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The purpose of this dissertation is to develop and apply methods using

the division algebra of the octonions in mathematical physics. This investigation,

built upon the foundation of the theory of Clifford algebras, is motivated by the

correspondence between supersymmetric theories and division algebras.

We extend the theory of representations of Clifford algebras to octonions.

This extension is complicated by the non-associativity of the octonions. However,

the alternative property of the octonions is shown to be sufficient to overcome this

difficulty. The effects of the choice of an octonionic multiplication rule are found

to be related to a change of basis on the carrier space of a representation. Octo-

nionic conjugation and matrix transposition of a representation is seen to induce

a representation based on the opposite octonionic algebra. We describe octonionic

representations for Clifford algebras over spaces of 6, 7, 8, and 9+1 dimensions.

These representations are used to give octonionic descriptions of generating sets of

the Clifford groups and the orthogonal groups in these dimensions. A similar de-

scription for the exceptional Lie group G2, the automorphism group of the octonionic

algebra, is found.
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The octonionic description of the vector and spin representations of SO(8)

are combined to give a unified picture of the triality automorphisms of SO(8) which

manifestly shows their E3 x SO(8) structure and unequivocally displays the sym-

metry interchanging the spaces of vectors, even spinors, and odd spinors.

These octonionic methods are then applied to the Casalbuoni-Brink-Schwarz

superparticle for which we rederive the general classical solution of the equations

of motion. We introduce a superspace variable containing both the bosonic and

fermionic degrees of freedom as a 3 x 3 Grassmann, octonionic, Jordan matrix. We

succeed in giving a unified description of supersymmetry and Lorentz transforma-

tions exclusively involving Jordan products of such 3 x 3 matrices.

The results of this dissertation provide a basis for the further investigation

of supersymmetry using the octonionic algebra. In particular, we conjecture that

an extension of the treatment of the superparticle to the Green-Schwarz superstring

is possible. Such an extension may provide a useful tool to use in the covariant

quantization of the superstring.
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OCTONIONS AND SUPERSYMMETRY

1. INTRODUCTION

The discovery of the octonions by Cayley [17] and Graves [31,63] followed

soon after Hamilton's [60] discovery of quaternions in the middle of the 19th century.

There was some speculation that the octonions could be extended further, but a

celebrated theorem by Hurwitz [67] concluded that the sequence of normed division

algebras over the real numbers contains only the reals, R, themselves; the complexes,

C; the quaternions, lli; and the octonions, 0. (We also denote these algebras by

K,, , where n = 1, 2, 4, and 8 is their respective dimension as vector spaces over R.)

So, the octonions have a special status as the normed division algebra of highest

dimension. But what is their mathematical and physical significance?

For the quaternions, Hamilton [62,61] himself pursued this question and

found wide applications in geometry and celestial mechanics. These applications rely

on the identification of vectors in 3 dimensions with purely imaginary quaternions.

Scalar and vector products are recovered as the negative of the real and as the

imaginary part, respectively, of the product of the corresponding quaternions. The

octonions on the other hand did not receive much attention.

In Cartan's [13,98] classification of simple Lie groups, we have three infinite

families of groups related to the reals, complexes, and quaternions, namely the sim-

ple orthogonal, the simple unitary and the symplectic groups. What then are the

Lie groups corresponding to the octonions? Apart from the three infinite families,

there are five exceptional Lie groups. The lowest dimensional exceptional Lie group,
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C2, is the automorphism group of the octonions. The octonions are also connected

to the exceptional group of next higher dimension, F4, which is the automorphism

group of the exceptional Jordan algebra [69-72] of 3 x 3 octonionic hermitian ma-

trices. Of course, the non-exceptional Jordan algebras are just matrix algebras over

the reals and complexes [68]. (Since quaternions have a matrix representation, they

do not give rise to additional Jordan algebras.)

This pattern of the octonions being related to exceptional structures repeats

itself for the geometries of spheres. The sequence of Hopf [65,66] maps

52n-1 sn = 1,2,4,8),

are the only existing sphere fibrations. The fact that the sequence of possible di-

mensions coincides with the sequence of the division algebras is not an accident.

The fibres of these projections are the only parallelizable spheres, 5°, S1, S3, and

S7 [2,3,15,78], and, as it is pointed out below and in section 4.3, may be identi-

fied as the elements of unit norm of the respective division algebras. Whereas the

unit sphere for the reals is S° 0(1), for the complexes Si U(1), and for the

quaternions S3 SO(3), the octonionic unit sphere, S7, is the only parallelizable

sphere which does not allow a group structure [22]. So even within this exceptional

sequence, the octonions play a special role and are definitely worth studying from a

mathematical point of view.

Physicists became interested in the octonions with the rise of supersymmet-

ric theories (including superstrings and supergravity). Supersymmetry [40,81,90,94]

is a postulated symmetry between matter and forces, fermionic and bosonic degrees

of freedom. Such a symmetry implies the existence of supersymmetric partner par-

ticles for all existing elementary particles, for example there should be a spin

fermion, corresponding to the spin 1 photon. However, such particles are not ob-
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served. Why then is such a theory considered? A possible explanation for the lack

of evidence for this symmetry is that the ground state of the physical world, i.e., the

vacuum state, may not exhibit this symmetry even though the dynamics, i.e., the

interactions, do. In this case the symmetry is said to be broken and could only be re-

covered at sufficiently high energies. Moreover, among field theoretical models only

a supersymmetric theory has the prospect of unifying the gravitational interaction

with the electroweak and strong interaction [94], since the mediating particles have

differing spins. Such a unification of interactions would incorporate a unification

of general relativity and quantum field theory, which are the cornerstones of our

modern understanding of the physical world. The unification of these two theories

becomes necessary when we extrapolate their basic claims to the energy Eplanck of

the Planck region, which is

EPlanck = C2 =hc
;-:-', 1019 GeV.

U
(1.2)

At such energies the Schwarzschild radius of a particle is of the same order of mag-

nitude as its Compton wavelength, i.e., the length scale of the curvature of space

of general relativity and the length scale corresponding to Heisenberg's uncertainty

principle become comparable. Conventional attempts to quantize gravity fail be-

cause the resulting field theory is not renormalisable, i.e., infinities arising from

self-interactions cannot be eliminated. Supersymmetric theories are more promising

in this regard, since cancellations between bosonic and fermionic terms make these

theories remarkably well-behaved. Therefore, supersymmetric theories are deemed

to be among the best candidates for extending existing theories, despite the lack of

supporting experimental evidence.
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How then are supersymmetric theories connected with the division algebras?

A class of supersymmetric theories is seen [5,38,74] to rely on a parametrization of

lightlike vectors in terms of a spinorial variable ik:

YA = OA0, YAYP (177000W/0 = 0, (1.3)

where the -y are the Dirac matrices. (IP is also called a twistor [83].) Normalizing

the components of tk, the map

0 i- 777011) (1.4)

becomes a sphere fibration, which can also be expressed in terms of the division

algebras [21]. Actually a generalization (4.30) of the spinor identity (1.3) is needed

for this class of supersymmetric theories.

Corresponding to the Hopf maps, there exist descriptions of the Lorentz

groups in terms of the division algebras in the relevant dimensions:

SL(2, 1(n) 'Le SO(n + 1,1), (1.5)

i.e., Lorentz transformations act on vectors, represented by 2 x 2 hermitian matrices

over Kn , via the simple linear group SL(2, Ku). For the octonions, only the Lie

algebra version [24,96] of these transformations was understood prior to this work.

The first contribution of this dissertation is the explicit demonstration of (1.5) on

the group level, which is found in chapter 3. Using a constructive approach, this

chapter examines octonionic representations of SO(7), SO(8), and SO(9, 1), paral-

leled by quaternionic representations of SO(3), SO(4), and SO(5,1). We also find a

remarkable octonionic description for a generating set of the exceptional Lie group,

G2, which exhibits a structure similar to the orthogonal groups.

Chapter 2 establishes a theoretical framework for these constructions by

extending the theory of representations of Clifford algebras to octonions. This ex-

tension is complicated by the non-associativity of this division algebra. Remarkably,
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the alternative property of the octonions is sufficient to overcome this difficulty. We

describe octonionic representations for Clifford algebras over spaces of 6, 7, 8 and

9+1 dimensions. These representations are used to give octonionic descriptions of

generating sets of the Clifford groups and the orthogonal groups in these dimensions.

We also observe features that are peculiar to octonionic representations: The effects

of the choice of an octonionic multiplication rule is found to be related to a change

of basis on the carrier space of a representation. Due to the non-commutativity of

the octonions, octonionic conjugation and matrix transposition of a representation

is seen to induce a representation based on the opposite octonionic algebra.

Chapter 2 culminates in an octonionic description of the triality automor-

phisms of SO(8), which manifestly shows their E3 x SO(8) structure and unequiv-

ocally displays the symmetry interchanging the spaces of vectors, even spinors, and

odd spinors. The octonionic description of the vector and spin representations of

SO(8) are combined to give this unified picture. As is evident from our description,

the triality symmetry is a prototype for supersymmetry and is closely related to the

exceptional Jordan algebra.

A variation of the exceptional Jordan algebra involving anticommuting pa-

rameters appears in chapter 4. In this chapter our octonionic methods are applied

to the Casalbuoni-Brink-Schwarz superparticle, for which we rederive the general

classical solution of the equations of motion. We introduce a superspace variable

containing both the bosonic and fermionic degrees of freedom as a 3 x 3 Grassmann,

octonionic, Jordan matrix. We succeed in giving a unified description of supersym-

metry and Lorentz transformations exclusively involving Jordan products of such

3 x 3 matrices.

Supersymmetric theories involving octonions and the exceptional Jordan

algebras have also been widely explored. Among these supersymmetric theories are
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superparticle, twistor and superstring models; supergravity; and super Yang-Mills

theories [18-21,27,28,39,43,44,52,53,55-59,73,77,82,93,97].

Chapter 5 suggests avenues for further investigations.
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2. OCTONIONIC REPRESENTATIONS OF CLIFFORD
ALGEBRAS AND TRIALITY

Jorg Schray

Department of Physics, Oregon State University, Corvallis, OR 97331, USA

schrayjaphysics.orst.edu

Corinne A. Manogue

Department of Physics, Oregon State University, Corvallis, OR 97331, USA

corinne@physics.orst.edu

The theory of representations of Clifford algebras is extended

to employ the division algebra of the octonions or Cayley numbers.

In particular, questions that arise from the non-associativity and non-

commutativity of this division algebra are answered. Octonionic rep-

resentations for Clifford algebras lead to a notion of octonionic spinors

and are used to give octonionic representations of the respective orthog-

onal groups. Finally, the triality automorphisms are shown to exhibit

a manifest E3 x SO(8) structure in this framework.
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2.1. INTRODUCTION

The existence of classical supersymmetric string theories in (n 1, 1) di-

mensions has been linked to the existence of the normed division algebras Tic [1,2],

where = R, C, H, and 0 for n = 1, 2, 4, and 8 are the algebras of the reals,

complexes, quaternions, and octonions. One reason for this correspondence is the

isomorphism sl(2,&) so(n 1,1) on the Lie algebra level [3]. However, because

of the non-associativity of the octonions, the extension of this result to finite Lorentz

transformations, i.e., on the Lie group level, for n = 8 has posed a problem until

recently [4,5]. Nevertheless, octonionic spinors based on 81(2, 0) have been used

successfully as a tool to solve and parametrize classical solutions of the superstring

and superparticle [5-7].

Another link between octonions and supersymmetric theories is given by the

triality [8,2,9] automorphisms of SO(8), which interchange the spaces of vectors,

even spinors, and odd spinors. These automorphisms are constructed using the

Chevalley algebra, which combines these three spaces into a single 24-dimensional

algebra, which can be extended to the exceptional Jordan algebra of 3 x 3 octonionic

hermitian matrices. A variety of articles connect this algebra to theories of the

superstring, the superparticle, and supergravity [10,11].

Division algebras are also used in the spirit of GUTs to provide a group

structure that contains the known interactions [12].

The contribution of this paper is to bring these many isolated observations

together and place them on the foundation of the theory of Clifford algebras. Our

framework allows an elegant unified derivation of all the previous results about or-

thogonal groups. The octonionic triality automorphisms, for example, are com-

pletely symmetric with respect to the spaces of vectors, even spinors, and odd
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spinors, as they should be. We also explain new features and properties of octonionic

representations of Clifford algebras related to the possible choices of different octo-

nionic multiplication rules. We also find that not all of the common constructions

from complex representations have exact analogues for octonionic representations

because of the non-commutativity of the octonions. For example, the octonionic

analogue of the charge conjugation operation involves the opposite octonionic alge-

bra, without which the transformation behavior is inconsistent. However, the extra

structure of two distinguished octonionic algebras may turn out to be a feature of

our formalism rather than a bug.

In a previous article [4] a demonstration of the construction of SO(7), SO(8),

SO(9,1), and G2 is given, which illustrates how the octonionic algebra works ex-

plicitly. However, in this article, we only use the general algebraic properties of the

octonions, rather than rely on explicit computations involving a specific multiplica-

tion rule. This approach is taken to highlight the central role of the alternativity

of the octonions in the development of our formalism. In essence, we suggest the

division algebra of the octonions not as an afterthought, but as a starting point for

incorporating Lorentzian symmetry and supersymmetry in supersymmetrical the-

ories. This principle is brought to fruition in a fully octonionic description of the

triality automorphisms of the Chevalley algebra.

The content of this article is organized as follows: First we give a thorough

introduction to composition algebras and the division algebra of the octonions. In

particular, we devote a large part of section 2.2 to the investigation of the relation-

ship amongst different multiplication tables of the octonions. In section 2.3 we state

basic concepts about Clifford algebras and their representations. We characterize the

Clifford group and the orthogonal group of a vector space with a metric by generat-

ing sets. This approach turns out to be better adapted to octonionic representations
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than the usual Lie algebra one. Then we introduce the octonionic representation

of the Clifford algebra in 8-dimensional Euclidean space in section 2.4. In section

2.5, the reductions to 7 and 6 dimensions and the extension to 9+1 dimensions are

discussed. In section 2.6, we introduce an octonionic description of the Chevalley al-

gebra and show that the triality symmetry is inherent in the octonionic description.

Then, in section 2.7, we briefly explain how our results with regard to sets of finite

generators of Lie groups are related to the usual description in terms of infinitesimal

generators of the corresponding Lie algebra. Section 2.8 discusses our results.

2.2. THE DIVISION ALGEBRA OF THE OCTONIONS

This section lays the first part of the foundation for octonionic represen-

tations of Clifford algebras, namely it introduces the octonionic algebra. The first

subsection deals with some general properties of composition algebras. A subsection

introducing our convention for octonions follows. We then turn our attention to the

relationship among different multiplication tables for the octonions and introduce

the opposite octonionic algebra. For further information and omitted proofs see

[13,14,3]. A less rigorous approach is taken in [4].

2.2.1. Composition algebras

An algebra 2t over a field IN' is a vector space over IF with a multiplication

that is distributive and IF-linear:

x(y + z) = xy + xz
V x, y, z E 24, (2.1)

(x + y)z = xz yz

(fx)y = x(fy) = f (xy) Vx,yE2t, V f E F. (2.2)

2t is also assumed to have a multiplicative identity 12.
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A composition algebra 21 over a field IF is defined to be an algebra equipped

with a non-degenerate symmetric 1F-bilinear form,

(, ) : 21 x 21 > IF (2.3)

(x, y) i--+ (x, y) ,

with the special property that it gives rise to a quadratic norm form which is com-

patible with multiplication in the algebra:

H2 : a -' F

X H IXI2 := (X, X) ,

ixY12 = ix121Yr Vx,y E 21.

(2.4)

(2.5)

(In the case of the octonions (2.5) is known as the eight-squares theorem, i.e., a sum

of eight squares is the product of two sums of eight squares, and many applications

rely on this identity.) Two main consequences can be derived (see [13]) from this

essential property of composition algebras. Firstly, these algebras exhibit a weak

form of associativity:

x(xy) = (xx)y
Vx,y E 21.

(yx)x = y(xx)

Defining the associator as a measure of the deviation from associativity via

(2.6)

[x, y, z] := x(yz) (xy)z, x, y, z E 21, (2.7)

[x,x,y] = [y,x,x] = 0 Vx,y E 2t (2.8)

[x, y, z] = -[x,z,y]. -[y, x, z] V x,y,z E 2t, (2.9)

then (2.6) implies

or (by polarization)
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i.e., the associator is an alternating function of its arguments. This weak form

of associativity is also called alternativity. (2.9) and (2.6) are equivalent, if the

characteristic x(F) of F does not equal 2, which is assumed from now on. As shown

in [13] alternativity implies the so-called Moufang [15] identities,

(xyx)z = x(y(xz))

z(xyx) =-- ((zx)y)x

x(yz)x = (xy)(z )

which will turn out to be useful later on.

Secondly, composition algebras are endowed with an involutory antiauto-

morphism *:

Vx,y,z E 21, (2.10)

-* :

x* := 2 (1, x) x , (2.11)

(xy)* = y* x* Vx,y E 2t.

(Obviously, we view IF as embedded in the algebra 2t via IF IF1 C 2t, in particular

= = 1. With this identification and (2.2), multiplication with an element of

IF is commutative, i.e., F C Z, where Z is the center of 2t.) We observe that * is

linear and fixes F. (Note that (1,1) = 1, since (x, x) = (x, x)(1, 1) V x E Qt.) This

antiautomorphism can be shown to provide a way to express the quadratic form 1.12:

X X* = = 1x12 V x E 2t. (2.12)

So all elements of 2t satisfy a quadratic equation over F:

X2 2(1, X)X 1X12 = 0 V x E 2t. (2.13)

Polarizing (2.12) results in an expression for the bilinear form:

1
(x,y) = --(xy*+ yx*) Vx,y E 21. (2.14)
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We determine inverses:

X-1 = lx* Vs E 21, Is12 # O. (2.15)
x12

However, in order to solve a linear equation ax = b, we need a-1(ax) = x. To see

that we do indeed have associativity in this case, we need the following relationship,

6[x, y, z] = [x, [y, z]] [y, [z, x]] [z, [x, y]] V x, y, z E 2t, (2.16)

between the associator and the commutator

[x, y] := xy yx, x, y E 2t, (2.17)

which is defined as usual. So for x(F) 0 2,3, we see that products with elements in

2 are associative:

x E Z < > [x, = 0 Vy E 21 [x, y, = 0 Vy,z E 2i. (2.18)

Since the associator is linear in its arguments, we can put (2.15), (2.11), and (2.18)

together:

[x*, x, y] 2(1, x) [1, x, y] [x, x, y]
= 0 Vx,y E 21, lx12 0. (2.19)

lxi

Finally, we observe more general consequences of (2.11) and (2.18):

and

[x*, y] = [x, y] = [x, y]* V x, y E 2t (2.20)

[x*, y, z] = [x, y, z] = [x, y, z]* Vx,y,z E 2t, (2.21)

which imply that both commutators and associators have vanishing inner products

with 1:

(1, [x, y]) = (1, [x,y,z]) = 0 Vx,y,z E 2t. (2.22)

We will now turn to the specific composition algebra of the octonions.
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2.2.2. Octonions

According to a theorem by Hurwitz [16], which relies heavily on (2.13) there

are only four composition algebras over the reals with a positive definite bilinear

form, namely the reals, R; the complexes, C; the quaternions, IHI [17]; and the

octonions or Cayley numbers, 0 [18]. Their dimensions as vector spaces over R are

1, 2, 4, and 8. Since the norm is positive definite, there exist inverses for all elements

except 0 in these algebras. Therefore, they are also called normed division algebras.

For specific calculations the following concrete form of 0 is useful. 0 R8 as

a normed vector space. Fortunately, it is always possible to choose an orthonormal

basis { io, , i7} which induces a particularly simple multiplication table for the

basis elements such as the one given by the following triples:

io = 1,

(1 < a < 7),
(2.23)

iajb = = ibia and cyclic for

(a, b, c) E P = {(1, 2, 3), (1,4, 5),(1,6, 7), (2,6, 4), (2,5, 7), (3, 4, 7), (3, 5, 6)}.

The algorithm to obtain such a basis is similar to the Gram-Schmidt procedure [19]

with additional requirements about products of the basis elements (see [4]).

Working over the field of real numbers, the following definitions of real and

imaginary parts are customary:

Rex (1, x) = (x x*) E R,
(2.24)

Im x := x (1, x) = -}(x x*) E R1.

Also io is called the real unit and the other basis elements are called imaginary units,

Re io = io, Imia = is (1 < a < 7). (2.25)
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In analogy to C and El, the antiautomorphism * is called "octonionic conjugation".

it also changes the sign of the imaginary part. With these conventions (2.22) reads

Re [x, y] = Re [x, y, z] = 0

2.2.3. Multiplication tables

Vx,y,z E M. (2.26)

The question of possible multiplication tables arises, for example, when one

reads another article on octonions, which, of course, uses a different one from the

one given in (2.23). Usually it is remarked, that all 480 possible ones are equivalent,

i.e., given an octonionic algebra with a multiplication table and any other valid

multiplication table one can choose a basis such that the multiplication follows the

new table in this basis. One may also take the point of view, that there exist different

octonionic algebras, i.e., octonionic algebras with different multiplication tables.

With this interpretation the previous statement means that all these octonionic

algebras are isomorphic. However, this fact does not imply that a physical theory

might not make use of more than one multiplication table at any given time. For

our application, it will turn out that the limited symmetry of the physical theory

leaves two classes of multiplication tables distinct.

