Ragnar Arnason

ITQ prices: What do they reveal?

Paper presented at IIFET 2014

Brisbane, Australia July 7-11, 2014

Introduction

- Many ITQ-systems in the world
 - Up to 25% of global harvest
- Can observe ITQ-prices
- What do they tell us?

Observed ITQ-prices often exhibit bewildering (to some) behavior (i.e. very high or low relative to price of fish).

[This has prompted some economists to assert fishers are irrational]

Here show *inter alia* that such ITQ-prices can be entirely rational!

Premises

ITQ-system

- A1. ITQ-rights are high quality (i.e. secure, exclusive, tradable and permanent)
- A2. Violations of ITQ rules are impossible perfect enforcement [Can relax]
- A3. Quotas are binding (at least one company would like to harvest more)

Premises (cont.)

Fishing firms

- A4. Maximize profits
- A5. Have perfect knowledge of current prices (and their own operating conditions)

Quota market

- A6. Transactions costs negligible
- A7. No market manipulation (competitive market)

Single species ITQ-prices

Quantity quota (quota rental) prices:

$$p_h = \pi_h(h, x)$$
Marginal profits of fishing

Quota share prices:

$$p_{\alpha}(t) = \int_{t}^{\infty} \pi_{h} \cdot Q \cdot e^{-rt} d\tau = \int_{t}^{\infty} Rents(\tau) \cdot e^{-rt} d\tau$$

In equilibrium

$$p_{\alpha} = \frac{p_q \cdot Q}{r} \equiv \frac{Rents}{r}$$

What do quota prices tell us?

- 1. Quantity quota price, p_h , equals current marginal profits of harvesting, π_h .
 - Reveals information about true profit function
 - Duality: Can in principle extract the profit function from quota prices
- 2. Quota share price, p_{α} , equals present value of expected future rents in fishery
 - Reveals fishers' beliefs about future (incl. TAC policy, future prices etc.)
 - Duality: Can in principle extract fishers' PV-function from ITQ-share prices

But...

Many fisheries are multi-species fisheries!

Do these results hold in that context?

A general multi-species profit function

$$\pi(\boldsymbol{h}, \boldsymbol{x})$$

Depends (in general) on <u>all harvests</u> and <u>all biomasses!</u>

$$\partial^2 \pi(i) / \partial h(i) \partial h(j) \neq 0, \quad \partial^2 \pi(i) / \partial h(i) \partial x(j) \neq 0$$

Note: Implicit assumption

Can select all $h \ge 0$ vectors, ...albeit at a cost!

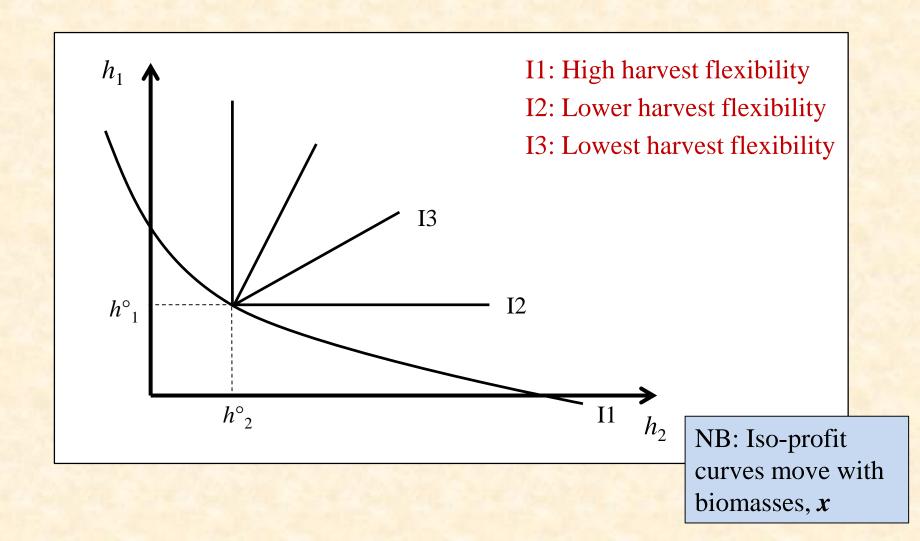
So, no technical selectivity restriction!

