\)

02
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{} \\
\hline \({ }_{4}\) & h-0A-HRSI & picture & 91101 & value & lerc. \\
\hline \(\mathrm{C}_{4}\) & h-OV-HRSI & Picture & 91101 & value & zerc. \\
\hline \(\mathrm{C}_{4}\) & h-EA-hrsi & pilitire & 9(10) & value & zerc. \\
\hline 0 & H-Ev-hrsi & piciure & \(9(10)\) & value & zerc. \\
\hline 04 & h-od-hasfi & picture & 9(10) & value & lerc. \\
\hline 04 & h-Cv-hasfi & picture & \(9(10)\) & value & . \\
\hline \({ }^{4} 4\) & h-ta-hasf 1 & picture & \(9(10)\) & value & zerc. \\
\hline 04 & h-Ev-hasfi & picture & Y(10) & value & lerc. \\
\hline 04 & h-Progr-tihl & piciure & 9(10) & value & lekc. \\
\hline 04 & h-Prugr-hsfl & piciure & Y(10) & value & lero. \\
\hline 04 & H-PE-TIHI & picture & 91101 & value & Lerc. \\
\hline \(\mathrm{C}_{4}\) & h -v-timi & piciure & \(9(10)\) & valle & \\
\hline 04 & \(\mathrm{h}-\mathrm{e}-\mathrm{tini}\) & picture & \(9(10\) & & \\
\hline
\end{tabular}
cl line-a.
Line-a.ler picture x(44) valle spaces.
02 Filler
02
- oistrici, piciure aisis) valle ifcithill ccmmunity cullege C2 fillek picture x(54) valle spaces.

01 LINE-8.

02 FILLER
1 line-c.
\(\begin{array}{lll}02 & \text { FILLER PICTLRE X(40) VALUE SPACES. } \\ 02 & \text { FILLER PICTLRE X } \\ \text { O } 24) \text { VALUE }\end{array}\)

ci oiv-ch-label.
\(\underset{\text { CI }}{\text { OIVCHRLLABEL. }}\)


cam-aom-ch-label
CAM-AOM-CH-LABEL
O2 FICTLER
02 FILLER
02
PICTKE
FILIO


CI OISt-OH-LABEL.
02 Filler picture xilos value spaces.

02 filler
PICTURE (8)9.94.
- EvE-SAL-LABEl.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline 02 & flller & picture & x(10) & value & spaces. & \\
\hline 02 & FILLER & picture & x(16) & value & evening & \\
\hline c2 & EvE-SAL-Lb & PICTURE & \(\times(24)\) & value & SPACES. & \\
\hline 02 & filler & PICTURE & (18)9. & & & \\
\hline
\end{tabular}

01
fielu-ch-label.



01
```

PCOL-Ch-Label

```


ol maintich-lagel.

c1
prcgr-cir-label
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 02 & filler & picture & \(\times(10)\) & value & spaces. & \\
\hline 02 & FILLER & Pictire & \(\times 1191\) & value & - pricgram & oirec \\
\hline \({ }^{2} 2\) & FILLER & picitire & \(\times(21)\) & value & spaces. & \\
\hline 02 & PRCGR-OR-LE & picture & \(2(8) 9\). & & & \\
\hline
\end{tabular}

1

01
prcgr-il-Label.


01


02 Filler picture x(15) value spaces.

01
oivisicn-name. 02 FILLER
02 C-NAME
prcgr-cooe.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 02 & Filler & picture & \(\times 171\) & value & spaces. \\
\hline 02 & FILLER & picture & \(\times(8)\) & value & - program \\
\hline \({ }^{2} 2\) & P-AREA & pictire & \(\times(6)\) & value & spaces. \\
\hline 02 & Filler & picture & \(\times 11141\) & value & spaces. \\
\hline
\end{tabular}
01. print-tctals.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline 02 & prigr-dacm & pictire & ¢(8)v99 & value & \\
\hline C2 & PRCGR-vCC-Om & picture & Stajug9 & value & zerc. \\
\hline \({ }^{2}\) & PROGR-CaCm & pictire & g(8)v99 & value & zerc. \\
\hline C2 & PRCGR-MAINT & pictire &  & value & lerc. \\
\hline 02 & prcgr-evesal & pictire & gibives & value & lerc. \\
\hline c2 & prcgr-flo & Pictire & \(9(8)\) & & \\
\hline
\end{tabular}

cI
\(\begin{array}{ll}\text { C2 } & \text { FILLER } \\ \text { CACMFFACICR } \\ \text { C2 } & \text { FILER } \\ \text { O2 } & \text { FILER } \\ \text { C2 } & \text { FILER } \\ \text { C2 } & \text { DCPHR } \\ 02 & \text { FILLER }\end{array}\)

CI DVCC-facticr. 02 FILLER C2
CI
FILER
FLLER
cI
\(\begin{array}{ll}\text { FH-ACM. } \\ \text { O2 } & \text { FILLER } \\ \text { O2 } & \text { FILER } \\ \text { C2 } & \text { FILER } \\ \text { C2 } & \text { FACPH } \\ 02 & \text { FILER }\end{array}\)
CI
OA-ACM.
C2
FILLER \(\begin{array}{ll}02 & \text { FILLER } \\ 02 & \text { FILER } \\ \text { C2 } & \text { OACHR } \\ \text { C2 } & \text { FILLER }\end{array}\)

Pictire x(lio) value spaces.

picture x(ai) value spaces.
CI
Fh-MAINT.
C2 FILLER PICIURE
02
FILLER
\(\begin{array}{ll}02 & \text { FILLER } \\ 02 & \text { FILER } \\ 02 & \text { FILER } \\ 02 & \text { FMCHR } \\ \text { C2 } & \text { FILLER }\end{array}\)

01
\(\begin{array}{ll}\text { CA-MAINT. } \\ \text { C2 } & \text { FILLER } \\ \text { O2 } & \text { FILLER } \\ \text { C2 } & \text { FILLER } \\ 02 & \text { FILLER } \\ 02 & \text { CMCPHR }\end{array}\)
PICIURE X(22) VALUE ©FH MAINT FACTOR
PICIURE X(B) VALUE SPACE. PICIURE \(\times(\) B) Value spaces.
PICTIRE
\(\times(5)\) Value spaces. PICTURE 29.9 VI)

Picture
pictire
x 122 ) Value spaces.
value toa maint factor
PICTLLE \(\times\) (22) VALUE CA MAI
PICTRE \(\times(8)\) VALUE SPACES.
PICITRE \(\times(5)\) VALUE SPACES.
PICTLRE X(5) Value spaces.
Picture \(19.9(5)\).
picture x(81) Value spaces.
01
Fh-EVE.
\(\begin{array}{ll}02 & \text { FILLER } \\ 02 & \text { FILER }\end{array}\) \(\begin{array}{ll}02 & \text { FILLER } \\ \text { C2 } & \text { FILLER } \\ 02 & \text { FECPHR }\end{array}\) PICTURE \(\times(10)\) Value spaces.
PICTURE \(\times(22)\) VALUE \(4 F H E V E-\)
ICTURE X(L2) VALUE ©FHEVE-SAL CPHR PICTLRE
Picture
L(日) Valu.
ga. picture x(bil) value spaces.
01 \(\qquad\)

 PICTURE 28819.99.
picture x(81) Value spaces.
procedure civisica.
art-prciessisicn.

CPEN CUTPLT PRINTER, PRCGR-MERGE-FIR-FILE,
CPEN OUTPLT PRINTER, PRCGR-MERGEFILE.
OISPLAY WRITE FISCAL YEAR IN FCRMAI
accept ayear frcm con scle. in flrmat xx-xx. upca ccnsole.
hrite prnt-line frch line-a after acvancing o lines.
Write prnt-line frch line-b after aivacing zin
WRITE PRNT-LINE FRCM LINE-B AFTER ALVANCING 2 LINES.

caro-reac.
table-cki.
IF CAM-CCOE IS ACI EGLAL IC 4 , GC TC TABLE-CK2.
IF CARD-COOE IS EULAL IO VI2, WCVE AMCLAI IC


Table-cki.

oisplay macag campus ccoce, lpca ccascle, stcp rua.
CAMPLSIA-SCRT
IF Oiv-COOE is equal ic spaces, ic ic cappusib-SCRT, else

IF OIV-COOE IS EGLAL IC 22, MCVE AMCUN IC CIIR2CH, ELS

IF OIV-COOE IS EQLAL IC 25, MCVE AMCLAT IC CIVI25CH, ELS
IF CIV-COE IS ECAL IC \(\angle 6\), MVE AMCNT IC CIVIC6OH, ELS
IF OIVCOOE IS EOUAL IC 27 , MCVE AMCLAT IC CIVI2TCH, ELS
IF OIV-COOE IS EQUAL IC 27, MCVE AMCLAT IC CIVI27CH, ELSE
IF OIV-COEE IS ECAL IC 28 , MCVE AMLUI IC EIVI28CH, ELSE
IF OIV-CCOE IS EQUAL IC 29 , MCVE AMCUNT IC CIVI29C, ELSE
ois oiv-CCOE IS EQUAL IC 29, MCVE AMCUNT TC CIVI28Ch, EELS o ic caro-reac.
AMPLSIE-SCRT
go to caro-reac. ic as, mcue ahglat tc cami-acm.
if card-ccoe is eglal ic eb, move amclnt ic caml-fielo,
If Garc-cooe is emual ic fo, meve amclat tc cami-pcol,
if Gard-cooe is eqlal ic ci, mcve arclat ic cani-maint,
if carc-ccore is eqlal ic aj, move amclat ic cami-evesal,
oisplay thrard-reac.
CAMPUS2A-SORT.
IF CIV-CGCE IS EQUAL TC SPACES, GC IC CAMPLSZE-SCRT, ELSE
IF OIV-COOE IS EGUAL TC 21, MOVE AMOUNT TC OIVZLINH, ELSE

IF IV-COOE IS EQUAL TC 23, MCVE AMCUNT IC OIV223CH, ELSE
IF OIV-COCE IS EGAL TC 24 , MCEE AMCUT IC OOV224CH, ELSE
IF OIV-COOE IS EQUAL IC 25 , MCVE AMCUNT IC OIV 225 CH , ELSE


IF OIV-COOE IS EQUAL IC 29, MCVE AMCLNT IC OIV229CH,
OISPLAY ' WRONG OIVISICA CCOE. UPCA COASCLE, SICP RUN
go ic carc-reac.
CAMPLS2B-SORT.
if caro-cooe is equal ic ag, move amount ic camz-acm,
if Carc-ccce is eclal ic e3, mcve amlini ic camz-fielo,
IF GORD-CGOARO-REAC.
if card-cooe is eglal ic fo, meve amclat ic camz-pcol.
if caro-ccoe is egual ic gi, meve arcunt ic camz-maint,
if Gardoco cardireac. is ic az, hcye amcunt ic canz-evesal,
oisplar ewrcng carc ccce upca cimsole, stcp run.
eno-cF-runi.
oisplay .lcad ith oeck with eno carg' upca conscle.
go tc read-ilh.
reactith.
READ IIH-ICTALS, AI EAC GC IC ENC-CF-RUNZ.
IF AMT-hRS IS EQUAL IC LERL, ADC LERC-CK IC ARI-hrs
table-CK3. Cooer is nct egual il 4 , gi ic lampls-cx.
IF CARD-COOEF IS EQLAL IC OHR, MCVE AMI-HRS IC OISI-TIH.
if Gardocoreanitil.
displar 'wreag campus ccue cr carc cooe. upca ccnsole.
CAMPLS-CK.

oisplay -mreng campus ccoe: upon conscle, sicp run.
camiah-scart- if Cooer is ecual ic 27p. move amt-hrs ic pei-hrs
If GARC-CGOEH IS EGLAL iC Chr, hCVE amt-hrs ic cami-hrs,
if \({ }^{\text {c }}{ }^{\text {a }}\)
if card-cooeh is eqlal ic yhr, mcve amt-has tc caml-eye,
if Card-cooet is equal ic hsf, move amt-hrs tc cami-hasf
if carc-cocer is noi eclal ic toh, oisplay ibac caro coot.
upCN CCNSOLE, STCP RUN.
IF OIV-COOEH IS EGUAL TO 20 , MOVE AMI-HRS IC OIVI2OHRS, ELSE
IF OIV-COOEH IS EQUAL IC 21 , MOVE AMT-HRS IC OIVI2IHRS, ELSE
IF OIV-COOEH IS ECUAL IC 21, MOVE AMT-HRS IC OIVI2IHRS, ELSE
IF OIV-COOEF IS EGLAL TO 22, MCVE AMT-HRS IC OIVI22HRS, ELSE
IF OIV-COOEF IS ECLAL IC 23 , MOVE AMT-HRS IC OIV123HRS: ELSE
IF OIV-COOEH IS EQLAL TO 24 , MCVE AMT-HRS IC OIVI24HRS, ELSE
IF OIV-COOEH IS EQLAL TO 24, MCVE AAM-HRS IC OIVIZHRS,
IF OIV-COOEF IS ECGAL IC 25 , MCVE AMT-HRS IC OIVI25HRS,


IF OIV-COEE IS EGLAL IC 29, MCVE ART-HRS TC IC OIVI29HR
OISPLAY WRONG OIVISICN CCOE. UPGN CONSCLE, SICP RUN.
GO TO REAO-TIH.
camzan
if cardocooem is eglal to 27p, mge amt-hrs to pez-hrs

If GARD-COOEA IS EGUAL ic Vhr, move amt-hrs to camz-eve,

if card-cooeh is eclal io hsf, move amt-hrs to camz hehasf,
if card-cooen is ict eclial ic ich, oisplay dac carc ccoe,

IF OIV-CUOEH IS EQUAL IC 22 MCVE AMTHRS IC GIV22IRRS, ELSE
IF OIV-COOEH IS EQLAL IC 23 MCVE AMITHRS IC OIV223HRS, ELSE
IF OIVCOOEH IS EOLAL IC 24 MCVE AMTHRS IO OIV224RS, ELLE
IF OIV-COOEH IS EOLAL IC 25 MCVE AMT-HRS IC CIV22SRRS. ELSE

IF OIV-COEEH IS EQLAL IC 27 MCVE AMT-HRS IC CIV227HRS, ELSE
IF OIV-COOEH IS EQUAL IO 28 MOE AMTHRS IC OOVZ
IF OIVRSCOE ELSE
 go ic read tila.
EMO-CF-RLNE.
OIVINE OIST-VARS INTI CIST-VCC-IL GIVING VGCA-FACTOR.
OIVIOE OIST-TIH INIO OISIR-AOM-IL GIVING ACH4-FACTOR
CIVICE CAMI-RRS INTC CAHI-ADM GIVING ACHI-FACICR.
OIVIOE CAN2-FRS INIC CAM2-AOM GIVING AOM2-FACICR.
OIVIEE PEI-HRS INTO CAMI-FIELO GIVING FLOI-FACTCR
OIVIOE CAMI-HASF IATC CAMI-MAINI GIVING FLO2-FACYCR.
CIVIDE CAMD-HASF INTO CAMZ-MAIAT GIVING ASFAAINTI-FACTOR
OIVICE CAMI-EVE INTO CAMI-EVESAL GIVIIG EVESALI-FACDR.
OIVICE CAMZ-EVE INIC CAM2-EVESAL GIVIAG EVESL2-FAGOR.
oivice oivizohrs into divizoch giving izo-factor.

