
AN ABSTRACT OF THE THESIS 0F 

Anthony Nicholas Politopoulos for the M.S. in Mathematics 
(Name) (Degree) (Major) 

Date thesis is presented cJc,(- \\ 
Title STOCHASTIC MO]ES OF THE BROWNIAN MOTION 

Redacted for privacy Abstract approved___________________________________________ 
(Ìajor professor) 

This paper presents an exposition of the stochastic models 

for the Brownian motion. The results of Einstein and Wiener are 

presented, together with the Uhlenbeck-Ornstein process which 

gives a more realistic model of the Brownian motion of a particle. 

Finally, applying a one-one transformation on the forward 

Kolmogorov equation we have shown that the Uhlenbeck-Ornstein 

process can be transformed into the Wiener process. 



STOCHASTIC MODELS OF THE BROWNIAN MOTION 

by 

ANTHONY NICHOLAS POLITOPOULOS 

A THESIS 

submitted to 

OREGON STATE UNIVERSITY 

in partial fulfillment of 
the requirements for the 

degree of 

MASTER OF SCIENCE 

June 1966 



APPROVED: 

Redacted for privacy 

Pròfsor of Mathematics 

In Charge of Major 

Redacted for privacy 

C1atrnan of Department of Mathematics 

Redacted for privacy 
Dean of G-aduate School - 

Date thesis is presented December 14, 1965 

Typed by Carol Baker 



ACKNOW LE DG MENT 

The author wishes to thank Professor A. T. Lonseth for his 

interest and assistance during the course of this study. 



TABLE OF CONTENTS 

Pa g e 

INTRODUCTION ................................. I 

CONTINUOUS MARKOV PROCESSES .................... 3 

EINSTEINTS THEORY OF THE BROW.NIAN MOTION .......... 7 

THE WIENER PROCESS ............................. lo 

PARTICLE IN A FIELD OF FORCE .................... 13 

THE UHLENBECK-ORNSTEIN THEORY OF BROWNIAN 
MOTION ....................................... 16 

THE UHLENBECK-ORNSTEIN PROCESS ................. 21 

TRANSFORMATION OF THE UHLENBECK-ORNSTEIN 
PROCESS TO THE WIENER PROCESS ................... 29 

SUMMARY ...................................... 39 

BIBLIOGRAPHY ................................. 41 



STOCHASTIC MODELS OF THE BROWNIAN MOTION 

INTRODUCTION 

In a large number of applied fields we are interested in study- 

ing the development of some system which may be regarded as subject 

to randomly varying influences; the theory of such a system must be 

presented against the background of the general theory of stochastic 

processes. 

The Brownian motion of particles suspended in liquids or gases 

is due to random molecular shocks, and its theory can be based on 

that of stochastic processes. Macroscopically, for an ensemble of 

particles, the variations which occur in time are like a diffusion proc- 

ess. The probability density function of the random variable charac- 

terizing the system will satisfy a partial differential equation of the 

diffusion type, and this is the basic equation of the mathematical model 

of the system. 

Einstein and Smoluchowski developed a satisfactory theory of 

the Brownian motion of free particles and of particles in a field of 

force, respectively. Their theories are approximate and are only 

valid for relatively large values of the time variable. Einstein's and 

Smoluchowski's results can also be arrived at by considering the 

Brownian motion as the limiting case of a simple random walk. N. 

Wiener was the first to study the mathematical model of the motion 
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rigorously, and to prove that the functions representing the displace- 

ment of the particles are continuous, with respect to the time param- 

eter, but non-differentiable. 

A more realistic theory of the Brownian motion was advanced 

by TJhlenbeck and Ornstein using the Langevin equation of motion. 

Doob gave a rigorous mathematical justification of the Uhlenbeck-Ornstein 

process, according to which the functions representing the velocities 

of the particles are continuous with probability one, but non-differen- 

tiable. Doob was also the first to realize and show how the distribu- 

tion of the displacement function in this model of the Brownian motion 

can be derived directly from that of the velocity function. 

Recently, a method has been developed for transforming a 

Markov process to the Wiener process. This can be achieved by 

performing a one-one transformation on the backward Kolmogorov 

equation; here we extend this result to take into consideration the 

forward Kolmogorov equation. The necessary and sufficient condition 

for the existence of a one-one transformation is satisfied by the 

Uhlenbeck-Ornstein model of the Brownian motion and consequently 

it is possible to develop a transformation transforming the tihlenbeck- 

Ornstein process into the Wiener process. 
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CONTINUOUS MARKOV PROCESSES 

Let {x(t), t > O) be a continuous stochastic process defined 

on the real line; that is, x(t) is a random variable, depending on a 

continuous parameter t, which assumes values in the state 

space {x: -co < x < oc ) This process is a continuous 

Markov process, called also a diffusion process, if whenever 

t < <t the conditional distribution of x(t ) for given values 
i n n 

of x(t1), ,x(t1) depends only on x(t1). 

