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CALCULATION OF AXIAL MODE SEPARATION OF A
SEMICONDUCTOR LASER FROM REFLECTANCE SPECTRUM

I. INTRODUCTION

A simple laser cavity consists of two parallel and highly

reflecting mirrors, in which there exists a great number of trans-

verse electromagnetic (TEMmnq) modes. However for a practical

laser, higher order modes are suppressed. As a result, only one or

a few fundamental normal modes are sustained.

The allowed modes in a laser that actually oscillate will depend

on the gain characteristics of the laser medium, which will depend on

the spectral linewidth, i. e. , the spontaneous emission linewidth of

the laser transition. Any mode falling outside of the linewidth will

not oscillate because of an insufficient gain.

Since the mode separation is small relative to the linewidth,

many modes will in fact oscillate. For selecting a single-mode

operation sometimes mode selectors (19) will be required in the cavity.

Recently Popov and Shuikin (15) used a compound resonator to obtain

single-mode emission from a semiconductor.

To design a laser with single mode operation such as the work

cited above requires the knowledge of the mode separation. Further-

more it is useful to know the mode separation in determining the gain

of a desired mode (8).. It follows that the prediction of the mode
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separation of a semiconductor laser is very desirable.

In a semiconductor laser, modes are determined by the length

and the refractive index n of the medium. It is known that the

refractive index of a semiconducting material is very frequency-

sensitive. For predicting mode separation the value of n versus

frequency is usually obtained experimentally. For instance, the mode

separation of a GaAs junction laser was measured by Burns, Dill,

and Nathan (3). Later Marple ( 9 ) measured the refractive index

versus wavelength k and computed the mode separation for GaAs

laser.

As a matter of fact, those direct measurements of n and

mode separation are not easy. Robinson (16) suggested that the cal-

culation of the optical constants such as the refractive index n, and

the extinction coefficient k of a material can be made from its

reflectance spectrum by using the Kramer s-Kronig dispersion rela-

tion. The application of this relation required the knowledge of a

whole spectral range. Later Roessler (17) suggested a modified

approach, which required only a limited range of spectrum.

Since the reflectance spectrum of a semiconductor is easy to

obtain experimentally and readily available, attempt has been made to

calculate its axial mode separation from the reflectance data.

Furthermore, justification of using a narrow reflectance spectrum to

obtain the mode separation with reasonable accuracy has also been
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made. To the author's knowledge, such an attempt has not been

explored.

Due to the frequency-sensitivity of the refractive index n in

a dispersive medium, the calculation of the mode separation requires

the knowledge of dn/dv, i. e. , the slope of n versus frequency.

The purpose of this work is to show how the quantity dradv and

hence the mode separation of a semiconductor laser are obtained

from a narrow spectral reflectance range around the lasing frequency.

Also in this work the change of the calculated results for mode

separation as a function of spectral width was also examined. The

GaAs junction laser was taken as an example. The value of the mode

separation obtained in such a computation was compared to that calcu-

lated from the conventional method, i. e. , the method using a whole

spectral range, and to the measured data as well. As a result, the

calculated values of the axial mode separation for GaAs laser were in

good agreement with the measured ones.



II. REFLECTANCE AND OPTICAL CONSTANTS

Relations Among Optical Constants

When radiation is incident upon the surface of a material, one

part is reflected, another is absorbed, and the remainder is trans-

mitted through the material. Approximately the expressions for the

reflectance R, transmittance T, and absorptance A at normal

incidence are given by (23)

where r =
N+1
N-1

r2{ 1+(1-2r 2)exp(-2ad)
]

1 -r4 exp( -2ad)

T
1 -r 4 exp(- 2ad)

(1 -r2 )exp( -ad)

A -
21-r exp( -ad)

(1-r )[ 1-exp(-ad)]

4

(2. 1)

(2. 2)

(2. 3)

is the Fresnel reflection coefficient at normal inci-

dence with N = n-ik, the complex refractive index of the crystal,

a = 4Trk/X. the absorption coefficient at normal incidence, and d

the sample thickness. It is easily seen that A + R + T = 1.

Expressions (2. 1) and (2. 2) have been widely used for determin-

ing the optical properties of solids in many experiments.

Actually, the expression for reflectance was used in the case of

ad >> 1. For this reason, only the information of the front-surface



reflectance was needed. Thus Equation (2. 1) becomes

R = r 2
.

The expression for r can be written as

n-ik- 1 i0r = Irlen-ik+1

Then the magnitude of the measured reflectance is

and the phase is

and

R = r
2 (n-1) 2

+k
2

I I

(n+1)2+k
2

0 = tan1 -2k

n2+k2-1

Solving for n and k in Equation (2. 4), one obtains

1-R
n 1 +R -2'. R, cos 0

-2N/171. sin 0
k =

1+R-2NFET. cos 0

5

(2.4)

(2. 5)

(2. 6)

(2. 7)

(2. 8)

The expressions (2. 7) and (2. 8) show that the quantities n and

k are functions of the magnitude R and phase 0 of reflectance.

The variables R and 0 are related to each other as will be seen

in the next chapter. The study of the behavior of R for a semicon-

ductor, particularly for GaAs, is as follows.
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Reflectance of GaAs

As stated in the previous chapter, GaAs laser was taken as an

example. The reflectance of GaAs at room temperature is shown in

Figures 1A, 1B, and 1C. The data tabulated in Appendix I were

gathered from the references as quoted in (4, 12, 14, 23).

Three spectral regions are distinguished (13). The first region

(Figure 1B) covering up to about 8 or 10 eV is characterized by the

sharp structures associated with the band-to-band transitions. The

second region (Figure 1C) extending to about 20 eV shows a rapid

decrease in the reflectance which is reminiscent of the behavior of

certain metals in the ultraviolet region. This is because the valence

electrons become unbound and able to perform collective oscillations.

In the third region (Figure 1C) the reflectance again rises indi-

cating the onset of additional optical absorption. This situation can be

thought of as the presence of the transitions between filled d bands,

lying below the valence band, and empty conduction band states. It

should be noted that in Figure 1A the sharp structure covering from

0. 03 eV to 0.05 eV is due to the transition in reststrahlen band.

These curves are used as measured data for the mode separation

computation.
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III. KRAMERS-KRONIG ANALYSIS

Kramers-Kronig Dispersion Relation

In general the dispersion relation is the relation between the

real and imaginary parts of a complex quantity (2). Consequently,

the relation between the magnitude and phase of the reflectance is

called the dispersion relation or Kramers-Kronig dispersion relation.

The application of this relation to reflectance data of normal incidence

permits the determination of the refractive index n, the extinction

coefficient k, and other optical quantities.

Taking the logarithm of both members of Equation (2. 4) gives

or
ln r = ln I r I + ie

ln r = 1/2 ln R + i8

where the relation between R and 8 can be written in terms of

frequency as (11,21)

v In R(v)e(v )= p dv
o Tr

0 v2-v2
0

or in terms of photon energy E as

E '4) In R(E)8(E )= -2- p dE
o Tr 2 20 E -Eo

(3. 1)

(3. 2)
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where P stands for the Cauchy principal value of the integral.