We follow and expand the main ideas of Coxeter [20]. The set P in (2.23)

can be taken to represent a labeling of the projective plane Z2P2 over the field

with two elements Z2 = GF(2) = OM (see Fig. 2.1). Before we explain this

correspondence, we introduce the basic properties of Z2P2. (Readers who are not

familiar with projective geometry may consult [21].) This plane contains as points

the one-dimensional linear subspaces of (Z2)3. Given a basis of (Z2)3 these subspaces

are
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3 5 6
FIG. 2.1. The projective plane Z2P2 representing a multiplication table for the octo-

nions.
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(Since these linear subspaces contain only one non-zero element, we will drop the

angle brackets and identify the points with the non-zero elements of (Z2)3.) The

lines 11, 12, ... , 17 of the plane are the two-dimensional linear subspaces of (Z2)3,

which can also be described by their normal vectors n1, n2, ... , n7, i.e., the dual

vectors that annihilate the subspaces:

/1\ /0\ 1 '0"
0 , n2 = 1 , n3 = 1 , n4 = 0

`0/ \ 0 j 0 1 /
/

1
1

0
\

ns = 0 , n6 = 1 , n7 =

\ /1 1/

/ 1

\1

ni =

(2.28)

So there are also seven lines in Z2P2. The geometry of the plane is then defined by

the incidence of points and lines, where

p3 and 11, are incident p; C 1k nkTp; 0 (mod 2), (2.29)

for example, p3, p5, and p6 are incident with 17.

We are now in a position to specify the previously mentioned correspondence

between Z2P2 and P. P contains seven triples formed out of seven labels. The labels

represent points and the triples represent lines containing the three points given by
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the labels, i.e., a label and a triple are incident, if and only if the label is part of

the triple. Cyclic permutations of a triple change neither the multiplication table

nor the geometry of the plane. However, P does define an orientation on each line,

since a transposition in a triple would change the multiplication table. This notion

of orientation on the lines, is represented by arrows in Fig. 2.1. So we can read

the multiplication table off the triangle. If we follow a line connecting two labels

in direction of the arrow we obtain the product, for example, i3i4 = i7. When

moving opposite to the direction of the arrow we pick up a minus sign, i4i2 = i6.

(Note that in projective geometry the ends of the lines are connected, i.e., lines are

topologically circles, S1.

What are possible transformations of the multiplication table P and how

do they correspond to transformations of the projective plane Z2P2? Looking at

Fig. 2.1, we see that there are three ways to change the picture:

(i) We may relabel the corners, leaving the arrows unchanged.

(ii) The labels may be kept fixed while some or all arrows are reversed.

(iii) Minus signs may be attached to the labels, i.e., we change part of (2.23) to

read iaib = i, = ibia and cyclic for (a, b, c) E P.

The sign change of a label in type (iii) is equivalent to reversing the orientation of

the three lines through that point and therefore is included in the transformations

of type (ii). For the second kind of transformation, we have to make sure, that

the multiplication table so obtained satisfies alternativity, for it to define another

octonionic algebra. One can show that given the arbitrary orientation of four lines

including all seven points, the orientations of the remaining three lines are deter-

mined by alternativity. (Note that there is only one case to consider. Among the

four lines there are necessarily three which have one point in common. Two of
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those together with the fourth one fix one of the remaining orientations.) This in

turn implies that elementary transformations of type (ii) change the orientation of

three lines which have one point in common. So the transformations of type (ii) and

type (iii) are equivalent. Since four arrows can be chosen freely, we obtain sixteen as

the number of possible configurations of arrows, i.e., the number of distinct multi-

plication tables that can be reached this way, namely: 1 original configuration with

no changes, 7 with the orientation of three lines through one point reversed, 7 with

the orientation of four lines avoiding one point reversed, and 1 with the orientation

of all lines reversed.

In order to discuss these transformations further, we will introduce some

notation. (Before developing this framework, I verified most of these results using

the computer algebra package Maple. So the reader who is not algebraically inclined

may take this proof by exhaustion as sufficient. For a basic reference on group theory

see [22].) We denote an octonionic algebra given by an orthonormal basis of R8 and

a set P of the type given in (2.23) by Op, and the set made up of all such octonionic

algebras by 0 := { all possible P : Op}. "All possible P" means those that induce

a multiplication table satisfying alternativity. So 0 can be viewed as the set of

possible multiplication tables.

We now consider the group action of T = Ti * T2, the free product of trans-

formations of type (i) and (ii), on 0:

T x 0 0 (2.30)

(t, Op) 1- Ot(p) .

Thus each t E T induces an isomorphism Op Ot(p). The group of transforma-

tions T1 of type (i), i.e., the relabelings of the corners, is of course the permutation

group on seven letters, E7, acting in the obvious way. We identify the group T2 of

transformations of type (ii) as (Z2)7, with the 7 generators acting as the elementary
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transformations reversing the orientation of the three lines through one point. Ear-

lier we saw that the orbits of an element of 0 under the action of this group are of

size 16: lOrb(z2)7(0p)I = 16. In order to determine the orbits of E7 we first consider

its subgroup H which acts as the group of projective linear transformations on Z2P2

labeled as in Fig. 2.1, i.e., we let H act on one specific Op E 0, namely with P as in

(2.23). H PGL(3,7L2) GL(3,Z2) is generated by the permutations (12 4 3 6 7 5)

and (1 2 5)(3 7 4). H is in fact simple, of Lie-type, of order 168 = 23 3 7, and de-

noted by A2(2) (see [23]). Since elements of H as projective linear transformation

do not change the geometry of Z2P2, they can only reverse the orientations of lines,

i.e., OrbH(Op ) C Orb(z2)7(0p ). Hence, we have lOrbH,(z2)7(OP )1 = 16. Thus the

index of the stabilizing subgroup of H has to divide 16:

[H : StabH(Op)] = lOrbH(OP )1 16. (2.31)

Since the action of H is not trivial and H being simple of order 168 cannot have

subgroups of index 2 or 4, we conclude lOrbH(Op )1 = 8. To determine lOrbE,(Op

we need to consider the cosets of H in E7. There are [E7 : = 30 of them

corresponding to distinct geometries of Z2P2, i.e., the incidence of lines and points is

different for different cosets. Therefore, there are 30 distinct classes of multiplication

tables, with members of one class related by a projective linear transformation. So

it follows

lOrbE,(0p)1 = 30 8 = 240,
(2.32)

I OrbT(Op )1 = 30 16 = 480.

So relabelings of the corners reach only half of the possible multiplication tables,

which is a consequence of the fact that projective linear transformations reach only

half of the possible configurations of arrows. Why is this so and what are the possible

implications? To answer these questions we need to understand how elements of H
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change orientations of lines. We can decompose the action of elements of H into

one part that permutes the lines and another one that reverses the orientation of

certain lines in the image. An element ti E H of odd order p may only change the

orientation of an even number of lines. For t1' = 1 has to act trivially on P, and

the changes of orientation add up modulo 2. However, H is generated by elements

of odd order, so all of its elements change only the orientation of an even number

of lines. To obtain the full orbit we may add just one element ( E T2 that changes

the orientation of an odd number of lines. A particularly good choice for ( is the

product of all generators, i.e., the one corresponding to reversing all seven lines

(or attaching minus signs to all labels when viewed as type (iii) transformation).

Obviously, ti ((P) = ( ti(P) V ti E T1, so that we may form the direct product

T1' = T1 x {1, (} and Orbv(Op ) = OrbT(Op). Note that ( corresponds to the

operation of octonionic conjugation, so that the isomorphism given by ( is illustrated

by the following diagram:

Op X Op Op

(a, b) + ab

(x( I 0 IC

°C(P) X °C(P) --), °C(P)

(2.33)

(a*, b*) = (a' ,b') 1--- (ab)* = b* a* = b' a'

Therefore, Oc(p) is the opposite algebra of Op, i.e., the algebra obtained by reversing

the order of all products. So for octonionic algebras, there is an isomorphism of

an algebra and its opposite algebra given by octonionic conjugation, besides the

natural anti-isomorphism given by identification. What are the consequences of

these results for a physical theory? Usually, the physical theory will contain a vector

space of dimension 8, for which we want to introduce an octonionic description.
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This description, however, should be invariant under the appropriate symmetry

group, most commonly, SO(8). The multiplication table changes in a more general

way under SO(8). The product of two basis elements will turn out to be a linear

combination of all basis elements, but the relabelings given by E7 are certainly a

subgroup contained in SO(8). Moreover, ( ct SO(8), which implies that the most

general multiplication tables with respect to an orthonormal basis split in two classes

with SO(8) acting transitively on each class, but only SO(8) x {1, (} f.",-' 0(8) acting

transitively on all of them. In fact we will find it useful to consider two algebra

structures, namely 0 and its opposite Oopp , on the same 1R8 to describe the spinors

of opposite chirality.

In a recent article, Cederwall Si Preitschopf [24] introduce an "X-product"

on 0 via

a o b := (a X)(X* b), a,b, X E0, XX* = 1, (2.34)

which is just the original product for X = 1. As X becomes different from 1, the

multiplication table for this product changes continuously in a way related to the

SO(8) transformations that leave 1 fixed. This changing product appears naturally

when the basis of a spinor space is changed, see section 2.4.5.

2.3. CLIFFORD ALGEBRAS AND THEIR REPRESENTATIONS

The second building block for octonionic representations of Clifford algebras

is presented in this section. First we define an abstract Clifford algebra and observe

some of its basic properties. Then we consider the Clifford group which gives us

the action of the orthogonal groups on vectors and spinors. The third subsection

states the necessary facts about representations of Clifford algebras, i.e., how we can

find matrix algebras to describe Clifford algebras. For further reference and proofs
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that are left out see [25,9,26,27]. We only consider the real or complex field, i.e.,

F = R, C, in this section, even though some of the statements generalize to other

fields in particular of characteristic different from 2.

2.3.1. Clifford algebras

The tensor algebra T (V) of a vector space V of dimension n over a field F is

the free associative algebra over V: (All the products in this section are associative.)

7-(v) = eno(v)k,

where

(2.35)

(V )n = 1:DILZ....,,/, n > 0 , (V )° = F. (2.36)
n copies

The identity element is 1 E F and F lies in the center of T (V). Given a metric g

on V, i.e., g is a non-degenerate symmetric bilinear form on V, the Clifford algebra

Cl(V,g) is defined to be

where

CI(V,g) := T(1011(9) (2.37)

I (g) = (u ®u g(u, u) : u E V) (2.38)

is the two-sided ideal generated by all expressions of the form u ® u g(u, u). If

V is unambiguously defined from the context, we simply write Cl(g). We denote

multiplication in Cl(g) by

u , v := r-1(u) 0 i -1(v) + I (g) V u,v E Cl(g), (2.39)

where it is the canonical projection:
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rr : T(V) 4 Cl(g) (2.40)

u 1* u I (g)

and 7r-1(u) is any preimage of u. Since 7r restricted to Fe V is injective, we identify

this space with its embedding in Cl(g).

From a more practical perspective a Clifford product is just a tensor product

with the additional rule that

u v u = g(u,u) V u E V.

As a consequence elements of V C Cl(g) anticommute up to an element of IF:

(2.41)

{u,v}:=uvv vvu= 2g(u,v) Vu,v E V (2.42)

or in terms of an orthonormal basis {el, e2, ..., en}

±2, for i = j
fei,ejl := 2g(ei, ei) = (1 < i, j < n).

0, for i j
(2.43)

Based on these relationships, we find a basis for Cl(g) as a vector space,

ea v ea2 v v ea, : 0 < k < n, 1 < a1 < a2 < < n},

which shows that

(2.44)

dim Cl(g) = En
k=0 Ck

I = 2'. (2.45)

The product r =
property

el v e2 v v en is called the volume form and has the special

vu = (-1)" +1u v77 Vu E V. (2.46)

So for odd n, ri lies in the center Z of Cl(g). In fact
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F ®1F77, for n odd

There are two involutions on T(V): the main automorphism a,
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(2.47)

alv : V -* V (2.48)

and the main antiautomorphism /3,

/3 Iv : V V

U 1-3 U

/3(u ®v) =v ®u VU,VE V.

(2.49)

These restrictions can obviously be extended to an automorphism and an antiauto-

morphism of T (V). Since I(g) is invariant under a and 13, we obtain maps on the

quotient Cl(g). The main antiautomorphism can also be understood as an isomor-

phism of Cl(g) and its opposite algebra (C1(9))opp:

Cl(g) x Cl(g)

(a, b)

)3 x 01

(C1(g))opp x (C1(g))opp

63(a), #(b)) = (aopp, bopp)

V_____..), Cl(g)

a , b

Vopp.)
1*

(cl(g))opp

aopp Vopp b.pp = bopp v aopp

(2.50)

= ,(3(b) ,13(a) = 13(a ,, b)

We no longer have the Z-grading of T(V) given by the rank, but the main auto-

morphism a defines a 7L2-grading on Cl(g) given by the projections

1 1
Po :=

2
(id + a), P1 := -2 (id a). (2.51)
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The even and odd part of the Clifford algebra are defined to be

Clo(g) := Po(C1(g)), C11(g) := Pi(C1(g)). (2.52)

Then

Cl(g) = Clo(g) ED Clo(g) (2.53)

and the even part Clo(g) is in fact a subalgebra of Cl(g).

We already saw how the Clifford algebra contains vectors. A spinor space S

is defined to be a minimal left ideal of Cl(g). Such a space

S = Cl(g) Q (2.54)

is generated by a primitive idempotent Q E Cl(g), i.e.,

Q2 = Q, Q1,(22: Qi = Qi 0, (A= Q2 01 Q = Qi + Q2. (2.55)

(This characterization of minimal left ideals relies on the fact that Clifford algebras

over R and C are semisimple, see section 2.3.3.) If the primitive idempotent is even,

the spinor space S decomposes into the spaces of even and odd Weyl spinors:

s = so ED Sll Sk = PkS = Clk(g) v Q, (k = 0, 1). (2.56)

There are different names for these spaces which are being used within the mathe-

matical physics community. S is also called the space of Dirac spinors and So and

S1 are called semi-spinor spaces. Sometimes, elements of S are called bi-spinors

and elements of So and S1 are just called even and odd spinors. For mixed prim-

itive idempotent Q there may still be a Weyl decomposition (2.86), but it is not

compatible with the Z2 grading on Cl(g):

S = Cl(g) ., Q = Clo(g) v Q = C11(g) v Q. (2.57)
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For odd n, S is also called the space of Pauli spinors or semi-spinors. If only the

double 2S := S S carries a faithful representation of Cl(g) (see section 2.3.3), then

some authors refer only to 2S as the space of spinors.

2.3.2. The Clifford group

The connection of the symmetry group of the metric, i.e., the orthogonal

group, with the Clifford algebra is made in this subsection via the Clifford group

r(g). We define the Clifford group r(g) to be the group generated by the vectors of

non-zero norm, i.e.,

r(g) := (u E V c Cl(g) : u2 = g(u, u) # 0). (2.58)

As we will see, this definition is almost equivalent to the usual one,

(g) := {u E Cl(g) : u invertible, u v x v u-1 E V Vx E V} 2 r(g). (2.59)

Considering u E r(g) II V and any x E V we see that

u x = u x u 0±,,og ( x v u+ 2g(x, u)) v u
(2.60)

= -x + 29(') u E V.g(u,u)

Therefore, r'(g) D r(g) indeed, and in particular r'(g) n V = r(g) fl V. In fact, the

definition of r'(g) implies that r(g) is stable under conjugation in r'(g), i.e., r(g) is

a normal subgroup of ri(g). We will investigate the structure of the Clifford group

on the basis of this group action of rq(g) on V:

0' : ri(g) x V V (2.61)

(u, x) H 0'.(x) := u y x v u-1

Dropping all the primes we have the obvious restriction

: r(g) x V -4 V (2.62)

(u, 0u(x) := u .
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(We will not explicitly give the unprimed analogues of expressions below.) Ofcourse,

these actions can be extended to give inner automorphisms of Cl(g). According to

(2.60), the action of u E Vfir(g) is just a reflection of x at the hyperplane orthogonal

to u composed with an inversion of the whole space. In particular eu(x) E V and

cu is an isometry:

g(Ou' (x), Oui (x)) = 0..1(x), (I)' (x) (i3)2u yuys
(2.63)

= uvx,,x,tri=g(x,x).
So (2.61) (resp. (2.62)) gives a homomorphism 01 (resp. (I)) of F'(g) (resp. r(g)) to

the group of isometries or orthogonal transformations O(g) of V:

(1)1 :Mg) 0(g) (2.64)

u O' : V V

x Ou(x) = vx u-1
To compare F'(g) (resp. F(g)) with 0(g) we need to know the range and the kernel

of (I)' (resp. 4:1)). Since the reflections at hyperplanes generate all orthogonal trans-

formations 1' (resp. (I)) is onto, if we can find a preimage of the inversion x H x.

Because of (2.46), y E F(g) C F'(g) does the job for even n. For odd n, there is no

element of Cl(g) that anticommutes with all x E V. So there is no preimage of the

inversion , which leaves us with SO(g) as the range. The kernel coincides with the

part of the center, that lies in the Clifford group. Thus we have according to the

homomorphism theorems

r(9) /r c2.-- O(g) ri(g)/F*

r(9)/F* (y) SO(g) ri(9)/

(for even n) (2.65)

(for odd n), (2.66)

where r = F \ {0}, (ii) is the group generated by 77, and Z* F'(g) fl Z is the

invertible part of the center. So the Clifford group is isomorphic to the orthogonal

(resp. simple orthogonal) group up to a subgroup of the center Z. Therefore,
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(for even n) (2.67)

(for odd n), (2.68)

So for even n both definitions (2.58) and (2.59) of the Clifford group are equivalent.

For odd n they differ by inhomogeneous elements of the invertible part of the center

3*. For our purposes it will be sufficient to consider the Clifford group F(g) as

defined in (2.58) only.

For both even and odd n, we obtain a homomorphism from the even Clifford

group ro(g),

ro(g) := r(g) n Clo(g) = Por(g) = (g) n Clo(g) = (g), (2.69)

onto SO(g):

ro(g)/r SO(g).

The even Clifford group is generated by pairs of vectors with non-zero norm:

(2.70)

Fo(g) := (u v v : u,v E V, g(u, u) # 0 g(v,v)). (2.71)

In fact one of the vectors may be fixed,

Fo(g) := (u vw:uE V, g(u, u) 0), for some w E V, g(w, w) 0, (2.72)

since inverses are of the same form: (uvw)-1 = w-1 vu-1 = (w-1 vu-1 vw-1)vw = vvw,

for some v E V.

We also have an action & of F(g) on the Clifford algebra Cl(g) and in par-

ticular on any of its minimal left ideals, a space of spinors S:

11) : r(g) x S S (2.73)

(u, s) Ou(s) := u s .
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2.3.3. Representations of Clifford algebras

In this subsection we describe how we can get a matrix algebra that is

isomorphic to a Clifford algebra. In a sense this is the analogue to 2.2.2, where we

gave an explicit form of the octonions, which implemented their abstract properties.

We start out introducing some definitions concerning representations in general.

Algebras are assumed to be finite dimensional and contain a unit element. (For a

general reference for representation theory see [24)

A representation y of an algebra 2i over a field IF in a vector space W is a

homomorphism

7 : 21-4 Endr(W)

a 7(a) : W W

w 1-4 y(a)w,

(2.74)

-y(a b) = -y(a)7(b)
V a, b E 21. (2.75)

-y (a + b) = -y(a) + -y(b)

Given a basis of W, 7(a) as an endomorphism of W may be understood as an

1 x /-matrix, where 1 = dim W is called the dimension of the representation. The

representation is called faithful, if y is injective. R is an invariant subspace of 7,

if y(a)R C R Va E 21. The representation -y is called irreducible, if there are

no invariant subspaces of 7 other than W {0} and {0}. A reducible represen-

tation -y may be reduced to a representation 7R on an invariant subspace R, i.e.,

21 224 Endr(R) requiring -yR(a)w = y(a)w V w E R, a E 21. An algebra is called

simple, if it allows a faithful and irreducible representation. An algebra is called

semisimple if it is a direct sum of simple algebras.
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Since a left ideal J of 21 is by definition stable under left multiplication,

21,JCJ, (2.76)

and is a vector space, we have a natural representation Aj of 21 on J. (Again given a

basis {b1, b2, . . . , 1)1} we have a representation in terms of matrices: a b; = Aj(a)ilbj.)

Taking J = 21 we obtain the so called left regular representation, which is faithful. If

J is a minimal left ideal, then the representation on it is irreducible, since invariant

subspaces would correspond to proper subspaces of J which are left ideals and

contradict the minimality of J.

If the algebra 21 is semisimple then the converse is also true, i.e., any irre-

ducible representation can be written as a A for some minimal left ideal J: In this

case an irreducible representation y of 21 = 2t1 e 2t2 ® ® 24 is an irreducible

representation of one of the simple components, say 21k. So a minimal ideal L of

-y(20 can be lifted to a minimal ideal of J C 21i, such that 7(J) = L. Then the

following diagram commutes,

21 7(21) C End(W)

CS I AL (2.77)

End(J) End(L)

Since the maps AL and -y(J) = L are isomorphisms, there is an isomorphism relating

W and J as vector spaces,

F :W J, (2.78)

such that

-y(a) oF=Fo Aj(a) V a E 21. (2.79)

F is said to intertwine the representations 7 and Aj:
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VV VV

Ft 0 IF' . (2.80)

J J

Representations related in this way are called equivalent. In terms of their ma-

trix form, equivalent representations are related by a basis transformation. This

observation also shows that for a simple algebra all irreducible representations are

equivalent to Aj and therefore equivalent to each other.