(Analytically convenient and realistic)

Multi-species ITQ-prices

Quantity quota prices:

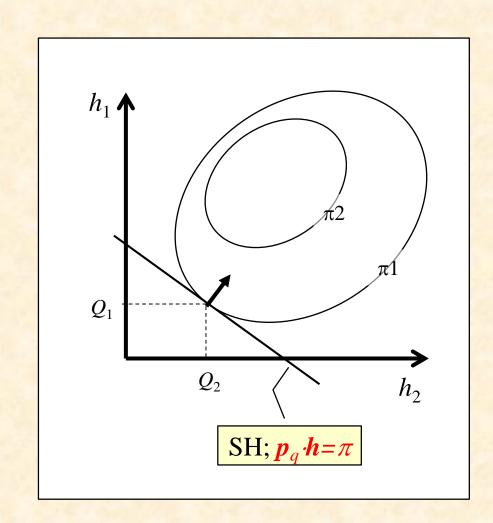
$$p_{h(i)} = \pi_{h(i)}(\boldsymbol{h}, \boldsymbol{x})$$

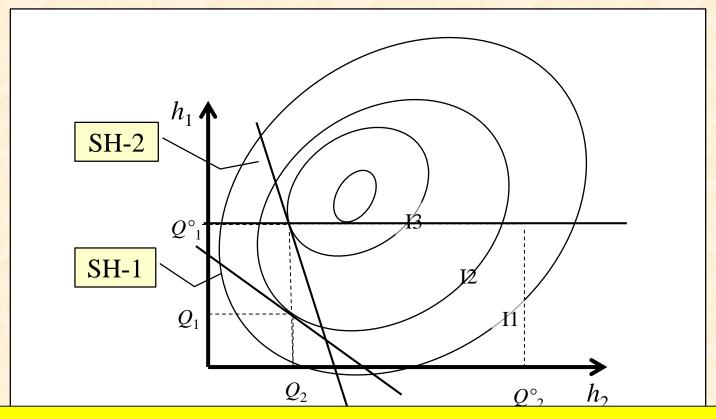

Quota share prices:

$$p_{\alpha}(i,t) = \int_{t}^{\infty} \pi_{h(i)}(\boldsymbol{h},\boldsymbol{x}) \cdot Q(i) \cdot e^{-rt} d\tau = \int_{t}^{\infty} Rents(i,\tau) \cdot e^{-rt} d\tau$$

In equilibrium

$$p_{\alpha(i)} = \frac{p_{q(i)} \cdot Q(i)}{r} \equiv \frac{Rents(i)}{r}$$


Profit function in harvest space Iso-profit curves (harvest flexibility)


Analytical tool:

Iso-profit contours, separating hyperplanes and quota prices

- The iso-profit curves define "better than"-sets in harvest space
- These sets are convex
- Each combination of TACs defines a point in harvest space
- Through each TAC point there exists a supporting hyperplane, $p_q h = \pi$
- These hyperplanes define quantity quota prices (The normal to the hyperplane)

Now, easy to see graphically how TACs affect quota prices

So obviously;

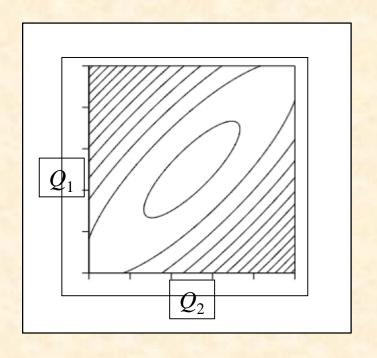
quota rental price can exceed landings price!

