GAND

# Cylinder Head Temperatures in Four Airplanes with Continental A-65 Engines

n3b 0.27 ·3

LECTION

GON

S. H. LOWY Instructor in Aeronautical Engineering

Bulletin No. 27

July 1949

Engineering Experiment Station Oregon State System of Higher Education Oregon State College Corvallis THE Oregon State Engineering Experiment Station was established by act of the Board of Regents of the College on May 4, 1927. It is the purpose of the Station to serve the state in a manner broadly outlined by the following policy:

(1) To stimulate and elevate engineering education by developing the research spirit in faculty and students.

(2) To serve the industries, utilities, professional engineers, public departments, and engineering teachers by making investigations of interest to them.

(3) To publish and distribute by bulletins, circulars, and technical articles in periodicals the results of such studies, surveys, tests, investigations, and research as will be of greatest benefit to the people of Oregon, and particularly to the state's industries, utilities, and professional engineers.

To make available the results of the investigations conducted by the Station three types of publications are issued. These are:

(1) Bulletins covering original investigations.

(2) Circulars giving compilations of useful data.

(3) *Reprints* giving more general distribution to scientific papers or reports previously published elsewhere, as for example, in the proceedings of professional societies.

Single copies of publications are sent free on request to residents of Oregon, to libraries, and to other experiment stations exchanging publications. As long as available, additional copies, or copies to others, are sent at prices covering cost of printing. The price of this bulletin is 40 cents.

For copies of publications or for other information address

Oregon State Engineering Experiment Station,

Corvallis, Oregon

## Cylinder Head Temperatures in Four Airplanes with Continental A-65 Engines

By

S. H. Lowy Instructor in Acronautical Engineering

Bulletin No. 27

July 1949

Engineering Experiment Station Oregon State System of Higher Education Oregon State College Corvallis .

#### TABLE OF CONTENTS

|       |                                          | Page |
|-------|------------------------------------------|------|
| I.    | Summary and Acknowledgments              | 7    |
|       | 1. Summary                               |      |
|       | 2. Acknowledgments                       | 7    |
| II.   | Introduction                             | 7    |
|       | 1. Reason for Investigation              |      |
|       | 2. Utility of Investigation              |      |
|       | 3. History                               |      |
|       | 4. Scope                                 | 10   |
| III.  | Apparatus                                | 10   |
|       | 1. Engines and Aircraft Used in Test     |      |
|       | 2. Instrument Description and Test Setup | 10   |
| IV.   | Procedure                                | 13   |
|       | 1. Definitions of Terms and Symbols      |      |
|       | 2. Assumptions                           |      |
|       | 3. Method of Conducting Test             |      |
|       | 4. Reduction and Analysis of Data        | 15   |
|       | 5. Results                               | 21   |
| V.    | Conclusions                              | 24   |
| VI.   | Recommendations                          | 24   |
| VII.  | Bibliography                             | 25   |
| VIII. | Appendix                                 | 26   |

#### ILLUSTRATIONS

|            |                                                                                       | Page |
|------------|---------------------------------------------------------------------------------------|------|
| Figure 1.  | Taylorcraft Airplane                                                                  | 9    |
| Figure 2.  | Luscombe Airplane                                                                     | 9    |
| Figure 3.  | Aeronca Airplane                                                                      | 11   |
| Figure 4.  | Modified Aeronca Airplane                                                             | 11   |
| Figure 5.  | Manifold Pressure and Cylinder Head Temperature<br>Instruments                        | 12   |
| Figure 6.  | Continental A-65 Engine Installation Showing Thermo-<br>couple Arrangement            | 13   |
| Figure 7.  | Internal Wiring of Instrument Unit for Thermocouple<br>Selection                      | 14   |
| Figure 8.  | Temperature Rises for Full-Throttle Climb                                             | 16   |
| Figure 9.  | Temperature Rises for Part-Throttle Climb                                             | 17   |
| Figure 10. | Temperature Rises for Cruise Condition                                                | 18   |
| Figure 11. | Temperature Rises for Idle Condition                                                  | 19   |
| Figure 12. | Maximum Temperature Differences Versus Engine Speed<br>for Three Operating Conditions | 20   |
| Figure 13. | Temperature Difference Versus Corrected Brake Horse-<br>power for Taylorcraft         | 23   |
| Figure 14. | Temperature Differences Versus Corrected Brake Horse-<br>power for Luscombe           | 23   |
| Figure 15. | Temperature Differences Versus Corrected Brake Horse-<br>power for Unmodified Aeronca | 23   |
| Figure 16. | Temperature Differences Versus Corrected Brake Horse-<br>power for Modified Aeronca   | 23   |
| Figure 17. | Calibration Curve of Cylinder Head Temperature Gage                                   | 28   |
| Figure 18. | Calibration of Manifold Pressure Gage                                                 | 29   |
| Figure 19. | Calibration Curves of Altimeters                                                      | 30   |
| Figure 20. | Calibration Curves of Tachometers                                                     | 31   |
| Figure 21. | Calibration Curves of Airspeed Indicators                                             | 32   |

#### TABLES

|   |             |             |                                                                                      | 0  |
|---|-------------|-------------|--------------------------------------------------------------------------------------|----|
|   | Table       | 1.          | Summary of Temperature Rises $\Delta t$ , Taylorcraft,<br>Full-Throttle Climb        | 33 |
| • | Table       | 2.          | Summary of Temperature Rises $\Delta t$ , Taylorcraft,<br>Part-Throttle Climb        | 33 |
|   | Table       | 2a,         | Summary of Temperature Rises $\Delta t$ , Taylorcraft,<br>Part-Throttle Climb        | 34 |
|   | Table       | 3.          | Summary of Temperature Rises $\Delta t$ , Taylorcraft, Cruise                        | 34 |
|   | Table       | 4.          | Summary of Temperature Rises $\Delta t$ , Taylorcraft, Idle                          | 35 |
|   | Table       | 5.          | Summary of Temperature Rises $\Delta t$ , Luscombe,<br>Full-Throttle Climb           | 36 |
|   | Table       | 6.          | Summary of Temperature Rises $\Delta t$ , Luscombe,<br>Part-Throttle Climb           | 37 |
|   | Table       | 6a.         | Summary of Temperature Rises $\Delta t$ , Luscombe,<br>Part-Throttle Climb           | 37 |
|   | Table       | 7.          | Summary of Temperature Rises $\Delta t$ , Luscombe, Cruise                           | 38 |
|   | Table       | 8.          | Summary of Temperature Rises $\Delta t$ , Luscombe, Idle                             | 38 |
|   | Table<br>Fi | 9.<br>ull-T | Summary of Temperature Rises \$\Delta t\$, Unmodified Aeronca, Throttle Climb        | 39 |
|   | Table       | 10.         | Summary of Temperature Rises $\Delta t$ , Unmodified Aeronca,<br>Part-Throttle Climb | 39 |
|   | Table       | 10a.        | Summary of Temperature Rises $\Delta t$ , Unmodified Aeronca,<br>Part-Throttle Climb | 40 |
|   | Table       | 11.         | Summary of Temperature Rises $\Delta t$ , Unmodified Aeronca, Cruise                 | 40 |
|   | Table       | 12.         | Summary of Temperature Rises $\Delta t$ , Unmodified Aeronca, Idle                   | 41 |
|   | Table       | 13.         | Summary of Temperature Rises $\Delta t$ , Modified Acronca,<br>Full-Throttle Climb   | 41 |
|   | Table       | 14.         | Summary of Temperature Rises $\Delta t$ , Modified Aeronca,<br>Part-Throttle Climb   | 42 |
|   | Table       | 14a.        | Summary of Temperature Rises $\Delta t$ , Modified Aeronca,<br>Part-Throttle Climb   | 42 |
|   | Table       | 15.         | Summary of Temperature Rises $\Delta t$ , Modified Aeronca, Cruise                   | 43 |
|   | Table       | 16.         | Summary of Temperature Rises $\Delta t$ , Modified Aeronca, Idle                     | 43 |

Page

### Cylinder Head Temperatures in Four Airplanes With Continental A-65 Engines

By

S. H. Lowy

Instructor in Aeronautical Engineering

#### I. SUMMARY AND ACKNOWLEDGMENTS

1. Summary. This investigation includes the determination of cylinder head temperatures, encountered in various conditions of flight and ground operation, for four different aircraft using the Continental A-65 engine. Tests were conducted for full-throttle and part-throttle climb, cruise, taxi, and idling conditions. Results are shown in the form of cylinder-head temperature rise above outside air temperature.

The aircraft used were a Taylorcraft BC-12, a Luscombe Silvaire 8A, an unmodified Aeronca 7-AC, and a modified Aeronca 7-AC. It was found that the highest head temperatures occurred on the unmodified Aeronca, with the Taylorcraft, the modified Aeronca, and the Luscombe following in that order.

The investigation indicates that high temperatures exist under certain operational conditions. It is generally believed that high temperatures are the major cause of valve sticking. This study indicates that operational procedures can be used that will, to a large extent, avoid high head temperatures.

2. Acknowledgments. The author is grateful to Thompson Products, Inc., for valuable information pertaining to valve problems; to Smith-Livingston Air Service, Inc., for furnishing the necessary aircraft, pilots, and mechanics; to Professor B. F. Ruffner, professor of aeronautical engineering, for suggestions and advice; to Professor S. H. Graf, director of the Engineering Experiment Station, for suggestions and editorial counsel; and to Mrs. Eloise Hout for preparation of the script and drawing of the figures.

#### II. INTRODUCTION

1. **Reason for Investigation**. Considerable difficulty with exhaust valve sticking was being experienced by light-plane operators throughout the state, especially during the warm months of the year. The problem was so severe that maintenance costs were

excessively high. In the spring of 1948 it was suggested by B. F. Ruffner, chairman of Oregon State Board of Aeronautics, that the author conduct several flight tests in an attempt to discover if excessively high temperatures were existing in the aircraft on which this trouble was being experienced. Accordingly, arrangements were made with S. H. Graf, director of the Engineering Experiment Station, and Smith-Livingston Air Service, Inc., of Corvallis, and flight tests were started in June 1948.

2. Utility of Investigation. It is believed that the results of this investigation will prove helpful to the light-plane operators of the state in that excessively high head temperatures can, for the most part, be avoided.

3. History. Valve troubles, in one way or another, have long been a nemesis to all those dealing with internal combustion engines. It has been stated that over 90 per cent of all poppet-valve failures are due to sticking and burning (2). Valve burning will invariably follow prolonged valve sticking. Sticking is a condition wherein the valve train does not follow the cam contour. Severe sticking can be described as the valve frozen in the guide. Less severe cases of sticking result in sluggish operation.

The cause of sticking is an accumulation of carbonaceous material on the valve stem and guide. The material results from the oxidation and decomposition of oil on the stem at certain high temperatures, and is resinous in composition. The deposit is hardened further by the mixing of gum and lead from the fuel with the varnish (2). These deposits may easily cause bell-mouthing of the guide.

As temperatures increase, the guide expands and the bell-mouth opens further. This permits even more deposits to collect on the valve stem. On cooling and contraction the valve stem becomes pinched, the valve sticks and burning results upon subsequent operation (4).

It is apparent that high temperatures "set the stage" for valve sticking. High temperatures are usually associated with high power and hard operation which cause oils to oxidize more rapidly than under less severe conditions. Also, when oil is added, oxidized oils will, under certain conditions, deposit "granular carbon" and varnish on internal parts (6).

For an engine suffering valve sticking, the problem becomes one of eliminating the deposits by removal as they form, or by preventing the formation entirely. One method of removal tried by the operators was by the use of a commercial detergent oil. Several

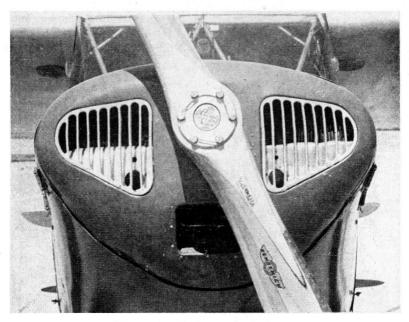



Figure 1. Taylorcraft airplane.