Equations (3. 1) or (3.2) is called Kramers-Kronig dispersion relation.

Accordingly with the knowledge of the reflectance spectrum,

the phase angle 0 can be calculated with a computer. The integral

in Equation (3.2) can be represented by a usual one as

because

Eo
0 (Eo)

Tr
P cs. In R(E) dE

' 0 2 2E -Eo

' 0 E
2 - E2

S.' In R(E) - In R(Eo)
Tr dE

0

Eo 00 in R(E) - In R(E0)
Tr j

2 2
dE (3. 3)

E - Eo

c° dE
= 0 (3. 4)

0 E
2

-

The proof of Equation (3.4) is shown in Appendix II.

The integrand in Equation (3. 3) is finite for E = Eo provided

the reflectance spectrum does not have an infinite slope at E.

Such infinite slopes are never encountered experimentally.

It is clear that from Equations (3. 3) and (3.4) one can see that

a constant reflectance gives 0 = 0.
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Calculation of the Phase An j le Usin an Entire S ectral Ran e

For the evaluation of the phase angle 0, in principle, the

reflectance data should cover the entire spectral region from zero to

infinity. Since the spectral region of the reflectance measurements is

always bounded, it is necessary to extrapolate the measured reflec-

tance curve R(E) to infinite energy in order to compute the integral

in Equation (3. 3) and hence the refractive index n in Equation

(2. 7).

The most reasonable extrapolation procedure assumes that

above the valence electron plasma frequency the following

expressions are usually used.

and

2

n2 - k2
= 1 -

2

(02 T
2nk 0

(,)
2 T 2

These expressions (11) are valid only for co2 T2 >> 1 and

w>w , where T is the relaxation time of free carriers in the

conduction band of a semiconductor.



and

Thus at high frequencies

2
1 !I.n z 1 -

w

4

R =
(n-1)2 z 1

cop
--,-

(n+1)
2 16

w4

13

(3. 5)

Therefore if the upper frequency limit of the measurement w

is larger than w , it is logical to extrapolate R(w) beyond w

by

or

wl 4R = R1(w )

R = (R
1

w
4
1)w

-4

1

1

(3. 6)

where R1 is the measured reflectance at w1.

On the other hand, for low frequencies the reflectance is approxi-

mately constant and hence there is no contribution to 0 as mentioned

in the previous section. Thus no extrapolation for R to zero fre-

quency is needed.

Calculation of the Phase Angle Using a Limited. Spectral Range

In the case of a limited spectrum, the method described above

should be modified to calculate the phase angle 0. The modified

approach was treated. by Roessler (17) as mentioned in the introduction.



In fact, the integral in Equation (3. 3) can be broken into three parts

as

where

and

where

0(E
o

) = 0
Oa

(E
o

) + 0ab (E
0

) + e (E
o

)
boo

00a(Eo)
1

2Tr

a
f(R, Eo)dE

0

14

(3. 7)

(3.8)

E
o D

In R(E) - In R(E
°

)
SI

0 (E ) =.-.-- dE (3. 9)
ab o Tr a E

2 - E2

0

1
0 (E

o
) =

boo 2Tr

co

f(R, Eo)dE

d
f(R, Eo) = In(E)

R(E
0

) dE

E+Eo

E -Eo

(3. 10)

Here 0ab(Eo) is the contribution from the region of the

experimental data, 0
Oa

(E0) and 0b(Y)(Eo) are not known because

of the lack of data. But the integrals 00a and. Oboo can be found

as follows.

According to Equation (3. 8), in the interval (0, a), E is

everywhere less than E since E lies in (a, b). Hence the
o

d o
E+E o

continuous function in is monotonic with E.
dE E -Eo

Thus applying the generalized mean value theorem for integrals

to the integral in Equation (3. 8) gives



ln[R(,) /R(E0)] a
0 (E ) In

Oa o 2Tr dE

1nR(E )
= [A- ° ] In

a+Eo

a-Eo

E+Eo

E-Eo dE

15

(3. 11)

where A = In RR) /27 and varies only slowly with Eo, being

some value of E in the interval (0,a).

Similarly, the integral in Equation (3. 10) can be written as

oboc (Eo)
ln[R(n)/R(E

)] C d
In

27 dE

ln R(E )
= [B- 27

o ] In
b+Eo

b-Eo

E+Eo

E-Eo dE

where B = In R(Ti)/27, T1 belonging to the interval (b,oc).

Thus Equation (3. 7) has the form

ln R(E )
0(E o) = [A-

27
] In

a+Eo

a-Eo

ln R(E )
+ [B- ° ] ln

+ 0ab (E
o

)

b+Eo

b-Eo

(3. 12)

(3. 13)

where the unknown quantities A and. B may be determined by the

fact that the phase angle 0(E0) is zero at energies below the onset

of absorption. As a matter of fact theoretically the phase angle 0
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should be zero in regions of no absorption, i. e. , for energies less

than the energy gap or E = hv < E

Therefore it is easy to choose two frequencies
111

and v2

such that hvl,
2

< E within the range (a, b) to obtain two zero
g

O's.

Consequently, the quantities A and B in Equation (3. 13)

can be solved for the following simultaneous equations

In R(E 1)
[A- In

In R(E
2)[A- ln

27

a+E
1

a-E

a+E

1

2

a-E
2

ln R(E )
1+ Oa (E1) + [B-

27
]ln

In R(E2)
+ Oab(E2) + [B- ]ln

b+El

b-E

b+E

1

2

b-E

= 0

(3. 14)

= 0
2

(3. 15)

where E1 = hvi and E2 = hv2.

Thus the computation of 0(E0) is essentially as follows:

R(E) is determined experimentally in (a, b) and, using (3. 14) and

(3. 15), the constants A and B are found by computing eab(E1)

and Oab(E2). Then 0(E
o)

is calculated from Equation (3. 13).



17

IV. CAVITY AND MODES IN A SEMICONDUCTOR LASER

Cavity and Resonant Modes

A semiconductor laser is usually fabricated with two parallel

cleaved surfaces and the other two sawed or roughened. The cavity

in a semiconductor laser so obtained is essentially a Fabry-Perot

structure. As commonly known, a Fabry-Perot interferometer con-

sists of two optically flat, partially reflecting plates of glass or

quartz with their reflecting surfaces held accurately parallel.

Radiation propagating perpendicularly to these reflecting sur-

faces forms standing waves in the cavity. Standing waves occur when-

ever the cavity contains an integral number of half-wavelength. For

a cavity length L, this resonance condition is

m2 = L (4. 1)

where m is the axial mode number, X. wavelength in air.

