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THE VARIABLE SPEED WAVE EQUATION AND PERFECTLY

MATCHED LAYERS

1. INTRODUCTION

1.1. Problem From Thermoacoustic Tomography

In thermoacoustic tomography, a short electro-magnetic pulse is emitted into a

body and irradiated tissue generates acoustic waves. Thermoacoustic tomography aims

to recover the degree and distribution of energy deposition from measurement of the

generated acoustic waves on the surface of the body.

The problem is mathematically modeled in the following way. We assume that c(x) > 0

is the acoustic sound speed at location x. Let u solve the problem
∂ttu− c2∆u = 0 in (0, T )× Rn,

u|t=0 = f,

∂tu|t=0 = 0,

where T > 0 is fixed.

Assume that f is supported in Ω̄, where Ω ⊂ Rn is some smooth bounded domain. The

mathematical measurements on the boundary of Ω are modeled by the operator

Λf := u|[0,T ]×∂Ω.

The goal is to reconstruct the initial value f at t = 0, using the data of Λf .

If T =∞, then there are some well known results for many different cases of sound speed

c, geometry, dimension n, and data (see [33] for example). One reconstruction method
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when T <∞ is fixed, greater than the length of the longest geodesic in Ω, is introduced in

[33]. It is to get an approximate solution of the thermoacoustic problem by the following

time reversal method. Given h = Λf , let v solve

(∂2
t − c2∆)v = 0 in (0, T )× Ω,

v|[0,T ]×∂Ω = h,

v|t=T = φ,

∂tv|t=T = 0,

(1.1)

where φ solves the elliptic boundary problem

−c2∆φ = 0, φ|∂Ω = h(T, ·).

Then the following pseudo-inverse operator is defined from the range of Λ to H1(Ω):

Ah := v(0, ·) in Ω̄.

Let (Ω, c−2g) be a non-trapping Riemannian manifold. i.e., T (Ω) <∞ where T (Ω) is the

supremum of the length of all geodesics of the metric c−2g in Ω̄.

Theorem 1.1 [33] Let T > T (Ω). Then AΛ = Id−K, where K is compact in H1(Ω), and

‖K‖H1(Ω) < 1. In particular, Id−K is invertible on H1(Ω), and the inverse thermoacoustic

problem has an explicit solution of the form

f =

∞∑
m=0

KmAh, h := Λf.

This theorem motivates a line of research, which is to find a good numerical ap-

proximation of ‖K‖H1(Ω). For the numerical implementation, there are three separate

procedures:

1. (Forward-Collect data) Implement acoustic wave equation with Cauchy initial data

which is compactly supported in Ω.
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2. (Elliptic Boundary Problem) Implement elliptic boundary problem with data at

(t, x) ∈ T × ∂Ω.

3. (Backward-Reconstruct initial value) Implement acoustic wave equation reversely

imposing boundary value from the collected data.

The forward problem is set in the unbounded domain in Rn, which must be truncated

for numerical experiments. In the first step of the simulation it is required to have a

large enough computational domain to ensure that the data collected on the boundary

of Ω is not affected by reflected waves from the numerical boundary, but it is expensive

to implement such a large additional domain. There has been much attention devoted

to numerical simulation of wave equations in reasonably sized computational domains

avoiding reflecting waves from the boundaries. Two general methods are the development

of non-reflecting boundary conditions or by surrounding the computational domain by

absorbing layers.

1.2. Background of Perfectly Matched Layers

One of the most effective and straight forward ways to truncate an unbounded

domain numerically is to surround the computational domain with thin artificial absorbing

layers. This is called the Perfectly Matched Layers (PML) method. In 1994, the PML

method was first introduced by J. P. Berenger [21] who found absorbing boundary layers

for Maxwell’s equations. The key property of a PML method is that it is originally

designed so that waves incident upon the PML from a non-PML region do not reflect

at the interface. This property allows the PML to strongly attenuate by the absorption

and exponentially decay outgoing waves in the layers. Since its introduction, there have

been several modified reformulations of PML for both Maxwell’s equations [50] and for

other wave-type equations, such as elastodynamics [51], the linearized Euler equations



4

[17, 20], and Helmholtz equations [16, 49]. Berenger’s original formulation is called a

split-field PML, or split PML because the electromagnetic field is split into two unphysical

fields. A later formulation called uniaxial PML or UPML [44] describes the PML without

any splitting as the ordinary wave equation with a combination of artificial anisotropic

absorbing materials. Thus it has become more popular because its simplicity and efficiency.

Although both Berenger’s formulation and UPML were originally derived by manually

computing the solutions for a wave incident on the PML at an arbitrary angle, and then

finding conditions under which incident plane waves do not reflect from the PML interface

in a homogeneous medium, both of these formulations were later rederived by a much

more flexible and general way using a method called a complex coordinate stretching [50].

The complex-coordinate approach is essentially based on analytic continuation of the wave

equations into complex spatial coordinates in the layer which changes outward propagating

waves to exponentially decaying waves. In this viewpoint, a PML is allowed to be derived

for many different media as well as for many different wave type equations. The next

section, following [47], explains how the solutions of wave equations exponentially decay

in the PML.

1.3. Complex Coordinate Stretching

The complex coordinate stretching can be viewed as the complex coordinate change

of variables (see chapter 2.1. for e.g.) in the frequency domain of a wave equation. For

more detail, a new complex coordinates x̃ is stretched from the real value x in the new

media x > a,

x̃ =


x if x ≤ a,

x+ iy(x) if x > a,

(1.2)
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where y is a real nonnegative C1 function. Then the exponential

eikx̃ = eikx+iy = eikxe−ky,

which has exponential decay for k > 0 as y increases. More specifically, y is defined as

y(x) =
1

ω

∫ x

a
σ(s)ds, (1.3)

where a damping function σ := σ(x) is a positive C0 function vanishing when x < a and

ω is the frequency. That gives a new complex coordinates,

x̃ = x+ i

∫ x
a σ(s)ds

ω
. (1.4)

Furthermore,

∂

∂x̃
=
∂x

∂x̃

∂

∂x
=

1

1 + iσ(x)
ω

∂

∂x
.

The reason for applying the frequency ω is that the decay is then independent of the wave

number, so that it depends only on spatial position and the sound speed c as follows, by

the dispersion relation,

eikx̃ = e
ik
(
x+i

∫ x
a σ(s)ds

ω

)
= eikx−

k
ω

∫ x
a σ(s)ds = eikx−

1
c

∫ x
a σ(s)ds.

1.4. Limitations of PML

The PML method has been widely adapted to different types of wave equations

in various media, but there are some limitations such as unavoidable reflection or even

exponential growth from the interface between the computational domain and the layer.

First, the method is designed to be reflection-less to the positive x-direction for the exact,

continuous wave equations. Once the equations equipped with a PML are discretized,

there is no guarantee of non-reflection of numerical solutions. But this weakness can be

dealt with by making the absorption coefficient σ increase gradually from zero over a PML
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simultaneously making a layer thicker or increasing the resolution to get acceptable reflec-

tions [2]. Next, the basic idea of PML is that the solutions of wave equations are analytic

functions in the normal direction to the boundary and can be analytically continued to the

complex plane, so that PML is not applicable in some inhomogeneous media (see [47] for

more detail). Another problem is when waves propagate tangentially to a PML because

it is assumed that waves moves in the direction perpendicular to the PML, but not all

waves hit the interface as it is designed. For example, as the radiation approaches glancing

incidence, the reflection is getting bigger. Setting a PML far from the domain of interest

mitigates this problem but it costs more from the bigger computation domain. Besides

the perfect matching of layers it is also desirable that the equations governing the PML

be well-posed in a mathematical view. We focus on the investigation of the well-posedness

and the stability of PML wave equations in the next section.

1.5. Well-posedness and Stability

Since the time the PML method was introduced, the well-posedness and stability

issue has been investigated in many different ways in different media, but there still remain

some questions. This is important when a PML derived for a constant coefficient linear

problem is to be applied to a non-linear problem or a problem with variable coefficients.

If the linearized problem is only weakly well-posed, the corresponding non-linear problem

or variable coefficient problem can be ill-posed. Most PML wave equations have the form

of lower-order perturbations of a first order hyperbolic system. Therefore, the general

stability theory for first order hyperbolic systems may ensure the well-posedness of the

Cauchy problem associated to the PML equations. Let us assume that a first order system

of partial differential equations for complex valued function on R1+d is obtained from the
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wave equation with a PML,

L(x, ∂t, ∂x)U := ∂tU +

d∑
l=1

Al∂lU + B(x)U = 0, (1.5)

with the principal part of L, denoted L1,

L1(∂t, ∂x) := ∂t +
d∑
l=1

Al∂l, (1.6)

having constant matrix coefficients Al. The Cauchy problem for L is to find a solution U

defined on [0,∞)× Rd satisfying (1.5) with prescribed initial data U(0, ·). Following [26]

Definition 1.1 The Cauchy problem for L1 is weakly well posed if there exist q > 0,K >

0 and α ∈ R so that for any initial value in Hq(Rd), there is a unique solution U ∈

C0([0,∞);L2(Rd)) with

∀t ≥ 0, ‖U(t, ·)‖L2(Rd) ≤ Keαt‖U(0, ·)‖Hq(Rd).

The Cauchy problem for L1 is weakly stable if there is a unique solution U ∈ C0([0,∞);L2(Rd))

with

∀t ≥ 0, ‖U(t, ·)‖L2(Rd) ≤ K(1 + t)q‖U(0, ·)‖Hq(Rd).

When the conclusion holds with q = 0, the Cauchy problem is called strongly well posed or

strongly stable, respectively.

Theorem 1.2 1. The Cauchy problem for L1 is weakly well posed if and only if for

each ξ ∈ Rd, the eigenvalues of L1(0, ξ) are real.

2. The Cauchy problem for L1 is strongly well posed if and only if for each ξ ∈ Rd, the

eigenvalues of L1(0, ξ) are real and L1(0, ξ) is uniformly diagonalizable, there is an

invertible S(ξ) satisfying,

S(ξ)−1L1(0, ξ)S(ξ) = diagonal, S, S−1 ∈ L∞(Rdξ).
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3. If B has constant coefficients, then the Cauchy problem for L is weakly well posed (

or weakly stable, respectively) if and only if there exists M ≥ 0 (M=0, respectively)

such that for any ξ ∈ Rd, detL(τ, ξ) = 0→ |Im τ | ≤M.

The analytical stability of PMLs have already been claimed by several authors in the

cases of Maxwell’s equations [14, 37, 27], stability for wave equations [46, 14, 30], stability

for elastic wave [18], and shown unstable for anisotropic media [13]. Mostly, stability has

been shown by investigating eigenvalues of the first order hyperbolic equations obtained

from the constant speed wave equations with PMLs. Additionally a general interpretation

of a PML is that the restriction of the equations to the PML equation in the computational

domain coincides with the original problem [11]. In the view of a PML, damping terms are

required to vanish identically in the computational region, so that the condition of constant

damping terms generates discontinuity on the interface between the computational and

PML regions. There is a restricted stability result for a general first-order hyperbolic

system of the acoustic wave propagation in corners [15]. Alternatively energy techniques

can be used to answer the question of stability for a PML associated to wave equations

with variable sound speed and damping terms as well as in the case of a constant damping.

In studying the constant damping case by energy techniques, a property widely used by

several authors [14] is

(∂t + σ)∂x = ∂x(∂t + σ).

As the previous comments about the continuation of a PML, a constant damping creates

a jump on the interface, so that the equality is not quite true. There is also another

published claim [7] of stability for 3-d second order PML wave equation using an energy

method, but in our opinion the proof is not clear in choosing test functions. Therefore

we haven’t seen clear stability proof for the PML wave equation in several dimensions

(d ≥ 2). In 1 dimension, stability is proved and even the decay rate for the constant

speed case is proved [46]. The decay rate in dimension one for variable sound speed and
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in higher dimensions for all sounds speeds remains an open question. This stability issue

motivates us to propose the following questions:

1. Give a clear answer of analytical stability for a PML wave equation with a constant

or variable sound speed in a higher dimension if it is, or provide a counter example

if it isn’t (in both the case of a constant and non constant damping).

2. Construct a PML wave equation which is stable and efficient in a higher dimension.

3. Figure out energy decay rate in a PML wave equation with variable sound speed in

1 dimension.

1.6. Organization of this Thesis

The organization of this dissertation is as follows:

Chapter 2 will introduce new regularized system of acoustic wave equation associated to

the Un-Split PML. Regularizing a term in the classical Un-Split PML we can show well-

posedness of the system by energy technique without losing the efficiency of PML.

In chapter 3 we introduce additional damping in a classical PML, which derives new for-

mulation. With this damping we introduce two type of system, Split and Un-Split PML,

and show well-posedness and numerical efficiency.

Chapter 4 we show the energy decay for the 1-d acoustic wave equation with variable

sound speed equipped a PML.

Chapter 5 will introduce a system of first order hyperbolic equation with low order damp-

ing. We show that the system is well-posed and that energy decays. Introducing local

discontinuous Galerkin (LDG) method, we show an a priori error estimate of LDG for

the system.

In chpater 6, as a continuation of the chapter 5, we present a fully discretized discon-

tinuous Galerkin method for the system and show an a priori L2-error estimate under



10

additional regularity assumptions.
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2. REGULARIZED SYSTEM OF UN-SPLIT PML ACOUSTIC
WAVE EQUATION

In this section, we start with a second order system of acoustic 2-d wave equations

with variable sound speed associated to an Un-Split PML as was introduced in [30]. The

well-posedness and also stability of the system have not been clearly established yet, since

the damping terms appear in the first order term. This was claimed in [30, 7], but the

arguments have errors or are incomplete.

We introduce a new regularized system and show the well-posedness using energy

techniques and the standard Galerkin method. The idea of regularization of a specific

term is suggested by [20], in which the same technique is first applied to the Split PML

formulation of the linearized Euler equations.

First, we show how a PML is applied in the acoustic wave equation.

2.1. Coordinate Transform

We consider the second order acoustic wave equation with variable sound speed in

a domain Ω0 ⊂⊂ [−a, a]× [−b, b] ⊂ R2, for some T > 0,

utt(~x, t)− c(~x)2∆u(~x, t) = 0, ∀(~x, t) ∈ R2 × (0, T ], (2.1)

with the initial condition u(~x, 0) = f, ut(~x, 0) = 0 with supp(f) ⊂ Ω0.

We assume that the sound speed c(~x) > 0 is bounded by

0 < c∗ ≤ c(~x) ≤ c∗ <∞. (2.2)

After the even extension of the solution in the entire time domain, i.e., u(~x,−t) = u(~x, t)

for all t ∈ R, we take Fourier transform of u in time,

û(~x, ω) =
1

2π

∫ ∞
−∞

u(~x, t)e−iωtdt, for any ω ∈ R.
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Then û satisfies the Helmholtz equation,

−ω
2

c2
û(~x, ω) =

∂

∂x

(
∂û

∂x
(~x, ω)

)
+

∂

∂y

(
∂û

∂y
(~x, ω)

)
. (2.3)

Let the domain Ω = [−a − Lx, a + Lx] × [−b − Ly, b + Ly] consist of the computational

domain [−a, a]× [−b, b] surrounded by PML region, where a, b, Lx, Ly > 0.

Next, we introduce the coordinate transform using the damping as introduced in

(1.3) (−ω will be used instead of ω for convenient notation).

~x := (x, y) 7→ (x̃(x), ỹ(y)) :=

(
x+

1

iω

∫ x

a
σx(s)ds, y +

1

iω

∫ y

b
σy(s)ds

)
, (2.4)

where the damping terms σα, α = x, y, are non-negative C0 functions vanishing in [−a, a]×

[−b, b].

We apply the new coordinate system in the Helmholtz equation (2.3),

−ω
2

c2
û(~x, ω) =

∂

∂x̃

(
∂û

∂x̃
(~x, ω)

)
+

∂

∂ỹ

(
∂û

∂ỹ
(~x, ω)

)
. (2.5)

From (2.4), we have the partial differentiation with respect to x̃, ỹ related to partial

derivatives with respect to x, y,

∂

∂x̃
=

1

ηx

∂

∂x
,

∂

∂ỹ
=

1

ηy

∂

∂y
, ηα = 1 +

σα
iω
, α = x, y.

Then, by replacing the partial derivatives in (2.5) and multiplying ηx, ηy, we rewrite it,

−w
2

c2
û =

1

ηx

∂

∂x

(
1

ηx

∂û

∂x

)
+

1

ηy

∂

∂y

(
1

ηy

∂û

∂y

)
,

or

−ηxηy
w2

c2
û =

∂

∂x

(
ηy
ηx

∂û

∂x

)
+

∂

∂y

(
ηx
ηy

∂û

∂y

)
. (2.6)

Simple computations give that

ηy
ηx

∂û

∂x
=

(1 +
σy
iw )

(1 + σx
iw )

∂û

∂x
=

(σy + iw)

(σx + iw)

∂û

∂x
=

(σy − σx + σx + iw)

(σx + iw)

∂û

∂x
=
∂û

∂x
+ (

σy − σx
σx + iw

)
∂û

∂x
,

ηx
ηy

∂û

∂y
=

(1 + σx
iw )

(1 +
σy
iw )

∂û

∂y
=

(σx + iw)

(σy + iw)

∂û

∂y
=

(σx − σy + σy + iw)

(σy + iw)

∂û

∂y
=
∂û

∂y
+ (

σx − σy
σy + iw

)
∂û

∂y
,
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and

ηxηy
(iw)2

c2
û =

(
1 +

σx
iw

)(
1 +

σy
iw

)(iw)2

c2
û =

1

c2
((iw)2 + iw(σx + σy) + σxσy)û.

Again we rewrite (2.6) to obtain

1

c2
((iw)2 + iw(σx + σy) + σxσy)û =

∂2û

∂x2
+
∂2û

∂y2
+

∂

∂x

(
σy − σx
σx + iw

∂û

∂x

)
+

∂

∂y

(
σx − σy
σy + iw

∂û

∂y

)
.

(2.7)

We introduce the auxiliary variable ~̂q = (q̂x, q̂y)
T

(σx + iw)q̂x = (σy − σx)
∂û

∂x
,

(σy + iw)q̂y = (σx − σy)
∂û

∂y
.

Applying the inverse Fourier transform to û and ~̂q in (2.7) we have the following system

of the PML wave equation: For all (~x, t) ∈ Ω× (0, T ], (u, ~q) satisfies
1
c2
utt(~x, t) + α(~x)ut(~x, t) + β(~x)u(~x, t)−∇ · ~q(~x, t)−∆u(~x, t) = 0,

~qt(~x, t) + A(~x)~q(~x, t) + B(~x)∇u(~x, t) = 0,

(2.8)

with the initial conditions

u(~x, 0) := u0 = f, ut(~x, 0) := u1 = 0, ~q(~x, 0) := ~q0 = ~0,

and the zero Dirichlet boundary condition

u(~x, ·)|∂Ω = 0,

where

α(~x) =
σx + σy
c2

, β(~x) =
σxσy
c2

, A(~x) =

 σx 0

0 σy

 , B(~x) =

 σx − σy 0

0 σy − σx

 ,
and σx := σx(x) and σy := σy(y) are nonnegative C0 functions which vanish in the

computational domain in the sense of the analytical continuation of the PML.
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2.2. Regularized System

We introduce the new formulation which consists in regularizing the term in (2.8)

∇ · ~q.

Let δε : H−1(Ω) → H−1(Ω) ∩ L2(Ω) such that δεu is an approximation of u in the

sense that

δεu→ u as ε→ 0

for all u ∈ H−1(Ω). Then we replace (2.8) by the new equations
1
c2
utt + αut + βu− δε∇ · ~q−∆u = 0,

~qt + A~q + B∇u = 0,
(2.9)

where δε∇ · ~q denotes the regularizing operator of the function ∇ · ~q using the smooth

function ρε in the following way.

Let ρ ∈ C∞(R2) with supp(ρ) ⊆ B1(0) and
∫
R2 ρ(x)dx = 1, which is called a

mollifier. For ε > 0, ρε(x) on R2 is defined by

ρε(x) = ε−2ρ(
|x|
ε

), (2.10)

and satisfies
∫
R2 ρε(x)dx = 1 and supp(ρε) ⊆ Bε(0).

We recall the definition of the Sobolev space H1(Ω):

H1(Ω) = {ϕ : ϕ, ∂x1ϕ, ∂x2ϕ ∈ L2(Ω)}.

and denote

H−1(Ω) = [H1
0 (Ω)]′

the dual space of H1
0 (Ω) for a Lipschitz domain Ω.

First we define an approximation operator to the identity over H1
0 (Ω) in Lemma

2.1. To do that, we introduce the following definition.
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Definition 2.1 We say that Ω satisfies the segment condition if for each x0 ∈ ∂Ω there

is a neighborhood U of x0 and a point y0 ∈ Rn such that

Ω̄ ∩ U + ty0 ⊆ Ω, for 0 < t < 1. (2.11)

Lemma 2.1 We define a linear bounded operator δε : H1
0 (Ω) → H1

0 (Ω) ∩H2(Ω) for any

u ∈ H1
0 (Ω) such that δε → 1 in H1

0 (Ω) as ε→ 0 in the strong operator topology following

Theorem 2.6 in [5].

Proof. By a partition of unity each function u ∈ H1
0 (Ω) is a linear combination of functions

in H1
0 (Ω) with small bounded supports. Assume that u ∈ H1

0 (Ω) has compact support

and supp u ⊆ Ω̄ ∩ U, where U in (2.11). Let ut(x) = u(x − ty0) for some y0 satisfying

(2.11) so that supp ut ⊆ Ω for 0 < t < 1. Let ε > 0, then there is t0 such that

0 < t ≤ t0 implies ‖ut − u‖H1(Ω) < ε/2, since translation in H1(Ω) is continuous. We

can choose ε′ > 0 such that supp(ρε′ ∗ ut0) ∈ C∞c (Ω) and ‖ρε′ ∗ ut0 − ut0‖H1(Ω) < ε/2,

since ∂xα(ρε′ ∗ ut0) = ρε′ ∗ ∂xαut0 → ∂xαut0 in L2(R), as ε′ → 0, for xα = x, y. Taking

δε(u) = ρε′(ε) ∗ ut0 we have ‖δε(u) − u‖H1(Ω) < ε for an arbitrarily given ε > 0, in which

the proof is completed.

Remark 2.1 Now we consider the operator δε : H−1(Ω)→ H−1(Ω) ∩ L2(Ω) given by

δε(f) = R ◦ δε ◦ R−1(f) for all f ∈ H−1(Ω), (2.12)

where R := −∆ + I is the Riesz map from H1
0 (Ω)→ H−1(Ω). Then

δε → 1 as ε→∞ in the strong operator topology,

and also satisfies ‖δε(f)‖L2(Ω) ≤ Cδε‖f‖H−1(Ω) for some Cδε > 0, since, by the isometry

of R,

‖δε(f)− f‖H−1(Ω) = ‖RδεR−1(f)− f‖H−1(Ω)

= ‖δεR−1(f)−R−1(f)‖H1
0 (Ω)

= ‖δεu− u‖H1
0 (Ω) → 0 as ε→ 0,
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for u ∈ H1
0 (Ω) such that R(u) = f .

Note that δε is a linear and bounded operator from H−1(Ω) to H−1(Ω) ∩ L2(Ω).

2.3. Well-posedness of the System

Now we show that the system (2.9) is well-posed, provided our function spaces are

defined properly and provided functions σx, σy satisfy

σx, σy ∈ L∞(Ω),

which implies that

‖α‖∞ = ‖σx + σy‖∞ <∞, ‖β‖∞ ≤ ‖σxσy‖∞ <∞, (2.13)

‖A‖2 = max{‖σx‖∞, ‖σy‖∞} <∞, ‖B‖2 ≤
√

2(‖σx‖∞ + ‖σy‖∞) <∞, (2.14)

from the setting of c(x, y) = 1 in the PML region.

Now we look for a weak solution of (2.9) in the sense that

u ∈ L2(0, T ;H1
0 (Ω)), ~q ∈ L2(0, T ;L2(Ω)), (2.15)

with

u′ ∈ L2(0, T ;L2(Ω)), u′′ ∈ L2(0, T ;H−1(Ω)), ~q′ ∈ L2(0, T ;L2(Ω)), (2.16)

which satisfies < 1
c2
u′′, w > +(αu′, w) + (βu,w)− (δε∇ · ~q, w) + (∇u,∇w) = 0,

(~q′, ~v) + (A~q, ~v) + (B∇u, ~v) = 0,
(2.17)

for each w ∈ H1
0 (Ω), ~v ∈ L2(Ω) and a.e. time 0 ≤ t ≤ T , and the initial data in a weak

sense, i.e.,

(u(0), w) = (u0, w), < u′(0), w >= (u1, w), and (~q(0), ~v) = (~q0, ~v) (2.18)
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for each w ∈ H1
0 (Ω), ~v ∈ L2(Ω). Here, < ·, · > denotes the duality pairing between H−1(Ω)

and H1
0 (Ω), (·, ·) is the inner product in L2(Ω), and also time derivatives are understood

in a distributional sense here.

Remark 2.2 We see that u ∈C([0, T ];L2(Ω)), u′ ∈C([0, T ];H−1(Ω)), and ~q∈C([0, T ];L2(Ω)).

For the details, see Theorem 2, Chapter 5.9.2 [25]. Consequently the equalities in (2.17),

(2.18) make sense.

We use the standard Galerkin method constructing a finite approximate solutions

and establish bounds on certain terms in order to extend to a solution in the given space.

2.3.1 Galerkin Approximations.

We employ the Galerkin method to construct a weak solution (2.15).