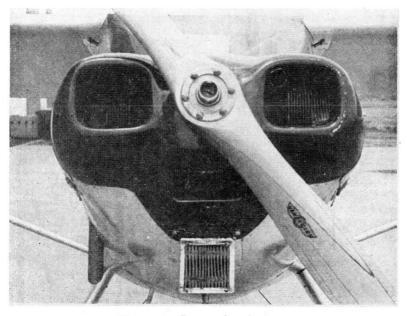



Figure 2. Luscombe airplane.

of these oils were used with little or no success, the deposit being too hard for the detergent to have any noticeable effect on it. Another method used was undercutting of the guide, thereby reducing the bearing area where oil and other products have the greatest tendency for forming deposits. This too failed to alleviate the situation, and the operators had to search for other methods.

It was at the time the operators were seeking a successful method of preventing valve sticking that this project was suggested.

4. Scope. The purpose of the project was to obtain sufficient flight data, relating to temperature, for several aircraft using the engine under investigation. In one of these aircraft considerable trouble was being experienced with valve sticking. In others, little or no trouble had been experienced. Therefore it was reasoned that a comparison of engine temperatures would possibly indicate the cause of the trouble. The test was limited to the determination of head temperatures and power under various conditions of flight and ground operations.

#### III. APPARATUS

#### 1. Engines and Aircraft Used in Test.

(a) Continental A-65 engine with a rating of 65 brake horsepower at 2,300 rpm, No. 5126868 used with a Met-L-Prop propeller on a Taylorcraft BC-12, Serial No. 7930, NC-95630. (See Figure 1.)

(b) Continental A-65 engine with a rating of 65 brake horsepower at 2,300 rpm, No. 3651358 used with a Sensenich propeller on a Luscombe 8A Silvaire, Serial No. 2080, NC-45553. (See Figure 2.)

(c) Continental A-65 engine with a rating of 65 brake horsepower at 2,300 rpm, No. 3703968 used with a Sensenich propeller on an Aeronca 7-AC, Serial No. 6593, NC-3007E. This aircraft is referred to as the "unmodified Aeronca." (See Figure 3.)

(d) Continental A-65 engine with a rating of 65 brake horsepower at 2,300 rpm, No. 5707168 used with a Flottorp propeller on an Aeronca 7-AC, Serial No. 4958, NC-1396E. This aircraft is referred to as the "modified Aeronca." The modification applies to the engine cowling, and was announced by the Aeronca Corporation in the summer of 1948. It consisted of enlarging the two frontal intake cooling air ducts and also enlarging the lower exit cooling air space. (See Figure 4.)

#### 2. Instrument Description and Test Setup.

(a) The instruments used were those installed in the aircraft, a manifold pressure gage, a Fahrenheit mercury thermometer for

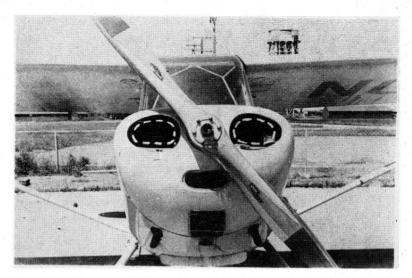



Figure 3. Aeronca airplane. Dotted lines show cowl openings before modification.

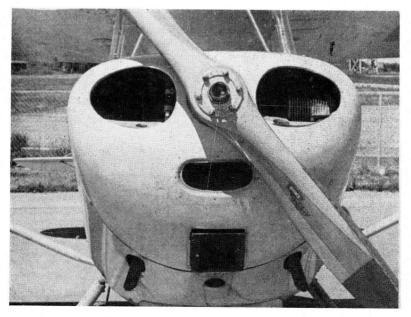



Figure 4. Modified Aeronca airplane.

measuring outside air temperature, and an aircraft cylinder head temperature gage. Thermocouples used were made of iron-constantan No. 14 duplex wire, eight feet in length. Sufficient resistance was added as required by the instrument. Only one cylinder head temperature gage was necessary, the various connections being made by switches. (See Figure 5.)

(b) The manifold pressure gage and cylinder head temperature gage were mounted together in a box unit. The connection for manifold pressure was made downstream of the throttle. All thermocouples were brought into the instrument unit and connected to the temperature gage by means of four three-way switches. (See Figures 6 and 7.) This permitted the use of eight thermocouples: four to measure cylinder head temperatures, one for carburetor air temperature, one for valve guide shoulder temperature, and two for measuring air temperatures behind cylinders one and two.

The top spark plug gaskets were replaced by thermocouple gaskets and aluminum shields were installed across the cooling fins of sufficient length to prevent direct airflow across the thermocouple gaskets. Number one cylinder valve cover was drilled to allow thermocouple wires to reach the exhaust valve guide shoulder.

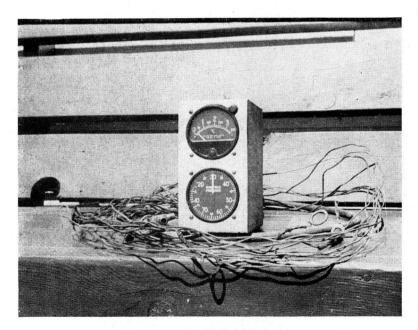



Figure 5. Manifold pressure and cylinder head temperature instruments.

#### IV. PROCEDURE

#### 1. Definitions of Terms and Symbols.

(a) *CHT*, cylinder head temperature. Temperature existing at top of cylinder between spark plug and cylinder head as measured by a thermocouple. Thermocouple wires were attached to the spark plug gasket.

(b) *OAT*, outside air temperature. Temperature existing outside of the aircraft as measured by a mercury thermometer.

(c)  $\Delta t$ , difference between average cylinder head temperature and outside air temperature.

(d)  $BHP_{c_2}$  brake horsepower corrected. Brake horsepower output at manifold pressure and rpm specified at some particular altitude as obtained from sea level altitude power curves corrected for carburetor air temperature. (See sample calculations in Appendix.)

(e) Part-throttle low and high power settings obtained by flying aircraft in straight and level flight at 1,000 feet indicated altitude, and adjusting throttle to an rpm value of 2,100 and 2,200, respectively.

(f) MAP, manifold absolute pressure in inches mercury.

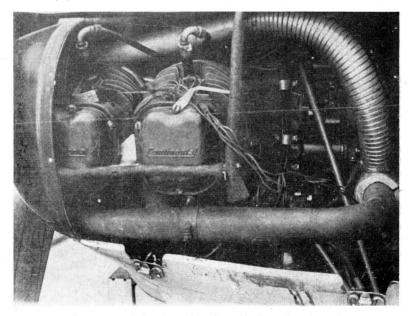



Figure 6. Continental A-65 engine installation showing thermocouple arrangement.

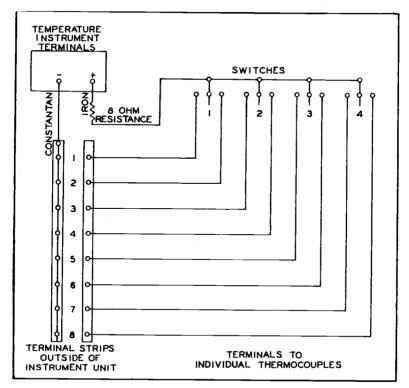



Figure 7. Internal wiring of instrument unit for thermocouple selection.

2. Assumptions. The nature and amount of valve sticking that was experienced led to the belief that excessive temperatures were possibly the cause of the trouble. Therefore, it was decided to check head temperatures in order to determine the range encountered during the various conditions of flight. It should be pointed out here that after the first aircraft was tested, the manufacturer announced a cowling modification of the Aeronca which, it was claimed, lowered head temperatures approximately 50 degrees Fahrenheit. (See Figures 3 and 4.)

3. Methods of Conducting Test. Each aircraft was instrumented and subjected to the following tests:

(a) Idling condition ranging from approximately 650 rpm to 1,200 rpm.

(b) Taxi condition ranging from approximately 800 rpm to 1,400 rpm.

(c) Cruise condition ranging from 1,800 rpm to full-throttle rpm.

(d) Climb conditions consisting of three parts: full-throttle, part-throttle high, and part-throttle low. Part-throttle high was set by cruising the aircraft in straight and level flight at about 1,000 feet with throttle set for 2,200 rpm. Part-throttle low was set similarly except that 2,100 rpm were used. The aircraft was then put in various climbing attitudes with the throttle remaining untouched. All climbing tests were made at several different airspeeds and originated at approximately 1,000 feet.

The following items were recorded: Time of test, barometer, wet and dry bulb temperatures, take-off and landing weights, gas and oil consumption, altitude, airspeed, rpm, manifold pressure, oil temperature, oil pressure, outside air temperature, cylinder head temperatures, valve guide shoulder temperature, and carburetor mixture temperature.

Each run was terminated when it was observed that the difference between average cylinder head temperature and outside air temperature had passed a maximum value. Readings were taken every two minutes. The altimeter was set to the barometric pressure at sea level existing just prior to take-off.

4. Reduction and Analysis of Data. It was decided to use the difference between average cylinder head temperature and outside air temperature as the basis for comparison since it was obviously impossible to hold outside air temperature constant and the cylinder head temperature varies as outside air temperature varies. The head temperature for any one cylinder exceeded the average head temperature by 16 degrees Fahrenheit at the most, and averaged about 10 degrees Fahrenheit higher. Highest head temperatures occurred on number four cylinder in all cases. This temperature difference was plotted against time in minutes of run for the various conditions obtained. The resulting curves gave a series of maximum temperature differences that were plotted against rpm for the two main flight conditions, and also for the idling condition. These curves show fairly well the average cylinder head temperature conditions existing during operation.

The decision not to plot curves for the part-throttle climbs was made because there is a question of power duplication when setting up the high and low conditions prior to climbing. However, the information derived from these tests was utilized in plotting Figures 13, 14, 15, and 16.

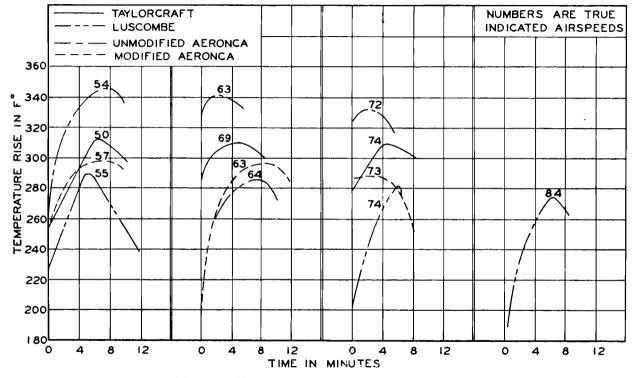



Figure 8. Temperature rises for full-throttle climb.

.

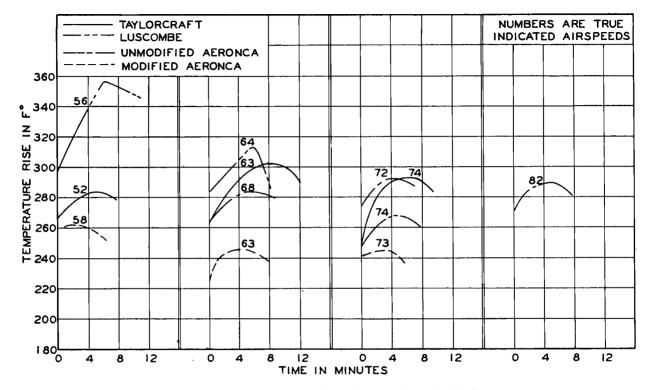
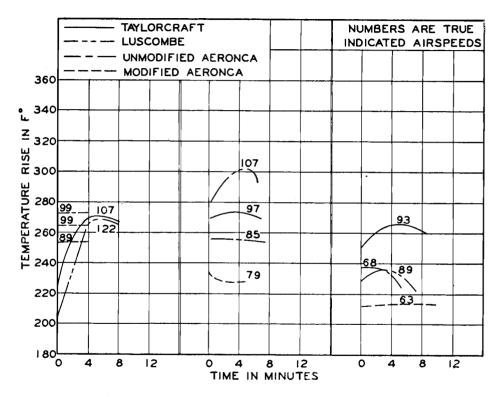




Figure 9. Temperature rises for part-throttle climb.



.

Figure 10. Temperature rises for cruise conditions.

