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Abstract

In this paper we explain at the theoretical level how discrete Morse theory can provide us
a more efficient approach to compute persistent homologies. In achieving so we also provide a
framework for discrete Morse theory to be applied to persistent homology for other purposes.
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1 Introduction

In the novel field of Topological Data Analysis (TDA), simplicial complexes are among the
central objects of study. In particular, persistent homology emerged as a powerful tool in data
analysis. This naturally gives rise to the need to efficiently compute the homology of various
complexes.

On the other hand, Morse Theory is a powerful tool in differential topology and differential
geometry which has produced important results foundational to modern geometry and topology.
This inspired Robin Forman along with others to take similar approaches to study CW complexes
and PL manifolds. Forman eventually produced a discrete version of the Morse inequality (see
[8]) and developed what we now know as the discrete Morse theory (see [3]).

Among the ideas carried over from Morse theory is the notion of Morse homology, a homology
theory whose homology groups are isomorphic to standard simplicial homology groups, see [12]
for details. As part of his work, Forman formulated Morse homology discretely on CW complexes.

This particular result leads to an approach to efficiently compute homology groups. In general,
the complexity of computing homology groups is related to the number of cells. Meanwhile the
computation of Morse homology only uses the "critical" cells, and thus can be significantly faster
to compute than the simplicial homology while still giving the same result.

The purpose of this expository Master’s paper is to introduce at a theoretical level how
Milschaikow and Nanda applied the above idea to optimize the computation of persistent homology
[4], and in the process provide a framework for other applications of discrete Morse theory in
persistent homology.

We will first define some of the algebraic and topological notions in Section 2. In Section 3
we will introduce the theory of abstract cell complexes, which tackles the issue that TDA mainly
works with abstract simplicial complexes whereas discrete Morse theory was originally introduced
on CW complexes. Then in Section 4, we will establish a variant of discrete Morse theory with a
focus on Morse complexes, the analogue of Morse homology in discrete Morse Theory. We will
briefly introduce the persistent homology of a filtration of abstract cell complexes in Section 5.
Finally in Section 6 we will construct the Morse Filtration which involves fewer cells but has
isomorphic persistent homology groups as the original filtration.
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2 Background

In this section we will briefly establish notations and some useful results from algebraic
topology.

Notation 2.1. Modules
Let R be a ring. Let R(Y ) denote the free R module generated by the (finite) set Y .
Moreover, for such R(Y ), we assign by default a pairing structure 〈, 〉, so that for Y =

{y1, y2, ..., yn}, and all ri, r′i’s in R, 〈
n∑
i=1

riyi,

n∑
i=1

r′iyi〉 :=

n∑
i=1

rir
′
i.

Definition 2.2. Chain Complex
A chain complex C = {(Cd, ∂d)} is a sequence of abelian groups Cd, called the chain groups

connected by homomorphisms ∂, called the boundary operators and commonly denoted ∂d : Cd →
Cd−1.

...
∂d+2−−−→ Cd+1

∂d+1−−−→ Cd
∂d−−−→ Cd−1

∂d−1−−−→ ...

Moreover, we require ∂d∂d−1 = 0 for every index d.

The index d assigned to each group is generally called the dimension as elements of the
groups Cd usually correspond to topological objects of dim d. It is a common practice in topology
to suppress the index of the boundary operators and denote them by ∂ since the dimension is
usually clear from context.

For the chain complexes that will appear in this paper, all the groups Cd will be free R-
modules for a fixed ring R. Moreover this ring R is uniform across all chain complexes presented.
This extra property is prevalent in topology but is especially important for this paper.

Remark 2.3. Given a chain complex C with chain of groups Cd. For convenience we sometimes
ignore the dimensions completely and consider the chain complex C as one module, the direct
sum of all the modules Cd. In that case the ∂’s can altogether be considered as one single function
C → C.

A CW complex is another topological structure deeply related to our topic. We use the
definition from Lundell and Weingram[1] among the many equivalent ones as our reference.

Definition 2.4. CW Complex
A (finite) CW complex is a set X̄ with a (finite) collection of functions X := {α(d) : Dd →

X̄ | d ∈ N}, where Dd is the closed unit disc of dimension d with boundary Sd−1, satisfying the
following conditions.

• Each α(d) ∈ X is injective on Dd − Sd−1.

• X̄ is the disjoint union of {α(d)(Dd − Sd−1) | α ∈ X}.

• For any α(d) ∈ X, α(d)(Sd−1) ⊆ X̄d, where
X̄d :=

⋃
{β(d′)(Dd′) | β(d′) ∈ X, d′ < d} and is called the d-skeleton of the complex.
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We usually denote α(d), β(d
′) ∈ X just as α, β, suppressing the dimension indicator d. Fur-

thermore we abuse notation and let them also denote their images, which are the cells of X. Note
that X̄ has a topological structure induced by the cells and that is the topological structure of the
CW complex.

Finally we state the definition of an abstract simplicial complex, another very important
structure in TDA. Here we reference the definition of Munkres [10].

Definition 2.5. Abstract Simplicial Complex
A (finite) abstract simplicial complex is a (finite) collection of finite sets X. Each α ∈ X is

called a cell of X and has the property that β ⊂ α ∈ X =⇒ β ∈ X. We define the dimension of
α as its cardinality minus 1. And we define the vertex set X̄ of X as the union of all α ∈ X.

In addition, in this paper we always index the finite vertex set X̄ as {x0, x1, ..., xn}. Then we
can orient each cell α = {xi0 , xi1 , ..., xid} by the parity of the permutation of i0, i1, ..., id.
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3 Abstract Cell Complexes

In order to work in the combinatorial setting of computers, discrete constructions are strongly
preferred, with abstract simplicial complexes being the prime candidates in Topological Data
Analysis (TDA). However, in order to apply ideas from discrete Morse theory, which will be
introduced later in this paper, we often have to change the shape of the cells drastically, which
could not be done in the theory of simplicial complexes where all cells must be simplicies. In the
original discrete Morse theory developed by Forman in 1998[3], Forman built his theory on CW
complexes and took advantage of the continuous properties to bend the cells. This approach is
powerful but the continuous nature also makes it difficult to use for computers.

For this reason, before we describe discrete Morse theory, we will introduce a different cell
complex that shares the flexibility provided by CW complexes which made discrete Morse theory
possible, while also being discrete so that it is computer-friendly.

Amazingly, Tucker [7] already constructed such a complex many decades ago in 1936. With
some refinement, Mischaikow and Nanda(2013) [4] were able to make Tucker’s theory the
groundwork of an alternative formulation of Forman’s discrete Morse theory. And this is the
theory we will introduce in this section.

3.1 Abstract Cell Complexes

In this particular theory, the definition of a complex, which we call an abstract cell complex,
relies on defining a boundary incidence function. This has the advantage of giving rise to a
natural boundary operator, and in general is able to encapsulate rich information of boundary
behaviors. The trade off is that defining meaningful functions between complexes becomes
exceedingly difficult, if not impossible. Moreover, so far exploration based on this approach is
mostly limited to complexes with finitely many cells.

Luckily, we will see in the next subsection every abstract cell complex has an associated
chain complex. The close relation between the two allows us to apply many properties of the
well-studied chain complexes to build up our theory, most notably the homology theories.

Definition 3.1.1. Abstract Cell Complex
An abstract cell complex, denoted by (X, b), consists of a set X :=

⊔
d∈Z

Xd with each Xd being

a finite set, and a boundary incidence function b. Elements in Xd will be called abstract cells of
dimension d. Sometimes we also write α(d) to denote that α has dimension d.

The boundary incidence function b is defined by b : X ×X −→ R, where R is an integral
domain with units U(R), and is called the coefficient ring of the complex, and b satisfies the
following conditions.

(i) For any α, β ∈ X, b(α, β) 6= 0 =⇒ dim(α) = dim(β) + 1 ;

(ii) For any α, γ ∈ X,
∑
β∈X

b(α, β)b(β, γ) = 0.

In this paper, we won’t specify the coefficient rings of different abstract cell complexes since
we never put together abstract cell complexes with different coefficient rings.
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The intuition of the definition will be more apparent, as we see later in this section how b can
be derived from operations we are very familiar with in the theory of homology, which motivated
condition (ii) of its definition.

For now, to better illustrate the idea, we will work on an example.

Example 3.1.2. Let R = Z, X2 = {α}, X1 = {β1, β2, β3}, X0 = {γ1, γ2, γ3}. Then define b as
0 except for the following cases.

b(α, β1) := 1 b(α, β2) := 1 b(α, β3) := 1

b(β1, γ2) := −1 b(β1, γ3) := 1 b(β2, γ3) := −1

b(β2, γ1) := 1 b(β3, γ2) := −1 b(β3, γ2) := 1

It is easy to see that condition (i) of Definition 3.1.1 is satisfied. For condition (ii), note that
condition (i) implies b(α′, β′)b(β′, γ′) 6= 0 only when dimα′ = dim γ′ + 2. Hence we only have to
check the pairings of (α, γ1), (α, γ2), (α, γ3).

For (α, γ1),
∑
β∈X

b(α, β)b(β, γ1) = b(α, β2)b(β2, γ1) + b(α, β3)b(β3, γ1)

= (1)(1) + (1)(−1) = 0. The computation for other pairings is similar.