OIVIOE OIVI22HRS INTO UIVILLCL GIVING I22-FACICR









reac progr-ccst-file, at eno,

move cr-civ to c-uiv-hlc.
MOVE CR-AREA TO C-AREA-HLL
MGVE CR-AMJ TC C-AMT-HLO.
FILE-MERGE-2.

ck-CAM.
enlo is not egual ti hr-cam, gl il checkz
ck-areaf if carea-hlo is not eglal ic hr-area, gc ic checka.
K-eglal.
meve hlo-ccoes ic cest-reccrc
MCVE C-AMT-HLD TC C-AMT.
MCVE HR-OATA IC HR-RECCRC.
hrite merge-disk.
Move 2 eras tc hr-recira, c-ami, c-ami-hlo.
GC TC FILEMERGE-1. C-CAM, C-DIV, C-AREA, HLC-CCCES.
HECK2.
if c-cam-hlu is less than hr-can, de ic check3.
hr-LESS-cCSti.
MCVE HR-CAM IC C-CAM.
MGVE HR-OIV IO COIV.
MCVE HR-AREA TC C-AREA
MCVE ZERCS TO C-AMI
MCVE HR-CATA TC HR-RECCRC.
move 2ercs TC hr-reccrc, c-ami
am, c-civ. c-area.
rR-LESS-COSI2.
CrECK3.
MOVE HLO-CCUES TC CCST-RECOHC.
move progr-hic ic tc hr-cala-hlu.
MCVE ZERCS IC HR-RECCRC.
WRIIE MERGE-CISK.
MCVE SPACES TO CCST-RECCRC, HLD-CLOES.

CCST-LESS-HRS.
PERFCRM FILE-MERGE-1.
MLVE HR-OATA-HLC TC FRCGR-HR-CATA.
GL TC. CK-CAM.
HECK.
if c-area-hle is lees itan hr-area, gc ic check3
eno-cf-rlaz.
if stop-smiche is equal ic i, ge il checks.
PERFCRM FILE-MERGE-2.
PERFCRM HR-LESS-CES
GO IC ENO-CF-RLA3.
Enc-Cf-RLNA.
if SIOP-Shicha is egual tc 1, gC to checks.
PERFCRM FILE-MERGE-1.
PEAFCRM CHECK3.
GO TC ENO-CF-RLM.
CrECK5.
CLCSE PROGR-MERGE-FILE.
DPEN INPUT PROGK-MERGE-FILE
GO IC REAO-OISKA.
read prociskiag merge-file, at enc, go to tali-cf-runa
READ PROGR-MERGE-FILE. AT
MOVE C-AREA TOGCAREA-HLL.
MCEE C-AMT TO C-AMT-HLC.
isk-CK.
if Cam-hlc is eqlal ic spaces.
MOVE C-CAM IC C-CAMLHLC.
IF C-OIV-HLD IS ECUAL IC SPACES.
MOVE C-OIV TC COEIVALLC.
if c-cam is not eclal ic c-cam-hle, PERFURM OIVISIOALSLM,
PERFGRM CAMPLS-SUM,
PERFLRM CAMPLS-SLK',
MOVE C-CAM TOC-CAM-HLO.
MOVE C-OIV TO C-OIV-HLL. PERFORM OIVISION-SUM.
MCVE C-CIVTO C-OIV-HLO.
gC TC COMPUTATICA-1.
CCMPGTATICN-1.
MULTIPLY H-PRRGR-IIH AY ACM4-FACICR GIVING PRGGR-CAOM
multiply \(\mathrm{H}^{-\mathrm{V} \text {-TIH OY VCC4-FACTCR GIV }}\)
aOD progr-voc-ch tc prcgr-ch-thing prcer-vcc-ch.
If C-CAM-hLO IS EGUAL IC 1 , GC IC CAMPUSI-CCMPUTATION, ELSE
CAMPLSL-COMPLTATICN.
Multiply h-prcgr-tin ey acml-facick giving prggr-cacm

ey asfraimid-facter giving progr-maint.
MLLIPLY H-E-TIH BY EVESALI-FACTCR GIVING PRCGR-EVESAL.
COIV-HLD IS EGUAL IC 27, GC IO PE-FIELC-PCCL, ELSE
MUVE LERCS TC PRCGR-FLO

60 IC
IC UIV-LHLCCCMPLTATICALCL
AMPLS-SEPARAICR.

-fielc-pCCL.
```

 F FLCI-FACICR GIVING PRCGR-FLL, ELSE
 FLO-FACICR GIVING FRCGR-FLC, ELSE H-PKCGR-IIG BY
 FLCI-FACICR EIVING PACGR-FLC,MLIPLYY R-FRCGH-IIH EY
 F C-area-hlo is EqLaL IC 2723, muLIPLY h-prLGR-IIH By
 FLCL-FACICR GIVING FRGGR-FLC, ELSE
 *)
    ```

```

 FLCI-FACICK GIVING FRCGR-FLC, ELSE
 FLAREA-HLO IS EGUAL IC L7,5, GC IC CAM-PCCL, ELSE
    ```

```

CAM-POCL
f c-cam-hlo is eglal ic 1, mive cami-pccl it prccr-pocl,
ADD PROGR-PLCL IO PRCGRCLH-IL, ELSE
AGO PRCGR-PGCL IC PRLCR-CF-IL.
Civ-OH-CCMPLTATIONI.
If c-DIV-hLO IS EQLAL TC 2U NLLITPLY h-frCGR-tit ey
If c-DIV-HACICR GIVING PGLGR-CH, ELSE
IC 2L MLLIPLY H-prCGA-tIH B
IN L2I-FAGICR GIVING PRCGR-CH, ELSE
m-prcgh-tim by

```

```

 F c-DIV-HLO IS EGUAL IC 24 MLLTIPLY H-PRCGR-IIH EY
    ```

```

 I25-FACICR GIVING PRCGR-CH, ELSE
 126-FACICR GIVING PRCGR-CH, ELSE
 F C-DIV-MLC IS EGLAL IC 27 MULIIPLY h-PRCGR-TITH 年
 if c-div-hlu is eqlal ic 2g mlitiply h-prggr-tim by
 IF 128-FACIGR GIVING PRCGR-Ch, ELSE
 AOC PRCGH-CH TC PRCGR-CH-TL.
 GC IC CCST-PER-HR.
multiply h-PRCGR-tim or acmz-factcr giving prggr-cacm
AOO PRUGR-CACN TO frGGR-Ch-IL.
MULTIPLY H-PROGR-HSF BY ASFNAINIL-FAGTGR GIVINE PROGR-MAINT,
mlitiply h-E-TIt ay EvESAL2-factok giving prcgr-evesal.
C-div-hlo is eglal ic 27, GE iG Pt-field-fCCl, ELSE
MOVE LERCS IC PROGR-FLO,
go ic oiv-oh-computaticaz.
civ-ch-ccmpltaticnz.
1F c-liv-hlo is eclal ic 20 Mulifly h-prcgr-tith by
If C-OIV-tLO IS EGLAL IC 21 MLitiply
22i-facicr giving frcgr-chi Else h-prcgr-tit by
If C-OIV-hLO IS EQLAL IC 22 MGIIIPLY h-PACGR-TIT EY
If c-oiv-hLO IS EqLAL PRCGR-LHO ELSE
223-facticr givial prcgr-chit else m-prcgr-tit ey

```