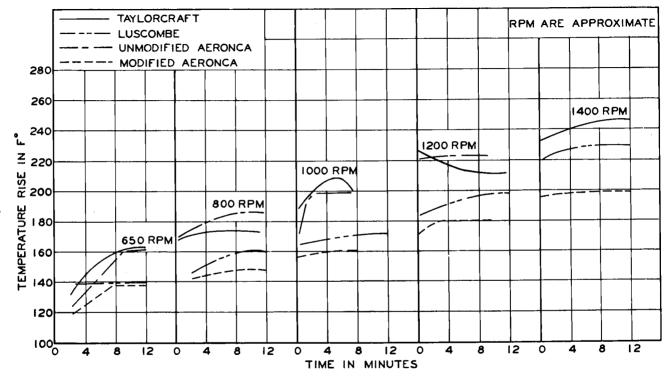



Figure 11. Temperature rises for idle condition.

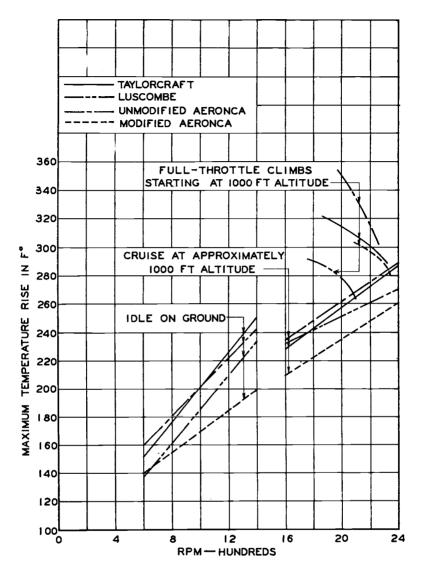



Figure 12. Maximum temperature differences versus engine speed for three operating conditions.

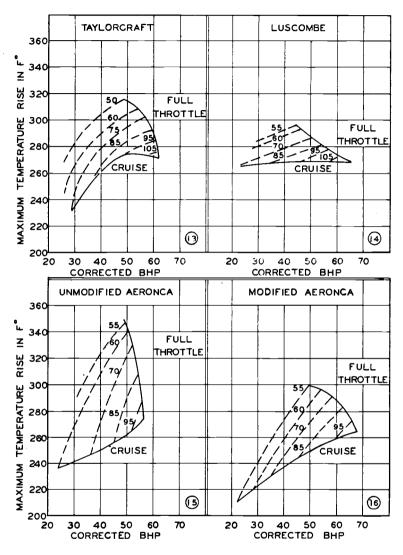
5. **Results.** The curves of  $\Delta t$  versus time for the full-throttle climb (Figure 8), show that the temperature rise increases to some maximum point and then drops off, and as the airspeed is increased the maximum  $\Delta t$  decreases. This is to be expected since as the airspeed increases, the mass airflow for cooling purposes increases. The reason for the  $\Delta t$  decreasing after a maximum value is attained is due to the fact that as altitude is increased the power decreases. This combination results in an overall  $\Delta t$  decrease.

The curves of  $\Delta t$  versus time for the high part-throttle climb condition (Figure 9), shows apparent inconsistencies that are attributed to a failure to duplicate the same conditions of power prior to starting each run. This is borne out by an examination of the data for those runs.

The curves of  $\Delta t$  versus time for the cruise condition (Figure 10), show that for the modified and unmodified Aeronca, the maximum  $\Delta t$  decreases as power decreases, which is a normal condition since energy input in the form of fuel is lessened.

The curves for  $\Delta t$  versus time for the idling condition (Figure 11), show that a maximum  $\Delta t$  is reached at each rpm, and the higher rpm results in a higher  $\Delta t$ . Except for two or three cases, the  $\Delta t$  did not decrease after a maximum point was reached, but remained at the maximum value.

In plotting maximum temperature differences against rpm, (Figure 12), only three conditions of operation were used: Fullthrottle climb, cruise, and idle. Curves for part-throttle climbs were omitted because of the question of power duplication, and curves for the taxi condition were omitted because they fall below the curves for idling condition. In general, these curves show that under conditions of full-throttle climb, the unmodified Aeronca operated at the highest temperature, followed by the Taylorcraft, the modified Aeronca, and the Luscombe. Indications are that the unmodified Aeronca would be operating at cylinder head temperatures above 400 degrees Fahrenheit if the outside air temperature exceeded 60 degrees Fahrenheit. This condition exists during the summer season, and it is during this season that the valve sticking problem is most severe. One operator estimates that during student instruction the aircraft is operated as much as 20 to 25 per cent at full-throttle climb. If the aircraft were an unmodified Aeronca, then excessive cylinder head temperatures would be experienced during the warm months for almost one-fourth of the operational time of the aircraft. For the Taylorcraft, outside air temperatures of 90 degrees Fahrenheit and over would result in cylinder head temperatures in excess of 400 degrees Fahrenheit during full-throttle climb. The assumption here


is that climbs would be made at approximately 55 or 60 miles per hour true indicated airspeed. The modified Aeronca and the Luscombe would operate at cylinder head temperatures over 400 degrees Fahrenheit when climbing at approximately fifty-five miles per hour, true indicated airspeed and full-throttle, if outside air temperatures exceeded 100 degrees Fahrenheit and 110 degrees Fahrenheit, respectively.

Considering the cruise condition curve it is seen that the Taylorcraft operates at the highest average cylinder head temperature. The unmodified Aeronca, the Luscombe, and the modified Aeronca follow in that order. Cylinder head temperatures of 400 degrees Fahrenheit would be obtained during a full-throttle cruise of the Taylorcraft if outside air temperature was of the order of 125 degrees Fahrenheit. This temperature is quite rare in the north temperate zone.

Considering the idling condition curves, which lie in the same order as those for the cruise condition, it can be seen that head temperatures will increase as rpm, and therefore power, increases. This indicates that prolonged ground idling will not result in excessive cylinder head temperatures. For an outside air temperature of 85 degrees Fahrenheit, the cylinder head temperatures (approximately) for the various aircraft idling at 1,400 rpm would be (from Figure 12):

| Taylorcraft        | 340 | F            |
|--------------------|-----|--------------|
| Unmodified Aeronca | 330 | F            |
| Luscombe           | 320 | F            |
| Modified Aeronca   | 290 | $\mathbf{F}$ |

Figures 13, 14, 15, and 16 are plots of maximum  $\Delta t$  versus corrected brake horsepower for the full-throttle climb and cruise conditions. Shown also are lines of constant true indicated airspeed, indicated by the dashed lines. Operation between the lines of full-throttle climb and cruise would be at a part-throttle climb condition. It can be seen that for any of the climb conditions, maximum  $\Delta t$  decreases with an increase in airspeed. Increasing the airspeed for the cruise condition necessitates an increase in power, which results in an increase of maximum  $\Delta t$ . The curves also show that for any given climbing speed, part-throttle operation. Using Figures 13 through 16 in conjunction with Figure 12, it is possible to determine the maximum  $\Delta t$ , probable true indicated airspeed, and corrected brake horsepower for a particular type of flight operation if the engine speed (rpm) is known.



Figures 13, 14, 15, and 16. Temperature differences versus corrected brake horsepower.

Curves for valve guide temperature have not been plotted since the temperatures were approximately equal to cylinder head temperatures. Therefore, the valve guide temperatures may be determined from the cylinder head temperature curves.

#### **V. CONCLUSIONS**

1. The investigation indicates that the highest cylinder head temperatures are obtained for the aircraft in which the most valve sticking difficulties had been experienced.

2. The manufacturer's claim that modifying the Aeronca 7-AC cowling as specified, will lower head temperatures approximately 50 degrees Fahrenheit, is substantially correct.

3. Except for the unmodified Aeronca 7-AC, none of the aircraft tested would operate at cylinder head temperatures in excess of 400 degrees Fahrenheit except in very hot weather.

4. Prolonged ground running at engine speeds below 1,200 rpm does not result in excessive head temperatures for any of the aircraft tested. It is therefore desirable to bring the engine and oil up to normal operating temperatures before attempting flight. This policy should ensure good lubrication to all engine parts and proper combustion of fuel during one of the most critical periods of flight.

5. Use of part-throttle as soon as possible after take-off will aid in keeping down cylinder head temperatures. Climbs at an airspeed higher than the airspeed giving maximum rate of climb is also recommended whenever possible.

#### VI. RECOMMENDATIONS

The following recommendations are made for the reduction of cylinder head temperatures:

1. Increase the mass airflow for cooling purposes by modification of existing cowling.

2. Ascertain that all cooling baffles are in their correct positions.

3. When climbing at full-throttle, use a relatively high true indicated airspeed.

4. Throttle engine to a lower power as soon as possible after take-off, and proceed with climb at part-throttle setting.

5. Allow engine and oil to reach normal operating temperatures before attempting flight in order to ensure proper combustion and proper lubrication to all parts. The following are also recommended as possible aids to operators encountering valve sticking troubles:

1. The use of detergent oils now undergoing test.

2. Mechanical scraping of valve stems and seats by positive valve rotation. This should break deposits as they form.

#### VII. BIBLIOGRAPHY

1. Miscellaneous Curves on Valve Temperatures. Thompson Products, Inc.

- 2. Pomeroy, A. L. Valve Rotation. Paper presented at SAE Oregon Section, Corvallis, Oregon, May 13, 1949.
- Diskant, William. Induction System Deposits. Accelerator, June 1948. (Summary of talks by W. R. Herfurth and W. C. Howell in publication of Metropolitan Section of SAE.)
- 4. Internal Combustion Engines Valves. Lubrication, Vol. 34, No. 7, July 1948.
- 5. Rolle, Stephen H. Difficulties with Engines Installed in Civil Aircraft. SAE Journal (Transactions), Vol. 53, No. 1, January 1945.
- 6. Mougey, H. C. Hot Engine Sludge and Its Control. SAE Journal (Transactions), Vol. 53, No. 3, March 1945.
- Zipkin, M. A. and Sanders, J. C. Correlation of Exhaust Valve Temperatures with Engine Operating Conditions and Valve Design. NACA Wartime Report ARR E 5120, October 1945.
- Peters, M. D. Effect of Increasing Size of Valve Guide Boss on Exhaust Valve Temperature and Volumetric Efficiency of Aircraft Cylinder. NACA Wartime Report ARR E 5A31, February 1945.
- Mulcahy, B. A. and Zipkin, M. A. Tests of Improvements in Exhaust Valve Performance Resulting from Changes in Exhaust Valve and Port Design. NACA Wartime Report ARR E 5g26, September 1945.

#### VIII. APPENDIX

#### Sample Calculations

1.  $F = \frac{9}{5}(C) + 32$ , where F = Fahrenheit degrees and C = Centigrade degrees

Assume C = 200, then

0

$$F = \frac{9}{5}(200) + 32 = 360 + 32 = 392.$$

- 2.  $\Delta t = (average cylinder head temperature, CHT) (outside air temperature, OAT).$ 
  - Assume CHT = 392 F, and OAT = 60 F, then

$$\Delta t = 392 - 60 = 332 F.$$

3. Determination of corrected brake horsepower,  $BHP_c$ 

| Engine speed2,000       | rpm |
|-------------------------|-----|
| Pressure altitude1,600  | ft  |
| Carburetor air tempera- |     |
| ture, <i>CAT</i> 74 F   |     |

From the sea level altitude power curves for the engine, find the point of intersection on the sea level chart of 25.2 inches mercury and 2,000 rpm and project this point horizontally to the right until it intersects the zero altitude line of the altitude chart. Call this point A. On the altitude chart find the point of intersection of 25.2 inches mercury and 2,000 rpm and call this point B. Connect points A and B with a straight line. At an altitude of 1,600 feet, construct a vertical line until it intersects A-B. Call this point C. Project point C horizontally to the left and read brake horsepower, BHP, on the vertical scale. Because the charts are based on standard temperature, the BHP must be corrected for temperature if the CATis not standard for the particular altitude. Standard air temperature for 1,600 feet is close to 58 F. Therefore, it is necessary to correct BHP as follows:

 $BHP_c = -\frac{BHP}{\sqrt{\frac{460 + CAT}{518}}}$ 

Continuing the example: BHP = 45.5 and CAT = 74 F,

$$BHP_{c} = \frac{45.5}{\sqrt{\frac{460+74}{518}}} = \frac{45.5}{\sqrt{\frac{534}{518}}} = \frac{45.5}{(1.01)} = 45.0$$

4. The calculation of the determination of  $V_{cal}$  of true indicated airspeed involves actual flight of the aircraft over a measured course. The aircraft must be flown over the course against the wind, and then with the wind at various indicated airspeeds, and the time recorded with a stop-watch for each of these runs. Also record sea level barometer, altitude, and temperature. This results in a ground speed  $(V_g)$  determination, from which true indicated airspeed  $(V_{cal})$  can be calculated as follows:

$$V_{cal} = V_g \sqrt{\sigma}$$

where:  $\sigma = (P/P_0)(T_0/T) = \text{density ratio,}$ 

P = pressure corresponding to altitude, inches mercury,  $P_0 =$  standard sea level pressure = 29.92 inches mercury(  $T_0 =$  standard sea level temperature = 520 Rankine,

T = temperature at altitude flown = (460 + t) Rankine, t = outside air temperature F degrees.