As we will in the next subsection, there is a deep relation between the boundary incidence
function b and the boundary operator we know from the theory of CW complexes or simplicial
complexes. In fact, much like an abstract simplicial complex, despite relying only on set theory
and algebra in the definition, intuitively it is very much still a theory of topology and is applied
to solve topological problems. To display that, we show how we can use a CW-complex with
oriented cells to describe Example 3.1.2.

Assuming the ring R for the abstract cell complex is Z. The idea is thatX0, X1, X2 corresponds
to the set of vertices, edges, and surfaces, and X3, X4, ... corresponds to the higher dimension cells.
On the other hand the boundary incidence function b assigns the degree of the attaching map
from the boundary of a dimension d+ 1 cell α′ (in the sense of a CW complex) to a dimension d
cell β′, to the pairing (α′, β′). This particular interpretation motivated condition (i) so that b is
only ever non-zero on pairings of the form Xd+1 ×Xd. For pairings where the dimensions don’t
match, we still assign zeros to them for coding convenience, and also for when we later apply
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ideas of Remark 2.3.
More specific to Example 3.1.2 we now explain how we arrive at the triangle image above. By

inspecting the elements of X0, X1, X2, γ1, γ2, γ3 are the vertices, β1, β2, β3 are the edges, while α
is the face. Then we figure out how the pieces stick together by inspecting b.

We begin with the three vertices and start adding edges to it. b(β1, γ2) = −1 is interpreted
as the edge β1 leaving γ2 once, while b(β1, γ3) = 1 is interpreted as β1 arriving γ3 once, akin to
the adjacency matrix of directed graphs in graph theory. β2 and β3 are treated similarly.

Finally, for α, as a face its boundary would be a loop. Then b(α, β1) = b(α, β2) = b(α, β3) = 1

would be interpreted as the loop traversing each edge once and with the same orientation as the
edge as defined above. Choosing an order of β1 → β2 → β3 → β1 and we form an anti-clockwise
loop for α, using the right-hand rule we have α orienting "upward" as a face.

Moreover, we can see that all finite abstract simplicial complexes also admit an abstract cell
complex structure.

Example 3.1.3. Finite Abstract Simplicial complex
Let X be a finite abstract simplicial complex with index set X̄ := {x0, ..., xn}.
Let R be any ring with 1. Let Xd := {β ∈ X | dimβ = d}
Define the boundary incidence function b by b(α, β) = (−1)k for α = {xi0 , ..., xid} and

β = {yi0 , ..., ŷik , ..., yid} (the i’s are ordered so that i0 < i1 < ... < id), and 0 for everything else.

Note that letting b(α, β) = (−1)k is what allows condition (ii) of Definition 3.1.1 to be
fulfilled.

Together with the next remark, we see that the structure of an abstract cell complex is indeed
what we are looking for, a bridge between CW complexes and abstract simplicial complexes that
translates to the discrete setting.

Remark 3.1.4. Note that we can also reverse the process following Example 3.1.2 to construct
an abstract cell complex from a CW-complex. More specifically, we will see in Theorem 3.2.4 how
to rigorously construct an abstract cell complex from the cellular chain complex of CW-complexes.

As a final note while CW complexes and simplicial complexes only make up a small portion
of all abstract cell complexes, these are also the cases that have been of interest in the field of
TDA so far.

With the definition settled for now we look at some features immediately derived from it.
Much like all other theories of complexes, the face relation between cells of the same complex

play an important role in the theory. Similar to CW complexes however, certain face relations
have better behavior than others, which leads to the definition of regular faces.

Definition 3.1.5. Faces and Regular Faces
Given an abstract cell complex (X, b), and any cells α, β ∈ X.
When b(α, β) 6= 0, β is called a face of α and α is called a coface of β. The relation is also

denoted by β ≺b α.
When b(α, β) ∈ U(R), β is called a regular face of α and α is called a regular coface of β.

The relation is also denoted by β �b α.
In practice, no more than one face relation will be employed at a time, thus we will just use

≺ and � and assume it is based on b.
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This is an analogue to faces and regular faces in CW complexes. It is worth noting however,
when viewing CW complexes as abstract cell complexes, every face of a cell in the abstract cell
complex always corresponds to a face of the corresponding cell, but the opposite is not necessarily
true. We can see this in the simple example below. As a CW complex γ0 is a face of β0, but as
an abstract cell complex, b(β0, γ0) = 0 since the 1-cell β0 leaves γ0 once and then returns to γ0
on the other end. So the attaching map on the boundary of β0 has degree 0. Thus γ0 is not a
face of β0.

X0 = {γ0},
X1 = {β0}.

Similar to faces, the recurring idea of subcomplexes also finds room in this theory. In fact,
we will see that the idea of subcomplexes is especially important in the theory’s applications in
Section 5 and 6.

Definition 3.1.6. Subcomplex
Given an abstract cell complex (X, b). We say (X ′, b |X′×X′), abbreviated (X ′, b), is a

subcomplex of X if X ′ ⊂ X, and given any α ∈ X ′, for every β ∈ X, β ≺ α implies β ∈ X ′.
Moreover, for every cell α ∈ X ′, its dimension in X ′ is the same as its dimension in X.

In other words, a subcomplexX ′ ofX is a subset ofX that preserves all boundary relationships
and contains all the faces of its cells.

We will then establish that a subcomplex of an abstract cell complex is also an abstract cell
complex.

Proposition 3.1.7. Given an abstract cell complex (X, b) and (X ′, b) a subcomplex of (X, b).
Then (X ′, b) is also an abstract cell complex.

Proof. We check that (X ′, b) satisfies the conditions of Definition 3.1.1.
(i) Let X ′d := Xd ∩X ′ denote the set of cells in X ′ of dimension d. Then b automatically

satisfies the dimension condition.
(ii) Given α, γ ∈ X ′. By definition β ≺ α implies β ∈ X ′. By contrapositive, β ∈ X \X ′

implies b(α, β) = 0.
Hence ,

∑
β∈X

b(α, β)b(β, γ) =
∑
β∈X′

b(α, β)b(β, γ) +
∑

β∈X\X′
b(α, β)b(β, γ)

=
∑
β∈X′

b(α, β)b(β, γ) +
∑

β∈X\X′
0 · b(β, γ) =

∑
β∈X′

b(α, β)b(β, γ).
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But
∑
β∈X

b(α, β)b(β, γ) = 0 since (X, b) is an abstract cell complex.

Lastly, we establish a useful lemma. If two cells in a complex have an intermediate face, then
there must be an additional intermediate face.

Lemma 3.1.8. Given an abstract complex (X, b). If γ ≺ β ≺ α, then there exists β′ 6= β such
that γ ≺ β′ ≺ α.

Proof. Assume no such cells exist. Then for any β′ ∈ X such that β′ 6= β, by definition either
b(α, β′) = 0 or b(β′, γ) = 0, i.e. b(α, β′)b(β′, γ) = 0.

Meanwhile the hypothesis γ ≺ β ≺ α implies that b(α, β) 6= 0 and b(β, γ) 6= 0.
So

∑
β′∈X

b(α, β′)b(β′, γ) = b(α, β)b(β, γ) 6= 0, which contradicts the definition of a complex.

3.2 Associated Chain Complex

We will see in this subsection that every abstract cell complex has an associated chain complex,
and it is the deep relation between the two that gives the theory of abstract cell complexes power
to prove some of the very useful results. In fact, Mischaikow and Nanda’s version of discrete
Morse theory is partially inspired by another version developed by Kozlov [5] for chain complexes.

The construction of associated chain complexes from abstract cell complexes mirrors the
construction of cellular chain complexes from CW complexes, leading to homology with R

coefficients.

Definition 3.2.1. Associated Chain Complex
Let Cd(X) := R(Xd).
Define ∂d : Cd(X)→ Cd−1(X) on a d-cell by ∂d(α(d)) =

∑
β(d−1)∈Xd−1

b(α, β)β and then extend

the definition linearly to all of Cd(X).
Thus we obtain the associated chain complex of (X, b), denoted by C(X):

... −→ Cd(X)
∂d−→ Cd−1(X)

∂d−1−−−→ Cd−2(X) −→ ...

Remark 3.2.2. The homology of the associated chain complex of abstract cell complexes is akin
to the cellular homology of CW complexes with R coefficients, and thus also defines homology
groups with R coefficients.

We then establish that an associated chain complex is indeed a chain complex.

Proposition 3.2.3. Given the associated chain complex C(X) of an abstract cell complex (X, b).
Then C(X) is a chain complex i.e. ∂d−1∂d = 0 for any d.

Proof. We omit the dimension d in ∂d. By definition of ∂ as homomorphisms, it suffices to verify
∂2 = 0 for the basis elements of each Cd(X) in Xd. For any α ∈ Xd, we obtain

∂2(α) = ∂(
∑
β(d−1)

b(α, β)β) =
∑
β(d−1)

b(α, β)(
∑
γ(d−2)

b(β, γ)γ)

=
∑
γ(d−2)

(
∑
β(d−1)

b(α, β)b(β, γ))γ = 0
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The last equality follows from condition (ii) of Definition 3.1.1.

Hence every abstract cell complex corresponds to a chain complex of R-modules, and next
we will see that this relation works in both directions. In fact, abstract cell complexes can be
considered as an alternative definition of certain classes of chain complexes.

Theorem 3.2.4. Given a fixed integral domain R, a chain complex of finitely-generated free
R-modules has a canonical abstract cell complex structure.