Expression (4. 1) above is valid for a passive cavity. In a semi-

conductor laser of refractive index n, the radiation propagates with

wavelength On. Thus, the resonance condition given by Equation

(4. 1) becomes

or

xm
2n

= L

mX. = 2nL (4. 2)
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In an actual laser not all the frequencies satisfying Equation

(4. 2) are permitted to oscillate because of losses due to diffraction,

reflection, and absorption. The medium between the mirrors has a

net gain that will compensate for these losses. Lower order modes

will usually have greater gain than the higher order ones. As a con-

sequence only a few fundamental modes will exist. Furthermore, it

is possible to design a laser of single mode operation, i. e. , highly

monochromatic light output (15, 19). Such a design requires the

knowledge of the mode separation.

Axial Mode Separation of a Semiconductor Laser

The refractive index n of a semiconductor is very frequency-

sensitive, i. e. , a function of wavelength. Thus differentiating Equa-

tion (4. 2) with respect to X gives

dm dn
dX

+ m = 2L
dX

For the separation of two adjacent modes and for large m,

substituting

dX.

dm = -1

m = 2nL/X.

into Equation (4.3), one obtains

(4.3)



or

1 -
X dn 1 X2

n dX 2nL AX

AX =
2L(n-Xdn)

),z

or in terms of frequency as

AV =
c

2L(n+vd.ndv
)

(by noting that X = c/v , d X = -ca v /v2, dv/d). = -c/X. 2, and

do /d> = (dn/d v) (dv /dX) ), where c is the velocity of light.

or

Equation (4. 4) can be written as

LA v 1

c 2(n+v
do
Tv)

LAI) 1

2(n+E
dn)
dE

where E is the photon energy. The quantity LA v/c can be

19

(4. 4)

(4. 5)

(4. 6)

called the normalized frequency separation of a semiconductor laser.
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V. PROCEDURE OF CALCULATING AXIAL MODE SEPARATION

As mentioned in Chapter I, the GaAs semiconductor laser was

taken as an example. The reflectance data of GaAs used here were

referred to Chapter II. The Kramer s-Kronig dispersion relation was

applied to calculate the phase angle 0 and hence the refractive

index n and the quantity dn/dE in Equation (4. 6). In other words

the normalized frequency separation LL v/c of a semiconductor

laser was predicted by using the reflectance data through the disper-

sion relation.

To achieve the calculation of the quantity LL v/c, the conven-

tional method using Equation (3.3) was first used, then followed by

the narrow spectrum method, which was derived in Equation (3. 13).

Computation of LA v /c Versus Photon Energy Using
Conventional Method

As shown in Equation (3. 3), this method of calculation requires

the whole spectral range from zero to infinity to compute the phase

angle 0. Practically to calculate the integral in Equation (3. 3) with

a computer, the upper integration limit of this integral should be

finite. In the present work, 50 eV was chosen as this upper limit.

Since the reflectance data of GaAs was not available beyond

25 eV, an extrapolation for R(E) to 50 eV should be needed. Yet

the upper energy limit of 25 eV is larger than the plasma energy
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(hco - 16 eV) for GaAs (4, 13). Thus the behavior of R(E) beyond

25 eV has the form of Equation (3. 6):

or in terms of energy as

R = R
1

-4
o.)

4
co

1

R = R 1E14 E
-4

where El = 25 eV and R1 = 0. 006.

(5. 1)

On the other hand, the lower integration limit was chosen as

0. 03 eV instead of 0 eV. This is because below 0. 03 eV the reflec-

tance is constant and hence there is no contribution to 0 as stated

in Chapter III.

The Simpson's numerical method (10) was used to handle the

integral 0(E
0

) in Equation (3. 3) with the aid of a computer. Since

this numerical method requires equal intervals, an interpolation of

the reflectance data was needed to obtain a set of equally spaced data

points.

The spectrum was divided into 0. 001 eV intervals within the

reststrahlen region, i. e. , from 0. 03 eV to 0. 05 eV due to the sharp

variation of reflectance. The rest of the spectrum extending up to

50 eV was divided into 0. 015 eV intervals. Then the Lagrangian

formula (10) was used to interpolate the reflectance data points.

Since the integrand in Equation (3. 3) becomes indeterminate when
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E = Eo, it has another form as described in Appendix III.

Then the refractive index n given by Equation (2. 7) was

computed. The quantity dnidE was hence obtained numerically as

dni
-

nj+l-nj-1
dE 2LE

(5. 2)

where AE is the equal energy interval of the spectrum.

Finally the normalized frequency separation LA v ic versus

photon energy as expressed in Equation (4. 6) was found. All these

computations were included in a Fortran program named MODSEP1

(see Appendices IV and V).

Computation of LA v ic Versus Photon Energy Using
Narrow Spectrum Method

The narrow spectrum method was described in detail in the

third part of Chapter III. The lower limit a and upper limit b

of the integral Gab in Equation (3. 9) were chosen near the lasing

energy E = 1.38eV. Consequently in this computation b was used

as a parameter and a fixed at 0.1 eV. In this case b was chosen

as 2 eV and 3 eV.

The reflectance data points were interpolated to obtain equally

spaced points with equal interval of 0.015 eV by using 3-point

Lagrangian interpolation as stated before.

The integral Gab in Equation (3. 9) was then calculated using
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Simpson's rule as mentioned in the previous section. To compute the

integral 0(E
0

) in Equation (3. 13), the unknown quantities A and

B were determined first from the Equations (3. 14) and (3. 15). The

quantities El and. E
2

in these two equations were chosen to be

0. 3 eV and 0. 5 eV respectively. These values were actually chosen

more or less arbitrarily from any value near and less than the energy

gap. As a matter of fact, the values El and E2 were not sensi-

tive to the resultant A and B.

The knowledge of 0(E0) in Equation (3. 13) permitted the cal-

culation of the refractive index n, of drildE and hence of the

quantity LA V /c versus photon energy as expressed in Equation

(4. 6). A program named MODSEP2A (see Appendices VII and VIII)

was written to complete those calculations.

Computation of LAI, /c Versus Upper Integration Limit b

In this computation the narrow spectrum method was also used

to calculate the mode separation at lasing photon energy of 1.38 eV

(corresponding to the wavelength of 9000 angstroms) as the upper

integration limit b varied. The reflectance data points were

interpolated using the same interval of 0. 015 eV.

In computing the integral 0(E0) in Equation (3. 13), the lower

integration limit a was chosen as 0. 1 eV and the upper integration

limit b varied from 2 eV to 24 eV. Two vanishing 0's
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corresponding to E1 = 0.3 eV and E2 = 0. 5 eV were adopted.

The quantities A and B in Equations (3. 14) and (3. 15) vary with

b. The integral 0ab(Eo), where Eo = 1.38 eV, was calculated

similarly by using the Simpson's rule.