The following data are taken from those of the Taylorcraft calibration at 80 mph indicated airspeed. Distance is 6,900 feet, pressure altitude is 1,000 feet, and outside air temperature is 68 F.

| IAS | Time<br>south | Time<br>north | fps<br>south | fps<br>north | fps<br>avg | $mph V_g$ | P/Po  | $T_0/T$ | σ     | $\sqrt{\sigma}$ | ${{\mathop{\rm mph}}\atop V}_{cal}$ |
|-----|---------------|---------------|--------------|--------------|------------|-----------|-------|---------|-------|-----------------|-------------------------------------|
| 80  | 64.3          | 60.6          | 107.2        | 113.9        | 110.5      | 65.4      | 0.965 | 0.985   | 0.951 | 0.976           | 73.6                                |

Time is given in seconds.

fps = feet per second.

and

Calibration curves of instruments are shown in Figures 17, 18, 19, 20, and 21.

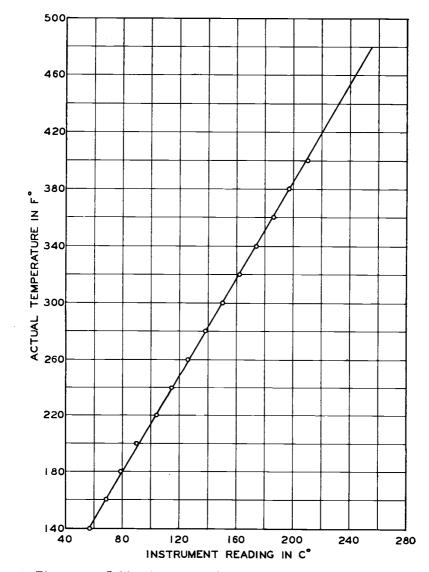



Figure 17. Calibration curve of cylinder head temperature gage.

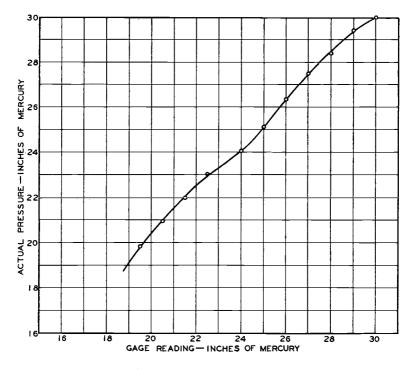



Figure 18. Calibration of manifold pressure gage.

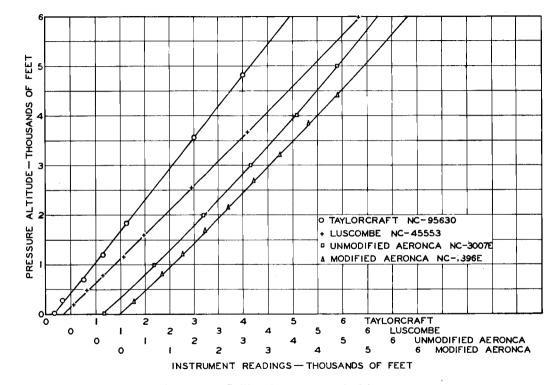



Figure 19. Calibration curves of altimeters.

.

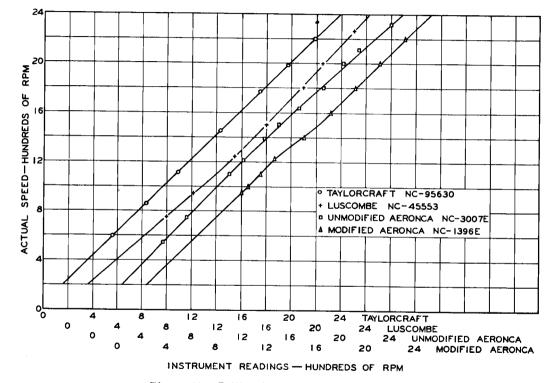
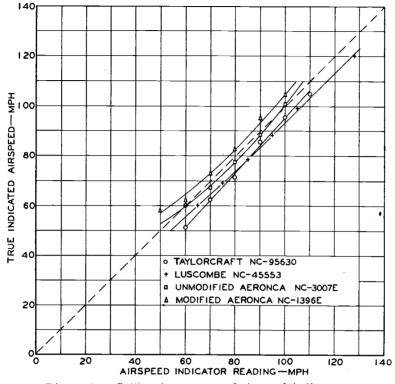




Figure 20. Calibration curves of tachometers.





| True indicated<br>airspeed                                      | $\Delta t$                      | MAP                                  | RPM                                                | Pressure<br>altitude                    | OAT                        | BHP。                                 |
|-----------------------------------------------------------------|---------------------------------|--------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------|--------------------------------------|
| 51 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes<br>8 minutes | 228<br>279<br>294<br>312<br>308 | 28.5<br>28.0<br>28.0<br>26.9<br>25.8 | 2,060<br>2,040<br>2,040<br>2,040<br>2,040<br>2,040 | 240<br>1,020<br>2,100<br>3,250<br>4,450 | 60<br>57<br>53<br>47<br>44 | 54.5<br>53.3<br>53.0<br>50.6<br>48.8 |
| 63 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes<br>8 minutes | 283<br>309<br>308<br>308        | 27.5<br>27.5<br>26.3<br>25.2         | 2,060<br>2,060<br>2,060<br>2,060                   | 1,350<br>2,670<br>3,870<br>5,000        | 55<br>50<br>44<br>42       | 53.0<br>52.5<br>49.7<br>48.1         |
| 74 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes<br>8 minutes | 278<br>287<br>311<br>308        | 27.5<br>27.5<br>26.3<br>25.8         | 2,110<br>2,110<br>2,110<br>2,110<br>2,110          | 1,020<br>2,540<br>3,450<br>4,600        | 55<br>51<br>46<br>42       | 54.2<br>53.9<br>52.5<br>50.5         |

Table 1. Summary of Temperature Rises  $\Delta t$  Taylorcraft NC-95630 Full-Throttle Climb

Table 2. Summary of Temperature Rises  $\Delta t$  Taylorcraft NC-95630 Part-Throttle Climb

| True indicated<br>airspeed | $\Delta t$ | MAP  | RPM                                     | Pressure<br>altitude | OAT  | $BHP_{o}$ |  |  |  |  |
|----------------------------|------------|------|-----------------------------------------|----------------------|------|-----------|--|--|--|--|
| 51 mph                     |            |      |                                         |                      |      |           |  |  |  |  |
| 0                          | 266        | 26.1 | 2,210                                   | 1,020                | 66.0 | 53.0      |  |  |  |  |
| 2 minutes                  | 276        | 24.8 | 1,910                                   | 1,410                | 64.0 | 42.1      |  |  |  |  |
| 4 minutes                  | 285        | 24.7 | 1,910                                   | 2,060                | 60.0 | 41.9      |  |  |  |  |
| 6 minutes                  | 284        | 24.6 | 1,910                                   | 2,730                | 58.0 | 42.0      |  |  |  |  |
| 8 minutes                  |            |      |                                         | · · · · · · · ·      |      |           |  |  |  |  |
| 10 minutes                 |            |      |                                         |                      |      |           |  |  |  |  |
| 63 mph                     | ·          |      |                                         |                      |      |           |  |  |  |  |
| 0                          | 261        | 25.1 | 2,210                                   | 1,020                | 66.0 | 50.6      |  |  |  |  |
| 2 minutes                  | 281        | 24.6 | 2,010                                   | 1,350                | 64.0 | 43.8      |  |  |  |  |
| 4 minutes                  | 291        | 24.6 | 1,985                                   | 2,000                | 61.0 | 43.2      |  |  |  |  |
| 6 minutes                  | 300        | 24.6 | 1,985                                   | 2,780                | 59.0 | 44.0      |  |  |  |  |
| 8 minutes                  | 302        | 24.3 | 1,985                                   | 3,440                | 57.0 | 43.3      |  |  |  |  |
| 10 minutes                 | 301        | 23.8 | 1,985                                   | 4,160                | 56.0 | 42.4      |  |  |  |  |
| 74 mph                     |            |      | ŕ                                       |                      |      |           |  |  |  |  |
| 0                          | 229        | 25.5 | 2,210                                   | 1,020                | 66.0 | 51.7      |  |  |  |  |
| 2 minutes                  | 278        | 25.0 | 2,060                                   | 1,400                | 64.0 | 46.2      |  |  |  |  |
| 4 minutes                  | 290        | 24.8 | 2,060                                   | 2,180                | 62.0 | 46.0      |  |  |  |  |
| 6 minutes                  | 292        | 24.8 | 2,060                                   | 2,820                | 60.0 | 46.5      |  |  |  |  |
| 8 minutes                  | 291        | 24.2 | 2,060                                   | 3,600                | 58.0 | 45.2      |  |  |  |  |
| 10 minutes                 |            |      | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                      |      |           |  |  |  |  |

| True indicated airspeed | $\Delta_t$ | MAP  | RPM   | Pressure<br>altitude | OAT  | $BHP_{\epsilon}$ |
|-------------------------|------------|------|-------|----------------------|------|------------------|
| 51 mph                  |            |      |       |                      |      | -                |
| 0                       | 269        | 23.2 | 2,110 | 1,020                | 63.0 | 42.5             |
| 2 minutes               | 287        | 23.7 | 1,890 | 1,420                | 62.0 | 38.2             |
| 4 minutes               | 299        | 23.4 | 1,890 | 2,050                | 60.0 | 38.0             |
| 6 minutes               | 302        | 23.4 | 1,890 | 2,550                | 58.0 | 38.3             |
| 8 minutes               | 301        | 23.3 | 1,890 | 3,170                | 58.0 | 38.4             |
| 63 mph                  |            |      | , i   |                      |      |                  |
| 0                       | 249        | 24.0 | 2,110 | 1,020                | 64.0 | 44.5             |
| 2 minutes               | 279        | 23.7 | 1,940 | 1,330                |      | 39.5             |
| 4 minutes               | 289        | 23.5 | 1,940 | 1,940                | 60.0 | 39.4             |
| 6 minutes               | 291        | 23.4 | 1,940 | 2,560                | 59.0 | 39.7             |
| 8 minutes               | 289        | 23.1 | 1,940 | 3,380                | 58.0 | 39.5             |
| 74 mph                  |            |      |       | .,                   | 0010 | 0210             |
| 0                       | 232        | 23.3 | 2,110 | 1,020                | 64.0 | 43.0             |
| 2 minutes               | 267        | 23.4 | 1,985 | 1,400                | 63.0 | 39.1             |
| 4 minutes               | 278        | 23.4 | 1,985 | 2,000                | 62.0 | 40.0             |
| 6 minutes               | 281        | 23.4 | 1,985 | 2,580                | 59.0 | 40.3             |
| 8 minutes               | 275        | 23.3 | 1,985 | 3.150                | 58.0 | 40.3             |

Table 2a. Summary of Temperature Rises  $\Delta t$  Taylorcraft NC-95630 Part-Throttle Climb