Let {wj |j ∈ N} be an c−2-weighted orthonormal basis in L2(Ω), i.e., (c−2wj , wk) = δjk,

where Kronecker delta is given by δjk =

 0, if j 6= k

1, if j = k,
of eigenfunctions of the eigen-

value problem 
c2∆w = λw in Ω,

w = 0 on ∂Ω.

and denote Uk the space generated by {w1, w2, · · · , wk} in L2(Ω). Then we have that Uk

is also c−2-weighted orthogonal basis of H1
0 (Ω) i.e.,

(c−2wj , wk) + (∇wj ,∇wk) = 0, if j 6= k.

Let also denote Qk the space generated by smooth functions {~v1, ~v2, · · · , ~vk}, such that

{~vk, k ∈ N} is an orthonormal basis of L2(Ω).

We construct approximate solutions (uk, ~qk), k = 1, 2, 3, · · · , in the form

uk(t) =
k∑
j=1

gkj (t)wj , (2.19)
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~qk(t) =
k∑
j=1

hkj (t)~vj , (2.20)

where the coefficients gkj (t), hkj (t) for 0 ≤ t ≤ T, j = 1, 2, · · · , k satisfy

gkj (0) = (u0, wj), (2.21)

gkj
′
(0) = (u1, wj), (2.22)

~qkj (0) = (~q0, ~vj), (2.23)

and  ( 1
c2
u′′k, wj) + (αu′k + βuk − δε∇ · ~qk, wj) + (∇uk,∇wj) = 0,

(~q′k, ~vj) + (A~qk, ~vj) + (B∇uk, ~vj) = 0,
(2.24)

for all wj ∈ Uk, ~vj ∈ Qk, j = 1, · · · , k. For each integer k = 1, 2, · · · , the standard

theory of ordinary differential equations guarantees that the system (2.24) has a solution

(uk(t), ~qk(t)) for 0 ≤ t ≤ T .

2.3.2 Energy Estimates.

We have some estimates uniform in k, which allows to send k →∞.

Theorem 2.1 There exists a constant CT , depending only on σx, σy, Ω, and T such that

max
0≤t≤T

(
‖1

c
u′k(t)‖L2(Ω) + ‖∇uk(t)‖L2(Ω) + ‖~qk(t)‖L2(Ω)

)
+ ‖u′′k‖L2(0,T ;H−1(Ω)) + ‖~q′k‖L2(0,T ;L2(Ω))

≤ CT
(
‖u0‖2H1

0 (Ω) + ‖u1‖2L2(Ω) + ‖~q0‖2L2(Ω)

)
, (2.25)

for all k = 1, 2, · · ·

Proof. 1. Let us define the approximate energy by

Ek(t) = ‖1

c
u′k(t)‖2L2(Ω) + ‖∇uk(t)‖2L2(Ω) + ‖~qk(t)‖2L2(Ω).
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Then we apply (gkj )′(t) and hkj (t) in the first and second equation in (2.24), respec-

tively, sum j = 1, · · · , k and recall (2.19), (2.20) to obtain ( 1
c2
u′′k, u

′
k) + (αu′k + βuk − δε∇ · ~qk, u′k) + (∇uk,∇u′k) = 0,

(~q′k, ~qk) + (A~qk, ~qk) + (B∇uk, ~qk) = 0,
(2.26)

for a.e. 0 ≤ t ≤ T . Note that ( 1
c2
u′′k, u

′
k) = d

dt

(
1
2‖

1
cu
′
k‖2L2(Ω)

)
. Combining two

equations, we obtain

1

2

d

dt
Ek + F 1

k + F 2
k = 0,

where

F 1
k = (αu′k, u

′
k) + (βuk, u

′
k)− (δε∇ · ~qk, u′k),

F 2
k = (A~qk, ~qk) + (B∇uk, ~qk).

Since the operator ϕ 7−→ δε(ϕ) is continuous from H−1(Ω) −→ L2(Ω),

(δε∇ · ~qk, u′k) ≤ [δε] ‖∇ · ~qk‖H−1(Ω)‖u′k‖L2(Ω), (2.27)

where [δε] = Cδε is the norm of δε in L(H−1(Ω);L2(Ω)) in Remark 2.1. With

Hölder’s inequality and the assumption for σx, σy we estimate F 1
k as following,

|F 1
k | ≤ ‖α‖∞‖u′k‖2L2(Ω)+

1

2
‖β‖∞(‖uk‖2L2(Ω)+‖u

′
k‖2L2(Ω))+[δε] ‖∇·~qk‖H−1(Ω)‖u′k‖L2(Ω).

From the property ‖∇ · ~qk‖H−1(Ω) ≤ c0‖~qk‖L2(Ω) for some c0 > 0 by the embedding

and the Poincaré inequality ‖uk‖2L2(Ω) ≤ cp‖∇uk‖2L2(Ω) for some constant cp > 0

when uk ∈ H1
0 (Ω), it follows that there is a constant c1 > 0 such that

|F 1
k | ≤ c1Ek.

Clearly |F 2
k | ≤ ‖A‖2‖~qk‖2L2(Ω) + ‖B‖2‖∇uk‖L2(Ω)‖~qk‖L2(Ω) ≤ c2Ek, for some con-

stant c2 > 0 by (2.14).

Using the above estimates, Ek(t) satisfies

dEk
dt
≤ CkEk,
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for a suitable constant Ck = max{c1, c2} > 0.

Furthermore, Gronwall’s inequality yields the estimate

Ek(t) ≤ Ek(0)eCkT ≤ CkT
(
‖u0‖2H1

0 (Ω) + ‖u1‖2L2(Ω) + ‖~q0‖2L2(Ω)

)
, (2.28)

for all k ∈ N. Since 0 ≤ t ≤ T is arbitrary, we see from this estimate, the Poincaré

inequality, and (2.2), that

max
0≤t≤T

(
‖uk(t)‖2H1

0 (Ω) + ‖u′k(t)‖2L2(Ω) + ‖~qk‖L2(Ω)

)
≤ C

(
‖u0‖2H1

0 (Ω) + ‖u1‖2L2(Ω) + ‖~q0‖2L2(Ω)

)
for some C > 0.

2. Fix any w ∈ H1
0 (Ω), ‖w‖H1

0 (Ω) ≤ 1, and ~v ∈ L2(Ω), ‖~v‖L2(Ω) ≤ 1, and write w =

w1 + w2 and ~v = ~v1 + ~v2, where

w1 ∈ span{wj}kj=1, (
1

c2
w2, wj) = 0 (j = 1, · · · , k),

and

~v1 ∈ span{~vj}kj=1, (~v2, ~vj) = 0 (j = 1, · · · , k).

Note that ‖w1‖H1
0 (Ω) ≤ 1 and ‖~v1‖L2(Ω) ≤ 1.

From (2.19), (2.20), and (2.24) we have

<
1

c2
u′′k, w > = (

1

c2
u′′k, w) = (

1

c2
u′′k, w

1)

= − (αu′k + βuk, w
1)− (δε∇ · ~qk, w1) + (∇uk,∇w1),

(~q′k, ~v) = (~q′k, ~v
1) = − (A~qk, ~v

1)− (B∇uk, ~v1).

Thus we have that

| < u′′k, w > |+ |(~q′k, ~v)| ≤ C
(
‖uk‖H1

0 (Ω) + ‖u′k‖L2(Ω) + ‖~qk‖L2(Ω)

)
.
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Consequently we obtain∫ T

0

(
‖u′′k‖H−1(Ω) + ‖~q′‖L2(Ω)

)
dt ≤ C

∫ T

0

(
‖uk‖2H1

0 (Ω) + ‖u′k‖2L2(Ω) + ‖~qk‖2L2(Ω)

)
dt

≤ CT
(
‖u0‖2H1

0 (Ω) + ‖u1‖2L2(Ω) + ‖~q0‖2L2(Ω)

)
.

2.3.3 Existence and Uniqueness.

Now we pass to limits in the Galerkin approximations.

Theorem 2.2 (Existence of weak solution) Assume the initial data (u0, u1, ~q0) are in

H1
0 (Ω) × L2(Ω) × L2(Ω). Then the system (2.17) has a unique weak solution, provided

σx, σy ∈ L∞(Ω).

Proof. 1. From the energy estimates (2.1), we see that

{uk}∞k=1 is bounded in L2(0, T ;H1
0 (Ω)),

{u′k}∞k=1 is bounded in L2(0, T ;L2(Ω)),

{u′′k}∞k=1 is bounded in L2(0, T ;H−1(Ω)),

{~qk}∞k=1 is bounded in L2(0, T ;L2(Ω)),

{~q′k}∞k=1 is bounded in L2(0, T ;L2(Ω)).

(2.29)

As a consequence there exist subsequences {ukm} ⊂ {uk}∞k=1, {~qkm} ⊂ {~qk}∞k=1

and u ∈ L2(0, T ;H1
0 (Ω)), ~q ∈ L2(0, T ;L2(Ω)) with u′ ∈ L2(0, T ;L2(Ω)), u′′ ∈

L2(0, T ;H−1(Ω)), ~q′ ∈ L2(0, T ;L2(Ω)), such that

ukm ⇀ u weakly in L2(0, T ;H1
0 (Ω)),

u′km ⇀ u′ weakly in L2(0, T ;L2(Ω)),

u′′km ⇀ u′′ weakly in L2(0, T ;H−1(Ω)),

~qkm ⇀ ~q weakly in L2(0, T ;L2(Ω)),

~q′km ⇀ ~q′ weakly in L2(0, T ;L2(Ω)),

(2.30)

since d
dt is continuous.
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2. Next fix an integerN and choose functions w ∈ C1(0, T ;H1
0 (Ω)) and ~v ∈ C0(0, T ;L2(Ω))

of the forms

w(t) =
N∑
j=1

gj(t)wj , ~v(t) =
N∑
j=1

hj(t)~vj , (2.31)

where {gj(t)}Nj=1 ⊂ C1([0, T ]) and {hj(t)}Nj=1 ⊂ C0([0, T ]). Take k ≥ N , multiply

(2.24) by gj(t), hj(t), sum j = 1, · · · , N, respectively, and then integrate with respect

to t, to obtain
∫ T

0 < 1
c2
u′′k, w > dt+

∫ T
0 (αu′k + βuk − δε∇ · ~qk, w)dt+

∫ T
0 (∇uk,∇w)dt = 0,∫ T

0 (~q′k, ~v)dt +
∫ T

0 (A~qk, ~v)dt +
∫ T

0 (B∇uk, ~v)dt = 0.

(2.32)

Note that ∇· : L2(Ω) → H−1(Ω) is continuous and δε : H−1(Ω) → L2(Ω) is also

continuous a.e. t ∈ [0, T ] , thus we have δε∇ · ~qk ⇀ δε∇ · ~q in L2(0, T ;L2(Ω)). Set

k = km and use (2.30) to find in the limit that
∫ T

0 < 1
c2
u′′, w > dt+

∫ T
0 (αu′ + βu− δε∇ · ~q, w)dt+

∫ T
0 (∇u,∇w)dt = 0,∫ T

0 (~q′, ~v)dt +
∫ T

0 (A~q, ~v)dt +
∫ T

0 (B∇u, ~v)dt = 0.

(2.33)

This equalities hold for all functions w ∈ L2(0, T ;H1
0 (Ω)) and ~v ∈ L2(0, T ;L2(Ω)),

since functions of the form (2.31) are dense in these spaces respectively. Therefore

it follows that from (2.33) < 1
c2
u′′, w > +(αu′ + βu− δε∇ · ~q, w) + (∇u,∇w) = 0,

(~q′, ~v) + (A~q, ~v) + (B∇u, ~v) = 0,
(2.34)

for all w ∈ H1
0 (Ω) and ~w ∈ L2(Ω) and a.e. 0 ≤ t ≤ T.

Furthermore, u ∈ C(0, T ;L2(Ω)), u′ ∈ C(0, T ;H−1(Ω)), and ~q ∈ C(0, T ;L2(Ω)).

3. We verify the initial conditions

u(0) = u0, u′(0) = u1, and ~q(0) = ~q0. (2.35)
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Choose any function w ∈ C2([0, T ];H1
0 (Ω)) with w(T ) = w′(T ) = 0, and ~v ∈

C1([0, T ];L2(Ω)). Then integrating by parts twice with respect to t in the first

equation and once in the second in (2.32), we have∫ T

0
<

1

c2
w′′, u > dt +

∫ T

0
(αu′ + βu− δε∇ · ~q, w)dt +

∫ T

0
(∇u,∇w)dt

= −(
1

c2
u(0), w′(0))+ <

1

c2
u′(0), w(0) >, (2.36)

−
∫ T

0
(~v′, ~q)dt +

∫ T

0
(A~q, ~v)dt+

∫ T

0
(B∇u, ~v)dt = − (~q(0), ~v(0)). (2.37)

Similarly from (2.33) we deduce∫ T

0
<

1

c2
w′′, uk > dt +

∫ T

0
(αu′k + βuk − δε∇ · ~qk, w)dt +

∫ T

0
(∇uk,∇w)dt

= −(
1

c2
uk(0), w′(0))+ <

1

c2
u′k(0), w(0) >,

−
∫ T

0
(~v′, ~qk)dt +

∫ T

0
(A~qk, ~v)dt +

∫ T

0
(B∇uk, ~v)dt = − (~qk(0), ~v(0)).

We set k = km and recall (2.21), (2.22), (2.23), and (2.30), to obtain∫ T

0
<

1

c2
w′′, u > dt +

∫ T

0
(αu′ + βu− δε∇ · ~q, w)dt +

∫ T

0
(∇u,∇w)dt

= −(
1

c2
u0, w′(0))+ <

1

c2
u1, w(0) >, (2.38)

−
∫ T

0
(~v′, ~q)dt +

∫ T

0
(A~q, ~v)dt +

∫ T

0
(B∇u, ~v)dt = − (~q0, ~v(0)). (2.39)

Comparing identities (2.38), (2.39), (2.36), (2.37), we conclude (2.35), since w(0), w′(0),

and ~v(0) are arbitrary. Hence (u, ~q) is a weak solution of (2.9).

Theorem 2.3 (Uniqueness of weak solution) A weak solution of (2.9) is unique.

Proof. The idea of the proof is from [25] with the second order hyperbolic problems, but

the auxiliary variable ~q in the system needs to be handled carefully.

1. It suffices to show that the only weak solution of (2.9) with u0 ≡ u1 ≡ 0, ~q0 ≡ ~0 is

u ≡ 0, ~q ≡ ~0.
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To verify this, fix 0 ≤ s ≤ T and set

w(t) :=


∫ s
t u(τ)dτ if 0 ≤ t ≤ s,

0 if s ≤ t ≤ T.

Then w(t) ∈ H1
0 (Ω) for each 0 ≤ t ≤ T, and we have applying w(t) in the first

equation in (2.17)∫ s

0
<

1

c2
u′′, w > dt+

∫ s

0
(αu′ + βu− δε∇ · ~q, w)dt+

∫ s

0
(∇u,∇w)dt = 0.

Since u(0) = u′(0) = 0 and w(s) = 0, we obtain after integration by parts in the

first and second term in the above equation:

−
∫ s

0
<

1

c2
u′, w′ > dt−

∫ s

0
(αu,w′)dt+

∫ s

0
(βu− δε∇ ·~q, w)dt+

∫ s

0
(∇u,∇w)dt = 0.

Now note w′ = −u for 0 ≤ t < s, and so ∇w′ = −∇u, thus we have∫ s

0
<

1

c2
u′, u > dt+

∫ s

0
(αu, u)dt+

∫ s

0
(βu− δε∇ · ~q, w)dt−

∫ s

0
(∇w′,∇w)dt = 0.

(2.40)

Applying ~v(t) = ρ~q(t) with ρ > 0 in the second equation in (2.17) and w′ = −u we

have

ρ

∫ s

0
(~q′, ~q)dt+ ρ

∫ s

0
(A~q, ~q)dt− ρ

∫ s

0
(B∇w′, ~q)dt = 0.

Since ~q(0) = ~0 and ∇w(s) = ~0, we also have, after integration by parts in the third

term in the above equation

ρ

∫ s

0
(~q′, ~q)dt+ ρ

∫ s

0
(A~q, ~q)dt+ ρ

∫ s

0
(B∇w,~q′)dt = 0. (2.41)

Again we apply −ρB∇w in the second equation in (2.17) and w′ = −u we obtain

−ρ
∫ s

0
(~q′, B∇w)dt− ρ

∫ s

0
(A~q, B∇w)dt+ ρ

∫ s

0
(B∇w′, B∇w)dt = 0. (2.42)

Summation of the equations (2.40), (2.41), (2.42) gives that∫ s

0

d

dt

(
1

2
‖1

c
u‖2L2(Ω) −

1

2
‖∇w‖2L2(Ω) +

ρ

2
‖B∇w‖2L2(Ω) +

ρ

2
‖~q‖2L2(Ω)

)
dt
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=

∫ s

0
(−(αu, u)− (βu,w) + (δε∇ · ~q, w)− ρ(A~q, ~q)dt+ ρ(A~q, B∇w)) dt.

Hence we have that

1

2
‖1

c
u(s)‖2L2(Ω) +

1

2
‖∇w(0)‖2L2(Ω) −

ρ

2
‖B∇w(0)‖2L2(Ω) +

ρ

2
‖~q(s)‖2L2(Ω)

=

∫ s

0
(−(αu, u)− (βu,w) + (δε∇ · ~q, w)− ρ(A~q, ~q) + ρ(A~q, B∇w)) dt.

Since ρ‖B∇w(0)‖2L2(Ω) ≤ ρ‖B‖
2
2‖∇w(0)‖2L2(Ω), we can take ρ > 0 with ρ−1 ≥ 2‖B‖22

in order to have that ρ‖B∇w(0)‖2L2(Ω) ≤
1
2‖∇w(0)‖2L2(Ω).

Using the bounds of α, β,A,B from (2.13), (2.14) in energy estimates and Poincaré

inequality for w ∈ H1
0 (Ω) we have that, for some C > 0,

‖u(s)‖2L2(Ω) + ‖∇w(0)‖2L2(Ω) + ‖~q(s)‖2L2(Ω)

≤ C
∫ s

0

(
‖u‖2L2(Ω) + ‖∇w‖2L2(Ω) + ‖~q‖2L2(Ω)

)
dt.

(2.43)

2. Now let us write

v(t) :=

∫ t

0
u(τ)dτ (0 ≤ t ≤ T ),

then it becomes, by (2.43)

‖u(s)‖2L2(Ω) + ‖∇v(s)‖2L2(Ω) + ‖~q(s)‖2L2(Ω)

≤ C
∫ s

0

(
‖u‖2L2(Ω) + ‖∇v(t)−∇v(s)‖2L2(Ω) + ‖~q‖2L2(Ω)

)
dt. (2.44)

But ‖∇v(t)−∇v(s)‖2L2(Ω) ≤ 2‖∇v(t)‖2L2(Ω) +2‖∇v(s)‖2L2(Ω), and thus (2.44) implies

‖u(s)‖2L2(Ω) + (1− 2sC)‖∇v(s)‖2L2(Ω) + ‖~q(s)‖2L2(Ω)

≤ C
∫ s

0

(
‖u‖2L2(Ω) + 2‖∇v‖2L2(Ω) + ‖~q‖2L2(Ω)

)
dt.

Take T1 small enough in order to get

1− 2T1C ≥
1

2
.
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Then if 0 ≤ s ≤ T1, we have

‖u(s)‖2L2(Ω)+‖∇v(s)‖2L2(Ω)+‖~q(s)‖2L2(Ω) ≤ C
∫ s

0

(
‖u‖2L2(Ω) + ‖∇v‖2L2(Ω) + ‖~q‖2L2(Ω)

)
dt.

Finally the integral form of Gronwall’s inequality implies u ≡ 0, ~q ≡ ~0 on [0, T1].

Repeat the same argument on the intervals [kT1, (k + 1)T1], k = 1, 2, · · · until u ≡

0, ~q ≡ ~0 on [0, T ], which gives the proof of the uniqueness of a weak solution.

2.4. Numerical Results

In this section, we present some numerical results to illustrate the theory presented

above.

2.4.1 Numerical Scheme.

For numerical examples, we use a family of finite difference schemes using the half-

step staggered grids in space and time. All spatial derivatives are defined with the centered

finite differences over 2 or 3 cells, which guarantees a second order approximation in space

[40]. For the time discretization we also use the centered finite differences for the first and

second order time derivatives on a uniform mesh which is also second order accurate in

time. We denote the time step by 4t > 0 and the spatial mesh step sizes in the x and y

directions by 4x > 0 and 4y > 0 respectively. Now we define the time level tn = n4t,

and spatial nodes x` = `4x and yj = j4y for n, `, j ∈ N ∪ {0}.

We also define staggered nodes in the time direction and the x and y direction,

respectively, as tn±
1
2 = tn ± 1

24t, x`± 1
2

= x` ± 1
24x, and yj± 1

2
= yj ± 1

24y for n, `, j ∈ N

(Figure 2.1). The components of u are discretized at nodes (tn, x`, yj) as un`,j , whereas the

components of ~q = (qx, qy) are discretized at (tn+ 1
2 , x`+ 1

2
, yj+ 1

2
) as q

n+ 1
2

α`+ 1
2
,j+ 1

2

for α = x, y.

Let us now introduce new notations
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Figure 2.1: Notations for time and spatial grids discretization

Ax±`+ 1
2

= 1± 4t
2
σx`+ 1

2
, Ay±j+ 1

2
= 1± 4t

2
σyj+ 1

2
,

and

A
xy±
`,j = 1± 4t

2
(σx` + σyj), σαk = σα(αk), σαk+ 1

2
= σα(αk+ 1

2
), k = `, j, α = x, y.

Step 1. Compute

(
q
n+ 1

2

x`+ 1
2
,j+ 1

2

, q
n+ 1

2

y`+ 1
2
,j+ 1

2

)
,

Ax+
`+ 1

2

q
n+ 1

2

x`+ 1
2
,j+ 1

2

= Ax−
`+ 1

2

q
n− 1

2

x`+ 1
2
,j+ 1

2

−4t(σx`+ 1
2
− σyj+ 1

2
)∂̃xu

n
`+ 1

2
,j+ 1

2

, (2.45)

A
y+

j+ 1
2

q
n+ 1

2

y`+ 1
2
,j+ 1

2

= A
y−
j+ 1

2

q
n− 1

2

y`+ 1
2
,j+ 1

2

−4t(σyj+ 1
2
− σx`+ 1

2
)∂̃yu

n
`+ 1

2
,j+ 1

2

, (2.46)

where the cell averages of the derivatives of function un
i+ 1

2
,j+ 1

2

are defined as

∂̃xu
n
`+ 1

2
,j+ 1

2

=
un`+1,j+1 − un`,j+1 + un`+1,j − un`,j

24x
,

∂̃yu
n
`+ 1

2
,j+ 1

2

=
un`+1,j+1 − un`+1,j + un`,j+1 − un`,j

24y
.

This allows to compute the regularized term in (2.12)

(δε∂xqx)n`,j , (δε∂yqy)
n
`,j ,

for ∂xq
n
x`,j = 1

2

(
∂̃xq

n+ 1
2

x`,j + ∂̃xq
n− 1

2
x`,j

)
and ∂yq

n
y`,j = 1

2

(
∂̃yq

n+ 1
2

y`,j + ∂̃yq
n− 1

2
y`,j

)
, where the cell

averages of the derivatives of function (q
n± 1

2
x`,j , q

n± 1
2

y`,j ) are defined as

∂̃xq
n± 1

2
x`,j =

1

24x

(
q
n± 1

2

x`+ 1
2
,j+ 1

2

− qn±
1
2

x`− 1
2
,j+ 1

2

+ q
n± 1

2

x`+ 1
2
,j− 1

2

− qn±
1
2

x`− 1
2
,j− 1

2

)
,
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∂̃yq
n± 1

2
y`,j =

1

24y

(
q
n± 1

2

y`+ 1
2
,j+ 1

2

− qn±
1
2

y`+ 1
2
,j− 1

2

+ q
n± 1

2

y`− 1
2
,j+ 1

2

− qn±
1
2

y`− 1
2
,j− 1

2

)
.

Step 2. Compute un+1
`,j ,

A
xy+
`,j un+1

`,j = 2un`,j − A
xy−
`,j un−1

`,j +4t2
(
−σxy`,ju

n
`,j + c2

`,j((δε∂xqx)n`,j + (δε∂yqy)
n
`,j) + c2

`,j4nu
n
`,j

)
,

(2.47)

where

σxy`,j = σx`σyj , c`,j = c(x`, yj),

4nu
n
`,j =

un`+1,j − 2un`,j + un`−1,j

4x2
+
un`,j+1 − 2un`,j + un`,j−1

4y2
.

2.4.2 Layer Parameters.

We now describe the damping and regularization used in the system (2.9) following

[20]. In the absorbing layer, the choice of the damping functions can be constant, linear,

or quadratic, etc. In our implementations, we use damping functions of the form;

σxk(xk) =


0 for |xk| < ak, k = 1, 2,

σ̄0

(
|xk−ak|
Lk

−
sin(

2π|xk−ak|
Lk

)

2π

)
for ak ≤ |xk| ≤ ak + Lk, k = 1, 2,

(2.48)

where Lk, k = 1, 2, are thickness of PML layers. The smooth function ρε(x, y) chosen in

the following examples is constant on a rectangle centered at zero,

ρε(x, y) = ρε1(x)ρε2(y) with ρεk(ξ) =


1
εk

if ξ ∈ [− εk
2 ,

εk
2 ],

0 elsewhere.