Moreover, the associated chain complex of the abstract cell complex is isomorphic to the
original chain complex.

Proof.
Let the following sequence, denoted by C, be a chain complex, such that each Cd is a

finitely-generated free R-module and the connecting maps are R-module homomorphism.

...→ Cd+1
∂d+1−−−→ Cd

∂d−−−→ Cd−1
∂d−1−−−→ ...

For each d, let Xd be the basis of the dth module in the chain. Moreover define the boundary
incidence function b as b(α, β) :=< ∂dα, β > for any α ∈ Xd and β ∈ Xd−1. Otherwise
b(α, β) := 0. Let X =

⋃
d

Xd and we claim (X, b) is an abstract cell complex.

Condition (i) of Definition 3.1.1 follows immediately from the definition.
For condition (ii), note that by (i) we know that

∑
β∈X

b(α, β)b(β, γ) can only be non-zero

when dim(α) = dim(γ) + 2. However, from ∂2 = 0, we know that for any α ∈ Xd,
0 = ∂2(α) = ∂(

∑
β(d−1)

〈∂α, β〉β) =
∑
β(d−1)

b(α, β)(
∑
γ(d−2)

〈∂β, γ〉γ)

=
∑
γ(d−2)

(
∑
β(d−1)

b(α, β)b(β, γ))γ.

So for any γ(d−2),
∑
β(d−1)

b(α, β)b(β, γ) = 0.

Finally, we look at the associated chain complex of (X, b). For each d, Cd(X) = R(Xd) ∼= Cd

since Xd is the basis of the free R-module Cd. It remains to show that the boundary maps ∂Cd(X)

and ∂Cd
are the same for each d and we do so by checking the map on the basis.

For each d, given α ∈ Xd, following Definition 3.2.1, ∂Cd(X)(α) =
∑
β(d−1)

b(α, β)β =
∑
β(d−1)

〈∂Cd
α, β〉β.

On the other hand since ∂Cd
(α) has dimension d − 1 and is thus spanned by Xd−1, i.e.

∂Cd
(α) =

∑
β(d−1)

〈∂Cd
(α), β〉β.

In fact, mapping α, β to 〈∂α, β〉 is precisely how we derived the definition of b(α, β) for
abstract cell complexes.
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4 Discrete Morse Theory

When Forman formulated discrete Morse theory in 1998, see [3], it was done on CW-complexes
with heavy reference to traditional Morse theory, in particular by providing an actual Morse
function. His ideas have since then been distilled and transferred to various other contexts with
modifications. Here we will apply his ideas in the context of abstract cell complexes, as was done
by Mischaiwkow and Nanda [4]. This version of discrete Morse theory is derived from Kozlov’s
earlier version based on chain complexes, see [5]. Recall from subsection 3.2 that chain complexes
are in fact closely related to abstract cell complexes. A key quality inherited by this lineage is
the omission of a Morse function. Instead, a construction known as acyclic partial matching
allows us to go directly to the Morse complex, a key tool in the field.

It should be noted though, that the idea of acyclic partial matchings was already known to
Forman from the very beginning. Moreover, Forman was able to reveal the connection between
acyclic partial matchings and discrete Morse functions. Hence it is interesting to first introduce
Forman’s Morse function and show its relationship to acyclic partial matchings. We will be
working in the context of abstract cell complexes which we know by Remark 3.1.4 also includes
CW complexes, but the key ideas remain the same as those of Forman.

4.1 Discrete Morse Function

For the most part smooth Morse theory focuses on studying the critical points of a smooth
Morse function. An important insight is that it only takes a few points on the entire manifold
to capture much useful information. The analogue in this discrete Morse theory is that in CW
complexes and also in abstract cell complexes there are a few critical cells among the large
complexes that capture a large amount of information, and a discrete Morse function can help us
find and analyze the critical cells.

In smooth Morse theory, for a given manifold M, Morse functions are smooth functions
M→ R with no degenerate critical points. When it comes to defining a discrete Morse function,
a similar procedure is followed. For a given abstract cell complex (X, b), we look at functions
X → R and first identify the critical cells.

Definition 4.1.1. Critical Cell
Given an abstract cell complex (X, b) and a function f : X → R. Then β(d) ∈ X is a critical

cell if the following two conditions hold

• Uf (β) := |{α ∈ Xd+1 | β ≺ α and f(α) ≤ f(β)}| = 0;

• Lf (β) := |{γ ∈ Xd−1 | γ ≺ β and f(γ) ≥ f(β)}| = 0;

The critical cells are defined by an order-preserving property between the face relation and
the order of the outputs of f . More specifically, a critical cell β of f is defined by the property
that γ ≺ β ≺ α if and only if f(γ) < f(β) < f(α). The functions Uf (β) and Lf (β) count the
number of α(d+1) and γ(d−1) that violates this property, and hence they must both be 0 for any
critical cells β(d).

And just as not all smooth functions are smooth Morse functions, we ask for additional
properties of the f : X → R that are useful for our purpose.
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Definition 4.1.2. Discrete Morse function
Given an abstract cell complex (X, b), a discrete Morse function is a function f : X → R

such that for each β ∈ X, the following hold:

• Lf (β) ≤ 1, Uf (β) ≤ 1.

• If β ≺ α and f(β) ≥ f(α), then β � α.

Figure 1: A discrete Morse function
on Example 3.1.2.

Figure 2: Not a discrete Morse func-
tion.

The first condition will allow us to eventually put all the non-critical cells into pairs (β, α) so
that β ≺ α and f(β) > f(α). The second condition forces β � α, i.e. b(α, β) ∈ U(R) , which
will allow us to divide by b(α, β).

We end the subsection by establishing a key property of a discrete Morse function that allows
said pairings to happen, as we will see in Proposition 4.2.4.

Proposition 4.1.3. Given an abstract cell complex (X, b) with a discrete Morse function f . For
any β ∈ X, Lf (β) and Uf (β) cannot both be 1.

Proof. Assume there exists β(d) such that Lf (β) = Uf (β) = 1. Then we can find α(d+1) and
γ(d−1) such that f(γ) ≥ f(β) ≥ f(α) with γ ≺ β ≺ α. But by Lemma 3.1.8 there exists β′(d) 6= β

such that γ ≺ β′ ≺ α. Since f is a Morse function, Lf (α) ≤ 1 and so β is the unique face of α
such that f(β) ≥ f(α), hence f(β′) < f(α). Similarly, Uf (γ) ≤ 1 and so β is the unique coface
of γ such that f(γ) ≥ f(β), hence f(γ) < f(β′).

Putting everything together we get f(α) ≤ f(β) ≤ f(γ) < f(β′) < f(α). This gives a
contradiction.

4.2 Partial Matchings

An acyclic partial matching is a partial matching with the acyclic property, both of which
will be defined in this section. After that we will show in Proposition 4.2.4 how a discrete Morse
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function induces an acyclic partial matching. In addition we will also see that each acyclic partial
matching conversely induces a discrete Morse function.

It is worth noting that Forman called a partial matching a discrete vector field and considered
an acyclic partial matching a gradient vector field induced by a discrete Morse function, see [3]
for details. That different names have been given to the same concept reflects the change of
approach towards this theory as the field of TDA progressed, see for example [4, 5].

We begin with defining a partial matching.

Definition 4.2.1. Partial Matching (Discrete Vector Field)
For an abstract cell complex (X, b) a partial matching is a partition of X into three subsets

A,Q and K, with a bijection w : Q→ K. Moreover we require that for each q ∈ Q, q � w(q), i.e.
b(w(q), q) ∈ U(R).

A partial matching is usually denoted by (A,w : Q→ K).

Sometimes we also call a partial matching just as a matching.
As an example we provide a partial matching on Example 3.1.2. Let A := {γ2, β3, α},

Q := {γ1, γ3}, K := {β1, β2}, w maps γ1 7→ β2, γ3 7→ β2.

Figure 3

Graphically in Figure 3, w is represented by pink arrows. We omit the "orientation" in the
figure since the orientation only shows the signs ± of b(α, β)’s, however for our purpose we are
only concerned with b(α, β) = 0 and with b(α, β) ∈ U(R), but both are unaffected by signs when
R = Z.

We then define a relation on Q induced by a partial matching. And it will be acyclicity of
this relation that defines the acyclic partial matchings among other partial matchings.

Definition 4.2.2. Gradient of a Partial Matching
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Given a partial matching (A,w : Q→ K), we define the relation l on Q by defining β′ l β

if β′ ≺ w(β). The relation C on Q is defined as the transitive closure of l. We call (Q,l,C)

the gradient of (A,w : Q→ K).

Aside from defining acyclicity, the definition of gradient will remain useful in the later sections.
The notation and definition of both l and the transitive closure C are both retained as they can
serve separate purposes.

Definition 4.2.3. Acyclic Partial Matching
Given a partial matching (A,w : Q → K) with gradient (Q,l,C). It is an acyclic partial

matching if there do not exist any β1, ..., βn ∈ Q such that β1 l β2 l ...l βn l β1.

Note that Definition 4.2.3 is equivalent to (Q,C) being a partially ordered set.
Take the partial matching defined in Figure 3 as an example. The only gradient relation

induced in this matching is γ3 l γ1. Thus it is an acyclic matching.
Alternatively, the matching in Figure 4 induces gradient relationship γ1 l γ2 l γ3 l γ1 and is

thus not acyclic. And graphically, we can see the arrows representing w form a "cycle".