Table 3. Summary of Temperature Rises  $\Delta t$  Taylorcraft NC-95630 Cruise

| True indicated<br>airspeed                                                                                       | $\Delta t$               | MAP                                  | RPM                                       | Pressure<br>altitude                      | OAT                          | BHP,                         |
|------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------|------------------------------|
| 93 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes                                                               | 246<br>264<br>267<br>266 | 23.3<br>23.3<br>23.3<br>23.3<br>23.3 | 2,110<br>2,110<br>2,110<br>2,110<br>2,110 | 1,020<br>1,020<br>1,020<br>1,020<br>1,020 | 64.0<br>64.0<br>64.0<br>65.0 | 43.1<br>43.1<br>43.1<br>43.1 |
| 96 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes                                                               | 269<br>274<br>274        | 24.6<br>25.0<br>25.0                 | 2,210<br>2,210<br>2,210                   | 1,020<br>1,020<br>1,020                   | 66.0<br>66.0<br>66.0         | 49.0<br>50.2<br>50.2         |
| 107         mph           0            2         minutes           4         minutes           6         minutes | 222<br>257<br>270<br>270 | 27.5<br>27.5<br>27.5<br>27.5<br>27.5 | 2,400<br>2,400<br>2,350<br>2,350          | 1,020<br>1,020<br>1,020<br>1,020          | 58.0<br>58.0<br>58.0<br>58.0 | 63.3<br>63.3<br>62.1<br>62.1 |

| Time       | $\Delta t$ | RPM   | OAT  | BHPe |
|------------|------------|-------|------|------|
| 0          | 129        | 690   | 62.0 | 2.5  |
| 2 minutes  | 148        | 690   | 62.0 | 2.5  |
| 4 minutes  | 155        | 690   | 62.0 | 2.5  |
| 6 minutes  | 160        | 690   | 62.0 | 2.5  |
| 8 minutes  | 163        | 690   | 62.0 | 2.5  |
| 10 minutes | 163        | 690   | 62.0 | 2.5  |
| 10 minutes | 105        | 020   | 02.0 | 2.5  |
| 0          | 167        | 835   | 62.0 | 4.1  |
| 2 minutes  | 172        | 835   | 62.0 | 4.1  |
| 4 minutes  | 174        | 835   | 62.0 | 4.1  |
| 6 minutes  | 174        | 835   | 62.0 | 4.1  |
| 8 minutes  |            |       | 02.0 |      |
| 10 minutes |            |       |      |      |
| 10 minutes |            |       |      |      |
| 0          | 187        | 1,030 | 62.0 | 7.4  |
| 2 minutes  | 196        | 1,030 | 62.0 | 7.4  |
| 4 minutes  | 209        | 1,030 | 62.0 | 7.4  |
| 6 minutes  | 208        | 1,030 | 62.0 | 7.4  |
| 8 minutes  | 200        | 1,000 | 02.0 | ,    |
| 10 minutes |            |       |      |      |
| 10 minutes |            |       |      |      |
| 0          | 228        | 1,230 | 62.0 | 11.7 |
| 2 minutes  | 218        | 1,230 | 62.0 | 11.7 |
| 4 minutes  | 216        | 1,230 | 62.0 | 11.7 |
| 6 minutes  | 213        | 1,230 | 62.0 | 11.7 |
| 8 minutes  | 510        | 1,200 | 02.0 |      |
| 10 minutes |            |       |      |      |
| 10 minutes |            |       |      | •••• |
| 0          | 234        | 1,420 | 62.0 | 17.1 |
| 2 minutes  | 241        | 1,420 | 62.0 | 17.1 |
| 4 minutes  | 236        | 1,420 | 62.0 | 17.1 |
| 6 minutes  | 241        | 1,420 | 62.0 | 17.1 |
| 8 minutes  | 246        | 1,420 | 62.0 | 17.1 |
| 10 minutes | 246        | 1,420 | 62.0 | 17.1 |
| 10 mmuco   | 240        | 1,720 |      | 1/.1 |

Table 4. Summary of Temperature Rises  $\Delta t$  Taylorcraft NC-95630 Idle

| Trans 1 diants 1           |            |      |                   |                      | <u> </u> | <br> |
|----------------------------|------------|------|-------------------|----------------------|----------|------|
| True indicated<br>airspeed | $\Delta t$ | MAP  | RPM               | Pressure<br>altitude | OAT      | BHP. |
| anspeed                    | <u> </u>   | MAL  |                   | annude               |          |      |
| 55 mph                     |            |      |                   |                      |          |      |
| 0                          | 227        | 28.7 | 1,930             | 250                  | 34.0     | 52.8 |
| 2 minutes                  | 240        | 28.7 | 1,810             | 950                  | 38.0     | 48.8 |
| 4 minutes                  | 282        | 27.7 | 1,810             | 1,850                | 40.0     | 47.0 |
| 6 minutes                  | 263        | 27.0 | 1,810             | 2,660                | 40.0     | 46.0 |
| 8 minutes                  | 259        | 27.3 | 1,810             | 3,450                | 46.0     | 44.0 |
| 10 minutes                 | 261        | 26.5 | 1,810             | 4,130                | 44.0     | 42.7 |
| 12 minutes                 | 239        | 25.6 | 1,810             | 4,780                | 42.0     | 42.2 |
| 64 mph                     |            |      | ,                 | , ,                  |          |      |
| 0                          | 192        | 28.7 | 2,050             | 1,120                | 40.0     | 55.7 |
| 2 minutes                  | 260        | 28.4 | 1,900             | 2,140                | 40.0     | 50.8 |
| 4 minutes                  | 275        | 27.5 | 1,900             | 3,050                | 45.0     | 48.7 |
| 6 minutes                  | 306        | 26.5 | 1,900             | 3,980                | 44.0     | 46.7 |
| 8 minutes                  | 285        | 25.4 | 1,900             | 4,800                | 42.0     | 44.8 |
| 10 minutes                 |            |      | _,                |                      |          |      |
| 12 minutes                 |            |      |                   |                      |          |      |
| 74 mph                     |            |      |                   |                      |          |      |
| 0                          | 196        | 28.5 | 2,050             | 1,120                | 40.0     | 55.6 |
| 2 minutes                  | 241        | 28.5 | 1,960             | 1,630                | 40.0     | 52.7 |
| 4 minutes                  | 264        | 27.6 | 1,960             | 2,740                | 44.0     | 50.7 |
| 6 minutes                  | 283        | 26.6 | 1,960             | 2,740<br>3,750       | 46.0     | 48.8 |
| 8 minutes                  | 254        | 25.4 | 1,960             | 4,700                | 42.0     | 46.6 |
| 10 minutes                 |            |      |                   |                      |          |      |
| 12 minutes                 |            |      |                   |                      |          |      |
| 84 mph                     |            |      |                   |                      |          |      |
| 0                          | 143        | 28.5 | 2,100             | 1,120                | 43.0     | 56.2 |
| 2 minutes                  | 234        | 28.0 | 2,050             | 1,920                | 40.0     | 54.5 |
| 4 minutes                  |            |      |                   | ,                    |          |      |
| 6 minutes                  | 276        | 26.3 | 2,050             | 3,880                | 44.0     | 50.8 |
| 8 minutes                  | 266        | 25.5 | 2,050             | 4,720                | 42.0     | 49.0 |
| 10 minutes                 |            |      | · · · · · · · · · |                      |          |      |
| 12 minutes                 |            |      |                   |                      |          |      |
|                            |            |      |                   |                      |          |      |

Table 5. Summary of Temperature Rises  $\Delta t$  Luscombe NC-45553 Full-Throttle Climb

| True indicated<br>airspeed                                                                         | $\Delta t$                      | MAP                                  | RPM                                                | Pressure<br>altitude                      | OAT                                          | BHP,                                 |
|----------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------|
| 55 mph           0           2 minutes           4 minutes           6 minutes           8 minutes | 298<br>322<br>338<br>357<br>353 | 27.6<br>26.9<br>26.2<br>25.5<br>25.1 | 1,780<br>1,780<br>1,780<br>1,780<br>1,780<br>1,780 | 1,900<br>2,550<br>3,150<br>3,700<br>4,180 | 31.0<br>31.0<br>31.0<br>31.0<br>31.0<br>31.0 | 46.2<br>45.3<br>43.7<br>42.3<br>41.5 |
| 64 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes<br>8 minutes                                    | 282<br>302<br>301<br>314<br>286 | 25.6<br>25.6<br>25.4<br>24.8<br>24.1 | 1,810<br>1,810<br>1,810<br>1,810<br>1,810<br>1,810 | 1,500<br>2,290<br>3,000<br>3,690<br>4,350 | 31.0<br>31.0<br>31.0<br>31.0<br>30.0         | 42.5<br>43.0<br>42.6<br>41.5<br>40.1 |
| 74 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes<br>8 minutes                                    | 243<br>262<br>269<br>267        | 26.3<br>25.3<br>24.7<br>24.1         | 1,875<br>1,875<br>1,875<br>1,875<br>1,875          | 1,810<br>2,610<br>3,330<br>3,950          | 30.0<br>31.0<br>31.0<br>31.0                 | 46.0<br>43.9<br>42.5<br>41.2         |

Table 6. Summary of Temperature Rises  $\Delta t$  Luscombe NC-45553 Part-Throttle Climb

Table 6a. Summary of Temperature Rises  $\Delta t$  Luscombe NC-45553 Part-Throttle Climb

| True indicated<br>airspeed | $\Delta t$ | MAP  | RPM            | Pressure<br>altitude                    | 0.AT | BHPe         |
|----------------------------|------------|------|----------------|-----------------------------------------|------|--------------|
| 60 mph                     |            |      |                |                                         |      |              |
| 0                          | 271        | 24.1 | 1,700          | 2,550                                   | 33.0 | 35.8         |
| 2 minutes                  | 276        | 24.1 | 1,700          | 2,970                                   | 30.0 | 36.2         |
| 4 minutes                  | 290        | 23.8 | 1,700          | 3,400                                   | 28.0 | 35.9         |
| 6 minutes                  | 287        | 23.4 | 1,700          | 3,840                                   | 26.0 | 35.1         |
| 8 minutes                  | 295        | 23.1 | 1,700          | 4,290                                   | 23.0 | 35.0         |
| 10 minutes                 | 289        | 22.9 | 1,700          | 4,670                                   | 22.0 | 34.8         |
| 69 mph                     | 207        | 55.7 | 1,,, 00        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      |              |
| 0                          | 245        | 24.5 | 1,750          | 2,660                                   | 32.0 | 38.7         |
| 2 minutes                  | 245        | 24.3 | 1,750          | 3,200                                   | 30.0 | 38.0         |
| 4 minutes                  | 266        | 23.5 | 1,750          | 3,750                                   | 27.0 | 37.1         |
| 6 minutes                  | 275        | 23.2 | 1,750          | 4,290                                   | 25.0 | 36.3         |
| 8 minutes                  | 278        | 22.7 | 1,750          | 4,720                                   | 23.0 | 35.6         |
| 10 minutes                 | 278        | 22.4 | 1,750          | 5,260                                   | 23.0 | 35.3         |
| 79 mph                     | 1          |      | 1,000          |                                         |      |              |
| 0                          | 258        | 23.3 | 1,810          | 3,680                                   | 26.0 | 38.1         |
| 2 minutes                  | 262        | 22.9 | 1,810          | 4,080                                   | 24.0 | 37.2         |
| 4 minutes                  | 278        | 22.6 | 1,810          | 4,000                                   | 22.0 | 36.8         |
| 6 minutes                  | 284        | 22.4 | 1,810          | 4,900                                   | 20.0 | 36.4         |
| 8 minutes                  | 297        | 22.1 | 1,810          | 5,300                                   | 18.0 | 36.0         |
| 10 minutes                 | 288        | 21.7 | 1,810          | 5,680                                   | 16.0 | 35.3         |
|                            | 200        | 51.7 | 1,010          | 0,000                                   | 10.0 | 00.0         |
| 89 mph                     | 210        | 25.1 | 2,050          | 1,110                                   | 28.0 | 47.4         |
| 0                          |            | 23.1 | 1,900          | 1,110                                   | 25.0 | 41.6         |
| 2 minutes                  | 291<br>298 | 24.4 | 1,900          | 1,370                                   | 25.0 | 41.0         |
| 4 minutes                  | 298<br>303 | 24.1 |                | 2,250                                   | 25.0 | 41.2         |
| 6 minutes                  | 303<br>304 | 23.8 | 1,900<br>1,900 | 2,230                                   | 25.0 | 40.4         |
| 8 minutes                  | 290        | 23.5 | 1,900          | 2,040                                   | 25.0 | 40.0<br>39.4 |
| 10 minutes                 | 290        | 23.2 | 1,900          | 2,910                                   | 20.0 | <u> </u>     |

| True indicated airspeed                            | $\Delta_t$                                           | MAP                                                                  | RPM                                                                  | Pressure<br>altitude                                                          | OAT                                                          | BHP.                                                         |
|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| 122         mph           0                        | 206<br>230<br>269<br>268<br>278<br>245<br>303<br>299 | 27.8<br>27.8<br>27.8<br>27.8<br>27.8<br>24.8<br>24.9<br>25.0<br>25.2 | 2,360<br>2,360<br>2,360<br>2,360<br>2,050<br>2,100<br>2,100<br>2,100 | 1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120<br>1,120 | 28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0<br>28.0 | 65.4<br>65.4<br>65.4<br>65.4<br>47.5<br>48.0<br>49.4<br>49.7 |
| 89 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes | 228<br>236<br>232<br>232                             | 21.3<br>21.0<br>20.8<br>20.4                                         | 1,700<br>1,700<br>1,700<br>1,700                                     | 1,120<br>1,120<br>1,120<br>1,120<br>1,120                                     | 28.0<br>28.0<br>28.0<br>28.0<br>28.0                         | 31.3<br>30.3<br>29.7<br>28.7                                 |