Given a 2-D finite difference grid with space steps 4x and 4y, a possible choice is ε1 =

nx4x and ε2 = ny4y with nx, ny ∈ N. For instance, with nx = ny = 1 and usual

integration formulas, we discretize the regularized term δε(v)`,j := (ρε∗v)`,j a discretization

of the convolution product of ρε by a function v given by

(ρε ∗ v)`,j =
1

16
(4v`,j + 2v`+1,j + 2v`−1,j + 2v`,j+1 + 2v`,j−1

+v`+1,j+1 + v`−1,j+1 + v`+1,j−1 + v`−1,j−1) . (2.49)
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Remark 2.3 We impose the zero Dirichlet boundary condition on un. The choice of the

function ρε in (2.49) can be considered as a way of discretizing the identity operator.

Now we introduce some stability results of the scheme:

2.4.3 Stability Analysis for the Scheme

In this section, we use standard von Neumann stability analysis technique to show

the stability of the scheme (2.45), (2.46), (2.47) under additional assumptions. We assume

that σx and σy are constants and σx = σy = σα ≥ 0 in this section.

First we have the stability of the scheme in the computational domain.

Remark 2.4 The CFL condition of the scheme (2.45)-(2.47) in the computation area

(i.e., σx = σy = 0) is

c
4t
h
≤ 1√

2
,

for 4x = 4y = h from the standard von Neumann stability analysis technique.

Next we have the stability result of the scheme with the assumption.

Theorem 2.4 Let assume that σx = σy and c are constants. The discrete scheme (2.45)-

(2.47) is stable if it satisfies the CFL condition

c4t ≤ h√
2

1

(1 + σ2
αh

2

8c2
)1/2

. (2.50)

We define a simple von Neumann polynomial and introduce Theorem 2.6 to show

the CFL condition.

Definition 2.2 A polynomial is a simple von Neumann polynomial if all its roots, r, lie

on the unit disk (|B(0, r)| < 1) and its roots on the unit circle are simple roots.

There is a sufficient stability condition.

Theorem 2.5 [8] A sufficient stability condition is that φ be a simple von Neumann

polynomial, where φ be the characteristic polynomial. (see [8] for the proof)
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Theorem 2.6 Let φ be a polynomial of degree p written as

φ(z) = c0 + c1z + · · ·+ cpz
p,

where c0, c1, · · · , cp ∈ C and cp 6= 0. The polynomial φ is a simple von Neumann polyno-

mial if and only if φ0 is a simple von Neumann polynomial and |φ(0)| ≤ |φ̄(0)|, where φ0

is defined as

φ0(z) =
φ̄(0)φ(z)− φ(0)φ̄(z)

z
,

and the conjugate polynomial φ̄ is defined as

φ̄(z) = c̄p + c̄p−1z + · · ·+ c̄0z
p,

where c̄ is the complex conjugate of c. The main ingredient in the proof of the theorem is

Rouché’s theorem, the proof is in [23].

Proof of Theorem 2.4.

Assume that σx = σy = σα in the scheme (2.45)-(2.47) and we rewrite the scheme as the

second order central difference scheme of the variable u and ~q.

un+1
`,j − 2un`,j + un−1

`,j

4t2
+ 2σα

un+1
`,j − u

n−1
`,j

24t
+ σ2

αu
n
`,j (2.51)

= c2

(
un`+1,j − 2un`,j + un`−1,j

4x2
+
un`,j+1 − 2un`,j + un`,j−1

4y2

)
+ (ρε ∗ ∂xqx)n`,j + (ρε ∗ ∂yqy)n`,j ,

~q
n+ 1

2

`+ 1
2
,j+ 1

2

− ~qn−
1
2

`+ 1
2
,j+ 1

2

4t
+ σα

~q
n+ 1

2

`+ 1
2
,j+ 1

2

+ ~q
n− 1

2

`+ 1
2
,j+ 1

2

2
= ~0. (2.52)

We assume a spatial dependence of the following form in the field quantities

un+1
`,j = ûn+1(kx, ky)e

ikxx`+ikyyj ,

un`,j = ûn(kx, ky)e
ikxx`+ikyyj ,

~q
n+ 1

2

`+ 1
2
,j+ 1

2

= ~̂q
n+ 1

2

`+ 1
2
,j+ 1

2

(kx, ky)e
ikxx`+1

2
+ikyyj+1

2 ,
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with kx, ky, the component of the wave vector ~k, i.e. ~k = (kx, ky)
T , and the wave number is

k =
√
k2
x + k2

y. Then we have the system

[
ûn+1, ûn, q̂

n+ 1
2

x , q̂
n+ 1

2
y

]T
= G

[
ûn, ûn−1, q̂

n− 1
2

x , q̂
n− 1

2
y

]T
,

where the amplification matrix G of the scheme (2.51), (2.52) is given by

G =



−c1
c2
−c0

c2
Cq̂x Cq̂y

1 0 0 0

0 0 η 0

0 0 0 η


,

where Cq̂x and Cq̂y satisfy c2û
n+1 + c1û

n + c0û
n−1 = Cq̂x q̂

n− 1
2

x + Cq̂y q̂
n− 1

2
y with c0 =

1
4t2−

σα
4t , c1 = − 2

4t2−2c2 cos(kx4x)−1
4x2 −2c2 cos(ky4y)−1

4y2 +σ2
α, c2 = 1

4t2 + σα
4t , and η =

1−4t
2
σα

1+4t
2
σα
.

Then the characteristic function of G is given by

φ(G) = (G2 +
c1

c2
G+

c0

c2
)(G− η)2.

Note that |η| < 1 by the assumption. From the Theorem 2.6 we have that φ(G) is a simple

von Neumann polynomial if and only if |c1| ≤ |c0 + c2|, i.e.,∣∣∣∣ 2

4t2
+ 2c2 cos(kxh) + cos(kyh)− 2

h2
− σ2

α

∣∣∣∣ ≤ 2

4t2
, for h = 4x = 4y.

It is satisfied provided (2.50).

2.4.4 Efficiency of the System

Here we compare the regularized system (2.9) with the original system (2.8) in

the two dimensional space with variable sound speed c(x, y) and the initial condition

u(0) = f, ut(0) = 0. The sound speed is taken randomly between c(x, y) ∈ [0.5, 1.5] and

smoothed by convolution, and the initial function is given by

f(x, y) =

 Ce−C0((x−x0)2+(y−y0)2 if (x, y) ∈ [−a, a]× [−a, a],

0 otherwise.
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Here Ω is the square domain with a = 0.5, surrounded by a PML with L = 0.1 with

4x = 4y = 0.01. We use L2-error in the computation area Ω, given by

E(tn) =

√√√√ 1

Np

Np∑
k=1

(unk − ũnk)2, (2.53)

for Np is the number of grid points. We compute a reference solution using the second

Figure 2.2: Variable Sound speed

order wave equation (2.1) in a much larger domain which doesn’t give reflected waves in

the chosen time interval. In Figure 2.4, the regularized system leads to slightly larger

L2-error than the one in the classical PML (2.8) when damping is bigger, and there is

no large difference in error between the two systems when damping is relatively small.

There is one suggestion which express the regularized term (2.12) for better accuracy of

the scheme using another smooth function. (see for details; [20]) The maximum error in

the computation area between two system is presented in Figure 2.5 with the different

damping.
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Figure 2.3: Acoustic wave with variable sound speed using regularized PML at time steps

60, 80, 100, 120, 140, 160 (see Appendix for larger figures)

Figure 2.4: L2-error in Computational Domain using σ̄0 = 40, σ̄0 = 60 in (2.48)
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Figure 2.5: Maximum error in Computational Domain using σ̄0 = 40, σ̄0 = 60 in (2.48)
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3. MULTI DIRECTIONAL PML

In the PML method, the damping (1.3) is introduced depending on only one variable.

That there is no effective absorption for waves with low-grazing incidence angle (high

incidence angle) to the interface is one of limitations mentioned in Chapter 1.4.

We introduce additional damping terms, σyx and σxy , which are positive functions of

x and y. This is the idea to impose the absorption of incident wave in the parallel to the

interface when the wave propagate in a PML. In the coordinate transformation (1.4) we

can consider the damping terms which depend on both variables x, y in the PML region.

Consider the domain Ω = [−a−Lx, a+Lx]× [−b−Ly, b+Ly] as in the previous chapter.

Introduce the coordinate transform of variables in the frequency domain by the

following,

x̃(x, y) :=x+
1

iw

(∫ x

a
σx(s)ds+

∫ y

0
σyx(s)ds

)
:= x+

1

iw
σx, (3.1)

ỹ(x, y) :=y +
1

iw

(∫ y

b
σy(s)ds+

∫ x

0
σxy (s)ds

)
:= y +

1

iw
σy, (3.2)

where σyx(x, y) and σxy (x, y) are non-negative functions in a PML and vanish in the com-

putation area [−a, a]× [−b, b]. We assume that

σyx(x, y), σxy (x, y) ∈W 1,∞(Ω). (3.3)

Differentiate x̃, ỹ with respect to x, y to obtain Jacobian matrix,

J =

 ∂x̃
∂x

∂x̃
∂y

∂ỹ
∂x

∂ỹ
∂y

 =

 1 + 1
iw∂xσ

x 1
iw∂yσ

x

1
iw∂xσ

y 1 + 1
iw∂yσ

y

 =

 iw+∂xσx

iw
∂yσx

iw

∂xσy

iw
iw+∂yσy

iw

 ,
which also gives the inverse of J that is,

J−1 =
iw

D

 iw + ∂yσ
y −∂yσx

−∂xσy iw + ∂xσ
x

 ,
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where D = (iw)2 + (∂xσ
x + ∂yσ

y)iw + ∂xσ
x∂yσ

y − ∂xσy∂yσx. Then we have the partial

derivatives of new coordinate systems,
∂
∂x̃ =

iw(iw+∂yσy)
D

∂
∂x −

iw∂yσx

D
∂
∂y ,

∂
∂ỹ = − iw∂xσy

D
∂
∂x + iw(iw+∂xσx)

D
∂
∂y .

(3.4)

We apply this new coordinate systems in the system of first order acoustic wave

equation in section 3.1. and in the second order wave equation in section 3.2. to obtain

different PML wave equations.

3.1. Multi Directional Un-Split PML

Consider the system of first order acoustic wave equation with variable sound speed,
1
c2
pt +∇ · ~q = 0, in R2 × (0, T ],

~qt + ∇p = ~0, in R2 × (0, T ],

(3.5)

with the initial condition p(x, 0) = p0, ~q(x, 0) = ~q0 and bounds of sound speed 0 < c∗ ≤

c ≤ c∗ < ∞. Then we apply the new coordinates system (3.4) in the frequency domain

of the system (3.5), after the even extension of solutions over R and similar procedure in

section 2.1., to obtain,

D
c2
p̂+ (iw + ∂yσ

y)∂q̂x∂x − ∂yσ
x ∂q̂x
∂y − ∂xσ

y ∂q̂y
∂x + (iw + ∂xσ

x)
∂q̂y
∂y = 0,

D~̂q +

 iw + ∂yσ
y −∂yσx

−∂xσy iw + ∂xσ
x


 ∂p̂

∂x

∂p̂
∂y

 = 0.

Similarly, auxiliary variables p̂∗ and ~̂q∗ are introduced by p̂∗ = iωp̂ and ~̂q∗ = iω~̂q. Then

the inverse Fourier Transform with respect to ω with the direct computations gives the
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following formulation,

1
c2
pt + 1

c2
αp+ 1

c2
βp∗ +∇ · ~q +Mσ~q

∗ = 0,

~qt + α~q + β~q∗ + ∇p + Cσ∇p∗ = 0,

p∗t = p,

~q∗t = ~q,

(3.6)

with the initial condition (p, p∗) = (p0, p
∗
0), (~q, ~q∗) = (~q0, ~q

∗
0) and the boundary condition

(p, p∗)|∂Ω = (0, 0), where the coefficients are defined as α = ∂xσ
x+∂yσ

y, β = ∂xσ
x∂yσ

y−

∂xσ
y∂yσ

x,

Mσ =

[
∂yσ

y ∂
∂x − ∂yσ

x ∂
∂y ∂xσ

x ∂
∂y − ∂xσ

y ∂
∂x

]
, Cσ =

 ∂yσ
y −∂yσx

−∂xσy ∂xσ
x

 .
We next introduce the regularized formulation of the system (3.6).

3.1.1 The regularized Formulation

We regularize several terms in order to get regularity of weak solutions in (3.6), which

derives a new formulation. Recall the linear bounded operator δε : H−1(Ω) → L2(Ω) in

(2.12) and the dual operator δ′ε : L2(Ω)→ H1
0 (Ω).

We introduce a new formulation with the regularized term using δε and δ′ε,

1
c2
pt + 1

c2
αp+ 1

c2
βp∗ + δε∇ · ~q + δε Mσ~q

∗ = 0,

~qt + α~q + β~q∗ + ∇δ′εp + Cσ ∇δ′εp∗ = 0,

p∗t = p,

~q∗t = ~q,

(3.7)

with the initial conditions (p(0), p∗(0)) = (p0, p
∗
0) and (~q(0), ~q∗(0)) = (~q0, ~q

∗
0). Note that

the zero Dirichlet boundary condition δ′εp|∂Ω = 0 is imposed in the system (3.7).

We define a weak solution of the system (3.7).
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Definition 3.1 We define

{p, p∗} ∈ L2(0, T ;L2(Ω)), {~q, ~q∗} ∈ L2(0, T ;L2(Ω)), (3.8)

with

{pt, p∗t } ∈ L2(0, T ;L2(Ω)), {~qt, ~q∗t } ∈ L2(0, T ;L2(Ω)), (3.9)

is a weak solution of the initial-value boundary problem (3.7) provided

( 1
c2
pt, r) + ( 1

c2
αp, r) + ( 1

c2
βp∗, r) + (δε∇ · ~q, r) + (δεMσ~q

∗, r) = 0,

(~qt, ~v) + (α~q, ~v) + (β~q∗, ~v) + (∇δ′εp, ~v) + (Cσ∇δ′εp∗, ~v) = 0,

(p∗t , r
∗) − (p, r∗) = 0,

(~q∗t , ~v
∗) − (~q, ~v∗) = 0,

(3.10)

for all r, r∗ ∈ L2(0, T ;L2(Ω)), ~v, ~v∗ ∈ L2(0, T ;L2(Ω)) which satisfies the Cauchy initial

data in a weak sense.

We prove the existence and uniqueness of the weak solution of (3.7).

Theorem 3.1 We assume that the initial data (p0, p
∗
0, ~q0, ~q

∗
0) ∈ [L2(Ω)]2 × [L2(Ω)]2. The

regularized system (3.7) admits a unique weak solution satisfying (3.8), (3.9), provided

(3.3) holds true.

Proof. We define the energy norm by

E = ‖1

c
p‖2L2(Ω) + ‖p∗‖2L2(Ω) + ‖~q‖2L2(Ω) + ‖~q∗‖2L2(Ω).

First we show estimates of the energy. We apply the scalar product of all equations in

(3.7) with p, p∗ in L2(Ω) and ~q, ~q∗ in L2(Ω) respectively, to obtain the identity,

dE

dt
+ F1 + F2 + F3 + F4 = 0, (3.11)

where

F1 = (
1

c2
αp, p) + (

1

c2
βp∗, p)− (p, p∗),
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F2 = (α~q, ~q) + (β~q∗, ~q)− (~q, ~q∗),

F3 = (δε∇ · ~q, p) + (∇δ′εp, ~q),

F4 = (δεMσ~q
∗, p) + (Cσ∇δ′εp∗, ~q).

We have that |F1| + |F2| ≤ C12E a.e. in t for some C12 > 0 since α, β ∈ L∞(Ω̃) and the

bounds of c in (3.5). It is allowed to have that F3 = 0 by the duality of δε and integration

by parts,

(δε∇ · ~q, p) + (∇δ′εp, ~q) = p(δε∇ · ~q) + (∇δ′εp, ~q),

= (∇·)′δ′εp(~q) + (∇δ′εp, ~q),

= −∇δ′εp(~q) +∇δ′εp(~q)

= 0,

since (∇·)′ = −∇. The operators

{~q∗, p∗} →
{
δεMσ~q

∗, Cσ∇δ′εp∗
}

are continuous from [L2(Ω)]2 × L2(Ω)→ [L2(Ω)]2 × L2(Ω) since σxy (x, y) and σyx(x, y) are

in W 1,∞(Ω), which implies that

|F4| ≤ C4E a.e. in t ∈ [0, T ],

for some C4 > 0.

It follows that from (3.11)

dE

dt
≤ CTE a.e. t ∈ [0, T ] (3.12)

for a suitable constant CT > 0.

This is a standard a priori estimates, using this estimates we can obtain the existence

part of Theorem 3.1 by the standard Galerkin method argument, and also uniqueness can

be established by the estimates. We omit details here, since the similar argument was

presented in chapter 2.
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Remark 3.1 We don’t present any stability analysis or numerical experiments in this

section. Further investigation of the original system and the regularized one remains for

further work. But we introduce another simpler formulation with the same technique as

in (3.1) and (3.2) to show that the multi-directional damping PML can be more effective

than the classical one.

3.2. Multi Directional Split PML in the parallel to y-axis

We apply the multi-directional damping (3.1) to the system of first order acoustic

wave equation with Split PML techniques parallel to y-axis.

Let the domain Ω = [−a−Lx, a+Lx]× [−b, b] consist of the computational domain

[−a, a]× [−b, b] with the PML only parallel to y-axis. The damping σx(x, y) in (3.1) with

σy = 0 in (3.2) is applied as follows:

x̃(x, y(x)) = x+
1

iw
σx(x, y) = x+

1

iw

(∫ x

a
σx(s)ds+

∫ y

0
σyx(s)ds

)
, (3.13)

ỹ(y) = y. (3.14)

Note that the damping σyx(x) depends on both x and y in the PML. The coordinate change

with the damping gives Jacobian matrix

J =
∂(x̃, ỹ)

∂(x, y)
=

1

iw

 D σyx

0 1

 ,
and

J−1 =
1

D

 iw −σyx

0 D

 ,
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where D = iw + σx + ∂
∂x

∫ y
0 σ

y
x(s)ds.

Now we have

∂

∂x̃
=
iw

D

∂

∂x
− σyx
D

∂

∂y
, (3.15)

∂

∂ỹ
=

∂

∂y
. (3.16)

Following [38], we introduce the split system for the acoustic wave equation in order to

apply the coordinate systems (3.15), (3.16). Assume the solution p split into the two fields

px and py satisfying p = px + py and

pxt + c2 ∂

∂x
qx = 0, pyt + c2 ∂

∂y
qy = 0.

Then we have the split system of acoustic wave equation,

pxt + c2 ∂
∂xqx = 0,

pyt + c2 ∂
∂y qy = 0,

qxt + ∂
∂x(px + py) = 0,

qyt + ∂
∂y (px + py) = 0.

(3.17)

We apply (3.15), (3.16) in the frequency space of (3.17) to obtain

D 1
c2
p̂x + ∂

∂x q̂x − σyx
1
iw

∂
∂y q̂x = 0,

iw 1
c2
p̂y + ∂

∂y q̂y = 0,

Dq̂x + ∂
∂x(p̂x + p̂y)− σyx 1

iw
∂
∂y (p̂x + p̂y) = 0,

iwq̂y + ∂
∂y (p̂x + p̂y) = 0.

(3.18)

We introduce an auxiliary variable q̂∗x = − 1
iw

∂
∂y q̂x to obtain a new formulation after taking

the inverse Fourier transform:

1
c2
pxt + σ̄

c2
px + ∂

∂xqx + σyxq∗x = 0,

1
c2
pyt + ∂

∂y qy = 0,

qxt + σ̄xqx + ∂
∂x(px + py) + σyxqy = 0,

qyt + ∂
∂y (px + py) = 0,

q∗xt + ∂
∂y qx = 0,

(3.19)
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where σ̄x = σx + ∂
∂x

∫ y
0 σ

y
x(s)ds.

3.2.1 Numerical Results

In this section, we show the system (3.19) is efficient and compare it with the classical

Split PML [38]. We use centered differences and the staggered nodes in time and space

the same as in section 2.4.1. With the same notation, the components pα, q∗x, α = x, y, are

discretized at nodes (tn, xi, xj) as pαni,j , q
∗
x
n
i,j , and qα, are discretized at (tn+ 1

2 , xi+ 1
2
, xj+ 1

2
)

as qα
n+ 1

2

i+ 1
2
,j+ 1

2

. This centered time stepping ensures a second order approximation in time.

Denote by

A±x = 1± σ̄x
4t
2
.

Step 1. Compute qα
n+ 1

2

i+ 1
2
,j+ 1

2

, α = x, y,

A+
x qx

n+ 1
2

i+ 1
2
,j+ 1

2

= A−x qx
n− 1

2

i+ 1
2
,j+ 1

2

−4t(∂x(ux + uy))n
i+ 1

2
,j+ 1

2

−4tσxy

qyn+ 1
2

i+ 1
2
,j+ 1

2

+ qy
n− 1

2

i+ 1
2
,j+ 1

2

2

 ,

qy
n+ 1

2

i+ 1
2
,j+ 1

2

= qy
n− 1

2

i+ 1
2
,j+ 1

2

−4t(∂y(px + py))n
i+ 1

2
,j+ 1

2

,

where (∂x(px + py))n
i+ 1

2
,j+ 1

2

= (∂xp
x)n
i+ 1

2
,j+ 1

2

+ (∂xp
y)n
i+ 1

2
,j+ 1

2

,

(∂xp
x)n
i+ 1

2
,j+ 1

2

=
(pxni+1,j+1 − pxni,j+1 + pxni+1,j − pxni,j)

24x
,

(∂xp
y)n
i+ 1

2
,j+ 1

2

=
(pyni+1,j+1 − pyni,j+1 + pyni+1,j − pyni,j)

24x
,

and (∂x(px + py))n
i+ 1

2
,j+ 1

2

is similarly defined.

Step 2. Compute q∗x
n+1
i,j ,

q∗x
n+1
i,j = q∗x

n
i,j −

4t
24y

(
qx
n+ 1

2

i+ 1
2
,j+ 1

2

− qx
n+ 1

2

i+ 1
2
,j− 1

2

+ qx
n+ 1

2

i− 1
2
,j+ 1

2

− qx
n+ 1

2

i− 1
2
,j− 1

2

)
.

Step 3. Compute uαni,j , α = x, y,

1

c2
A+
x p

xn+1
i,j =

1

c2
A−x p

xn
i,j −4t(∂xqx)

n+ 1
2

i,j −4tσxy

(
qx
n+1
i,j + qx

n
i,j

2

)
,

1

c2
pyn+1
i,j =

1

c2
pyni,j −

4t
24y

(
qy
n+ 1

2

i+ 1
2
,j+ 1

2

− qy
n+ 1

2

i+ 1
2
,j− 1

2

+ qy
n+ 1

2

i− 1
2
,j+ 1

2

− qy
n+ 1

2

i− 1
2
,j− 1

2

)
.
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We impose smooth variable sound speed c(x, y) ∈ [−0.5, 0.5] (see FIGURE 3.1), and set

Figure 3.1: Variable sound speed in the computational domain= [−0.3, 0.3]× [−0.6, 0.6]

the damping σyx as

σyx(x, y) = σy(y)

∫ x

a
σx(s)ds,

where σx and σy are defined as in (2.48) with various maximum damping coefficients

σ̄0. We consider the computational domain [−0.3, 0.3]× [−0.6, 0.6] with the PML region

[−0.4,−0.3] ∪ [0.3, 0.4] parallel to y-axis. We compare the numerical solution obtained

with a reference solution, computed with the same numerical scheme on a very large do-

main [−0.6, 0.6]× [−0.6, 0.6]. In Figure 3.2, it is shown the discrete L2-error in (2.53) of

the classical Split PML and Multi-Directional Split PML on the computational domain

and the difference of the errors with two different damping. Similarly, Figure 3.3 shows

the maximum error of two PMLs in the computational domain. In this case, the multi-

directional Split PML leads to a smaller error than that for the classical Split PML for

both L2-error and maximum error.
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Figure 3.2: L2-error of classical Split PML and Multi-Directional Split PML in the com-

putational domain

Figure 3.3: Maximum error of classical Split PML and Multi-Directional Split PML in

the computational domain
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4. PML IN 1-D : ENERGY DECAY FOR THE ACOUSTIC WAVE
WITH VARIABLE SOUND SPEED

In this section we investigate the efficiency of the PML method in the acoustic 1-d

wave equation with variable sound speed. The energy decay rate is investigated in [46] for

a constant speed 1-d continuous and semi-continuous wave equation with one sided PML.

4.1. Energy Decay 1-d PML Wave Equation : Spectrum

First we consider an initial value problem for the acoustic wave equation with vari-

able sound speed c(x) ∈ C1(R) in the unbounded domain R,

∂2

∂t2
u − c2 ∂

2

∂x2
u = 0, t > 0, (4.1)

with the initial condition

u(x, 0) = f, and
∂

∂t
u(x, 0) = 0.

We introduce the new variables P = − ∂
∂xu,Q = 1

c
∂
∂tu to obtain the system

∂
∂tP + ∂

∂x(cQ) = 0, t > 0,

∂
∂tQ + c ∂∂xP = 0, t > 0,

(4.2)

with the initial conditions P (x, 0) = − ∂
∂xf, Q(x, 0) = 0. Next, we truncate the unbounded

domain to the interval I := [−a−L, a+L] with the PML interval Iγ := [−L−a, a]∪[a, a+L]

imposing the zero Dirichlet boundary condition on ∂I for P .