Consider a one-dimensional diffusion process and let 

F(T,y;t,x) =Pr[x(t)<x/x(T)y] t> T 

denote the conditional distribution function of the transition probabil- 

ities, which must satisfy the usual conditions 

tion 

um F(T,y;t,x) = O, hm F(T,y;t,x) 
x-oc x-oc 

Assume that F(T,y;t,x) admits a (conditional) density func- 

f(T,y;t,x) = ----F(T,y;t,x) 
ax 

which satisfies the conditions 

p00 
F (T, y; t, x) = f(T, y; t, z)dz, f(T, y; t, x)dx 

oo oo 
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and the Chapman-Kolmogorov equation 

f(T,y;t,x) = f(T,y; s,y)f(s,y;t,x)dy (T < s <t) (1) 

which expresses the Markovian property that the changes in position 

during the non-overlapping time intervals (T, s) and (s,t) are 

independent. 

The distribution function satisfies the backward Kolmogorov 

equation, and the probability density satisfies the forward Kolmogorov 

equation also known as the Fokker-Planck equation. 

In order to derive these equations we assume that the proba- 

bility that Ix(t) - x(T)I > 5, given x(T) y, during an infinites- 

imal time interval tT is small compared to T, and that the 

first and second partial derivatives of F(T,y;t,x) with respect to 

the backward state variable y 

2 
F(T,y;t,x), F(T,y;t,x) 

ay 

exist and are continuous functions of y. 

If at some time T, x(T) y, then the mean and variance 

of the change in x(T) during the following interval of length T 

are 
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(loe 

b(T,y) um (y-x)f(T,y;T+iT, x)dx (2) 
00 

a(T,y) Ç (y-x)2f(T,y; T+ T,x)dx> O , (3) 

Under these assumptions, the backward Koimogorov equation 

can be derived (1, P. 130-136) as 

a 
2 

F(T,y;t,x)+b(T,y)-F(T,y;t,x)= O 

ay 

(4) 

Similarly, the probability density function f(T,y;t,x) satisfies 

2 

y; t, x) +--a(T, y)---f(T, y; t, x)+b(T, y)-f(T, y; t, x)=0. (4a) 
ay 

In order to derive the Fokker-Planck equation,we assun the 

existence of the following continuous partial derivatives: 

f(T,y;t. x), 

and we have: 

2 

{a(t, x)f(T, y; t, x)], 
ax 

---{b(t,x)f(T,y;t,x)} 
ax 

=1 a2 f(T,y;t,x) 
2 

-[a(t,x)f(T,y;t,x)J - ---[b(t,x)f(T,y;t,x)] 
X 

(5) 
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Feller (10) has shown that each of the Kolmogorov diffusion 

equations has a unique solution which is also a solution of the Chapman- 

Kolrnogorov equation (1). Two of the most standard methods for 

solving equations (4) and (5) are: assumption of separability of vari- 

ables, and application of the Laplace transformation. 



ri 

EINSTEIN'S THEORY OF THE BROWNIAN MOTION 

Small particles suspended in fluids perform erratic move- 

ments. This phenomenon, where the particles are exposed to a great 

number of random molecular shocks, is referred to as Brownian mo- 

tion. Einsteín (7) was the first to advance a satisfactory theory of 

this motion based on the molecular-kinetic theory of heat. His results 

can be summarized as follows. 

Suppose that the random variable x = x(t) represents the 

abscissa of the particle at time t, and that the only forces acting 

on the particle are those due to the molecules of the surrounding me- 

dium. So, we are considering the one-dimensional Brownian motion 

of a free particle. We assume that each single particle executes a 

movement which is independent of the movement of all other particles; 

the movements of one and the same particle during non-overlapping 

time intervals are considered mutually independent. 

Let f(x0;t,x) be the probability density of finding the parti- 

de at time t at the position x = x(t), given that it was at x0 

at time t O. We are primarily interested in the probability 

X2 

çf(x0;t,x)dx . xl 

that at time t the particle will be between x1 and x2, if t were 
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at x0 at time t = O. Einstein showed that the probability density 

f must satisfy the equation 

af a2f 
(6) 

which is the forward Kolrnogorov equation (5) with coefficients 

a(x) = 2D and b(x) = O, where D is a certain physical constant 

The conditions imposed on f are 

f(x0;t,x) > 0, (x0;t,x)dx 1, limf(x0;t,x) 0 (7) 

for xx0. 

The first two conditions state that f is a probability density 

function of x, while the third is the initial condition and expresses 

the certainty that x(0) = x0. Equation (6) together with conditions 

(7) imply that (1, p. 140) 

z 

i 
(x-x0) 

f(x0;t,x) 
2[TrDt]'"2 

exp [- 4Dt J , (8) 

and (8) is the unique solution satisfying, for t >0 , conditions (7). 