As usual, with the knowledge of the phase angle 0, n and

hence the normalized frequency separation LAI) /c were calculated

as a function of the upper integration limit b. A program named

MODSEP2B (see Appendices VII and X) was written for the calcula-

tion.
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VI. RESULTS AND DISCUSSION

Figure 2 shows the calculated normalized frequency separation

LPv /c of GaAs laser versus photon energy. This curve is the result

obtained from the conventional method of computation. The computer

output for Figure 2 is included in Appendix VI. As one can see, the

normalized mode separation LPv/c at lasing energy of 1.38 eV is

0. 1086.

The calculated values of LAI) /c from the narrow spectrum

method are shown in Figure 3 which is plotted from the computer

output tabulated in Appendix IX. The two curves in this figure cor-

respond to b of 2 eV and 3 eV. At the lasing energy of 1.38 eV the

mode separation LPv/c is 0. 107 for b = 2 eV and 0. 108 for

b = 3 eV. As shown in Figure 3 these two curves are very close to

each other and to the curve in Figure 2.

The mode separation LPv /c as a function of b at lasing

photon energy is shown in Figure 4. Appendix XI shows the data of

the computer output for this figure. Here the values of LPv/c

swing only between 0. 107 and 0. 111. Consequently the quantity

Lpv/c does not vary much as the spectral width changes.

For the sake of comparison, the measured values for LPv/c

at lasing frequency are searched in the literature. The value LPv/c

was reported by Burns, Dill and Nathan (3) to be 0.114± 0.01 percent
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and 0.105. Therefore it is reasonable to say that the computed

results in this work are in good agreement with the measured ones.

The table below shows the comparison between those values.

Lz\v/c at lasing energy of 1.38 eV for GaAs laser

Measured.

Computed
Conventional

Method
Narrow Spectrum
b = 2 eV

Method
b = 3 eV

0.114 and
0.105 0.1086 0.107 0.108

It is also included that the results for the refractive index

of GaAs obtained from both methods of computation are shown in

Figure 5. These curves are very close to each other, and the com-

puted values for n agree satisfactorily with the measured ones (9).

In conclusion, in calculating the axial mode separation of a

semiconductor laser from reflectance spectrum, the narrow spectrum

method has many important advantages. Firstly, this method requires

only a narrow spectral range near the energy gap of a semiconductor.

Secondly, the set up for measuring such a narrow reflectance spec-

trum will be much simpler and cost less. In addition, the computing

time is tremendously reduced as compared to the conventional

method. This work has shown that the narrow spectrum method can

be used to compute the mode separation of a semiconductor laser with

a reasonable accuracy.
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APPENDIX I

Wavelength
X. (0

Frequency
si (cps)

Reflectance Data of GaAs at Room Temperature (from Reference 23).

Photon Energy Reflectance Wavelength Frequency
E (eV) R X (4) Y (cps)

Photon Energy
E (eV)