Table 7. Summary of Temperature Rises  $\Delta t$  Luscombe NC-45553 Cruise

Table 8. Summary of Temperature Rises  $\Delta t$  Luscombe NC-45553 Idle

| Time       | $\Delta t$ | RPM   | OAT  | BHPe  |
|------------|------------|-------|------|-------|
| 0          | 139        | 620   | 51.0 | 1.9   |
| 2 minutes  | 142        | 620   | 51.0 | 1.9   |
| 4 minutes  | 139        | 620   | 51.0 | 1.9   |
| 6 minutes  | 139        | 620   | 51.0 | 1.9   |
| 8 minutes  |            |       | 51.0 |       |
| 10 minutes |            |       |      |       |
|            |            |       | ••   |       |
| 0          | 143        | 800   | 51.0 | 3.7   |
| 2 minutes  | 145        | 800   | 51.0 | 3.7   |
| 4 minutes  | 152        | 800   | 51.0 | 3.7   |
| 6 minutes  | 157        | . 800 | 51.0 | 3.7   |
| 8 minutes  | 161        | 800   | 51.0 | 3.7   |
| 10 mimites | 161        | 800   | 51.0 | 3.7   |
| 0          | 1.4        | 0.40  |      |       |
| 0          | 164        | 940   | 51.0 | 5.7   |
| 2 minutes  | 166        | 940   | 51.0 | 5.7   |
| 4 minutes  | 167        | 940   | 51.0 | 5.7   |
| 6 minutes  | 170        | 940   | 51.0 | 5.7   |
| 8 minutes  | 171        | 940   | 51.0 | 5.7   |
| 10 minutes | 171        | 940   | 51.0 | 5.7   |
| 0          | 187        | 1,120 | 51.0 | 9.4   |
| 2 minutes  | 188        | 1.120 | 51.0 | 9.4   |
| 4 minutes  | 193        | 1,120 | 51.0 | 9.4   |
| 6 minutes  | 196        | 1,120 | 51.0 | 9.4   |
| 8 minutes  | 198        | 1,120 | 51.0 | 9.4   |
| 10 minutes | 198        | 1,120 | 51.0 | 9.4   |
| to minutes | 170        | 1,120 | 51.0 | 7.4   |
| 0          | 219        | 1.310 | 51.0 | 14.3  |
| 2 minutes  | 233        | 1,310 | 51.0 | 14.3  |
| 4 minutes  | 245        | 1,310 | 51.0 | 14.3  |
| 6 minutes  | 229        | 1,310 | 51.0 | 14.3  |
| 8 minutes  | 229        | 1,310 | 51.0 | 14.3  |
| 10 minutes | ,          | 1,510 | 51.0 | 17.0  |
|            |            |       |      | ••••• |

| True indicated<br>airspeed | $\Delta t$ | MAP   | RPM   | Pressure<br>altitude | OAT  | BHP。 |
|----------------------------|------------|-------|-------|----------------------|------|------|
| 54 mph                     |            |       |       |                      |      | _    |
| 0                          | 255        | 28.5  | 2,040 | 110                  | 72.0 | 53.8 |
| 2 minutes                  | 314        | 28.0  | 2,000 | 570                  | 70.0 | 51.5 |
| 4 minutes                  | 338        | 27.3  | 2,000 | 1,200                | 66.0 | 49.9 |
| 6 minutes                  | 344        | 27.2  | 2,000 | 1,470                | 64.0 | 49.8 |
| 8 minutes                  | 347        | 26.8  | 2,000 | 2,180                | 61.0 | 49.5 |
| 10 minutes                 | 338        | 26.0  | 2,000 | 2,700                | 60.0 | 49.0 |
| 64 mph                     |            |       |       |                      |      |      |
| 0                          | 326        | 28.0  | 2,040 | 960                  | 68.0 | 52.7 |
| 2 minutes                  | 342        | 27.0  | 2,040 | 1,680                | 65.0 | 50.7 |
| 4 minutes                  | 339        | 26.1  | 2,040 | 2,510                | 62.0 | 49.2 |
| 6 minutes                  |            |       |       |                      |      |      |
| 8 minutes                  |            |       |       |                      |      |      |
| 10 minutes                 |            | ····· |       |                      |      |      |
| 72 mph                     |            |       | ļ     |                      |      |      |
| 0                          | 323        | 28.0  | 2,065 | 970                  | 69.0 | 53.2 |
| 2 minutes                  | 332        | 26.9  | 2,065 | 1,570                | 66.0 | 51.2 |
| 4 minutes                  | 330        | 26.1  | 2,065 | 2,410                | 62.0 | 49.6 |
| 6 minutes                  |            |       |       |                      |      |      |
| 8 minutes                  |            |       |       |                      |      |      |
| 10 minutes                 |            |       |       |                      |      |      |

Table 9. Summary of Temperature Rises  $\Delta t$  Unmodified Aeronca NC-3007E Full-Throttle Climb

Table 10. Summary of Temperature Rises  $\Delta t$  Unmodified Aeronca NC-3007E Part-Throttle Climb

| True indicated<br>airspeed | $\Delta_t$ | MAP  | RPM   | Pressure<br>altitude | OAT  | BHP, |
|----------------------------|------------|------|-------|----------------------|------|------|
| 62 mph                     |            |      |       |                      |      |      |
| 0                          | 259        | 25.8 | 2,135 | 910                  | 64.0 | 50.4 |
| 2 minutes                  |            |      |       |                      |      |      |
| 4 minutes                  | 282        | 25.8 | 1,950 | 1,560                | 62.0 | 45.3 |
| 6 minutes                  | 285        | 25.2 | 1,950 | 2,030                | 59.0 | 44.2 |
| 71 mbh                     |            |      |       |                      |      |      |
| 0                          | 264        | 26.3 | 2,135 | 760                  | 66.0 | 51.5 |
| 2 minutes                  | 289        | 26.3 | 2,000 | 860                  | 64.0 | 47.6 |
| 4 minutes                  | 293        | 26.3 | 2,000 | 1,260                | 62.0 | 47.9 |
| 6 minutes                  | 291        | 25.8 | 2,000 | 1,970                | 58.0 | 47.0 |
| 82 mph                     |            |      | , i   |                      |      |      |
| 0                          | 268        | 26.3 | 2,135 | 650                  | 68.0 | 50.0 |
| 2 minutes                  |            |      | ,     |                      | 0010 |      |
| 4 minutes                  | 290        | 26.3 | 2.040 | 820                  | 65.0 | 48.4 |
| 6 minutes                  | 289        | 25.8 | 2.040 | 1,450                | 60.0 | 47.5 |

| True indicated airspeed                            | $\Delta t$        | MAP                  | RPM                     | Pressure<br>altitude         | OAT                  | BHPe                 |
|----------------------------------------------------|-------------------|----------------------|-------------------------|------------------------------|----------------------|----------------------|
| 62 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes | 303<br>303        | 25.2<br>24.1         | 1,950<br>1,950          | 600<br>1,310<br>1,630        | 74.0<br>74.0         | 43.4<br>40.6         |
| 71 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes | 293<br>296<br>296 | 26.9<br>26.3<br>25.8 | 2,000<br>2,000<br>2,000 | 650<br>960<br>1,260<br>1,610 | 74.0<br>74.0<br>74.0 | 48.5<br>47.2<br>45.9 |
| 82 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes | 262<br>264        | 24.6<br>24.1         | 1,950<br>1,950<br>      | 750<br>850<br>1,260          | 65.0<br>61.0         | 41.8<br>41.0         |

Table 10a. Summary of Temperature Rises  $\Delta t$  Unmodified Aeronca NC-3007E Part-Throttle Climb

Table 11. Summary of Temperature Rises  $\Delta t$  Unmodified Aeronca NC-3007E; Cruise

.

| True indicated<br>airspeed            | $\Delta t$        | MAP                  | RPM                     | Pressure<br>altitude    | OAT                  | BHP.                 |
|---------------------------------------|-------------------|----------------------|-------------------------|-------------------------|----------------------|----------------------|
| 67 mph<br>0<br>2 minutes<br>4 minutes | 237<br>238<br>233 | 19.0<br>19.0<br>19.0 | 1,765<br>1,765<br>1,765 | 2,570<br>2,550<br>2,520 | 54.0<br>55.0<br>56.0 | 27.7<br>27.7<br>27.7 |
| 85 mph<br>0<br>2 minutes<br>4 minutes | 256<br>256        | 23.7<br>23.7         | 2,040<br>2,040          | 2,630<br>2,630          | 54.0<br>54.0         | 45.4<br>45.4<br>     |
| 99 mph<br>0<br>2 minutes<br>4 minutes | 273<br>273        | 26.3<br>26.3         | 2,225<br>2,225          | 2,630<br>2,630          | 54.0<br>54.0         | 56.3<br>56.3         |

| Time       | $\Delta t$ | RPM     | OAT  | BHP  |
|------------|------------|---------|------|------|
| 0          | 120        | 630     | 74.0 | 1.9  |
| 2 minutes  | 140        | 630     | 73.0 | 1.9  |
| 4 minutes  | 145        | 630     | 73.0 | 1.9  |
| 6 minutes  | 156        | 630     | 73.0 | 1.9  |
| 8 minutes  | 162        | 630     | 74.0 | 1.9  |
| 10 minutes | 162        | 630     | 74.0 | 1.9  |
| 0          | 168        | 790     | 73.0 | 3.6  |
| 2 minutes  | 177        | 790     | 74.0 | 3.6  |
| 4 minutes  | 180        | 790     | 74.0 | 3.6  |
| 6 minutes  | 184        | 790     | 74.0 | 3.6  |
| 8 minutes  | 186        | 790     | 74.0 | 3.6  |
| 10 minutes | 186        | 790     | 74.0 | 3.6  |
| 0          |            | 1,000   | 74.0 | 6.7  |
| 2 minutes  | 199        | 1,000   | 74.0 | 6.7  |
| 4 minutes  | 199        | 1,000   | 74.0 | 6.7  |
| 6 minutes  |            |         |      |      |
| 8 minutes  |            | <b></b> |      |      |
| 10 minutes |            |         |      |      |
| 0          | 221        | 1,200   | 74.0 | 10.9 |
| 2 minutes  | 222        | 1,200   | 74.0 | 10.9 |
| 4 minutes  | 222        | 1,200   | 74.0 | 10.9 |
| 6 minutes  |            |         |      |      |
| 8 minutes  |            |         |      |      |
| 10 minutes |            |         |      |      |