As it is shown in the references given (see in particular [25,27]), Clifford

algebras over R and C are simple or semisimple. Therefore, there is an equivalent

definition for spinors in terms of representations of Cl(g), i.e., a spinor space S can

be defined to be the carrier space of an irreducible representation of Cl(g).

In order to find a concrete form of a representation, we are still left with

the task of finding a primitive idempotent Q that generates a minimal left ideal J

and observing how the basis elements of Cl(g) act on it. Actually, we will give a

procedure to construct a representation that does not use a primitive idempotent

explicitly. For this purpose we define the signature of a metric for the case IF = R.

We say that g has the signature p,q (write gp,q), dim V = p q = n, if there is a

basis {el, e2, , en} of V, such that

{

0, for i j
gij := g(ei, e.i) = 1, for i = j < p

1, for i j > p

(2.81)

ek, for k03(For F = C, given an orthonormal basis the transformation ek iej, for k=3 changes

the sign of g(e3,e;), i.e., we may choose a basis to obtain a form (2.81) of the

metric with any p, q where p q = ?Z. Therefore, the procedure given applies
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to the complex case also.) We write C 1 (p, q) and 7p,q to denote C/(gp,q) and one

of its representations. It is particularly simple to give a procedure that produces

a representation of C/(m, m), i.e., in the case of a so-called neutral space. The

procedure starts by "guessing" a representation 71,i for C/(1, 1):

1 1
:= =: c and yi,i(2) := =: E

1 0 1 0
(2.82)

= =: r and 71,1(1) = = 1.71,1(e1 v e2)
0 1 0 1

Notice that the representation is completely specified by defining it on a basis of V,

since V generates the algebra. In order to ensure that these assignments actually

lead to a representation of the Clifford algebra, we need to check that (2.42) is

satisfied for all pairs of images of basis elements, i.e.,

{-y(ei),7(ei)} = ry(ei)-y(ei) -y(e;)7(ei) = 2gi; (1 < i, j < n). (2.83)

The representation 71,i is faithful and irreducible, since its image is the space M2(1F)

of 2 x 2-matrices. So there are no proper invariant subspaces and the dimensions of

C/(1, 1) and M2(1F) match. This representation may be used as a building block to

extend a faithful irreducible representation 7p,q of CI (p, q), (p q = 2m even) to a

representation y' of CI(V' , g') with dim V' = 2m + 2:

7'(e) = Q ® 71,,q(ei) (1 < i < 2m),
(2.84)

71(e2m+i) = ® 71)4(71)' Y(e127.+2) = 6 773,9(1)*

(Of course, there are possible extensions using the same building blocks, other than

this so-called Cartan extension.) It is easy to check that 7' is faithful and irreducible

if 7Thq was. The signature of the resulting metric g' depends on the value of

7p,q(77)2 = (-1)1v0-1) 1, (2.85)
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where v := p q = 2(p m) = 2(m q) is called the index of the metric gp,q.

So for even (resp. odd) 2, we obtain a representation 7' of Cl(p + 1, q 1) (resp.

CI (p, q + 2)). Since for neutral spaces v = 0, we can get any 7m,m, starting from

by iteration of this extension. We note that the dimension 1 of the carrier space of

this irreducible representation is 2rn = 2'22.

For even 2, 7P,q(n) has eigenvalues +1 and -1 and we have Weyl projections

P± (2.56):

1
P± :=

2
-(1 ± 77). (2.86)

One of these projectors can be decomposed to give an even primitive idempotent

Q. A representation such as the one given, where 7p,q(n) = (01mxm ) is called

a Weyl representation, since the Weyl projections P, take a simple form. Due to

the property (2.46) of n,

P±a = aoP± aiPT, (2.87)

where ao and al are the even and odd part of a. Since either P+ or P_ annihilates

the even primitive idempotent Q, we indeed get projections onto the spaces of even

and odd Weyl spinors.

s=avQ=a0vQ-Fa1

v s = , a

Let, for example, P+ v Q = Q and R. v Q = 0, then for

Q E So ED Si, a = ao + al as before,

Q = ao v v Q + al v P- v Q = ao v Q E So
(2.88)

P-vs=P-vavQ=aovP-vQ-FaivPfvQ= alvQESi.

If we choose a mixed primitive idempotent Q, then we get a different decomposition

S = P+S P_S unrelated to the decomposition of the Clifford algebra in its even

and odd part.

We now construct representations for even n and v 0. In this case we can

get a complex representation of the same dimension / = 2"1 by complexifying and
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transforming the metric to obtain a neutral space. This complex representation is

faithful and irreducible but not necessarily equivalent to a real one. To examine this

issue we define the complex conjugate 7* of a representation -y : Endc(W) by

7* : 21 Endc(W*) (2.89)

a H -y*(a) (-y(a))*.

If 21 is simple then y and 7* are equivalent, i.e., there exists a linear map C : W

W* intertwining these two representations:

-y*(a) oC=Co 7(a) V a E 21. (2.90)

It follows by complex conjugation that

-y(a) o C* o C = C* o -y*(a) o C C* o C o 7(a) V a E 21, (2.91)

whence by Schur's Lemma C* o C is proportional to the identity. Since C* o C has

a real eigenvalue, C can be normalized to satisfy

C* o C = ±1. (2.92)

If and only if C*oC = +1, then we can find a basis transformation to make -yp,q real.

This is the case for v a-- 0,2 (mod 8). In practice, we relate W and W* by complex

conjugation in the obvious way. C is found by imposing (2.90) for a E {el, e2, ,

en }. (Following the procedure given above, any of the matrices -y(ek) is either real

or purely imaginary, so that C either commutes or anticommutes with it.) The new

basis is a basis of eigenvectors for C, which is invariant under s 1-4 sc := (C s)*. (sc

is essentially the charge conjugate spinor for s.) For the cases v 0, 6 (mod 8)

we can make a similar transformation to make -yp,q purely imaginary. These real

(resp. purely imaginary) representations are known as Majorana representations of

the first (resp. second) kind. Of course, even for v -7-= 4, 6 (mod 8) we can find
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an irreducible real representation of higher dimension, namely 1 = 2m +1, by letting

1 (0101) = 1 and i (rio) = E in an irreducible complex representation.

From a faithful, irreducible representation 7 of the full Clifford algebra Cl(g)

we derive a representation -yo of the even subalgebra Clo(g) by the obvious restric-

tion. -yo is faithful, but not irreducible, except for real representations when v -1-, 2

(mod 8). For v ---=-- 0, 4 (mod 8), there are two-sided ideals of Clo(g) generated by

the idempotents 1(1 + 7/). Each of these two-sided ideals J carries an irreducible

representation of dimension 2m-1, but only the double 2J carries a faithful repre-

sentation. For v 6 (mod 8) the isomorphism (2.93) in the following paragraph

shows that Clo(q, p) '-='" Clo(p, q), hence we know the dimension of the irreducible

representation to be 1 = 2' from the case v -a--- 2 (mod 8).

Representations -ypa with odd n can be obtained by shrinking a representa-

tion of higher dimension, since we have the isomorphisms

Clo(q + 1, p) L-' Cl(p, q) -:=. Clo(p, q + 1)

obtained from extending

elek+1 4-1 ek ---* eken+1

(2.93)

(1 < k < n). (2.94)

Given the procedure above we can find an irreducible representation of Cl(p, q) by

constructing one corresponding to an even subalgebra for even n. According to the

isomorphism (2.93) which also holds true for pd-q even, we can shrink representations

for odd n in a similar way.

Irreducible representations of the Clifford algebra Cl(g) induce irreducible

representations of the Clifford group F(g), since the basis elements of Cl(g) as in

(2.44) are contained in F(g). The representations arising from the tensor (resp.

spinor) action (2.62) (resp. (2.73)) are known as the vector (resp. spinor) represen-

tation of F(g).
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2.3.4. Bilinear forms on spinors

Physical observables are tensors, which in terms of the Clifford algebra trans-

form like (2.62), while spinors transform like (2.73) under the orthogonal group. For

this reason it seems likely that a bilinear form on spinors may provide observables

based on spinors. The algebraic approach uses the fact that for u E r(g) its inverse

u'l is proportional to /3(u). Therefore, up to a normalization ss13(si) transforms

under the tensorial action of r(g). A decomposition in terms of a basis of the Clif-

ford algebra gives the tensorial pieces of certain rank. In terms of representations

we construct a bilinear form on spinors considering induced representations of the

opposite Clifford algebra. Given a representation 7 : 21. --÷ Endr(W) there is an

induced representation 7T, its "transpose":

-yT : 2topp -4 EndF(WT)

a.pp 1 (7T)(aopp) :. (7(ci))T : WT WT

wT ,IT (aopp)(wT) wT 7T (a opp).

This is indeed a representation since

yT(aopp vopp bopp) (7 ( bopp V aopp ) )T = (7(07 (a))T

= 7T (a opP)7T (boPP) V aopp, bopp E 2t0pp

(2.95)

(2.96)

As we pointed out in (2.50), the main antiautomorphism /3 can be viewed as con-

necting the algebra 2t and its opposite %pp, so that we may obtain another induced

representation '-'y for 2t by

l'(a) := 7T (0(a)) = (1(Q(a)))T (a E 20, (2.97)

where we interpret OP once 21 > 2topp as in (2.50) and then as an antiautomorphism

21 > 2/ on 21.
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Since a bilinear form on spinors can be understood as a linear transformation

B : W WT , we take B to be a map that intertwines the representations -y and

Such a map exists if the representation 7 is irreducible, whence =y is also irreducible.

In this case B is defined up to a constant by

B o -y(a) = =y(a) o B Va E < = > B-y(ek) = (7(ek))T B VkE {1, , n}.

(2.98)

We understand B as a bilinear form on W:

B:Wx W F (2.99)

(s, s') H B(s, s') := (B(s))(s') = 38' = sTBs'

both as a map and as its matrix form. 3 := B(s) = sT B is the adjoint to s with

respect to B. Indeed, B(s, s') transforms like a scalar (compare (2.73)):

B(s, s') 1'1.4 B(u v s, u v s') = sT -y(u)T B7(u)s' = sT),(13(u))B-y(u)s'

= sT B7(3(u))7(u)si = [Nu) v sT Bs'

if u = u1 v v Uk E r(g), ui, , Uk E V such that

(2.100)

/3(u) v u = g(ui, ui) g(uk, uk) = 1. (2.101)

For x E V,xvs'iti-4uvxvs'=(uvxvu-1)v(uvs'), hence B(s,x vs') also transforms

like a scalar. Therefore, a vector y is given by

Yk = B(s, ek v s') = sT B7(ek)s' (1 < k < n).

In a similar way, a tensor Y of rank r may be formed:

(2.102)

B(s, ek, v v ek,. v s') = sT B-y(eki) . . . -y(ek,.)s' (1 < k1, . , kr < n).

(2.103)
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Another bilinear form E may be obtained by replacing the main antiauto-

morphism Q with a o Q which, of course, is an antiautomorphism also. So E is

determined up to a constant by

E o -y(a) = 7(a(a)) o E Va E 21. b E-y(ek) = (-y(ek))T E Vk E {1, , n};

therefore, for even n

E = B-y(77)

The condition (2.101) changes to

(a o fl)(a) v u = (-1)kg(u1, al) 9(uk,ak) = 1,

(2.104)

(2.105)

(2.106)

which reduces to the previous condition for u E Fo(g). So both bilinear forms are

invariant under the action of normalized elements of Fo(g).

Both of these bilinear forms may be combined with C to give a sesquilinear

form A : W Wt on W. We only consider the combination A := B* o C here:

A o -y(a) = B* o C o -y(a) = B* o -r(a) o C= -y*(0(a))T o B* o C

7tp(a)) o A V a E 21. (2.107)

A-y(ek) = -yt(ek)A Vk E {1, , 71},

By a similar argument as in (2.91),

(A-1)t o A o y(a) = (A-1)t o -yt(fi(a)) o (At o (A-1)t) o A

= (A-1)t o (A o -y(f3(a))t o (A-1)t o A

(A-')t 0 (.7t((0 o fl)(a)) o A)t o (A-1)t o A

= ((A-1)t o At) o -y(a) o At o A

= y(a)oAtoA VaE 2t,

(2.108)
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we conclude by Schur's Lemma that we can normalize A to satisfy

(A-1)1. o A = 1. (2.109)

Therefore, A may be assumed to be hermitian. Of course, A may be used to define a

spinor adjoint 3 := A(s) = st A and to construct tensors of various rank as sesquilin-

ear forms of spinors. The condition (2.101) applies also. Which one of these forms

is chosen depends on the signature and the physical theory.

In all of our derivations involving C, B, E, and A, we relied on certain

properties of matrix multiplication over the field C (resp. R), namely the fact that

transposition is an antiautomorphism and complex conjugation is an automorphism

of matrix multiplication. We are about to replace F by 0. Since octonionic mul-

tiplication is not commutative and octonionic conjugation is an antiautomorphism,

only hermitian conjugation remains as an antiautomorphism of octonionic matrix

multiplication. Due to the non-associativity of the octonions even the carrier space

W is no longer a vector space, but an "octonionic module". The following section

2.4 will show how to handle these difficulties.

2.4. AN OCTONIONIC REPRESENTATION OF C/(8, 0)

In this section we will put the results of sections 2.2 and 2.3 to work and

examine the features of octonionic representations of Clifford algebras, considering

the example of C1(8, 0). So V = R8 with a positive definite norm. Let {eo, el, ... ,

e71 be an orthonormal basis of V. Note that we choose indices ranging from 0 to 7

in this section. The octonionic algebra 0 is assumed to be given with basis { io, ii,

... , i7} obeying the multiplication table (2.23). However, the properties



io = 1,

'2

ia =

iaib = --ibia

(1 < a < 7),

(1 < a < b < 7)
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(2.110)

rather than the particular multiplication rule, i.e., the particular set P of triples,

will be relevant. Furthermore, we identify V and 0 as vector spaces by xkeki--+ xkik

2.4.1. The representation

An octonionic representation 'y8,0 : C1(8, 0) > M2(0) is given by

0 ik
y8,o(ek) =: rk < k < 7) (2.111)

z*k 0

0 x
*Ysto(x)

x* 0

The carrier space W of the representation is understood to be 02, i.e., the set of

columns of two octonions, with -y8,0(x) acting on it by left multiplication. Therefore,

octonionic matrix products are interpreted as being associated to the right and

acting on W, i.e., octonionic matrix multiplication is understood to be composition

of left multiplication onto W. For example, if we want to verify that (2.112) is a

< > = skrk =: (x E V). (2.112)

representation, then checking that

0 x) ( 0 x x x* 0
== ( 0 ) x* 0 ) 0 x* x

= lx121= g(x,x)1 Vx E V (2.113)

in accordance with (2.83) is not sufficient. This relationship has to hold even when

acting on an element w = (") E W:
wi

0 x\ ( 0 x x*)wo )
w := ) =

x*(xwi)
=

(x*x)wi )x* 0 ) x* 0 wi (2.114)

= jx12w Vw E W Vx E V.
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Thus the alternative property (2.19) of the octonions ensures the validity of the

representation.

We need to show that there are no non-trivial invariant subspaces for the

representation to be irreducible. We do this in two steps. First, we show that

(01) E W can be mapped to any w E W:

0 0 wo

0 wi 0 0 wo 0 1 0 0

(2.115)

Second, we will show that any 0 w E W can be mapped to (01), using the Weyl

projections P. If this is so, then there are no non-trivial invariant subspaces of the

representation 78,o

Since (2.46) holds for the volume element n, we have for r9 := 78,0(0 =

0
=

l',;(21(2;(. (i7x *) .)))
0

=

hence

jo(iI(i2( - (4x)- -.)))

0

-x(i0*(ii(i2( (i6*i7) )))))
0

Vx E V,

(2.116)

jo(ii (i2( . (i7x) ...))) = x(io(i1(i2( (i6i7) .)))) Vx E 0. (2.117)

Since 11 = 1, r9 has eigenvalues ±1, whence we can find solutions to the equation

r9w =fw

(iO(ii(i;( (i;w0)-

(i7w1)

))))
)))

wo(iii(ii(i;( (iV7) ))))

(i6i7) ...))))

wo

wi

(2.118)
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Since a non-trivial solution exists,

jo(i1(i2( .(i7x)...))) = ±x Vs E 0. (2.119)

Which sign is true depends on the specific multiplication rule. With our convention

the plus sign applies. In fact, the sign difference corresponds to the two classes of

multiplication tables. Since r9 is defined by its action under left multiplication, we

have an octonionic Weyl representation:

0
r9 = (2.120)o 1)

The Weyl projections take the form

1 0 0 0
P+ = P_ =

0 0 0 1

(2.121)

For any 0 w E W, at least one of P+w or P_w does not vanish. If P+w 0, then

zucT1 ) ( 0 1 ) (1 0 ) ( wo) ( 1

( (:71)* 0 ) 1 0) 0 0) wi) 13)

(Note that 1 = r0 corresponds to a vector eo E V C C1(8, 0) and is to be distin-

guished from the identity 7(1) = 1.) If P_w # 0, then

i:;w0 1 /0 0 wo 1

;60-'1P+w = . (2.122)

h
i i-1 D w=yi- . (2.123)

(wo-1)* 0 0 1 wi 0

This completes the proof that -y8,0 is irreducible. Since C/(8, 0) is simple, it does not

contain any two-sided ideals other than {0} and itself, which are also the only candi-

dates for the kernel of any representation of C1(8, 0). Therefore, 78,0 is faithful, since

it is not trivial. Faithfulness of the representation can also been shown construc-

tively without using the fact that C/(8, 0) is simple. One has to check, for example,

if the dimension of the algebra generated by {ro, 1'1, ..., r7} is 28. Another ap-

proach is to construct orthogonal transformations (see [4p, since the Clifford group
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spans the Clifford algebra. So if the representation obtained for the Clifford group

is faithful, then so is the representation for the Clifford algebra.

We chose to rely only on the algebraic properties of the octonions, rather

than using the correspondence to a real representation. For completeness, we give

the matrices corresponding to left multiplication with respect to our convention:

Fo = 0'0 10 10 1, F1 = 60 10 10 E,

r2 =-E0T0E0T, r3= ---E010e0cr,

r4= ---E0E0107, F5 = E0E0T0 a,

F6 = -c00-0607, r7= --f0E®crOcr.

Since we have an irreducible representation, we may identify the carrier space

W with the space of spinors. So for now we consider elements of 02 as octonionic

spinors. Later in section 2.4.5 we will add a subtle twist to this understanding.

(2.124)

2.4.2. The hermitian conjugate representation and spinor covari-
ants

Since octonionic conjugation is an antiautomorphism of 0, the octonionic

conjugate of the product of two matrices is not the product of the octonionic con-

jugates. Matrix transposition requires a commutative multiplication to be an anti-

automorphism. Thus only hermitian conjugation, which combines both operations,

remains as an antiautomorphism of M2(0). More precisely, for products of three

matrices we need to keep the grouping of the product the same, i.e., under hermi-

tian conjugation left multiplication by a matrix goes to right multiplication by its

hermitian conjugate and vice versa. So we can define 'ry8,0 : Cl(8, 0) --4 (M2(0)).t by

78,0(a) := (78,0(fl(a)))t (a E Cl(8, 0)). (2.125)
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This representation acts on the set Wt = (02)t of rows of two octonions by right

multiplication. It is also faithful and irreducible and therefore equivalent to -ys,o.

The isomorphism A intertwining -y8,0 and ;y8,0 is given by

A: W

(to.:

Its matrix form is just the identity,

Wt

wt wn
(2.126)

1 0
A= (2.127)

which is verified,

A 0 rys,o(a) = 'YE3,o(a) o A VaE C1(8, 0) AN,o(x) Vx E V,<=#.. = (78,o(s))1. 0A

considering rk = (rk)t (0 < k < 7).

(2.128)

From A we obtain a hermitian form on W:

A :WxW--4R (2.129)

(w, z) A(w, z) := (A(w))(z) = Re wtAz = Re (zeo", (r,

= Re (w'(;z0 tvIzi)

The designation "hermitian" is somewhat misleading, since the octonionic represen-

tation 78,0 is Majorana, i.e., essentially real, which is also the reason for taking the

real part above. So the spinor adjoint is given by

:= A(w) = wtA = wt (w E W). (2.130)

Apart from the scalar, we form tensors as spinor bilinears as in (2.103):

:= Rev-irk, ...rkrz. (2.131)
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Since the real part of an associator vanishes (2.26) and A is real, we may associate

the matrices sandwiched between the two spinors differently:

Re Taki . . . rkrz = Re (wtA)[rki ( (rkrz) -)1

= Re RwtA)rkil(rh ( (rkrz) - -))

= Re [wt(Ark, )1(rk2( (rkrz) )) (2.132)

= Re Rwtrt, )Aj(rk,( (rkrz) -))

= Re rk, w(rk2( (rkrz) ))
Since the real part of a commutator vanishes also, we may cyclicly permute, if a

trace is included

Re TiTki . . . rk, z = Re tr (ii7(rk,(...(rkrz) ...))) = Re tr ((rk, (... (rkrz) .. .)),TD)

= Re tr ((rk, (... (rkrz) ...)Tork, )

For the vector covariant, we have a particular expression

0 ikyk := Rer-rkz = Re (t4, wn .) (2.° )(
Z*k 0 zi

= Re (w,likzi + wIi*k`zo)

(2.133)

(2.134)= Re (ikziu4 + zotvIek) = Re (wo4i: + zow74)

= (wozi + zownk ,

where we used once for part of the expression that the real part does not change

under octonionic conjugation. So we can express the k-th component of y by the

k-th component of an octonionic product, which allows us to write i without the

use of the matrix representations of the basis elements:

i =

=

( 0 y
= FkReTvrkz

Y 0

(

0 wozI + zowT

(wozI + zown* 0

(2.135)
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2.4.3. Orthogonal transformations

From section 2.3.2 we know the action of the Clifford group on vectors (2.62)

and spinors (2.73). The condition (2.101) shows how to divide out R* to obtain the

orthogonal group. So elements of V satisfying

# (u) , u = 1 -4=- u , u = g(u, u) = lul2 = 1 (2.136)

generate the orthogonal transformations via

1 = (7 0 0.)(x) = iihi =
0 ux*u

u*xu* 0
(2.137)

uwi
w' = 0,,(w) = 31w = . (2.138)

u*wo

The Moufang (2.10) identities ensure that (2.137) is unambiguous and even holds

under the action of left multiplication, which can be seen in the example, (x , w)' =

x' , w':

I w'

=

( 0 ux*u

u*xu* 0

( u*(x(u*(uwi))))

u(x*(u(u*wo))))

u(x*wo)

uwi

U*Wo ( u x *U ) ( U*Wo )

( u*(x((u*u)wi))

u(x*((uulwo))

= lul2

= (w)'.