Reflectance
R

4.1110E 01 7.500LE 1,, 3.1100E-02 3.9000E-01 1.6660E GI 1.80071 13 7.4430E-12 2.8310E-C1
3.97301 11 7.5510E 12 3.1211E-02 3.9511E-01 1.5781E J1 1.90111 13 7.8580E-02 2.830,1E-013.94711 01 7.61071 1 3.1416E-J2 4.0154E-01 1.51101 01 2.00JJE 13 8.2667E-52 2.8403E-013.9210E 01 7.6511E 1. 3.1625E-22 4.0710E-01 1.46111 01 2.1429E 13 8.8571E-02 2.8500E-013.8960E 01 7.71121 12 3.1828E-02 4.1400E-01 1.30001 01 2.3077E 13 9.5385E-12 2.6601E-013.87101 oi 7.74991 12 3.2033E-02 4.2230E-01 1.20001 01 2.50u0E 13 1.0333E-11 2.8601E-01
3.84601 DI 7.8u03E 12 3.2241E-02 4.3100E-01 1.1000E 01 2.7273E 13 1.1273E-01 2.8701E-013.8210E 01 7.85131 12 3.2452E-02 4.4211E-01 1.00101 01 3.00101 13 1.2400E-01 2.8700E-013.79711 11 7.9u101 12 3.2657E-62 4.5400E-01 9.00001 00 3.3333E 13 1.37781-11 2.8800E-013.7730E 01 7.9512E 12 3.2865E-12 4.6950E-11 8.00001 oa 3.7500E 13 1.5500E-01 2.8701E-013.75u0E 01 8.0000E 12 3.3067E-12 4.8701E-01 7.00101 03 4.2857E 13 1.7714E-01 2.8810E-013.7260E 01 8.05151 1. 3.3280E-02 5.1000E-01 6.01001 01 5.06001 13 2.6667E-01 2.8801E-013.7030E 11 8.10151 12 3.3486E -u2 5.3900E-01 5.1040E 01 6.0000E 13 2.4840E-U1 2.8900E-013.68111 01 8.1510E 12 3.3686E-02 5.7600E-01 4.0000E 03 7.5100E 13 3.1000E-01 2.8901E-013.65801 01 8.20121 12 3.3898E-U2 6.2801E-01 3.00001 01 1.00001 14 4.1333E-01 2.8900E-013.63601 01 3.25181 12 3.4113E-02 6.9911E-01 2.0000E 01 1.50101 14 6.2100E-01 2.8900E-013.61401 Ji 8.30111 12 3.4311E-02 7.6901E-01 1.00001 JO 3.0000E 14 1.24001 00 2.8905E-013.5920E 01 8.35191 12 3.4521E-02 8.0401E-01 8.2740E-01 3.6276E 14 1.4994E 00 3.1400E-013.57101 01 8.4010E 12 3.4724E-02 8.1201E-01 7.2900E-01 4.11521 14 1.70101 00 3.2301E-013.55001 11 8.4507E 12 3.49301-02 8.0603E-01 6.5310E-01 4.5942E 14 1.8989E 00 3.3500E-013.5290E 01 8.5010E 12 3.5137E-02 7.8801E-01 5.9000E-01 5.08471 14 2.1017E U0 3.5000E-013.50801 01 8.55191 12 3.5348E-12 7.5600E-01 5.3900E-01 5.5659E 14 2.30061 00 3.7300E-013.48801 01 8.60091 12 3.5550E-02 7.04011-01 4.9600E-01 6.04841 14 2.50001 00 4.0200E-013.46801 01 8.65151 12 3.5755E-02 6.1701E-01 4.5910E-01 6.5359E 14 2.73151 00 4.3600E-01
3.44801 31 8.7017E 12 3.5963E-02 4.7311E-01 4.4300E-01 6.77201 14 2.79911 00 4.6100E-013.42801 01 8.7515E 12 3.6173E-02 2.5501E-01 4.2510E-01 7.05881 14 2.91761 00 4.8400E-013.40911 01 8.80121 12 3.6374E-12 8.0601E-02 4.1900E-01 7.15991 14 2.9594E 00 4.6800E-013.3890E 01 8.8522E 12 3.6589E-02 4.6000E-02 4.0900E-01 7.3350E 14 3.u3181 00 4.6500E-013.3700E 51 8.90211 12 3.6795E-02 5.9001E-02 4.0000E-01 7.50001 14 3.10001 00 4.6600E-01
3.35201 01 8.94991 12 3.6993E-02 8.1611E-02 3.6500E-01 8.21921 14 3.3973E 00 4.2500E-013.3330E 11 9.1009E 12 3.7204E-02 1.4011E-01 3.4400E-01 8.7209E 14 3.60471 00 4.0800E-013.3140E 01 9.05251 le 3.7417E-12 1.1700E-01 3.2600E-01 9.26251 14 3.8037E 00 4.0200E-013.29601 01 9.10191 12 3.7621E-02 1.3201E-01 3.1800E-01 9.43441 14 3.8994E 00 4.0400E-013.27801 01 9.15191 12 3.7828E-02 1.4411E-01 2.7600E-01 1.08711 15 4.4928E 00 4.9400E-013.26001 01 9.20251 12 3.8037E-02 1.5501E-01 2.5300E-01 1.1858E 15 4.9012E 00 5.9800E-013.2430E 31 9.25071 12 3.8236E-02 1.6401E-01 2.4800E-01 1.20971 15 5.0000E 00 6.0540E-013.2250E 11 9.31231 1? 3.8450E-02 1.7301E-01 2.2510E-01 1.3333E 15 5.51111 00 5.1001E-013.20801 11 3.35161 1, 3.8653E-02 1.8001E-01 2.0700E-01 1.44931 15 5.99031 00 4.3801E-013.19101 01 9.4014E 12 3.8859E-02 1.8611E-01 2.1000E-01 1.5000E 15 6.2100E 10 4.1800E-013.1740E 51 9.4518E 12 3.9167E-02 1.9200E-01 1.9700E-01 1.5228E 15 6.2944E 00 4.1901E-013.15712 01 9.50271 1.2 3.9278E-02 1.9701E-01 1.8800E-01 1.5957E 15 6.5957E 00 4.6000E-013.14101 ul 9.5511E 12 3.9478E-02 2.0201E-01 1.7760E-01 1.6949E 15 7.00561 JO 4.4300E-013.1250E 01 9.66161 12 3.9680E-02 2.0601E-01 1.5500E-01 1.9355E 15 8.1100E U0 3.6500E-013.10801 01 9.6525E 12 3.9897E-02 2.1001E-01 1.3850E-01 2.1739E 15 8.98551 JO 2.6500E-013.09201 1 9.70251 12 4.0103E-02 2.1410E-01 1.2400E-01 2.4194E 15 1.0000E 11 2.0800E-013.07601 31 9.7529E 14 4.u312E-02 2.1700E-01 1.1510E-01 2.60871 15 1.07831 11 1.7500E-013.0610E 01 9.86371 12 4.0516E-02 2.2301E-C1 1.03u01-01 2.9126E 15 1.26391 11 1.5103E-013.0450E 31 9.8522E 12 4.u7221-02 2.2301E-01 9.60001-02 3.12501 15 1.29171 Ul 1.3100E-013.0301E 31 9.90101 1,,, 4.6924E-02 2.2535E-01 8.9000E-02 3.37081 15 1.39331 01 1.0413E-013.11501 11 9.9502E 12 4.1128E-32 2.2814E-01 3.3001E-02 3.61451 15 1.4946E 11 7.7601E-023.0000E 01 1.01uLE 13 4.1333E-02 2.310,01-61 7.7000E-62 3.8961E 15 1.61141 01 5.3001E-022.72700 01 1.11311 13 4.5471E-02 2.5600E-01 7.3000E-02 4.15961 15 1.6986E 01 3.2430E-022.50001 01 1.20061 13 4.9606E-32 2.663uE-01 6.8030E-02 4.41181 15 1.8235E 01 2.0111E-022.3u7uE II 1.30041 13 5.3749E-02 2.7210E-111 6.5000E-02 4.6154E 15 1.9077E 01 1.4001E-022.14200 31 1.46161 13 5.7890E-32 2.7600E-01 6.2300E-22 4.83871 15 2.1066E 01 1.1011E-022.00011 01 1.501,1E 13 6.2120E-22 2.78001-01 5.90001-02 5.08471 15 2.1117E 01 1.5001E-021.87501 01. 1.6004E 13 6.6133E-32 2.8010E-01 5.8111E-02 5.1724E 15 2.1379E 01 1.5001E-021.76401 01 1.70071 13 7.4e951-02 2.8200E-01 5.6060E-02 5.3571E 15 2.21431 01 1.4000E-02

5.4010E-12 5.55561 15 2.29631 01 1.3000E-02
5.1006E-02 5.8824E 15 2.4314E 31 1.0000E-02

1.0.0
4.9000E-02 6.12241 15 2.53061 01 6.6600E-03

(./.)



34

APPENDIX II

Proof of Equation (3.4)

This integral can be written as

E -E
CO r00

° dE dE
(1)P

dE lim [
) 2 2 2 +) 2 2*-0 E -Eo E 0 E -Eo E

o
+E E -Eo

Since E
2

> Eo in the second integral in brackets one has

from the integral table

2 2 2E0 111( EE-F.-EE o° )

dE 1

Eo+E E -Eo

1
ln( )

2E 2E
o

00

Eo +E

On the other hand the first integral in brackets can not be cal-

culated directly from the table because the condition E
2

> E2
0

is

not satisfied. Thus one should proceed as follows.

The integrand. in Equation (1) can be written as

1 1 1

E
2

-Eo
2

Eo
2

(1-p 2)

where E = pE0, p < 1.

1
Then, has series form as

1 -p
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12 1 + p 2 + p4 + p6
+

1 -p2

With corresponding change in integration variable and integra-

tion limits one obtains

thus

E

sbE-E 1-
o

2 4dE 1
Eo

0

(l+p +p + . )Eodp
2 2 2

0 E -Eo E 0

1
3 5 Eo

L

_ -EEP 3 5
0

1 l+pThe quantity in brackets is the series expansion of 2 ln( ) ,1-P

E
o -E 1 -E

Z2E 1

2
[ ln(1±2) °E

01-0 E -E ID

0
0

1
2E

o
_ l2E n

o

1 l2E n
o

2E
o

Therefore two integrals in brackets in Equation (1) cancel out

and the proof is completed.
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Calculation of the Integrand in Equation (3. 3) in the Case E = Eo

This integrand is written as

In R(E) -ln R(E )
0

Y
2 2E -Eo

36

When E = Eo, Y becomes indeterminate. Using L'Hospital's rule

gives

Numerically

Then

d 1 dRln RdE R dElim Y =2E 2EE--"Eo

dR
dE E=E.