Figure 4: Another partial matching on Example 3.1.2. A := {α},
Q := {γ1, γ2, γ3}, K := {β1, β2, β3}. w maps γ1 7→ β2, γ2 7→ β3,
γ3 7→ β1.

Similar to the practice in standard Morse theory, while there can be many choices of acyclic
partial matchings on a complex, most of the time we will only assign one acyclic partial matching
to each complex.

In fact, the process of assigning an acyclic partial matching is very much the same as assigning
a discrete Morse function. In particular, it is not too difficult to see that a discrete Morse function
induces an acyclic partial matching. And this acyclic partial matching is basically what Forman
first constructed as a gradient vector field, only to eventually be simplified into Definition 4.2.3,
[4].
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Proposition 4.2.4. A discrete Morse function induces an acyclic partial matching.

Proof. Given a discrete Morse function f : X → R. Let A denote the set of critical cells.
Let Q := {β ∈ X | Lf (β) = 1}, and let K := {β ∈ X | Uf (β) = 1}.
By Proposition 4.1.3 we know that A,Q,K are partitions of X.
For all β ∈ Q, by the definition of Q and K there is a unique α ∈ K such that α � β and

f(α) < f(β). Thus we can define w : Q → K,β 7→ α. Moreover, w is bijective, since for any
α ∈ K there is a unique β ∈ Q such that β ≺ α, which means w(β) = α. Note this means that
f(β) > f(w(β)) always holds.

It remains to check that for each β ∈ Q, β is a regular face of w(β). This follows directly
from Definition 4.1.2 and the fact that β ≺ w(β) but f(β) > f(w(β)).

Hence (A,w : Q → K) induces a partial matching on (X, b), and we let C be its gradient.
We now show that this matching is acyclic.

Assume it is not. We can then find some cycle β1l ....lβnlβ1 in Q where all βi’s are distinct.
By the definition of gradient this means β2 ≺ w(β1), ..., β1 ≺ w(βn). Note that for each w(βi), βi is
by definition of our w the unique element such that βi ≺ w(βi) but f(βi) > f(w(βi)). So the above
chain of face relations implies that f(β2) < f(w(β1)), ..., f(β1) < f(w(βn)). Putting everything
together we obtain f(β1) > f(w(β1)) > f(β2) > f(w(β2)) > ... > f(βn) > f(w(βn)) > f(β1)

which is a contradiction.

For example, the discrete Morse function on Figure 1 induces the acyclic partial matching on
Figure 3 by the process above while the function on Figure 2 can’t do the same.

Surprisingly, the converse of Theorem 4.2.4 is also true [3, Theorem 9.3; 6, Theorem 3.5].
And in simpler examples it is easy to imagine how we reproduce Figure 1 from Figure 3, and
how Figure 4 probably isn’t induced by any discrete Morse function. Since a detailed proof will
deviate deeply into graph theory and is not tied to the main topic of this paper, we will just
state the Theorem.

Theorem 4.2.5. [3, 6] Any acyclic partial matching is always induced by some discrete Morse
function.

4.3 Morse Complex

In this section, we construct the Morse complex of an abstract cell complex and prove that a
Morse complex has the same homology as the original complex (Theorem 4.3.7), which is one
of the most important theorems in discrete Morse theory. The concept of a Morse complex is
parallel to Morse homology in standard Morse theory. Both are induced by the Morse functions
and both preserve the homology groups of the underlying object. While Morse homology uses
critical points of Morse functions as basis of the chain complex, a Morse complex of an abstract
cell complex uses critical cells.

Recall that we have discussed in Section 3 that the idea of an abstract cell complex is mostly
a reformulation of the idea of a chain complex. As we will see the main advantage of this
reformulation is that we can now directly construct in Definition 4.3.5 a Morse complex from the
original complex. On the other hand, the reformulation also means we have to greatly modify
the proof of Theorem 4.3.7.
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The definition of a Morse complex begins with defining a special kind of sequence that begins
and ends at A, but traverses along Q.

For notational simplicity, without changing any definitions we first expand on a few notations
introduced in the previous sections.

Notation 4.3.1. Given a partial matching (A,w : Q → K) with gradient (Q,l,C). For any
q ∈ Q,α, β ∈ A, we expand our notations as follows.

• q m β denotes w(q) � β; αm q denotes α � q.

• q B β (and resp. α B q) denotes that there exists q′ ∈ Q such that q B q′ m β (and resp.
αm q′ B q).

• αm β denotes α � β; αB β denotes that there exists q′ ∈ Q such that αB q′ B β.

• w(α) = α for all α ∈ A.

Definition 4.3.2. Q-sequence and Multiplicity
Given an abstract cell complex (X, b) with acyclic partial matching (A,w : Q → K). A

Q-sequence is any sequence ρ := (α = q0, q1, ..., ql+1 = β) where qi are distinct elements in Q for
1 ≤ i ≤ l, while α, β ∈ A.

We also write ρ as α
ρ
 β and call l the stepcount of ρ, denoted as l(ρ).

Then we define the multiplicity of a Q-sequence ρ as:

µb(ρ) :=

l(ρ)∏
i=0

b(w(qi), qi+1)

l(ρ)∏
i=1

−b(w(qi), qi)

.

We then zoom into a special kind of Q-sequence which we call gradient paths.

Definition 4.3.3. (Un)saturated Gradient Paths
Given an acyclic partial matching (A,w : Q→ K) on an abstract cell complex (X, b) and let

its gradient be (Q,l,C). Fix α, β ∈ A. A (Saturated) Gradient Path from α to β in (X,C) is a
Q-sequence α

ρ
 β with the property that

α = q0 m q1 m q2 m ...m ql m ql+1 = β.
An unsaturated gradient path is any subsequence of a gradient path that preserves α = q0 at

the beginning and β = ql+1 at the end.
Lastly we denote the set of all saturated (and resp. unsaturated) gradient paths from α to β

as ∇m(α, β) (and resp. ∇B(α, β)).

Note that the definition of an unsaturated gradient path is equivalent to requiring α =

q0 B q1 B q2 B ...B ql B ql+1 = β.
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Figure 5: Two saturated gradient paths on the partial matching of Figure 3 from β3 to γ2, the
brown path (β3, γ1, γ3, γ2), and the cyan path (β3, γ2).

As an example Figure 5 describes two of the saturated gradient paths induced by the
partial matching of Figure 3. Recall that A = {γ2, β3, α}, Q = {γ1, γ3}, K = {β1, β2}, w
maps γ1 7→ β2, γ3 7→ β2. So β3 m γ1 m γ3 m γ2 since β3 ∈ A and β3 � γ1, w(γ1) = β2 � γ3,
w(γ3) = β1 � γ2. i.e. (β3, γ1, γ3, γ2) is a saturated gradient path with step count 2. The

multiplicity of this gradient path is
b(β3, γ1)b(β2, γ3)b(β1, γ2)

b(β2, γ1)b(β1, γ3)
=

(1)(−1)(−1)

(1)(1)
= 1

On the other hand β3 � γ2 so (β3, γ2) is trivially a gradient path with step count 0. The
multiplicity of this gradient path is simply b(β3, γ2) = −1

Before going to the main definition, we establish a small proposition on gradient paths and
the multiplicity of a Q-sequence.

Proposition 4.3.4. Given a Q-sequence α
ρ
 β in an abstract cell complex (X, b), µb(ρ) 6= 0 if

and only if ρ is a saturated gradient path.

Proof. Let ρ := (α = q0, q1, ..., ql+1 = β) be a Q-sequence. Then µb(ρ) 6= 0 if and only if
b(w(qi), qi+1) 6= 0 for every i, which is true if and only if α � q1 and qi m qi+1 for every i ≥ 1, i.e.
ρ is a saturated gradient path.

The implication of the proposition is that ρ has zero multiplicity unless it is a saturated
gradient path. This allows us to conveniently add or remove Q-sequences that aren’t saturated
gradient paths when we are working with multiplicity. This flexibility is helpful in dealing with
some of the technicalities in the proof of Theorem 4.3.7.

We now have the necessary prerequisites to define the Morse complex. As stated before, an
explicit construction of a Morse complex is the key motivation behind approaching our problem
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with the theory of abstract cell complexes, as opposed to in the theory of chain complexes where
a Morse complex can only be inductively defined.

Definition 4.3.5. Morse Complex
Given a abstract cell complex (X, b) with acyclic partial matching (A,w : Q → K). Its

associated Morse complex is (A, b′), where b′(α, β) is defined as the sum of multiplicities of all
unsaturated gradient paths from α to β:

b′(α, β) :=
∑

ρ∈∇B(α,β)

µb(ρ) =
∑

ρ∈∇m(α,β)

µb(ρ).

Remark 4.3.6. Note that Proposition 4.3.4 implies that in computing b′(α, β) it is indifferent
whether we sum all ρ in ∇B(α, β), or only those in ∇m(α, β). In fact we can sum up all
Q-sequences as well since they also have zero multiplicity.

Figure 6: The Morse Complex induced by the matching on Figure 3.

The example on Figure 6 gives us some idea on what the Morse Complex intuitively looks
like. The Morse Complex corresponding to Figure 3 consists of A = {γ2, β3, α}, b′(α, β3) = 1,
b′(β3, γ2) = 0.