```

If C-OIV-HLO IS EQLAL IC SS MULIPLYE M-FRCGH-IIT EY

```

```

If C26-FACIGR GIVING FRCGK-CH, ELSE

```

``` 228-FACICR UIVING PRCGR-Ch, ELSE
```

 AOU $\begin{gathered}22 G-F A C G R-C H C R G I V I N G ~ P R C C R-C H \\ \text { PRGGR-CF-TL. }\end{gathered}$
CCST-PE IC CCSST-PER-HR.
-PER-HR.
AOC PRUGR
aoc prugr-evesal, proigrech-il, c-ant-hll giviac prggr-il
CIVICE h-prcgr-iih IAIC PRCGR-tL Givinc facer-cpra.
slmmary-igials.

MOVE C-AREA-HLC IC PC-AREA.
WRIVE PRNJ-LIAE FRCM PRGGR-ccee after acvancing 2 lines.
rint-datal.
MCVE PRCGR-CH IC OIV-EF-LB.
WRITE PRNT-LINE FROM OIV-CH-LABEL afier aOVANCING 2 lines.
MCVE SPACES TG OATA. MCVE 2ERES TC OIV-CM-LE.
MOVE PROGR-CACM TC CAM-ACM-LB
MOVE PROGR-CACN TC CAM-ACM-LB.
WRIIE PRNI-LINE FRCP CAM-AOM-Ch-LABEL AFIER
a avancing l lines.
MCVE SPACES TO CATA. MCVE RERCS IC CAN-ach-LE.
MCVE PROGR-OACM TOOIST-CH-LH.
WRIIE PRNT-LINE FROM DIST-CH-LABEL AFTER ACVANCI
move spaces to oaia. mCVE zercs ic afist-cheracing l lines
MCVE PROGR-VCC-CH JC OIST-VCC-LE.
HRITE PRNT-LINE FRON OIST-VCCLES
move spaces tc cata. move lercs tc cist-vci-liacing l lines.


MOVE SPACES TO OATA. NCVE LERCS TC FIELC-CH-LB
WRIDE PRNTLIAE fROM PCCL-CH-LAEEL AFTER ACVANCING I LINES.
MOVE SPACES TO DATA. MCVE IERCS IC PGCL-Ch-LE
move spaces to daia. mCve iercs ic pcce-ch-lb.
write prnt-line frcm maint-ch-label afier acvancing l lines. MOVE SPACES TC DATA. MCVE ZERCS IC MAINT-OT-LB.
MGVE PRGGR-DH-TL TC PRGGR-IOLLB.
MCVE PRCGR-OH-IL TC PRCGR-ID-LB.
WRITE PRNT-LINE FRCM PRCGR-INOIN-SBIL AFTER
a mancing 2 lians.
mCVE Spaces ic caia. MCVE zercs ic prcgh-ill-lb.
WREP PROGR-EVESAL TC EVE-SAL-LB.
Write praitline fron evesal-label after acvancing 2 lines
MLVE CPACES IC LATA. PCVE LERCS IL EVE-SAL-LB.
MRE
hrite prnt-line frch prcgr-oir-ladel after acvancing 1 lines.
move progrotl ic prcgr-it-ler ic prggr-dr-lb.
write prnt-line frcm prcer-ti-labil after acvanc
hove spaces ic cala. ncye zercs icl pucter acvanciag 2 lines.
MOVE H-PRCGR-IITHC TIH-LB.
hrite prnt-line from tit-label afier acvanling 2 lines.
move spaces to cata. mive lercs jc tit-lb.
MCVE PROGR-CPHR IC COST-TIT-LE.
WRITE PRNT-LINE FROM CCSI-TIh-LABEL AFTER ALVANCIAG 2 lines.
MGVE SPACES IO CAIA MCVE ERCS IC
MgVE Spaces tio cata. MCve zercs ic ccit-tit-lb.
WRIfe frnt-line from label-ncie after acvancing 2 lines.
MCVE SpaCES TO CATA.
MOVE LERCS TO C-AMT-HLC, PRINT-ICIALS.
GC-
ISICN-LACLISK
If c-oiv-hlo is equal ic 20, mCVE cz ic o-name, else
IF C-DIV-HLC IS EGLLL IC 21, MCVE CI TC C-AANE, ELSE



 MCVE SPACES TO O-MARE, CATA.
OIVISICN-SUMMARIES.
AOO PROGR-DAOM TO OIV-CACH.
ADO pRCGR-CACH TO OIVCACH.
ADO PROGR-MAIN TO OIV-MAINT.
AOC PREGR-EVESAL IO OLVEEVESAL
AOC PRCGR-EVESAL IO OIV-EVESA

AOO PRCGR-IL IC OIVTIL


osivisicin-sum.
hrile prnt-line frice oivisica-labelz after acvancing 2 lines. MCVE SPACES TO CAIA.
MOVE DIV-DADM IC PRCGR-OACM.
move div-cadm to progr-cacm.
MOVE DIV-MAINT TC PRCGR-PAINT.
MOVE CIV-EvESAL TC prcgr-evesal.
MCVE IV-FLO IC PRCGR-FLC.
MOVE OIV-IL IC PRCGR-TL.
(IC Heprogk-tim.
move oiv-ch tc prcgr-ch.
move c-amt-hlo tc c-ami-hloz. mive zercs ic c-amt-hlo.
MGVE DIV-DIKIL CIV-OHI-HLO.
oivide div-tih intc oivil giviag div-cphr.
MCVE DIV-CPHR IC PRCGR-CPFR.
PERFCRF PRINT-CAIAI.
MCVE C-AMT-HLOL IC C-AMT-HLL. MLVE 2ERCS IC C-AMT-HLDEL
amplesthercgr-tithz IC h-prggr-tif. move lercs tc h-phcgr-tihz.
qite prat-line frch gan-labelz after acvancing c lines.
MOVE Spaces ic cata.
hrite prnt-line from canpls-labll after aovancing l lines


MCVE CAMP-CACM IC PRCGH-CACH:
MOVE CAMP-VCC IC PRCGR-VCC-CH.
MOVE CAMP-CAOM IC PRCGA-CACN.
MOVE CAMP-OH-IL IC PRCGR-C.
MOVE CAMP-CH TC PRCGR-CH.
MOVE CAMP-MAINT TO PRCGR-MAINT.
MOVE CAMP-FLE IC PKCGR-FLC.
MUE CAMPTL TO PRCGR-TL.
MOVE CAMP-TIH TC h-PRCGR-IIH
HOVE CAMP-OIR TC C-AMI-HLC.
MOVE CAMP-EVESAL IC PRCGR-EVESAL.
IVIOE CAMP-IIH INTC CAMP-TL GIVING CAMP-GPMR.
PERFORM PRINT-OATAL.
MOVE 2 ERDS TO CAMPUS-ICIALSZ.
MOVE C-AMT-HLO2 TO C-ANI-HLO. MCVE ZERCS IC GCOMT-HLDZ.
ISTRIC T-SLM.
rrite prnt-line from cist-lagel after acvancing o lines.
CVE SPACES TO CATA.

MOVE OIST-OACM TO PRCGR-CAOM-
MOVE OIST-CAOM TO PRCGH-CACH.
MOVE OIST-OH-IL IC PRCGR-Ch-IL.
MOVE DIST-FLC IC PRGGR-FLE.
MOVE OIST-PCCL TO PRCGG-FCCL
MOVE OIST-TL TC PREGR-IL.
MOVE OIST-CH TC PRCGR-CH.
MOVE OIST-CIR TO C-AMT-HLL.
MOVE OIST-EVESAL TC PRCGR-EVESAL.
OIVIOE OIST-TIH INTC DIST-TL GIVIAG OIST-CPMR.
MOVE OIST-CPHR TC PROGR-CPHH.
Enc-
perfich oivisign-sum.
PERFCRM CAMPUS-SUM.
ERFCRM OISIRICT-Sin.
HOVE ACM4-FACICR TO CCPMR.
ove aomi-fac Ior ic facprr.
MOVE AOMZ-FACICR IC FACPAR
MOVE ASFMAINTI-FACICR IC FNCPHR
MOVE ASFMAINI 2 -FACTCR IC CMCPHR
MOVE EVESALI-FACICR TO FECPHR.
move evesalz-factcr tc cecphr.
hrive prai-line from caon-facicr afier acvancing 3 lines.
WRIIE PRNT-IINE FROM FVCC-ACN AFTER AFIER ACVACIAG 1 LINE
WRITE PRNT-line from ca-acm afier acvancing i lines.
WRITE PRNT-LINE FRCM FH-HAINI AFIER ACVANCIIG I LINES
WRITE PRNTLINE FROM OA-MAINI AFTER ACVANING INES
WRIIE PRNT-LINE FROM OA-MAINI AFTER ACVANCING I LINES
hRIE PRNTLINE FRCM FH-EVE AFIER ACVANCING I LINES.
hrite prntline frch freve afier acvancing l lines.
hrite pritline frcm da-Eve afier acvancing i lines.
Tih-TOIALS.
progr-cost-file,
PRUGR-HR-FILE:
PRCGHERGE-FILE,
SICP RLN.

## 4. 3 Subsystems

As previously discussed, two subsidiary computer programs were required to provide the appropriate data input for the computer program which generates the Instructional Program Total Costs Report. These computer programs were developed as the MER Data Summary Report and the Class Master File Data Summary Report. The programming language used was the same as the main program system. That is, COBOL/360.

The MER Data Summary Report program is identified by the computer as "LASl" and generates a recapitulation of fiscal year end expenditures. The output of this program is found in Section 5.2. The Class Master File Data Summary Report program is identified by the computer as "LASl" and generates a summary of the fiscal year's class hours by types (day, evening, vocational, etc.) as well as assignable square footage of classrooms used in instructional programs. The output of this program is also found in Section 5.2. For each of these subsystem programs, the input data was obtained from data sources within the Foothill District accounting and instructional services system. This input data served as the test data bank for the simulation program model of the study (Instructional Program Total Cost Report). However, for the data to be used properly by the simulation model, the two subsystem programs
described in this section were required. The test data bank incorporated the fiscal year 1969-70.
jource ; tatement
CBn CLS-9 10/26171
mentificatien oivistun.
authar. 'Lasl'.

Cate-wxItT=V. OCTOPER, ig71.
remarki. this program recaps june toth mer-expense cata FOR IVOIRECT COSI ALLDCAIICN PRRGRAN.
THIS PRUGRAM ACCEPIS FLNO CCDES O1. AAD AL. THIS PRUGRAM ACCEPIS FLNO CCDFS O1, AND AL.
AWY UTHER FUND CGUR WILL UE PRINTED CUT AI ENE CF
 Gui.
ENVIKCMENT CIVISIUN.
CLNFIGLATIGN SECTION.
S-URL-CCMPUER. IBM-36C 64 C .
INPut-jutput section.
file-contzul.
SELECI MER-TU-DATE-FILE ASSIGN IU ©SYSOIO: UNIT-RECORD 2540 R.
SELECI PRIJIE,
Select plive
SELECI PLish
SLECI ERRORS-to-nISk
ASSIGA 10 'SYSO14: UAITLITYCCRC 2314.

cara division.
F C MLR-Tu-calt-file
RECORCDNC NODE IS F
REORC CONTALNS EC ChaCAC TERS
AEEL $\angle E C C C L O S$ ARE OMIITED
CATA KECOAL IS EXPENSE-RECORU.
jl Expense-recurd.
$\begin{array}{ll}\text { 0) } & \text { FILLER } \\ 02 & \text { FUVD-CLCE } \\ 02 & \text { CAYPUS-COCE }\end{array}$
$\begin{array}{ll}02 & \text { CAYPUS-CO } \\ 02 & \text { FILLER } \\ 02 & \Delta R C A-C u C E\end{array}$
PICIURE $\times(35)$
PICILRE $x \times$.
PICILRE xx.

03 PKJGK-COCF
PlCTLRE 97.
PICTGRE 99.
2 FILLER PICTURE x(<2).
02 FILLER PICTVRE 9IR
f C

> Luck ciantane is
> Recorc covialis 17 Grakacters

1 PふUSK-IJ-CISk.

[. privilu
RECTRELINE muce is $F$
RELURC CONIAIVS IB3 CHARACIER
LAFEL recukcs ake cmitr
caia zécird is a-live.
01
O2 Paia pictuke x(133).
rechircing mich is f
xeclirl contai is 12 charactires
apel rechrds are omitren

01 e-LINE.
01 E-LINE.

crking-stijagee section


71				picture	¢(8)v99	9 value	zerc.
71				PICTUKE	s(e)v99	9 value	LERC.
71	civ-or			PICTLRE	S(E) v9\%	$\rightarrow$ value	
17	cuarinue			PICIGME	x	value	space.
17	Err-ck-switch			PICTURE	-	value	space.
17	rec-Cvit			PICIURE	5 5 41	value	ZERC.
77	Cam-actioti			PICTERE	Slaiva	? Value	zerc.
17	cther-plant-optr			PICIURE	si8)V99	9 value	zerc.
17	CAM-FLu-IL			PICture		9 Value	zerc.
17	Cam-pual-il			picture		7 Value	zerc.
17	can-maint-tl			picture	cisivg	9 Value	zerc.
17	Cuntr-il			$p \mathrm{ICTURE}$	S(10)V99	99 value	lerc.
17	Cam-CIR-EXP			PICIUQE	¢(8) ทจ9	9 Value	zerc.
17	cam-civ-3t			PIC TURE	¢(8)v99	9 Value	lerc.
17	cult-ri			PICTure	9(8) y 99	9 Value	lerc.
17	Cull-GRE-IL   CUM-CULL-GUD-IL			picture	gis)v99	9 value	lerc.
17				pICture	c(b)vas	9 Value	lerc.
17	CUM-CULL-GRD-ILSupt-UfFICE			picture	9(8)V99	9 Value	lerc.
11	ec-sekv			picture	\%(8) v99	9 value	zerc.
17	com-serv			PIC TURE	¢(8) y ¢9	9 Value	zerc.
17	hus-SERV   cata-SERV			picture	s(8)マ99	9 value	lerc.
11				picture	9(8) ソ9\%	$\rightarrow$ value	lerc.
71	CATA-SERVPUX-TRAVS			picturt	9(8) vag	- value	zerc.
71	fixec-chrc			picture	stejv99	9 value	lerc.
11	CIS-AOM			picture	¢(8)V99	g value	zerc.
11				picture	s(8)V97	- value	lerc.
17				picture	S(0)V99	- value	Lerc.
11	CUM-CIS-GRE-IL			PICTURE	sif)v99	9 value	lerc.
11	Ex-IGIAL			PICTURE	948)v99	9 value	zerc.
71				picture	¢(8)v9?	- value	lerc.
71	ligr-tutal			PICILRE	s(f)V9\%	$\rightarrow$ Value	zerc.
71	STJP-GuCAM-SERV-it			PICTURE	¢9	value	zerc.
71				PICTLRE	s(8)v99	9 value	zerc.
11	civ-roral			PICIURE	s(8)V99	9 value	zerc.
17	C1 Pic	picture	$\times 130)$	value	- grelinos	S operation	6200-6219
77	E1 pict	picture	$\times 1301$	valle	- Fielo op	operailon	6220-6229'.
71	$f 1$ Dic	Dictire	$\times 13 \mathrm{c})$	value	-POCL OPE	deration	6230-6237.
71	C1 PIC	picture	$\times 1301$	valle	'vehicle	epperation	6300-6399'.
11	H1 PIC	PICIURE	$\times 1301$	value	- tele ope	peration	6600-6699.
71	11 Pic	PICTURE	$\times(30)$	value	- Lillitie	ies cperaticn	N 6700-6799*.
77	$\mathrm{pl}_{1} \mathrm{P}_{1}$	PIC TLZE	$\times(30)$	value	- Other pla	plant oper	6900-69999.
71	k 1 pl	PICtLRE	$\times(30)$	value	-plavt ma	mainienance	100-7199:
11	Ez OIC	oicture	$\times 13 \mathrm{Cl}$	value	-fitlo ma	maintenance	1218
71	F< Pl	Picture	$\times(30)$	value	-pucl mal	a in tinance	
71	1 l	PICTule	$\times(30)$	valle	- Grulnds	s maintevance	(200-7299.
17	MI Pic	PICIURE	$\times 1301$	value	- vfricle	maintenance	
11	N1 pla	PICILRE	$\times(30)$	value	- eqlip ma	maintenance	1302
11	V12 Pic	PICIURE	$\times(20)$	value	- distaici	taom subicta	
11	51 Pl	piciure		value	- oivision	un ulrect exp	pense tcial
$11$	E3 Pl	PICIURE	$\times 1301$	valle $\cdot$	-fielo up	JPERAIION/MAI	antenance
17	Fs Pic	Picture $x$	$\times(\geq 0)$	value	- puol ope	peration/main	VIENANCE
11	at picticher	PICTURE		value	- gen oper	er-maint icta	
17	२ 1 PI	-ICIURE x	$\times 130)$	value $\cdot$	- evening	salaries tic	rial
11	11 Pictil	PICTURE $x$	x 1301	value	- campus i	total	
11	$1 /$ Dicticher	dicture $x$	x1301	value .	- erkor ro	roltine total	
11	13 Picticher	PICIURE XI	$\times(30)$	valle.	- campus g	grano total	
77	vi pic	PICIURE $x$ (	$\times(30)$	value $\cdot$	- Superint	ntendents cff	0100-0109.
71	12 Pi	PICIURE $x$	x(30)	value '	- Eouc Ser	ravices	0200-02291.
11	vs picticher	PICIURE $x$	$\times(30)$	valle	- vuc enuc	uc Services	0230-023
17	$v_{4} \mathrm{pl}$	PICIURE $x$	$\times(30)$	jalle	- Coum Ser	Ervices-fund	0260-0269,
11	$v$, pt	PICTURE $x$	$\times 1301$	value -	-blsiness	Ss Services	0400-04031.
11	ves pir	PICIURE $x$	$\times(\geq 0)$	valle	-0ata Ser	dervices	0404
17	$v 1$ sictir	3ICIURE $x$	$\times(30)$	value	-puelic tia	transport	0590
17	V8 pictir	PICIURE $x$ (	$\times(30)$	valie	-fixeo Cha	harges	о800-0805'.
17	$v{ }^{\text {v }}$ Pi	PICIURE $x$	$\times(100)$	valle	-oistrict	ciopfratica	tcial $\quad$ :
11	vis PI	PICIURE	$\times 130)$	valce .	- district	t uperatica	grano tictal:
17	vil ${ }^{\text {a }}$	PICTURE $\times 1$	$\times 1301$	valle	- catipus 1	1,2,4, ERRCRS	to bal mer'.
71	viev ?	-icture x	$\times(2)$	value	'viz'.		ro bal
71	\% 3 v PI	Picture x	x12)	value			
71	HLC-CA:		ctirne	$x$	valle spacla	spacls.	
71	hlichuid		CTLat	x $\times$	valle space	spaces.	

01
HLLCARGA
02
$0 . L D-C I V$
OR FLC-DRUG,
ERUR-RECUKD.
02 FILLER
02
02
02
ERLHUND
02 FILLER
O2
0 FILER
$\begin{array}{ll}02 & \text { FILLER } \\ 02 & \text { ERCAN } \\ 02 & \text { FILLER }\end{array}$ $\begin{array}{ll}02 & \text { FILLER } \\ 02 \\ \text { ER-AREA }\end{array}$ $\begin{array}{ll}02 & \text { ER-AREA } \\ 0 \% & \text { FILLER } \\ 0< & \text { FILLER }\end{array}$ 02
02
02
ER-AMT
FILLER
01 LINE-A. 02 FILL
02 FIL OLSTRICI. PICTLKE $\times 1351$ 02 FILLER PICTURE $\times(54)$
01 Live-b. $\begin{array}{llll}02 & \text { FILLER } & \text { PICTURE } & \times(50) \\ 02 & \text { FILLER } & \text { PICTURE } & \times(24)\end{array}$
live-c.


01 LINE-D.


01
LTVE-FILLER PICTURE X(20) Value spaces.
02
02 FLLER PICURE
02 FHLLER PICTURE X(21) VALUE SPACES.
01

1 | PR |
| :--- |
| 02 |
| 02 |
|  | PRUGR-VMER PICTURE $\times 4351$

02 FILER $\begin{array}{llll}02 & \text { FILLER } & \text { PICTURE } & \times(25) \\ 02 & \text { A-C-1 } & \text { PICTME } & \times(4) \\ 02 & \text { FILLER } & \text { PICTRE } & \times(4 C)\end{array}$ 02 ExP-1 PPICTURE $\quad(1709.99$. VALLE SPACES.
ol oivisiun-name.
02
OILLER
02
$0-$ PICICTURE
02
0 PICTRE
FI

OI civisiun-ciertac.

02 Cr-EXD PICTLRE l17) value spaces.

01 civ-eirect-tuials.

Filler picilae xiz1) valle roivisiun oirect ccsts.

oz filler pictuke x(43) valle spaces.
of civ-crainc-iotals.
32 FILLER PICríx
02 FILLEA
0 PICTUR
02



01
MISC-LABELS.
02 FILLER PICTURE X(Z5) VALLE SPACES.
02 A-VAME PICTLAE


prcceluke divisouv.
SIART-frecelsshas.
UPLN INPUYMER-TO-TAAIE-FILE
CUTPUT CISK-IN. PUACH, PRINTER, ERYORS-TO-DISK.
mer-file.
READ MER-TOU-CATE-
GL TE ENC-UF-AUN
chack-Lisf.
If fuvio-ccee creater than ci gl to error-ck
1f mlc-cam bolal ro soaces, muve campls-ccoe ic hlo-can,
campus-cceeck.
if casus-cliof goual to hlu-can, gu ic campus-tctalsi
ctherwise, go to cait-i-CK.
CAMPIS-TOIALSI.
If CAMpus-CJDe equal ro 3, go ta erkch-ck.
If CAMPUS-CODE IS GNEATER THAN 4 , GO TC ERROR-CK.
if aripa-colg is less than cscc, gis io errca-ck.


If AREA-CCLIL IS LESS THAN 1151, GU TO ERROR-CK
It ARFACODE IS LESS THAN $12 C C$, ADO AMCUNT IC
MER-FIIE.
If AREA-CCIIE

zCCh.
if arfa-cuoe is tolal to 2011, co tc emrcr-ck.
co to ner-file. than acjo, aog amount tic instr-aum,
F GREA-COEE IS LESS THAN LC4C, ANO AMCUNT TC STU-PERS,

ciherwise, gu tj vacavt-arena.
Ier-ch.
F AREA-CUCE IS Ejual tu zC54, GO yo libr-tech-prcerl,
vacavi-area.
If area-ccif is less than zico, ju to trrur-ck.
If AREA-CUCE is LESS THAN JCCC, GU TG PRCGR-AREA
IF AREA-CCDE IS LESS THAN AICC, GU TC ERRUR-CK. Cu tc a ER-tile.
mainv-apafa.
If arei-ccle is less tha oici, gu to erkor-ck.
If area-ccef is less thav gecc, ado amcunt ic plant-cper

If area-icce is less thaid 622C, ado amulnt ic grds-dper,




- area-ccee is less than eaco, aod amcunt ic veh-cper

If arga-ccce is less than obcc, ou to errch-ck.
If area-ccot is less ihan $67 C C$, add
AREA-CCDE IS less ihan bicc, aud ancunt tc tel-gper,
GC MER-file.
If AREA-CCDE 15 LeSS fhan gecc, adu amuunt ic uttl-cper,
If AREACCDE IS LESS THAN EGCC, GO TO ERROR-CK.
DTHER-PLAIST-DEEK, GU TU MER-FILL AMOUNT IC
If AREA-CCDE IS LESS THAN 71CC, GO TO ERROR-CK
cu to mer-file.
if area-ccue is equal
CCTC MER-FLLE
GU TO MER-FILEAL TU 1219, ado amGunt to pCol-malnt,
f area-ccue is less than tbcg, aod amount tc grds-maint,
F AREA-COOE IS EQUGL to 13C1, a do amount to veh-maint,
IF AREA-CCDE IS EQUAL TO 73C2, ADO AMCUNT TO EQ-MAINT,
CO TO MER-FILE, OTHERWISE, GU TO ERROR-CK.
rocer-area.
if stop-eti is eqlal tio ab, perfurm libr-tech-prggrz.
prcer-areal.
if hlu-Div is ejual to spaces, move div-code to hlu-div,
if hlc-civis not eqlal iu oiv-cooe, perform prcgr-labels. PERFORM DIVISION-SLBTUTALS
PERFORM DIVISIUN-LAREL-L
Perform divisiun-label-1,
move civ-cuoe to hlu-DIV.
IF ERR-CK-SWITCH IS ENLAL TO 1, go TO ERROR-CK.
PROGR-CCCE IS LESS THAV C4,
ACC AMOUNI ACO AMCUNT TO CAM-DIV-OH, co to mer-file.

## pacgr-areaz.

if hle-prcir is equal to spaces, mjue prcgr-ccoe tc hlo-prcgr
If PROJR-CODE is vor fqual fo hlo-progr, PEKFORM PROGR-LABELS.
move prugr-cide til hlo-paogr.
pacgr-suarmials.
ADL AMUUNT II PRUGR-DIR-EXP.
ADC AMGUNI TO DIV-DIR-EXP.
ACC AMJUNT TO CIV-UIR-EXP.
co tc mer-file.
rivistuy-simptital
MOVE CIV-GF- Ti Jotexp.

ACC CIV-Gt PIV-DIR-EXP GIVING DIV-tutal
MCVE CIV-fital
WRITE A-LIVE Fivo div-itirici-tjials after advancinc 2 lines.
Write a-l ine frow division-uverhead after advanciag 2 lines,
WCVE SPACRS DO UATA. mive spaics tj gata.