We assume c(x) ∈ C1(Ω) is bounded below by c∗ and above by c∗, i.e.,

0 < c∗ ≤ c(x) ≤ c∗ <∞ in Ω, (4.3)
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and also c(x) ≡ 1 in Iγ . Let σ ∈ L1(I) be a non-trivial and non-negative function vanishing

identically in the computational interval [−a, a] and monotone in Iγ , i.e.,

σx(s) ≤ σx(τ) if 0 < s ≤ τ , or τ ≤ s < 0. (4.4)

Then we have the new following system

∂
∂tP (x, t) + σx(x)P (x, t) + ∂

∂x(c(x)Q(x, t)) = 0, t > 0,

∂
∂tQ(x, t) + σx(x)Q(x, t) + c(x) ∂

∂xP (x, t) = 0, t > 0,

P (x, t) = 0, x ∈ ∂I,

(4.5)

with the initial conditions P (x, 0) = − ∂
∂xf, Q(x, 0) = 0.

Let P = U − V and Q = U + V , then
∂
∂t(U − V ) + σx(U − V ) + ∂

∂x(c(U + V )) = 0, t > 0,

∂
∂t(U + V ) + σx(U + V ) + c ∂∂x(U − V ) = 0, t > 0.

(4.6)

From ∂
∂x(c(U + V )) = c′(U + V ) + c ∂∂x(U + V ) we obtain

∂
∂tU + σxU + c ∂∂xU + 1

2c
′(U + V ) = 0, t > 0,

∂
∂tV + σxV − c ∂∂xV −

1
2c
′(U + V ) = 0, t > 0.

(4.7)

Let M = A+B, where

A

 U

V

 = σx

 U

V

 + (c
∂

∂x
+

1

2
c′)

 U

−V

 , (4.8)

B

 U

V

 =
1

2
c′

 0 1

−1 0


 U

V

 . (4.9)

We define the total energy of the solutions given by

E(t) := E(U(t), V (t)) =
1

2

∫
I

(
|U(x, t)|2 + |V (x, t)|2

)
dx. (4.10)
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Then we have that

d

dt
E(t) = −1

2

∫
I
σ(x)

(
|U − V |2 + |U + V |2

)
dx ≤ 0,

which shows the well-posedness of the system (4.5) in the space (P,Q) ∈ C([0,∞); [L2(I)]2).

Then we have the following property:

Lemma 4.1 The operator M has a compact inverse if σ is non-trivial.

Proof. We construct the inverse of the operator M satisfying

M

 U

V

 =

 g

h

 with the boundary condition U = V on ∂I. (4.11)

In the PML interval Iγ , c ≡ 1 which implies B = 0 yielding


∂
∂xU + σxU = g,

− ∂
∂xV + σxV = h.

We solve the above equations to obtain
U(a+ L) = e−

∫ a+L
a σxdx

(
U(a) +

∫ a+L
a ge

∫ x
a σdsdx

)
,

V (a+ L) = e
∫ a+L
a σxdx

(
V (a)−

∫ a+L
a he−

∫ x
a σdsdx

)
,

(4.12)

and 
U(−a) = e−

∫−a
−a−L σxdx

(
U(−a− L) +

∫ −a
−a−L ge

∫ x
−a−L σdsdx

)
,

V (−a) = e
∫−a
−a−L σxdx

(
V (−a− L)−

∫ −a
−a−L he

−
∫ x
−a−L σdsdx

)
.

(4.13)

In the computation interval [−a, a], from σx = 0, we have
c ∂∂xU + 1

2c
′(U + V ) = g,

−c ∂∂xV −
1
2c
′(U + V ) = h.

We add and subtract each other to get
c ∂∂x(U + V ) + c′(U + V ) = g − h,

c ∂∂x(U − V ) = g + h.
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Solving the above equations with the property c(x) ∈ C1(I) and c = 1 at x = ± a we

obtain 
(U + V )(a) = (U + V )(−a) +

∫ a
−a(g − h)dx,

(U − V )(a) = (U − V )(−a) +
∫ a
−a

g+h
c dx,

(4.14)

or 
U(a) = U(−a) + 1

2

∫ a
−a(g − h)dx+ 1

2

∫ a
−a

g+h
c dx,

V (a) = V (−a) + 1
2

∫ a
−a(g − h)dx− 1

2

∫ a
−a

g+h
c dx.

(4.15)

We combine (4.12), (4.13), and (4.15) taking that U(x) = V (x), at x = ±(a+ L) to have 1 −e−
∫ a+L
−a−L σxdx

1 −e
∫ a+L
−a−L σxdx


 U(a+ L)

U(−a− L)

 =

 V1(g, h)

V2(g, h)

 ,

where Vj(g, h), j = 1, 2, are expressions involving g and h and are independent of U or V

in H1(I).

Note that

det

 1 −e−
∫ a+L
−a−L σxdx

1 −e
∫ a+L
−a−L σxdx

 = −e
∫ a+L
−a−L σxdx + e−

∫ a+L
−a−L σxdx

= −e−
∫ a+L
−a−L σxdx(e2

∫ a+L
−a−L σxdx − 1)

6= 0

if σx is non-trivial. Therefore the equation (4.11) is uniquely solvable in (U, V ) ∈ H1(I)

such that U − V ∈ H1
0 (I) if and only if σx is non-trivial.

Furthermore, the inverse of M ,

M−1 : [L2(I)]2 → [H1(I)]2

is bounded also compact by the compact embedding H1(I) ⊂⊂ L2(I) if σx is non-trivial.

This Lemma 4.1 implies the spectrum of M is discrete.

Next we investigate the operator A in (4.8).



49

Definition 4.1 A collection of functions {uk} in a Hilbert space H is called a Riesz basis

for H if span{uk} = H and there exist constants 0 < CA ≤ CB <∞ such that

CA

(∑
k

|ak|2
)
≤

∥∥∥∥∥∑
k

akuk

∥∥∥∥∥
2

≤ CB

(∑
k

|ak|2
)

for all sequences of {ak} ∈ `2(Z).

Lemma 4.2 Let σx ∈ L1(I) be a non-trivial and non-negative function which vanishes

identically in the computational region, [−a, a]. Then we have that

1. The spectrum of the operator A in (4.8) is identically same as the set of eigenvalues

λk =
1

cL
Iσ +

1

cL
kπi, where Iσ =

∫
I
σx(s)ds, cL =

∫
I

1

c(s)
ds, k ∈ Z, (4.16)

and the eigenfunction corresponding to λk is Uk

Vk

 =

 e−
∫ x
−a−L

1
c
(σx−λk)dx

e
∫ x
−a−L

1
c
(σx−λk)dx

 .

2. The eigenfunctions {(Uk, Vk)} form a Riesz basis of [L2(I)]2.

Proof. Let A

 U

V

 = λ

 U

V

 , for λ ∈ C , that is,

(c(x)
∂

∂x
+

1

2
c′(x))

 U

−V

+ σx

 U

V

 = λ

 U

V

 .

Then we have ∂
∂xU + 1

c(x)(1
2c
′(x) + σx− λ)U = 0 and ∂

∂xV −
1
c(x)(−1

2c
′(x) + σx− λ)V = 0,

which gives 
U(x) = U(−a− L)e−

∫ x
−a−L

1
c
( 1
2
c′+σx−λ)ds,

V (x) = V (−a− L)e
∫ x
−a−L

1
c
(− 1

2
c′+σx−λ)ds.

(4.17)

With the boundary condition U(x) = V (x) at x = ±(a + L) we have e−
∫
I(σx− 1

c
λ)ds =

e
∫
I(σx− 1

c
λ)ds by c ≡ 1 on Iγ . Thus

∫
I(σx(x)− 1

cλk)ds+ kπi = 0 for all k ∈ Z , and we have
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the eigenvalues λk of A as (4.16). Therefore, the eigenfunction corresponding to λk is Uk

Vk

 =

 1√
c(x)

e−
∫ x
−a−L

1
c
(σx−λk)ds

1√
c(x)

e
∫ x
−a−L

1
c
(σx−λk)ds

 .

Define the function θ by

θ(x) =

∫ x

−a−L

1

c(s)

(
σx(s)− 1

cL
Iσ

)
ds.

This function expresses the difference between the damping term σx and the average

damping 1
cL
Iσ over [0, cL]. Next we show that the family of (Uk, Vk) forms a Riesz basis

in [L2(I)]2 following the proof (with a constant speed) in [46]. Equivalently that is to

show that any pair of functions (g, h) ∈ [L2(I)]2 can be written in an unique way in the

following sense:

(g, h) =
∑

ak(Uk, Vk), (4.18)

with ∑
|ak|2 ' ‖(g, h)‖2.

We write it, using (4.17), taking the initial U(−a−L) = 1 = V (−a−L) as the following,
g(x)eθ(x) =

∑
akUk(x)eθ(x) =

∑
ake

1
cL
kπiy(x)

, − a− L < x < a+ L,

h(x)e−θ(x) =
∑
akVk(x)e−θ(x) =

∑
ake
− 1
cL
kπiy(x)

, −a− L < x < a+ L,

(4.19)

where

y(x) = φ(x) :=

∫ x

−a−L

1

c(s)
ds.

Then, the coefficient {ak} of the decomposition (4.18) of (g, h) in the basis {(Uk, Vk)} can

be identified as the Fourier coefficients of the function W defined in (−cL, cL) by

W (y) =


g(φ−1(y))eθ(φ

−1(y)), 0 < y < cL,

h(φ−1(y + cL))e−θ(φ
−1(y+cL)), −cL < y < 0.

(4.20)
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Then (4.18) is satisfied if and only if

W (y) =
∑
k

ak exp

(
1

cL
ikπy

)
, y ∈ (−cL, cL). (4.21)

It holds that W ∈ L2(−cL, cL) since (g, h) ∈ [L2(I)]2. This mapping gives an isomorphism

I : [L2(I)]2 → L2(−cL, cL) which sends the eigenvectors (Uk, Vk) to the classical Fourier

basis of L2(−cL, cL):

I(g, h) = W, (4.22)

where W is the function given in (4.20). This implies that any function ~Q ∈ [L2(I)]2 can

be expanded as
∑

k
~Qk , where the coefficients {ak} satisfy that

‖I ~Q‖2L2(−cL,cL) = 2cL
∑
|ak|2.

The proof is completed.

We define exponential decay rate of solutions of (4.7) as a function of σ, defined by

ω(σ) = sup
{
ω : ∃C,∀(U0, V0) ∈ [L2(I)]2,∀t, E(t) ≤ CE(U0, V0) exp(−ωt)

}
For each ω ≤ ω(σ), we define C(ω) as the best constant such that

∀(U0, V0) ∈ [L2(I)]2, ∀t, E(t) ≤ C(ω)E(U0, V0) exp(−ωt).

Definition 4.2 Let σ(A) is the spectrum of the operator A. Then

S(σ) := sup{Re(λ)|λ ∈ σ(A)}

is called the spectral abscissa of the operator A.

There is a decay rate of the energy of the operator A in (4.7).

Theorem 4.1 The energy of the PML system ∂
∂t

 U

V

 + A

 U

V

 = 0 in (4.7) is

exponentially decaying. In the detail,

∃C > 0 such that ∀t > 0, E(t) ≤ C exp(−ω(σ)t),
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for all solutions. Furthermore, it holds that

S(σ) =
1

cL
Iσ =

1

2
ω(σ), (4.23)

and the best constant C(ω(σ)) satisfies

C(ω(σ)) ≤ exp(4‖θ‖∞).

Proof. The proof uses the explicit isomorphism I in (4.22) following by the proof in [46].

Given (U0, V0) ∈ [L2(I)]2, we expand it in the basis (Uk, Vk) : (U0, V0) =
∑
ak(Uk, Vk).

Then we have that

2E0 = ‖(U0, V0)‖2[L2(I)]2 ≥ ‖I‖
−2‖I(U0, V0)‖2L2(−cL,cL) ≥ 2cL‖I‖−2

∑
|ak|2.

It easily to check (U(t), V (t)) can be expressed by

(U(t), V (t)) =
∑

ak exp(−λkt)(Uk, Vk),

and also obtain that

‖I(U(t), V (t))‖2L2(−cL,cL) = 2cL exp(−2c−1
L tIσ)

∑
|ak|2.

But

2E(t) = ‖(U(t), V (t))‖2[L2(I)]2 ≤ ‖I
−1‖2‖I(U(t), V (t))‖2L2(−cL,cL).

We combine the equalities to get

E(t) ≤ ‖I‖2‖I−1‖2 exp(−2c−1
L tIσ)E0. (4.24)

From (4.24) we have C(ω(σ)) ≤ κ(I)2, where κ(I) is the conditioning number κ(I) =

‖I‖‖I−1‖. Applying Parseval’s identity to (4.21) we have

‖I(g, h)‖2L2(−cL,cL) = 2cL
∑
|ak|2 =

∫
I
|g(x)|2 exp(2θ(x))dx+

∫
I
|h(x)|2 exp(−2θ(x))dx.

As a consequence, we have that

exp(−2‖θ‖∞)‖(g, h)‖2[L2(I)]2 = exp(−2‖θ‖∞)

∫
I

(
|g(x)|2 + |h(x)|2

)
dx
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≤ ‖I((g, h))‖2L2(−cL,cL)

≤ exp(2‖θ‖∞)‖(g, h)‖2[L2(I)]2 .

Therefore,

‖I‖2 ≤ exp(2‖θ‖∞), ‖I−1‖2 ≤ exp(2‖θ‖∞),

and

C(ω(σ)) ≤ exp(4‖θ‖∞).

The equalities (4.23) are shown in the proof.

Remark 4.1 Applying the perturbation B to the operator M , i.e., M = A+B the question

for the energy decay is unsolved. This remains for further research.

Next we investigate the energy decay on a computational interval of the 1-d wave

equation in unbounded domain following [24]. The result of the following Chapter is

presented in [24], and we show detail proof.

4.2. Energy Decay of 1-D Acoustic Wave Equation

We consider the acoustic wave equation with variable sound speed in 1 dimension,

utt = c2uxx, ∞ < x <∞. (4.25)

Let [−a, a] be a computational interval and c(x) ≡ 1 in R\[−a+δ0, a−δ0] for small δ0 > 0.

We define the energy of the solution over [−a, a] given by

E[−a,a](t) =
1

2

∫ a

−a

(
1

c2
u2
t (x, t) + u2

x(x, t)

)
dx.

The next Lemma explains that the energy over [−a, a] is exponentially decaying in

time.
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Lemma 4.3 The energy E[−a,a](t) of the solution of the equation (4.25) is exponentially

decreasing.

Proof. The constant sound speed c(x) ≡ 1 provides the non-reflecting boundary condition

at x = ± a, by d’Alembert’s solution,

ut(−a, t) = ux(−a, t), ut(a, t) = −ux(a, t). (4.26)

From the definition of E(t)[−a,a], we obtain

d

dt
E[−a,a](t) =

∫ a

−a

(
uxuxt +

1

c2
ututt

)
dx

=

∫ a

−a
(uxuxt + utuxx) dx

=

∫ a

−a
(uxut)t dx

= −u2
t (a, t)− u2

t (−a, t)

≤ 0,

by the boundary condition (4.26). Thus E[−a,a](0) = E[−a,a](t0)+
∫ t0

0

(
u2
t (−a, t) + u2

t (a, t)
)
dt

for some t0 > 0.

Next, we observe that it is sufficient to show E[−a,a](t0) ≤ C0

∫ t0
0

(
u2
t (−a, t) + u2

t (a, t)
)
dt

for some constant C0 > 0 and some time t0 > 0 to obtain

E[−a,a](t0) ≤ (1 +
1

C0
)−1E[−a,a](0),

for all solutions of (4.25). It provides E[−a,a](kt0) ≤ (1 + 1
C )−kE[−a,a](0) for any k ∈ N, so

that the energy decays exponentially. To show the above bounds, let α, β : [−a, a] → R

be curves such that

α(x) =
1

c∗
(x+ a), and β(x) = t0 −

1

c∗
(x+ a) ∀x ∈ [−a, a],

for some t0 > 4a/c∗ where c∗ is given in (4.3).

We define F (x) given by

F (x) =
1

2

∫ β(x)

α(x)

(
ux(x, t)2 +

1

c2
u2
t (x, t)

)
dt.
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Then we have

d

dx
F (x) =

1

2

(
u2
x(x, t) +

1

c2
u2
t (x, t)

)∣∣∣∣
t=β(x)

·β′(x)− 1

2

(
u2
x(x, t) +

1

c2
u2
t (x, t)

)∣∣∣∣
t=α(x)

·α′(x)

+

∫ β(x)

α(x)

(
ux(x, t)uxx(x, t) +

1

2

(
1

c2

)′
u2
t (x, t) +

1

c2
ut(x, t)utx(x, t)

)
dt.

But uxuxx + 1
c2
ututx = 1

c2
uxutt + 1

c2
ututx = 1

c2
(uxut)t, thus we obtain

d

dx
F (x) ≤ 1

2

(
ux(x, t)− 1

c
ut(x, t)

)2
∣∣∣∣∣
t=β(x)

·
(
−1

c

)
− 1

2

(
ux(x, t) +

1

c
ut(x, t)

)2
∣∣∣∣∣
t=α(x)

·
(

1

c

)

+
1

2

∫ β(x)

α(x)

(
1

c2

)′
u2
t (x, t)dt

≤ 1

2

∫ β(x)

α(x)

(
1

c2

)′
u2
t (x, t)dt

≤ CFF (x),

for some CF > 0. By Gronwall’s inequality we get

F (x) ≤ F (−a)eCF (x+a).

Then we have

1

2

∫ a

−a

∫ β(x)

α(x)

(
ux(x, t)2 +

1

c2
u2
t (x, t)

)
dtdx =

∫ a

−a
F (x)dx

≤
∫ a

−a
F (−a)eCF (x+a)dx

≤ F (−a)

∫ a

−a
eCF (x+a)dx

≤ C ′
∫ t0

0
u2
t (−a, t)dt,

using F (−a) = 1
2

∫ t0
0

(
u2
x(−a, t) + 1

c2
u2
t (−a, t)

)
dt =

∫ t0
0 u2

t (−a, t)dt, where C ′ =
∫ a
−a e

CF (x+a)dx.

For some δ > 0 such that δE[−a,a](t0) ≤ 1
2

∫ a
−a
∫ β(x)
α(x)

(
ux(x, t)2 + 1

c2
u2
t (x, t)

)
dtdx, we obtain

the bounds,

E[−a,a](t0) ≤ C0

∫ t0

0

(
u2
t (−a, t) + u2

t (a, t)
)
dt for C0 = C ′/δ,

which completes the proof.
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We apply Lemma 4.3 to the 1-d PML wave equation to get the energy decay result.

A similar argument is claimed in [24], we provide a detailed proof of the claim in the 1-d

PML wave equation with variable sound speed.

4.3. Energy Decay 1-d PML Wave Equation

We present similar arguments to obtain the energy decay. First consider the 1-d

PML wave equation (4.5) with variable sound speed in I := [−a− L, a+ L],
∂
∂tP (x, t) + σ(x)P (x, t) + ∂

∂x(c(x)Q(x, t)) = 0, t > 0,

∂
∂tQ(x, t) + σ(x)Q(x, t) + c(x) ∂

∂xP (x, t) = 0, t > 0,

(4.27)

with the boundary condition P (x, t) = 0 at x ∈ ∂I.

Recall that the energy EI(t) := E(P (t), Q(t)) defined in (4.10) over I provides that

d

dt
EI(t) = −

∫
I
σ(x)(P 2(x, t) +Q2(x, t))dx ≤ 0.

Thus, for some t0 > 0

EI(0) = EI(t0) +

∫ t0

0

∫
I
σ(x)

(
P 2(x, t) +Q2(x, t)

)
dxdt. (4.28)

Lemma 4.4 The energy EI(t) of the solution in (4.27) over I decays exponentially.

Proof. In a similar way to the proof of Lemma 4.3, it is sufficient to show that

EI(t0) ≤ C
∫ t0

0

∫
I
σ(x)

(
P 2(x, t) +Q2(x, t)

)
dxdt

for some C > 0. To show this, let us define

F (x) =
1

2

∫ β(x)

α(x)

(
P 2(x, t) +Q2(x, t)

)
dt,

where α, β : I → R are curves satisfying that

α(x) =
1

c∗
(x+ a+ L), and β(x) = t0 −

1

c∗
(x+ a+ L) ∀x ∈ I,
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for some t0 >
4
c∗

(a+ L) where c∗ is given in (4.3).

Then we have

d

dx
F (x) =

1

2

(
P 2 +Q2

)∣∣
t=β
· β′ − 1

2

(
P 2 +Q2

)∣∣
t=α
· α′ +

∫ β

α
(PPx +QQx) dt.

≤ 1

2
(P +Q)2

∣∣∣
t=β
·
(
−1

c

)
− 1

2
(P −Q)2

∣∣∣
t=α
·
(

1

c

)
− 1

c

∫ β

α

(
2σPQ+ c′Q2

)
dt,

since PPx +QQx = P · −Qt−σQc +Q · −Pt−σP−c
′Q

c = −1
c (PQ)t − 1

c (2σPQ+ c′Q2). By the

Cauchy-Schwarz inequality that 2PQ ≤ P 2 +Q2,

d

dx
F (x) ≤ 1

c

(
σ + |c′|

)
F (x),

thus Gronwall’s inequality over [ξ, x] gives that

F (x) ≤ CF (ξ) for all x, ξ ≤ x ≤ a+ L, (4.29)

where C = e
∫ x
ξ

(
σ
c

+
|c′|
c

)
ds
.

Let us divide I into [−a − L, µ0] ∪ [µ0, a + L] for some µ0 ∈ (−a − L, a + L) such

that σ(µ0) = σµ. Note that σ(x) ≥ σµ for x ≤ µ0 by the monotonicity of the damping

(4.4). From (4.29) we obtain∫ a+L

ξ
F (x)dx ≤ C ′F (ξ) for all ξ, − a− L ≤ ξ ≤ µ0,

for C ′ =
∫ a+L
ξ e

∫ x
ξ

(
σ
c

+
|c′|
c

)
ds
dx. We take ξ = µ0 to obtain∫ a+L

µ0

F (x)dx

∫ µ0

−a−L
σ(ξ)dξ ≤ C ′F (µ0)

∫ µ0

−a−L
σ(ξ)dξ

≤ C ′
∫ µ0

−a−L
F (µ0)σ(ξ)dξ

≤ C ′
∫ µ0

−a−L

∫ β(µ0)

α(µ0)
σ(ξ)

(
P 2(µ0, t) +Q2(µ0, t)

)
dtdξ

≤ C ′
∫ t0

0

∫
I
σ(x)

(
P 2(x, t) +Q2(x, t)

)
dxdt,

by Fubini’s Theorem. Thus
∫ a+L
µ0

F (x)dx ≤ C
∫ t0

0

∫
I σ(x)

(
P 2(x, t) +Q2(x, t)

)
dxdt for

C = C′∫ µ0
−a−L σ(ξ)dξ

.
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Therefore, ∫
I
F (x)dx =

∫ µ0

−a−L
F (x)dx+

∫ a+L

µ0

F (x)dx

≤ 1

σµ

∫ µ0

−a−L
σ(x)F (x)dx+

∫ a+L

µ0

F (x)dx

≤ C0

∫ t0

0

∫
I
σ(x)

(
P 2(x, t) +Q2(x, t)

)
dxdt,

where C0 = 1
σµ

+ C ′. For δ > 0 satisfying δEI(t0) ≤ 1
2

∫
I

∫ β(x)
α(x)

(
P 2(x, t) +Q2(x, t)

)
dtdx,

we obtain the bounds from (4.28)

EI(t0) ≤ (1 +
1

C
)−1EI(0),

for C = C0/δ, which guarantees the exponential decay of the energy.

Remark 4.2 We show the exponential decay of the energy of 1-d PML wave equation with

variable sound speed, but the actual decay rate remains a question. question for further

investigation.
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5. WAVE EQUATION SYSTEM WITH DAMPING

In this section, we introduce a first order system of acoustic wave equation with zero

order damping. We consider the system of the acoustic wave equation in R2 × I, where

I = (0, T ] for some T > 0,

1
c(x)2

pt(x, t) +∇ · ~q(x, t) = 0 in R2 × I,

qt(x, t) + ∇p(x, t) = 0 in R2 × I,
(5.1)

with p(·, 0) = f, ~q(·, 0) = ~0.

Let supp(f) ⊂ Ω0 ⊂ R2 be a bounded Lipschitz domain, expand the domain to

Ω = Ω0 ∪Ωγ , where Ωγ is the set of layers surrounding Ω0. We introduce damping terms

σp and σq in the variables p and ~q, respectively, in the system (5.1), which drives a new

damped wave equation in Ω,
1

c(x)2
pt(x, t) + 1

c(x)2
σp(x)p(x, t) +∇ · ~q(x, t) = 0 in Ω× I,

~qt(x, t) + σq(x)~q(x, t) + ∇p(x, t) = ~0 in Ω× I,
(5.2)

with the initial condition (p, ~q)(x, 0) = (p0, ~q0) at t = 0, and the zero Dirichlet boundary

condition p(x, ·) = 0 on ∂Ω, where the damping terms σp, σq ∈ L∞(Ω) satisfy

0 = σ∗ ≤ σp(x), σq(x) ≤ σ∗ if x ∈ Ω, (5.3)

σp(x) ≡ 0, σq(x) ≡ 0 if x ∈ Ω0.

Here, the initial conditions are given by p0 = f ∈ H1
0 (Ω), ~q0 = ~0.