In particular b′(β3, γ2) is sum of the multiplicities of the two gradient paths described on
Figure 5. Meanwhile b′(α, β3) = b(α, β3) since only the trivial path connects the two.

Graphically, to construct the Morse complex we remove the non-critical cells and then, when
appropriate, "stretch" each critical cell (only β3 in this case) along the gradient paths (those on
Figure 5) and through the "void" left behind, until they contact other critical cells (γ2) at the
end of the paths. This is also why information like b(α, β1) is simply ignored, since the place β1
occupied has been "taken over" by other critical cells.

Intuitively, the multiplicity of the gradient path records how the contact happens. The
definition of b′(α, β) then aggregates all these instances of touches to find the net number of
times the boundary of a critical cell α is covering another critical cell β in new Morse Complex,
which is also what we want b′ to represent.

19



From the definition we can see clearly that the Morse complex has a lot less cells than the
original complex. We will now see in Theorem 4.3.7 that despite being a "simpler" complex,
the homology, the key property, is preserved. This opens up a path to greatly simplify the
computation of homology which will be discussed in Section 6.

Theorem 4.3.7. Given an abstract cell complex (X, b) with acyclic partial matching (A,w : Q→
K)). Then the associated Morse Complex (A, b′) is an abstract cell complex. Moreover (A, b′)

has the same homology as (X, b), that is H∗(X,R) ∼= H∗(A,R).

The proof of this theorem revolves around inductively removing q and w(q) pair by pair from
X until Q and K are empty while preserving the homology. At each step we will construct what
we call a q-reduced complex which will be established in the following definition.

Definition 4.3.8. q-reduced Complex and q-reduced Matching
Given an abstract cell complex (X, b) with acyclic partial matching (A,w : Q → K)). For

q ∈ Q, let Xq = X \ {q, w(q)}, Qq = Q \ {q}, and Kq = K \ {w(q)}. Then define bq : Xq×Xq →

R, (α, β) 7→ b(α, β)− b(α, q)b(w(q), β)

b(w(q), q)
.

We call (Xq, bq) a q-reduced complex of (X, b). Denoting w |Qq by w, we call (A,w : Qq → Kq)

the q-reduced matching.

We first establish a fact from this definition, we will prove then the reduced complexes
and reduced matchings are exactly what they are called. Note that bq is well-defined because
b(w(q), q) ∈ U(R) as required by Definition 4.2.1.

Proposition 4.3.9. Given an abstract cell complex (X, b) with acyclic partial matching (A,w :

Q→ K)) and gradient (Q,l,C), and any of its q-reduced complexes (Xq, bq). For any α, β ∈ Xq,
b(α, β) 6= bq(α, β) if and only if β ≺ w(q) and q ≺ α in (X, b).

In particular, for any q′ ∈ Q such that q′ 6= q, b(w(q′), q′) = bq(w(q′), q′).

Proof. Note that b(α, β)− bq(α, β) =
b(α, q)b(w(q), β)

b(w(q), q)
by definition of bq(α, β).

We already know that b(w(q), q) ∈ U(R). So the difference is non-zero if and only if both
b(α, q) and b(w(q), β) are non-zero, which by definition of ≺ is true if and only if q ≺ α and
β ≺ w(q).

Hence, if b(w(q′), q′) 6= bq(w(q′), q′), then q ≺ w(q′) and q′ ≺ w(q). It follows that q C q′ C q,
contradicting the acyclic property.

We now show that a q-reduced complex is indeed an abstract cell complex.

Proposition 4.3.10. Given an abstract cell complex (X, b) with acyclic partial matching (A,w :

Q→ K)). For any q ∈ Q, the q-reduced complex of (X, b), (Xq, bq) is an abstract cell complex.

Proof. Since Xq is a subset of X, we only need to show bq is a boundary incidence function for
Xq. Hence we show that bq satisfies properties (i) and (ii) of Definition 3.1.1.

(i) Assume that bq(α, β) 6= 0. Then b(α, β) and b(α, β)− bq(α, β) must not both be zero.

If b(α, β) 6= 0, then by (X, b) being a complex we know dim(β) = dim(α)− 1.
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If b(α, β)−bq(α, β) 6= 0, then Proposition 4.3.9 implies q ≺ α and β ≺ w(q). Also recall that
b(w(q), q) ∈ U(R), so b(w(q), q) 6= 0. And again dim(β) = dim(w(q))−1 = dim(q) = dim(α)−1,
and condition (i) is satisfied.

(ii) For any α, γ ∈ X,

∑
β∈Xq

bq(α, β)bq(β, γ) =
∑
β∈Xq

(b(α, β)b(β, γ)− b(α, β)
b(β, q)b(w(q), γ)

b(w(q), q)

− b(β, γ)
b(α, q)b(w(q), β)

b(w(q), q)
+
b(α, q)b(w(q), β)

b(w(q), q)

b(β, q)b(w(q), γ)

b(w(q), q)
)

=
∑
β∈Xq

b(α, β)b(β, γ)− b(w(q), γ)

b(w(q), q)

∑
β∈Xq

b(α, β)b(β, q)

− b(α, q)

b(w(q), q)

∑
β∈Xq

b(w(q), β)b(β, γ)

+
b(α, q)b(w(q), γ)

b(w(q), q)2

∑
β∈Xq

b(w(q), β)b(β, q) (*)

We claim b(w(q), β) · b(β, q) = 0. Assume to the contrary that
b(w(q), β) · b(β, q) 6= 0. Then dim(w(q)) = dim(β) + 1 = dim(q) + 2 which contradicts the
partial matching. It follows that the last summand of (∗) vanishes.

Recall that for any α′, γ′ ∈ X,
∑
β∈X

b(α′, β)b(β, γ′) = 0 by definition of the boundary

incidence function b. Since Xq = X \ {q, w(q)}, we obtain∑
β∈Xq

b(α′, β)b(β, γ′) = −b(α′, q)b(q, γ′)− b(α′, w(q))b(w(q), γ′).

For the first summand of (∗), α′ = α, γ′ = γ.

Then, recall b(β′, β′) = 0 for any β′ ∈ X.

For the second summand of (∗), α′ = α and γ′ = q, in particular
−b(α′, q)b(q, γ′) = −b(α, q)b(q, q) vanishes.

For the third summand of (∗), α′ = w(q) and γ′ = γ, in particular
−b(α′, w(q))b(w(q), γ′) = −b(w(q), w(q))b(w(q), γ) vanishes.

Putting everything together, we can rewrite the right hand side of (∗) as

−b(α, q)b(q, γ)− b(α,w(q))b(w(q), γ)− b(w(q), γ)

b(w(q), q)
(−b(α,w(q))b(w(q), q))

− b(α, q)

b(w(q), q)
(−b(w(q), q)b(q, γ))

= 0

Thus (Xq, bq) is an abstract cell complex.

Alternatively, we can see the q-reduced complex as a special kind of Morse complex.

Remark 4.3.11. The q-reduced complex is also the Morse complex of (X, b) induced by a simple
acyclic partial matching (A′, w′ : Q′ → K ′) defined by A′ = X \ {q, w(q)}, Q′ = {q}, and
K ′ = {w(q)}.
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The observation is that for such a matching every pair of critical cells α, β has at most
two (unsaturated) gradient paths (α, β) and (α, q, β). Let b′ the boundary incidence function of
this Morse complex, then b′(α, β) is the sum of the multiplicities of the two paths. But the two

multiplicities are precisely b(α, β) and −b(α, q)b(w(q), β)

b(w(q), q)
and their sum is by definition bq(α, β).

Meanwhile, a q-reduced matching is an acyclic partial matching on the q-reduced complex.

Lemma 4.3.12. Given an abstract cell complex (X, b) with acyclic partial matching (A,w : Q→
K). For any q ∈ Q, the q-reduced matching (A,w : Qq → Kq) is an acyclic partial matching of
the q-reduced complex (Xq, bq).

Moreover, any gradient path α
ρ
 β of (A,w : Qq → Kq) is at least an unsaturated gradient

path of (A,w : Q→ K).

Proof. For any q′ ∈ Qq, by Proposition 4.3.9, bq(w(q′), q′) = b(w(q′), q′) ∈ U(R), so (A,w : Qq →
Kq) is a partial matching of (Xq, bq).

To prove acyclicity, we first let (Q,l,C) be the gradient of (A,w : Q→ K) and (Qq,lq,Cq)

be the gradient of (A,w : Qq → Kq).
Now, we claim that for any q′, q′′ ∈ Qq ∪A, q′ lq q

′′ implies q′ C q′′. Note that we are using
the expanded notation of Notation 4.3.1 for the case of q′ or q′′ being in A.

To see the claim, note that q′ lq q
′′ implies that bq(w(q′′), q′) 6= 0. Hence b(w(q′′), q′) and

b(w(q′′), q)b(w(q), q′)
b(w(q), q)

must not both be zero. The former being non-zero means q′l q′′ while the

later being non-zero means q′ l q l q′′. In either case q′ C q′′.
Hence, if we have a cycle for lq, say q1 lq q2 lq ...lq qn lq q1, then we would have a cycle

q1Cq2C ...CqnCq1 for C, which we know is impossible as (A,w : Q→ K) is an acyclic matching
of (X, b). This gives acyclicity of lq and Cq.

Finally, given ρ = (α, q1, ..., β) a gradient path of (A,w : Qq → Kq), i.e. αmq q1 mq ...mq β,
then αB q1 B ...B β. So ρ is indeed at least an unsaturated gradient path of (A,w : Q→ K).