```
 MCVE SPacts Tij R-LIdE
 GuL ME-civ 隹P-CAM
 Gve bi Co posccil
 *uve civ-0t i, pomp.
 MUVE CIVGOD
```



```
givislu-lahel-1.
 If civ-coce is equal tu 21, muve di go o-name, else
 * CIV-COLE IS EOUAL IU 22, MLVE O2 IN D-NANME, ELSE
 IF DIV-COCE IS E,OUAL IU 23, NOVE US IC O-NAME, ELS
 lol
 IF
 IF DIV-CUCL IS EQUAL IU 27, MLVE O7 TU O-NAME, ELSE
 IF OV-CGCE IS F&UAL TO 28, MCVE Do IO O-NAME, ELSE
 NCVE I TJ FRR-CK-SNITCH.
 morcra reacivgzog divisiov-naml after advancing m lines,
 muve spaces tu d-vame, data.
pucck-lapels,
 MUNE HLD-GREA IU A-C-1.
 WHITEA-LINE FRUM PKUGR-NAME AFTER ADVANCING I lines.
 Mve fle-civ ru r-nIv,
 JVE HLD-AREA TU O-AR,
 MOVE FLU-CAM ICLLCCAM' R-AMT,
 WITE PROCK-IO-DISK
 MOVE zERCS TO PRUGR-UIR-EXP,
IP&-1+C1-PzeckI.
 alig amuunit tu litm-tufal
 mOVE BJTO TSUPGGK-TUFAL,
 AFL AMJUNT TO CAM-DIR-EXP.
IER-tfGF-pajgrz.
 MGVE cz IC c- Jame
 hite a-line regm divisiou-name after aovancing y liaes
```



```
 MuVE LIBR-Toral fo Exp-1.
 muve libk-tuial to div-tl.
 MOVE LUAREA ITI A-C-1
 MVE LIBR-I JIAL TO D-T-
 WrITE A-L I#E From prugr-NaML AFTER ADVANCING l lines.
 MITE ALINE FROM DIV-DIRECT-IUTALS AFIER AOVACINGS}2\mathrm{ LINES
```