3

R. -R.
1+1 1-1
26E

Rj+1 -Rj-1
Yi =

E 4E.R E
3

where 6E is equal interval of the spectrum.
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APPENDIX IV

Symbols and Procedures of Calculation for Program MODSEP1

1) Dimension

XWL: wavelength available in data

XR: reflectance data values

XE: photon energy corresponding to XWL

CXE: interpolated photon energy

CXR: interpolated reflectance data

Y: integrand in Equation (3.3)

THETA: 0(E
0

) in Equation (3.3)

RN: refractive index n

DRN: dradE in Equation (4.6)

2) Read reflectance data given in Appendix I

3) Converting wavelength XWL into energy XE

4) Some constants- -

DEl: interval size within the reststrahlen range

DE2: interval size outside the reststrahlen range
4

C: the value of RiEi in Equation (5. 1)

NF l: number of equally spaced data points in the restrahlen

range

NF: total number of interpolated data points covering up

to 25 eV
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5) CALL Subroutine LAGINT in the reststrahlen range

6) CALL Subroutine LAGINT outside the reststrahlen range

7) Extrapolation of R(E) curve for E > 25 eV

CXR(I) = C/CXE(I)4

CXE(3499) = 50 eV

8) Calculating integrand Y in the case E Eo

9) Calculating integrand Y in the case E = Eo (see Appendix III)

10) Calculating 0(E
0
) using Simpson's rule

THETAl: values of 0 in the reststrahlen range

THETA2: values of 0 outside the restrahlen range

11) Calculating refractive index n in Equation (2.7)

DENOM: denominator of the expression in Equation (2. 7)

12) Calculating dn/dE using Equation (5.2)

13) Calculating the normalized frequency separation LAI) /c in

Equation (4.6)

SEPMOD = Lov /c

14) Subroutine LAGINT

Using 3 -point Lagrangian interpolation
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Computer Program
Program N0I/5E1D1

PROGRAM MODSEP1
DIMENSION XML(130),XR(130),XE(130),CXE(35JU),CXR(350J),Y(3530),
1THETA(140),RN(140),ORN(140)

C READ TABULATED DATA WAVELENGTH XWL AND REFLECTANCE XR
READ(60,10) (XWL(I),XR(I),I=2,120)

10 FORMAT(12F6.3)
C CONVERTING WAVELENGTH INTO ENERGY

1030JI=2,120
300 XE(I)=1.24/XWL(I)

WRITE(61,77)
77 FORMAT(A1t,25X,tOUTPUT$////)

C SOME CONSTANTS
3E1=0.701
OE'e=0.015
CXE(1)=XE(2)
OXR(1)=XR(2)
C=XR(120)*XE(123).+4
NF1=1.9+(XE(56)-XE(2)1/DE1
AF2=NF1+1
1F=NF1+0(E(120)-XE(56))/DE2
NF3=NF+1

C CALL SUBPROGRAM LAGINT FOR OBTAINING EQUALLY SPACED POINTS
)0111I=1,NF1
CALL LAGINT(XE,XR,CXE(I),CXR(I),2,56)
CXE(I+1)=CXE(I)+0E1

111 CONTINUE
00112I=NF2,NF
CALL LAGINT(XE,XR,CXE(I),CXR(I),56,120)
CXE(I+1)=CXE(I)+0E2

112 CONTINUE
C THIS 00 LOOP USED TO EXTRAPOLATE R(E) CURVE

00220I=NF3,3499
CXE(I)=CXE(I-1)+DE2

220 CXR(I)=C/CXE(I)*.4
D01101=106,129
E0=CXE(I)
i1=CXR(I)
D0100J=1,3499
EJ=CXE(J)
i2=CXR(J)
IF(J.EQ.I)GOT015
Y(J)=(ALOG(R2/R1))/(LJ.EJ-EO.E0)
;0701u0

15 Y(J)=(CXR(J+1)-CXR(J-1))/4./DE2/CXE(J)/CXR(J)
1J0 CONTINUE

ESUM=6.6
OSUM=0.0
00504=2,3498,2

50 ESUM=ESUM+Y(M)
3040M=3,3497,2

40 JSUM=OSUM+y(m)
C CALCULATING INTEGRAL USING SIMPSON RULE

IF(NF1/2.2.EQ.NFI)GOTO2
1FF=NF1
GOTO3

2 AFF=NF1+1
3 THETA1=(E0/3.14159).(DE1/3.).(Y(1)+4..ESUM+2,*OSUM+Y(NFF))
1FG=NFF+1
THETA2=(E0/3.14159).(DE2/3.).(Y(NFG)+4.*ESUM+2.*OSUM+Y(3499))
THETA(I)=THETAl+THETA2

OENOM=1.+CXR(I)-2..SORT(CXR(I))+COS(THETA(I))
-RN(I)=(1.-CXR(I))/DENOM

110 CONTINUE
C CALCULATING NUMERICAL OIFFERENTIATION AND NORMALIZED FREQUENCY SPACING

0033JI=107,128
ORN(I)=(RN(I+1)-RN(I-1))/(2.*OE2)
SEPMOD=0.5/(RN(I)+CXE(I).DRN(I))
WRITE(61,70 CXE(I),RN(I),SEPM00

70 FORMAT(3E17.4)
330 CONTINUE

STOP
END

SUBROUTINE LAGINT(X,Y,XA,YA,K,L)
JIMENSION X(130,Y(134)
DO8I=K,L
IF(XA-X(I))9,8,8

8 CONTINUE
9 TERM1=(XA-X(I))*(XA-X(I+1))*Y(I-1)/((X(I-1)-X(I)).(X(I-1)-X(I+1)))
TERM2=(XA-X( I-1)).(XA-X(I+1))*Y(I)/((X(I)-X(I-1)).(X(I)-X(I+1)))
TERm3=(XA-X(I-1)).(XA-X(I))*Y(I+1)/((X(If1)-X(I-1))*(X(I+1)-X(I)))
YA=TER41+TERM2+TERM3
RETURN
ENO

39
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APPENDIX VI

012u.t of Program MODSEP1

E (eV) n Lmi ic

1. 2430E 00 3.3145E 00 1. 1761E -01
1. 2580E 00 3.3287E 00 1. 1046E -01
1.2730E 00 3.3431E 00 1.0975E-01
1.2880E 00 3.3573E 00 1.0936E-01
1.3030E 00 3.3714E 00 1.0907E-01
1.3180E 00 3.3852E 00 1.0886E-01
1.3330E 00 3.3989E 00 1.0871E-01
1.3480E 00 3.4122E 00 1.0861E-01
1.3630E 00 3.4254E 00 1.0856E-01
1.3780E 00 3.4382E 00 1.0856E-01
1.3930E 00 3.4508E 00 1.0862E-01
1.4080E 00 3.4630E 00 1.0872E-01
1.4230E 00 3.4750E 00 1.0888E-01
1.4380E 00 3.4866E 00 1.0907E-01
1.4530E 00 3.4979E 00 1.0931E-01
1.4680E 00 3.5088E 00 1.0957E-01
1.4830E 00 3.5194E 00 1.0963E-01
1.4980E 00 3.5299E 00 1. 1422E -01
1.5130E 00 3 . 5364E 00 1.2009E-01
1.5280E 00 3.5423E 00 1.2061E-01
1.5430E 00 3.5483E 00 1.2015E-01
1. 5580E 00 3. 5542E 00 1. 1955E -01
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APPENDIX VII

Symbols and Procedures of Calculation for Programs
MODSEP2A and MODSEP2B

1) Dimension. (same as in MODSEP1).