Then we consider the corresponding chain complexes of both X and Xq, C(X) and C(Xq),
to show that X and Xq have the same homology by introducing two chain maps in the following
proposition. The chain maps will be represented as a single map between C(X) and C(Xq),
which can be considered two big R-modules as was described in Remark 2.3.

Proposition 4.3.13. Given an abstract cell complex (X, b) with q-reduced complex (Xq, bq). We
define functions φ : C(X)→ C(Xq), ψ : C(Xq)→ C(X) between the associated chain complexes
by linearly extending φ : X → C(Xq) and ψ : Xq → C(X), which are defined as follows.

φ(α) :=


0 α = w(q)

−
∑

β∈Xq

b(w(q), β)

b(w(q), q)
β α = q

α α ∈ Xq

ψ(α) := α− b(α, q)

b(w(q), q)
w(q)
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Then φ and ψ are chain maps. Moreover, φ ◦ψ and ψ ◦φ are chain homotopic to the identity
maps, i.e. (φ◦ψ)∗ = (idC(Xq))∗ and (ψ◦φ)∗ = (idC(X))∗. Thus φ∗ = (ψ∗)

−1 gives an isomorphism
between the homology groups of (X, b) and (Xq, bq), that is for each d, Hd(X;R) ∼= Hd(Xq;R).

Remark 4.3.14. It is helpful to know that in each dimension the modules of Cd(Xq) are in fact

submodules of Cd(X). In this context, φ(q) can be alternatively defined as q −
∂C(X)(w(q))

b(w(q), q)
since

−
∑

β∈Xq

b(w(q), β)

b(w(q), q)
β = q −

∑
β∈X

b(w(q), β)

b(w(q), q)
β = q −

∂C(X)(w(q))

b(w(q), q)
.

Proof of Proposition 4.3.13. We will abbreviate all the boundary operators as simply ∂ where
the context is clear. Recall that Xq = X \ {q, w(q)}.

Since ψ and φ are defined by linear extension it suffices to check the condition on the basis,
i.e. the cells. For φ, we consider the three cases of q, w(q), and cells in Xq, which we denote by
α. We also let dim(q) = d.

α = w(q):
φ ◦ ∂(w(q)) = φ(

∑
β(d)∈X b(w(q), β)β) =

∑
β(d)∈Xq

b(w(q), β)φ(β) + b(w(q), q)φ(q)

=
∑

β(d)∈Xq
b(w(q), β)β + b(w(q), q)(−

∑
β(d)∈Xq

b(w(q), β)

b(w(q), q)
β) = 0

Note that b(w(q), β) 6= 0 implies that dimβ = d, and thus it makes sense to only look at β’s
of this dimension. Then the only dimension d element in X \Xq is q.

∂ ◦ φ(w(q)) = ∂(0) = 0

α = q:
φ ◦ ∂C(X)(q) = φ(

∑
γ(d−1)∈X b(q, γ)γ) =

∑
γ(d−1)∈X b(q, γ)φ(γ) =

∑
γ(d−1)∈Xq

b(q, γ)γ

Note that as above, b(w(q), β) 6= 0 implies dimβ = d. In this case there are no dimension
d− 1 elements in X \Xq.

∂ ◦ φ(q) = ∂C(Xq)(−
∑

β(d)∈Xq

b(w(q), β)

b(w(q), q)
β) = −

∑
β(d)∈Xq

∑
γ(d−1)∈Xq

b(w(q), β)bq(β, γ)

b(w(q), q)
γ

= −
∑

γ(d−1)∈Xq
(
∑

β∈X
b(w(q), β)b(β, γ)

b(w(q), q)
γ − b(w(q), q)b(q, γ)

b(w(q), q)
γ) =

∑
γ(d−1)∈Xq

b(q, γ)γ

Note that we used the fact that for any β(d), γ(d−1) ∈ Xq, bq(β, γ) = b(β, γ). Otherwise by
Proposition 4.3.9, γ ≺ w(q) and q ≺ β, which would violate the dimension requirement between
faces. Note also that by the definition of the boundary function

∑
β∈X b(w(q), β)b(β, γ) = 0.

α ∈ Xq:
φ ◦ ∂(α) = φ(

∑
β∈Xq

b(α, β)β + b(α, q)q + b(α,w(q))w(q))

=
∑

β∈Xq
b(α, β)β −

∑
β∈Xq

b(α, q)b(w(q), β)

b(w(q), q)
β =

∑
β∈Xq

bq(α, β)β

∂ ◦ φ(α) = ∂C(Xq)(α) =
∑

β∈Xq
bq(α, β)β

Clearly everything matches and so both φ and ψ are chain maps. We then look at the two
compositions φ ◦ ψ and ψ ◦ φ.

For any α ∈ Xq, φ ◦ ψ(α) = φ(α− b(α, q)

b(w(q), q)
w(q)) = α. So φ ◦ ψ is in fact the identity map

already.
While for ψ ◦ φ, we first write down the function explicitly for the basis X of C(X). Again

we divide the calculation into three cases, w(q), q and every other α ∈ Xq.
α = w(q):
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ψ ◦ φ(w(q)) = ψ(0) = 0

α = q:

ψ ◦ φ(q) = ψ
(
−
∑

β∈Xq

b(w(q), β)

b(w(q), q)
β
)

= −
∑

β∈Xq

b(w(q), β)

b(w(q), q)

(
β − b(β, q)

b(w(q), q)
w(q)

)
= −

∑
β∈Xq

b(w(q), β)

b(w(q), q)
β +

∑
β∈Xq

b(w(q), β)b(β, q)

b(w(q), q)2
w(q) = −

∑
β∈Xq

b(w(q), β)

b(w(q), q)
β

Note that the second summand vanishes since b(w(q), β) and b(β, q) can never both be
non-zero.
α ∈ Xq:

ψ ◦ φ(α) = ψ(α) = α− b(α, q)

b(w(q), q)
w(q)

In summary, ψ ◦ φ(α) =


0 α = w(q)

−
∑

β∈Xq

b(w(q), β)

b(w(q), q)
β α = q

α− b(α, q)

b(w(q), q)
w(q) α ∈ Xq

Now we claim the following functions {θd : Cd(X)→ Cd+1(X)}, which we simply call θ, give
us the chain homotopy between ψ ◦ φ and id on C(X). In homology theory this would mean
(ψ ◦ φ)∗ = id∗ = idH∗(X) as desired.

Again we only show the function on the basis X of C(X).

θd(β) =


1

b(w(q), q)
w(q) β = q

0 β 6= q

It remains to show that the two functions, θd ◦ ∂ + ∂ ◦ θd+1 and idC(X) − ψ ◦ φ, coincide.
Again it suffices to compare (θd ◦ ∂ + ∂ ◦ θd+1)(α) and (idC(X) − ψ ◦ φ)(α) for α = q, α = w(q),
and α ∈ Xq.

Assume dim(q) = d′

α = w(q):
(θd′ ◦ ∂ + ∂ ◦ θd′+1)(w(q)) = θd′(∂(w(q)) + ∂C(Xq)(0) = θd′(b(w(q), q)q) = w(q)

(id− ψ ◦ φ)(w(q)) = w(q)− 0 = w(q)

α = q:

(θd′−1 ◦ ∂ + ∂ ◦ θd′)(q) = 0 + ∂(
1

b(w(q), q)
w(q)) =

∂(w(q))

b(w(q), q)

(id− ψ ◦ φ)(q) = q − (−
∑

β∈Xq

b(w(q), β)

b(w(q), q)
β) = q − φ(q) =

∂(w(q))

b(w(q), q)
Note that last equation follows from Remark 4.3.14.

α ∈ Xq:

(θd ◦ ∂ + ∂ ◦ θd+1)(α) = θd(
∑

β∈X b(α, β)β) =
b(α, q)

b(w(q), q)
w(q) = (id− ψ ◦ φ)(α)

So we indeed have θd ◦ ∂ + ∂ ◦ θd+1 = idC(X) − ψ ◦ φ.

While Proposition 4.3.13 is sufficient for us to reduce X all the way to A while preserving
the homology, we can’t tell yet if A has the same abstract cell complex structure as the Morse
complex of X does. To do so, we introduce a lemma to show that X and its q-reduced Xq have
the same Morse Complex.
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Lemma 4.3.15. Let (X, b) be an abstract cell complex with acyclic partial matching (A,w : Q→
K). For any q ∈ Q, the acyclic partial matching (A,w : Qq → Kq) on the q-reduced complex
(Xq, bq) induces the same Morse Complex as (A,w : Q → K), i.e. (A, b′) and (A, b′q) are the
same complex, or b′ = b′q.

Proof. We compare b′ and b′q for each pair of α, β ∈ A. For simplicity we write ∇Bq(α, β) as ∇q
and ∇B(α, β) as ∇. The goal is to show

b′(α, β) =
∑
ρ∈∇

µb(ρ) =
∑
ρ∈∇q

µbq(ρ) = b′q(α, β)

.
We already know from Lemma 4.3.12 that ∇q ⊂ ∇. By considering any Q-sequences ρ as

ordered sets, we define ∇/∈ := {ρ ∈ ∇, q /∈ ρ} and ∇∈ :=

{ρ ∈ ∇, q ∈ ρ} which is a partition of ∇. Clearly, ∇q ⊂ ∇/∈.
From Proposition 4.3.4, we know every ρ ∈ ∇/∈ −∇q has µbq(ρ) = 0, and so we will instead

prove that
∑
ρ∈∇

µb(ρ) =
∑
ρ∈∇/∈

µbq(ρ), or rather,

∑
ρ∈∇∈

µb(ρ) =
∑
ρ∈∇/∈

(
µbq(ρ)− µb(ρ)

)
.