= w)

(2.139)

The third Moufang identity guarantees that the vector covariant (2.135) of two

spinors transform correctly:
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=

=

( 0 uy*u 0 u(wozi* + zown*u,
u*yu* 0 u*(w0.4 + zownu* 0

0 (12-(w04 + zowne)*

(u*(wozI + zowne 0

0 [(u-wo)(zTu*)+ (ezo)(w;u*)]*

((ewo)(4u*)+ (ezo)(wIe) 0

0 Rewo)(uzi)* + (u *zo)(uwi) *]*

(u*wo)(uzi)* + (u*zo)(utvi)*( 0

= FkRe wirkz'.

According to (2.72), simple orthogonal transformations are generated by

pairs (u, v) E V x V, where we take v = eo fixed and fur = 1:
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(2.140)

' =-- (78,0 0 0(.,0)(x) = iiI iii =

w' = 00,,,,)(w) = 311w =

0 UXU 0 uxu. (
ex*u* 0 (uxu)* 0

, (2.141)

(2.142)

Choosing the fixed vector to be eo allows significant simplification, since its repre-

sentation 1'0 is real. How to construct any orthogonal transformation from these

generators is thoroughly explained in [4]. These transformation properties imply

that the definition of the spinor covariants in section 2.4.2 is consistent. For exam-

ple,

Re 0 4 z ' = Re iilw 444 illz = Re wtlitrAiii z= RewtAXL 41 z . Re1-4 z .

(2.143)

2.4.4. Related representations using the opposite octonionic alge-
bra Oopp

As pointed out in section 2.4.2, transposition and octonionic conjugation are

not (anti-)automorphisms of octonionic matrix multiplication. However, we can find
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(anti-)isomorphisms to matrix algebras over the opposite octonionic algebra Oopp

We define the octonionic conjugate representation 7* of an octonionic representation

7 : 2/ 4 MI ( 0) by

7* : 2t --4 WO:pp) (2.144)

a 1-4 7*(a) := (7(a)):pp

Octonionic products are now to be evaluated in the opposite algebra as it is indicated

in the following examples. First we consider the action of 11,0(x) for x E V on an

element w* of the carrier space Wo*p

0 X

'Y;,0( x )wOpp =

* Wo
*

=

= (78,o(x)w)* _,_

opp

WI X*

wo*x

X WI ( (xwi )*

x*wo (x*wo)*

So in this representation the action on the carrier space is effectively right multipli-

cation by octonions.

We check that 78*,0 is indeed a representation. Let u, v E V, then

( ( :

x*\ ( Wo* \ \

0 ) WI ) )

(2.145)

11,0(u)11,0(v) =

=

0 u 0 v 0 u* 0 v4`

u* 0 V* 0
= ( (

U 0 V 0opp opp i opp
vu* 0

0 v*u

= 7;,o(u v v) =- (78,o(u v v))* = (0)*

==

'ay* 0

0 u*v )

(2.146)

In both cases the subscript "opp" indicates that the remaining products are to be

done in the opposite octonionic algebra. However the final result is to be interpreted

as an element of Wo*p (resp. M2 (04p ) ) .
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The map that intertwines -y8*,0 and 78,0 is

C : W W:pp

w C(w):= rowopp,
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(2.147)

Fork = (rk) *ro < k < 7). (2.148)

This map gives rise to an operation on W analogous to charge conjugation:

wc := C(w)* = row = 1 E W.
wo*

wc transforms correctly:

0 u 7.4
(wc)' = 4wc =

\ ( \
u* 0 ) k 4

uw(- 1 fwou *

U*WI W1U

U*Wo

uwl

= ([7;,0(U)rlaW] opp,

re([-y8,0(u)wiopp) .

0 u*) ( 0 1 \

U 0 ) 1 0 )

wo )1

wl ) opp

However, the opposite octonionic algebra may not be bypassed:

uwi U*Wo *

(wc)' (C(w'))* = [ro ( )1 . =
u-wo uwi

Oopp

(2.149)

(2.150)

(2.151)

Related to matrix transposition we obtain another representation? involving

2t -4 MtT(Oopp

a 1-4 7(a) := (7(08(a)))Opp W oTpp -4 W oTpp

wT 1-4 i'(a)(wT) = (wT(7(0(a)))1opp

(2.152)
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The verification of ;y(a b) = ,j'(a);.. (b) is another exercise in applying opposite

algebras:

Y(a b) = (7(0(a v b)))7. = (I3 (b) v 13(a))7

(7(3(0)7(0(a))7 = ((7(3(a))7 (7(13(b)))%pp

=y(a)7(b)

The map that intertwines ''y8,0 and 78,0 is

since

(2.153)

B :W WoTpp (2.154)

w B(w) := woTppro,

rork = (roTro < k < 7). (2.155)

2.4.5. Octonionic spinors as elements of minimal left ideals

In this section we take a different perspective on octonionic spinors regarding

them as elements of a minimal left ideal which is generated by a certain primitive

idempotent. The choice of an idempotent will turn out to be equivalent to the choice

of a basis of the carrier space of the representation, which may be understood as a

change of the multiplication rule of the octonions.

In a real or complex representation 7 : Endr(W, W) of dimension 1

an idempotent is given by an 1 x /-matrix Q satisfying the minimal polynomial

Q(Q 1) = 0. Therefore, Q can be diagonalized with eigenvalues 0 and 1. If the

representation is onto and the idempotent is primitive, then Q is of rank 1 and there

is a transformation such that Q takes the form



Q =

/1 0 ... 0\ /1 \ ( 1 0 .. 0)

0 0 . . . 0
=

0
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(2.156)

\0 0 ... 0/ \ 0 /

So for a surjective representation a primitive idempotent is represented by a matrix

of the form

=qpr, pT 1 (q, G w). (2.157)

The action of the Clifford algebra on the minimal left ideal J = 21. , Q generated by

Q, is determined by q alone. So the relevant choices of primitive idempotents are

given by the choices for q. The choice of a basis for J is still arbitrary at this point,

for the octonionic case, however, there is a connection between the choice of q and

a multiplication rule.

In terms of the octonionic representation 78,0 we have q = (q ") E 02. For

q to correspond to an even primitive idempotent Q, one of its components has to

vanish. We may also normalize q. So let q = (g) with Ip12 = 1. (A vanishing upper

component leads to similar results.) Then the following choice of octonionic spinor

components so and si for a spinor .s

so Si p sop
s := (yi + 00) q = = (2.158)

s; so* 0 silo

is up to octonionic conjugation the only one that involves only one left multiplication

by an octonion. Here we will actually consider both si and its conjugate si* as new

spinor component. But in section 2.6, si will turn out to be the more convenient

choice. Obviously so and si parametrize J. How does the Clifford algebra act in

terms of the new spinor components? For x E V



s' = s= =
x*(soP) 4'P

so = x(slp)p* , s'i = p((p* 4)x),

which leads to two other versions of the "X-product" (2.34) with X = p:
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(2.159)

so = [x(sIgp* = [(xPP*)(4P)1P* = [((xP)P*)(sTP)1p* = (xP)[p*(sIP)P*],

= (xp)(p*.s;) = x c) 4,

s'i = P[(p*4)x] = PRP*4)(PP*x)1 = PRP*4)(P(P*x))1 = [P(p i;)p](P*x),

= (4p)(p*x) = s; (,:), x,

s'i = SI/ = (So* 0 X)* = X* 0 So,
P P

( s'o

s' *
1

= 0
P

(2.160)

Therefore, switching to the new spinor components so and .51* is equivalent to replac-

ing the original octonionic product with the "p-product". We confirm this result for

the scalar formed out of two spinors (compare (2.129)):

Re .-s-s' = Re
( p*.e6 p* si)

*
= Re [(p*4)(s'op) + (p* si)(s'i* p)]

si p

= Re [(s'op)(p* s'(;)--1- (4* p)(p*si)] = Re (.4 (i) sr(; + sli* (p) S1)

= Re (s'oso* + s'l*si) = Re (s,*:, o so + si o s'*)
P p

as well as the vector (compare (2.135))

(Fic Re .3Fks' =
RsoP)(P*si) + (4P)(P*si)]*

0 soos'i+
P

0

[So 0 Sii + So 0 Sl]*
P P

0

(s0P)(P*4) + (s'OP)(P*si))

0
1So 0

P

(2.161)

(2.162)
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Of course, orthogonal transformations, as described in section 2.4.3, induce a

change of basis on the spinor space also. The corresponding change of the octonionic

multiplication rule is more complex since the real part is no longer fixed (compare

section 2.2.3).

2.5. OTHER OCTONIONIC REPRESENTATIONS

In this section, we point out the constructions of octonionic representations

related to 78,0. We follow the program outlined in section 2.3.3. First we shrink the

representation of C1(8, 0) to obtain one of C10(8, 0) a'- C/(0, 7) and further of C1(0, 6).

Then we look at the extension to a representation of C1(9, 1), which is of particular

importance, since it applies to superstring and superparticle models.

2.5.1. C10(8,0) and C1(0,7)

Restricting the representation 78,0 to C10(8, 0) '=-' C10(0, 8) produces a faithful

representation with the generators

ik 0 ik 0
rock = 78,0(eo v ek) = = (1 < k < 7). (2.163)

0 ek 0 ik
So C10(8, 0) is represented by diagonal matrices, i.e., this representation decomposes

into two irreducible representations given by the two elements on the diagonal. By

the isomorphism C10(8, 0) =-2 C1(0, 7) (2.93), these two are also irreducible represen-

tations -yct,7 : C1(0, 7) ---+ Ml (0) = 0,

± I'Yo,7kek) := ±ik (1 < k < 7) (2.164)

i \
7o,± 7k1) := ±x = ±Imx (x E V = R7). (2.165)

So we identify V = R7 with the purely imaginary subspace of the octonions Im 0.

A faithful representation of C/(0, 7) is found by letting 70,7(ek) = rork in (2.163):



70,7 := 7C1,7 e 70-,7 7o,7(a) =
(-47(a) 0

0 -6,7(a))

A hermitian form A' : 0± 0 t on the carrier space of an irreducible representa-

tion is given by
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(2.166)

A'(w) := w* (2.167)

with the property

A'-y7(ek) = 70 7 (ek)"1/ = (70 7(ek))* (1 < k < 7). (2.168)

Thus the form A' intertwines -47 and 70},7t o a o #:

A' 0 -47(a) = (-47((a o #)(a)))t o A' (a E C/(0, 7)). (2.169)

There is no sesquilinear form satisfying (2.107) on a carrier space of the irreducible

representation. However, one can intertwine -4,7 and 7o7 to obtain such a form on

the carrier space 20 = 0+ ea, 0- of the faithful representation that swaps the two

copies 0+ and 0- of 0 since

'47(a) = (-47(3(a)))* (a E C1(0, 7)). (2.170)

A, defined by

A(w+ e w-) := w-* e w4-* =z-75 b A:=

satisfies

(2.171)

A o 70,7(a) = 7O,7(0(a)) o A (a E C/(0, 7))
(2.172)

< > A70,7(ek) = 7o1,7(ek)A (1 < k 5. 7).

Simple orthogonal transformations are generated by unit vectors u E Imp, 11112

u2 = 1 via



56

x' = (.47 o 0,4)(x) = (±u)x(±u)-1 = uxu* = uxu, (2.173)

w±' = Ou(w) = ±uw. (2.174)

Since the real part of u vanishes, u-1 = u. Therefore, the transformations have

the same form as (2.137) and (2.138) up to signs and the Moufang identities ensure

the compatibility of the spinor and vector transformations as before. As is seen

from (2.66), improper rotations, for example, inversion of R7, x -4 x = x`, is

not described by the action of the Clifford group for odd n. In fact, inversion is

equivalent to octonionic conjugation or switching from -47 to -a7. In order to

implement inversion we need to use the faithful representation:

0 0 0 1 . -4,= qf =
1 0 0 x 1 0

0 1 \ ( w+
ul = (w+1)= Ew

w 1 0 ) w- )
The transformation preserves scalars:

ti4z = wt cr(-6)(E*Ez = (wtealleM _4 ,z /(Ez) = w .

2.5.2. C10(0,7) and C/(0,6)

(2.175)

(2.176)

Shrinking a representation of C/(0, 7) further leads to the smallest Clifford

algebra that has the octonions as a natural carrier space for a representation. Both

irreducible representations 707 and yo-7 agree on the even Clifford algebra C10(0, 7) '-L2

C10(7, 0). Their restriction is an irreducible representation given by the generators

,±
10,7( ek v e7) = ik27 (1 < k < 6), (2.177)

which act by successive left multiplication on the carrier space W = 0. Again

by the isomorphism C10(0, 7) '..' C1(0, 6) (2.93), we obtain a faithful and irreducible

representation of C/(0, 6), -y0,6 : C1(0, 6) + M1(0) = 0,



70,6(ek) iki7

<=>. 70 6(X):= Si7
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(1 < k < 6), (2.178)

(x E V = R6). (2.179)

V = R6 is identified with the imaginary subspace of 0 with vanishing 7-component,

{x E ImO : x7 = 0). The volume form i is represented by

70,60) = 70,6(ei v e2 v v e6) = ili7i2i7 i6i7 = ili2 i6

according to (2.119). A hermitian form A' : O > of is given by

Ai(w) := w*. (2.181)

Orthogonal transformations are generated by unit vectors u E R6,

= (2.180)

via

= (7o,6 o Ou)(x) = (u(i7xi7)u)

w' = Iku(w) = u(i7w)

1U12 = U2 = 1

(2.182)

(2.183)

Since these transformations have the same structure as the simple orthogonal trans-

formations for V = 1R8, the Moufang identities ensure their compatibility and their

validity under the interpretation of left multiplication. Since 70,6 is faithful and

irreducible and C/(0, 6) is a 26-dimensional algebra, we conclude from this section

that left multiplication by octonions generates a 64-dimensional algebra isomorphic

to M8(

2.5.3. Cd(9, 1)

In this section we will give a little more detail because of the frequent use of

C1(9, 1) in supersymmetric models. Starting from C/(8, 0), we do a Cartan extension

(2.84) to obtain a representation of C/(9, 1), 79,1 : C1(9,1) -4 M4(0), given by the

generators



o rk)
79,1(ek) :-= a- ® 78,0(ek) =

( rk o

78,1(e8):---- o 0 18,0(11) =
T 0

0
79,1(C-1) := E 0 78,0(1) = 1 0

or equivalently by

(
0 X

79,1(X) := = x4'71, =
X 0

where we defined

X := x"ri, =

0

= ( x-
x* X+

X+ x

X*

x* x+
p

X

( )
x- x

5( := xtirX ,
f (0<t&<8)

A 1-r_i, (A=-1) ,

0 I'm

"YA := 79,1(eA) = ( (-1 < II < 8).r o

(0 < k < 7),

1

0

r8 := T, r_li := 1, x± := x_i. ± x8,
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(2.184)

(2.185)

(2.186)

(Labeling the basis elements of V = Rl° by indices ranging from 1 to 8, allows us

to keep the notation we developed for 78,o.) The representation 79,1 is Weyl, since

the volume element 77 = e_1, eo ,., , es is represented by

1

79,10) = T 0 1 = = 7-170 -y8 =: 711. (2.187)0 1
The Weyl projections (2.86) take the form

P
0 0

0
P_ .--

0 1
(2.188)

We denote an element w E W = O of the carrier space by its Weyl projections
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w± := P±w E 02, (2.189)

where we discard the two vanishing components of w±. The identity

XX 0 1
= xt`x 1 <=#), = AX

'kX
(2.190)

0 1

holds under left multiplication because of the alternative property (2.19), since only

one full octonion x and its conjugate are contained in X and X. Noting that

= X (tr (X)) 1, (2.191)

it follows that

XX. = X2 (tr (X)) X = XX = det X 1 = ext, 1, (2.192)

since the characteristic polynomial for a hermitian 2 x 2-matrix A is pA(A) = A2

tr (A)A det A. Polarizing (2.192), we get

2s,y4 1 = YX = jtY irX

< > 2gµ 1= ri; + rift, = fArt, + fixt, .

To extract components, we have the familiar formulas involving traces:

(2.193)

x = Re tr ) = Re tr (XI% icr,) = Re tr N = Re tr (itr).

Considering

(f6 --1)
=

(IL == 1)

a hermitian form A is given by

( wt+
A(w) := wtA = wtyn-y_i =

wt )
( wt

( 1 0

(2.194)

(2.195)

w+) E. (2.196)
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So the scalar covariant formed out of w, z E W is
z+

A(w,z) = Rer-vz = Re ( wt w+) = Re (wt_z+ wt+z_), (2.197)
(z_

which only involves terms combining spinors of opposite chirality. For the vector

covariant y, we obtain

y := Re tTryz

wt_ w+) 0 rµ
= Re

0 z_

= Re (wt+f,z+ wt_Tmz_) = Re tr (z+wt+l'i, z_wt_Ftz)

= z [Re tr (z+wt+fi., z_wt_rih) + Re tr ((z+w+t, z_wt_ro)11

= ZRetr ([z+wt+ w+ztat,

= ZRe tr ([z+wt+ + w+ztati + [z_wt_ + w_zt_]r .

So the vector covariant is formed of combinations of spinors of the same chirality.

Since the hermitian matrix Y is completely determined by the components according

to (2.194) and the terms in square brackets are hermitian, we can give a formula

analogous to (2.135):

y' =
0 Y . 7kRe w-ykz
Y 0

(2.198)

(= ,.---,......-....

[z+wl+ + w+zt+] + Ez_wt + w_zt I 0

(2.199)

0 [z+wt+ w+4] [z_w_t w_

Proper Lorentz transformations are generated by pairs of timelike (resp. spacelike)

unit vectors u, v E V, i.e., umuti = T1 = vt,vm. We choose v = e_i fixed

(UXIJ

0 UXU
= 3i7-47-13i = ,

(
Uw_ )

i = '47-i -11-jw+w to =

(2.200)
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The correct transformation behavior of spinors and vectors is ensured by the Mo-

ufang identities as in the 8-dimensional case, since yl contains additional real pa-

rameters but only one full octonion. This form of proper Lorentz transformations

makes the isomorphism SL(2, 0) SO(9, 1) as Lie groups precise.

Since for C := -y_i-yo-y8 = E E

C-yi, = 7µC (-1 < a < 8), (2.201)

a "charge conjugation" operation is given by

E w*_

WC := C(w)* E E W* = (2.202)
Ewe

which must involve the opposite octonionic algebra as it was pointed in (2.150) and

(2.151). This transition to the opposite algebra for spinors with opposite chirality

may be useful in theories with N > 1 supersymmetry.

Of course, we may iterate the process of shrinking and extending of a rep-

resentation with 79,1 as a starting point. We can shrink it to obtain representa-

tions of C10(9,1) -L14: C1(9, 0) C1(1, 8) and from there to C10(9, 0) C1(0, 8) and

C10(1, 8) = C1(1, 7). Also an extension to a representation of C1(10, 2) is possible.

2.6. AN OCTONIONIC DESCRIPTION OF THE CHEVALLEY ALGE-
BRA AND TRIALITY

The triality automorphisms of the Chevalley algebra are well known and

have been discussed in detail before [29,8,9], even in an octonionic formulation [30].

However, in our opinion, the following treatment based on the preparatory work of

section 2.4 adds another unique and very transparent perspective with regard to

this topic.

In the case of 8 euclidean dimensions we are in a special situation; the spaces

of vectors, V, even spinors, So, and odd spinors, S1, have the same dimension,
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namely 8. This allows the construction of the triality maps that interchange the

transformation behavior of these three spaces. We define the Chevalley algebra

A := V ® so ® S1 to be the direct sum of these three spaces. This definition

automatically provides a vector space structure for A. Furthermore, A inherits an

SO(8)-invariant bilinear form B = 2g e2A from the metric g on the vector space

and the hermitian form A on S = So 13. S1. (For notational convenience later on, we

put in a factor of 2 in the definition of B.) For a = ay e ao @al, b = by e bo ®b1 E A,

we obtain

a° b°B(a, b) = 2 g(a, by) + 2 A( ( ) , ( ) ) = 2 Re (avb: + awc;b0 + al b;), (2.203)
a1 VI'

where we used the parametrization of the spinor components introduced in sec-

tion 2.4.5. (2.203) confirms that A decomposes and is a real symmetric bilinear

form on the 16 real spinor components. The SO(8)-invariance of B is clear using

the results of section 2.4.3. Furthermore, we observed in (2.143) that the expression

r(a) := Re TN:a° = Re
( °ay a0) (a 0°)

= Re aiavao (2.204)

is SO(8)-invariant. (Note that, we also redefined our basis of V by octonionic con-

jugation for symmetry reasons, which will become relevant below.) By polarization,

we define a SO(8)-invariant symmetric trilinear form on A, which we denote by T:

T ( a , b, c) := Re (ai buco + ale, bo + bi avec) + 191 coo + ci at, bo + ci &vac)) (a, b, c E A).