The constant D has the value 

N1 
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where R is the universal gas constant, T the absolute tempera- 

ture, N the Avogadro number, and i thecoefficientoffrictionof 

the particle. If the particles can be looked upon as spherical, and 

large compared to the molecules of the medium then 

= 6irpr 

where p is the coefficient of viscosity, and r the radius of the 

s phe re. 

Furthermore, Einstein found that the mean displacement 

square is proportional to time, 

Ef(x-x0)23 2Dt, 

and str.essed the fact that this relation is only approximate and cannot 

be applied for any arbitrarily small values of t. Chandrasekhar 

(2, p. 25-26) has tested the density (8), and the expression for the 

diffusion coefficient D by observation, and found that they give 

satisfactory agreement for values of t which are large in compari- 

son with the intervals between successive molecular shocks. 
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THE WIENER PROCESS 

A simple way of introducing the mathematical model of the 

Brownian motion consists in regarding the motion as the limiting case 

of an elementary random walk. 

Again let the random variable x(t) represent the position 

at time t, of a free particle moving along the x-axis andwhose 

initial position x(0) x0 is known. Suppose that, at every instant 

t=nT, n= 

the particle receives a shock resulting in a displacement either 

to the right or to the left. Since we are considering a free par- 

tide, we can assume that the probabilities of moving to the left or to 

the right are equal, and consequently each is equal to . The dis- 

placement due to each particular shock is assumed to be stochastically 

independent of the effects of all previous shocks, and of the initial 

position x0. 

Consider the probability P(n; sT, rnL) that the particle 

is at position m after s steps, if at t = O itwereat n 

II r among the s steps are directed to the right, s-r are 

directed to the left, and the total displacement is (2r-s) . This 

displacement can equal y = (m-n)E only if s and y are either 

both even or both odd. So, from the binomial distribution we have 



P(nt;sT,m) (s)(1)S 

i s 
s + Im-nt s - tm-ni 

O otherwise 

and 

x(sT)-x(0) = E(2r-s) 

11 

if 1m-ni s 
and im-nI+s 
even 

Let - 0 and T- O as s - 00, in such a way that 

2 

= D, sT = t, n - X0 (10) 

This means that the time interval between consecutive shocks, as well 

as the displacement caused by each shock, will tend to zero. In the 

limit we shall obtain a random variable x(t) depending continuously 

on t in a way that will serve as a mathematical model of the path 

described by the physical particle. It follows from the Laplace-De 

Moivre limit theorem (8, p. 173) for the binomial distribution that 

x 2 

um Y P(n;sT,m) 1 
z (x-x0) 

2NDtIV2 
exp[- 4Dt Jdx; 

xl x1<mE<x2 

that is, the displacement x(t)-x(0) is normally distributed with 

mean zero and variance 2Dt, and is independent of x(0). Hence, 

A 
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Einstein's fundamental result emerges as a consequence of a 

limit theorem. In the same way we find that if t <t < < t 
1 2 n 

the displacements x(t2) - x(t1), ,x(t) -x(t1), are mutually 

independent random variables, with zero means and variances 

2D(t2-t1),. , 2D(t - t respectively. We have thus a tempo- 

rally homogeneous differential stochastic process. 

In order that a function x(t) of the time t should be 

acceptable as a mathematical model of the path described by the 

physical particle, it seems essential to require that it should be a 

continuous function of t, however irregular. N. Wiener (14, p. 148- 

151; 19) was the first to study this mathematical model rigorously. It 

was an important result when he proved that the functions x(t) of 

this process are continuous with probability one. This result means 

that x(t) can be treated as representing one of a multiplicity of 

continuous functions of t. Probability here is formally the study of 

measure on certain spaces of functions. 

Even though the functions x(t) are almost certainly continu- 

ous, Wiener showed that almost all such functions fail to have a deny- 

ative k(t) for any value of the argument. Physically this means 

that the particles in this mathematical model of the Brownian motion 

have no well-defined velocities. 
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PARTICLE IN A FIELD OF FORCE 

Suppose that the particle, whose Brownian motion we are 

studying, is in a field of force acting in the direction of the x-axis, 

and that the force is given by the expression K(x). Smoluchowski 

(16) was the first to study this case, and to show that equation 

(6) must be replaced by 

- - .L . ! O[K(x)fJ 
f = f(x;t,x) , (11) at_Da 2 ii ax 

which is the Fokker-Planck equation with coefficients 

a(x) = 2D b(x) 
K(x) 
i 

We distinguish two important cases: a field of constant force, and 

an elastically bound particle. 

M. Kac (13, p. 372-385) arrives at Smoluchowski's results 

by regarding the Brownian motion of the no longer free particle as the 

limiting case of a random walk with a reflecting barrier at x = O; 

that is, P(sT, O; (s+1)T, E) = 1. Naturally, due to the existing outside 

forces the probabilities of moving to the left or to the right are no 

longer equal. 