```
 gom iv-gravo-tutals af ter advancing 2 lines.
 OVE LIGR-TDTAL TU O-mm
 cvl lamea cocama
 uve laciv to d-civ
 WHITE SRCGR-TU-DISK
 Mive zeRGS IU C-T-D.
 ExP-1,
 MOVL g, IE STJP-GO.
 NONE SPMCES TU N-LINE
 Move cze tu p-cure.
 MgVF HINO P-CISCRP.
```

    Nive cercs tu p-ant,
        Wétif s-L It C .
    can-s-ck.

LaSt-CARC-Sua.
PERFGRA PRGGA-LAAELS.
PERFGRM CIVISLOY-SUBIJIALS
canpus-idial-acm.
ace c-CNTR, Aux-serv, insth-adm, stu-pers, libr-serv,
HEALTH-SERV TU CAM-ADM-TL
adL CAM-ACM-TL TO CAM-SERV-TL
PERFCRM PEACIVGZ.
MOVE C-CNTR TO A-EXP
EKFOMA WRITE-A-LINE 3 .
MUVE AUX-SERV Ti, ATEXP.
MUVE AR TC A-iNAME.
MERFGRM WRITE-A-LINEI.
MOVE TSTRR-ADM TO A-
MCVE A4 TC A-NAME.
PESFOM
PERFORM WRITE-A-LINEI.
MOVE STU-pERS TD
MOVE AS TO A-vame
PERFORM WRITE-A-L INE1.
MUVE LIBR-SERV IC A-EXP
MJVE Ab TO A-vame.
PRFOKM WRITE-A-LINE:
MOVE REALTH-SERV IO A-EXP
MOVE HEALTH-SERV TO A-EXP
MOVE A7 IO A-VAME.
PERFORM WRITE-A-L INE
PERFORM HRITE-A-L INEI.
MOUE CAM-ADM-TL IU A-EXP
MOVE AG TO A-VAME.
white a-line from misc-labels after auvancing 2 lines.
WKITE A-L INE FROM MIS
MOVE SPACES TO DATA,
MOVE $Z$ IERCS IO A-EXP.
MOVE SPACES TU DATA,
MOVE SPACES TU A-EXAME.
MUVE SPaCES IO B-L
MOVE AFA TO P-COLE.
muve hlo-cam to p-cam.
MOVE CAM-ADM-TL TO P-AMT.
hrite erline.
hove ferds to cam-aum-tl.
campus-total-fld.
acc fielc-ciper, fielo-maivi tu cam-fld-tl
acc cam-hlifl
-
CAN-FLCl.
muvf fiel c-ijper to a-exp,
MOVE EE TC A-NAME.
PERERM WRIE-A-LINE
HUVE
MUVE FIFLC-MAIVTIO A-EXP,

CAM-
muve cam-fictil to a-EXi.
Write a-L line haide misc-laeds after ajuancing 2 lines.
Muve spaces to data.
MOVL Ptercs tu A-Lxp.
wove spaces ta a-vame,
Move spaces ruablive

Nuve mic-can tip-can.


cancus-tital-pl
ace posl-eper, pojl-malwt to cam-p.jol-tl

- fl IU CAM-SERV-TL.

CAN-POULI.
MOVE PuJl-LiPER TU A-EXP,
MERFERY WRITE-A-LI.
MLVE PJUL-MALTI TO A-EXX,
MUVEFZ TC A-VAME.
PERFCRIA WRITE-A-LI IVEI
can - pull ${ }^{2}$.
huve cam-puJl-IL IO A-EXP,
MUVE FSTC A- ALME.
hisc-labels after alivancing 2 lines.
MOVE LERCS IJ A-EXP,
Muve spaces to a-live.
MuVE fif iu p-cone.
MIVE MLD-CAM TUP-CA
MUVE E 3 HOP-CISCRP'
MJVF CAM-PUSL-IL rOP-AMT.
N CITE H-LINE,
MUVE LERCS TU CAM-PUUL-TL.
campus-ictal-maliat.
ATE PLAVT-UPER, GRDS-JPER, VEH-JPER, TEL-OPER, UTIL-CPER, plavi-malit gros-maint, Veh-maint, eg-maint,
CTMER-PLAVI-GPER TO CAM-HALNT-TL
CAN-izalivit.
mule plant-iper iu a-fxp,
MOVE AS TO A- DMME.
MUVE GiNOS-GPRe TO A-EXP
mOVE CI IC A-NAME
MUVE CI IC A-NAME.
MOVE VLH-CPER TO A-EXP,
MUVE GI TO A-VAML.
PERFORM
PERFORM WRITE-G-LIVE1.
MOVETEL-CPEK TJA-EXP,

PERFCRA MRITE-A-LIVEI.
MIVE UTIL-UPER TUAA-
MLVE UTIL-UPER TO A-EXP
PEAFURM WRITE-A-LINE
MOVEPLANT-MALNT TU A-LXP

muve Gres-malyi is a-ix.
move LITC A- AMML.

MLVE MEH-MALN ROA A-E
PERFOKM WRITC-A-I:TEI.


MOVE GIHER-PLATI-JPERS IU A-LXP,

can-malispa


Muve spaces ta data

MJVE Spaces Tu b-LIVE.

MOVE QL TO P-CISCYP.

hrite arl live. cam-matititl.
eveninti-sal-totals.
WRITF a-L liak from line-f after advavcing 3 lines.
MUVE EVE-SAL io a-EXP,
MUVE AS TU A-iAAME.
PERFOKA WRITE-A-LINE
AOLE EVE-SAL TH COLLETL.
MOVE A SA TO P-COCE.
MUVE HLC-CAM IU P-CAM.
MUVE A3 TOPGCISCRP.
MUVE A3 TOP-CISCRP.
MUVE EVESAL IU P-AMI.

campus-ticialsz.
acc Cay-civ-oh, cam-dir-exp, Cam-SERV-il ro ccll-tl. ACC COLL-TL, ER-TUTAL GIVIVG CCLL-GRD-TL.
ACL COLL-GRD-TL TO CLM-COLL-GRD-IL
MOVE BAM-COA-VAME.
PERFDHM WRITE-A-LIVEI.
MOVE CAM-CIR-EXP IO A-EXP
MOVE CAM-CIR-EXP IO A-EXP
MOVE SI IC A-iNAME.
PERERM WRIIE-A-LINEI.
MOVE CAM-SERV-TL IS
MOVE CAM-SERV-TL TH A-EXP
MOVE OI TO A-NAME.

MOVE CULL-TL TOA-EXP,
MOVE TI TO A-VME.
MOVE TI IO $A-$ VAME.
PERFURM WRITE-A-LIVE
MCVE LR TOTAL TOLA-EXP,
MOVE T2 IC A-NAME.
GRFGRM HRITE-A-LIVE3.
MOVE COLL-GRO-TL IU A-EXP
PERFDKM WRITE-A-LINE 3.
meve-zlress-spacfs.
move soaces tu hld-arla, hld-jiv, hlo-progr, hld-cam.
muvf LEROS TO C-CNTR, AUX-SERV, EVE-SAL, instr-adn, STU-PERS,
IBR-SERV, HEALIt-SER, 'RLAYT-OPEK, GKDS-CPER,

VFHMAIVI, EC-MAIVIDDIV-DIR-EXP, DIV-OH. CAN-ADN-TL,
THER-PLANI-JPER, CAM-FLD-TL, CAM-POOL-TL, CAN-MAINT-TL,
CAM-CIR-EXP, CAY-OIV-JH, CCLL-IL, COLL-万RD-IL, ER-TCTAL,
Cü TC CHECK-List.
cisin-sinetutalst.
It area-cuce is less than cict, ado amelnt tc supt-cffice
it area-cucer is eqlal fu iacs, go fo errcr-ck.

If area-cicle is less ihan czic, ado ameunt if ee-serv,


GU TDNER-FILF.

if area-cule is lles thain calc, ado amilut ic bus-serv.
GO TO mer-file.
f drea-code is less than c59c, do ic errlz-ck.
arca-cocic is ejual to ossc, ado amülint to pub-trans.
If area-cule is liss than cecc, go ic errcr-ck
f area-ccid is less thay cecs, aon amcunt tc fixeu-chrg,
it area-colif is ejlal tu csce, aud ancletitic bus-serv,
cu io MER-File.
ff area-ccep is less than $12 c o$ a vo area-clide is greater
thain 1130 , and amjunt ic aux-serv, gG ic mer-file.
ExC-OF-2u\%
ADL SUPT-OFFICE, ED-SEKV, COM-SERV, BUS-SERV, OATA-SERV,
PUATIAAVS, FIXED-CHKG, PLANT-CPER, GRDS-CPER, HIELC-CPFR, POJL-OPEX, VEH-JPEK, TEL-JPER, UIIL-CPER. AUX-SERV,
 crics-maint, veh-maivi, eq-maint, giving dis-ade.
adC [Is-aCM TO CAM-SE?V-TL
cista-rutalsz.
dve supi-luffice ic a-exp,
WVL V1 TC A-VAME.
MUVE ED-SEKV H A-EXD
MVVE V2 IC A-YAME.
PERFORY WRITE-A-LINEI.
MGVE COM-ST.RV IOA-EXP
MOVE COM-STRV IO A-NAME.
PERFORM WRITEEA-LINEI,
MOUVE EUS-SERV TO A-EXI,
move bos tu a-vam:
PERFORM WHITE-A-LINEI.
uve cata-serviou a-exp,
MLVEVE TO A-WAMF.




PERFCRM WRITE-A-C IVE:
PERFCRA CAN-MALNIL,
PERFCR, CAM-MALVI
PERFCRA CAM-FLIM,
perferen can-p.juli.
cIStr-suetutals.
acl cis-alm, vic-aing, giving ann-tutal.
CVE LIS-ACM TU A-EXP,
PERFORY naliteralive

MOVEVITO $A-v a M E$
ERKORM MNILE-A-LIVE3.
10 4 -Exp
PERFCRM WHITE-ALIINE 3
MLVE RR-ICTAL IO A-EXP
PERHCRM WRITE-A-LIME



$\Delta C C$ cIS-GAi-TL TJ SUN-CULL-GRD-TL
MOVE CUN-CHL-GRC-TL
MDVE VII TU A-GAME.
PERFOKA m+ITE-A-LINE:.
cistr-suetutalsa.
MJVE Spaces io b-live.
MOVE VI2V TC
move CODE.
MOVE RLD-CAM TU P-CAM.
MOVE VI2 TOP-GSCRP.
MOVE CIS-ALM TO D-AMT.
WRITE B-L IİE.
MCVE SPACES TO R-LINE.
MUVE VSV TU P-CODE.
MUVE YSV TU P-COCE.
MUVE SPACES TUP-CIV, P-AREA.
MOVE VA IC P-CSCI
MOVE VATCP-CISCRD.
MOVE VOC-AUM IU P-ART.
MOVE VOC-AUM
WRITE B-LINE.
CLUSE MER-IU-dATE-file,
PUNCH,
PRINTER,
PKINTER,
DISK-IV.

WRITE-ERRCR-1.
CLLSE ERRCKS-TU-DISK.
OPEN I QPUT ERRORS-TO-OISK.
W2ITE-ERROK-Z.
reac errors-tu-otsk, at eno cluse errors-to-disk stop run. CISPLAY E-LINE.
cu to wrilt-Ezkor-z.
SIGP RUN:
WRIIE-A-LINE:
frite a-lise from misc-labels afier aduancing l lines Move spaces to nata,
MJVE $l$ ekcs to a-EXP.
WRTIE-A-LINE:
write a-life from misc-latels after aluvancing 3 lines WRITE A-LIJE FROM MISC-LABEL
MOVE SPACES TO DATA, A-NAME. move lercs to a-exp.
ERRUR-CK.
muve func-cuoe to er-flvo.
MOVE CATPLS-CIDF TO EH-CAM.
MOVE ARFA-CODE TJ FR-AREA.
MUVL AMULTI TI ER-AMI.
MuVL AMUNT TII ER-AMI-
MOVE ERRCR-RECORD IO
I-LINE
WRITE EL LiNE.
ACC AMEUNT TO ER-TOTAL.
move spaces to er-fund, er-cani, er-arla.
GLi IC MaER-FILL.
peac
whitt a-l live frium lini-4 after auvancing s lines.

write melive from line-i afier aovancine 2 lines.
heaciacz.
move mlgi-can io c-cuoe.
Write a-live from line-o after aovincing o lines.


FC Tit-to-oisk RECCRDIAG MCOE IS F
BLCCK COMIAIAS 26 RECCRDS RECCRO CCATAINS 135 CHAKACIERS
LAEEL RECORDS ARE SIANCARDI LAEEL RECCROS ARE SIANCARC
DAJA KECCRC is prcGR-HRS-CISK.

CI progr-hrs-cisk.

$\mathrm{C}_{2}$	D-CAM		
02	D-Jiv	PICTLAE	$x_{1}$
02	0-prcgr	pictire	x x .
02	d-da-hrs	picture	9f10).
c2	D-ov-hrs	pictlre	9(10).
C2	U-EA-hrs	pictire	9(1c).
02	d-ev-hrs	picture	$9(10)$.
c2	d-da-hasf	picture	9(10).
02	d-cv-hasf	pictire	s(1c).
02	c-EA-hasf	picture	4(ic).
c2	o-ev-hasf	pictire	g(ic).
02	D-Progr-tim	pictire	s(ic).
02	d-Prcgr-hasf	pictilre	g(ic).
02	D-PE-TIH	picture	9(10):
02	D-V-Jith	picilre	s(10).
c2	O-E-JIH	PICIL	s(10).

fc printer
reccrding moce is a RECCRDING MCLE IS
RECCRD CGNIANS 133 CHARACTERS
LABEL RECCROS LABEL RECCROS ARE CMIITE
OAIA RECORD IS A-LIAE

01 A-LINE.
pictlere x(133).
working-stcrage sectign.



[^5]CLASS-FILE2.
if hld-cam ecual ic spaces, move campls-cooe ic hle-cam.
If mLORFORM CAMPLS-LABEL.
if hlo-giv egual ic sfaces, meve civ-ccce il hlc-civ.

HLC-CCCETEST.
a camb-ccoe is nct eglal ic hlc-cay, ol tc campus-ttitalsi.
if div-code is nct egual ic hle-civ, ge ic civ-titalsi.
if progr-cooe is nct egual tic hld-prcig. ge ic frcgr-totalsi.
ictal-instr-hrs.
MLLITPLY HRS-PER-WK BY GRT-hKS GIVING CLASS-TIT.
ACD CLASS-IIH TC ALL-IIH-PRCGR.
ADC FRSXASF IC
ADC HRSXASF TC ALL-HASF-FRCGR.
ADO HRSXASF TO ALL-MASF-CAM.
DAY-EVE-SORT.
If dar-eve-ccoe is eglal ic l-ccoe,
acc class-tit to all-Car-hrs-prg, ge tc day-vcc-sort.
if cay-eve-code is eqlal ic e-ccce,
ado class-tit to all-eve-his -fkg., gC ic eve-vil-sort.
oar-vCc-sort.
IF VCL-CGCE IS ELLAL IC SPACE:
ACC CLASSSTIH TC PRCGRTIH
CIVTIH-DA
CLAS
ALC CLASS-IIH TC CAM-IIH-OA,
ACC CLASS-IIH TC DIST-TIHECA,
ACC HRSXASF TC PRCGR-HASF-CA,


go ic pe-scrt.
ACC CLASS-IIt IC PRCGR-TIA-CV.
ACC CLASSIIH IC CLV-IMECV.
ACC CLASSTIH TI OISTIIH-CV,
ACC HRSXASF IT PRCGR-HASF-CY,
ALC HRSXASF IC PRCGR-HASF-CV
ACC HRSXASF IC OIVHASFCV,
AOD HRSXASF IC CAM-rASFFCV,
ACC MRSXASF IC OIST-HASF-DV.
EVE-VCL-SORT.
F VCC-CCOE IS ECUAL IC SPACE,
AOC CLASSTIL TC PRCGR-TIH-EA,
AOC CLASS-TIF IC PRCGR-TIHEEA,
ADC CLASS-TIH TC CIV-TIH-EA,
ACC CLASSITIH TC CAN-IIH-EA,
ACE CLASS-TIH TC CIST-TIH-EA,
ACC CLASS-IIH IC CIST-TIH-EA,
ADC
HRSXAF TC PRCGR-HASF-EAA
ACC hrSSXASF TC CIV-HASF-EA,
ACC HRSXASF TC CIST-HASF-EA,
aOc CLASS-IIH IC PRCGR-TIH-EV,

ACC CLASSTIAH TC CAM-TIAEEV,
ACC HRSXASF TC PRCGR-HASF-EV,
ACC HRSXASF TO CIU-HASFEV,
aCC HRSXASF IO CIV-HASF-EV
ACC HRSXASF IC CAM-MASF-EV
ACC HRSXASF IC CAM-MASF-EV,
go tc pe-scri.

PE-SORT
if area-coce is eglal tc 2711, alc class-ith ic pe-tia, else
IF AREA-CCCE IS EGLAL IC 2r2L, ACC CLASS-TIF IC PE-TIH, ELSE

if areaccoce is eglal ic 2724, acc class-tit ic petit, els
GO IC CLASS-FILELEGAL IC 2729. ACC CLASS-tit IC PE-TIH.
campus-lagel.
MCVE CAMPLS-CCLE TL c-ccce.
mitie a-line fron cam-label after aivancing o lines.
civisich-label.
if div-cce is eclal ic zc, mcve di ic c-name, else
if div-coce is equal tic 21 ; mcye ci ic o-name, else


${ }_{\text {if }}^{1 F}$ OIV-


oisplay bac calat, civ-ccoe lpca ccascle, move oe to d-name.
mRIte a-line from div-label after acvancing a lines.
Move spaces to oatar d-ane.
pregr-ictalsi.
ACD PROGR-TIH-CA, PRCGR-IIH-EA GIVING PROGR-ACO-HRS.

MOVE HLO-DAM IC O-CAN.
MOVE mLD-progr ic coprcgr,
cive progr-tilh-ca ic ooca-hrs.

MCVE PROGR-TIM-EA TC O-EATHRS,
MC OEVEHRS.
MOVE PROGR-HASF-CA IO E-CA-HASF,
MOVE PROGRHASF-DV IO D-CVHSF,
MCDE PROGR-HASF-EA IC
MOVE PROGR-HASF-CV IO C-CVHASF,
MCVE PROGR-HASF-EA IC C-EAHASF,
NCVE PROGRHASF-EV IC C-EVHASF,
NCVE PROGR-HASF-EV IC C-EVHASF,
MOVE ALL-IIH-PROGR TO C-PROGR-TIM.
MOVE ALL-TIH-PROGR TO C-PROGR-TiH,
MOVE ALL-HASF-PROGR TC D - PRGGR-HASF,
MOVE PE-IIH TC O-PE-TIM,
MCVE PROGR-VGC-HRS IG $C-v-t i h, ~$
GCVE ALL-EVE-HRS-PRG IC c-E-TIF.
hrite progr-hrs-cisk.
AOO ALL-TIH-PRCGR IC ALL-TIH-OIV.
AOD ALL-TIH-PRCGR IC ALL-IIH-CAM.
MOVE AREA-HLD IC AREA-PRINT,
MOVE ALL-CAY-HRS-PRG TC PRNT-
M
MOVE ALL-CAY-HRS SPRG TC PRNT-GAY-HRS.
MGVE PROGR-ACC-HRS TG PRNT-ACAD-HRS
MCVE PRGG-VCC-RRS TC PRNT-VCC-HRS.
MOVE ALL-EVE-RRS-PRGTC FRNT-EVE-HRS,

- RIVE ALL-TIH-PRCGR IO PRAT-TCTAL-HRS

MOVE SPACES IC CATA. AREA-PRINT, hlC-frcgr.

- PRAT-ACAD-RRS

PRAT-ACAD-FRS
PRNT-VCC-HRS,
PRNT-DAY-HRS,
PRNT-EVE-HRS',
FRAT-IGTAL-HRS.
progr-stcrace.
prcgr-ictalsi.
GC TC CLASS-filez.
oiv-totalsi.
PERFCRM PRCGR-ICIALSI.
move oiv-name ic pant-ilite.

ADO CIV-IIHOV, CIV-IIH-EV GIVIAG DVV-TIM-VHRS:

MOVE OIV-IIHEAHRS IG PRATSUM-AHS,
MOVE DIV-IIH-VHRS IC PRNISUM-SURS,
MOVE DIV-TIH-VHRS IT PRAT-SUM-VHRS,
MOVE OIV-TIH-DHRS TC PRAT-SUM-DHRS,
MGVE DIVTIH-EHRS TO PRAJ-SLM-EHRS.
MOVE ALL-TIHEOCVIC PRAI-SLH-THRS
wRITEA-LINE FRCM prGAT-CVG-SLM afien acvancing 2 lines.
if hlo-oiv is noi egual ic 27. GC ic funch-civ-hrs. else
mOVE SPaCES TC P-LINE,
MOVE $-27 P$ : IC P-CGE
meve move - 27P• IC P-CCDE,

MOVE PLD-CE-DISCRP 10 P-CISCRP,
MOVE PE-IIH IC P-ANT.
move lercis ic p-art, pe-ilit.
plach-oiv-hrs.
MCVE SPACES TC P-liAE
MOVE TOH TO P-CCOE,
MCVE HLO-CAM IC P-CAM,
MCVE HLCIV IC P-CIV:
MOVE DIV-DISCRP IC P-CISCRP

MCVE SPACES IC HLO-DIV, hLO-PRCGR
CVE LERCS IC P-AMT, CIV-STCRAGE,
PKMI-SLA-VMRS. FRAT-SLM-EHRS.
oiv-totalsz.
GC ic clajs-filez.
camplestictalsi.
perfchm civ-totalsi thrl punch-civ-mrs.
ADD CAM-TIHMA, CAM-IIT-EA GIING CAM-TIR-ATRS,
ADD CAM-TIH-DV, GAM-TITEEV GIVING CAN-TIF-VFRS,

NCVE CAM-NAME IC PRAT-TITLE,
CVE CAM-IIT-AHRS IC PRAT-SLM-AHKS
MCVE CAM-TIIG-GRS IL PRAT-LLN-VRRS
MUVE CAM-IIH-GRRS IC PRAT-SUN-CHRS
MCVE CAM-TIH-EHRS IC PRAI-SLK-EHRS
MOVE ALL-TIHEGAM IC PRAI-SUM-THRS.
write a-line frcm print-civ-sum afier acvancing 3 lines.
mcve spaces ic cata, frititile.
plach-cam-totals.
MOVE SPACES IC p-line.
MCVE CRR IC P-CCOE:
MUVE RLD-CAM IC P-CAN.
MCVE CAM-DISCRP ICAPCISCRP.
MOEVE
MOVE ALL-TIM-CAM TC P-AMT.
move spaces ic p-line
MOVE SPACES IC P-LII
MGVE VAR TC P-CCUE,
MCVE CAM-TIM-EHRS IC P-AMT,
GVVE EVE-CISCRP IC p-oISCRP.
hove spaces io p-line.
Move hif ic p-ccoe,

MCVE ASF-CISCRP IC P-CISCRP
MCVE ALL-HASF
hRIIE P-LINE.
MCVE SPACES IC PlC-

campls-tctal S2.
ge tc class-filel.
cisirici-tctals.
PERFCRM CAMPUS-IOTALSI.

ADO CIST-IIH-DV, CIST-TIHEEV GIVIAG CIST-TIH-VRRS
AOC CIST-JIH-OA. CIST-TIH-CV GIVING CIST-TIH-CRRS
ADO OIST-IIHEA; DIST-TIH-EV GIVING CIST-TIH-EHRS
MCVE DIST-OISCRP IC PRAT-IITLE,
MOVE DIST-TIH-AHRS IC PRAI-SUM-AHRS,

MOVE OIST-TIH-EHKS IC FRAI-SLM-EHRS:
MOVE ALL-TIH-OIST TC FRAI-SUM-THRS.
WRITE A-LIAE FROM PRINT-CIV-SUM AFTER adVancing 3 lines
move spaces to p-line
MOVE OHR TC P-COCE
MOVE DIST-CISCRP IC P-CISCRP.
MCVE ALL-TIH-CIST IC P-AMT.
MRITE P-LINE.
move spaces to p-line
MOVE OIST-VOCOPE IC P-DISCRP
MOVE OIST-TIH-VHRS TO P-AMT.
CRITE P-LINE.
mrite p-line.
clcse-files.
close class-mstr-file, prinier, punch, tim-io-cisk.
acing.
hrite a-line frct line-a afier acuancing o lines.
WOVE SPACES TC CATA.
hove spaces to da line-b afier advancing 2 lines. moite a-Line frcm line-c afier acvancing 2 lines.
// exec lakeot

## CHAPTER 5

## SIMULATION PROGRAM OUTPUT

## 5. 1 Basic Data Output

The data output which follows is the result of computer program "LAS3". That is, it is the simulation model output of the Instructional Program Total Cost Report. The format is the same as that developed in Section 3. 1. The simulation data is for the fiscal year 1969-70.

The program summarizes each instructional program's costs and, in addition, gives instructional division totals, campus totals, as well as college district totals. The total fiscal year instructional hours are shown for each program including the computation of a cost-per-instructional hour.

At the end of the data report for each campus, a listing of the basic factors used in allocating the indirect expenditures is given. The factor for maintenance is a result of the application of the formula described in Section 3. 2.

The simulation input data did not include a breakdown of instructor's salaries by instructional program within an instructional division. Therefore, the program computes for each division a cost per instructional hour. The program then uses this rate to allocate to each instructional program within the division its share of salary
costs based on the number of instructional hours each particular program generated. The program then reminds the reader through the footnote that salaries are included in the Division Overhead allocation.

The computer model is written in such a manner, however, that if the basic salary input data is already allocated to instructional programs, then the salary expenditure data would be included in the program output line entitled Program Direct Costs. This flexibility is achieved without changing the basic logic of the simulation model program.

The input and output data files used in "LASl" and "LAS2" are found in Appendix IV. All of the program reports are paged in such a manner that each instructional program report appears on a separate page. This allows for convenient distribution to the appropriate faculty members. The following pages are illustrative of the allocation report. The complete District instructional program report is available by contacting the Data Services Department, Foothill Community College District, Los Altos, California.
fluthial compumity college uistrict

## total prcgiam cosis

data is fer fiscal year 69-70
campls-1
prCgram 2113

civisica overheac*	20808.00	
ciappls alim cyerheal	6852.00	
cisifici overheac	4572.00	
vcc eoul aom cverheac	1116.00	
fielo mainienance	0.00	
pccl maintenance	0.00	
campls maintenance	2432.62	
sletotal - inlirect		35780.62
evening salaries		615.60
prligam cirect cest		2047.75
prcgram total costs		38443.97
mutal instr hours	1200	
cest per instr heur		32.03

*salaries are includeu in oivisicn cverhead.
aicllgical sciences
civisicn slmmary

divisicn uverheac*	275289.84	
campls aum everhead	90651.96	
uistrict uverread	60487.56	
vac elle aum cverhead	7309.80	
hele maintenance	0.00	
pccl maintenance	0.00	
campus mainienance	21651.58	
slbiutal - indirect		455350.74
evening salaries		20930.40
pregram cireli cost		47908.85
prlugar jotal cists		524229.94
detal instr hours	15876	
lcst per instr heur		33.02


Campls-1		
prigkam <4.11		
civisicn overheao*	124701.12	
campus aom cierheao	83868.48	
cisitict overheao	55961.28	
voc educ alm overheao	0.00	
fielo maintenance	0.00	
pgul maintenance	0.00	
campus maintenance	30108.29	
slbtutal - indirect		294639.17
evening salaries		33057.72
prcgram direct cost		3768.64
program tital costs		331465.53
total instr hours	14688	
clst per instr hcur		22.56

CAMPLS-1
prcgram 2711

civisicn cverheac*	8049.24	
campls aom cverheao	1987.08	
cistrict overheac	1325.88	
voc ecuc adm giverhead	323.64	
fielo mainitenance	0540.92	
plol maintenance	0.00	
campls maintenance	463.43	
slbtotal - inoirect		22690.19
evening salaries		861.84
prcgian oikect cost		0.00
prigran total cests		23552.03
icial instr holrs	348	
ccsi per insir hcur		67.67

*salarits ake incluueu in civisici cuerheao.

CAMPLS-2

priéram < $7 \times 5$		
Livisitn civerheale	0.00	
campus alm cverheal	0.00	
elstrict cverheal	0.00	
vue tlll aid cuerheal	0.00	
hielu mainienance	0.00	
pcul mainitnance	10434.15	
campls mainienance	0.00	
sldidial - inoireci		16434.15
evening salaries		0.00
pregram cirect cost		75.98
prugrar tgial cgsis		17185.13
ictal instr mugrs	00	
ccst per instr hcur		0.00

* Salaries are incluceo in civisicn cuerheac.

- Salarites are includel in civisicn overheac.