(2.205)

The Chevalley product "oA" is then implicitly defined to satisfy the following con-

dition connecting B and T:

B(a oA b, c) ----- T(a, b, c) V a, b, c E A. (2.206)

The Chevalley product is obviously symmetric and SO(8) invariant.
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In this setting the triality maps are just automorphisms of the Chevalley

algebra, which interchange V, So, and SI. But before we describe the triality maps,

we will take advantage of the octonionic formalism and rewrite the bilinear and

trilinear forms, B and T, and the Chevalley product by representing elements of

the Chevalley algebra by octonionic hermitian 3 x 3-matrices with vanishing diagonal

elements,

/ 0 a: ao

a = a, 0 =
a,

E A,
0

t ao al 0

where a, = (aa!) = ao ® al E S. Then the bilinear form B is given by

(2.207)

B(a, b) = 2tr (ab ba) = tr (a o b)

tr a aT by ; + by ;2 ,

0 b: bo 0 b: bo 0 a: ao

= 0 0 b 0 b a, 0 & I

0 a:

= -Itr

alb,

i bv+ ac

alb; ayb: + albi

a :b;b'` ;;

b1 0bo 0 ao al 0ao* al 0 b

a'(;b:

bya: + bIal

boar all4b:av + boa;

+ (-1-tr blail

blav boao qao + bl a;

= i.[(a:by b:ay avb: + bon + (a014 + boa; + 4b0 + qao)

(a7bi + biai + albi + bidni

= 2 Re (avb: 4b0 + aibn,

(2.208)

where "o" denotes the symmetrized matrix product



1
a o b :=

2
(ab ba).
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(2.209)

In fact, the symmetrized product is the Jordan product and the matrices that we

are dealing with are a subset of the exceptional Jordan algebra of 3 x 3 octonionic

hermitian matrices [10].

For the trilinear form T we find

T(a, b,c) = tr ((a o b) c)

= ,i[(aobicv coobi 144' ci,* ct,*144) + (boccie, + eyboai

c171;c: c:c44`) (ayboci ciaybo qa:cl` elb;a:)
(2.210)

(bvaoci ci boo + cti;b:c1 c;c4b:) (ai bvco coal by

4b:cn (biavco cobiav bldcl -I- a:14)]

= Re (bicvao ai cub° ciavb0 ci boo + aibvco biavco).

It follows from (2.206), (2.208), and (2.210) that the Chevalley product "oA" is given

by the off-diagonal elements of the symmetrized matrix product "o",

tr ((a oA b) o c) = B(a oA b, c) = T(a, b, c) = tr ((a o b) o c) (2.211)

(a oA b) = (a o b)A, (2.212)

where the subscript "A" on a matrix denotes the matrix with erased diagonal ele-

ments, i.e.,

(
0 aobi + boar a:14 + b:aT

a(a o b)A := Tb'c'`, + bI4:,` 0 avbo + bvao (2.213)

alba, + Nat, c4b: + boa: 0

(Note that only the off diagonal elements of a o b contribute to the last term of

(2.212)). Traditionally the Chevalley product is written in terms of Clifford prod-

ucts, which we combine into the 3 x 3-matrix



a (DA b =
as + T;4:

(rk (--r kb. 4:19, + vas

0
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(2.214)

What we have done is to utilize the Jordan product and project onto the Chevalley

algebra. Since both B and T are expressed entirely in terms of the Jordan product,

automorphisms of the Jordan product, that map the Chevalley algebra onto itself,

will also be automorphisms of the Chevalley algebra. We have already encountered

one such automorphism, namely the orthogonal transformation corresponding to a

generator A, E V with IP.I2 = 1, which is written in matrix form

TN (a) :=

0

(p,,

0

p:

0

0

0

0

1 )

0 a:

at, 0

( ao* al

ao

aI

0

0

0

p:

0

0

0

0

1

( 74:4:7",;

U;i:

iv as

0

(2.215)

This first triality map combines the vector action and spinor action of the Clif-

ford group (see section 2.3.2). The action of the generator A, is a reflection at a

hyperplane orthogonal to p, combined with an inversion of the whole space. This

transformation is an improper rotation and interchanges even and odd spinors:

(a,) = pva:p, E V ,

Tpv (ao) = (pvao)* E Si , (2.216)

TPv(ai) = (alp)* E So.

Using the Moufang identities, it is easy to check that rp is indeed an automorphism

of A of order 2, i.e., 7-72,v = 1. Composing an even number of maps rp. with different

parameters pv, we generate the simple orthogonal group SO(8) as is seen in (2.141)

and (2.142). From the form of (2.215), it is obvious that there are two more families

of automorphisms of A of order 2, parametrized by an even spinor variable Po and

an odd spinor variable pi with 'Par = 1 = 11)112:



and

Tri, (a) :=

Tp (a) :=

0

0

pi*;

1

0

0

0

1

0

0

0

p1

po

0

0

0

24

0

0

a
a;

0

at,

a'0'

a:

0

al

a:

0

al

ao

al'

0

ao

a1

0

0

0

p',:;

1

0

0

0

1

0

0

0

p'

po

0

0

0

pi

0
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(2.217)

(2.218)

For these two families of maps, the matrix formalism shows the clear parallel struc-

ture to the maps Tpv. Traditionally expressions in terms of both Clifford products

and the spinor bilinear form are used for the maps rp, and rp which obscures

this symmetry, because in rp. only Clifford products are used. These two families

preserve one of the spinor spaces and interchange the other one with V:

Tpo(ap) = (a,,Po)* E S1 ,

Tpo(a0) == Poa;Plo E So

rpo(ai) = (Poal)* E V ,

and

(2.219)

TPi(av) = (Play)* E So

Tpl(a0) = (ao/91)* E V, (2.220)

Tpi(ai) = plaip1 E S1,

By combining two triality maps with the same octonionic parameter pi, = p = Po

from different families, we obtain a automorphisms Ep of order 3:

'-' = T 0 TP Pv-P PO-P

0 1 0 0 a: ao 0 0 p*
(2.221)

EP 0 0 p* at, 0 aT 1 0 0 (a E A),(a) =

p 0 0 as al 0 0 p 0



hence

=play) =P*av E So?

=p(ao) = paop E SI)

.zp(ai) = p*ai E V.
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(2.222)

As is seen from their matrix forms, rpt,=p and 1"), generate E3i the permutation group

on three letters. (In particular for p = 1, this is easy to verify.) We observed before

that the maps 7-,, generate 0(8), so that the triality maps, we have found so far,

have a group structure isomorphic to E3 x SO(8). It is known (see [8]) that this is the

full automorphism group of the Chevalley algebra, which is also the automorphism

group of SO(8). This concludes our demonstration of triality.

2.7. FINITE VS. INFINITESIMAL GENERATORS

In this article we characterize orthogonal groups in terms of a set of finite

generators. This approach is not as widely used as the description in terms of

infinitesimal generators, i.e., the Lie algebra of the group. In this section we compare

the two approaches.

If we want to compare two Lie groups given by infinitesimal generators we

know how to proceed [31]. We determine their Lie algebra by working out the

commutators of the generators. We then determine their structure constants and

identify the Lie algebra. For semi-simple Lie algebras the Cartan-Weyl normaliza-

tion provides a unique identification. We may also use a Lie algebra homomorphism

and determine its image and kernel to relate the two groups in question. Whether

the homomorphism is surjective and injective can often be determined by counting

the dimension of the Lie algebras involved. Having identified the Lie algebra we

have full knowledge of the local structure of the Lie group. From this information
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we can construct the simply connected universal covering group, which has this lo-

cal structure. However, the Lie group we are trying to characterize may be neither

connected nor simply connected. So in order to compare two groups we need to have

some global information about them in addition to the infinitesimal generators.

In section 2.3.2 we compared two groups given by finite generators, namely

the orthogonal group generated by reflections on hyperplanes and the Clifford group

generated by non-null vectors of the Clifford algebra. The relationship was estab-

lished considering a group homomorphism. The homomorphism is surjective if the

generators lie in the image. This is the analogue to counting the dimension of the

Lie algebras. Determining the kernel, which has to be a normal subgroup, completes

the comparison. The advantage of finite generators is the global information that

they carry. Having found an isomorphism based on the finite generators, we know

that the groups have the same global structure.

Even though the two descriptions have different features, they are closely

related. The exponential map provides a means to parametrize a neighborhood of

the identity element of the group. This coordinate chart can be translated by a finite

element in this neighborhood, hence we can construct an atlas of the component of

the group that is connected to the identity. Actually, we need information about the

global structure to patch the charts together correctly. For an additional component

of the group that is not connected to the identity, we may use the same atlas, since

the components are diffeomorphic.

The finite generators that determine the groups considered in this article

are elements of a topological manifold of dimension less than the dimension of the

group. For example, the octonions that generate SO(8) (2.141) are elements of

the octonionic unit sphere, S7. Translating a disk centered at a point p E S7

by p-1 E S7, we obtain a submanifold of the group containing the identity. (A
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generating set of a group is always assumed to contain inverses of every element.)

This submanifold is of lower dimension than the Lie group, so its tangent space at

the identity is only a linear subspace of the Lie algebra. In most of our examples it

is sufficient to consider the translation of a sufficient number of disks contained in

the generating set to obtain linear subspaces that span the Lie algebra. Otherwise

the process continues by taking products of elements of two disks around p1 and p2

in the generating set and translating these products by k(PiP2)-1 to the identity. An

example of this latter construction is the S6 generating SO(8) described in [4]. In

this way infinitesimal generators can be found starting from finite ones.

There is also a formal construction of the entire group; namely, the group is

given by the set of equivalence classes of finite sequences of generators. The group

product of two elements [gi], [g2] is just the class of the juxtaposition [gig2] of two

representatives. For the octonionic description we need to do this decomposition

into generators to find spinor and vector transformations that are consistent. For

example, if a vector given by x E 0 transforms by x 1 uxu*, which is an SO(8)

transformation, we need to re-express uxu* as vi(v2(... (vkxvk)...)v2)vi with Ivi 12

11)212 = = IVkl2 in order to determine the corresponding spinor transformation

w 1* vi(v2(... (vkw)...)). In general, octonionic transformations, because of their

non-associativity, involve this nesting of multiplications. Therefore the octonionic

description of Lie groups in terms of generators is the natural one. Octonionic

descriptions of Lie algebras, which are also possible, have the disadvantage that the

exponential map no longer works because of the non-associativity. So this avenue

does not provide a construction of finite group elements.
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2.8. CONCLUSION

We have demonstrated that the abstract octonionic algebra is a suitable

structure to represent Clifford algebras in certain dimensions. We obtained most

of our results from the basic property of composition algebras, which is the norm

compatibility of multiplication, and its consequence alternativity. The alternative

property, in particular in the form of the Moufang identities, was found to be respon-

sible for ensuring the correct transformation behavior of octonionic spinors and for

ensuring the consistency of the representation in terms of left multiplication by octo-

nionic matrices. The choice of a multiplication rule for the octonions, in particular,

the modified "X-product", was found to be related to coordinate transformations

or a change of basis of the spinor space. The opposite octonionic algebra was shown

to be connected to an analogue of the charge conjugate representation. The Clifford

group and its action on vectors and spinors led to octonionic representations of or-

thogonal groups in corresponding dimensions. The natural octonionic description of

these groups is in terms of generating sets of the Lie group rather than in terms of

generators of the Lie algebra. This is due to the nested structure which is necessary

to accommodate the non-associativity of the octonions.

The usefulness of this tool of octonionic representations was evident in the

presentation of the triality automorphisms of the Chevalley algebra. This presenta-

tion unequivocally showed that the spaces of vectors and even and odd spinors are

interchangeable in this case. We expect that a similar, fully octonionic treatment of

supersymmetrical theories will make their symmetries more transparent. In fact, we

have successfully applied the methods of this article to the CBS-superparticle [32].

We hope to be able to find a parallel treatment of the Green-Schwarz superstring.
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We give an explicit algebraic description of finite Lorentz

transformations of vectors in 10-dimensional Minkowski space by

means of a parameterization in terms of the octonions. The possi-

Me utility of these results for superstring theory is mentioned. Along

the way we describe automorphisms of the two highest dimensional

normed division algebras, namely the quaternions and the octonions,

in terms of conjugation maps. We use similar techniques to define
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SO(3) and SO(7) via conjugation, SO(4) via symmetric multiplication,

and SO(8) via both symmetric multiplication and one-sided multipli-

cation. The non-commutativity and non-associativity of these division

algebras plays a crucial role in our constructions.
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3.1. INTRODUCTION

Recent research by several groups [1] on the (9,1) dimensional) superstring

has shown that a parameterization in terms of octonions is natural and may help

to illuminate the symmetries of the theory. In particular, an isomorphism between

SO(9,1) and SL(2, 0) can be used to write the (9,1) vector made up of the bosonic

coordinates of the superstring as a 2 x 2 dimensional hermitian matrix with octo-

nionic entries in the same way that the standard isomorphism between SO(3,1) and

SL(2, C) is used to write a (3,1) vector as a 2 x 2 dimensional hermitian matrix

with complex entries. But what exactly is meant by SL(2, 0)? The infinitesimal

version of SL(2, 0) has been known for some time [2]. However, since the octonions

are not associative, it is not possible to "integrate" the infinitesimal transformations

to obtain a finite transformation in the usual way. In this paper, we show how to

get around this problem and give an explicit algebraic description of finite trans-

formations in SL(2, 0). Along the way, we also develop explicit octonionic char-

acterizations of the finite transformations of a number of other interesting groups,

especially G2, SO(7), and SO(8).

In Section 2 we present some basic information about division algebras and

introduce our notation. This section may be safely omitted by the reader who is

already familiar with division algebras. In Section 3 we give an explicit algebraic

description of finite elements of SO(3) and SO(7). (80(3) Aut(IH[) is the group

of continuous proper automorphisms of the quaternions.) We also find a simple

1For notational convenience we use the symbol (m, /) to denote the total dimension of

Minkowski space, where m is the number of spatial dimensions and 1 is the number of

timelike dimensions.
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restriction of SO(7) which gives a construction of the continuous proper automor-

phisms of the octonions G2 Aut(0). Then in Section 4 we find a related algebraic

description of SO(4) and two descriptions of SO(8). We use these results in Section

5 to construct finite Lorentz transformations of vectors in (5, 1) and (9, 1) dimen-

sions. Section 6 summarizes our conclusions and discusses how our work relates to

the work of others.

3.2. DIVISION ALGEBRA BASICS

In this section we introduce the basic definitions and properties of the

normed division algebras. We take an intuitive approach in order to make a first

encounter accessible. For a more rigorous mathematical treatment see, for example,

[3].

According to a theorem by Hurwitz [4], there are only four algebras over the

reals, called normed division algebras, with the property that their norm is compat-

ible with multiplication. These are the reals R, the complexes C, the quaternions H,

and the octonions 0; which we denote by 1Kn, where n = 1, 2, 4, 8 is their respective

dimension as vector spaces over the reals.

First we need to define these algebras. An element p of lc is written2 p =

p et for pt E R, where i = 1, , n. The ei's can be identified with an orthonormal

basis in Rn, but they also carry the information which determines the algebraic

structure of Kn. Addition on Kr, is just addition of vectors in fill":

(piei) (qiei) (pi qi)ei (3.1)

2Throughout this paper summation over repeated indices is implied unless otherwise

noted.
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and is therefore both commutative and associative. Multiplication is described by

the tensor A. (A must be defined so as to contain the structural information neces-

sary to yield norm compatibility. We discuss the detailed properties of A below.)

pq = (Tr' ei)(qkek) = (A' ikp qk)ei (3.2)

where Ai3k E R for i,j,k = 1, , n. We see that multiplication is bilinear and

distributive, i.e. determined by the products of the basis vectors, but it is not nec-

essarily commutative nor even associative.

We write the multiplicative identity in 11, as el = 1 and call it the real unit.3

Due to the linearity of (3.2), Ref is an embedding of R in lc and multiplication with

an element of R Re1 is commutative. The other basis vectors satisfy eiei = =

1 -= el for i = 2, ... , n and we call them imaginary basis units. The imaginary

basis units anticommute with each other, i.e. eiej = ejei for i # j and the product

of two imaginary basis units yields another, i.e. eiej = ±ek for some k.

In the familiar way, we have {el = 1} for R and lei = 1, e2 = i} for C. For Ell

we have { el = 1, e2, e3, e4 = e2e3}. Because there is more than one imaginary basis

unit, multiplication on El is not commutative, but it is still associative. The rest of

the multiplication table follows from associativity. We can visualize multiplication

in El by an oriented circle4; see Fig. 3.1. The product of two imaginary basis

units, represented by nodes on the circle, is the imaginary basis unit represented

by the third node on the line connecting them if the product is taken in the order

31n most references the identity is denoted by eo or io, and indices run from 0 through

n 1. For later notational convenience our indices run from 1 through n.

4In the figures and occasionally in the text, we will drop the e from the notation for a

basis unit and refer to it just by its number, i.e. e2 = 2 and ei E i.
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3
FIG. 3.1. A schematic representation of our choice for the quaternionic multiplication

table.

given by the orientation of the circle, otherwise there is a minus sign in the result.

Multiplication of the imaginary basis units in El is reminiscent of the vector product

in R3 : i x i=1: = -ix r. Because of this, e2, e3, e4 are often denoted i, j, k.

For 0 the multiplication table is most transparent when written as a triangle;

see Fig. 3.2.

The product of two imaginary basis units is determined as before by following

the oriented line connecting the corresponding nodes, where each line on the triangle

is to be interpreted as a circle by connecting the ends. Moving opposite to the

orientation of the line again contributes a minus sign, e.g. e3e4 = e2 or e8e6 = e3.

In general, multiplication in 0 is not associative, but el and any triple of imaginary

basis units lying on a single line span a 4-dimensional vector space isomorphic to

H. Therefore products of octonions from within such a subspace are associative.

Products of triples of imaginary basis units not lying on a single line are precisely

anti-associative so switching parentheses results in a change of sign. For example,

e2(e3e4) = e2(e2) = 1 = (e4)e4 =

(e4)es = (e2e3)es.

(e2e3)e4, but e2(e3es) = e2(e7) = es =



4 6 7
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FIG. 3.2. A schematic representation of our choice for the octonionic multiplication
table.
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To describe the results of switching parentheses, it is useful to define the

associator [p, q, r] := p(qr) (pq)r of three octonions p, q, r. The associator is totally

antisymmetric in its arguments. From the antisymmetry of the associator we see

that the octonions have a weak form of associativity, called alternativity, i.e. if the

imaginary parts of any two of p, q, r point in the same direction in 11V, the associator

is zero. In particular, [p, q, p] = 0. As a consequence of alternativity, some products

involving four factors have special associativity properties given by the Moufang [5]

identities:

q (p (qx)) = (qpq) x

((xq) p) q = x (qpq)

q (xy) q = (qx) (yq)

Vp, q, x, y E K (3.3)

As in the familiar case of the complex numbers, complex conjugation is

accomplished by changing the sign of the components of the imaginary basis units,

i.e. the complex conjugate of p := p ei is given by

p* = Bar(p) := plea E (3.4)
i=2

We define the real and imaginary parts5 of p via

Rep :=
1

(p p*) and Imp :=
1

(p p*) (3.5)

The complex conjugate of a product is the product of the complex conjugates in the

opposite order:

(pq)* Vp, q E Kn (3.6)

5Note that Imp as we define it is not real. For H and 0 which have more than one

imaginary direction, this definition is more convenient than the usual one.
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(p, Ep,q,

i =1

which can be written in terms of complex conjugation via
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(3.7)

1 1
(p, q) = (p q* + q p*) = (q" p + p* q) = Re(p q*) (3.8)

In this language, an imaginary unit is any vector which is orthogonal to the real

unit and has norm 1. Two imaginary units which anticommute are orthogonal. This

geometric picture relating orthogonality to anticommutativity is often helpful, but

it lacks the notion of associativity.

The inner product, (3.7) and (3.8), induces a norm on lc given by

IP I = IP i I = t (pi )2 =
i=i

It can be shown that the norm is compatible with multiplication in lc:

(3.9)

IpgI = IpIIgI (3.10)

In the case of the octonions, (3.10) is known as the eight squares theorem, because

a product of two sums, each of which consists of eight squares, is written as a

sum of eight squares. Norm compatibility (3.10) and the relation of the norm to

complex conjugation (3.9) are essential for a normed division algebra, since they

allow division. For p # 0, the inverse of p is given by

case:

-1 P*
P =

IP12
(3.11)

An element p E Kr, can be written in exponential form just as in the complex

p = N exp(0 = N (cos 0 + sin 0 (3.12)
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where N = IPI E R, 0 E [0, 2r) is given implicitly by Rep = N cos 0, and 1' is an

imaginary unit' given implicitly by Imp = N sin 0 1'. For the special case N = 1 we

will sometimes denote p by the ordered pair

p = (f , 0) (3.13)

What are the mth roots of p = N exp (0 E Kn? If p is not a real number,

then in the plane determined by el and r the calculation reduces to the complex

case, i.e. there are precisely m mth roots given by

(0
+27r1

pm = Nm exp r (3.14)m

where m > 2 is a positive integer, 1 < m is a non-negative integer, and N m is the

positive, real mth root of the positive, real number N. However for K4 and Kg, if

p E is a real number the situation is different. If p is real, it does not determine a

unique direction in the pure imaginary space of K. Therefore (3.14) is no longer

2well-defined (unless, of course, the root is real). Indeed, if p±i = exp(± e±;_ id e2)

for fixed 1, are a complex conjugate pair of roots of p lying in C, then A I T-n'l exp( r ")
Tn

is also a root for any r. We see that the roots of p, which form complex conjugate

pairs in C, in Kn form an Sr' subspace of R. Throughout this paper, whenever

we refer to the root of an element of Kn , we will mean any of these roots, so long

as all of the roots of that element in a given equation are taken to be the same.