For the case of a field of constant force, K(x) 

(í is a physical constant), equation (11) becomes 
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8f 82f 413D-. (12) 8x 
ax 

Kac (13, P. 378-37 9) arrives in the limit, E-0, T-0, -- = D, 

n-x0, sT t, as s - , at the probability density 

f(x0; t, X 

0° 2 
y )exp(-Dy2t)g(x,y)g(x0,y)dy (13) ¶rJ 2 2 

o y +4p 

where g(x,y) = cos(xy) - sin (xy). 
y 

Formula (13) is equivalent to Smoluchawski's result (16, p. 588-589) 

at which he arrived directly on the basis of equation (12). 

In the case of an elastically bound particle, K(x) = - 

(y is the frequency), the Fokker-Planck equation becomes 

8f 82f Sfxf} (14) 

Kac (13, p. 384-385) gets in the limit, for the random walk with 

reflecting barrier, the probability density 

V2 y[x-x0exp(-yt)J 2 

f(x0;t,x) 2D[1exp(-2)} } exP{2D[1exp(2)} (15) 
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Formula (15) is the fundamental solution of equation (14) (l,p.l4l-l42), 

and is exactly the result obtained by Smoluchowski (16, p. 588). 

Smoluchowski's results, based on equation (11), are approxi- 

mate and are valid only for large values of the coefficient of friction 

1 
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THE UHLENBECK-ORNSTEIN THEORY OF BROWNIAN MOTION 

As was mentioned above, the theories of Einstein and 

Smoluchowski are only approximate. A more realistic theory of the 

Brownian motion was advanced by Uhienbeck and Ornstein (17, 18). 

In this section we will present a summary of their results. 

Let the random variable u = u(t) denote the velocity, at time 

t, of a particle in Brownian motion. The physical problem that 

leads to the Uhlenbeck-Ornstein theory is the determination of the 

probability that a free particle at time t has velocity u given that, 

at t = O, the velocity was u0; that is, we want to determine the 

probability density 

g(u0;t, u) = Pr[u(t) =u/u(0) u,j, - co<u<. 

The basis for the development of the theory has been the 

Langevin equation of motion 

du(t) m dt + 
q u(t) = F(t), (16) 

where m is the mass of the particle, and F(t) represents the 

random molecular impacts. From the kinetic theory the following 

two assumptions are made on F(t) (17, p. 824): 
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(i) The mean of F(t), at given time t, over an ensemble 

of particles, which have started at t O with same velocity u0, 

is zero; that is, 

E[F(t)} = O (17) 

(ii) There exists a covariance between F(t1) and F(t2) 

only when Jt1 _t2 is very small. More explicitly, we suppose that 

E[F(t1)F(t2)] = 2D(t1-t2), (18) 

where (x) has a maximum at x = 0. 

These two assumptions are not enough and it is further postulated 

(18, p. 332) that the impacts corresponding to disjoint time intervals 

are independent and normally distributed with zero mean and variance 

proportional to the length of the interval; that is, F(t) is a Gaussian 

Markov process. 

The first method for solving the problem consists of calcu- 

lating E[u(t)] and E[{u(t)}2J, and of using the principle of equi.- 

partition of energy, which simply can be stated as: 

E[u2(t+T)] = E[u2(t)I . (19) 

Using the integrating factor exp (nt), we get from equation 

(16) 



f.t 
u(t) = u0exp(-t) exp(-t) F() exp()d (20) 

m '0 

where =1I From relation (20) and conditions (17), (18), and 

(19) we get for the probability density of the velocity 

1 
V2 [u-u0exp(-t)] 2 

g(u0;t, u) 
= 2Trnp[1-exp(-2pt)J } exP{2D[1exp(2t)J} (21) 

which for t-e. oc is the Maxwell distribution 

i V2 
g1(u) = ' 2iTD3 

exp 2D 
(2 la) 

It is also shown that the random variable u u0exp(-t) follows 

the Gaussian distribution. 

Another way of deriving the probability density (21) is by 

constructing the forward Kolmogorov (Fokker -Planck) equation, of 

which g(u0;t,u) is the fundamental solution. From the equation 

of motion, Uhlenbeck and Ornstein derive the coefficients of the 

equation for this case as 

a(u) = 2D2 b(u) = -u 

So, the Kolmogorov equation has the form 

-= 
1 

a[ug} 

au ' 

g = g(u0;t,u) 
au 
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and has for its fundamental solution the density (21) (1, p. 141-142). 

Again suppose that the random variable x = x(t) represents 

the abscissa of the particle at time t. Another problem is to de- 

termine the probability f(x0;t,x) that a free particle in Brownian 

motion is at the position x = x(t) at time t, given that it 

started from x0 with initial velocity u0. 