```
campls-2
\begin{tabular}{|c|c|}
\hline civisiln overmeau* & 2049292.3 \\
\hline campls aim cyerhead & 1050657 \\
\hline listrict overheac & 644606. \\
\hline vic ecle ajom civerheat & 36247. \\
\hline fielc mainienance & 7633.08 \\
\hline plil maintenance & 16434. \\
\hline lampls maintenanc & 37385 \\
\hline
\end{tabular}
 LAMPLSMATENANCE
 sligtotal - incirect
 4178696.79
 417352.20
EVEMing Salaries
prigrar total cosis
igtal insth hours
ccsi per instr hcur
169188
cost plr insir hcur
cCSt per insik hicur 28.8
```

* Salaries are ingluceg in oivisicn cuerheáa.
cistrict summary

oivision overheao*	4232233.92
camplis aum ciermead	2652488.40
cistrict overheao	1313078.4 C
vic eclc adm overmeac	65531.52
fielo maintenance	18174.00
pocl mainienance	32916.11
campus mainienai	78176

## suetgtal - inotrect

EVENing SALARIES
program total costs
9791412.55
ictal inste hilurs 344640
CCST PER instr hacur 28.4 !

* Salaries are included in oivisich iverheac.


## 5. 2 Subsidiary Data Output

The two preliminary computer programs "LASl" and "LAS2" entitled MER Data Summary Report and Class Master File Data Summary Report, respectively, provide the appropriate input data for the simulation model program "LAS3" described in Sections 4.2 and 5.1. The output data generated by these two programs includes both computer card files as well as disk data files. ${ }^{15}$

Data being handled by these two programs provides other useful information in addition to creating the data files described in the previous paragraph. This data is illustrated in the data printouts found on the following pages.

The MER Data Summary Report lists by instructional program, by instructional division, by campus, and by total district a summary of direct expenditures incurred during the fiscal year. Since not all expenditures incurred are applicable to an assignment to an instructional program, a sum entitled "Error Routine Total" is generated in order that a reconciliation of the computer report and the appropriate accounting ledgers can be made. Examples of expenditures not applicable to instructional programs, but included in the Error Routine Total would be new construction expenditures and community service program costs.
${ }^{15}$ Disk data files are data storage devices with direct access capability to the main computer.

The Class Master File Data Summary Report lists by instructional program, by instructional division, by campus, and by college district the total instructional hours for the fiscal year generated by the college district's instructional programs. These instructional hours are categorized by day, evening, academic, or vocational programs. Sample pages of these reports follow. (For the full reports, see the reference found in Section 5.1.
fouthill commlaity cullege district
inoirect cest allucayion hurking tctals-mer file
campus 1
biglcgical sciences

2112	125.09	
2113	2047.75	
2114	2125.51	
215	22168.07	
2119	2291.43	
DIVISION OLRECT COSIS	30556.29	
DIVISION OVERHEAC COSIS	275359.87	
DIVISICN TOIAL-ALL CCSTS	305916.16	

camples 1

blsiness and data prccessing 2219		
2220	12.33	
2230	220.03	
2240	174.76	
2250	278.31	
divisicn oirect ccsis		685.43
oivisica cverheao costs		165001.37
oivisicn total-all cesis		165686.80

carpls 1