In the discussion so far we assumed that the basis el, , e,1 was given.

But what happens if we change basis in Kn? Any linear transformation would

preserve the vector space structure of K but the structure tensor A would transform

according to the tensor transformation rules. In order to preserve the multiplicative

6We will use hats (e.g. 1.) to denote purely imaginary units.
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structure, i.e. to get the same multiplication rules and the same formulas for complex

conjugation and norm, we would need for the transformation to be an automorphism

of K . Any such transformation yields a basis of the following form: (a) el is the

multiplicative identity in K,, and must be fixed by the transformation. For R, {el}

is the basis. (b) e2 can be any imaginary unit, i.e. anything in K which squares

to 1. For C there is only one choice (up to sign), so the basis in this case is now

complete. (c) e3 can be any imaginary unit which anticommutes with e2. Then e4,

the third unit in the associative triple, is determined by the multiplication table,

i.e. e4 = e2e3. Now we have a basis for H. (d) For 0 we still need to pick another

imaginary unit, e5, which anticommutes with all of e2, e3, and e4. The remaining

units are then determined by the triangle.

The procedure above provides a convenient simplification for calculations

which involve up to three arbitrary octonions x, y, z. Without loss of generality, we

may assume that x = xlei + x2e2, y = Ylei + y2e2 + y3e3, and z = zi ei + z2e2 +

z3e3+z4e4- -z5e5. In particular, any calculation involving only one arbitrary octonion

reduces to the complex case and any involving only two arbitrary octonions reduces

to the quaternionic case. In a calculation involving three arbitrary octonions, it may

be assumed that only one component of one of them lies outside a single associative

triple. Only the fourth arbitrary octonion in a calculation cannot be chosen to have

some vanishing components. These simplifications can be especially useful when

combined with computer algebra techniques.

The multiplication rules which we have chosen are not unique, but all other

choices amount to renumberings of the circle or triangle, including those which

switch signs (nodes may be relabeled ±2, ... , ±8). Even some of these turn out

to be equivalent to the original triangle. The seven points of the triangle can be

identified with the projective plane over the field with two elements, so the possible
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renumberings of the imaginary basis units correspond to transformations of this

plane. For future reference we give the form of A corresponding to our choice of

multiplication rules in Appendix A.

3.3. S 0(n 1) AND AUTOMORPHISMS

A proper automorphism 0 of K satisfies

0(x + 0= 0(x) + (3.15)

0(xy) = c6(x)q(y) (proper) (3.16)

V x, y E Kn, whereas for an improper or anti-automorphism the order of the factors

in (3.16) is reversed:

q(xy) = 0(y)0(x) (improper) (3.17)

From (3.6) and the non-commutativity of quaternionic and octonionic multiplica-

tion, we see that complex conjugation is an example of an improper automorphism

for n = 4, 8.

Throughout the rest of this paper we will restrict ourselves to the set of

continuous proper automorphisms, Aut(K).7 Then (3.15), (3.16), and continuity

are sufficient to show that 0 is a linear transformation on K. As such, 0 can

be expressed by the action of a real matrix Ail acting on the components xi (for

j = 1, , n) of x viewed as a vector in ]Et:

: K linear -4=> 0(x) = Axe (3.18)

7All of the continuous automorphisms of H or 0, including the improper ones which

change the order of the multiplication, can be obtained by taking the direct product of

Aut(H) or Aut(0) with the group {1,Bar}.
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Combining this form of 0 with the condition (3.16) and using the multipli-

cation rule (3.2) we obtain the following equation for the Aii's:

= /11;AihnAmk (3.19)

This equation defines the Lie group of automorphisms in terms of n x n matrices

and the structure constants of Kn.

The formulation which we have just described is the usual one for Lie groups,

but it does not take advantage of the special algebraic structure of Kn. The approach

which we prefer to take in this paper is to find algebraic operations on K which

yield maps that satisfy (3.15-(3.16) without resorting to the matrix description. The

algebraic operations which we will find turn out to have many interesting properties.

Motivated by the structure of inner automorphism on division rings, let us

consider conjugation maps (1)q on Kn = Ill, 0 (n = 4, 8) for q E KT,* = Kr, {0} :

(Aq :Kn 4 K. (3.20)

x qxg'

These maps are well-defined even for K8 = 0 since the associator [q, x, q-1] vanishes.

(This vanishing associator also implies that (0q)- 1 = 0q-i and (4q)2 = 0q2 for both

El and 0). The maps (3.20) satisfy (3.15) and fix the real part of x.

We see from (3.20) that a rescaling of q does not effect the transformation, so

without loss of generality we may divide out the multiplicative center, R* = R {0},

and consider only q's of unit norm, i.e. q = 0).8 Notice that now q-1 = q*. Thus

we have a map 4 which takes { q E K :

0q is a linear transformation on Kn :

Iql = 1} Kn*/R * Sn-1 to {09}, where

'We could also identify antipodal points on the unit sphere (Sn-1), since (1)q =
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: fq E DC, : lql 1} > (3.21)

Oq O(,,e) Kn Kn

x qxq* = exp(0 x exp(-0

We see from (3.10) that (1)q is an isometry:

10q(x)I = 1q11x11q1 = I x I (3.22)

In particular it leaves the norm of the imaginary part invariant so the associated

n x n matrix Aq (which is defined by: (Mx) = (Ag)ijxjei) is orthogonal and splits

into a trivial 1 x 1 block for the real part and an (n 1) x (n 1) block Rq which lies

in SO(n 1). The determinant of Aq is positive, because Oq = (O f)2 (equivalently

Aq = (A f)2).

Now we will study the structure of (I)(Sn-1) by looking at generic examples

of maps ch.

3.3.1. Quaternions and SO(3)

For Ki = R and 1K2 = C, multiplication is commutative and the conjugation

maps (3.20) are trivial. Therefore let us examine the first nontrivial case, K4 = ER.

If we consider, for example, 1' = 2, we get

exp(0 2) x exp(-0 e2)

x2e2 (cos 20 x3 sin 20 x4)e3 + (sin 20 x3 + cos 20 x4)e4
(3.23)

1 0 0 0
1 0 0

0 1 0 0
A(e,,e) = so R(e2,9) = 0 cos20 sin 20

0 0 cos 20 sin 20
0 sin 20 cos 20

0 0 sin 20 cos 20

(3.24)
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This is just a rotation of the imaginary part of x around e2 by an angle of 20, i.e.

it is a rotation in the 3-4 plane. Similarly, we see that (kg with q = exp(0 r"), for any

imaginary unit 1', is a, rotation of the imaginary part of x around by an angle of 20

. Thus (I) is the universal covering map, mapping S3 onto SO(3) '-.-12 Aut(H). Since

multiplication in Ell is associative, composition of maps is given by multiplication

in H, i.e. Op o (1)q = Om (equivalently ApAq = Apq), Vp, q E El with IpI = lql = 1.

Therefore, (I) is also a group homomorphism.9

We have just parameterized rotations in the 3-dimensional purely imaginary

subspace of the quaternions by fixing an axis of rotation and then specifying the

value of a continuous parameter, the angle 0, which describes the amount of the

rotation around that axis in the unique plane orthogonal to that axis. We call

this parameterization the axis-angle form. But in dimension greater than 3, there

is no unique plane orthogonal to a given axis. Therefore in the octonionic case it

will not be sufficient to specify a rotation axis and an angle of rotation. Instead,

we will parameterize rotations in another way, which we first describe here for the

quaternionic case.

To accomplish a given elementary rotation (a rotation which takes place

in a single coordinate plane), we use a composition of two particular axis-angle

rotations, which we call flips because they are both rotations by the same constant

angle r. The angle 0 between the axes of the two flips then takes on the role of

90ne application of this homomorphism is a quick derivation of the expression for the

composition of two rotations given in terms of axes and angles of rotation. If p = exp(0 f)

and q = exp(n:s), then pq = exp((I) where i = Im (pq)/lIm (pq)j and cos ( = Re (pq). So

a 2ri rotation around .^s followed by a 20 rotation around 1' is the same as a 2( rotation

around i.
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a continuously changing parameter which describes the magnitude of the combined

rotation. Specifically, choose any two anticommuting (i.e. perpendicular) imaginary

units ands which lie in the plane of the desired rotation. Then if the desired

amount of rotation in that plane is 20, do two flips around the two directions and

cos 0 + sin 0 g (which are separated by the angle 0). To do this, we define the

composition 0(2) viaBea)

4(A,8ia) 0(cos0 f+sin0 1,a) ° fk(f,a)

in particular, for a = -11.

(3.25)

OWs,e1i)(x) :="-

exp (2 (cos 0 I- + sin 0 .i)) [exp f.) x exp f.)1 exp (--i(cos B 1' + sin 0 .i))

(3.26)

where the superscript "(2)" indicates the number of simple axis-angle 0's involved

in the composition. In order to understand why 0(2) works, consider its effects on

different subspaces. In the plane spanned by r and s, 0(2) is just the composition of

two reflections with respect to the two directions is- and cos 0 0 s as mirror lines,

amounting to a total rotation by 20, so that 0 is indeed the continuously changing

parameter. In particular 0(0,,,)im = 1. In the direction orthogonal to the plane, the

flips are in opposite directions and therefore cancel. We call ,(2) the plane-angle

form of the rotations because it parameterizes rotations in terms of their plane and

angle. In the case of the quaternions we can of course use the group homomorphism

property of the 0's to express 0(2) as a single 0:

0((f,)3,01i) = 0(cos 3, 2) 0 = 00,3,9)

since

(3.27)
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7r
exp (-

2
(cos 0 1: + sin 0 exp (--2 r) = (cos + sin 9 i)(-1) = cos 0 + sin 0

(3.28)

We see that 0(2) only depends on the product f.'s', which in turn depends only on

the plane (and orientation) of f and s. Therefore any pair of anticommuting units

spanning the same plane with the same orientation may replace f ands without

changing the combined transformation.

We have seen that (1) maps all of S3 to Aut(H), but this new parameterization

of the rotations only uses q's of the form exp Of), i.e. the angle in each of the

individual flips is always the constant 12r.1° This means that just a single S2 slice of

.53 (the equator) maps under (1) to a generating set for Aut(H).

3.3.2. Octonions and SO(7)

Now let us examine the more complicated case, K8 = 0. We notice that for

the octonions each line in the triangle, and more generally each associative triple

of anticommuting, purely imaginary octonions of modulus 1, is just a copy of the

imaginary units { e2, e3, e4} in EL Therefore, if we consider the same conjugation

map as we did in the quaternionic case with q = exp(0 e2), we obtain the associated

matrix A(,0):

'°Because (-0)f can be interpreted as 0( r"), the choice of the sign of the angle in each flip

has no consequences. Therefore we have chosen the signs in (3.26) (and in later sections)

for convenience.
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-1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 cos 20 sin 20 0 0 0 0

0 0 sin 20 cos 20 0 0 0 0
A (e2 ) = (3.29),0

0 0 0 0 cos 20 sin 20 0 0

0 0 0 0 sin 20 cos 20 0 0

0 0 0 0 0 0 cos 20 sin 20

0 0 0 0 0 0 sin 20 cos 20

We see that this transformation yields three simultaneous rotations by an angle of

20 in three mutually orthogonal planes which are all orthogonal to e2. The pairs

of imaginary units which are rotated into each other are just the pairs which each

form an associative triple with e2. Moreover, since the rotations in the three planes

are equal, the choice of these planes is not unique.

For an arbitrary i' we can always find a (nonunique) set of 3 pairwise or-

thogonal planes, orthogonal to 1', such that 4)(,:,9) represents an axis-angle rotation

in each of the quaternionic subspaces spanned by one of the planes and T. For the

special case 0 = ir- , A(,,,e) has 8 real eigenvalues, 6 of which are 1. In this case

the extra degeneracy means that if we choose i= anywhere on, for example, the 2-3-4

subspace the effect on the 5-6 and 7-8 planes is the same.

Because each (Iq rotates three planes, it looks naively as if we should only

be able to describe a subset of SO(7) in this way. Surprisingly, this is not true.

We can in fact describe all of SO(7) and it turns out that the non-associativity of

multiplication in 0 plays a crucial role. For K8 = 0, Op o Oq On in general, i.e.

(I) is not a group homomorphism. In fact, Op o (1) q $ Or, for any r E 0 unless Imp

and Im q point in the same direction. It is this fact which allows (I)(S7) to generate

a Lie group with dimension larger than 7. For instance, by using more than one
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mapping, we can give explicit expressions for all of the elementary rotations. An

elementary rotation in the plane, for example, is given by Op 0 q* 0 Op 0 Op where

q = exp(0 ek), p = exp (2 e,) , ek = eiej. This yields a rotation by 40 in the

plane. The extra transformations undo the rotation in the other two planes, which

were initially rotated by Oq. The elementary rotations generate all of SO(7).

Alternatively, the plane-angle form of the quaternionic case (involving only

rotations with 0 = i) goes through as before, since in all the directions orthogonal

to both axes the two rotations by ir still cancel. Therefore , )
0(2) is another way

(e. ,e

of expressing a rotation by 20 in the plane. We see from the axis-angle form

of the rotations that 'I maps the unit sphere in 0 to a generating set of SO(7).

As the plane-angle form shows, the equatorial S6 is actually sufficient to provide a

generating set of SO(7).

3.3.3. Octonions and G2

In the octonionic case we have obtained a larger group than we were looking

for; all of SO(7) instead of only its subgroup (of automorphisms of the octonions)

G2. However, we shouldn't have expected 0q to be an automorphism since (3.16) is

equivalent to

1 1 ) ),7 1 (3.30)

which would require the q's in between x and y to cancel. (3.30) only holds in

general if multiplication is associative; but for certain choices for q, (kg might still be

an automorphism. For q = exp(0 e2), we find that (3.30) places no restriction on 0 if

e2, Im x, and Im y lie on one line in the triangle (when the calculation reduces to the

quaternionic case). However, if e2, x, and y contain anti-associative components,
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their products are not equal on the two sides of (3.30). Instead we obtain the

following two equations for 0:

cos 40 = cos 29
(3.31)

sin 40 = sin 20

The solutions for L are 9 = k = 0, , 5. Obviously, e2 can be replaced by any

purely imaginary octonionic unit. Hence a single mapping, 4q, is an automorphism

of 0 if and only if

q= explk3r"), k = 0, . . . , 5 (3.32)

i.e. if and only if q is a sixth root of unity, q6 = 1.

These maps are not all of the automorphisms of 0, but they do generate

the whole group. As in the previous section, we need to consider compositions of

0q's, this time satisfying (3.32). We will show that we can obtain all of G2 in this

way by checking that the dimension of the associated Lie algebra is correct. Notice

that the set of allowed q's splits into four pieces depending on the value of Re q,

{ Re q = If q = +1, then 0q is the identity. The piece with Re q =

is made up of points which are antipodal in S7 to the piece with Re q = 1 (see

Footnote 9). Therefore these two pieces contain the same maps and we only need

to consider the piece with Re q =

To determine the group that is generated by these maps, we consider com-

positions of maps of the form 0(ij,ei.). These are flips involving angles of 3 so that

each individual 0 is an automorphism (instead of 2 as in the last section). Of course,

= 1. Since (00-1 = 0q-1, we also see that the set of maps with Re q =

contains the inverse of each element. A dimensional analysis of the associated Lie

algebra finds the dimension of the space spanned by

(2)

d0 io.o = 2, i :7} (3.33)
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to be 14 as follows. There are 7 x 6 = 42 choices for i and j. It turns out that the 6

choices belonging to one associative triple of units only give 3 linearly independent

generators, which leaves us with 21. In addition three triples which have one unit in

common also share one generator, which cuts the number down by 7 leaving us with

14 independent generators for the Lie algebra.11 Therefore the group generated is a

14-dimensional subgroup of G2, i.e. G2 itself.

From the form of 02mi) we see that {0q : q = exp (3 =

actually suffices as generating set for G2. We saw in the previous subsection that

4:1) maps the equatorial S6 to a generating set of SO(7). Here we see that (I) maps a

different S6 slice of the octonionic unit sphere to a generating set of G2.

3.3.4. Some Interesting Asides

As an interesting aside, we derive two new identities for commutators in 0

in the following way. Let q = 1' in (3.30). Then the terms containing V3- and

not containing it must be equal independently. Thus we obtain

4[1-, xy] = (x 3(1 y] x](y 3Vy0)
(3.34)

x][r, y] = xy 41.(xy)I x(40 + (i= x0y 3(f- x 0(1.y

where x, y, r E 0 with Ref' = 0 , = 1.

As another interesting aside, we note that if q6 = 1 then q3 = ±1 which

implies 073 = 1. This means that the set of elements of G2 which are third roots of

the identity generate G2, because it contains all of the maps 41) q with q6 = 1. But

11To do this analysis we returned to the matrix representation of G2, (3.19), and used the

computer algebra package MAPLE. The calculations are nontrivial, especially the proof

that the remaining 14 generators are really independent. We were surprised by the result

(2)that the generator of ¢.((i2 is not simply related to the generator of Oci,i,01,3_,).



95

there are third roots of the identity map which are not given by any single Og with

q in 0* /R *. This is due to the fact that 09 is determined completely by its fixed

direction whereas a third root of the identity map has more free parameters. For

example, the following matrix is associated with an automorphism of 0 which fixes

e2 and its third power is the identity, but it is not equal to Aq with

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 cos k ksin 0 0 0 03 3

0 0 sin k 2/rcos 0 0 0 03 3

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 cos 27 sin k3 3

0 0 0 0 0 0 sin k cos k3 3

q = exp (±e2)):

(3.35)

A similar statement holds for the generating set of 80(7) which we found.

It contains maps which square to the identity, because we had q = exp (1-; ,) whence

q2 = 1. But again not all the elements of SO(7) which square to the identity are

given as a 0q.

3.4. MORE ISOMETRIES

Due to (3.10), we see that multiplying an element of H or 0 by an element of

modulus 1 is always an isometry. The isometries of the previous section (S0(n 1)

and Aut(K,i) for n = 4, 8) were all obtained using the asymmetric product, cbq(x) =

qxq-1. In this section we examine two other classes of isometries on 1111 and 0.
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3.4.1. Symmetric Products

First we show that it is possible to describe all of SO(n) for n = 4,8 using

symmetric products. We define

: { q E : q I = 1} L (111. , (3.36)

x H qxq = exp(0 r") x exp(0 r)

As with the conjugation maps, this is well-defined even for K8 = 0, since the

associator [q,x,q] vanishes. As before (0q)-1 = ti)q-i and (002 0,72 hold. We also

note that 1,bq = tk_q and that 14q is linear.

This isometry, however, does not fix the reals. We denote the matrix associ-

ated with 0,7 by Bq, where Oq(x) = (/3q)iixiej. Then Bq E SO(n) since ?kg = (0,/-4)2

(equivalently, Bq = (Bi4)2). Letting q = exp(0 e2), we obtain

B(e2,9) =

cos 20

sin 20

0

0

sin 20

cos 20

0

0

0

0

1

0 ...

0

0

0

1_

(3.37)

This is just a rotation by 20 in the 1-2 plane. Similarly, any rotation by 20 in the

plane spanned by el and any imaginary unit is given by IN with q = exp(0

But what about rotations in the purely imaginary subspace, SO(n 1)?

Recall from the last section that the plane-angle construction of the elementary

rotations in SO(n 1) used a composition of two flips cp o q where p and q were

both purely imaginary. But notice that Wq = q when q is imaginary, i.e. when

0 = 1T2-.. Thus the maps {IN : q = exp , Re /- = 0, IrI = 1} generate a group
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which includes SO(n 1). Since we already found the rotations involving the real

part we see that kli(Sn-1) generates all of SO(n).

It is worth noting that the og's work differently from the Oq's. For a single

q, q is in the plane of rotation, whereas for a single (kg, q was a fixed direction.

Also, Op I/MX) = p(qxq)p tGPq = (pq)x(pq), even for III, since the order of the

products is different. Therefore III is not a group homomorphism.

However the Moufang identities (3.3) do demonstrate a partial group homo-

morphism property by providing a way of combining three O's together into a single

1/) in some cases. For arbitrary p, q E Kn, with lqj = IpI = 1,

Ikg o o 0,7 = Ocrpq since q (p (qxq) p) q = (qpq) x (qpq) V x E Kn (3.38)

For any anticommuting imaginary units I- and s, the following identity is

straightforward to prove:

exp(0 = exp (-4 r,,) exp (-- (COS + sin 0 exp
4

r")
2

(3.39)

Together with (3.38), (3.39) shows that a rotation (,9) in the 1-i plane by an

arbitrary angle 20 can be described as a combination of flips of fixed angle:

i)(ei,o) = 0 tk(cose f+sine eiti) 0 ti)(ft_i) (3.40)

where f. is any imaginary unit which anticommutes with ei. (3.40) uses flips of angle

and 4. But since a flip with an angle of 2 can be written as the square of a flip

with angle 4 and since we were able to write SO(n 1) in terms of flips with angle

we can write all of SO(n) in terms of flips of fixed angle Therefore the image

under W of an Sn-2 {q = exp : Re = 0, 17'1 = 1} slice of Sn suffices to

generate all of S 0 (n).