What do multi-species ITQ-prices tell us?

- 1. Prices of quantity quotas, $p_{h(i)} = \pi_{h(i)}(h,x)$, depend on all harvests and biomasses!
 - Reveal information about true profit function, $\pi(h,x)$
 - Duality: Can in principle extract the profit function from quota prices

Implications

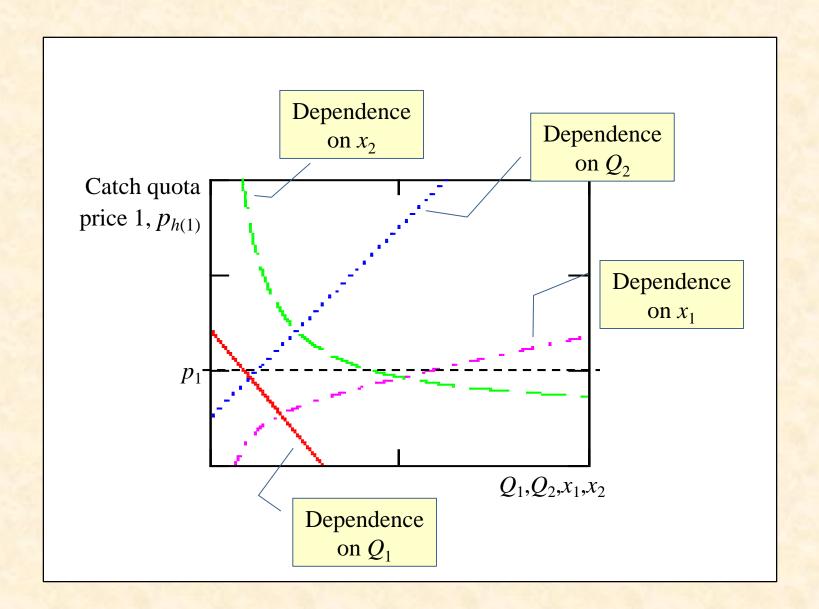
- 1. Interpreting multispecies ITQ-prices is complicated!
- 2. Multispecies ITQ-prices can exceed landing prices!


Numerical example

$$\pi(\mathbf{h}, \mathbf{x}) = p_1 \cdot h_1 + p_2 \cdot h_2 - c_1 \cdot \frac{h_1^2}{x_1} - c_2 \cdot \frac{h_2^2}{x_2} - A \cdot \left(h_1 - \alpha \cdot \left(\frac{x_1}{x_2}\right) \cdot h_2\right)^2$$

Parameters	Values		
p_{1}	1		
p_2	1		
c_1	0.2		
c_2	0.2		
A	0.2		
α	1		
x_{I}	5		
x_2	5		

Species interaction term


Iso-profit curves

Stretched because $A\neq 0$ If $A=0 \Rightarrow$ symmetrical

Q1	Q2	x1	x2	\mathbf{p}_{h1}	\mathbf{p}_{h2}
1	1	5	5	0.92	0.92
1	0.7	5	5	0.8	1.06
1	0.7	5	3.5	0.92	0.92

Quantity quota price 1, $p_{h(1)}$

Relaxing Assumption A2 (That is, ITQ rules can be violated)

Two types of violations

1. Discarding

$$\pi(\mathbf{h}, \mathbf{x}) - \mathbf{p}_{\mathbf{h}} \cdot \mathbf{h} \to p_1 \cdot (h_1 - d_1) - C(\mathbf{h}, \mathbf{x}) - C1(d_1) - p_{h_1} \cdot (h_1 - d_1)$$

2. Non-reported landings

$$\pi(\mathbf{h}, \mathbf{x}) - \mathbf{p}_{\mathbf{h}} \cdot \mathbf{h} \rightarrow p_1 \cdot (h_1) - C(\mathbf{h}, \mathbf{x}) - C2(n_1) - p_{h_1} \cdot (h_1 - n_1)$$

Similar, but not identical

Theorem

Discards and/or non-reporting will take place if the price of quantity quota, $p_{h(i)}$ is high enough (critical quota price)

If discards: $p_{h(i)} = p(i) + C1_{d(i)}(d(i))$

If non-reporting: $p_{h(i)} = C2_{n(i)}(n(i))$

What do ITQ-prices tell us under these circumstances?