```
CAMPLS CENTER
 M INIRLCIICNAL ACMIMISIRATICA
 STUOENT PERSCNNE
 SHGOENT PERSCNNEL
HEALTH SERVICES 4ICI-4201
campls aomimistratiga tgial
```

FiELO CPERATICA
FIELO MAIATENAACE $7220-6229$
fiell cperaticn/mainienance
$\begin{array}{ll}\text { PCCL CPERATICN } & \text { 6230-6239 } \\ \text { PCEL MAINEAANCE } \\ 1219\end{array}$
pccl cperatica/maintenance

PLANT CPERATICN GLO1-6194
GRCUNDS OPERATICN
6200

$\begin{array}{ll}\text { GRCUNGS OPERATICN } \\ \text { VEHICLE CPERAIICA } & 6200-621 \\ & 6300-639\end{array}$
$\begin{array}{ll}\text { VEHICLE CPERAIICA } & 6200-6219 \\ \text { TELE OPERATICN } & 6000-6399 \\ \text { LISA }\end{array}$
$\begin{array}{ll}\text { TELE OPERATICN } \\ \text { LILIIIES CPERAIICA } & 6600-6699 \\ 6700-679\end{array}$
$\begin{array}{ll}\text { PLAAT MAMNTEAACE } & \text { 6700-6799 } \\ \text { G100-199 }\end{array}$
GRCLNOS MAINIENANCE 7100-7199
VEHICLE MAINTEAANCE 7301
EGUIP MAINTEANCE
$\begin{array}{lll}\text { EGLIP MAINTENANCE } & \mathbf{7 3 0 2} \\ \text { CIHER PLANT CPER } & 6900-6999\end{array}$
gen cper-maint total
campus 1
campls summary tcials
evening certificateo salaries
civisicn cverheac anc salaries oivisicn oirect expense tcial
gen cper-maint tctal
campus ictal
419109.39
$<184026.41$
4184026.41
263654.03 1336107.20

420<897.C
errcr routine ictal
21924.64

CAMPUS GRANO TCTAL 4230821.67
43147.80
$61667 . \mathrm{C}$
195054.13
499596.78
499555.78
19355.16
19567.14
1003388.0y
9766.38 10543.82
16428.89
53.07
16481.96
01834.07
$27557 . \mathrm{Cl}$
4733.58
58542.47
99242.23
7479.57
7479.57
1547.29
0.00
0.00
4757.12
305693.34
focithill commlaity cellege disirici
indireci cosi allocaiticn

## class master file

campls 2
日IClCgical SCIENCES
2104
2112
2116
2117
2118
2120
2125

ACAD HRS
5868
1032
3216
10188

VCC HRS
12
1764
3516
1632
144
$1<60$
6388
DAY HRS
4248
492
816
3516
1032
1608
1224
13536

Eve frs	jotal hrs
1692	5940
540	1032
1020	1836
	3516
	1632
1752	3360
36	1260
5040	18576

campus 2
Physical science
2810
2820
2830
2840
2850
2861
Division toials
ACAD rRS
4632
2448
548 B
1860
1008
552
19068
vCC HRS
DAY HRS
3084
1728
3336
1044
48
$1<0$
9360

EVE HRS	TOTAL HRS
1548	4632
72 C	2448
6672	10008
816	1806
60	108
432	552
10248	19808

SOCIAL SCIENCE
2904
2505
2906
2907
2508
29910
2511
2951
CIVISICN TGIALS

CAMPLS IOIALS
campls 2

VCL HRS

3300
3300
38976

DAY HRS
1476
1584
528
1440
1584
652
4344
2592
14400
8654


EVE HRS	TOTAL HRS
1768	2844
1212	2796
144	1272
1260	2700
1120	2712
1548	2400
1008	5352
1380	3972
5648	24048
82644	165188

campus 2


## 5. 3 Conclusions and Recommendations

The feasibility of developing a working simulation model of a computer chargeback system has been demonstrated by the data reports of Sections 5.1 and 5.2. These reports show that all of the expenditures of a college can be allocated to the instructional programs which the college offers and that a per unit instructional cost can be determined.

The rationale of the method of allocation of indirect costs will always be debated among those professionals in the field. For example, the maintenance allocation formula used in this simulation program found general acceptance among those Business Managers polled (Appendix II), but on the other hand, the formula was not totally acceptable to all colleges. However, the simulation model demonstrates that whatever formulas are used, the practicality of developing a chargeback system is reasonable for community colleges.

This practicality is tempered, however, with the discovery in this study that the necessary input data for a chargeback system is generally not in direct usable form. For example, the requirement to create two subsidiary programs not originally considered to be part of this study underscores this weakness in basic data usability. However, these two computer programs ("LASl" and "LAS2") will provide additional computer program resources to other colleges in their task of developing appropriate input data for the simulation model.

The data being handled in all three of the computer programs provides a great potential for many ancillary reports in addition to the two reports found in the previous section. The appropriate college user could, by studying the data record files found in Appendix IV, ask for a complete series of informative computer reports. The majority of these reports could be effected by small logic changes in programs "LASl" and "LAS2".

These computer programs (as developed by the writer) along with appropriate documentation are available to all interested colleges. ${ }^{16}$ (The actual computer programs are printed in their entirety in Chapter 4.)

In summary, the computer chargeback simulation model can provide the community college with the necessary information required to make sound educational decisions. While the model cannot make the decision as to the educational worth as opposed to dollar cost of an instructional program, it can and does provide for the first time the total cost data when considering this difficult equation of cost versus educational value.

[^6]However, additional developmental work must be pursued in achieving a wide use of chargeback systems in community colleges. In California, the most immediate obstacle standing in the way of implementing a system similar to the one developed in this study is the state mandated chart of accounts. This state chart of accounts does not lend itself to instructional program budgeting since it deals in broad expense categories covering many different administrative and program areas.

Another important problem in implementing the model is the system of data collection in many community colleges. Too often, the colleges investigated in this study have developed to consistent method of collecting and storing fiscal data, facility use information, and actual expenditure costs. Without internal consistency in the gathering of this type of information, the practicality of using the model developed in this study is not evident in terms of the model being able to provide consistent meaningful information.

Based on the foregoing comments as well as other observations made throughout this study, the following recommendations for further study and research seem appropriate:

1. A chart of accounts should be developed which is consistent with PPBS and adaptable to computer operations. Further, this chart of accounts should be developed to handle the unique instructional programs of community colleges;
2. Methods of collecting and retaining all types of significant data in various formats should be investigated and tested for usability in potential chargeback systems;
3. A classroom facility use information system should be developed for small community colleges which do not have computer capabilities;
4. A study should be made of the use of cost per instructional hour data in relationship to the decision-making process in community colleges. That is, does knowing what a program costs per instructional hour effect its chances for additional funding, staffing, etc.;
5. Additional information providing computer programs should be developed to take advantage of the data bank developed by computer model of this study. These programs would have the potentiality of providing all users with additional basic data for making sound educational decisions.

## BIBLIOGRAPHY

1. Koenig, Herman E. A systems model for management, planning, and resource allocation in institutions of higher education. Paper read before WICHE-ACE Higher Education Management. Information Systems Seminar, Washington, D. C. April, 1969.
2. Income versus effort: How hard are you trying? School Management 13:62-69. January, 1969.
3. American Association of Junior Colleges. 1969 Junior College Directory, Washington, D. C. 1969.
4. California State Department of Education. Conceptual Design for a Planning, Programming, Budgeting System for California Schools. Sacramento, 1969. 66 p.
5. Western Interstate Commission for Higher Education. Information systems and analytical models in the administration of higher education. The Sterling Institute, Washington, D. C. 1969.
6. Heinkel, Otto A. A cost accounting model to assess actual costs of vocational and nonvocational courses. San Diego Community Colleges for Office of the Chancellor, California Community Colleges. Project No. 37-765-AB-2l-70. Sacramento. July, 1970.
7. Hirsch, W. F. Education in the program budget in program budgeting, ed. by David Novick. p. 180-181.
8. Computer Systems Documentation Handbook Foothill Junior College District. Los Altos Hills, California. 1969. 62 p.
9. College and University Business Administration, compiled by the National Committee on the Preparation of a Manual on College and University Business Administration. Volume 1. Washington, D. C. American Council on Education. 1952.
10. Handbook of Definitions. For the use and guidance of California community colleges in their reporting to Office of the Chancellor, California Community Colleges. Sacramento. Board of Governors, California Community Colleges. June, 1970. 47 p. plus addendum.
11. Scheps, Clarence. Accounting for colleges and universities. Louisiana State University Press. Baton Rouge. 1949.
12. Committee on Governmental Cost Accounting. Chicago: The Municipal Finance Officers' Association. 1940.
13. Morey, Lloyd. University and college accounting. Boston. Little, Brown and Company. 1966.
14. Thornton, et al. The community junior college. 2nd edition. New York. John Wiley and Sons, Inc. 1966.
15. Blocker, C. E., et al. Two year college: a social synthesis. Englewood Cliffs, N. J. Prentice-Hall. 1965.
16. Cohen, Arthur. Dateline 1979: heretical concepts for the community colleges. Beverly Hills, California. Glencoe Press. 1969.
17. Instructions for Preparing and Submitting Applications for Funds Under the Vocational Education Amendments of 1968. State of California. Sacramento. 1970. p. 34.
18. Burkhead, Jesse. Government budgeting. John Wiley \& Sons, Inc. New York. 1965. p. 138-155.
19. Wildavsky, Aaron. The Politics of the budgetary process. Boston. Little, Brown and Company. 1964. p. 1-2.
20. Anshen, Melvin. "The Federal Budget as an Instrument for Management and Analysis" in Program Budgeting, Program Analysis, and the Federal Budget, edited by David Novick. Cambridge, Mass. Harvard University Press. 1967. p. 10.
21. Development of an operational model for the application of Planning-Programming-Budgeting Systems in local school districts. Program Budgeting Note 3, Cost-effectiveness Analysis: What is it? Western New York School Study Council, Buffalo. May, 1969.
22. Benson, Charles S. Perspectives on the conomics of education. Readings in School Finance and Business Management. Houghton Mifflin Company. Boston. 1963.
23. Temkin, Sanford. A comprehensive theory of cost-effectiveness, administering for change program. Research for Better Schools, Inc. Philadelphia. April, 1970. 66 p.
24. Finch, James N. Testing the cost yardstick in cost quality studies. Institute of Administrative Research, Columbia University. New York. November, 1967. 5 p.
25. Corbally, John E. School finance. Allyn and Bacon, Inc. Boston. 1962.
26. Heinemann, Harry N., Sussna, Edward. Criteria for public investment in the two-year college; A program budgeting approach. 1969. 26 p.
27. McLure, W. P. Major issues in school finance. Education Administration Quarterly 5:2-14 Autumn. 1969.
28. Hubbard, Robert E. An approach to institutional cost analysis. Experimental Journal of Education. 31:Dec., 1962.
29. Wohlferd, G. H. Cost analysis in education. Educational Forum, 34:339-45. March, 1970.
30. Scales, Eldridge E. Current operating costs of two-year colleges in the south. Southern Association of Colleges and Schools, Commission on Colleges. Atlanta. May, 1969. 57 p.
31. Cage, B. N. and Manatl, R. P. Cost analysis of selected educational programs in the community colleges of Iowa. Journal of Educational Research 63:66-70. October, 1969.
32. Campus (CAATS) Project Volume I: A Progress report on the development of cost simulation models for three Ontario Colleges of applied arts and technology. Systems Research Group. Toronto. November, 1969. 58 p.
33. Brannigan, R. J. A proposal for facilities cost allocation within a program budget structure at Fresno City College. Berkley, Calif. University of California. 1970. 97 p.
34. California Junior College Association Ad Hoc Committee on Program Budgeting. An interim report: progress toward a program budget for California community colleges. California Junior College Association Business Management Committee. 1970. 78 p.
35. De Ricco, L. A. Preliminary report on budget preparation, presentation, and follow-up. San Joaquin Delta College, 1968. 16 p .

APPENDICES

## APPENDIX I

The colleges whose budget documents were studied were (all are community colleges):

Cabrillo College<br>Aptos, California

Monterey Peninsula College
Monterey, California
Peralta Junior College District
Peralta College
Merritt College
College of Alameda
Oakland, California

## San Joaquin Delta College <br> Stockton, California

San Jose City College
San Jose, California
Cuesta College
San Luis Obispo, California
Santa Rosa Junior College
Santa Rosa, California
State Center Junior College District
Fresno City College
Reedly College
Fresno, California
West Valley College
Campbell, California

## APPENDIX II

The following colleges were personally visited and discussions on budgeting and expenditure reporting took place with appropriate college administrators (aII are community colleges).

## California

American River College
Cabrillo College
DeAnza College
Foothill College
Fresno City College
Gavilan College
Lassen College
Ohlone College
San Jose City College
San Mateo College
Sacramento City College
West Valley College

## Oregon

Central Oregon Community College
Clatsop Community College
Lane Community College
Linn Benton Community College
Mount Hood Community College
Portland Community College

## Washington

Big Bend Community College
Grays Harbor Community College
Skagit Valley Community College
Tacoma Community College
Walla Walla Community College
Whatcom County Community College
Yakima Valley College

APPENDIX III

## CHART OF ACCOUNTS

## (Foothill Community College District)

AREA (Department, place) CODES

## DISTRICT ADMINISTRATION (Campus 4 only)

0101 SUPT
0102 BOARD
0103 ALL DISTRICT
0109 UNDIS RESV

0201 EDUC SERV
0203 INSTR CONTG
0211 PERS CERT
0212 PERS CLS
0221 RESEARCH
0228 GRANTS
0231 TECH EDUC
0261 ADULT COMM

0262 CS CHORUS
0263 CS CHBR ORCH

0264 CS SYMP OR CH

Office of the Superintendent
Board Expense
District wide expense
Undistributed Reserve

Educational Services
District Instruction Contingency
Certificated Personnel Expense
Classified Personnel Expense
Research
District Grant Applications Pending
Technical Education
Adult Community Service Short Courses
Adult Community Service Chorus
Adult Community Services Chamber Orch.
Adult Community Service Symphony Orch.

BUSINESS SERVICES (Campus 4 only)

0401 BUS SERV OF
0402 ACCOUNT SERV
0403 MATERIAL SERV
0404 DATA SERV

0590 PUB TRANS

0801 FIXED CHGS Fixed Charge Expense (Non-Payrol)
0802 PAYROLL CHGS
0803 PAYROLL CHGS
0804 PAYROLL CHGS

Business Services Common Expense Accounting Services Material Services Data Services (production)

Public Transportation Expense (non-field trip) Staff Benefit Expense Teacher Benefit Expense Retirement Benefit Expense

CAMPUS CENTER (Campus 1 or 2 only)		
0901	CC ADM	Campus Center Adm. Exp. (Including salaries)
0907	CC BLDG	Campus Center Building Expense
0908	CC POL	Campus Police
0921	CC REIM ADM	Reimbursable administrative expense
0924	CC REIM FOOD	Reimbursable Food Service Salaries
0925	CC REIM B OOK	Reimbursable Bookstore Salaries
0926	CC REIM CONC	Reimbursable Concessions Salaries
0927	CC REIM BLDG	Reimbursable Bldg. Services \& Admin. Expense
0930	LUNCH GRANTS	Lunch Grants in Aid
COMMUNITY SERVICES (Fund 45 and Campus 4 Only)		
1101	COMM SER OF	General Expenses of Community Services
1102	CS OPR RES	Community Services Operation Reserve
1103	CS CAP RES	Community Services Capital Reserve
1111	COM REC SER-FH	Community Recreation Services Foothill
1112	COM REC SER-DA	Community Recreation Services De Anza
1121	COM INFO SER	Community Information Services
1123	CS FOUNDATION	Community Foundation Office
1131	COM RAD SER	Community Radio Services
1141	COM SCI SER	Community Science Services
1142	COM SCI PLAN	Planetarium
1143	COM SCI OBS	Observatory
1144	COM SCI MUS	Space Science Museum
1145	COM SCI CRS	Community Service Science Short Courses
1151	COM USE FACL	Community Use of Facilities
1152	COM USE BOX	Box Office
1154	COM USE AUD	Auditorium
1156	COM USE RAN	Range Expense for Community Use
1162	COM CUL SEM	Seminars and Short Courses
1163	COM CUL CHOR	Schola Cantorum
1164	COM CUL SINF	Master Sinfonia
1165	COM CUL OR CH	Nova Vista
1171	COM MULTICULT	Community Multicultural Program


1191	PUBLICATIONS	Publications (General Fund)
1192	DUPL SERV	Duplicating Services internal printing
1197	MULTICULT AUX	Auxiliary Multicultural Program
1198	RESEARCH CONT	Research Contracts
1199	AUX OPER	Other Auxiliary Operations (noninstruction)
BUILDING	PR OGRAM (Funds 15,	18, and 33 only)
1201	CAPITAL OF	Operation of capital program
1202	CAPITAL LIB	Library capital acquisitions
1210	SITES	Acquisition of sites
1221	PAVING	Improvement of Grounds-Lawns \& Ground
1222	PLANTINGS	Improvement of Grounds-Lawns \& ground cover, trees and shrubs, including irrigation
1224	SITE UTILITY	Improvement of Grounds-Drainage, Sewers, Lighting
1227	FENCING, SIGNS	Improvement of Grounds-Fencing \& Signs
1228	FIELD FACIL	Improvement of Grounds - All Athletic \& P. E. field facilities
1241	NEW CONSTR	Buildings-New Construction, including built-in cabinets
1243	REMODEL	Buildings-Remodeling
1244	UTILITIES	Buildings-All additions or improvements to utilities and fixtures
1260	FURN/EQUIP	New equipment, furniture, and drapes
1270	FIRE/SAFETY	Fire and Safety Construction (Fund 16 Current Capital)

TUITION
1439
TUITION
Out-Of-District Tuition

## INSTRUCTION

2001 PRESIDENT
2002 DEAN INST OF
2005 EVE/SUMMER ADM
2006 EVE/SUM COUNS

Office of the President Office of the Dean of Instruction
Evening and Summer College Administration Evening and Summer College Counseling
2007 EVE/SUM CLASS Evening and Summer ClassroomExp. (Incl. Sal.)
2008 OFFICE SERV P. B. X. and clerical services
2010 ALL-FACULTY Non-departmental faculty expense
2011 INSTRUCT SAL Instruction Salaries
2015 ACADEMIC SENATE Distri
2016 FACULTY ORG District Expense
2016-05 CTA
Expense to be reimbursed by CTA
2016-06 AFT
2017 CONFERENCES
2019 OTHER
2022 OFF CAMPUS INST
2023 TV INSTR
2024 R. O. T. C.Expense to be reimbursed by AFTConferences Sponsored by CollegeOther ALL-COLLEGE expensesContract-Off Campus InstructionTV Instruction ProgramExpenses for Stanford R. O. T. C.Program
2025 CONT'G EDUC
2025 CONT'G EDUC Continuing Education2028 GRANTS
2029 INNOVATION
Campus grant applications pending
STUDENT PER SONNEL2031 DEAN STU OFF2032 REGISTRAR
2034 TESTING
2035 COUNSELING
2036 FIN AID

Student Financial Aid
2037 ACTIVITIES
2038 GRADUATION
2039 PLACEMENT

LIBRAR Y SER VICES

Office of the Dean of Students

Not classroom examination

All expenses of graduation ceremonies

LIBRAR2050 LIBR OTHER
2054 LIBR TECH

2054 LIBR TECH2055 AUDIO-VISUAL

2050 LIBR OTHER

2055 AUDIO-VISUAL

Other ("Book") operations of Library Services Library Technical Assistant Program Audio-Visual Operations of Library Services

## BIOLOGICAL \& HEALTH SCIENCE DIVISION

2101	BIO, H-SC OFF	Division Office
2102	BIOL SCI GEN	Biological Sciences not specified
2103	BIOL SAL	
2112	HEALTH, FA	Health and First Aid Courses
2113	DENTAL ASST	Dental Assisting
2114	DENTAL HYGN	Dental Hygiene
2115	INHALN THERA	Inhalation Therapy
2116	MEDICAL ASST	Medical Assisting
2117	REG NURSING	Registered Nursing
2118	VOC NURSING	Vocational Nursing
2119	RAD-TECH	Radiologic Technology
2120	HOME ECON	Home Economics
2125	NURSRYSCH	Nursery School
2126	HORTICULTURE	
2127	PSYSIO-THERAPY	

BUSINESS DIVISION
2201 BUS DIV OFF Division Office
2202 BUSINESS GEN General Business Courses not specified
2203 BUS SAL
2220 DATA PROCESS
2230 REAL ESTATE
2240 MGMT/MARKT
Management and Marketing
2250 TECH/PUB

## ENGINEERING \& TECHNOLOGY DIVISION

2301 ENG-TECH OFF Division Office
2302 ENG-TECH GEN Engineering \& Technology not specified
2303 Eng-TECH SAL
2311 ELECTRONICS
2321 DRAFT-SURV Drafting-Surveying
2331 MATERIALS
2332 QUALITY CONTR Quality Control Technology
2333 INDUST SUPVR Industrial Supervision
2334 IND ENG Industrial Engineering Tech.
2335 ENG TECH Engineering Technician Program
2341 MACH TOOLS Machine Tools
2361 ASTR ONOMY Astronomy (Foothill)
2365 METEROLOGY Meterology (Foothill)
2366 CAREER PILOT Career Pilot Program
2381 TECH ILLUS Technical Illustration
2391 AUTO TECH

## FINE ARTS DIVISION

2401 FINE ARTS OFF
2402 FINE ARTS GEN
2403 FINE ARTS SAL
2411 GEN ART
2413 COMM ART
2414 CERAM
2415 CRAFTS
2417 SCULPTURE
2421 GEN DRAMA

2430 PHOT OGRAPHY
2431 GEN MUSIC
2432 MUSIC BAND
2433 MUSIC CHORAL
2434 MUSIC ORCH
LANGUAGE ARTS DIVISION
2501 LANG ART OFF
2502 LANG ART GEN
2503 LANG ART SAL
2505 LANG LAB
2510 BROADCAST
2520 JOURNALISM
2530 READING
2540 STUDY SKILLS

ETHNIC STUDIES DIVISION
2601 ETHNIC OFF
2602 ETHNIC GEN
2603 ETHNIC SAL

2611 ETHNIC LIT

Division Office
Fine Arts not specified

General Art Courses not specified
Commercial Art
Ceramics

Drama Courses including Stage Technical

General Music not specified

Division Office
Language Arts not specified
Operation of Language Labs

PHYSICAL EDUCATION \& ATHLETICS DIVISION
2701 P.E. /ATHL OFF Division Office
2702 P.E. GEN Physical Education not specified
2703 P.E. SAL
2711 REC TECH
2721 BASEBALL
2722 BASKETBALL
2723 FOOTBALL
2724 GOLF
2725 SWIM W. POLO Swimming \& Water Polo
2726 TENNIS

Division Office
Ethnic Studies not specified

Recreation Technician

Simaing \& Water Polo
2727 TRACK
2728 WRESTLING
2729 GEN ATHL Expense Common to all Athletics
PHYSICAL SCIENCE DIVISION
2801 PHYS SCI OFF Division Office2802 PHYS SCI GENPhysical Science not specified
2803 PHYS SCI SAL
2810 CHEMISTRY
2820 PHYSICS
2830 MATHEMATICS
2840 GEOLOGY
2850 METEROLOGY2861 ASTR ONOMY
SOCIAL SCIENCE DIVISION2901 SOC SCI OFF
2902 SOC SCI GEN
2903 SOC SCI SAL
2905 ATHRO/SOC
2906 ECONOMICS
2907 HISTOR Y
2908 PHILOSOPHY
2909 POL SCI
2910 PSYCHOLOGY
2911 PSYCH-GR OUP
2951 LAW ENFORCE
2956 RANGE
STORES ETC.
3001 STORES OPER
3002 STORES INVENT
3100 PAYABLES
HEALTH SERVICES
4101 ATHL TRAIN
4201 OTHER HEALTH
OPERATION OF PLANT
6101 PLANT OFF
6102 BUILDINGS
6112 CUSTODIAL
6113 HEAT/VENT

Athletic Training Other Health

Plant Services Office and Common Expense
General Building Operation
Heating and Ventilating All Electrical Systems and Signal Systems

6201 GR OUNDS
6221 FIELD FACIL
6231 SWIM POOL
6301 VEHICLES
6601 TELEPHONE
6701 UTILITIES
6901 OTHER OPER

## MAINTENANCE OF PLANT

7101	PLANT MNT OFF	Maintenance Office and Common   Expense
7102	BUILDINGS	General Building Maintenance   Maintenance of Locksets, Closers,   etc.
7113	HARDWARE	
7114	GLASS	Maintenance of all glazing   Maintenance of floor covering   (tile \& carpet)
7116	FLOOR COVER	Maintenance of painting surfaces
7117	PAINTING	Mantenance of heating and
7118	HEAT/VENT	ventilating
7119	PLUMBING	Maintenance of plumbing fixtures
7121	ELECTRICAL	Maintenance of all electrical   systems not in 7122, signal systems
7122	SIGNALSYS	Maintenance of fire alarm, clocks,   signal and low voltage systems
7201	GROUNDS	General grounds maintenance
7211	PAVING	Maintenance of streets and paths
7212	LAWN IRRIG	Maintenance of lawns, ground   covers, and irrigation
7213	TREE SHRUB	Maintenance of trees and shrubs
7214	SITE UTILITIES	Maintenance of site utilities
7217	FENCING, SIGNS	Maintenance of fencing and signs   7218
FIELD FACIL	Maintenance of athletic field   facilities	
7219	SWIMMINGPOOL	Maintenance of swimming pool,   equipment and deck
7301	VEHICLES	Maintenance of all vehicles
7302	FURN EQUIP	Maintenance and Repair of general   furniture

## APPENDIX IV

## Data Record Input File Descriptions