5.1. Well-posedness of the System

In this section we present the well-posedness of the system (5.2). First we assume

c(x) ∈ C1(Ω) is bounded below by c∗ and above by c∗, i.e.,

0 < c∗ ≤ c(x) ≤ c∗ <∞ in Ω, (5.4)
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c(x) ≡ 1 in Ωγ .

We can write the two equations in (5.2) in matrix form, 1
c2

~0T

0 I


 pt

~qt

+

 1
c2
σp ∇·

∇ σqI


 p

~q

 =

 0

~0

 .

To show well-posedness of the system we introduce following definitions. Let Vm be a

Hilbert space with scalar-product (·, ·)m and denote the corresponding Riesz map from

Vm onto the dual V ′m by M. That is,

Mu(v) = (u, v)m, u, v ∈ Vm

Let D be a subspace of Vm, and let L : D −→ V ′m a linear map.

Definition 5.1 The linear operator L : D −→ V ′m is monotone(or non-negative) if

Re Lu(u) ≥ 0, ∀u ∈ D.

We use the following theorem to show the existence of a solution (p, ~q).

Theorem 5.1 [39] Assume that L is monotone and M + L : D −→ V ′m is surjective.

Then, for every g ∈ C1([0,∞);V ′m) and u0 ∈ D, there is a unique u ∈ C1([0,∞);Vm) such

that u(0) = u0 and

Mu′(t) + Lu(t) = g(t), t ≥ 0.

We apply Theorem 5.1 to obtain well-posedness of the system (5.2). Let L2
div(Ω) =

{~v ∈ L2(Ω) : ∇ · ~v ∈ L2(Ω)} and L2(Ω) = [L2(Ω)]2.

Theorem 5.2 For every (p0, ~q0) ∈ H1
0 (Ω)× L2

div(Ω) there exists a unique solution (p, ~q)

of (5.2) such that (p, ~q) ∈ C1(Ī;L2(Ω) × L2(Ω)) ∩ C(Ī;H1
0 (Ω) × L2

div(Ω)) satisfying the

initial condition (p(0), ~q(0)) = (p0, ~q0).
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Proof. Let Vm := Hm(Ω) × L2(Ω) where Hm(Ω) = 1
c2
L2(Ω) with c−2-weighted L2-inner

product, i.e.,

(p, r)m = (p, r)c−2 =

∫
Ω

1

c2
p(x)r(x)d~x,

and let D := H1
0 (Ω)× L2

div(Ω).

Then we know that 1
c2
L2(Ω) ∼= L2(Ω), and let M : Vm −→ V ′m and defined by, for

(p, ~q)T ∈ Vm, and (r, ~v)T ∈ Vm,

M(p, ~q)T ((r, ~v)T ) = (p, r)c−2 + (~q, ~v),

where (·, ·) is the L2-inner product. Let L : D −→ V ′m is defined by, for any (p, ~q)T ∈ D

and (r, ~v)T ∈ Vm,

L (p, ~q)T ((r, ~v)T ) = (σpp, r)c−2 + (σq~q, ~v) + (∇p, ~v) + (∇ · ~q, r).

From the definition of L,

L (p, ~q)T ((p, ~q)T ) =

∫
Ω

(σp
c2
p(x)2 + σq~q

2(x)
)
dx ≥ 0,

since ~q · ~n(γp) = 0 where γ : H1(Ω) −→ H
1
2 (∂Ω) is the trace map and ~n is the unit

outward norm on ∂Ω, so L is monotone.

To show the surjection, that is, Rg(M+ L)|D = V ′m define operators

A =
1 + σp
c2

: L2(Ω) −→ L2(Ω)′,

B = ∇ : H1
0 (Ω) −→ L2(Ω)′,

and

C = (1 + σq)I : L2(Ω) −→ L2(Ω)′ :

it must be shown that for all (f, ~g)T ∈ V ′m,

∃

 p

~q

 ∈ D :

 A −B′

B C


 p

~q

 =

 f

~g

 ,
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where B′ = −∇· : L2(Ω) −→ H−1(Ω) is the dual of B.

We know that it is equivalent to show that there exist p ∈ H1
0 (Ω) and ~q ∈ L2

div(Ω) such

that

Ap − B′~q = f in L2(Ω)′,

and

Bp + C~q = ~g in L2(Ω)′.

Equivalently there exists p ∈ H1
0 (Ω) such that

Ap + B′C−1(Bp − ~g) = f in L2(Ω)′, (5.5)

since C is bounded below by 1 and ~q = C−1(~g − Bp). By the definitions of all operators

(5.5) is satisfied if we show that there exists p ∈ H1
0 (Ω) such that

Ap + B′C−1Bp = B′C−1~g + f in H−1(Ω),

or equivalently,

Ap(r) + (C−1Bp,Br) = (C−1~g,Br) + f(r) ∀r ∈ H1
0 (Ω).

The existence of p is guaranteed by coercivity with the constant C−1
σ = max{c∗2, 1 + σ∗}

from the following elliptic form. It can be checked that∫
Ω

(
1 + σp
c2

p(~x)2 +∇p(x)2

)
d~x+

∫
Ω

1

1 + σq
∇p(~x)2d~x ≥ 1

c∗2

∫
Ω
p(~x)2d~x+

1

1 + σ∗

∫
Ω
∇p(~x)2d~x

≥ Cσ‖p‖2H1
0 (Ω),

It also follows that ~q = C−1(~g − Bp) ∈ L2(Ω) from p ∈ H1
0 (Ω).

Remark 5.1 1. The solution (p, ~q) in (5.2) satisfies

( 1
c2
pt, r) + ( 1

c2
σpp, r) + (∇ · ~q, r) = 0 ∀ r ∈ H1

0 (Ω), ∀t in I,

(~qt, ~v) + (σq~q, ~v) + (∇p, ~v) = 0 ∀ ~v ∈ L2
div(Ω), ∀t in I.
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2. The system (5.2) with the time-dependent damping terms σp(x, t) and σq(x, t) can

be considered, and the well-posedness with the initial condition (p0, ~q0) in D(L) is

obtained from Theorem 4.10, page 245 in [42].

5.2. Discontinous Galerkin discretization

In this section, we present the Discontinuous Galerkin(DG) method for the system

(5.2) of the damped wave equation. The spatial discretization is based on the DG method

presented in [4] while the time discretization is based on θ-method with θ = 1
2 which is

presented in the next section.

The DG methods are locally conservative, stable, and high-order accurate meth-

ods which can be easily handled with complex geometric domains, irregular meshes with

hanging nodes, and approximations that have polynomials of different degrees in different

elements [10].

5.2.1 Spatial Discretization.

We assume that shape-regular meshes Th that partition the domain Ω into disjoint

elements {K} such that Ω̄ = ∪K∈ThK̄. Thus if K ∈ Th, then K is a simplex, i.e.,

K is a segment if d = 1, a triangle or a parallelogram if d = 2, and a tetrahedron

or a parallelepiped if d = 3. The measure of K (length if d = 1, area if d = 2, and

volume if d = 3) is denoted by meas(K). It will always be assumed that meas(K) 6= 0.

The diameters of K and that the largest ball included in K are denoted by hK and ρK ,

respectively. The ratio of these two quantities is denoted by ϕK . Hence,

ϕK =
hK
ρK
, hK = diam(K), ρK = sup{r : Br = {x : |x− a| ≤ r} ⊂ K, a ∈ K}.

Note that ρK > 1. For a family of {Th}h>0, the parameter h refers to

h = max
K∈Th

hK .
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We also give the definition for the asymptotic behavior of the family of meshes

{Th}h>0.

Definition 5.2 (Shape-regularity) A family of meshes {Th}h>0 is said to be shape −

regular if there exists ϕ0 such that

∀h > 0, ∀K ∈ Th, ϕK =
hK
ρK
≤ ϕ0.

For example, in two dimensions, the triangles in a shape-regular family of triangu-

lations cannot become too flat as h → 0. Generally, it is allowed for irregular meshes

with hanging nodes. Here the concept of hanging nodes is that a vertex of an element

K+ belongs to the interior of an edge of another element K− in the sense that it is a

nontrivial convex combination of the end points of K+. But we don’t discuss hanging

nodes in detail and avoid the complicated mesh.

However, we assume that the local mesh sizes are of bounded variation; that is,

there is a positive constant κ, depending only on the shape-regularity of the mesh, such

that

κhK ≤ hK′ ≤ κ−1hK (5.6)

for all neighboring elements K and K ′. From each adjacent element K+ and K− in Th,

we denote the set of all faces by Eh, which consists of both EIh the set of all interior faces

of ∂K+ ∩ ∂K− ∈ E(K+) ∪ E(K−) and EBh the set of all boundary faces of ∂K ∩ ∂Ω, i.e.,

Eh = EIh ∪ EBh , where E(K) is denoted by the set of all edges of the element K.

For a piecewise smooth scalar-valued function p, define the trace operators on all

faces. Let e ∈ EIh be an interior face shared by elements K+ and K−; let ~n± by the unit

outward normal vectors on the boundaries ∂K± respectively. Denote by p± the trace of

p taken from within K±, we define the jump and average of p at x ∈ e by

{{p}} :=
1

2
(p+ + p−), JpK := p+~n+ + p−~n−. (5.7)
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Let {{p}} := p and JpK := p~n where ~n is the unit outward normal vector on ∂Ω in all

boundary faces e ∈ EBh .

If ~q is a vector-valued function, we set

{{~q}} :=
1

2
(~q+ + ~q−), J~qK := ~q+ · ~n+ + ~q− · ~n−.

In a similar way we set {{~q}} := ~q and J~qK := ~q · ~n in all boundary faces e ∈ EBh .

Notice that the jump JpK of the scalar function p is a vector parallel to ~n and

that J~qK is the jump of the normal component of the vector function ~q which is a scalar

quantity. Note that there is a trace identity for a vector-valued function ~q and a scalar-

valued function p with continuous normal components across a face e ∈ EIh, by applying

the definitions directly one has,

p+(~n+ · ~q+) + p−(~n− · ~q−) = JpK · {{~q}}+ {{p}}J~qK. (5.8)

For a given partition Th such as triangulation of Ω and an approximation order k ≥ 1, we

seek an approximate (continuous or possibly discontinuous) solution (ph, ~qh) which is in

the finite element space

Ph(Ω)×Qh(Ω) =
⋃
K∈Th

Ph(K)×Qh(K),

where

Ph(K)×Qh(K)

:=
{

(ph, ~qh) ∈ L2(K)× L2(K) : (ph, ~qh)|K ∈ Pk(K)× (Pk(K))2
}
∀K ∈ Th,

and Pk(K) is the space of polynomials of total degree at most k on K if K is a simplex.

This approximation is said to be non-conformal since Ph(Ω) 6⊂ H1
0 (Ω); it is said to be

conformal otherwise, e.g. continuous Galerkin methods.

5.2.2 The DG methods

In this section, we define DG methods for the system (5.2) following [4]. We consider

only the discretization of this equation in space in this section.
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First we assume that ph : I → Ph(Ω) is absolutely continuous. A DG numerical method

is obtained as follows. We discretize the domain Ω, then seek a discontinuous approximate

solution (ph, ~qh) on the element K taken in the space Ph(K)×Qh(K) and determined by

requiring that∫
K

1

c2
pht r

h dx+

∫
K

σp
c2
phrh dx−

∫
K

~qh · ∇hrhdx+

∫
∂K

(q̂h · ~n)rhds = 0 (5.9)∫
K

~qht · vhdx+

∫
K
σq~q

h · ~vhdx−
∫
K
ph∇h · ~vhdx+

∫
∂K

p̂h(~vh · ~n)ds = 0 (5.10)

for all (rh, ~vh) ∈ Ph(K)×Qh(K), where ∇h and ∇h· are the functions whose restriction

to each element K ∈ Th are equal to ∇ and ∇·, respectively. To complete the definition of

the DG method, it remains to define the two numerical traces, p̂h and q̂h. We first begin

by finding a stability result for the solution in the original system (5.2). To do that, we

multiply the first equation of the system (5.2) by p and integrate over Ω × I, I = (0, T )

to get

1

2

∫
Ω

1

c2
p2(·, T )dx+

∫ T

0

∫
Ω

σp
c2
p2dxdt+

∫ T

0

∫
Ω
p∇ · ~qdxdt =

1

2

∫
Ω
p2(·, 0)dx.

Then, we multiply the second equation in (5.2) by ~q and integrate over Ω× I to obtain

1

2

∫
Ω
|~q(·, T )|2dx+

∫ T

0

∫
Ω
σq|~q|2dxdt+

∫ T

0

∫
Ω
∇p · ~qdxdt =

1

2

∫
Ω
|~q(·, 0)|2dx.

Adding these two equations, we have

1

2

∫
Ω

(
1

c2
p2(·, T ) + |~q(·, T )|2

)
dx+

∫ T

0

∫
Ω

(σp
c2
p2 + σq|~q|2

)
dxdt

=
1

2

∫
Ω

(
p2(·, 0) + |~q(·, 0)|2

)
dx.

A stability result is immediately followed by this equation. Next, we imitate this procedure

for the DG method under consideration.

We begin by taking rh = ph in the equation (5.9) defining the DG method and

adding over the elements K to get

1

2

∫
Ω

1

c2
(ph)2(·, T )dx+

∫ T

0

∫
Ω

σp
c2

(ph)2dxdt
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+
∑
K∈Th

∫ T

0

∫
∂K

(
−~qh · ~n + q̂h · ~n

)
phdsdt+

∫ T

0

∫
Ω
ph∇ · ~qhdxdt =

1

2

∫
Ω

(ph)2(·, 0)dx.

Next, we take ~vh = ~qh in the equation (5.10) and add on the elements to obtain

1

2

∫
Ω
|~qh(·, T )|2dx+

∫ T

0

∫
Ω
σq|~qh|2dxdt−

∫ T

0

∫
Ω
ph∇·~qhdxdt+

∑
K

∫ T

0

∫
∂K

p̂h(~qh ·~n) dsdt

=
1

2

∫
Ω

(~qh)2(·, 0)dx.

Summing the two equations above, we have that

1

2

∫
Ω

(
1

c2
(ph)2(·, T ) + |~qh(·, T )|2

)
dx+

∫ T

0

∫
Ω

(σp
c2

(ph)2 + σq|~qh|2
)
dxdt+

∫ T

0
Θhdt

=
1

2

∫
Ω

(
(ph)2(·, 0) + (~qh)2(·, 0)

)
dx,

where

Θh(t) =
∑
K∈Th

∫
∂K

(
phq̂h · ~n + (p̂h − ph)~qh · ~n

)
ds.

Now we can define consistent numerical traces p̂h and q̂h that provide the quantity Θh(t)

non-negative.

Dropping the argument t, we obtain

Θh =
∑
e∈Eh

∫
e
Jphq̂h + (p̂h − ph)~qhKds

=
∑
e∈Eih

∫
e

(
JphK · q̂h + p̂hJ~qhK− Jph~qhK

)
ds+

∫
∂Ω

(
phq̂h · ~n + (p̂h − ph)~qh · ~n

)
ds

=
∑
e∈Eih

∫
e
JphK ·

(
q̂h − {{~qh}}

)
+ JqhK

(
p̂h − {{ph}}

)
ds+

∫
∂Ω

(
ph(q̂h − ~qh) · ~n + p̂h~qh · ~n

)
ds.

To get non-negative Θh, it is enough to take, on EIh, i.e., inside the domain Ω,

p̂h = {{ph}}+ C22J~qhK− ~C12 · JphK, q̂h = {{~qh}}+ C11JphK + ~C12J~qhK,

for some positive quantities,

C11 > 0, C22 > 0, C1
11 > 0, C2

12 > 0,~C12 =
[
C1

12 C2
12

]T
, (5.11)
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and on EBh , i.e., its boundary,

p̂h = 0, q̂h = ~qh + C11p
h~n,

to finally get

Θh =
∑
e∈EIh

∫
e

(
C11JphK2 + C22J~qhK2

)
dx+

∑
EBh

∫
e
C11(ph)2ds ≥ 0.

As we can see the vector parameter ~C12 does not have any stabilizing effect; it’s not

necessary for stability but could be used to enhance the accuracy of the method [6]. In

the next section, we will discuss about the above non-negative quantities (5.11) which are

necessary quantities to make the system stable. Note that the zero Dirichlet boundary

condition is imposed weakly through the definition of the numerical trace.

Applying the numerical flux p̂h and q̂h we have the DG system∑
K∈Th

∫
K

1

c2
pht r

h dx+
∑
K∈Th

∫
K

σp
c2
phrhdx−

∑
K∈Th

∫
K

~qh · ∇rh dx

+
∑
e∈EIh

∫
e

(
{{~qh}} · JrhK + C11JphK · JrhK + ~C12JqhK · JrhK

)
ds+

∫
∂Ω
rh~qh · ~nds = 0,

and ∑
K∈Th

∫
K

~qht · ~vh dx+
∑
K∈Th

∫
K
σq~q

h · ~vh dx−
∑
K∈Th

∫
K
ph∇ · ~vh dx

+
∑
e∈EIh

∫
e

(
{{ph}}J~vhK + C22J~qhKJ~vhK − ~C12 · JphKJ~vhK

)
ds = 0,

for all (rh, ~vh) ∈ Ph(Ω)×Qh(Ω). This completes the definition of DG method.

5.2.3 Some Properties

We show that the DG method is in fact a mixed formulation. To see this, let us

begin by noting that the DG approximate solution (ph, ~qh) can be characterized as the

solution of

(
1

c2
pht , r

h) + ah(ph, rh) − b′h(~qh, rh) = 0, (5.12)

(~qht , ~v
h) + bh(ph, ~vh) + ch(~qh, ~vh) = 0, (5.13)
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for all (rh, ~vh) ∈ Ph(Ω)×Qh(Ω), where

ah(ph, rh) =
∑
K∈Th

∫
K

σp
c2
phrh dx+

∑
e∈EIh

∫
e
C11JphK · JrhKds, (5.14)

bh(ph, ~vh) = −
∑
K∈Th

∫
K
ph∇ · ~vhdx−

∑
e∈EIh

∫
e

(
~C12 · JphK− {{ph}}

)
J~vhKds, (5.15)

b′h(~qh, rh) =
∑
K∈Th

∫
K

~qh · ∇rhdx−
∑
e∈EIh

∫
e

(
~C12J~qhK + {{~qh}}

)
· JrhKds, (5.16)

ch(~qh, ~vh) =
∑
K∈Th

∫
K
σq~q

h · ~vhdx+
∑
e∈EIh

∫
e
C22J~qhKJ~vhKds. (5.17)

Remark 5.2 It holds the equality by the trace identity (5.8).

bh(ph, ~qh) = b′h(~qh, ph) for all ph ∈ Ph(Ω), ~qh ∈ Qh(Ω).

Note that the second terms in (5.14)-(5.17) correspond to jump and average terms

on element boundaries; they vanish when p, r ∈ H1
0 (Ω) and ~q, ~v ∈ L2

div(Ω). Therefore the

above semi-discrete DG formulation (5.12), (5.13) is consistent with the original continuous

problem (5.2).

5.3. A Priori Error Estimate of DG Method

5.3.1 Preliminaries.

In order to establish an error estimate we introduce the following properties. There

is an important inequality in the finite element spaces Ph(Ω) and Qh(Ω) which allow that

H1-norm can be bounded above by the L2-norm. Such an inequality is called an inverse

inequality.

Let us introduce the broken Sobolev space of Th of the domain Ω,

Hs(Th) := {p ∈ L2(Ω) : p|K ∈ Hs(K), ∀K ∈ Th},
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with the broken Sobolev norm and seminorm, respectively,

‖p‖Hs(Th) :=

∑
K∈Th

‖p‖Hs(K)

 1
2

, |p|Hs(Th) :=

∑
K∈Th

|p|Hs(K)

 1
2

.

The following local inverse inequality can be proved (Appendix A ): Let {Th}h>0 be a

shape-regular family of meshes in Rd. Then there exists a constant C, independent of h

and K, such that, for all ph ∈ Pk(K),

‖ph‖1,K ≤ Ch−1
K ‖ph‖0,K . (5.18)

To obtain a global inverse inequality, that is an inequality not only valid in K but also in

the whole domain Ω, the concept of quasi-uniform family of meshes is needed.

Definition 5.3 (Quasi-uniformity) A family of meshes {Th}h>0 is said to be quasi-uniform

if it is shape-regular and there exists τ > 0 such that

∀h > 0,∀K ∈ Th, hK ≥ τh.

Then the following result can be proved (Appendix A ): let {Th}h>0 be a quasi-

uniform family of affine meshes in Rd, there exists a constant C such that for all h >

0,K ∈ Th and ph ∈ Pk(K)

∑
K∈Th

‖ph‖H1(Th) ≤ Ch−1
∑
K∈Th

‖ph‖L2(Th). (5.19)

where the constant C which depends only on the shape regularity of the mesh, the ap-

proximation order k, and the dimension d.

Lemma 5.1 (Trace Theorem) Let p ∈ Ph(Ω) with shape regularity mesh. Then there

exists a constant Cinv > 0 such that

‖p‖L2(∂K) ≤ Cinv(‖p‖L2(K)(h
−1
K ‖p‖L2(K) + ‖∇p‖L2(K)))

1
2 . (5.20)

Proof. See Lemma A.3 in [43] for the proof and further details.
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The above bounds will be used in the error estimation later. Now we introduce the

function h in L∞(Eh) related to the local mesh size as

h|e =

 min{hK , hK′} if e ∈ EIh, e = ∂K ∩ ∂K ′,

hK if e ∈ EBh , e = ∂K ∩ ∂Ω.

Then on each e ∈ Eh, we define the discontinuity stabilization parameters α11 > 0, α12 >

0, α22 > 0 in terms of h by

C11 = α11h
α, C22 = α22h

α,~C12 = [α12 α12]T , (5.21)

with the parameters αij , i ≤ j, (i, j = 1, 2) independent of local mesh sizes. The accuracy

of the method relies on the choice of α and we assume α = 0. But the specific choice of

the stabilization parameter, α = −1, i.e., C11, C22 = O(h−1), makes our DG method an

Interior Penalty method (IP;[29]), which provides that the lifting operators (5.26), (5.27)

are bounded (see the proof of Remark 5.4).

We now consider the following semi-discrete DG approximation for the spatial dis-

cretization of (5.2): Find (ph, ~qh) : Ī × Ī → Ph(Ω)×Qh(Ω) such that

(
1

c2
pht , r

h) + ah(ph, rh)− b′h(~qh, rh) = 0, ∀rh ∈ Ph(Ω), t ∈ I, (5.22)

(~qht , ~v
h) + bh(ph, ~vh) + ch(~qh, ~vh) = 0, ∀~vh ∈ Qh(Ω), t ∈ I, (5.23)

with

ph(·, 0) = Πhp0, ~qh(·, 0) = Πh~q0, ph(x, ·) = 0, ∀x ∈ ∂Ω.

Here Πh and Πh denotes the L2-projections of p and ~q in L2(Ω) and L2(Ω) onto Ph(Ω)

and Qh(Ω) respectively, that is, for any p ∈ L2(Ω), ~q ∈ L2(Ω)

(Πhp, r
h) = (p, rh) and (Πh~q, ~v

h) = (~q, ~vh) ∀rh ∈ Ph(Ω), ~vh ∈ Qh(Ω), (5.24)

and the discrete forms ah, bh, and ch are given by (5.14)-(5.17).

In order to have operator notations in [39], let 1
c2
Rp + Ah : Ph(Ω) → [Ph(Ω)]′ ,
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Bh : Ph(Ω)→ [Qh(Ω)]′ , and Rq + Ch : Qh(Ω)→ [Qh(Ω)]′ given by

1

c2
Rpph(rh) = (

1

c2
ph, rh), Rq~qh(~vh) = (~qh, ~vh),

Ahph(rh) = ah(ph, rh), Bhph(~vh) = bh(ph, ~vh), Ch~qh(~vh) = ch(~qh, ~vh).

Note that the dual operator of Bh, B′h : Qh(Ω)→ [Ph(Ω)]′ satisfies

B′h~qh(rh) = Bhrh(~qh)

= −
∑
K∈Th

∫
K
rh∇ · ~qhdx−

∑
e∈EIh

∫
e

(
~C12 · JrhK− {{rh}}

)
J~qhKds

=
∑
K∈Th

∫
K
∇rh · ~qhdx−

∑
e∈EIh

∫
e

(
~C12J~qhK + {{~qh}}

)
· JrhKds

= b′h(~qh, rh),

which follows from the trace identity (5.8).

Lemma 5.2 There is a unique semi-discrete solution (ph, ~qh) of (5.22), (5.23) satisfying

(ph, ~qh) ∈ C1
(

[0, T ];Ph(Ω)×Qh(Ω)
)
.

Proof. Theorem 5.1 is used for the proof. We use operator notations of (5.22), (5.23) to

get

Mh

 ph

~qh

+ Lh

 ph

~qh

 = 0 in [Ph(Ω)×Qh(Ω)]′,

where

Mh =

 1
c2
Rp 0

0 Rq

 , Lh =

 Ah −B′h

Bh Ch

 .
Then we show that Lh is monotone from the definition of Lh,

Lh(ph, ~qh)T ((ph, ~qh)T ) =

 Ahph − B′h~qh
Bhph + Ch~qh


 ph

~qh


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=

∫
Ω

(σp
c2

(ph)2 + σq~q
h · ~qh +∇ph · ~qh + ph∇ · ~qh

)
dx+

∑
e∈Eih

∫
e

(
C11JphK2 + C22J~qhK2

)
ds

+
∑
e∈Eih

∫
e

(
~C12J~qhK− {{~qh}}

)
· JphK−

(
~C12J~qhK + {{~qh}}

)
· JphKds

=

∫
Ω

(σp
c2

(ph)2 + σq(~q
h)2
)
dx+

∑
e∈Eih

∫
e

(
C11JphK2 + C22J~qhK2

)
ds ≥ 0,

by the trace identity (5.8).