Table 12. Summary of Temperature Rises  $\Delta t$  Unmodified Aeronca NC-3007E; Idle

| Table 13. | Summary of Temperature Rises $\Delta t$ Modified Aeronca |
|-----------|----------------------------------------------------------|
|           | NC-1396E                                                 |
|           | Full-Throttle Climb                                      |

| True indicated<br>airspeed                                      | $\Delta t$                      | MAP                                  | RPM                                                | Pressure<br>altitude                   | OAT                                  | BHP.                                 |
|-----------------------------------------------------------------|---------------------------------|--------------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
| 56 mph<br>02 minutes<br>4 minutes<br>6 minutes<br>8 minutes     | 254<br>278<br>294<br>300        | 27.5<br>27.5<br>26.9<br>25.8         | 2,200<br>2,170<br>2,170<br>2,170                   | 1,030<br>1,800<br>2,580<br>3,630       | 62.0<br>60.0<br>56.0<br>50.0         | 56.5<br>56.0<br>52.2<br>49.5         |
| 62 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes<br>8 minutes | 193<br>258<br>289<br>291<br>296 | 28.5<br>28.5<br>28.0<br>26.9<br>26.3 | 2,245<br>2,245<br>2,245<br>2,245<br>2,245<br>2,245 | 50<br>1,060<br>1,750<br>2,570<br>3,620 | 70.0<br>64.0<br>60.0<br>56.0<br>51.0 | 60.0<br>60.0<br>59.8<br>56.9<br>55.5 |
| 73 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes<br>8 minutes | 286<br>289<br>287<br>           | 28.0<br>27.5<br>26.9                 | 2,290<br>2,290<br>2,290<br>                        | 1,200<br>1,920<br>2,490                | 64.0<br>60.0<br>58.0                 | 60.7<br>59.9<br>58.8                 |

.

| True indicated<br>airspeed | $\Delta t$ | MAP  | RPM   | Pressure<br>altitude | OAT  | BHP <sub>e</sub> |
|----------------------------|------------|------|-------|----------------------|------|------------------|
| 57 mph                     |            |      |       |                      |      |                  |
| 0                          |            |      |       |                      |      |                  |
| 2 minutes                  | 263        | 23.3 | 2.000 | 2.030                | 64.0 | 40.9             |
| 4 minutes                  | 262        | 22.4 | 2,000 | 2,350                | 63.0 | 39.1             |
| 6 minutes                  |            |      |       |                      |      |                  |
| 62 mbh                     |            |      |       |                      |      |                  |
| 0                          |            |      |       |                      |      |                  |
| 2 minutes                  | 243        | 22.9 | 2,020 | 1,050                | 70.0 | 39.3             |
| 4 minutes                  | 245        | 22.4 | 2,020 | 1,410                | 68.0 | 38.8             |
| 6 minutes                  | 245        | 22.0 | 2,020 | 1,550                | 68.0 | 37.6             |
| 73 mph.                    |            |      | ŕ     | ĺ ĺ                  |      |                  |
| 0                          |            |      |       |                      |      |                  |
| 2 minutes                  | 245        | 23.3 | 2,065 | 1.030                | 70.0 | 41.5             |
| 4 minutes                  | 245        | 23.3 | 2,065 | 1,170                | 70.0 | 41.6             |
| 6 minutes                  |            | 2010 |       | .,                   |      |                  |

Table 14. Summary of Temperature Rises  $\Delta t$  Modified Aeronca NC-1396E Part-Throttle Climb

Table 14a. Summary of Temperature Rises  $\Delta t$  Modified Aeronca NC-1396E Part-Throttle Climb

| True indicated<br>airspeed                         | $\Delta t$        | MAP                          | RPM                              | Pressure<br>altitude     | OAT                  | BHP.                 |
|----------------------------------------------------|-------------------|------------------------------|----------------------------------|--------------------------|----------------------|----------------------|
| 57 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes | 260<br>260        | 23.3<br>22.4                 | 1,900<br>1,900                   | 510<br>1,050<br>1,270    | 70.0<br>70.0         | 37.5<br>35.9         |
| 62 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes | 241<br>240        | 22.0<br>21.5                 | 1,925<br>1,925                   | 610<br>830<br>950        | 72.0<br>71.0         | 35.2<br>34.5         |
| 73 mph<br>0<br>2 minutes<br>4 minutes<br>6 minutes | 233<br>235<br>235 | 22.0<br>22.0<br>22.0<br>22.0 | 2,000<br>2,000<br>2,000<br>2,000 | 610<br>580<br>750<br>800 | 75.0<br>75.0<br>75.0 | 36.0<br>36.1<br>36.1 |

| True indicated<br>airspeed | $\Delta_t$ | MAP  | RPM                                   | Pressure<br>altitude | OAT  | BHPc |
|----------------------------|------------|------|---------------------------------------|----------------------|------|------|
| 62 mph                     |            | 1    |                                       |                      |      |      |
| 0                          | 212        | 18.0 | 1.700                                 | 970                  | 64.0 | 23.7 |
| 2 minutes                  | 214        | 19.0 | 1,700                                 | 900                  | 64.0 | 22.2 |
| 4 minutes                  | 214        | 18.0 | 1,700                                 | 940                  | 64.0 | 23.7 |
| 79 mph                     |            |      | , , , , , , , , , , , , , , , , , , , |                      |      |      |
| 0                          | 234        | 21.5 | 2.000                                 | 970                  | 66.0 | 35.2 |
| 2 minutes                  | 229        | 21.5 | 2,000                                 | 970                  | 66.0 | 35.2 |
| 4 minutes                  | 229        | 21.5 | 2,000                                 | 970                  | 66.0 | 35.2 |
| 89 mph                     |            |      |                                       |                      |      |      |
| 0                          | 254        | 25.8 | 2,290                                 | 890                  | 66.0 | 55.0 |
| 2 minutes                  | 254        | 25.8 | 2,290                                 | 900                  | 66.0 | 55.0 |
| 4 minutes                  |            |      |                                       |                      |      |      |
| 99 mph                     |            |      |                                       |                      |      |      |
| 0                          | 264        | 28.5 | 2.470                                 | 970                  | 66.0 | 68.0 |
| 2 minutes                  | 264        | 28.5 | 2,470                                 | 970                  | 66.0 | 68.0 |
| 4 minutes                  |            | ·    |                                       |                      |      |      |

Table 15. Summary of Temperature Rises  $\Delta t$  Modified Aeronca NC-1396E; Cruise

Table 16. Summary of Temperature Rises  $\Delta t$  Modified Aeronca NC-1396E; Idle

| Time       | $\Delta t$ | RPM   | OAT  | BHPc |
|------------|------------|-------|------|------|
| 0          | 117        | 600   | 74.0 | 1.7  |
| 2 minutes  | 126        | 600   | 74.0 | 1.7  |
| 4 minutes  | 133        | 600   | 74.0 | 1.7  |
| 6 minutes  | 139        | 600   | 74.0 | 1.7  |
|            | 139        | 600   | 74.0 | 1.7  |
|            |            |       |      | 1.7  |
| 10 minutes | 139        | 600   | 74.0 | 1./  |
| 0          | 141        | 750   | 74.0 | 3.1  |
| 2 minutes  | 142        | 750   | 76.0 | 3.1  |
|            | 142        | 750   | 76.0 | 3.1  |
|            | 145        | 750   | 76.0 | 3.1  |
| 6 minutes  |            |       |      |      |
| 8 minutes  | 148        | 750   | 76.0 | 3.1  |
| 10 minutes | 148        | 750   | 74.0 | 3.1  |
| 0          | 156        | 950   | 78.0 | 5.8  |
|            | 158        | 950   | 76.0 | 5.8  |
| 2 minutes  |            | 950   | 75.0 | 5.8  |
| 4 minutes  | 161        |       |      |      |
| 6 minutes  | 160        | 950   | 76.0 | 5.8  |
| 8 minutes  | •••••      |       |      |      |
| 10 minutes |            |       |      |      |
| 0          | 171        | 1,160 | 76.0 | 9,9  |
|            |            |       |      |      |
| 2 minutes  | 180        | 1,160 | 76.0 | 9.9  |
| 4 minutes  | 179        | 1,160 | 77.0 | 9.9  |
| 6 minutes  | 180        | 1,160 | 76.0 | 9.9  |
| 8 minutes  |            |       | ·    |      |
| 10         |            |       |      |      |
| 10 minutes | 104        | 1 240 | 70.0 | 14.0 |
| 0 minutes  | 196        | 1,340 | 79.0 | 14.8 |
| 2 minutes  | 196        | 1,340 | 79.0 | 14.8 |
| 4 minutes  | 198        | 1,340 | 78.0 | 14.8 |
| 6 minutes  | 198        | 1,340 | 78.0 | 14.8 |
|            |            |       |      | ·    |

# OREGON STATE COLLEGE ENGINEERING EXPERIMENT STATION CORVALLIS, OREGON

# LIST OF PUBLICATIONS

#### Bulletins-

| No. 1. | Langton and H. S. Rogers. 1929.<br>Fifteen cents                                                                                                                           |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. 2  | A Sanitary Survey of the Willamette Valley, by H. S. Rogers, C. A. Mock-<br>more, and C. D. Adams. 1930.<br>Forty cents.                                                   |
| No. 3  | The Properties of Cement-Sawdust Mortars, Plain, and with Various Admix-<br>tures, by S. H. Graf and R. H. Johnson. 1930.<br>Twenty cents.                                 |
| No. 4  | Interpretation of Exhaust Gas Analyses, by S. H. Graf, G. W. Gleeson, and<br>W. H. Paul. 1934.<br>Twenty-five cents.                                                       |
| No. 5  | Western Oregon, by R. E. Summers. 1935.<br>None available                                                                                                                  |
| No. 6  | Columbia, by G. W. Gleeson. 1936.<br>Twenty-five cents.                                                                                                                    |
| No. 7  | and F. Merryfield. 1936.<br>Fifty cents.                                                                                                                                   |
| No. 8  | An Investigation of Some Oregon Sands with a Statistical Study of the Pre-<br>dictive Values of Tests, by C. E. Thomas and S. H. Graf. 1937.<br>Fifty cents.               |
| No. 9  | 1938 Progress Report on the Post Farm, by T. J. Starker, 1938.<br>Twenty-five cents.<br>Yearly progress reports, 9-A, 9-B, 9-C, 9-D, 9-E, 9-F, 9-G.<br>Fifteen cents each. |
| No. 10 | E. C. Starr, 1939.<br>Seventy-five cents.                                                                                                                                  |
| No. 11 | . Electric Fence Controllers with Special Reference to Equipment Developed<br>for Measuring Their Characteristics, by F. A. Everest. 1939.<br>Forty cents                  |
| No. 12 | minants, by J. R. Griffith. 1940.<br>Twenty-five cents.                                                                                                                    |
| No. 13 | Twenty-five cents.                                                                                                                                                         |
| No. 1- |                                                                                                                                                                            |
| No. 1. | Twenty-five cents.                                                                                                                                                         |
| No. 10 | 5. The Improvement of Reversible Dry Kiln Fans, by A. D. Hughes. 1941.<br>Twenty-five cents.                                                                               |
| No. 12 |                                                                                                                                                                            |
| No. 13 | <ol> <li>The Use of Fourier Series in the Solution of Beam Problems, by B. F. Ruff-<br/>ner. 1944,<br/>Fifty cents.</li> </ol>                                             |
| No. 1  | W. G. Wilmot. 1945.<br>Forty cents.                                                                                                                                        |
| No. 2  | b), The Fishes of the Willamette River System in Relation to Pollution, by R. E.<br>Dimick and Fred Merryfield. 1945.<br>Fortv cents.                                      |
| No. 2  |                                                                                                                                                                            |
|        | 45                                                                                                                                                                         |

- No. 22. Industrial and City Wastes, by Fred Merryfield, W. B. Bollen, and F. C. Kachelhoffer. 1947. Forty cents.
- No. 23. Ten-Year Mortar Strength Tests of Some Oregon Sands, by C. E. Thomas and S. H. Graf. 1948. Twenty-five cents.
- No. 24. Space Heating by Electric Radiant Panels and by Reverse Cycle, by Louis Slegel. July 1948. Fifty cents.
- No. 25. The Banka Water Turbine, by C. A. Mockmore and Fred Merryfield. Feb. 1949. Forty cents.
- No. 26 Ignition Temperatures of Various Papers, Woods, and Fabrics, by S. H. Graf. Mar. 1949. Fifty cents.
- Cylinder Head Temperatures in Four Airplanes with Continental A-65 En-gines, by S. H. Lowy. July 1949. Forty cents. No. 27.
- No. 28. Dielectric Properties of Douglas Fir at High Frequencies, by J. J. Wittkopf and M. D. Macdonald. July 1949. Forty cents.