2) Read reflectance data. (same as in MODSEP1).

3) Converting wavelength into energy.

4) Some constants--

DE: interval size

A: the lower integration limit a = 0.1 eV

C: the value of energy hvi = 0.3 eV

D: the value of energy hvz = 0.5 eV

5) CALL Subroutine LAGINT.

6) Read upper integration limit data (NJ) given in Appendix XII.

7) Determining the quantities A and B in Equations (3.14) and (3.15).

DET: determinant of coefficients of unknowns A and B

8) Calculating integrand Y in the case E E.

9) Calculating integrand Y in the case E = Eo (see Appendix III).

10) Calculating 0(E
0

) using Simpson's rule.

THETA = 0ab

THETA(18) = ab
(hv

1
)

THETA(31) = 0ab(hv2)

THETA1 = 0
Oa
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THETA3 = eboo

THETAT = 0(E0)

The rest of this program is similar to that of MODSEP1.



APPENDIX VIII

Compute r Program
Program MODSEP2A

0ROGRAM MODSEP2A
)IMENSION XWL(130),XR(13U),XE(130),CXE(1730),GXR(1760),Y(17,30),

1THETA(126),RN(120),ORN(120)
C READ TABULATED DATA, WAVELENGTH XWL AND REFLECTANCE XR

READ (60,10) (XWL(I),XR(I),I=2,120)
10 FORMAT(12F6.3)

C CONVERTING WAVELENGTH INTO ENERGY
1030'11=2,120
XE(I)=1.24/XWL(I)

330 CONTINUE
C SOME CONSTANTS

1E=0.015
CXE(1)=XE(46)
OXR(1)=XR(46)
AF=1.0.(XE(120)-XE(46))/CIE

C CALL SUBROUTINE LAGINT FOR INTERPOLATION
10111I =1, NF

CALL LAGINT(XE,XR,CXE(I),CXR(I),120)
CXE(I+1)=CXE(I)+DE

111 CONTINUE
A=CXE(5)
C=CXE(18)
1=CXE(31)
CA=(C+A)/(C-Al
),1=(0+A)/(D-A)
A1=ALOG(CA)
42=ALOG(DA)

C READ UPPER LIMITS OF INTEGRATION
555 READ(60,11) NJ
11 FORMAT(I4)

4RITE(61,77)
77 PORMAT(*1*,25X,$OUTPUT*////)

IF(E0F(60)1 G0T055
3=CXE(NJ)
3C=(B+C)/(B-C)
31=(0 +0)/(B-0)
31=ALOG(BC)
32=ALOG(BD)
DET=A1.82-A2.31
101101=80,103
E0=CXE(I)
i1=CXR(I)
10100J =5, NJ
EJ=CXE(J)
R2=CXR(J)
IF(J.E1.I) GOT015
Y(J)=(ALOG(R2/R1)/(EJ.EJ-E04E0)
3010116

15 Y(J)=ACXR(J+1)-CXR(J-1))/4./DE/OXE(J)/CXR(J)
130 CONTINUE

ESUm=3.0
7SUm=0.0
AF2=NJ-1
D050M=2,NF2,2

50 ESUM=ESUM+Y(M)
C CALCJLATING INTEGRAL USING SIMPSON RULE

THETA(I)=(E0/3.14159).(DE/3.).(Y(5)+4..ESUM+2..0SUM+Y(NJ))
110 CONTINUE

TC=TMETA(18)-(0.5/3.1416.ALOG(CXR(18))).(A1+81)
TO=THETA(31)-(C.5/3.1416*ALOG(CXR(31))).(42+82)
IF(DET.E0.3.3)STOP
4A=(TD*B1-TC*32)/OET
31.(TC*A2-TD*A1)/DET

C NUMERICAL DIFFERENTIATION AND NORMALIZED FRE1UENCY SPACING
10331I=80,100
E0=CXE(I)
341=(E0+A)/(E0-A)
442 =(9 +10)/(3 -10)
F=0.5/3.1416.ALOG(CXR(I))
THETA1=(AA-F)4ALOG(AR1)
THETA3=(89-F).ALOG(AR2)
THETAT=THETAl+THETA(I)+THETA3
1ENOM=1.+CXR(I)-2..SCIRT(CXk(I)).COS(THETAT)
RN(I)=(1.-CXR(I))/DENOM

330 CONTINUE
)03331=81,99
1PN(I)=IRN(I+1)-RN(I-1))/(2..DE)
SEAMOD=0.5/(RN(I)+CXE(I)*DRN(I))
kRITE(61,70) CXE(I),RN(I),SEPM00

76 FORMAT(3E17.4)
333 CONTINUE

3010515
55 STOP

END

SUBROUTINE LAGINT(X,y,xA,YA,N)
DIMENSION 8(13L),Y(130)

1081=46,N
IF(XA-X(I))90,8

8 CONTINUE
TERM1=(XA-X(I))4(XA-X(I+1)).Y(I-11/((X(I-1)-X(I)).(X(1-1)-X(I+1)))
TERM2=(XA-X(I-1))*(XA-X(I+1)).Y(I)/((X(I)-X(I-1))*(X(I)-X(I+1)))
TERM3=(XA-X(I-1)).(XA-X(I))*Y(I+1)/((X(I+1)-X(I-1))*(X(I+1)-X(1)))
Y4=TERM1+TERM2+TERM3
RETURN
END
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b= 2 eV

b 3 eV

APPENDIX IX

Output of Program MODSEP2A

E (eV) n LAvic

1.2401E 00 3.3178E 00 1. 1587E -01
1.2551E 00 3.3337E 00 1.0728E-01
1.2701E 00 3.3495E 00 1.0690E-01
1.2851E 00 3.3651E 00 1.0670E-01
1.3001E 00 3.3803E 00 1.0658E-01
1.3151E 00 3.3953E 00 1.0654E-01
1.3301E 00 3.4099E 00 1.0656E-01
1.3451E 00 3.4242E 00 1.0664E-01
1.3601E 00 3.4381E 00 1.0677E-01
1.3751E 00 3.4517E 00 1.0696E-01
1.3901E 00 3.4648E 00 1.0720E-01
1.4051E 00 3.4776E 00 1.0749E-01
1.4201E 00 3.4899E 00 1.0784E-01
1.4351E 00 3.5018E 00 1.0825E-01
1.4501E 00 3.5132E 00 1.0871E-01
1.4651E 00 3.5243E 00 1.0923E-01
1.4801E 00 3. 5348E 00 1.0976E-01
1.4951E 00 3.5449E 00 1.1403E-01
1. 5101E 00 3. 5517E 00 1.1991E-01