To understand how (3.40) works, notice that the first flip rotates the real

direction into some fairly arbitrary imaginary direction I. The second flip then
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rotates this imaginary direction i' with the physically significant imaginary direction

.g. The last flip rotates the former real part back into place12.

3.4.2. One-sided Multiplication

Now we consider one-sided multiplication. Of course, left multiplication and

right multiplication with elements of modulus 1 together generate SO(n) because,

in particular, they generate the Oq's. But what about left multiplication alone? We

define

X : {q E K. : iqi = 1} '' L(Kn,Kn) (3.41)

q '' Xq = X(f,e) : Kn -4 Kn

x i qx = exp(0 0 x

For both H and 0, we have (xq)-1 = xq-i and (xq)2 = Xq2, since the associators

[q -1, q, x] and [q, q, x] vanish. The following relation, connecting the maps Oq and

zk with holds for the same reason:

Xq = (1),/4 ° TiVi = 11),./i ° OVi (3.42)

Of course we can no longer identify antipodal points since x...q = --Xq Xq

For the quaternions X is a group homomorphism, Xp o xq = xpq. So X(S3)

must be a 3-dimensional subgroup of SO(4). Therefore, to investigate the structure

of any Xq on H, it will be sufficient to consider xq with q = exp(0 e2). The associated

matrix C(e2,0) is

12This sounds much like manipulations of the Rubik's Cube, which indeed inspired JS in

part.
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cos sine 0 0

sin 9 cos 9 0 0
C(e2,6) = (3.43)

0 0 cos e sin 0

0 0 sin 9 cos 9

This transformation rotates two orthogonal planes by 9. For the general case q =

exp(011, the rotations are in the plane spanned by el and 1' and the plane orthogonal

to that, as can be seen from the relation (3.42) and our previous investigation of

maps Oq and Oq.

It is interesting that X(S3) is not SO(3), much less SO(4). We might

expect, then, that left multiplication for K8 = 0 would only describe a subgroup

of SO(8). Surprisingly this is not the case. It turns out that the non-associativity

of octonionic multiplication allows left multiplication to generate all of SO(8), as

follows:

First we consider x(e2,9). The associated matrix q,9) is:

cos 0 sin 0 0 0 0 0 0 0

sin 9 cos 0 0 0 0 0 0 0

0 0 cos 0 sin 0 0 0 0 0

0 0 sin 0 cos 0 0 0 0 0
C(e2,0) (3.44)

0 0 0 0 cos 0 sin 0 0 0

0 0 0 0 sin 0 cos 0 0 0

0 0 0 0 0 0 cos 0 sin 9

0 0 0 0 0 0 sin 0 cos 0

X(r,e) always rotates four planes by an angle O. (This is also clear from (3.42) and

the results of previous sections.)

Now suppose we want to do an elementary rotation in just one of these four

planes. The key idea is that the composition of two maps (c.f. (3.26))
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x(3imi)(x) := exp (-2 (cos 0 + sin 0 1)) [exp (

2
.i)
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(3.45)

where .41 = r rotate exactly the same four planes as the map x(,,,0), but because

of non-associativity the rotations will not all be in the same direction in both cases.

In particular, the parts of x which anti-associate with s and t will be rotated in

opposite directions in the two cases.

As an example, consider C(3) ,0 7 the matrix associated with x(t,oli)(4
COS 0 sin 0 0 0 0 0 0 0

sin 0 cos 0 0 0 0 0 0 0

0 0 cos 0 sin 0 0 0 0 0

c(2)
0 0 sin 0 cos 0 0 0 0 0

(3.46)
0 0 0 0 cos 0 sine 0 0

0 0 0 0 sin 9 cos 0 0 0

0 0 0 0 0 0 cos 0 sin 0

0 0 0 0 0 0 sin 0 cos 0

Within the associative portion {el, e2 = e3e4, e3, e4} the rotation indeed remains the

same as in the previous example (3.44), but the orientation of the rotation in the

other two planes is reversed.

Using these ideas, we find that an appropriate composition of x(2,07 4,4,0),
(

x(5,2) and x(7(2) allows us to rotate any single plane of the four coordinate planes

rotated by x(e2,0). Notice that e3e4 = e5e6 = e7e8 = e2, i.e. the combinations which

appear are all the independent pairs which, in the multiplication triangle, multiply(2)to the corner e2. For example, x(2,0) o x(3,) 0 X(5(2,6,0) 0 X(7,(2) rotates the 1-2 plane
(2) (2)by an angle of 40. Similarly, x(2,0) o x(3,4,9) ° X(5,6,_9) ° x(7(2,8,_0) rotates the 3-4 plane

by the same amount.

In terms of the multiplication triangle we can give the following rules to

determine the composition needed to do an elementary rotation in the i-j plane.
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Suppose i = 1, then we need to choose the corner j for the single x and the pairs

on the lines leading to j for the three x(2)'s. If neither i nor j is 1, the corner, i.e.

the single x part, is given by ek = eiej. The three x(2) pieces come from the pairs

which multiply to ek. The ij piece occurs in the standard orientation and the other

two pairs reversed.

The infinitesimal versions of the two examples above show this structure

even more clearly. For the first example, x x + 0 (e2x e3(e4x) e8(e8x)

e7(e8x)) + 0(02); while for the second example, x H x +0 (e2x e3(e4x) e8(e8x)

e7(e8s))+ 0(02). The infinitesimal version also provides a convenient way to count

the dimension of the group. There are 7 units and 21 pairs of units yielding 28

independent generators of SO(8). As advertised, we have produced all of SO(8).

As with symmetric multiplication, the Moufang identities (3.3) imply that

for any q, p E Kn, with lql = Ipl = 1,

Xq ° XP ° Xq = XqPq (3.47)

Therefore we can write any x(f.,e) as a series of flips with constant angle
4 using

(3.39) and (3.47):

x(,,,o)(x) := exp(0
(3.48)

= exp {exp (2 (cos 0 i + sin 0 i.)) [exp (-71:1 .i) x]]

where s is any imaginary unit which anticommutes with

From the second form of x we see that X, completely analogously to III for

Kg = 0, maps the same S6 (LI' {q E 0 : q = exp , Re '7' = 0, 1)), now to

a different generating set of SO(8).

Right multiplication is completely analogous to left multiplication. The

details can easily be worked out using xq = (q* x*)*.
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3.5. LORENTZ TRANSFORMATIONS

In (3, 1) spacetime dimensions, it is standard to use the isomorphism between

SO(3, 1) and SL(2, C) to write a vector as a 2 x 2 hermitian complex-valued matrix

via

x+ x
X' -> X =

x* x-
(3.49)

where x± = x°± xn+1 E R are lightcone coordinates, x = 1 x' iej E IK , and n = 2.

The Lorentzian norm of X" is then given by13

X"X = -detX (3.50)

Standard results on determinants of matrices with complex coefficients show that if

X' is obtained from X by the unitary transformation

X' = MXMt

then

(3.51)

det X' = det(MXMt) = det M det X det Mt

= det M det Mt det X
(3.52)

= I det MI2 det X

= det(MMt) det X

Therefore, if the determinant of M has norm equal to 1, then det X' = det X and

(3.51) is a Lorentz transformation. Notice, however, that there is some redundancy.

M can be multiplied by an arbitrary overall phase factor without altering the Lorentz

'3We use signature (-1, +1, ..., +1)
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transformation since the phase in Mt will cancel the phase in M. To remove this

redundancy, M is usually chosen to have determinant equal to 1 rather than norm

1, but this restriction is not necessary. In Appendix B we record explicit versions of

M which give the elementary boosts and rotations. Any Lorentz transformation can

be obtained from this generating set by doing more than one such transformation

and since

X' = (M(...(MiXMI)...)Mn = (M...Mi)X(M1...MTO (3.53)

we see that any finite Lorentz transformation can be implemented by a single trans-

formation of type (3.51).

We can use (3.49), just as in the complex case, to write a vector in (n + 1,1)

spacetime dimensions for n = 4, 8 as a 2 x 2 hermitian matrix with entries in Kn.

The extra quaternionic or octonionic components on the off diagonal correspond

to the extra transverse spatial coordinates. The manipulations in (3.52) are no

longer valid in these cases due to the non-commutativity and non-associativity of the

higher dimensional division algebras, but the last expression on the right hand side

is nevertheless equal to the left hand side. (Notice that it is also the only expression

on the right hand side which is well-defined.) A quaternion or octonion valued

matrix M which generates a finite Lorentz transformation in (n + 1, 1) dimensions

must satisfy det(MMt) = 1. An octonion valued matrix M must also satisfy an

additional restriction which ensures that the transformation on the right hand side

of (3.51) is well-defined".

"The conditon that X' be hermitian is identical to the condition that there be no asso-

ciativity ambiguity in (3.51). Both of these things will be true if and only if Im M contains

only one octonionic direction or if the columns of Im M are real multiples of each other.
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Looking at the elementary boosts and rotations in Appendix B, we see that

for the quaternionic or octonionic cases if we simply let e2 > ei, for i = 2, ... , n,

then we get all of the new boosts and some of the new rotations. The rotations

which are missing are just the ones which rotate the purely imaginary parts of x

into each other. But now consider a transformation with M = ql = exp(0

where Iql = 1. Since the diagonal elements x± of X are real, they are unaffected

by these phase transformations. The off-diagonal elements, however, transform by

a conjugation map:

x qxq* (3.54)

As we saw in Section 3, these conjugation maps give all of SO(3) in the quaternionic

case, and if repeated maps are included they give all of SO(7) in the octonionic

case. This is just what we needed. In the (3, 1) dimensional complex case the phase

freedom is just the residue left over from these extra rotations which occur when

there is more than one imaginary direction.

So we have shown that all finite Lorentz transformations can be implemented

explicitly as in (3.51), simply by doing several such transformations in a row:

=

Since the octonions are not associative, (3.55) is not the same as

(3.55)

(3.56)

and it is precisely this non-associativity which means that there is enough freedom

in (3.55) to obtain any finite Lorentz transformation.
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3.6. DISCUSSION

First we described SO(3) using quaternions and SO(7) using octonions via

(a series of) conjugation maps, namely the maps Oq with q = exp(0 We obtained

Aut(0) G2) by restricting 0 to be 3. Then we described SO(4) using quater-

nions and SO(8) using octonions via the symmetric maps ?kg and also SO(8) using

octonions via left multiplication xq. We suspect that the existence of two different

descriptions of SO(8) is related to triality of the octonions.

It is worth reiterating here that our implementation of the symmetry groups

of IR and 0 provides an interesting new twist on the interpretation of rotations.

The usual way of looking at a finite rotation is that a fixed axis is chosen and then

the angle of rotation is changed continuously from zero until the desired rotation is

achieved. Instead, the parameterizations in terms of flips presented in this paper use

building blocks made of rotations with one fixed angle (i for SO(n 1) and 1,14 for

SO(n)). A finite rotation is accomplished by composing several such rotations, all

with the same fixed angle. The relationship of the various axes in the composition

is varied from initial alignment until the desired rotation is achieved. We used these

flips to exhibit generating sets for SO(8), SO(7), and G2 where each generating

set is homeomorphic to a different S6 subset of the octonionic unit sphere S7. We

believe that the parameterizations in terms of flips are new. In keeping with this

point of view, the automorphisms of the octonions require flips with constant angle

which is a multiple of 3.

We then used the results for SO(3) and SO(7) to obtain an explicit descrip-

tion of finite Lorentz transformations on vectors in (5, 1) and (9, 1) dimensions in

terms of unitary transformations on the 2 x 2 quaternionic or octonionic matrix
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representing the vectors. We believe that the finite version of SL(2, 0) requiring a

succession of such unitary transformations is also new.

A number of other authors have attempted to find similar representations

for the groups we have considered here. Conway [6] has independently developed the

finite transformation rules for SO(8) and SO(7) (without flips), and for G2. Ramond

[7], gives a simple algebraic representation for the finite elements of G2, SO(7), and

SO(8), but uses a mixture of the various types of multiplication which we have used

separately. A messy representation for the finite elements of G2 and the infinitesimal

elements of SO(7) is given by Giinaydin and Giirsey [8]. Finite transformations

were used by Cartan and Schouten [9] to investigate absolute parallelisms on S7.

Coxeter [10] gives a special form for reflections with respect to a hyperplane in R8.

Infinitesimal transformations are found more frequently [11]. A detailed analysis

can be found in [12] where generators of SO(8), SO(7), and G2 are given in terms of

octonions. Their relation to integrated transformations is indicated but the actual

integration is not carried out.
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The theory of vectors and spinors in 9+1 dimensional space-

time is introduced in a completely octonionic formalism based on an

octonionic representation of the Clifford algebra C1(9,1). Part of the

Fierz matrix is derived in this framework. Then the general solution

of the classical equations of motion of the CBS superparticle is given

to all orders of the Grassmann hierarchy. Finally a spinor and a vec-

tor are combined into a 3 x 3 Grassmann, octonionic, Jordan matrix

in order to construct a superspace variable to describe the superpar-

tide. The combined Lorentz and supersymmetry transformations of

the fermionic and bosonic variables are expressed in terms of Jordan

products.
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4.1. INTRODUCTION

The relationship between the division algebras and the existence of super-

symmetric theories has been observed before especially in the context of string the-

ory [1,2]. In particular, the division algebras have been used to solve the classical

equations of motion in these models [3]. However, there have been difficulties in

the octonionic case because of the non-associativity of this division algebra of high-

est dimension. For example, the Lorentz invariance of the formalism was unclear.

Since the CBS superparticle [4] is an ideal testing ground to introduce techniques

using division algebras and explore supersymmetry, it has attracted some attention.

I. Oda et al. [5] and H. Tachibana & K. Imaeda [6] have answered some of the

questions in this area. The connection of supersymmetric theories to the division

algebras can also be made in terms of Jordan algebras as in [7] for the superstring

and the superparticle. But again the implementation in the concrete case of the

CBS superparticle or the superstring [8] did not yield a superior formalism, that,

for example, made the symmetries of the model transparent.

This article carries on the previous attempts to cast the theory in a form

that clearly displays its symmetries. However, a more transparent and powerful

octonionic formalism is used. We show that one of the important Fierz [9] identities

for the superstring reduces to the alternative property of the octonions. In addition,

we go beyond a mere rewriting of vector and spinor variables in terms of octonionic

expressions, with supersymmetry and Lorentz transformations acting differently on

these variables. We succeed in introducing a unified superspace variable as a Jordan

matrix, that includes both fermionic and bosonic variables. Both the supersymmetry

transformations and the general solution are expressed in terms of Jordan matrices
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involving both kinds of variables in this unified way. We are aware of other work

[10] related to the topics in this article.

The article is organized as follows. Section 4.2 introduces the octonionic

formalism for vectors and spinors and their Lorentz transformations in 9+1 dimen-

sions. (This article deals exclusively with the 9+1-dimensional case. The analogues

in 5+1, 3+1, and 2+1 dimensions can be found easily.) A subsection using the octo-

nionic analogue of the Fierz-matrix derives what we call the 3 -W's rule, an identity

that is needed for the Green-Schwarz superstring to be supersymmetric [11]. A note

on the notion of octonionic dotted and undotted spinors concludes this introductory

section. Section 4.3 derives the general classical solution of the equations of motion

for the CBS superparticle. Section 4.4 develops the Jordan matrix formalism com-

bining bosonic and fermionic variables into one object. Lorentz and supersymmetry

transformations and the superparticle action are expressed in this way.

4.2. OCTONIONIC SPINORS AND THE 3-11'S RULE

4.2.1. Octonionic spinors

Octonionic spinors are based on an octonionic representation of a Clifford

algebra. It is not obvious how to remove the obstacles arising from the non-

associativity of the octonions. A rigorous treatment and resolution of this question

can be found in [12], which also contains an introduction to octonions. Only general

properties of octonions independent of a specific multiplication table will be used.

However, because of the frequent use of octonionic identities, the reader may find

more information on octonions as in [13,14] helpful.

The full Clifford algebra C/(9, 1) in 9+1 dimensions has a real faithful irre-

ducible representation in terms of 32 x 32-matrices. (As a reference for the general
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topic of Clifford algebras see [15].) An octonionic Majorana-Weyl representation is

given in terms of 4 x 4-matrices:

where

=
( o r,
f, 0

ro = fo = 1 =
( 1 0

,

01

I'a = f'3 =
( 0 ej

(1 < j < 8),
ei* 0

( 1 0

o 1

1 0
7n = 'Yo'71. '79 =

r9= r9=

)0 1

(4.1)

(4.2)

(In our convention an octonion x has real components xi (1 < j 5. 8), i.e., x = xi e

where e3 (1 < j < 8) are the octonionic units and ej* their octonionic conjugates.

For further information on octonions and octonionic identities, which will be used

frequently, see [12,13]. The signature of the metric is +.) This representation

is understood to act on a column of four octonions, a spinor, by left multiplication.

This notion is necessary in order to remove the ambiguity that arises from the

fact that octonionic multiplication is not associative. However, the fundamental

property -ym.7,,d-^y,^yi, = 29,; remains valid under this interpretation. (For a rigorous

treatment see [12].)

A vector with components x° (0 < µ < 9) is embedded in the Clifford

algebra via



where

0 X
= x4-y =

X 0
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(4.3)

X = erm and X = xAt"4. (4.4)

(Boldface capitals always denote the 2 x 2 hermitian matrix associated with the

vector denoted by the same lowercase letter.) The inverse of this relationship is

\= Re tr 47") = Re tr -I- ix") = 2Re tr (X1'1`) = Re tr (ir"), (4.5)

where indices are raised with the metric tensor g. Also note that

and

which implies

r"

X = X - (tr (X)) 1,

XX = X2 (tr (X)) X = XX = det(X) 1,

(4.6)

(4.7)

(4.8)

since the characteristic polynomial for a hermitian 2 x 2-matrix A is pA(z) = z2

tr (A)z det(A). This combination appears in the matrix product

so that we have

or its polarized form,

= XAX1114x4) (4.9)

xpx"1 = XX = det(X)1 (4.10)
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(4.11)

Now our convention for the numbering of the components of an octonion allows us

to simply write

X =
+x x

x* x-
and X=

( x x )
, where x± = x° ± x9.

x* x+
(4.12)

A full spinor kIl is given by a column of four arbitrary octonions. It can be

decomposed into its positive and negative chiral projections,

via the projection operators

:= P±W, (4.13)

2(1(1 ± 711)- (4.14)

For the chiral projections either the top or the bottom two components vanish.

Depending on the context we will often regard a chiral spinor just as the column of

the two non-vanishing components. We may also define the adjoint spinor:

117 := (4.15)

. A is the matrix that intertwines the given representation with the hermitian

conjugate representation:

Then A is up to a constant given by

0 1
A = -10711 =

1 0

(4.16)

(4.17)
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( t denotes matrix transposition composed with octonionic conjugation.) The con-

struction of a vector y out of two spinors T and T is done in the usual way:

yp := Re {4C-YA W1

(o_t 4,+t) o r )1
= Re

fp 0

= Re 1.4.1111+1 + Re [TirpT_1 .

(4.18)

So far we have built everything out of real octonions, i.e., the components

x3 of an octonion x = xiej were real numbers. However, in order to consider

anticommuting spinors we need to introduce elements of a Grassmann algebra. This

notion can be incorporated into the octonionic formalism by letting the octonionic

components take values in a real Grassmann algebra of arbitrary, possibly infinite

dimension. Then the components of the octonions that make up an anticommuting

spinor are odd Grassmannian. For the previous relation (4.18) we obtain

= Re [ii-ypT]

= Re [T-Yµ(1)1

= Re [T+110T+] Re [T_ITA_] .

(4.19)

The cyclic properties of the trace and the vanishing of the real parts of graded

commutators and associators imply the following identities:

YA Re tr 06-yp) = Re tr (TV-y)

Retr (T+ T.Fti; ) Retr (kp_it._tr)

= Retr (T+ T+ + Retr Tiro)

-12- Re tr ((T+ T+T+t)i; ) Retr ((T_T_t w_o_t)r).

(4.20)
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The full power of the octonionic formalism becomes evident, when we write y in

terms of its Clifford representation Y and Y without the use of the Dirac matrices,

as follows:

Y (4,+kp+t w+o+t) + (c-W -t TA, _t),
(4.21)

Y = (4)+41+t 41+4+t) + (4)_41_t 41_4,i).

This form of writing Y and Y involves the hermitian matrix product of two com-

ponent spinors for which we have the following identity:

(4)awat TA,c,t) _, (pergict WAut) (tr (1,,,x1 cit T.,,,Dct))

(4.22)
((D.:Twat wc4,t)+ (Tutc, 4),7410.) 1,

where o- E {-}-,}. This relationship allows us to rewrite (4.21):

Y (0.041. w+4)+t) + (4)_w_t W_ _t) + ('W -t4 41,_11/_) 1,

Y (44T+t w+q,+t) + (W+tc,+ 4)+tw+)1 + (4)_kii_t 41_4,i).

These identities are plausible because of equation (4.20). To prove them we need to

use the fact that the F, are a basis for the space of the hermitian matrices. (Note

that the matrices are grouped so that the combinations in parentheses are hermitian,

in particular, their traces are real, which means that we may commute octonionic

products and/or take octonionic conjugates.)

4.2.2. Lorentz transformations

(4.23)

In Clifford language the orthogonal group is the Clifford group which is

generated by unit vectors. A unit vector p induces a reflection at a line both on

vectors and on spinors via the transformations

(4.24)
xli + Pli.
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Vectors parallel to p remain fixed, whereas those perpendicular to p are inverted.