Integrating equation (20) we get: 

x(t) - x 1 [1 -exp(-Pt)] [ u + (22) 

Using this relation together with assumptions (17) and (18), Uhienbeck 

and Ornstein find for the mean and variance of the displacement 

2D E[(x-x0)} = O E[(x-x0)2] = (23) 

This is the generalization, for all values of t, of Einstein's result. 

Indeed, for values of t large compared to 1 
we get 2Dt, 

which is exactly Einstein's result. 

Furthermore, Ornstein and Uhienbeck showed that the random 

va r jable 

s = -x0 - (let) 

follows the Gaussian distribution. For the probability density 

f(x0;t,x) they get 



u 
O -13t 2 

V2 P[x-x0-j-(1-e )J 

f(x0;t,x) = E -2t 
3) -e -3) 

(24) 

For large values of t, (24) becomes the probability density (8), 

derived by Einstein. 
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THE tJHLENBECK-ORNSTEIN PROCESS 

The theory of Brownian motion, as developed by tJhienbeck 

and Ornstein, was further elaborated upon by Doob (6) and Chandra- 

sekhar (2). In fact, Doob was the first to make a rigorous mathe- 

matical study of the process, and to realize that the distribution of 

the displacements in the TJhlenbeck-Ornstein process can be obtained 

directly from that of the velocities. 

As was seen in the last section, equation (21), the conditional 

distribution of u = u(t), given that u(o) = u0, is Gaussian with mean 

and variance 

-3t -3t 2 
E[ u(t)J u0e E[(u-u0e ) J 

= Dp(1eZPt). 

When t -co, this conditional distribution becomes the Maxwell 

distribution (Zia) for velocities, furnishing (12, p. 6) stationary 

absolute probabilities for the process. Using these absolute prob- 

abilities, Wang and tJhlenbeck (18, p. 333) describe the full distri- 

bution of the u(t) process as follows: for each t, u(t) is a 

random variable with a Gaussian distribution (Zla),having zero mean, 

and variance D ; the process is a Markov process. This last fact 

means that the Maxwell distribution of u(t.) for each fixed t., 
i i 

and the conditional probabilities determine the full set of probability 

relations of the process. That is, if t1<t2, we have for the joint 
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probability density of the pair u1 = u(t1), u2 u(t2) 

g2(i1,u2;t1,t2) = g1(u1)g(t1,u1;t2,u2) (25) 

22 
u +u -Zu 

2Dp[le2t2t1)] exp{ 
1 2 

1u2et2t1) 

2D [l-e 2-t1)1 

which is the bivariate Gaussian distribution, with zero means, equal 

variances D, and correlation ceofficient exp[-P(t2-t1)]. 

Doob (6, p. 353-354) developed and established this u(t) 

process rigorously by proving the following fundamental 

Theorem: Let u(t) > one-parameter family of 

random variables determining a stochastic process with the 

following properties: 

(i) The process is temporally homogeneous; that is, 

the probability densities are unaffected by translations of the 

t-axis. 

(ii) The process is a Markov process. 

(iii) If s,t are arbitrary distinct numbers, u(s), u(t) 

have a bivariate Gaussian distribution. Define m, o by 

m = E{u(t)} , 
Z E{[u(t)-m] Z) (26) 
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Then the given process is of the following type: there is a 

constant 3 > O such that, if t < < t , u(t ), . . , u(t 
i n i n 

have an n-dimensional Gaussian distribution, with common 

mean m and variance cr2, and correlation coefficients 

determined by E{[u(s+t) -m][u(s)-m}} = ¿exp(-t) 

(tJhlenbeck-Ornstein process). 

So according to this theorem, the Uhlenbeck-Ornstein process is 

essentially determined by three fundamental properties, of which the 

first two have simple physical significance. If we set m = O, 

¿ = D, we get for the mean and variance of u(t) - u(0): 

E{u(t)-u0] O, E{[u(t) -u} 2) 
= ZDP (leHt). (27) 

Furthermore, Doob proved that the velocity functions u(t), 

of the IJhlenbeck-Ornstein process, are continuous with probability 

one, and that almost all such functions fail to have a derivative ü(t) 

for any value of t. Physically this means that the particles do not 

have a well-defined acceleration. He also found a limit for the upper 

bound of the velocity function u(t), by proving that 

u (t) hm sup [2D3logt] = 
i t-0 

with probability one. 

As was mentioned above, Doob was the first to realize that the 
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distribution of the displacements in the TJhlenbeck-Ornstein process 

can be obtained from that of the velocities. Again let x(t) be the 

abscissa of a particle in Brownian motion at time t, then 

t 
x(t) - x(0) = u()d (28) 

'o 

with probability one; that is, we neglect the discontinuous functions 

u(t) with probability zero. In order to find the distribution of 

the displacement, Doob proceeds as follows. 