```
Program "LASl":
 District code
 Fund code
 Campus code
 General ledger code
 Area code
 Type code
 Grant code
 Amount
Program "LAS2":
 Class Master number
 Area code
 Division code
 Campus code
 Term
 Year
 Quarter
 Day/Evening class
 Academic/Vocational Class
 Weeks duration
 Hours per week
 Room number
 Assignable square footage
 Hours per week times assignable square feet
 Instructor's name
Program "LAS3":
 Card Input A (Summary totals from "LAS2")
 Campus code
 Card code
 Division code
 Area code
 Total instructional hours
 Card Input B (Summary totals from "LASl")
 Campus code
 Card code
```

Division code Area code
Amount
Disk Input A (Individual program totals from "LAS2")
Campus code
Division code
Area code
Day academic hours
Day vocational hours
Evening academic hours
Evening vocational hours
Instructional hours times assignable square feet
Physical Education total instructional hours
Total vocational hours
Total academic hours
Total instructional hours
Disk Input B (Individual program totals from "LASl")
Campus code
Division code
Area code
Amount


[^0]:    ${ }^{2}$ In California due to VEA funding requirements, an estimated overhead figure is applied to arrive at "actual" program costs in vocational education programs.

[^1]:    ${ }^{3}$ Gross expenditures is the term used to indicate the total of all costs for an instructional program, both direct and indirect, which occur during a fiscal year.

[^2]:    ${ }^{4}$ The writer found few recent sources of information in the library on educational accounting.

[^3]:    5
    Out-of-district tuition is that expense paid by a college for tuition of its resident students who attend colleges in other districts.

[^4]:    ${ }^{9}$ The actual computer printout uses some adbreviations and slightly different spacing. See Chapter 5.

[^5]:    | 02 | cam-timegy | picture gac) | value |
    | :---: | :---: | :---: | :---: |
    | 02 | all-thecam | picilre y (ic) | value zeres |
    | c2 | all-hasfecan | picture gilos | value 2 efer |
    | c2 | CAM-hasfo-0a | pictire gilc) | value zerc |
    | 02 | CAM- ASF-CV | picture 9tic) | valle zerc. |
    | 02 | CAM-MASF-EA | Picile e sici | value zerc. |
    | c2 | CAM-HASF-EV | Re |  |

    

    C1

    |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | C2 | FILLER | picilre | $\times(10)$ | value | spaces. |
    | 02 | area-print | Picilre | $x(4)$ | value | spaces. |
    | 02 | filler | pictire | $\times(16)$ | value | spaces. |
    | 02 | PRNT-aCAC-rRS | picture | z(10). |  |  |
    | 02 | filler | picture | x(5) | value | spaces. |
    | 02 | prat-vcc-hrs | picture | z(10). |  |  |
    | 02 | filler | picilre | $\times(5)$ | value | spaces. |
    | 02 | PRNT-DAY-HRS | Pictire | z(10). |  | spaces. |
    | 02 | filler | pictire | $x(5)$ | valle | spaces. |
    | 02 | PRNT-EVE-PRS | picture | z(16). |  |  |
    | 02 | filler | PICTLRE | $\times(5)$ | E | spaces. |
    | 02 | PRNT-tCIAL-hRS | picture | 2(16). |  |  |
    | 02 | filler | pictire | $\times(3)$ | value | spaces. |

    ci line-a
    
    01
    liae-biler pictlre x(36) valle spaces. 02
    
    c1 line-c.
    0001

    ## 02 FILLER PICILRE $\times(36)$ valle paces.

     $\begin{array}{llllll}\text { O2 } & \text { FILLER } & \text { PICJURE X(20) VALLE SPACES. } & \\ \text { C2 } & \text { FILLER } & \text { PICTURE } & \text { X(7) } & \text { VALLE } & \text { OCAMPUS } .\end{array}$ | C2 | C-CCOE PICILRE |  |
    | :--- | :--- | :--- |
    | 02 | FILLER PICTLRE XIICS) VALLE SPACES. |  |
    | VALLE SPACES. | 0001 |  |

    prcceolre civisica.
    start-prccessing.
    GPEN INPUI CLASS-MSTR-FILE,
    OPEN GUTPLI TIH-TC-CISK, PUACh, PRINIER.
    class-filei
    reac class-msir-file, at enu, gl ic uistrici-idials.
    If CAMPUS-COOE IS EGUAL IC IF1, NCVE I 10 CAMPLS-CCCE

[^6]:    ${ }^{16}$ Card decks of these programs may be obtained by other colleges from the Data Services Department, Foothill College District, Cupertino, California. These programs are not available to commercial enterprises.