To do so we will first remove another class of Q-sequences from ∇/∈.
Given ρ = (q0, ..., ql+1) ∈ ∇/∈. Recall the definition of ∇/∈, q0 B q1 B ...B ql+1 and none of the

qi’s are q. Now we look at those ρ’s where for any 0 ≤ m ≤ l(ρ), qm B q B qm+1 does NOT hold.
In such a case, we know for sure that q ≺ w(qm) and qm+1 ≺ w(q) must not both be true. By
Proposition 4.3.9, this implies b(w(qm), qm+1) = bq(w(qm), qm+1) for any 0 ≤ m ≤ l(ρ).

Recall that µbq(ρ) =

l∏
i=0

bq(w(qi), qi+1)

l∏
i=1

−bq(w(qi), qi)

and µb(ρ) =

l∏
i=0

b(w(qi), qi+1)

l∏
i=1

−b(w(qi), qi)

by definition. So for

the class of Q-sequences ρ’s we just stated, µbq(ρ) and µb(ρ) have the same numerator. Also by
Proposition 4.3.9 we see that they have the same denominator. Hence this class of Q-sequences
has the property that µbq(ρ)− µb(ρ) = 0 and can be ignored for our purpose.

Let∇# be the set of the rest of theQ-sequences ρ’s in∇/∈, i.e. Q-sequences where qmBqBqm+1

holds for at least one index m, and we further reduced our claim to proving∑
ρ∈∇∈

µb(ρ) =
∑
ρ∈∇#

(
µbq(ρ)− µb(ρ)

)
For ρ ∈ ∇#, we first note that the index m for which we have qm B qB qm+1 must be unique.

If we instead had some index m′ with m < m′ satisfying this property, then qBqm+1B ...Bqm′Bq

contradicting acyclicity of (A,w : Q→ K). Hence we have α = q0 B q1...B qm B qB qm+1 B ...B

ql+1 B β where all qi’s are distinct, so ρ+ := (α, ..., qm, q, qm+1, ..., β) ∈ ∇∈.
Hence for every i other then i = m, qm B q B qm+1 does NOT hold, and so we can again
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apply Proposition 4.3.9 to get b(w(qi), qi+1) = bq(w(qi), qi+1). Therefore we have the following.

µbq(ρ)

=

m−1∏
i=0

bq(w(qi), qi+1)

m∏
i=1

−bq(w(qi), qi)

(
bq(w(qm), qm+1)

)
l(ρ)∏

i=m+1

bq(w(qi), qi+1)

l(ρ)∏
i=m+1

−bq(w(qi), qi)

=

m−1∏
i=0

b(w(qi), qi+1)

m∏
i=1

−b(w(qi), qi)

(
b(w(qm), qm+1)−

b(w(qm), q)b(w(q), qm+1)

b(w(q), q)

)
l(ρ)∏

i=m+1

b(w(qi), qi+1)

l(ρ)∏
i=m+1

−b(w(qi), qi)

=

l(ρ)∏
i=0

b(w(qi), qi+1)

l(ρ)∏
i=1

−b(w(qi), qi)

+

m−1∏
i=0

b(w(qi), qi+1)

m∏
i=1

−b(w(qi), qi)

(b(w(qm), q)b(w(q), qm+1)

−b(w(q), q)

)
l(ρ)∏

i=m+1

b(w(qi), qi+1)

l(ρ)∏
i=m+1

−b(w(qi), qi)

= µb(ρ) + µb(ρ
+)

Or µbq(ρ)− µb(ρ) = µb(ρ
+).

The proof is finished if there exists bijective function +q : ∇# → ∇∈, ρ 7→ ρ+ where ρ+ is
constructed from ρ as above.

Firstly, since q ∈ ρ+, clearly ρ+ ∈ ∇−∇q = ∇∈. So +q indeed maps elements in ∇# to ∇∈.
The well-definedness of +q follows from the uniqueness of the choice of m.

For injectivity, note that since +q(ρ) is ρ with q added into the sequence, ρ is the merely
+q(ρ) with q removed. So +q(ρ) = +q(ρ

′) implies ρ and ρ′ are results of the same sequence with
the same element (q) removed, and thus ρ and ρ′ must be the same sequence.

Lastly, for any ρ′ ∈ ∇∈, q ∈ ρ′. So we can consider the subsequence ρ := ρ′ − {q}. Obviously
ρ as a subsequence of an extended gradient path is also an extended gradient path, so ρ ∈ ∇.
It is also clear that there is a unique position in ρ where we can reinstate q to get ρ′ back, so
ρ ∈ ∇# and +q(ρ) = ρ′.

Hence
∑
ρ∈∇#

µbq(ρ)− µb(ρ) =
∑
ρ∈∇#

µb(+q(ρ)) =
∑
ρ′∈∇∈

µb(ρ
′) as desired.

Finally, we have all the tools to prove the main theorem of this section.

Proof of Theorem 4.3.7. Let (X, b) be an abstract cell complex with acyclic partial matching
(A,w : Q→ K)). Let (A, b′) be the Morse Complex.

Let Q = {q1, q2, ..., qn}. Define inductively abstract cell complexes (X0, b0), (X1, b1), ...
, (Xn−1, bn−1) so that (X0, b0) = (X, b) and for every i, (Xi+1, bi+1) := ((Xi)qi+1 , (bi)qi+1) is
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the qi+1-reduced complex of (Xi, bi). Also, inductively construct the qi+1-reduced matchings
(A,w : Qi+1 → Ki+1) from (A,w : Qi → Ki).

Note in particular that Xn = A and the Morse Complex (A, b′n) of (Xn, bn) is merely itself. By
applying Lemma 4.3.15 inductively to all Xi, all of the (Xi, bi) share the same Morse Complex.

It remains then to apply Proposition 4.3.13 inductively to each (Xi, bi) and see that all
(Xi, bi)’s have the same homology. In particular (X, b) and (Xn, bn) = (A, b′) have the same
homology groups, i.e. H∗(X,R) = H∗(A,R), and we are done.
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5 Persistent Homology

Persistent homology, introduced by Gunnar Carlson and others, has since then been highly
successful at presenting topological information of data sets and is the flagship of applying
algebraic topology in data analysis, see [2] for a survey.

Applying tools like the Vietoris-Rips Complex and the Cech Complex, we can obtain from
data in the form of some discrete sets in Rn, a "filtration" of abstract cell complexes. The general
idea of persistent homology revolves around processing this "filtration" and track how basis
elements of the homology groups "persist" over the series. The end result is usually represented
in a graphical form which is called a "barcode".

We will provide definitions based on abstract cell complexes. However, in general the ideas
presented in this section can be easily replicated in various contexts like geometric simplicial
complexes and abstract simplicial complexes.

5.1 Filtration

In general set theory a filtration refers to a family of sets indexed by a totally ordered set, so
that the order also preserves the subset relation. In particular this means the family of sets is
totally ordered with respect to the subset relation. In the context of abstract cell complexes, we
further restrict the sets to be abstract cell complexes and the subset relation to be the subcomplex
relation.

In practice, the family of abstract cell complexes we work with is always finite. Thus in this
article we use the natural numbers as our index.

Definition 5.1.1. Filtration of Abstract Cell Complexes
A filtration of abstract cell complexes, denoted by F = {Xp, b}, is a sequence of complexes

.... ⊂ Xp−1 ⊂ Xp ⊂ Xp+1 ⊂ ... such that each (Xp, b) is a subcomplex of (Xp+1, b).
Each Xp will be called the p-th frame of F . The last frame of the filtration, for which every

frame is subcomplex of, will be referred to as X.

The subcomplex relation is particularly important as we can construct chain maps between
the associated chain complexes based on it. Moreover, we can see from Definition 3.1.6 that the
subcomplex relation allows every frame Xp to share the same boundary incidence function b in
the sense that the boundary incidence function of Xp is b |Xp .

Definition 5.1.2. Inclusion Map
Let (Xp, b) and (Xp+1, b) be abstract cell complexes such that Xp is a subcomplex of Xp+1.

For each p and each dimension d, the inclusion map ipd : Cd(X
p)→ Cd(X

p+1) is defined as the
linear extension of the inclusion map ipd : Xp

d → Xp+1
d , β 7→ β. The collection of maps {ipd} is

denoted by ip : C(Xp)→ C(Xp+1).
Moreover, we let ip→p′ : C(Xp)→ C(Xp′) denote the collection of maps {ip→p

′

d : Cd(X
p)→

Cd(X
p′)} where ip→p

′

d = ip
′−1
d ◦ ... ◦ ipd.

Note that we can alternatively define ip→p
′

d by considering Xp as a subcomplex of Xp′.
We will then prove that this inclusion map is indeed a chain map.
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Proposition 5.1.3. The inclusion map ip is a chain map from C(Xp) to C(Xp+1), and thus so
is ip→p′ from C(Xp) to C(Xp′).