If discarding: p_{h_i} reveals information about the (perceived) cost of discarding, $C1_{d(i)}$.

If non-reporting: p_{h_i} reveals information about the (perceived) cost of non-reporting, $C2_{n(i)}$

What do multi-species ITQ-prices tell us?

- 1. Prices of quantity quotas, $p_{h(i)} = \pi_{h(i)}(h,x)$, depend on all harvests and biomasses!
 - Reveal information about true profit function, $\pi(h,x)$
 - Duality: Can, in principle, extract the profit function from quota prices

Implications

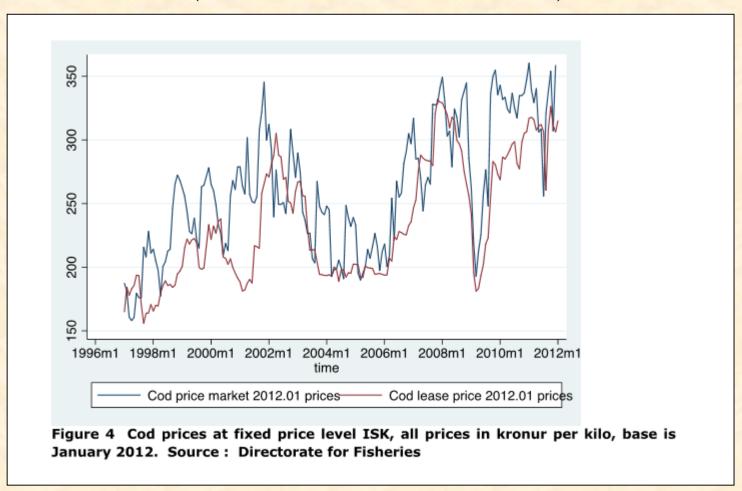
- 1. Interpreting multispecies ITQ-prices is complicated!
- 2. Multispecies ITQ-prices can exceed landing prices!

What do multi-species ITQ-prices tell us? (cont.)

- 2. Prices of ITQ-shares, $p_{\alpha(i)}$, equal expected present value of future rents from using this quota-share for fishing
 - Assuming future paths of all biomasses and ahrvests
 - Can, in principle, extract this PV function from observed ITQ-share prices

Conclusions

- In the multi-species ITQ fishery
 - ITQ rental prices depend on the harvest and biomasses of all species
 - ⇒ They can greatly exceed the (apparent) marginal profits and the landings price of any given species
 - ITQ-share prices depend on future expected harvest and biomasses of all species
 - ⇒ They can also seem unduly high or low (when considered for individual species)


Conclusions (cont.)

- In the multi-species ITQ fishery
 - ITQ rental prices reveal the marginal contribution of harvest of one species to total fishery profits
 - ⇒ Reveal information about the true joint profit function
 - ITQ-share prices depend on future expected harvest and biomasses of all species
 - ⇒ Reveal fishers expectation about the future of the overall fishery (or ecosystem)

Icelandic Cod: Landings price vs. quantity quota price

(From Matthíasson 2012)

What do multi-species ITQ-prices tell us? Key findings:

Finding 1

Prices of quantity quotas, $p_{q(i)} = \pi_{h(i)}(h,x)$, depend on all harvests and biomasses!

Implication:

In general: $\partial p_q(i)/\partial h(j) \neq 0$, $\partial p_q(i)/\partial x(j) \neq 0$

Finding 2

Prices of share quotas, $p_q(i)$, depend on <u>all</u> current and expected harvests and biomasses!