Riernann integrability of u(t) implies that 

n u(t./n)t 
x(t) - x0 = um 

n 
(28a) 

-e. 00 

1=1 

with probability one. Since the n-dimensional distribution of the 

random variables summed is Gaussian, it follows that the sum is 

Gaussian. So, the distribution of x(t) - x0 is also Gaussian. Sup- 

pose again that m = O, cr2 = Dp, then using (26) we find 

(bt 
E[x(t)-x0J = E[u()] d = 0 (29) 

O 

and 
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E{{x(t)-x0J 2) 
Ç ÇE[u()u(')Jdd' (29a) 

= Çeddt 
2D (t + etl), 

- P 

which is Uhietheck's and Ornsteins original result (23). 

By the same kind of argument it is shown that the two-dimen- 

sional density of x(t)-x0, u(t) is Gaussian, with common mean 

zero, and variances (29a) and D, respectively, and correlation 

coefficient 
- Pt l-e (30) 

{2(pt+et1)} "2 

Ornstein and Uhienbeck based their results on the Langevin 

equation(16) of motion. In the light of Doob's results, nondifferen- 

tiability of the velocity function u(t), the function u(t) does not 

satisfy equation (16). Doob surpasses this difficulty by deriving a 

proper stochastic analogue of the Langevin equation, taking into 

consideration the fact that we do not expect ü(t) to exist. Here 

we will present a short summary of his treatment of the Langevin 

e quat ion. 

First define the random variable B(t) by 

B(t) = P[x(t)-x(0)] -- u(t) - u(0). (31) 



Then B(t) has for each value of t a Gaussian distribution with 

mean and variance 

E{ B(t)] = O E{{B(t)} 
2) 

= 2DI32t. 

The distribution of B(t+s)-B(t) is independent of t, and if 

t < <t , then 
i n 
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B(t2) - B(t1), , B(t) - B(tn_ (32) 

are mutually independent random variables; that is, the B(t) 

process is the Wiener process. The following assumption is also 

made: the random variable u(0) will be given various initial 

distributions, but will always be made independent of the B(t) 

process for t > O. This means that the random variable u(o) is 

assumed independent of the set of random variables (32). Physically 

this assumption implies that the initial velocity u(0) is independent 

of later random molecular impacts. 

We write the Langevin equation (16) in the following form 

du(t) + 13u(t)dt = dB(t). (33) 

We shall interpret equation (33) to mean the truth, with probability 

one, of 

-b b 
f(t)du(t) + f3 f(t)u(t)dt = f(t)dB(t), (34) 

'a a a 
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for all a and b whenever f(t) is a continuous function. Be- 

cause the second member of (34) has been defined under these hypoth- 

eses (14, P. 151-157), even though the function B(t) isknownnottobe 

of bounded variation. Doob shows that equation (33) holds for the 

velocity function u(t) of the Uhlenbeck-Ornstein process if B(t) 

is defined by (31). Then we have, with probability one, 

(t (It 
edu() = -3 e'u()d + edB() (35) 

o o o 

which implies that 

-pt -pt SteP dB() (36) u(t) = u(0)e +e 
o 

for all t, with probability one. So equation (36) furnishes the 

complete solution of (33) under the stated conditions. 

Using the assumptions on the 

(36), the distribution of u(t)_u(0)e_Pt 

B(t) process and equation 

can be derived, and it is found 

to be the same as (21), first derived by Uhienbeck and Ornstein. 

By combining equations (36) and (28), we can express the 

displacement function x(t) of the particle in terms of the B(t) 

process as follows: 

x(t) = x(0) + (1-e )+ [let} dB(), (37) u(0) 3t 1 



from which the distribution of x(t) - x0 can be derived. 

These results can be extended to the case of particles per- 

forming the Brownian motion under the influence of an outside force 

K(x). The Langevin equation of motion for this case is 

du(t) i i -u(t) + -K(x) + -F(t), 
dt - in m 

which according to Doob's treatment becomes 

du(t) = -u(t)dt _!_ K(x)dt + dB(t). 

From this last equation the distribution of u(t), and hence that of 

x(t), can be obtained. 



TRANSFORMATION OF THE UHLENBECK-ORNSTEIN PROCESS 
TO THE WIENER PROCESS 

It was mentioned at the beginning that, if x = x(t) is a 

continuous one-dimensional Markov (diffusion) process with a con- 

ditional distribution function F(T,y;t,x), then the function F 

and its conditional density function 

f(T,y;t,x) = --[F(T,y;t,x)] 
ax 

satisfy certain conditions, and the process is described by the back- 

ward Kolmogorov equation 

3f a(T,y) 32f 
2 

+ b(T,y) = O (4a) 

where the coefficients are given by relations (2) and (3). 