To obtain Rg(Mh+Lh) = [Ph(Ω)×Qh(Ω)]′, it is sufficient to show that Ker(Mh+Lh) =

{(0, ~0)}. Since

Mh(ph, ~qh)T
(

(ph, ~qh)T
)

=

∫
Ω

(
1

c2
(ph)2 + (~qh)2

)
dx

≥ C
∫

Ω

(
(ph)2 + (~qh)2

)
dx,

for some C = min{ 1
c∗2
, 1}, we can get the surjection, which provides the conclusion.

To estimate of the difference of the semi-discrete DG solution (ph, ~qh) in (5.22)-

(5.23) with analytical solutions (p, ~q) in (5.2) we want to extend to a larger space which

contains both solutions. In the next section we show the error estimates.

5.3.2 Extension of DG form

We define the space

P(h) = H1
0 (Ω) + Ph(Ω), and Q(h) = L2

div(Ω) +Qh(Ω).

with the DG energy norm on P(h)×Q(h),

‖(p, ~q)‖2h = ‖p‖2P(h) + ‖~q‖2Q(h),

where

‖p‖2P(h) =
∑
K∈Th

‖p‖2H1(K) +
∑
e∈Eh

‖C11JpK‖20,e,

‖~q‖2Q(h) =
∑
K∈Th

‖~q‖2L2
div(K) +

∑
e∈Eh

‖C22J~qK‖20,e,
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and L2
div(K) = {~q ∈ L2(K)|∇ · ~q ∈ L2(K)} with the norm ‖~q‖2L2

div(K)
= ‖~q‖2L2(K) + ‖∇ ·

~q‖2L2(K).

For the convenience of notation, let us denote

‖ · ‖0,Eh :=
∑
e∈Eh

‖ · ‖0,e, ‖ · ‖0,K := ‖ · ‖L2(K) or ‖ · ‖L2(K), ‖ · ‖0,Ω := ‖ · ‖L2(Ω) or ‖ · ‖L2(Ω).

Furthermore, for 1 ≤ p ≤ ∞ we use the Bochner space Lp(I;P(h)×Q(h)),

‖(p, ~q)‖Lp(I;P(h)×Q(h)) =

 (
∫
I ‖p‖

p
P(h)dt)

1/p + (
∫
I ‖~q‖

p
Q(h)dt)

1/p, 1 ≤ p <∞,

ess supt∈I(‖p‖P(h) + ‖~q‖Q(h)), p =∞.

The main result of this section is to establish the L2(Ω)-error estimate. It also gives a

bound in the L2(Ω)-norm of the first time derivative.

Theorem 5.3 Let the analytical solution (p, ~q) of (5.2) satisfies

(p, ~q) ∈ L∞(I;H1+s
0 (Ω)×H1+s(Ω)),

(pt, ~qt) ∈ L1(I;Hs(Ω)×Hs(Ω)), (5.25)

for a regularity exponent s > 1
2 , and let (ph, ~qh) be the semi-discrete DG approximation

obtained by (5.22), (5.23). Then we have the estimate, for the error ep = p − ph and

e~q = ~q− ~qh,

sup
t∈I

(
‖ep‖0,Ω + ‖e~q‖0,Ω

)
+ sup

t∈I

(
‖JepK‖0,Eh + ‖Je~qK‖0,Eh

)
≤ C

(
‖ep(0)‖0,Ω + ‖e~q(0)‖0,Ω

)
+ Chmin{s,k+ 1

2
}
(
‖p‖L∞(I;H1+s(Ω)) + ‖~q‖L∞(I;H1+s(Ω)) + ‖pt‖L1(I;Hs(Ω)) + ‖~qt‖L1(I;Hs(Ω))

)
,

with a constant C that is independent of the mesh size h.

Remark 5.3 The condition (5.25) implies that (p, ~q) ∈ C(Ī;Hs(Ω)×Hs(Ω)), thus it is

required to have the initial condition (p0, ~q0) ∈ Hs(Ω)×Hs(Ω), and also

‖ep(0)‖0,Ω = ‖(p−Πhp)(0)‖0,Ω ≤ Chmin{s,k+1}‖p‖s,Ω,
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‖e~q(0)‖0,Ω = ‖(~q−Πh~q)(0)‖0,Ω ≤ Chmin{s,k+1}‖~q‖s,Ω.

Therefore, Theorem 5.3 thus implies

sup
t∈I

(
‖ep‖0,Ω + ‖e~q‖0,Ω

)
+ sup

t∈I

(
‖JepK‖0,Eh + ‖Je~qK‖0,Eh

)
≤ Chmin{s,k+ 1

2
},

For smooth solutions, Theorem 5.3 thus yields convergence rates in L2-norm:

sup
t∈I

(
‖ep‖L2(Ω) + ‖e~q‖L2(Ω)

)
≤ Chk+ 1

2 ,

where k is the order of approximation polynomials.

Following [19] we introduce lifting operators in order to extend the numerical flux

to the entire space P(h)×Q(h). We define the lifting operator L+
h p ∈ Q

h(Ω) for p ∈ P(h)

by ∫
Ω
L+
h p · ~q

hdx =
∑
e∈Eh

∫
e
JpK
(
~C12J~qhK + {{~qh}}

)
ds, ∀~qh ∈ Qh(Ω), (5.26)

and also L−h ~q ∈ P
h(Ω) for ~q ∈ Q(h) by∫

Ω
L−h ~q phdx =

∑
e∈Eh

∫
e
J~qK ·

(
~C12JphK− {{ph}}

)
ds ∀ph ∈ Ph(Ω). (5.27)

Note that by the definition of L2-projection (5.24), we have that∫
Ω
L+
h p · ~q dx =

∫
Ω
L+
h p ·Πh~q dx ∀p ∈ P(h), ~q ∈ Q(h), (5.28)

∫
Ω
L−h ~q p dx =

∫
Ω
L−h ~q Πhp dx ∀p ∈ P(h), ~q ∈ Q(h). (5.29)

Now we extend (5.22), (5.23) using the two lifting functions,

(
1

c2
pt, r) + ãh(p, r) − b̃′h(~q, r) = 0 ∀r ∈ P(h), t ∈ I, (5.30)

(~qt, ~v) + b̃h(p, ~v) + c̃h(~q, ~v) = 0 ∀~q ∈ Q(h), t ∈ I, (5.31)
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where the bilinear forms are given by

ãh(p, r) =
∑
K∈Th

∫
K

σp
c2
pr dx +

∑
e∈Eh

∫
e
C11JpK · JrKds, (5.32)

b̃h(p, ~v) = −
∑
K∈Th

∫
K
p∇ · ~vdx −

∫
Ω
pL−h ~vdx, (5.33)

b̃′h(~q, r) =
∑
K∈Th

∫
K

~q · ∇rdx −
∫

Ω

~q · L+
h rdx, (5.34)

c̃h(~q, ~v) =
∑
K∈Th

∫
K
σq~q · ~vdx +

∑
e∈Eh

∫
e
C22JqKJvKds. (5.35)

The lifting operators can be bounded provided α = −1 (e.g., IP method) as follows:

Remark 5.4 If the parameter α = −1, then there exists a constant Cinv which depends

only on the shape regularity of the mesh, the approximation order k, and the dimension

d, such that

‖L+
h p‖0,Ω ≤ α

− 1
2

11 C
′
inv‖C11JpK‖0,Eh ,

‖L−h ~q‖0,Ω ≤ α
− 1

2
22 Cinv‖C22J~qK‖0,Eh ,

for any p ∈ P(h), ~q ∈ Q(h).

Proof. For p ∈ P(Ω) using the definition of L+
h and the Riesz representative theorem we

have that

‖L+
h p‖0,Ω = sup

~q∈Q(h)

(L+
h p, ~q)

‖~q‖0,Ω

= sup
~q∈Q(h)

∑
Eh
∫
eJpK · (~C12J~qK + {{~q}})ds

‖~q‖0,Ω

≤ sup
~q∈Q(h)

(
∑
Eh
∫
e C11|JpK|2ds)

1
2 (
∑
Eh
∫
e C
−1
11 |~C12J~qK + {{~q}}|2ds)

1
2

‖~q‖0,Ω

≤ α−
1
2

11 sup
~q∈Q(h)

(
∑
Eh
∫
e C11|JpK|2ds)

1
2 (
∑
Eh
∫
e h|~C12J~qK + {{~q}}|2ds)

1
2

‖~q‖0,Ω

≤ α−
1
2

11 (|~C12|+ 1) sup
~q∈Q(h)

(
∑
Eh
∫
e C11|JpK|2ds)

1
2 (
∑
Th
∫
∂K hK |~q|

2ds)
1
2

‖~q‖0,Ω
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≤ α−
1
2

11 (|~C12|+ 1)Cinv sup
~q∈Q(h)

(
∑
Eh
∫
e C11|JpK|2ds)

1
2 (
∑
Th
∫
K |~q|

2dx)
1
2

‖~q‖0,Ω

by the Cauchy-Schwarz inequality, the definition (5.21) of α11, and the inverse inequality

which is obtained from the combination of (5.18) and (5.20), that is∑
Th

hK

∫
∂K
|~q|2dx

 1
2

≤ Cinv‖~q‖0,Ω,

where a constant Cinv which depends only on the shape regularity of the mesh, the ap-

proximation order k, and the dimension d. Similarly, the second inequality holds, and this

completes the proof.

5.3.3 Error Equations

To derive error equations we define for r ∈ P(h), ~v ∈ Q(h) and p ∈ H1
0 (Ω), ~q ∈

H1(Ω),

Rp(p, ~v) =
∑
e∈Eh

∫
e
J~vK

(
−~C12 · JΠhp− pK + {{Πhp− p}}

)
ds, (5.36)

Rq(~q, r) =
∑
e∈Eh

∫
e
JrK ·

(
~C12JΠh~q− ~qK + {{Πh~q− ~q}}

)
ds. (5.37)

The assumption that p ∈ H1
0 (Ω), ~q ∈ H1(Ω) ensures that Rp(p, ~v),Rq(~q, r) are well-

defined since the trace map of p, ~q are uniquely defined on all e ∈ Eh . From the definition

(5.7) of jump it directly follows that Rp(p, ~v) = 0,Rq(~q, r) = 0 when r ∈ H1
0 (Ω), ~v ∈

H1(Ω).

Using the definition of the error equations, we have a following property.

Lemma 5.3 Let the analytical solution (p, ~q) of (5.2) satisfy

(p, ~q) ∈ L∞(I;H1
0 (Ω)×H1(Ω)), (pt, ~qt) ∈ L1(I;L2(Ω)× L2(Ω)).

Let (ph, ~qh) be the semi-discrete DG approximation obtained by (5.22), (5.23). Then the
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error ep = p− ph, e~q = ~q− ~qh satisfy

(
1

c2
ept , r

h) + ãh(ep, rh) − b̃′h(e~q, rh) = Rq(~q, rh) ∀rh ∈ Ph(Ω) a.e. in I, (5.38)

(e~qt , ~v
h) + b̃h(ep, ~vh) + c̃h(e~q, ~vh) = Rp(p, ~vh) ∀~vh ∈ Qh(Ω) a.e. in I. (5.39)

Proof. Let ph ∈ Ph(Ω) and ~vh ∈ Qh(Ω). Then we obtain that using the discrete formula-

tion in (5.22), (5.23),

(
1

c2
ept , r

h) + ãh(ep, rh)− b̃′h(e~q, rh) = (
1

c2
pt, r

h) + ãh(p, rh)− b̃′h(~q, rh) a.e. in I,

(e~qt , ~v
h) + b̃h(ep, ~vh) + c̃h(e~q, ~vh) = (~qt, ~v

h) + b̃h(p, ~vh) + c̃h(~q, ~vh) a.e. in I.

By definitions of b̃h, the property (5.24) of L2-projection Πh,Πh, and the definitions (5.26),

(5.27) of the lifted element L+
h , L−h , we obtain

b̃h(p, ~vh) =−
∑
K∈Th

∫
K
p∇ · ~vhdx−

∑
Eh

∫
e
J~vhK

(
~C12 · JΠhpK− {{Πhp}}

)
ds,

b̃′h(~q, rh) =
∑
K∈Th

∫
K

~q · ∇rhdx−
∑
Eh

∫
e
JrhK ·

(
~C12JΠh~qK + {{Πh~q}}

)
ds.

Since (pt, ~qt) ∈ L1(I;L2(Ω)×L2(Ω)), we have that ∇·~q ∈ L2(Ω), and ∇p ∈ L2(Ω) almost

everywhere in I, which implies that p and ~q have continuous normal components across

all interior faces. By integration by parts in element-wise and combination with the trace

operators, we get that

b̃h(p, ~vh) =
∑
K∈Th

∫
K
∇p·~vhdx−

∑
Eh

∫
e
J~vhK{{p}}ds−

∑
Eh

∫
e
J~vhK

(
~C12 · JΠhpK− {{Πhp}}

)
ds,

b̃′h(~q, rh) = −
∑
K∈Th

∫
K
∇·~qrhdx+

∑
Eh

∫
e
JrhK·{{~q}}ds−

∑
Eh

∫
e
JrhK·

(
~C12JΠh~qK + {{Πh~q}}

)
ds.

From the definition of Rq(~q, rh) and Rp(p, ~vh) in (5.36), (5.37), we have that

(
1

c2
pt, r

h) + ãh(p, rh)− b̃′h(~q, rh) = (
1

c2
pt +

σp
c2
p+∇ · ~q, rh) +Rq(~q, rh),

(~qt, ~v
h) + b̃h(p, ~vh) + c̃h(~q, ~vh) = (~qt + σq~q +∇p, ~v) +Rp(p, ~vh),
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and obtain

(
1

c2
ept , r

h) + ãh(ep, rh)− b̃′h(e~q, rh) = (
1

c2
pt +

σp
c2
p+∇ · ~q, rh) +Rq(~q, rh) = Rq(~q, rh),

(e~qt , ~v
h) + b̃h(ep, ~vh) + c̃h(e~q, ~vh) = (~qt + σq~q +∇p, ~vh) + Rp(p, ~vh) = Rp(p, ~vh),

where we have used the differential equations in (5.2).

There is also an important relation between b̃h and b̃′h from the dual property of ∇

and −∇·.

Lemma 5.4 Let the analytical solution (p, ~q) of (5.2) satisfy

(p, ~q) ∈ L∞(I;H1
0 (Ω)×H1(Ω)), (pt, ~qt) ∈ L1(I;L2(Ω)× L2(Ω)).

Let (ph, ~qh) be the semi-discrete DG approximation obtained by (5.22), (5.23). Then the

following property holds, for all rh ∈ Ph(Ω) and ~vh ∈ Qh(Ω),

− b̃′h(e~q,Πhp− ph) + b̃h(ep,Πh~q− ~qh) = 0, (5.40)

− b̃′h(~vh, rh) + b̃h(rh, ~vh) = 0. (5.41)

Proof. By the definition of b̃′h, the property (5.26) of lifted element, and the property of

L2-projection, we obtain that

b̃′h(~q−Πh~q, r
h) =

∑
K∈Th

∫
K

(~q−Πh~q) · ∇rhdx−
∫

Ω
L+
h r

h · (~q−Πh~q)dx (5.42)

= −
∫

Ω
L+
h r

h · (~q−Πh~q)dx

= 0.

Here, we have used the definition of L2-projection, Πh(~q−Πh~q) = Πh~q−Πh~q = 0.

In the similar way it holds that

b̃h(p−Πhp, ~q
h) = 0.
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For rh ∈ Ph(Ω) and ~vh ∈ Qh(Ω), we use definition of b̃′h, element-wise integration by

parts, and the trace identity (5.8) to obtain that

b̃′h(~vh, rh) =
∑
K∈Th

∫
K

~vh · ∇rhdx−
∫

Ω
L+
h r

h · ~vhdx

= −
∑
K∈Th

∫
K
∇ · ~vhrhdx+

∑
K∈Th

∫
K
rh~vh · ~nds−

∑
e∈Th

∫
e
JphK · (~C12J~vhK + {{~vh}})ds

= −
∑
K∈Th

∫
K
∇ · ~vhrhdx−

∑
e∈Th

∫
e

(
JrhK · ~C12 − {{rh}}

)
J~vhKds,

and from the definition b̃h,

b̃h(rh, ~vh) = −
∑
K∈Th

∫
K
rh∇ · ~vhdx−

∫
Ω
L−h ~v

h rhdx

= −
∑
K∈Th

∫
K
rh∇ · ~vhdx−

∑
e∈Th

∫
e

(
JrhK · ~C12 − {{rh}}

)
J~vhKds.

Subtracting b̃′h from b̃h we have that

−b̃′h(~vh, rh) + b̃h(rh, ~vh) = 0 ∀rh ∈ Ph(Ω), ~vh ∈ Qh(Ω). (5.43)

Using the definition of error ep and e~q with the properties (5.42), and (5.43) we obtain

b̃′h(e~q,Πhp− ph)− b̃h(ep,Πh~q− ~qh) = b̃′h(Πh~q− ~qh,Πhp− ph)− b̃h(Πhp− ph,Πh~q− ~qh)

= 0,

which completes the proof.

5.3.4 Approximation Properties.

We recall the following L2-projection approximation properties; see [34].

Lemma 5.5 Let K ∈ Th. Then the following properties hold:

(i) For p ∈ Hs(K), s ≥ 0, we have

‖p−Πhp‖L2(K) ≤ Ch
min{s,k+1}
K ‖p‖Hs(K),
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with a constant C that is independent of the local mesh size hK and depends only on

the shape-regularity of the mesh, the approximation order k, the dimension d, and

the regularity exponent s.

(ii) For p ∈ H1+s(K), s > 1
2 , we have

‖∇p−∇(Πhp)‖L2(K) ≤ Ch
min{s,k}
K ‖p‖H1+s(K),

‖p−Πhp‖L2(∂K) ≤ Ch
min{s,k}+ 1

2
K ‖p‖H1+s(K), (5.44)

‖∇p−Πh∇(p)‖L2(∂K) ≤ Ch
min{s,k+1}− 1

2
K ‖p‖H1+s(K),

with a constant C that is independent of the local mesh size hK and depends only on

the shape-regularity of the mesh, the approximation order k, the dimension d, and the

regularity exponent s.

As a consequence of the approximation properties in Lemma 5.5, we have the fol-

lowing results. Let us denote for convenience, ‖ ·‖s,K := ‖ ·‖Hs(K) and ‖ ·‖s,Ω := ‖ ·‖Hs(Ω),

and the same as Hs(K) and Hs(Ω), respectively.

Lemma 5.6 Let p ∈ H1+s(Ω), s > 1
2 .Then the following hold:

‖{{Πhp− p}}‖0,Eh ≤ Chmin{s,k}+ 1
2 ‖p‖1+s,Ω,

‖JΠhp− pK‖0,Eh ≤ Chmin{s,k}+ 1
2 ‖p‖1+s,Ω,

with a constant C that is independent of the local mesh size hK and depends only on

the shape-regularity of the mesh, the approximation order k, the dimension d, and the

regularity exponent s.

Proof. It’s directly obtained from Lemma 5.5 and definition of jump and average on faces

of elements K.

Lemma 5.7 Let (p, ~q) ∈ H1+s(Ω)×H1+s(Ω) with s > 1
2 . Then the following hold:
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(i) For r ∈ P(h), ~v ∈ Q(h), the forms (5.36) and (5.37) can be bounded by

|Rp(p, ~v)| ≤ CpR hmin{s,k}+ 1−α
2 ‖C

1
2
22J~vK‖0,Eh ‖p‖1+s,Ω ,

|Rq(~q, r)| ≤ CqR hmin{s,k}+ 1−α
2 ‖C

1
2
11JrK‖0,Eh ‖~q‖1+s,Ω ,

with constants CpR and CqR independent of h, which depend only on α11, α12, α22, and

the constant in Lemma 5.5.

(ii) The bilinear forms are estimated by following :

ãh(ep,Πhp− p) ≤ Ca h
min{s,k}+ 1+α

2

(
h

1−α
2 ‖ep‖0,Ω + ‖C

1
2
11Je

pK‖0,Eh
)
‖p‖1+s,Ω,

c̃h(e~q,Πh~q− ~q) ≤ Cc h
min{s,k}+ 1+α

2

(
h

1−α
2 ‖e~q‖0,Ω + ‖C

1
2
22Je

~qK‖0,Eh
)
‖~q‖1+s,Ω,

with constants Ca and Cc independent of h, which depend only on α11, α22, and the

constant in Lemma 5.5.

Proof. (i) To show the first estimate we begin with the definition of Rp in (5.36), and

apply the Cauchy-Schwarz inequality and approximation properties in Lemma 5.5

to obtain that

|Rp(p, ~v)|2 ≤
∑
e∈Eh

∫
e
|C

1
2
22J~vK|2ds ·

∑
e∈Eh

∫
e
C−1

22

∣∣(~C12 · JΠhp− pK + {{Πhp− p}}
)∣∣2 ds

≤α−1
22 ‖C

1
2
22J~vK‖20,Eh

∑
K∈Th

h−αK (1 + |~C12|) ‖p−Πhp‖20,∂K

≤CpR
2
h2 min{s,k}+1−α‖C

1
2
22J~vK‖20,Eh ‖p‖

2
1+s,Ω by (5.44).

This completes the first estimate. Similarly we have the second bound in (i).

(ii) From the definition of ãh in (5.32) we apply Hölder’s inequality, the definition of α11,
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Cauchy-Schwarz inequality, and Lemma 5.5,

ãh(ep,Πhp− p)

=
∑
K∈Th

∫
K
σpe

p(Πhp− p)dx+
∑
e∈Eh

∫
e
C11JepK · JΠp− pKds

≤ σ∗
∑
K∈Th

‖ep‖0,K‖Πhp− p‖0,K +
∑
e∈Eh

‖C
1
2
11Je

pK‖0,e‖C
1
2
11JΠhp− pK‖0,e

≤ σ∗
∑
K∈Th

‖ep‖0,K‖Πhp− p‖0,K + α
1
2
11

∑
e∈Eh

‖C
1
2
11Je

pK‖0,e‖h
α
2 JΠhp− pK‖0,e

≤ C

σ∗h 1−α
2

∑
K∈Th

‖ep‖0,K + α
1
2
11‖C

1
2
11Je

pK‖0,Eh

∑
K∈Th

h
min{s,k}+ 1+α

2
K ‖p‖1+s,K

 ,

since

∑
e∈Eh

‖C
1
2
11Je

pK‖0,e‖h
α
2 JΠhp−pK‖0,e ≤

∑
e∈Eh

‖C
1
2
11Je

pK‖20,e

 1
2
κ ∑

K∈Th

hαK‖Πhp− p‖20,∂K

 1
2

,

where κ is shape-regularity constant in (5.6). This completes the first estimate of

(ii). Similarly we can bound of c̃h(e~q,Π~q− ~q) with the same order of h.

5.3.5 Proof of Theorem 5.3

Proof. From Theorem 5.1, we have that

ep ∈ C0(Ī;P(h)) ∩ C1(Ī;L2(Ω)) and e~q ∈ C0(Ī;Q(h)) ∩ C1(Ī;L2(Ω)).

Since ep = p − Πp + Πp − ph, e~q = ~q −Π~q + Π~q − ~qh, using the error equations (5.38)

and (5.39), we have that

1

2

d

dt
‖1

c
ep‖20,Ω +

1

2

d

dt
‖e~q‖20,Ω

= (
1

c2
ept , p−Πhp)− ãh(ep,Πhp− ph) + (e~qt ,Πh~q− ~qh)− c̃h(e~q,Πh~q− ~qh)

+Rq(~q,Πhp− ph) +Rp(p,Πh~q− ~qh),
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by the property in (5.4).

Now we fix τ ∈ I and integrate over the time interval (0, τ). This yields

1

2
‖1

c
ep(τ)‖20,Ω +

1

2
‖e~q(τ)‖20,Ω +

∫ τ

0

(
ãh(ep, ep) + c̃h(e~q, e~q)

)
dt

=
1

2
‖1

c
ep(0)‖20,Ω +

1

2
‖e~q(0)‖20,Ω +

∫ τ

0

[
(

1

c2
ept , p−Πhp) + (e~qt , ~q−Πh~q)

]
dt (5.45)

+

∫ τ

0

[
ãh(ep, p−Πhp) + c̃h(e~q, ~q−Πh~q)

]
dt+

∫ τ

0

[
Rp(p,Πh~q− ~qh) +Rq(~q,Πhp− ph)

]
dt.

Integration by parts in the first integral on the right hand side and standard Hölder’s

inequality yield that∫ τ

0

[
(

1

c2
ept , p−Πhp) + (e~qt , ~q−Πh~q)

]
dt = −

∫ τ

0

[
(

1

c2
ep, (p−Πhp)t) + (e~q, (~q−Πh~q)t)

]
dt

+

[
(

1

c2
ep, p−Πp)

]t=τ
t=0

+
[
(e~q, ~q−Πh~q)

]t=τ
t=0

≤ ‖1

c
ep‖L∞(I;L2(Ω))‖

1

c
(p−Πhp)t‖L1(I;L2(Ω)) + ‖e~q‖L∞(I;L2(Ω))‖(~q−Πh~q)t‖L1(I;L2(Ω))

+2‖1

c
ep‖L∞(I;L2(Ω))‖

1

c
(p−Πhp)‖L∞(I;L2(Ω)) + 2‖e~q‖L∞(I;L2(Ω))‖~q−Πh~q‖L∞(I;L2(Ω))

:= T1.