A pair of unit vectors p, q induces a rotation in the plane spanned by them, which

means that the even part of the Clifford group corresponds to the simple orthogonal

group. Specifically the 9+1-dimensional proper orthochronous Lorentz transforma-

tions are generated by

X > P(OXCI)P,

W-F P(C4W+),

kii_ > P(Q11_),

where pa? = qp.q44 = 1. More details specifically about the effects of the non-

associativity of the octonions are given in [12,13].

(4.25)

4.2.3. The 3 -W's rule

The previous relationships (4.23), which represent part of the octonionic

analogue of the Fierz identities, allow us to deduce the 3 -W's rule for anticommuting

9+1-D Majorana-Weyl spinors: (We take klik = P+ Wk for k = 1,2,3.)

-elly112-y,,1113 = (12W3t 41311121.)111

(412T3t 413412t)T1 (Re tr (T2T3t 4/3412t)) I1 (4.26)

(112413t)w1 (413412t)T1 + T1(W3N12) 411(T2tT3)

When we add the terms generated by cyclic permutations of the spinors, we can

express the result in terms of associators of octonions. We may even treat both

spinor components simultaneously by defining an associator for spinors:

[IIii, kli2t, 413] := WI (W2N13) (WI W2t)W3 (4.27)

This spinor associator is just a shorthand for the following expression involving

associators of the components:



[W11, W21*, I31] + [W11, W22*, 1132]
[W1, W2t, W3] = ,

[W12, W21*, W31] + [W12, W22*, "132]
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(4.28)

where Ta = 0:*1) (a = 1, 2, 3). The associator for (non-Grassmann) octonions
m'a2

is an antisymmetric function of its three arguments. So the previous expression is

symmetric in the last two anticommuting spinors 4/2 and W3, since their components

are grouped together consistently:

[W1, I2t, 113] = [W1, 13t, 412]- (4.29)

(The derivation is a little tricky and uses the fact that octonionic conjugation of one

of the arguments of an associator merely changes its sign.) Therefore we see that

71 W1127413 + cyclic . 442, wit, pi] + [/3, 42t, ji] + RI, W3t, W2]

['1,12t, W3] + [W2, Wit, W3] [W3, Wit, W2] (4.30)

= 0.

This identity is required for the Green-Schwarz superstring to exhibit the global

fermionic supersymmetry [11]. This derivation shows that the 3-W's rule is a direct

consequence of the alternativity of the octonionic algebra, i.e., the relevant part of

the Fierz identities are naturally built into the algebraic structure of the octonions.

4.2.4. A note on dotted and undotted spinors

From the form (see (4.1) and (4.2)) of the octonionic representation of

C1(9,1) one might suspect, that there is no essential difference compared to the

analogous complex representation of C1(3,1), where we are familiar with the no-

tion of dotted and undotted spinors with raised and lowered indices. This notion

in the complex case arises from the fact, that in four dimensions complex conjuga-

tion of the Dirac matrices induces another faithful irreducible representation of the
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Clifford algebra C1(3,1) and matrix transposition induces a faithful representation

of the opposite Clifford algebra C/opp(3, 1), i.e., the algebra obtained by defining

aopp vopp bopp = (b v a),,pp, where ,., (resp. V opp ) denotes multiplication in the abstract

algebra (resp. its opposite). Therefore, the two irreducible representations r and

F of the even subalgebra C10(3, 1), are essentially just complex conjugates of each

other, more precisely they are related by charge conjugation:

5-(AA EbA
(XAA)* EAB

X=
0 1 ) ( 0 1 )
1 0 1 0

(4.31)

This relationship still holds in the octonionic case, although octonionic conjugation

does not result in another representation, nor does matrix transposition give a rep-

resentation for the opposite Clifford algebra, because octonionic multiplication is

not commutative:

WY* 13* 0* ,

oT hT iiT.

As a consequence (I), defined by

sva it A ( kiv )* 13 A xii

( 0 1 )
W+s,

(4.32)

(4.33)

(4.34)

does not transform like a negative chirality spinor according to (4.25). For this

reason we prefer to use the original relationship (4.7) as a definition. Remarkably,

we will not ever have to use (4.31) in any derivation, which confirms that this

definition is not of primary importance.



Hermitian conjugation is still an antiautomorphism:

(fin)t otfit,
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(4.35)

which we already used to obtain a Dirac hermitian form, which defines the spinor

adjoint.

So only two pairs of the four spinor spaces with lowered/raised, undot-

ted/dotted indices are in close correspondence, which allows only limited use of the

(to some) familiar notation. This difference may be caused by the spinors being

both Majorana and Weyl in 9+1 dimensions.

Actually, it is still possible to restore relations (4.32) and (4.33). Namely,

one has to switch to the opposite octonionic algebra. For example, the octonionic

conjugate of an octonionic representation is another representation, when the orig-

inal octonionic product is replaced by its opposite. This idea of utilizing various

multiplication rules of the octonions, for example, the rule for the opposite octo-

nionic algebra, will be pursued further in [12].

4.3. THE SUPERPARTICLE ACTION, THE EQUATIONS OF MO-
TION AND THEIR SOLUTION

The action in the Lagrangian form or second order action for the CBS-

superparticle [4] is given by

where

L=

=

S = dr L(r), (4.36)J

ler 71.1,
2 tz

ie tr (nfi),

e-1 + Re oAfloAl e-1
-A Re BA-yOA],

[ic ElAsli (OA 0A t °AO t

(4.37)
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and the variables describing the superparticle are its spacetime position xµ, a set

of N Majorana-Weyl spinors 0A, and e is the einbein or induced metric on the

worldline. The following equations of motion are obtained from varying the action

with respect to e

7rµ 7r"` = 0,
(4.38)

tr 0;=

with respect to x

71- = 0,
(4.39)

<=> H = 0;

and with respect to 0A

BA -11;44 0,

(4.40)
<=#. ii6A = o.

We solve the algebraic equations for H and OA. Equations (4.38) and (4.39)

imply that 7r is a constant lightlike vector. Such vectors can be parametrized by 9

even Grassmann parameters {7-1, , 7r9} uniquely for the future or past light cone

in the regular case, i.e., if at least one of these components is invertible and therefore

has non-zero body. In this case E?_i 7r? is invertible and has up to a sign a unique

square root 7r0, whence ir+ or 7r- is invertible.

Otherwise, in the singular case when all components of 7r have zero body,

there may not exist any 7r0 to make 7r, lightlike, or there may be multiple possibilities.

(For example, if the spatial components are all zero, then ro may be any even

Grassmann number which squares to zero. These difficulties arise, because x H x2

is not injective in the neighborhood of zero.) We do not have a parametrization of

this variation of the trivial solution.
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In terms of even Grassmann octonions we parametrize H by two real num-

bers la 1, lbj and a unit octonion r, where = 1. This parametrization does not

cover the cases where 7r+ or 7r- are not squares, which can happen if they are not

invertible. If they are squares, but not both invertible, there may be other forms of

7r such that 7r+7r- 7r7r* = 0. If jai = 0 or lbj = 0, then 1' is undetermined:

('alibi?" !b12

Even in the pathological cases for H we can solve (4.40) by letting

eA rgA ( )
7r* 7r-

(4.41)

(4.42)

where CA is an odd Grassmannian spinor. This solution relies on the weak form

of associativity, the so-called alternativity, of the octonions, which makes products

which involve not more then two full octonions and their octonionic conjugates

associative. If 7r+ (resp. 7r-) is invertible, we may redefine 0 -4 ce (resp.

S2 S2 7r- CA) to see that our solution only depends on one arbitrary odd2

Grassmann octonion function.

If we can write H as in (4.41), then

BA = ( 'al
(1a10+ ibl?'0)= woU,

10"
(4.43)

where 410 = (1/14.) is a commuting spinor and Co is an arbitrary odd Grassmann oc-

tonion function. So we gave the general classical solution for the CBS superparticle,

except for a parametrization of the lightlike vector in the pathological cases.

In other solutions [5] H is parametrized in terms of a commuting spinor



( lal2 al)*
II = kli xlit = .

ba* (1)12
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(4.44)

This parametrization introduces a redundancy of 7 extra parameters that correspond

aabil*bito an octonionic unit sphere S7, since only the combination r = enters into

the off diagonal elements of H. Removing this redundancy reduces the number

of octonionic directions to just the one of i', which allowed us to find the general

solution for OA without much difficulty. So we started with one specific 1'o = (1)V.)

and obtained the general solution OA = Wo(e. The arbitrary Grassmann octonionic

function ((11 introduces only a second octonionic direction, so that all the products

appearing in the expression tIOA are associative. For the general xli = (ab) we may

want to try 0A = We with eA an arbitrary odd Grassmann octonion, but we do

not necessarily obtain a solution because of the non-associativity of the octonions.

A recent article by Cederwall & Preitschopf [16] proposes to modify the

octonionic product to avoid the fixing of 'Yo. Applying these ideas, we can give an

alternate form of the solution:

oA qj Oa caA
Or eA ii, ce, (4.45)

where x oa y := lal-2(xa*)(ay) and similar for ob. The new Grassmann functions CA

and (g1 are related to (61 via --1:1(61 = CA and ,,,<-61 = 0. Again, there are difficulties

if lal or 1bl are not invertible, because only one of the modified products exists in

these cases.

In line with [16] the proper interpretation of H =.-- *kr is to view it as ele-

ment of R x OP, OP1 being the octonionic projective line. The sixteen parameters

of kli are collapsed, using the Hopf [17] map: R x S15 c....-... R x S8 X Sr. The singularities

for tat = 0 or Ibi = 0 are caused by the fact that the particular coordinate maps

cannot be extended to include both of these points. So the extra 7 parameters in



124

IJ can be divided out, adapting the octonionic product. The modification of the

product amounts to a rotation of the imaginary part modulo a automorphism of the

octonionic product, which accounts for the octonionic unit sphere S7 2:,- SO(7)/G2.

In a sense the Lorentz invariance is already broken by specifying a certain multipli-

cation rule of the octonionic product. The adaptation of the product to the spinor

components can be seen to restore the Lorentz invariance.

From any of the forms for eA we get OA by simply integrating the arbitrary

odd Grassmann octonion function, using the form of (4.42), for example,

to . nzA + o6t. (4.46)

So OA is parametrized by an arbitrary Grassmann octonion function and a constant

anticommuting spinor. X may now be computed by a simple integration. The local

fermionic supersymmetry can be seen to provide a similar parametrization of the

solutions as is shown in the next section.

4.4. THE JORDAN MATRIX FORMALISM

This section carries on the attempts of Foot & Joshi [8] and Gfirsey [2]. We

combine a fermionic spinor variable 13 and a bosonic vector B and scalar b into one

superspace object, namely a 3 x 3 Jordan matrix B:

B p
5 ( fit b)

(4.47)

(13 corresponds to a positive chirality spinor.) The Jordan product for Jordan ma-

trices with Grassmannian entries is taken to be defined as in [8], which is equivalent

to taking the hermitian part of the matrix product:

1
A 0 B :=

2
( AB + (AB)t) .
\ (4.48)
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The results of section 4.2.2 can be applied to obtain a generating set for all

Lorentz transformations for a Jordan matrix:

(M 0)
A --+ M AA4t , where M = , M = PF1, and poe = 1.

0 1

(4.49)

(Q in (4.25) has been replaced by the constant f1, which is purely real and allows us

to move the parentheses. This subset of transformations, of course, still generates

all of the Lorentz transformations.)

For the superparticle we consider as the fundamental superspace matrix

X el0)
X =

ei et e
(4.50)

(We already saw in the solution in the previous section that the fermionic variables

decouple, which reflects a symmetry of the Lagrangian. In this section, we only con-

sider one fermionic variable, i.e., N = 1.) The global supersymmetry transformation

may then be written as

(1 -I- 6,)X = Z,o X

( 1 26-4E ) ( X e20
= .

0 1 elOt e

X + (fOt Bet) el (0 + f)

e2 (Bt + Et) e

(4.51)

Note that we used the non-hermitian matrix Z for this transformation, which avoids

the extension to larger matrices as it is done in [2]. The A-transformation has a

simple structure as well:



(1 + 8A)X = X o ZAit

( X e29 ) ( 1 0
= o

el 9t e 2e-4 AO 1

(
=

x + A(Obt 60t) ei (0 + )O)

ei (Ot + AO) e

We can also construct a superspace variable that contains the conjugate momentum

H of X:
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(4.52)

21 e -1X o Zet

X (ei0) ) ( 1 0
t o

(e18) e 2e -29t
1

(e-lA + (60t °et)] e-le + lee-10
=

e-29t 4_ lee-let e

II Cie + lee-19
=

(e--1et + ee-1 ot e

However, it seems to work better to postulate another superspace variable as the

"conjugate" to X:

(4.53)

( II e--26)
P := (4.54)elet 0

For it can be used to give a pretty form for the solution of the equations of motion:

P

where

Oa =

= (0a0:)..

b

i

a

e-4C. J

resp. P = (ObOb).0

resp. irkb = b

CIO,*

(4.55)

1 (4.56)
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and the products are evaluated using the modified product. Taking the hermitian

part is implied, causing the (3,3) component to vanish. This form exactly reproduces

(4.45). It can be interpreted to be a Grassmannian extension of the octonionic

projective line, which can also be defined as the matrices which are idempotent up

to scale:

7, o P = (tr (P))P. (4.57)

(The Jordan product is understood to be based on the modified octonionic product.)

A not quite so aesthetic form of the K-transformation can also be obtained using 2:

<5,,,X = 4
( 0 0 ) (p ( 0 K ))

0 el frct 0
(4.58)

Taking a closer look at this local fermionic symmetry, we realize that

50 = IIK, 45,X = e8,c0t 80et, 6e = 2(OtK Kte),
(4.59)

8II = 2[K(Ile)t (lie)Kt],

i.e., on shell 8,,II = 0 and 450 has the form of the general solution for 0. (The

form of the transformation simplifies due to our choice to include the scale in the

definition of H.) So the K-supersymmetry can be used to absorb the arbitrary odd

Grassmann octonion function in the solution for 0, so that just a constant spinor

remains. Therefore, acting with K-transformations on the solutions of the form

0 = 0o,

X = ell (4.60)

X= Ell + X0,

where 00 is a constant anticommuting spinor, Xo is a constant vector, H is a constant

lightlike vector, and E = f e(r) dr is the arclength along the worldline, generates

all solutions.
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The Freudenthal product for Jordan matrices is defined by

1x*y := X o y
1 1
X(tr (y)) - .(tr (X))),-1- [(tr (X))(tr (y)) tr (X o y)] 1.

(4.61)

This notion can be extended for Grassmannian Jordan matrices. The Lagrangian

L for the superparticle is then given by the following form which has the same

appearance as the E6 invariant trilinear form on the non-Grassmannian Jordan

algebra:

L = tr ((P*X) o 2). (4.62)

Due to the antisymmetry with respect to the spinor variables only the (3, 3) corn-

( 0 0
ponent of X contributes, i.e., X could be replaced by in (4.62):

0 e

(0,* 00
o PL = tr (4.63)

0 e

Also considering the components of P only the upper 2 x 2 matrix H contributes, so

that P can be replaced by 2' in both forms of the Lagrangian. Alternate versions

of this formalism, where the einbein e is substituted by 1 in the superspace variable

X, are possible maintaining the form of L, since the trilinear form only contains

certain combinations of variables, i.e., products of two vectors and a scalar or of two

spinors and a vector, both of which have units of length'.

4.5. CONCLUSION

We have demonstrated the usefulness of the octonionic formalism in several

ways in this article. We have solved the classical equations of motion for the CBS

superparticle. The question of Lorentz covariance of the solution could be answered
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using a modified octonionic product. The local fermionic transformation could be

seen to relate solutions and absorb the arbitrary odd Grassmann octonion function

in the solution for the fermionic variable. We have been able to express Lorentz and

all known supersymmetry transformations in terms of Jordan products involving

Jordan matrices with Grassmannian entries. However, the exact form of the objects

that should be used in these expressions was unclear because of the cancellations

due to the anticommuting variables. We believe that an extension to the Green-

Schwarz superstring will fix the form of the expressions, if such an extension is

possible. Another interesting avenue is to explore the symmetries of the theory in

terms of the Jordan matrices further. Taking a varying octonionic product into

account, this may lead to similar generalizations of (super) Lie groups as the 57

transformations in [16] are generalizations of group manifolds. An extension of the

octonionic formalism off shell is needed to lead to a quantization of the theory in

this formalism, but it may be the key to unlock the mysteries of the superstring.
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5. PERSPECTIVES

We have made respectable progress towards the formidable goal of estab-

lishing a foundation for octonionic descriptions of spacetime and supersymmetry.

We have provided the basic framework for octonionic representations of Clifford al-

gebras, we have given explicit examples for the relevant dimensions, and we started

along a promising path toward a description of supersymmetry by understanding

the triality maps and the supersymmetry transformations of the CBS superparticle.

More mathematically and physically interesting questions lie ahead. Are

there octonionic descriptions of the other exceptional Lie groups similar to the one

given for G2? We have already found a piece of the description for the automorphism

group of the exceptional Jordan algebra, F4, namely the triality part. The way in

which SO(9,1) is embedded in E6, acting on Jordan matrices, can be seen from

the Lorentz transformations of the superspace variable of the superparticle. So this

avenue looks promising.

Can we find a superspace variable for the Green-Schwarz superstring and

express its supersymmetry transformations, as we did for the CBS superparticle?

For the interesting case of N = 2 supersymmetry, the string contains two anticom-

muting Majorana-Weyl spinors. It is unclear whether both of these spinors should

be combined into one object with the bosonic variable or whether two separate su-

perspace variables should be introduced. Related to the two worldsheet dimensions

of the string, we have two linearly independent partial derivatives. Because of this,

cancellations involving the fermionic variable that occurred in the Lagrangian of the

superparticle in the Jordan matrix form do not occur for the superstring.
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Is there a natural extension of the octonionic formalism off shell? We have

seen that octonions provide a natural parametrization of lightlike vectors or even

of solutions of the superparticle, which correspond to the Hopf map S" 58.

How can the extra dimension of an arbitrary, non-lightlike vector be introduced?

The difficulty is to find the extension of the octonionic formalism off the lightcone

that preserves its advantageous features. This step is necessary to utilize octonionic

methods for a quantization of supersymmetric theories.

The answers to these questions may hold the key to our understanding of

supersymmetric theories, and eventually the key to a theory of quantum gravity.

We would be pleased to see this piece of work as a part of the mosaic that helps us

understand the structure of this universe, space and time.
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APPENDIX A

Structure matrices for our choice of multiplication rules for the octonions.

(Note that if the sign of the first column is changed, the first matrix becomes 1

and each matrix except the first becomes antisymmetric.)

[Alik] =

[A2jk] =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



[10;k] =

[A4pc] =

[A5;k] =

0 0 1 0 0 0 0 0

0 0 0 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 -1 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 -1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 -1 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 -1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 -1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 -1 0 0 0 0 0

0 0 0 1 0 0 0 0
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[116,k] =

[A72k] =

[Asik] =

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 -1

0 0 0 0 0 0 -1 0

0 -1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 -1

0 0 0 0 -1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 -1 0 0 0 0

0 0 -1 0 0 0 0 0

0 -1 0 0 0 0 0 0

1 0 0 0 0 0 0 0
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Using the following correspondence, which is explained in Section 3.5:

X+ x
X" 4-4 X =

X* X-

we can write the elementary Lorentz transformations L", in terms of 2 x 2 hermitian

matrices M over .

MXMt, for Categories 1 and 2
X-4` = L"Xv X' =

M2 (M1XMO M2 , for Category 3

Category 1:

X° 0

L=

jo

L=

Boosts

X1 :

/ cosh a

sinh a

0

0

xn-f-i:

cosh a

0

0

sinh a

sinh a

cosh a

0

0

0

1

0

0

0

0

1

0

0

0

1

0

... 01

... 0

... 0

1

sinh a

0

0

cosh a /

cosh 0) sinh
HM=

sinh cosh (i)

exp (I)
HM= (

0 )

0 exp (--i)



X° c) Xi:

/ cosh a 0 ... 0 sinh a 0 ..

0 1 ... 0 0 0 .. 0

M=
L

0 0 1 0 0 0 ( cosh (i)
sinh a 0 0 cosh a 0 0 ei sinh

0 0 0 0 1 0

\ 0 0 0 0 0 1/

Category 2: Rotations

X1 0 xt:

/1 0 0 0 0 0 ... 0\

0 cos a 0 0 sin a 0 ... 0

0 0 1 0 0 0 ... 0

M=
L= 0 0 0 1 0 0 0

exp (e; 2)(

0 sin a 0 0 cos a 0 0 0

0 0 0 0 0 1 0

\0 0 0 0 0 0 1/
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ei sinh

cosh (I)

0

exp (e;2)



L=

X` 0 x.:

/1 . 0 0 0 0 0

0 1 0 0 0 0

0 0 cos a 0 0 sina cos
HM=

0 0 0 1 0 0

0 . 0 0 0 .. 1 0

\0 ... 0 sin a 0 .. 0 cos a /

Xi C5 Xn:
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(I) ei sin (I)

ei sin (I) cos (2)

/1 0 0 0 0

0 cos a 0 0 sin a

L=
0 0 1 0 0 cos (i)

HM=
sin (i)

0 0 0 1 0

\0 sin a 0 0 cos a /



Category 3: Additional Transverse Rotations

Xi 0 Xj:

/1 ... 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 cos a 0 0 sing 0 0

0 0 0 1 0 0 0 0

L=

0 0 0 0 1 0 0 0

0 0 sin a 0 0 cos a 0 0

0 0 0 0 0 0 1 0

\0 0 0 0 0 0 0 ... 1/

4-+

1 0
= exp (

2 ei) 0 1

M2 = exp (-7
2 2

(cos a ei + sin a
2
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