Cherkasov (3) and Shirkov (15) consider the problem of trans- 

forming the diffusion process to a Wiener process; that is, trans- 

forming a one-dimensional continuous Markov process to a Gaussian 

temporally homogeneous differential process. To this end we trans- 

form the arguments and the function f itself by the following 

formulas 

f 

T'= (T), y' 4i(T,y), t' (t), x' t,x) (38) 

- 34a(t,x) f(T,y;t,x) - 
3x 

f1(T , ,t',x'), I ,rt. 



first proposed by Kolrnogorov. Then equation (4a) changes to an 

analogous equation with coefficients 

a(T, y) 
()2 

a(T,y) 
i 

- 2'(T) ay 

{ (T,y) 1 

= 
[a(T,y) + b(T,y) 

ay 
+ aT 

ay 

We assume that equation (4a) goes over into 

af1 &2f 

20 
ar ay' 

f1 fl(TI r't' X') - 17 I 
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(39) 

(40) 

that is, ¡(T,y) i and b(T,y) 0. It is known that the solution of 

equation (40), which satisfies the usual regularity conditions of the 

density functions and the Chapman-Kolmogorov equation (1), is 

(x' -y')2 
f1(T',y';t',x') 

i - 4(t -T') 
2[(tTI)}V2 

e (41) 

giving the Wiener process. From this it is easy to obtain the function 

f(T,y;t,x) which is the solution of equation (4a), provided that trans- 

formation (38) is one-one. Indeed, Cherkasov showed that under cer- 

tain conditions there exists a one-one transformation which takes equa - 

tion (4a) into equation (40). 

Here we propose to apply the same treatment to the forward 
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Kolmogorov (Fokker-Planck) equation 

_! a2[ a(t, x)f J a{b(t, x)f] (5) 8t2 
8x2 

8x 

which can also be written as follows 

8f i 82f r 8a(t, x) 8f i 82a(t, x) ab(t, x).jf 
- b(t,x)J-+ 

ax 8x 8x 
(42) 

8x 8x 

Applying transformation (38) to equation (42), it changes to an anal- 

ogous equation with coefficients 

¡(t,x) a(t,x) 84 2 
, (t) (;) 

(t,x) = t)(t 

(43) 

8a(t,x th4i 3 ,x ---a(t,x) 2+ at Ox Ox 2 
Ox 

We assume that equation (42) goes over into 

_! 82f1 
(44) 

at' z Ox'2 

whose solution is 

(x' -y')2 
i - 2(t' -T') f1(T',y't',x') y e (44a) 

[2Tr(t' -T')] 
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giving the Wiener process. Using Cherkasov's method (3, p. 374- 

377) we prove the following 

Theorem. Let 

a(t,x) a(t,x), (t,x) a(t,x) d 

(45) 

y(t, x) = 2b(t, x)±a (t, x)-a(t, 

a(t, ) 

2 

x)SX 

at(t,)[a(t,)id 

and suppose that there exist continuous derivatives a 
XX 

for all real values of x, and that the functions xx xx 

a, are bounded. Then there exists a one-one transforma- 

tion of the type (38) which transforms equation (5) into (44) 

if and only if the Wronskian of a, 3, y is identically zero. 

If this condition is satisfied, the desired transformation is 

given by the following formulas 

tt CW(s,x) 
çb(t) = exp[ a(s,x) ds]dx (46a) 

o o 

and 

(t,x) iStW(sx) iÇtP(x) i Çw(sx)dS} d ii(t,x) = exp{ ds] + exp[ 
. a(t,x) 2 a(s,x) 2 a(,x) 2j a(s,x) 

( 4 6b) 
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where W(t,x) is the Wronskian of a and y, and P(t,x) 

is the Wronskian of 3 and y. 

Proof: Necessity. Syppose that after applying transformation (38) 

to equation (5) we get 

(t,x) = i b(t,x) O. 

The first equation of (43) gives 

[b' (t) 
I" 

[' (t)] a (t,x). 
ax a(t,x) ax2 2{a(t,x)]"2 

Integrating the first of the above equations we get 

1/2 ex d 
4«t,x) ['t} 0a(t,,) + 

where p1(t) is assumed to have continuous first derivative. From 

the expression for 4i(t, x) we find 

'(t) Cx d ['(t)] X 

at 2[t(t)]V2 o 
a(t,) - 2 

and ---- into the second of equa- Substituting at ' ax 
' ax2 

tions (43) we obtain 



1/2 1 '(t) 1/2 b(t,x)} 'a(t,x)' a (t,x)+ ______ 
Cx d 

X 2[t(t)J a(t, ) 

V2 
['(t)] a(t, )[a(t, )] 3d + (t) = O. 

2 

Multiplying this last equation by a(tx) we obtain 

2(t) V2 ¶bt'(t)[a(tx)]]/2 rX d [a(t, x)] 
+ (t) 

+ {2b(t, x)-a(t, x) - 

V2 
- [a(t,x)] = 0 

which according to the introduced notation can be written as 

where 
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M(t)a(t,x) + N(t)13(t,x) +y(t,x) = 0, (47) 

-V2 - 
M(t) = 21(t){t(t)J and N(t) = '(t)[(t)] 

If equation (47) is differentiated twice with respect to x, 

and the resulting system of three equations is considered, then the 

condition of the theorem is obtained. 