From the definition of ãh and c̃h and standard Hölder’s inequality in the second integral

on the right hand side in (5.45), we have that∫ τ

0

[
ãh(ep, p−Πhp) + c̃h(e~q, ~q−Π~q)

]
dt

≤ σ∗
∫ τ

0

(
‖1

c
ep‖0,Ω‖c(p−Πhp)‖0,Ω + ‖e~q‖0,Ω‖~q−Π~q‖0,Ω

)
dt

+

∫ τ

0

(
‖C

1
2
11Je

pK‖0,Eh‖C
1
2
11Jp−ΠhpK‖0,Eh + ‖C

1
2
22Je

~qK‖0,Eh‖C
1
2
22J~q−Πh~qK‖0,Eh

)
dt

≤ σ∗T
(
‖1

c
ep‖L∞(I;L2(Ω))‖c(p−Πhp)‖L∞(I;L2(Ω)) + ‖e~q‖L∞(I;L2(Ω))‖~q−Πh~q‖L∞(I;L2(Ω))

)
+‖C

1
2
11Je

pK‖L1(I;L2(Eh))‖C
1
2
11Jp−ΠhpK‖L∞(I;L2(Eh))+‖C

1
2
22Je

~qK‖L1(I;L2(Eh))‖C
1
2
22J~q−Πh~qK‖L∞(I;L2(Eh))

:= T2.
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Now we combine T1 and T2 together and rewrite the left hand side (5.45) with the new

bounds,

1

2
‖1

c
ep(τ)‖20 +

1

2
‖e~q(τ)‖20 +

∫ τ

0

(
‖σp
c2
ep‖20,Ω + ‖C

1
2
11Je

pK‖20,Eh + ‖σqe~q‖20,Ω + ‖C
1
2
22Je

~qK‖20,Eh

)
dt

≤ 1

2
‖1

c
ep(0)‖20,Ω +

1

2
‖e~q(0)‖20,Ω + T1 + T2 +

∫ τ

0

∣∣∣Rp(p,Πh~q− ~qh)
∣∣∣+
∣∣∣Rq(~q,Πhp− ph)

∣∣∣ dt.
Since this inequality holds for any τ ∈ I, it also holds for the supremum over I, that is

1

2
sup
t∈I

(
‖1

c
ep(t)‖2L2(Ω) + ‖e~q(t)‖2L2(Ω)

)
+ ‖σp

c2
ep‖2L1(I;L2(Ω)) + ‖C

1
2
11Je

pK‖2L1(I;L2(Eh))

+ ‖σqe~q‖2L1(I;L2(Ω))+‖C
1
2
22Je

~qK‖2L1(I;L2(Eh))

≤ 1

2
‖1

c
ep(0)‖20,Ω +

1

2
‖e~q(0)‖20,Ω + T1 + T2+

∫
I

∣∣∣Rp(p,Πh~q− ~qh)
∣∣∣ dt+

∫
I

∣∣∣Rq(~q,Πhp− ph)
∣∣∣ dt.

Using the geometric-arithmetic mean inequality |ab| ≤ 1
2εa

2+ ε
2b

2, valid for ε > 0, (a+b)2 ≤

2(a2 + b2), and the approximation results in Lemma (5.5), we obtain that

T1 = ‖1

c
ep‖L∞(I;L2(Ω))

(
‖1

c
(p−Πhp)t‖L1(I;L2(Ω)) + 2‖1

c
(p−Πhp)‖L∞(I;L2(Ω))

)
+ ‖e~q‖L∞(I;L2(Ω))

(
‖(~q−Πh~q)t‖L1(I;L2(Ω)) + 2‖~q−Πh~q‖L∞(I;L2(Ω))

)
≤ 1

2ε
‖1

c
ep‖2L∞(I;L2(Ω)) + ε

(
‖1

c
(p−Πhp)t‖2L1(I;L2(Ω)) + 4‖1

c
(p−Πhp)‖2L∞(I;L2(Ω))

)
+

1

2ε
‖e~q‖2L∞(I;L2(Ω)) + ε

(
‖(~q−Πh~q)t‖2L1(I;L2(Ω)) + 4‖~q−Πh~q‖2L∞(I;L2(Ω))

)
≤ 1

2ε
‖1

c
ep‖2L∞(I;L2(Ω)) + εCh2 min{s,k+1}

(
1

c2
∗
‖pt‖2L1(I;Hs(Ω)) + ‖~qt‖2L1(I;Hs(Ω))

)
+

1

2ε
‖e~q‖2L∞(I;L2(Ω)) + 4εCh2 min{s,k}+2

(
1

c2
∗
‖p‖2L∞(I;H1+s(Ω)) + ‖~q‖2L∞(I;H1+s(Ω))

)
,
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and

T2

=
1

2ε

(
‖1

c
ep‖2L∞(I;L2(Ω)) + ‖e~q‖2L∞(I;L2(Ω))

)
+

1

2µ

(
‖C

1
2
11Je

pK‖2L1(I;L2(Eh)) + ‖C
1
2
22Je

~qK‖2L1(I;L2(Eh))

)
+
ε

2
σ∗2T 2

(
c∗2‖p−Πhp‖2L∞(I;L2(Ω)) + ‖~q−Πh~q‖2L∞(I;L2(Ω))

)
+
µ

2

(
‖C

1
2
11Jp−ΠhpK‖2L∞(I;L2(Eh)) + ‖C

1
2
22J~q−Πh~qK‖2L∞(I;L2(Eh))

)
≤ 1

2ε

(
‖1

c
ep‖2L∞(I;L2(Ω)) + ‖e~q‖2L∞(I;L2(Ω))

)
+

1

2µ

(
‖C

1
2
11Je

pK‖2L1(I;L2(Eh) + ‖C
1
2
22Je

~qK‖2L1(I;L2(Eh))

)
+
ε

2
Cσ∗2T 2h2 min{s,k}+2

(
c∗2‖p‖2L∞(I;H1+s(Ω)) + ‖~q‖2L∞(I;H1+s(Ω))

)
+
µ

2
Ch2 min{s,k}+1+α

(
‖p‖2L∞(I;H1+s(Ω)) + ‖~q‖2L∞(I;H1+s(Ω))

)
.

Using Lemma 5.5 and Lemma 5.7 we can also bound the error equations∫
I

∣∣∣Rp(p,Π~q− ~qh)
∣∣∣ dt ≤ ∫

I

∣∣∣Rp(p, e~q)
∣∣∣ dt+

∫
I
|Rp(p,Π~q− ~q)| dt

≤ CpRh
min{s,k}+ 1−α

2

∫
I

[(
‖C

1
2
22Je

~qK‖0,Eh + ‖C
1
2
22JΠ~q− ~qK‖0,Eh

)
‖p‖1+s,Ω

]
dt

≤ µ

2
CpR

2
h2 min{s,k}+1−α ‖p‖2L∞(I;H1+s(Ω)) +

1

2µ
‖C

1
2
22Je

~qK‖2L1(I;H1+s(Eh))

+
µ

2
CpR

2
T 2h2 min{s,k}+1−α ‖p‖2L∞(I;H1+s(Ω))+

1

2µ
‖C

1
2
22JΠ~q−~qK‖2L∞(I;L2(Eh))

≤ µ

2
CpR

2
(1 + T 2)h2 min{s,k}+1−α ‖p‖2L∞(I;H1+s(Ω)) +

1

2µ
‖C

1
2
22Je

~qK‖2L1(I;H1+s(Eh))

+
1

2µ
h2 min{s,k}+1+α‖~q‖2L∞(I;H1+s(Ω)),

and ∫
I

∣∣∣Rq(~q,Πhp− ph)
∣∣∣ dt ≤ µ

2
CqR

2
(1 + T 2)h2 min{s,k}+2 ‖~q‖2L∞(I;H1+s(Ω))

+
1

2µ
‖C

1
2
11Je

pK‖2L1(I;H1+s(Eh))

+
1

2µ
h2 min{s,k}+1+α ‖p‖2L∞(I;H1+s(Ω)) .
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Combining the above estimates and T1, T2, with ε = 4, and µ = 2, then we have that

1

4
sup
t∈I

(
‖1

c
ep‖2L2(Ω) + ‖e~q‖2L2(Ω)

)
+

1

2
‖C

1
2
11Je

pK‖2L1(I;L2(Eh)) +
1

2
‖C

1
2
22Je

~qK‖2L1(I;L2(Eh))

≤ 1

2
‖1

c
ep(0)‖20,Ω +

1

2
‖e~q(0)‖20,Ω

+Ch2 min{s,k+1/2}
(
‖p‖2L∞(I;H1+s(Ω)) + ‖~q‖2L∞(I;H1+s(Ω)) + ‖pt‖2L1(I;Hs(Ω)) + ‖~qt‖2L1(I;Hs(Ω))

)
,

with a constant that is independent of the mesh size h taking α = 0. Using the bound

1
c∗2
‖ep‖2L2(Ω) ≤ ‖

1
ce
p‖2L2(Ω), we conclude the proof of Theorem 5.3.

Remark 5.5 In our DG method the parameters are independent of mesh size h which

gives higher accuracy of the L2-norms of errors in p and ~q with k+ 1
2 , k+ 1

2 , respectively

for smooth solutions (p, ~q). But, in IP methods, i.e., the stabilization parameters C11, C22

of order O(h−1), we lose accuracy 1
2 for p and ~q, respectively, from the interior penalty

flux. ( see proof of Theorem 5.3 with α = −1 ).
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6. FULLY DISCRETIZED SCHEME ERROR ESTIMATION

6.1. Fully Discretized Discontinuous Galerkin Method for the system

In this section, we present the fully discrete discontinuous Galerkin method for

the system (5.22)-(5.23), which extends the spatial discretization in Chapter 5.2. to fully

discrete scheme. The discretization in space is based on the discontinuous Galerkin method

while the time discretization is based on the θ-scheme finite difference approximation.

Especially we apply the Trapezoidal method in time discretization, i.e., when θ = 1
2 . We

show an a priori L2-norm error estimate for the scheme, following [31].

6.1.1 Time discretization

We now use the θ-scheme to discretize in time the system of equations (5.22)-(5.23).

To that end we introduce a time step 4t = T/N and define the discrete times tn = n4t

for n = 0, · · · , N. For a (sufficiently smooth) function r(x, t), ~v(x, t), we set

∂tr
n = ∂tr(·, tn), ∂t~v

n = ∂t~v(·, tn).

Let (p, ~q) be the solution to the system (5.2). We wish to find DG approximations

{(Pn, ~Qn)} such that (Pn, ~Qn) ≈ (pn, ~qn) at the discrete times tn. To do so, we introduce

the finite difference operator

∆Pn =
Pn+1 − Pn

4t
, ∆~Qn =

~Qn+1 − ~Qn

4t
, n = 0, · · · , N − 1. (6.1)

The fully discrete numerical solution to the system (5.22)-(5.23) is then defined by finding

{(Pn, ~Qn)} such that

(
1

c2
∆Pn, rh) + ah((1− θ)Pn + θPn+1, rh)− b′h((1− θ)~Qn + θ~Qn+1, rh) = 0, (6.2)

(∆~Qn,vh) + bh((1− θ)Pn + θPn+1, ~vh) + ch((1− θ)~Qn + θ~Qn+1, ~vh) = 0, (6.3)
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for all n = 1, · · · , N − 1, and for all (rh, ~vh) ∈ Ph(Ω)×Qh(Ω). Especially when θ = 1
2 it

gives the Trapezoidal method

(
1

c2
∆Pn, rh) +

1

2
ah(Pn + Pn+1, rh)− 1

2
b′h(~Qn + ~Qn+1, rh) = 0, (6.4)

(∆~Qn, ~vh) +
1

2
bh(Pn + Pn+1, ~vh) +

1

2
ch(~Qn + ~Qn+1, ~vh) = 0, (6.5)

for all n = 0, · · · , N − 1, and for all (rh, ~vh) ∈ Ph(Ω)×Qh(Ω).

The initial conditions P 0 ∈ Ph(Ω) and Q0 ∈ Qh(Ω) are given by

P 0 = Πhf, Q0 = ~0.

In the above equations in (6.4), (6.5), every time step involves the inversion of the DG

mass matrix. Since it is an invertible block matrix

 A −B

BT C

 , where A and C are

symmetric positive definite, the new approximations Pn+1 and ~Qn+1 are well-defined for

n ≥ 1. Therefore the fully discrete DG approximations {(Pn, ~Qn+1)} are uniquely defined,

which completes the definition of fully discrete DG methods for the system.

Remark 6.1 The fully discretized scheme (6.4), (6.5) is unconditionally stable. Choosing

rh = Pn + Pn+1, ~vh = ~Qn + ~Qn+1 with the property in (5.43), we have that

‖1

c
Pn+1‖20,Ω + ‖~Qn+1‖20,Ω =‖1

c
Pn‖20,Ω + ‖~Qn‖20,Ω

−4t
2

(
ah(Pn + Pn+1, Pn + Pn+1) + ch(~Qn + ~Qn+1, ~Qn + ~Qn+1)

)
≤‖1

c
Pn‖20,Ω + ‖~Qn‖20,Ω,

for all n = 0, · · · , N − 1. Therefore we obtain that ‖1
cP

N‖20,Ω + ‖~QN‖20,Ω ≤ ‖
1
cP

0‖20,Ω +

‖~Q0‖20,Ω, which is independent of size 4t and h.
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6.1.2 An A priori Estimate

In this section, we state a priori error estimate for the fully discrete DG method

introduced above. We decompose the error en at time tn into

en = ep
n

+ e~q
n

= (pn − Pn) + (~qn − ~Qn)

= (pn −Πhp
n + Πhp

n − Pn) + (~qn −Πh~q
n + Πh~q

n − ~Qn) , n = 0, · · · , N,

where pn = p(·, tn) and ~qn = ~q(·, tn).

Our main result establishes an error estimate of the L2-norm of the error. The

following result holds.

Theorem 6.1 Let the solution (p, ~q) of the system satisfy the following properties for a

regularity constant s > 1
2 .

p ∈ C(I;H1+s(Ω)), ptt ∈ C(Ī;Hs(Ω)), ∂3
t p ∈ L1(I;L2(Ω)),

~q ∈ C(I;H1+s(Ω)), ~qtt ∈ C(Ī;Hs(Ω)), ∂3
t ~q ∈ L1(I;L2(Ω)).

Then there holds the error estimate

N
max
n=0

(‖pn − Pn‖+ ‖qn − ~Qn‖) ≤ C(hmin{s,k+ 1
2
} +4t2),

with a constant C > 0 that is independent of the mesh size h and time step size 4t. Then

the numerical solution holds the accuracy up to hk+ 1
2 +4t2 for a smooth solution (p, ~q).

We denotes the differences between numerical solutions and the projection of ana-

lytical solutions for n = 0, · · · , N − 1, by

Φn
p = Pn −Πhp

n, Φn
q = ~Qn −Πh~q

n,

Rnp = Πhp
n − pn, Rnq = Πh~q

n − ~qn.

Note that the initial condition Φ0
p = Πhp

0 − P 0 = 0 and Φ0
q = Πh~q

0 − ~Q0 = ~0. The

following approximation properties hold by Lemma 5.6.
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Lemma 6.1 For 0 ≤ n ≤ N − 1, the following holds:

‖JRnp +Rn+1
p K‖0,Ω ≤ Chmin{s,k}+ 1

2
(
‖pn‖1+s,Ω + ‖pn+1‖1+s,Ω

)
,

‖{{Rnp +Rn+1
p }}‖0,Ω ≤ Chmin{s,k}+ 1

2
(
‖pn‖1+s,Ω + ‖pn+1‖1+s,Ω

)
,

and

‖Rnp +Rn+1
p ‖0,Ω ≤ Chmin{s,k}+1

(
‖pn‖1+s,Ω + ‖pn+1‖1+s,Ω

)
,

with a constant C > 0 that is independent of h,4t, and T .

Proof. Using the definition of Rnp and the property in Lemma 5.6 and Lemma 5.5 we have

that

‖JRnp +Rn+1
p K‖20,Ω ≤ 2

(
‖JΠhp

n − pnK‖20,Ω + ‖JΠhp
n+1 − pn+1K‖20,Ω

)
≤ Ch2 min{s,k}+1

(
‖pn‖21+s + ‖pn+1‖21+s,Ω

)
,

‖{{Rnp +Rn+1
p }}‖20,Ω ≤ 2

(
‖{{Πhp

n − pn}}‖20,Ω + ‖{{Πhp
n+1 − pn+1}}‖20,Ω

)
≤ Ch2 min{s,k}+1

(
‖pn‖21+s,Ω + ‖pn+1‖21+s,Ω

)
,

and

‖Rnp +Rn+1
p ‖20,Ω ≤ 2

(
‖Rnp‖20,Ω + ‖Rn+1

p ‖20,Ω
)

≤ 2
(
‖(Πhp

n − pn‖20,Ω + ‖Πhp
n+1 − pn+1‖20,Ω

)
≤ Ch2 min{s,k}+2

(
‖pn‖21+s,Ω + ‖pn+1‖21+s,Ω

)
for n = 0, · · · , N − 1.

The previous approximation results are satisfied by Rnq similarily.

Now we consider that

bh(p, ~v) = −
∑
K∈Th

∫
K
p∇ · ~vdx −

∑
e∈Eh

∫
e
J~vK

(
~C12 · JpK− {{p}}

)
ds

=
∑
K∈Th

∫
K
∇p · ~vdx −

∑
e∈Eh

∫
e
JpK ·

(
~C12J~vK + {{~v}}

)
ds
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by Green’s identity and the trace identity (5.8). Then we have the following bounds by

the property of L2-projection
∫
K Rp∇ · Φqdx = 0 and

∫
K Rq∇ · Φpdx = 0.

Remark 6.2 It holds that for n = 0, · · · , N − 1, for any ε0 > 0, ε1 > 0,

bh(Φn
p ,Φ

n
q) − b′h(Φn

q,Φ
n
p ) = 0,

and

bh(Rnp ,Φ
n
q) − b′h(Rnq,Φ

n
p )

= −
∑
e∈Eh

∫
e
JΦn

qK
(
~C12 · JRnp K− {{Rnp}}

)
ds+

∑
e∈Eh

∫
e

(
~C12JRnqK + {{Rnq}}

)
· JΦn

p Kds.

Next the finite difference operators ∆n
p ,∆

n
q are bounded as follows.

Lemma 6.2 We set

1

c
∆n
p =

1

c
∆Πhp

n − pnt + pn+1
t

2c
, n = 0, · · · , N − 1,

and

∆n
q = ∆Πh~q

n −
~qnt + ~qn+1

t

2
, n = 0, · · · , N − 1,

For 0 ≤ n ≤ N − 1, there holds

∥∥∥∥1

c
∆n
p

∥∥∥∥
0,Ω

≤ C

(
1

c∗4t

∫ tn+1

tn

hmin{s,k+1}‖pt‖s,Ωdτ +
4t
4c∗

∫ tn+1

tn

‖∂3
t p‖0,Ωdτ

)
,

and

∥∥∆n
q

∥∥
0,Ω

≤ C

(
1

4t

∫ tn+1

tn

hmin{s,k+1}‖~qt‖s,Ωdτ +
4t
4

∫ tn+1

tn

‖∂3
t ~q‖0,Ωdτ

)
.

Proof. We can split the expression to estimate it∥∥∥∥1

c
∆Πhp

n − pnt + pn+1
t

2c

∥∥∥∥
0,Ω

≤
∥∥∥∥1

c
∆(Πhp

n − pn)

∥∥∥∥
0,Ω

+

∥∥∥∥1

c
∆pn − pnt + pn+1

t

2c2

∥∥∥∥
0,Ω

. (6.6)

To bound the first term on the right-hand side of (6.6), we use the identity

p(·, tn+1) − p(·, tn) =

∫ tn+1

tn

pt(·, τ)dτ,
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which is Fundamental Theorem of calculus. By the property ∂t(Πhp− p) = Πhpt− pt and

Lemma 5.5, we obtain that∥∥∥∥1

c
∆(Πhp

n − pn)

∥∥∥∥
0,Ω

≤ 1

c∗4t

∫ tn+1

tn

‖(Πhp−p)t‖0,Ωds ≤ C
1

c∗4t

∫ tn+1

tn

hmin{s,k+1}‖pt‖s,Ωdτ.

To estimate the second term on the right-hand side of the equation in (6.6), we also use

the following identity,

−p
n
t + pn+1

t

2
+ ∆pn =

1

24t

∫ tn+1

tn

(
(tn+ 1

2
− τ)2 −

(
4t
2

)2
)
∂3
t p(·, τ)dτ,

which is obtained from Taylor’s formula with integral remainder,

−p
n
t + pn+1

t

2
+ ∆pn =

1

4t

[
(tn+ 1

2
− τ)pt(·, τ)

]tn+1

tn
+

1

4t

∫ tn+1

tn

pt(·, τ)dτ

=
1

24t

[{
(tn+ 1

2
− τ)2 − (

1

2
4t)2

}
ptt(·, τ)

]tn+1

tn

+
1

4t

∫ tn+1

tn

(tn+ 1
2
− τ)ptt(·, τ)dτ

=
1

24t

∫ tn+1

tn

(
(tn+ 1

2
− τ)2 −

(
4t
2

)2
)
∂3
t p(·, τ)dτ.

Since |tn+ 1
2
− τ | ≤ 4t2 , we can deduce that∥∥∥∥1

c

(
∆pn − pnt + pn+1

t

2

)∥∥∥∥
0,Ω

≤ 1

c∗

∥∥∥∥∥ 1

24t

∫ tn+1

tn

((
tn+ 1

2
− τ
)2
−
(
4t
2

)2
)
∂3
t p(·, τ) dτ

∥∥∥∥∥
0,Ω

≤ 4t
4c∗

∫ tn+1

tn

‖∂3
t p‖0,Ωdτ.

Similarly, we have the same estimation for ~q.

6.1.3 Proof of the main Theorem 6.1

We are now ready to complete the proof of Theorem 6.1 . By the triangle inequality,

we have that

N
max
n=0
‖en‖0,Ω

≤ N
max
n=0

{
‖Πhp

n − Pn‖0 + ‖Πh~q
n − ~Qn‖0,Ω

}
+

N
max
n=0
{‖pn −Πhp

n‖0,Ω + ‖~qn −Πh~q
n‖0,Ω}

≤ N
max
n=0
{‖Φn

p‖0,Ω + ‖Φn
q‖0,Ω}+

N
max
n=0
{‖Rnp‖0,Ω + ‖Rnq‖0,Ω}.
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In this equation, the approximation properties of the L2-projection show that

‖Rnp‖0,Ω = ‖pn −Πhp
n‖0,Ω ≤ Chmin{s,k}+1‖pn‖1+s,Ω, (6.7)

and

‖Rnq‖0,Ω = ‖~qn −Πh~q
n‖0,Ω ≤ Chmin{s,k}+1‖~qn‖1+s,Ω. (6.8)

for all n = 0, · · · , N . Therefore we only need to estimate Φn
p and Φn

q in order to estimate

the error in L2-norm for all n = 1, · · · , N .

Recall that for (p, ~q) the exact solution of (5.2) it holds that

(
1

c2
pt, r

h) + ah(p, rh) − b′h(~q, rh) = 0, ∀rh ∈ Ph(Ω), t ∈ I,

(~qt, ~v
h) + bh(p, ~vh) + ch(~q, ~vh) = 0, ∀~vh ∈ Qh(Ω), t ∈ I.

Trivially it holds for all n = 0, · · · , N ,

(
1

c2
pnt , r

h) + ah(pn, rh) − b′h(~qn, rh) = 0, ∀rh ∈ Ph(Ω), t ∈ I, (6.9)

(~qnt , ~v
h) + bh(pn, ~vh) + ch(~qn, ~vh) = 0, ∀~vh ∈ Qh(Ω), t ∈ I. (6.10)

We subtract (6.9), (6.10) from (6.2), (6.3), add Πhp
n,Πhp

n+1, and subtract them again,

respectively, in order to use the notations Φn
p ,Φ

n
q, R

n
p , and Rnq for each time step n, then

we can obtain the following:(
1

c2

(
∆Φn

p + ∆Πpn − pnt + pn+1
t

2

)
, rh
)

+
1

2
ah(Φn

p + Φn+1
p +Rnp +Rn+1

p , rh)− 1

2
b′h(Φn

q + Φn+1
q +Rnq +Rn+1

q , rh) = 0,

and (
∆Φn

q + ∆Πh~q
n −

~qnt + ~qn+1
t

2
, ~vh
)

+
1

2
bh(Φn

p + Φn+1
p +Rnp +Rn+1

p , ~vh) +
1

2
ch(Φn

q + Φn+1
q +Rnq +Rn+1

q , ~vh) = 0.



95

Next, we choose rh = Φn
p + Φn+1

p ∈ Ph(Ω) and ~vh = Φn
q + Φn+1

q ∈ Qh(Ω), multiply the

resulting expression by 4t, and add two equations to have that

‖1

c
Φn+1
p ‖20,Ω + ‖Φn+1

q ‖20,Ω − ‖
1

c
Φn
p‖20,Ω − ‖Φn

q‖20,Ω +
4t
2

(
AnΦΦ + AnRΦ − B′

n
RΦ + BnRΦ + CnΦΦ + CnRΦ

)
+
4t
c2

(
∆Πhp

n − pnt + pn+1
t

2
,Φn

p + Φn+1
p

)
+4t

(
∆Πh~q

n −
~qnt + ~qn+1

t

2
,Φn

q + Φn+1
q

)
= 0,

where

AnΦΦ = ah
(
Φn
p + Φn+1

p , Φn
p + Φn+1

p

)
, AnRΦ = ah

(
Rnp +Rn+1

p , Φn
p + Φn+1

p

)
,

BnRΦ = bh
(
Rnp +Rn+1

p , Φn
q + Φn+1

q

)
, B′

n
RΦ = b′h

(
Rnq +Rn+1

q , Φn
p + Φn+1

p

)
, (6.11)

CnΦΦ = ch
(
Φn
q + Φn+1

q , Φn
q + Φn+1

q

)
, CnRΦ = ch

(
Rnq +Rn+1

q , Φn
q + Φn+1

q

)
.