1. 2401E 00 3.3056E 00 1. 1789E -01
1.2551E 00 3.3208E 00 1.0895E-01
1.2701E 00 3.3359E 00 1.0838E-01
1.2851E 00 3.3509E 00 1.0807E-01
1.3001E 00 3.3657E 00 1.0788E-01
1.3151E 00 3.3802E 00 1.0777E-01
1.3301E 00 3.3944E 00 1.0772E-01
1.3451E 00 3.4084E 00 1.0773E-01
1.3601E 00 3.4219E 00 1.0779E-01
1.3751E 00 3.4352E 00 1.0790E-01
1.3901E 00 3.4481E 00 1.0806E-01
1.4051E 00 3.4606E 00 1.0827E-01
1.4201E 00 3.4728E 00 1.0853E-01
1.4351E 00 3.4846E 00 1.0883E-01
1.4501E 00 3.4960E 00 1.0917E-01
1.4651E 00 3.5070E 00 1.0955E-01
1.4801E 00 3.5177E 00 1.0983E-01
1.4951E 00 3.5280E 00 1. 1384E -01
1.5101E 00 3.5350E 00 1.1981E-01
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APPENDIX X

Computer Program
Program MODSEP2B

?ROGRAM MODSEP23
OIMENSION XWL(13J),XR(136),XE(130),CXE(1700),CXR(1710),Y(1700),

1THETA(120),RN(123),ORN(120)
C READ TABULATED OATH, WAVELENGTH XWL AND REFLECTANCE XR

READ (60,10) (XWL(I),XR(I),I=2,120)
11 FORMAT(12F6.3)

C CONVERTING WAVELENGTH INTO ENERGY
)03001=2,120
XE(I)=1.24/XWL(I)

301 CONTINUE
C SOME CONSTANTS

)E=1.015
OXE(1)=XE(46)
CXR(1)=XR(46)
IF=1.14(XE(120)-XE(46))/OE

C CALL SUBROUTINE LAGINT FOR INTERPOLATION
)0111I=1,NF
CALL LAGINT(XE,XR,CXE(I),CXR(I),121)
CXE(I+1)=CXE(I)+OE

111 CONTINUE
A=CXE(5)
C=CXE(18)
D=CXE(31)
CA=(C+A)/(C-A)
)A.(D+A)/(0-A)
Ai=ALOG(CA)
A2=ALOG(04)

C READ UPPER LIMITS OF INTEGRATION
4RITE (61, 77)

77 EORMAT(I1$,33X,$OUTPUTZ////)
555 READ(6;,11) NJ
11 EORMAT(I4)

IF(E0F(60)) G0T055
3=CXE(NJ)
IC=(B+C)/(B-C)
30=(9+0)/(3-0)
31=ALOG(BC)
12=AL0G(00)
)ET=A1.32-A2*,31
101.101=89,92
E0=CXE(I)
21=CXR(I)
)0103J =5, NJ
J=CXE(J)
R2=CXR(J)
IF(J.E0.I) GOT015
Y(J)=(4L06(R2/R1))/(EJ.EJ-EO.E0)
501'0100

15 Y(J)=(CXR(J41)-CXR(J-1))/4./0E/CXE(J)/CXR(J)
130 CONTINUE

ESUM=0.0
OSUM=0.0
1F2=NJ-1
105J1=2,NF2,2

50 ESUM=ESUM+Y(1)
C CALCJLATING INTEGRAL USING SIMPSON RULE

THETA(I)=(10/3.14159).(01/3.).(Y(5)+4.*ESUM+2..0sutl+y)N)))
117 CONTINUE

TC=THETA(13)-(1.5/3.14164ALOG(CXR(13)))*(414431)
TO=THETA(31)-(1.5/3.14164ALOG(CXR(31))).(A2+82)
IF(OET.EQ.0.0)ST0P
IA=(TO31-TC.32)/DET
33=(TC*A2-TO*A1)/010

C NU"FRICAL DIFFERENTIATION AND NORMALIZED FREDUENCY SPACING

)033)1=89,92
.3.0=CXE(I)

AR1=(E0+41)/(E0-A)
3R2=(B÷E0)/(0-E0)
F=7.5/3.1416*ALO1(CXR(I))
THETA1=(AA-F).ALOG(AR1)
THETA3=(93-F).ALOG(AR2)
THETAT=THETA1+THETA(I)+THETA3
YEN01=1.+CXR(I)-2..SORT(CXR(I)).COS(THETAT)
LN(I).(1.-CXR(I))/OENOM

330 CONTINUE
I=90
) RN(I)=(RN(I+1)-RN(I-1))/(2..0E)
SEP100=0.5/(RN(I)+CXE(I).0PN(I))
4RITE(61,73) CXE(NJ),SEPM00

71 EORIAT(2E17.4)
;0T0555

35 STOP
END

SUBROUTINt LAGINT(X,Y,XA,YA,N)
lIMENSION 0(131),Y(101)
)08I=46,N
IF(X4-X(I))9,9,8

8 CONTINUE
g TERM1=(XA-X(I)).(XA-X(I.1)).Y(I-1)/((X(I-1)-X(I)).(X(I-1)-X(I+1)))

TERM2=(XA-X(I-1)).(XA-X(I+1))4Y(I)/((X(I)-X(I-1)).(X(I)-X(I.1)))
TER13=(XA-X(I-1))*(XA-X(I)).Y(I+1)/((X(I+1)-X(I-1)).(X(I+1)-X(I)))
IA=TER11+TER12.TERM3
RETURN
ENO
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APPENDIX XI

Output of Program MODSEP2B

b (eV) LAv ic

2. 0201E 00 1. 0696E -01
3. 0401E 00 1. 0790E -01
4. 0301E 00 1. 0880E -01
5.0501E 00 1. 0969E -01
6. 0401E 00 1. 1036E -01
7.0301E 00 1. 1075E -01
8. 0501E 00 1.1101E-01
9. 0401E 00 1. 1109E -01
1.0030E 01 1. 1104E -01
1.2040E 01 1. 1081E -01
1.4050E 01 1. 1054E -01
1.6030E 01 1. 1021E -01
1.8040E 01 1. 0982E -01
2. 0050E 01 1.0941E-01
2. 2030E 01 1. 0911E -01
2.4040E 01 1. 0887E -01
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APPENDIX XII

Upper Integration Limit Data

In program MODSEP2B, CXE represents the interpolated photon

energy E and. NJ the subscript corresponding to the point CXE(NJ)

In other words b = CXE(NJ) The following table gives the values of

NJ and the corresponding values of b.

NJ b (eV)

133 2

201 3

267 4
335 5

401 6

467 7

535 8

601 9

667 10

801 12

935 14
1067 16
1201 18
1335 20
1467 22
1601 24

Note--For program MODSEP2A only the first two values of NJ were
needed.