Sufficiency. If the condition 



L 

a(t,x) 13(t,x) y(t,x) 

a (t,x) 3 (t,x) y (t,x) 
X X X 

a (t,x) 
1 

(t,x) y (t,x) xx xx xx 
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(48) 

is fulfilled, we show following Cherkasov's method that formulas (46) 

transform equation (5) into equation (44). To this end it is easy to 

show (15, P. 157) that the expressions 

W(t, x) P(t, x) and a(t,x) a(t,x) 

are independent of x. 

Now using relations (43) and (46) we find 

a(t,x) 1 1 çtw(sx) }21 (t,x) = { a(t,x) ex L a(s,x) ds] 
exp[ 

ÇtW(sx) 
ds] t0 

J a(s,x) 

(49) 

Furthermore, 

____ x W(t,x) rXd i çtw(s,X)d {b(tX) a (t,x) 
(t,x) = ex[ a(s,x) a(t,x) - 4a(t,x) - 2a(t,x) 

X P(t, x) 
- Çat(t, )[a(t, )]3d 

+ 2a(t,x) 



which using our notation can be written as 

b(t,x)= 

exp[ 
) a(s,x) ds] 

2a(t, x) 
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{'y(t,x) W(t,x) (t,x)+P(t,x)] 
- a(t, x) 

(50) 

It can easily be shown that 

P(t,x) W(t,x) (t,x) - y(t,x); 
- a(t,x) 

from this it follows that b(t,x) = 0. 

Using the above theorem we propose to show that the tihlenbeck- 

Ornstein can transformed into the Wiener process. Indeed, 

it was found (17) that the conditional density function g(T,y;t,u) of 

the velocity u = u(t) of a free particle in Brownian motion satisfies 

the Fokker-Planck equation (5) with coefficients 

a(t,u) = 2Df32, b(t,u) = 

Using our notation (45), we have in this case 

a(t,u) =ii53, 3(t,u) = u, y(t,u) = -2t3u 

whose Wronskian is 

(51) 
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u -2u 

o i -213 

o o o 

I 

So according to our theorem, there exists a one-one trans- 

formation of the type (38) transforming the Uhlenbeck-Ornstein proc- 

ess into the Wiener process. The transformation is given by the re- 

lations 

Pt 
213t ue 

(t) (e -1), 4i(t,u) . (52) 

Using equation (44a), and the last of equations (38), we have 

for the conditional density of the velocity 

Pt 1/2 pt pT2 
e 13 ______ ____ ________ (ue -ye ) g(T,y;t,u) 

= fp 213t 213T I exp[- 
-e ) 

2D1(eZPt_e2PT) 

which can be rewritten as 

-ZPT 1/2 -13T -Pt 
g(T,y;t,u) = [ J exp[- _ (ue -ye ) 

213T -apt ' 
21TD13(e -e ) 2D13(e -e 

(53) 

Setting T = O, u(0) = u0, we obtain 

i 2 
(uu0e13t)Z 

g(u0;t,u) = [ -apt exp[- _ _2pt I 

2îrD13(i-e ) 2D13(1-e 



which is exactly the result (21) obtained by TJhlenbeck and Ornstein. 

As was mentioned in the last section, from the above distribution one 

can obtain the distribution of the displacement function of the Uhlenbeck- 

Ornstein process. 

So, a complete description of the Uhlenbeck-Ornstein process 

can be obtained directly from the Wiener process (44a) and transfor- 

mation (38), according to formulas (52). 



SUMMARY 

The theory of stochastic processes has been systematically 

developed and has been applied to a wide variety of problems in dif- 

ferent fields. One such problem is the Brownian motion of particles 

suspended in liquids or gases. 

The theory of Brownian motion has been studied extensively 

both from purely physical considerations and against the background 

of Markov processes. 

Einstein and Smoluchowski developed an approximate theory of 

the motion. Their model was treated rigorously by Wiener who proved 

that the displacement function of the particle is continuous and non- 

differentiable with probability one. 

Uhienbeck and Ornstein advanced a more realistic model of 

the Brownian motion, which was rigorously treated by Doob. Based 

on Wieners results, Doob showed that the particles of this model 

have a well-defined velocity but not a well-defined acceleration. 

In both of the above models, the Kolmogorov equation, satis- 

fied by the probability density function of the random variable charac- 

terizing the model, is the basic equation. Applying a one-one trans- 

formation on the forward Kolmogorov equation, we have shown in this 

work that the Uhlenbeck-Ornstein process can be transformed into the 

Wiener process. This means that, using a simple transformation we 
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can transform a continuous Markov process to a Gaussian temporally 

homogeneous differential process. 
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