Here we have also used that bh
(
Φn
p + Φn+1

p ,Φn
q + Φn+1

q

)
−b′h

(
Φn
q + Φn+1

q ,Φn
p + Φn+1

p

)
= 0.

Summation from n = 0 to n = m, for 0 ≤ m ≤ N − 1, shows that

‖1

c
Φm+1
p ‖20,Ω + ‖Φm+1

q ‖20,Ω +
4t
2

m∑
n=0

(AnΦΦ + CnΦΦ) ≤ ‖1

c
Φ0
p‖20,Ω + ‖Φ0

q‖20,Ω

+
4t
2

m∑
n=0

(
|AnRΦ|+ |CnRΦ|+ |BnRΦ|+ |B′

n
RΦ|
)

+4t
m∑
n=0

∣∣∣∣(1

c
∆n
p ,

1

c
(Φn

p + Φn+1
p )

)∣∣∣∣+4t
m∑
n=0

∣∣(∆n
q,Φ

n
q + Φn+1

q

)∣∣ .
Now we use the definitions in (6.11), the Cauchy-Schwarz inequality, the geometric-

arithmetic inequality ab ≤ a2

2ε + εb2

2 for any ε > 0, and also Remark 6.2 on right hand side

in the previous equation,

AnΦΦ = ‖σp
1
2

c
(Φn

p + Φn+1
p )‖20,Ω + ‖C

1
2
11JΦ

n
p + Φn+1

p K‖20,Eh ,

CnΦΦ = ‖σq
1
2 (Φn

q + Φn+1
q )‖20,Ω + ‖C

1
2
22JΦ

n
q + Φn+1

q K‖20,Eh ,

AnRΦ

≤ ‖σp
c

(Rnp +Rn+1
p )‖0,Ω‖

1

c
(Φn

p + Φn+1
p )‖0,Ω + ‖C

1
2
11JR

n
p +Rn+1

p K‖0,Eh‖C
1
2
11JΦ

n
p + Φn+1

p K‖0,Eh

≤ ‖σp
c

(Rnp +Rn+1
p )‖0,Ω‖

1

c
(Φn

p + Φn+1
p )‖0,Ω +

1

2ε
‖C

1
2
11JR

n
p +Rn+1

p K‖20,Eh +
ε

2
‖C

1
2
11JΦ

n
p + Φn+1

p K‖20,Eh ,
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CnRΦ

≤ ‖σq(Rnq +Rn+1
q )‖0,Ω‖Φn

q + Φn+1
q ‖0,Ω + ‖C

1
2
22JR

n
q +Rn+1

q K‖0‖C
1
2
22JΦ

n
q + Φn+1

q K‖0,Eh

≤ ‖σq(Rnq +Rn+1
q )‖0,Ω‖Φn

q + Φn+1
q ‖0,Ω +

1

2ε
‖C

1
2
22JR

n
q +Rn+1

q K‖20,Eh +
ε

2
‖C

1
2
22JΦ

n
q + Φn+1

q K‖20,Eh ,

and

BnRΦ − B′
n
RΦ ≤

ε

2

(
‖C

1
2
11JΦ

n
p + Φn+1

p K‖20,Eh + ‖C
1
2
22JΦ

n
q + Φn+1

q K‖20,Eh

)
+

1

2ε

(
2|~C12|2‖C

− 1
2

11 JRnp +Rn+1
p K‖20,Eh + 2‖C−

1
2

11 {{R
n
p +Rn+1

p }}‖20,Eh

+ 2|~C12|2‖C
− 1

2
22 JRnq +Rn+1

q K‖20,Eh + 2‖C−
1
2

22 {{R
n
q +Rn+1

q }}‖20,Eh

)
.

With the following note that

m∑
n=0

‖σp
c

(Rnp +Rn+1
p )‖0,Ω‖

1

c
(Φn

p + Φn+1
p )‖0,Ω ≤ 2 max

1≤n≤m+1
‖Φn

p‖0,Ω
m∑
n=0

‖σp
c

(Rnp +Rn+1
p )‖0,Ω

≤ 4 max
1≤n≤m+1

‖Φn
p‖0,Ω

m+1∑
n=0

‖σp
c
Rnp‖0,Ω,

and the previous estimations we can have that

‖1

c
Φm+1
p ‖20,Ω + ‖Φm+1

q ‖20,Ω +
4t
2

m∑
n=0

(
‖C

1
2
11JΦ

n
p + Φn+1

p K‖20,Eh + ‖C
1
2
22JΦ

m
q + Φn+1

q K‖20,Eh

)

≤ ‖1

c
Φ0
p‖20,Ω + ‖Φ0

q‖20,Ω +
ε4t

4

m∑
n=0

(
‖C

1
2
11JΦ

n
p + Φn+1

p K‖20,Eh + ‖C
1
2
22JΦ

n
q + Φn+1

q K‖20,Eh

)

+2

(
max

0≤n≤m+1
‖1

c
Φn
p‖0,Ω

)
4t

m+1∑
n=0

(
‖1

c
∆n
p‖0,Ω + ‖σp

c
Rnp‖0,Ω

)

+ 2

(
max

0≤n≤m+1
‖Φn

q‖0,Ω
)
4t

m+1∑
n=0

(
‖∆n

q‖0,Ω + ‖σqRnq‖0,Ω
)

+
4t
2ε

m∑
n=0

TnB,

where TnB is defined by

TnB :=

(
2|~C12|2‖C

− 1
2

11 JRnp +Rn+1
p K‖20,Eh + ‖C

1
2
11JR

n
p +Rn+1

p K‖20,Eh + 2‖C−
1
2

11 {{R
n
p +Rn+1

p }}‖20,Eh

+ 2|~C12|2‖C
− 1

2
22 JRnq +Rn+1

q K‖20,Eh + ‖C
1
2
22JR

n
q +Rn+1

q K‖20,Eh + 2‖C−
1
2

22 {{R
n
q +Rn+1

q }}‖20,Eh

)
.
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for 0 ≤ m ≤ N − 1.

We subtract the term ε4t
2

∑m
n=0

(
‖C

1
2
11JΦ

n
p + Φn+1

p K‖20,Eh + ‖C
1
2
22JΦ

n
q + Φn+1

q K‖20,Eh

)
from

both sides taking ε = 1, and by using the geometric-arithmetic inequality ab ≤ µ
2a

2 +

b2

2µ , µ = 2 we obtain that

‖1

c
Φm+1
p ‖20,Ω+‖Φm+1

q ‖20,Ω ≤ ‖
1

c
Φ0
p‖20,Ω + ‖Φ0

q‖20,Ω

+
1

4

(
max

0≤n≤N
‖1

c
Φn
p‖0,Ω

)2

+

(
4t

N∑
n=0

(
‖1

c
∆n
p‖0,Ω + ‖σp

c
Rnp‖0,Ω

))2

+
1

4

(
max

0≤n≤N
‖Φn

q‖0,Ω
)2

+

(
4t

N∑
n=0

(
‖∆n

q‖0,Ω + ‖σqRnq‖0,Ω
))2

+
4t
2

N∑
n=0

TnB.

Since the right-hand side is independent of m, we take maximum on the left hand side

and subtract 1
4

(
maxN−1

m=0 ‖1
cΦ

m
p ‖0,Ω

)2
and 1

4

(
maxN−1

m=0 ‖Φm
q ‖0,Ω

)2
, and multiply by 2 on

both sides we readily obtain that

max
0≤n≤N

(
‖1

c
Φn
p‖20,Ω + ‖Φn

q‖20,Ω
)
≤ 2‖1

c
Φ0
p‖20,Ω + 2‖Φ0

q‖20,Ω

+2

(
4t

N∑
n=0

(
‖∆n

q‖0,Ω + ‖σqRnq‖0,Ω
))2

+2

(
4t

N∑
n=0

(
‖1

c
∆n
p‖0,Ω + ‖σp

c
Rnp‖0,Ω

))2

+4t
N∑
n=0

TnB.

Taking square roots on both sides we obtain that

max
0≤n≤N

(
‖Φn

p‖0,Ω + ‖Φn
q‖0,Ω

)
≤
√

2‖1

c
Φ0
p‖0,Ω +

√
2‖Φ0

q‖0,Ω

+
√

24t
N∑
n=0

(
‖∆n

q‖0,Ω + ‖σqRnq‖0,Ω
)

+
√

24t
N∑
n=0

(
‖1

c
∆n
p‖0,Ω + ‖σp

c
Rnp‖0,Ω

)
+

(
4t

N∑
n=0

TnB

) 1
2

.

We can bound the right-hand side using (6.7) and (6.8) that

4t
N∑
n=1

(‖σp
c
Rnp‖0,Ω + ‖σqRnq‖0,Ω) ≤ T

(
max

1≤n≤N
‖σp
c
Rnp‖0,Ω +

N
max

0
‖σqRnq‖0,Ω

)
≤ Chmin{s,k}+1T (‖p‖C(I;H1+s(Ω)) + ‖~q‖C(I;H1+s(Ω))), (6.12)
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and ∆n
p ,∆

n
q can be bounded as well using Lemma 6.2 ,

4t
N∑
n=0

‖∆n
p‖0,Ω ≤ C

(
hmin{s,k+1}‖pt‖L1(I;Hs(Ω)) +4t2‖∂3

t p‖L1(I;L2(Ω))

)
, (6.13)

4t
N∑
n=0

‖∆n
q‖0,Ω ≤ C

(
hmin{s,k+1}‖~qt‖L1(I;Hs(Ω)) +4t2‖∂3

t ~q‖L1(I;L2(Ω))

)
. (6.14)

By Lemma 6.1 we estimate the term TnB,

TnB ≤ Ch2 min{s,k}+1
(
‖pn + pn+1‖21+s,Ω + ‖~qn + ~qn+1‖21+s,Ω

)
,

and

4t
N∑
n=0

‖TnB‖0,Ω ≤ T max
0≤n≤N

‖TnB‖0,Ω ≤ Ch2 min{s,k}+1T
(
‖p‖2

C(I;H1+s(Ω))
+ ‖~q‖2

C(I;H1+s(Ω))

)
,

so that (
4t

N∑
n=0

TnB

) 1
2

≤ Chmin{s,k}+ 1
2T

1
2

(
‖p‖C(I;H1+s(Ω)) + ‖~q‖C(I;H1+s(Ω))

)
.

We combine (6.12), (6.13), (6.14), and (6.1.3) to get

max
0≤n≤N

(
‖Φn

p‖20,Ω + ‖Φn
q‖20,Ω

)
≤ 2‖1

c
Φ0
p‖20,Ω + 2‖Φ0

q‖20,Ω + C4t2
(
‖∂3

t p‖L1(I;L2(Ω)) + ‖∂3
t ~q‖L1(I;L2(Ω))

)
+Chmin{s,k+ 1

2
}
(
‖p‖C(I;H1+s(Ω)) + ‖~q‖C(I;H1+s(Ω)) + ‖pt‖L1(I;Hs(Ω)) + ‖~qt‖L1(I;Hs(Ω))

)
,

in which the constant C grows linearly with T , which completes the proof.

Remark 6.3 We also take staggered scheme with centered difference in time of the sys-

tems (5.22)-(5.23) for all n = 1, · · · , N,
( 1
c2

∆nPn−
1
2 , rh) + 1

2ah(Pn + Pn−1, rh)− b′h(~Qn− 1
2 , rh) = 0, ∀rh ∈ Ph(Ω)

(∆n ~Qn, ~vh) + bh(Pn, ~vh) + 1
2ch(~Qn+ 1

2 + ~Qn− 1
2 , ~vh) = 0, ∀~vh ∈ Qh(Ω),

(6.15)

where

∆nPn−
1
2 =

Pn − Pn−1

4t
, ∆n ~Qn =

~Qn− 1
2 − ~Qn+ 1

2

4t
.
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Choosing rh = Pn + Pn−1, ~vh = ~Qn− 1
2 + ~Qn+ 1

2 with the property in (5.43), we can have

that

‖1

c
Pn‖20,Ω + ‖~Qn+ 1

2 ‖20,Ω =‖1

c
Pn−1‖20,Ω + ‖~Qn− 1

2 ‖20,Ω +
4t
2

(
−b′h(~Qn− 1

2 , Pn−1) + bh(Pn, ~Qn+ 1
2 )
)

−4t
2

(
ah(Pn + Pn−1, Pn + Pn−1) + ch(~Qn− 1

2 + ~Qn+ 1
2 , ~Qn− 1

2 + ~Qn+ 1
2 )
)

≤ ‖1

c
Pn−1‖20,Ω + ‖~Qn− 1

2 ‖20,Ω +
4t
2

(
−b′h(~Qn− 1

2 , Pn−1) + bh(Pn, ~Qn+ 1
2 )
)
,

by the property of b′h(~Qn− 1
2 , Pn) = bh(Pn, ~Qn− 1

2 ).

Summation of the equations above from n = 1 to n = N gives that

‖1

c
PN+1‖20,Ω +‖~QN+ 1

2 ‖20,Ω ≤ ‖
1

c
P 0‖20,Ω +‖~Q

1
2 ‖20,Ω +

4t
2

(
−b′h(~Q

1
2 , P 0) + bh(PN , ~QN+ 1

2 )
)
.

In the case of CG(Continuous Galerkin) method, we have

|bh(PN , ~QN+ 1
2 )| ≤ 1

2
‖∇PN‖20,Ω +

1

2
‖~QN+ 1

2 ‖20,Ω.

The inverse inequality (Appendix 0.1) allows to have constant Cinv(h) > 0 satisfying

‖∇PN‖20,Ω ≤ Cinv(h)‖PN‖20,Ω, where Cinv(h) depends on shape-regularity. Therefore we

can obtain CFL condition choosing 4t ≤ 4c∗2Cinv(h) for the scheme (6.15).
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7. DISCUSSION AND CONCLUSIONS

PMLs for the acoustic wave equation with variable sound speed appear in several

different forms. But stability and well-posedness are not clearly answered mathematically

in higher dimensions. Even though the energy decay rate of 1-d acoustic PML wave was

solved for constant speed [46], it remains unknown for the variable sound speed case.

We showed the exponential energy decay of 1-d PML wave with variable sound speed in

Chapter 4, but the energy decay rate is still unknown.

The second order regularized 2-d PML wave equation was introduced in Chapter 2,

and we showed the well-posedness of the system and efficiency by numerical experiments.

But the stability of both classical and regularized system is still not clear, and so remains

a question for further research.

In chapter 3 the multi directional PMLs are introduced with additional damping

terms. We showed well-posedness of the regularized system, and numerical experiments

indicate that the multi-directional PMLs are more effective than the classical PML. There

are many remaining questions such as well-posedness, stability, general efficiency, etc.

We introduce a general stable formulation of a first order hyperbolic system with

lower order damping in chapter 5. Construction of effective damping terms, possibly time

dependent, in order to have numerically desirable absorption in the layers is still largely

open. In chapter 6 we constructed a locally discontinuous Galerkin method (LDG) for the

system. An a priori L2-error estimate under additional regularity assumptions was shown

for the semi-discrete DG method as well as for the fully discretized scheme in Chapter 7.
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A APPENDIX Inverse Inequality

One obtains as penalty a factor with negative powers of the diameter of the mesh

size to estimate a norm of a higher order derivative of a finite element function by a norm

of a lower order. These are so-called inverse estimates [1].

Consider an affine family of finite elements {K}K∈Th whose mesh cells are generated

by affine mappings FK : K̂ → K by

FK x̂ = Bx̂ + b,

where K̂ is a reference cell and B is a non-singular d× d matrix and b is a d vector.

Lemma 0.1 For each matrix norm ‖ · ‖ we have the estimates

‖B‖ ≤ chK , ‖B−1‖ ≤ ch−1
K ,

where the constants depend on the matrix norm and on K.

Proof. Since K̂ is a Lipschitz domain, it contains a ball B(x̂0, r) with x̂0 ∈ K̂ and some

r > 0. Then x̂0 + ŷ ∈ K̂ for all ‖ŷ‖2 = r. It follows that

x0 = Bx̂0 + b ∈ K, x = B(x̂0 + ŷ) + b = x0 +Bŷ ∈ K.

Then we obtain that for all ŷ

‖Bŷ‖2 = ‖x− x0‖2 ≤ CRhK .

Now, it holds for the spectral norm that

‖B‖2 = sup
ẑ 6=0

‖Bẑ‖2
‖ẑ‖2

=
1

r
sup
‖ẑ‖2=r

‖Bẑ‖2 ≤
CR
r
hK ,

where CR depends on K, but it can be independent on K with the assumption of quasi-

uniform mesh. An estimate of this form, with a possible different constant, holds also for
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all other matrix norms since all matrix norms are equivalent. The estimate for ‖B−1‖

proceeds in the same way with interchanging the roles of K and K̂.

Remark 0.1 We can get the estimate for the determinants of B and B−1 from the pre-

vious Lemma 0.1 and Leibniz formula for determinants

| detB| ≤ ChdK , | detB−1| ≤ Ch−dK .

Using this bounds we can get the following for all v̂ ∈ P (K̂), v ∈ P (K)∫
K
‖Dk

xv(x)‖p2dx ≤ Ch
−kp
K |detB|

∫
K̂
‖Dk

x̂v̂(x̂)‖p2dx̂ ≤ Ch
−kp+d
K

∫
K̂
‖Dk

x̂v̂(x̂)‖p2dx̂,

and ∫
K̂
‖Dk

x̂v̂(x̂)‖p2dx̂ ≤ Ch
kp
K | detB−1|

∫
K
‖Dk

xv(x)‖p2dx ≤ Ch
kp−d
K

∫
K
‖Dk

xv(x)‖p2dx,

where P (K̂) the space of polynomials of order N over K̂, and P (K) = {p ∈ K → R : p =

p̂ ◦ F−1
K , p̂ ∈ P (K̂)}.

Theorem 0.1 (Inverse Estimate). Let 0 ≤ k ≤ l be natural numbers and let p, q ∈ [1,∞].

Then there is a constant Cinv, which depends only on k, l, p, q, K̂, P (K̂) such that

‖Dlvh‖Lq(K) ≤ Cinvh
(k−l)−d(p−1−q−1)
K ‖Dkvh‖Lp(K) ∀vh ∈ P (K).

Proof. Assume hK̂ = 1 on the reference mesh cell. For k = 0, we obtain that

‖Dlvh‖Lq(K̂) ≤ ‖v̂
h‖W l,q(K̂) ≤ C‖v̂

h‖Lp(K̂) ∀vh ∈ P (K̂),

since all norms are equivalent in finite dimensional space. For k > 0, consider the space

of polynomials such as

P̃ (K̂) = {∂αv̂h : v̂h ∈ P (K̂), |α| = k}.

Then we apply P̃ (K̂) to obtain that

‖Dlv̂h‖Lq(K̂) ≤
∑
|α|=k

‖Dl−k(∂αv̂
h)‖Lq(K̂) ≤ C

∑
|α|=k

‖∂αv̂h‖Lq(K̂)

=C‖Dkv̂h‖Lq(K̂).
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From the estimates for the transformations, we obtain that

‖Dlvh‖Lq(K) ≤Ch
−l+d/q
K ‖Dl(∂αv

h)‖Lq(K̂) ≤ Ch
−l+d/q
K ‖Dkvh‖Lp(K̂)

=Cinvh
k−l+d/q−d/p
K ‖Dkvh‖Lp(K).

For example, the inequality (5.18) holds when p = q = d = 2, k = 0, l = 1.

Remark 0.2 One obtains the global inverse inequality with the assumption of quasi-

uniform mesh (Definition 5.3),

‖Dlvh‖Lq(Th) ≤ Ch(k−l)−d(p−1−q−1)‖Dkvh‖Lp(Th) ∀vh ∈ P (Ω).
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B APPENDIX Figures

Figure 0.1: Regularized Acoustic PML wave with variable sound speed at time steps 60

Figure 0.2: Regularized Acoustic PML wave with variable sound speed at time steps 80
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Figure 0.3: Regularized Acoustic PML wave with variable sound speed at time steps 100

Figure 0.4: Regularized Acoustic PML wave with variable sound speed at time steps 120
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Figure 0.5: Regularized Acoustic PML wave with variable sound speed at time steps 140

Figure 0.6: Regularized Acoustic PML wave with variable sound speed at time steps 160
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C APPENDIX Codes

function System 2nd order PML regularization

h = 0.01;

L = 0.1; a = .5;

dx = h; dy = dx;

dt = dx/2;

tf = 180;

sigma = @getsigma;

x = −L− a : h : a + L;

npic = length(a : h : a + L);

ncom = length(−a : h : a);

y = x;

nx = length(x); ny = length(y);

f = zeros(nx);

ka = −.0;

kb = .0;

for xi = 1 : nx

for yj = 1 : nx

f(xi, yj) = 1 ∗ exp(−(20. ∗ (x(xi)− ka))2 − (20. ∗ (y(yj)− kb))2);

end

end u = f; uold = u;

unew = zeros(nx);

qx = zeros(nx− 1);

qy = zeros(nx− 1);



113

qxnew = zeros(nx− 1);

qynew = zeros(nx− 1); convM = convolution(nx− 1, ny− 1);

uconv = zeros(tf, (ncom− 2)2);

load velocitycomp

crand = ones(nx);

crand(npic : npic + ncom− 1, npic : npic + ncom− 1) = velocitycomp;

fort = 1 : tf,

forxi = 1 : nx− 1

foryj = 1 : nx− 1

sigmax = sigma(x(xi) + dx/2, 0);

sigmay = sigma(0, y(yj) + dy/2);

lhsqx = 1 + .5 ∗ sigmax ∗ dt;

lhsqy = 1 + .5 ∗ sigmay ∗ dt;

dxu = u(xi + 1, yj + 1) + u(xi + 1, yj)− u(xi, yj + 1)− u(xi, yj);

dxu = .5 ∗ (dxu)/dx;

dyu = u(xi + 1, yj + 1) + u(xi, yj + 1)− u(xi + 1, yj)− u(xi, yj);

dyu = .5 ∗ (dyu)/dy;

rhsqx = (1− .5 ∗ sigmax ∗ dt) ∗ qx(xi, yj)− dt ∗ (sigmax− sigmay) ∗ dxu;

rhsqy = (1− .5 ∗ sigmay ∗ dt) ∗ qy(xi, yj)− dt ∗ (sigmay− sigmax) ∗ dyu;

qxnew(xi, yj) = rhsqx/lhsqx;

qynew(xi, yj) = rhsqy/lhsqy;

end

end

Convolq2xn = convM ∗ reshape(qxnew, (nx− 1) ∗ (ny− 1), 1);

Convolq2yn = convM ∗ reshape(qynew, (nx− 1) ∗ (ny− 1), 1);
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Convqxnew = reshape(Convolq2xn, nx− 1, ny− 1);

Convqynew = reshape(Convolq2yn, nx− 1, ny− 1);

Convqx = qx;

Convqy = qy;

for xi = 2 : nx− 1

for yj = 2 : nx− 1

cij = crand(xi, yj)2;

ddxu = (u(xi + 1, yj)− 2 ∗ u(xi, yj) + u(xi− 1, yj))/(dx ∗ dx);

ddyu = (u(xi, yj + 1)− 2 ∗ u(xi, yj) + u(xi, yj− 1))/(dy ∗ dy);

dxqx = ((Convqx(xi, yj− 1) + Convqx(xi, yj))− (Convqx(xi− 1, yj)

+ Convqx(xi− 1, yj− 1)))/(2 ∗ dx);

dxqxnew = ((Convqxnew(xi, yj− 1) + Convqxnew(xi, yj))

− (Convqxnew(xi− 1, yj) + Convqxnew(xi− 1, yj− 1)))/(2 ∗ dx);

dyqy = ((Convqy(xi, yj) + Convqy(xi− 1, yj))− (Convqy(xi, yj− 1)

+ Convqy(xi− 1, yj− 1)))/(2 ∗ dy);

dyqynew = ((Convqynew(xi, yj) + Convqynew(xi− 1, yj))

− (Convqynew(xi, yj− 1) + Convqynew(xi− 1, yj− 1)))/(2 ∗ dy);

divqConv = .5 ∗ (dxqx + dxqxnew + dyqy + dyqynew);

delu = ddxu + ddyu;

sigmax = sigma(x(xi), 0);

sigmay = sigma(0, y(yj));

lhs = 1 + (sigmax + sigmay) ∗ dt/2;

rhs = (2− dt ∗ dt ∗ sigmax ∗ sigmay) ∗ u(xi, yj) + (−1 + 0.5 ∗ (sigmax...

+ sigmay) ∗ dt) ∗ uold(xi, yj) + dt ∗ dt ∗ cij ∗ (divqConv + delu);

unew(xi, yj) = rhs/lhs;

end

end
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ucomp = unew(npic + 1 : npic + ncom− 2, npic + 1 : npic + ncom− 2);

uconv(t, :) = reshape(ucomp, (ncom− 2)2, 1);

uold = u; u = unew;

qx = qxnew; qy = qynew;

end