#### Circulars-

- No. 1. A Discussion of the Properties and Economics of Fuels Used in Oregon, by C. E. Thomas and G. D. Keerins. 1929. Twenty-five cents.
- No 2Adjustment of Automotive Carburetors for Economy, by S. H. Graf and G. W. Gleeson. Gleeson. 1930. None available.
- No. 3. Elements of Refrigeration for Small Commercial Plants, by W. H. Martin. 1935. None available.
- Some Engineering Aspects of Locker and Home Cold-Storage Plants, by W. H. Martin. 1938. No. 4. Twenty cents.
- Refrigeration Applications to Certain Oregon Industries, by W. H. Martin. No. 5. 1940. Twenty-five cents.
- No. 6. The Use of a Technical Library, by W. E. Jorgensen. 1942. Twenty-five cents.
- Saving Fuel in Oregon Homes, by E. C. Willey. 1942. Twenty-five cents. No. 7.
- No. 8. Technical Approach to the Utilization of Wartime Motor Fuels, by W. H. Paul. 1944. Twenty-five cents.
- No. 9. Electric and Other Types of House Heating Systems, by Louis Slegel, 1946. Twenty-five cents.
- No. 10. Economics of Personal Airplane Operation, by W. J. Skinner. 1947.
  - Twenty-five cents.
- Digest of Oregon Land Surveying Laws, by C. A. Mockmore, M. P. Coopey, B. B. Irving, and E. A. Buckhorn. 1948. No. 11. Twenty-five cents.

#### Reprints-

- Methods of Live Line Insulator Testing and Results of Tests with Different Instruments, by F. O. McMillan. Reprinted from 1927 Proc. N. W. Elec. No. 1. Lt. and Power Assoc. Twenty cents.
- No. 2. Some Anomalies of Siliceous Matter in Boiler Water Chemistry, by R. E. Summers. Reprinted from Jan. 1935, Combustion. Ten cents.
- No. 3. Asphalt Emulsion Treatment Prevents Radio Interference, by F. O. McMillan. Reprinted from Jan. 1935, Electrical West. None available.
- No. 4. Some Characteristics of A-C Conductor Corona, by F. O. McMillan. Reprinted from Mar. 1935, Electrical Engineering. None available.
- No. 5. A Radio Interference Measuring Instrument, by F. O. McMillan and H. G. Barnett. Reprinted from Aug. 1935, Electrical Engineering. Ten cents.

- No. 6. Water-Gas Reaction Apparently Controls Engine Exhaust Gas Composition, by G. W. Gleeson and W. H. Paul. Reprinted from Feb. 1936, National Petroleum News. None available.
- No. 7. Steam Generation by Burning Wood, by R. E. Summers. Reprinted from Apr. 1936, Heating and Ventilating. Ten cents.
- No. 8. The Piezo Electric Engine Indicator, by W. H. Paul and K. R. Eldredge. Reprinted from Nov. 1935, Oregon State Technical Record. Ten cents.
- No. 9. Humidity and Low Temperature, by W. H. Martin and E. C. Willey. Reprinted from Feb. 1937, Power Plant Engineering. None available.
- No. 10. Heat Transfer Efficiency of Range Units, by W. J. Walsh. Reprinted from Aug. 1937, Electrical Engineering. None available.
- No. 11. Design of Concrete Mixtures, by I. F. Waterman. Reprinted from Nov. 1937, Concrete. None available.
- No. 12. Water-wise Refrigeration, by W. H. Martin and R. E. Summers. Reprinted from July 1938, Power. Ten cents.
- No. 13. Polarity Limits of the Sphere Gap, by F. O. McMillan. Reprinted from Vol. 58, A.I.E.E. Transactions, Mar. 1939 Ten cents.
- No. 14. Influence of Utensils on Heat Transfer, by W. G. Short. Reprinted from Nov. 1938, Electrical Engineering. Ten cents.
- No. 15. Corrosion and Self-Protection of Metals, by R. E. Summers. Reprinted from Sept. and Oct. 1938, Industrial Power. Ten cents.
- No. 16. Monocoque Fuselage Circular Ring Analysis, by B. F. Ruffner. Reprinted from Jan. 1939, Journal of the Aeronautical Sciences. Ten cents.
- No. 17. The Photoelastic Method as an Aid in Stress Analysis and Structural Design, by B. F. Ruffner. Reprinted from Apr. 1939, Aero Digest. Ten cents.
- No. 18. Fuel Value of Old-Growth vs. Second-Growth Douglas Fir, by Lee Gabie. Reprinted from June 1939, The Timberman. Ten cents.
- No. 19. Stoichiometric Calculations of Exhaust Gas, by G. W. Gleeson and F. W. Woodfield, Jr. Reprinted from Nov. 1, 1939, National Petroleum News. Ten cents.
- No. 20. The Application of Feedback to Wide-Band Output Amplifiers, by F. A. Everest and H. R. Johnson. Reprinted from Feb. 1940, Proc. of the Institute of Radio Engineers. Ten cents.
- No. 21. Stresses Due to Secondary Bending, by B. F. Ruffner. Reprinted from Proc. of First Northwest Photoelasticity Conference, University of Washington, Mar. 30, 1940. Ten cents.
- No. 22. Wall Heat Loss Back of Radiators, by E. C. Willey. Reprinted from Nov. 1940, Heating and Ventilating. Ten cents.
- No. 23. Stress Concentration Factors in Main Members Due to Welded Stiffeners, by W. R. Cherry. Reprinted from Dec. 1941, The Welding Journal, Research Supplement. Ten cents.
- No. 24. Horizontal-Polar-Pattern Tracer for Directional Broadcast Antennas, by F. A. Everest and W. S. Pritchett. Reprinted from May 1942, Proc. of The Institute of Radio Engineers. Ten cents.
- No. 25. Modern Methods of Mine Sampling, by R. K. Meade. Reprinted from Jan. 1942, The Compass of Sigma Gamma Epsilon. Ten cents.
- No. 26. Broadcast Antennas and Arrays. Calculation of Radiation Patterns; Impedance Relationships, by Wilson Pritchett. Reprinted from Aug. and Sept. 1944, Communications. Fifteen cents.
- No. 27. Heat Losses Through Wetted Walls, by E. C. Willey. Reprinted from June 1946, ASHVE Journal Section of Heating, Piping, & Air Conditioning. Ten cents.

- No. 28. Electric Power in China, by F. O. McMillan. Reprinted from Jan. 1947, Electrical Engineering. Ten cents.
- No. 29. The Transient Energy Method of Calculating Stability, by P. C. Magnusson. Reprinted from Vol. 66, A.I.E.E. Transactions, 1947. Ten cents.
- No. 30. Observations on Arc Discharges at Low Pressures, by M. J. Kofoid. Reprinted from Apr. 1948, Journal of Applied Physics. Ten cents.
- No. 31. Long-Range Planning for Power Supply, by F. O. McMillan. Reprinted from Dec. 1948, Electrical Engineering. Ten cents.
- No. 32. Heat Transfer Coefficients in Beds of Moving Solids, by O. Levenspiel and J. S. Walton. Reprinted from 1949 Proc. of the Heat Transfer and Fluid Mechanics Institute. Ten cents.
- No. 33. Catalytic Dehydrogenation of Ethane by Selective Oxidation, by J. P. McCullough and J. S. Walton. Reprinted from July 1949, Industrial and Engineering Chemistry. Ten cents.

46

6.0

## THE ENGINEERING EXPERIMENT STATION

#### Administrative Officers

EDGAR W. SMITH, President, Oregon State Board of Higher Education. PAUL C PACKER, Chancellor, Oregon State System of Higher Education. A. L. STRAND, President, Oregon State College. G. W. GLEESON, Dean, School of Engineering.

D. M. GOODE, Director of Publications.

S. H. GRAF, Director, Engineering Experiment Station.

#### Station Staff

A. L. Albert, Communication Engineering.

W. C. BAKER, Air Conditioning.

P. M. DUNN, Forestry.

G. S. FEIKERT, Radio Engineering.

G. W. GLEESON, Chemical Engineering.

BURDETTE GLENN, Highway Engineering.

G. W. HOLCOMB, Structural Engineering. C. V. LANGTON, Public Health.

F. O. McMILLAN, Electrical Engineering.

W. H. MARTIN, Mechanical Engineering.

FRED MERRYFIELD, Sanitary Engineering.

C. A. MOCKMORE, Civil and Hydraulic Engineering.

W. H. PAUL, Automotive Engineering.

P. B. PROCTOR. Wood Products.

B. F. RUFFNER, Aeronautical Engineering.

M. C. SHEELY, Shop Processes.

LOUIS SLEGEL, Electric Space Heating.

E. C. STARR, Electrical Engineering.

C. E. THOMAS, Engineering Materials.

J. S. WALTON, Chemical and Metallurgical Engineering.

#### **Technical Counselors**

- R. H. BALDOCK, State Highway Engineer, Salem.
- R. R. CLARK, Designing Engineer, Corps of Engineers, Portland District, Portland.

DAVID DON, Chief Engineer, Public Utilities Commissioner, Salem.

PAUL B. MCKEE, President, Portland Gas and Coke Company, Portland.

- B. S. MORROW, Engineer and General Manager, Department of Public Utilities and Bureau of Water Works, Portland.
- F. W. LIBBEY, Director, State Department of Geology and Mineral Industries, Portland.
- J. H. POLHEMUS, President, Portland General Electric Company, Portland.
- S. C. SCHWARZ, Chemical Engineer, Portland Gas and Coke Company, Portland.
- I. C. STEVENS, Consulting Civil and Hydraulic Engineer, Portland.
- C. E. STRICKLIN, State Engineer, Salem.
- S. N. WYCKOFF, Director, Pacific Northwest Forest and Range Experiment Station, U. S. Department of Agriculture, Forest Service, Portland.

# Oregon State College

Corvallis

#### **RESIDENT INSTRUCTION**

Liberal Arts and Sciences

LOWER DIVISION (Junior Certificate)

SCHOOL OF SCIENCE (B.A., B.S., M.A., M.S., Ph.D. degrees) Professional Schools

SCHOOL OF AGRICULTURE (B.S., B.Agr., M.S., Ph.D. degrees)

SCHOOL OF BUSINESS AND TECHNOLOGY (B.A., B.S., B.S.S. degrees)

SCHOOL OF EDUCATION (B.A., B.S., Ed.B., M.A., M.S., Ed.M., Ed.D. degrees)

SCHOOL OF ENGINEERING AND INDUSTIAL ARTS (B.A., B.S., B.I.A., M.A., M.S., Ch.E., C.E., E.E., M.E., Met.E., Min.E., Ph.D. degrees)

SCHOOL OF FORESTRY (B.S., B.F., M.S., M.F., F.E. degrees)

SCHOOL OF HOME ECONOMICS (B.A., B.S., M.A., M.S., Ph.D. degrees)

SCHOOL OF PHARMACY (B.A., B.S., M.A., M.S. degrees)

Graduate School (M.A., M.S., Ed.M., M.F., Ch.E., C.E., É.E., F.E., M.E., Met.E., Min.E., Ed.D., Ph.D. degrees)

Summer Sessions Short Courses

#### **RESEARCH AND EXPERIMENTATION**

General Research

Agricultural Experiment Station-

Central Station, Corvallis

Union, Moro, Hermiston, Talent, Astoria, Hood River, Pendleton, Medford, and Squaw Butte Branch Stations

Northrup Creek, Klamath, Malheur, and Red Soils Experimental Areas

Engineering Experiment Station Oregon Forest Products Laboratory

## EXTENSION

Federal Cooperative Extension (Agriculture and Home Economics) General Extension Division