Proof. We look at each dimension d. Then for any α ∈ X(d)p

ipd−1 ◦ ∂
p
d(α) = ipd−1(

∑
β∈Xp

b(α, β)β) =
∑
β∈Xp

b(α, β)β.

Since Xp is a subcomplex of Xp+1, by Definition 3.1.6, α ∈ Xp and β /∈ Xp implies that
b(α, β) = 0.

So ipd−1 ◦ ∂
p
d(α) =

∑
β∈Xp+1

b(α, β)β = ∂p+1
d (α) = ∂p+1

d ◦ ipd(α) as desired.

For ip→p′ , just recall that it is the composition of ip, ip+1, ..., ip
′−1.

Thus each series ip of ipd are effectively a series of embeddings, which embed the module
Cd(X

p) to the module Cd(Xp+1). From the perspective of considering an entire chain complex
as one module as was done in Remark 2.3, ip embeds C(Xp) into C(Xp+1).

Remark 5.1.4. While not covered in this paper, the theory still works when we use real numbers
as our index set.

Similar to the treatment of ∂d, we often omit the index and write the inclusion functions ip
merely as i. So the chain map condition is reduced to i∂ = ∂i.

With the above established we can define the persistent homology groups.

Definition 5.1.5. Persistent Homology Group
The dth (p, p′)-persistent homology group of F is defined by

Hp→p′
d (F) =

ip→p
′

d (Zd(X
p))

ip→p
′

d (Zd(X
p)) ∩Bd(Xp′)

where Zd(Xp) = ker(∂pd), Bd(Xp′) = Im(∂p
′

d )

Remark 5.1.6. An element of Hp→p′
d (F) is usually denoted as x̄, the equivalence class of

x ∈ ip→p
′

d (Zd(X
p)) ⊂ Zd(X

p′). Note that ip→p
′

d (Zd(X
p)) ⊂ Zd(X

p′) holds since ip→p′ is a
composition of embeddings.

The following proposition shows that we can also define Hp→p′
d (F) as Im((ip→p

′

d )∗) where
(ip→p

′

d )∗ is the homomorphism Hd(X
p) → Hd(X

p′) induced by ip→p
′

d as a chain map. Hd(X
p)

and Hd(X
p′) are the R coefficient homology groups stated in Remark 3.2.2

Proposition 5.1.7. Hp→p′
d (F) ∼= (ip→p

′

d )∗(Hd(X
p)), where (ip→p

′

d )∗ is the map
Hd(X

p)→ Hd(X
p′) induced by ip→p

′

d .

Proof. Recall Hp→p′
d (F) is a quotient group of ip→p

′

d (Zd(X
p)). Thus for any x̄ ∈ Hp→p′

d (F),
any of its representatives x would be in ip→p

′

d (Zd(X
p)) and thus represents an element in

(ip→p
′

d )∗(Hd(X
p)). In fact given any x ∈ Zd(Xp′),

x̄ ∈ Hp→p′
d (F) ⇐⇒ x ∈ ip→p

′

d (Zd(X
p)) ⇐⇒ x̄ ∈ (ip→p

′

d )∗(Hd(X
p)) (∗)

Thus we can construct a function from Hp→p′
d (F) to (ip→p

′

d )∗(Hd(X
p)) in the following way.

Given any x̄ ∈ Hp→p′
d (F), choose a representative x of x̄ which must be in ip→p

′

d (Zd(X
p)), hence
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x must also represent an element x̄ in the subgroup (ip→p
′

d )∗(Hd(X
p)) of the homology group

Hd(X
p′).

Clearly, the function preserves addition, hence if it maps zero to zero it must be well-defined
and injective. If x̄ = 0 ∈ Hp→p′

d (F), then x ∈ ip→p
′

d (Zd(X
p)) ∩Bd(Xp′) and so x̄ = 0 in Hd(X

p′)

as well as its subset Im((ip→p
′

d )∗).
Lastly, note that the implications in (∗) work both ways, so the function must also be

surjective, and is in fact an isomorphism from Hp→p′
d (F) to (ip→p

′

d )∗(Hd(X
p)).

The mathematical idea of a persistent homology group Hp→p′
d (F) is to track how many

d-dimension "holes" survive from the p-th frame to the p′-frame.
In practice, we usually choose some field to be the coefficient ring of the abstract cell complexes,

which makes the persistent homology groups vectors spaces. This allows the information of all
the dth persistent homology groups, usually denoted together as Hd, to be represented in a
barcode diagram for every d. Here, we represent the dimension of Hp→p′

d (F) by the number of
bars passing both p and p′, see the example below.

Our particular example is a the H1 barcode of a filtration as follows.
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Each bars tracks one of the triangles in the complexes, starting at the value p where the
triangle appears and ends at the value p where the triangle is filled.

To see how this relates to the persistent homology groups, note that H1→3
1 (F) has dimension

3, since if we compare X1 and X3, triangles 2, 3, and 4 "persist" through the inclusion. But
H1→4

1 (F) only has dimension 1, since triangles 2 and 3 are already filled at X4.
On the barcode diagram this is shown by having three bars "persist" from p = 1 to p = 3,

but two of the bars, which would represent triangles 2/3, do not persist to p = 4.
The barcode diagram and thus the persistent homology groups are very often the end result

wanted in TDA. As we will see in the next section, we can actually apply ideas of discrete Morse
theory to the theory of persistent homology groups to get some interesting results which also
have implications on real life applications of TDA.
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6 Morse Filtration

In this section we will show how discrete Morse theory can be applied to the theory of
persistent homology. Specifically we want to apply the idea of critical cells capturing the key
information of abstract cell complexes, but on a filtration of complexes rather than a single one.
The end result is we can construct a smaller Morse filtration in Definition 6.2.2 whose persistent
homology groups are isomorphic to those of the original filtration.

6.1 Filtered Chain Map

In Section 5 we only worked with one filtration of abstract cell complexes at a time. Hence,
in order to work with different filtrations, which will be crucial in the development of the Morse
complex, we need additional tools. The central tool for our purpose will be filtered chain maps,
a kind of structure-preserving map between filtrations of abstract cell complexes.

Definition 6.1.1. Filtered Chain Map
Let F = {Xp, b} and F ′ = {X ′p, b} be filtrations of abstract cell complexes. A filtered chain

map Φ : F → F ′ is a sequence {φp = {φpd} : C(Xp)→ C(X ′p)} of chain maps so that for each p
and d the following diagram commutes

C(Xp
d) C(Xp+1)

C(X ′d
p) C(X ′d

p+1)

ipd

φpd φp+1
d

ipd

Remark 6.1.2. Let Φ : F → F ′ be a filtered chain map. By considering ip→p′ = ip
′−1 ◦ ... ◦ ip

we see that for each p, p′ and d, the following diagram also commutes.

C(Xp
d) C(Xp′

d )

C(X ′d
p) C(X ′d

p′)

ip→p′
d

φpd φp
′

d

ip→p′
d

Analogous to the chain maps in the theory of homology, a filtered chain map also induces
homomorphisms between the corresponding persistent homology groups.

Proposition 6.1.3. Given filtered chain map Φ : F → F ′, Φ induces a family of homomorphisms
Φ∗ := {(φp→p

′

d )∗ : Hp→p′
d (F)→ Hp→p′

d (F ′)} between the persistent homological groups.

Proof. Let F = {Xp, b}, F ′ = {X ′p, b′}.
Given x̄ ∈ Hp→p′

d (F), let x = ip→p
′

d (z) for some z ∈ Zd(X
p). Consider φpd(z). Since φp

is a chain map, ∂dφ
p
d(z) = φpd∂d(z) = φpd(0) = 0. Hence φpd(z) ∈ Zd(X

′p) and we can define

(φp→p
′

d )∗(x̄) := ip→p
′

d φpd(z). By Remark 6.1.2, ip→p
′

d φpd(z) = φp
′

d i
p→p′
d (z) = φp

′

d (x). So (φp→p
′

d )∗(x̄)

is also φp
′

d (x).
It is trivial to check that addition is preserved, so it remains to prove (φp→p

′

d )∗ maps zero
elements in Hp→p′

d (F) to zero elements in Hp→p′
d (F ′) which also implies that (φp→p

′

d )∗ is a
well-defined. Since for x̄ = ȳ, we will have x− y = 0 and so (φp→p

′

d )∗(x̄) = (φp→p
′

d )∗(ȳ+ x− y) =

(φp→p
′

d )∗(ȳ) + 0 = (φp→p
′

d )∗(ȳ).
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Let x̄ = 0 ∈ Hp→p′
d (F). By Definition 5.1.5, x ∈ ip→p

′

d (Zd(X
p)) ∩Bd(Xp′).

Since x ∈ Bd(Xp′), x = ∂d+1(z
′) for some z′ ∈ Cd+1(X

p′). Again since φp′ is a chain map,
φp
′

d (x) = φp
′

d ∂d+1(z
′) = ∂d+1φ

p′

d (z′) ∈ Bd(X ′p
′
). So (φp→p

′

d )∗(x̄) = φp
′

d (x) = ∂d+1φ
p′

d (z′) = 0 ∈
Hp→p′
d (F ′).

The idea of chain homotopy in the theory of chain complexes and homologies also translates
well into our context and with the same important property of showing two different filtered
chain maps induces the same homomorphisms.

Definition 6.1.4. Filtered Chain Homotopy
Let Φ,Φ′ : F → F ′ where Φ = {φp} and Φ′ = {φ′p} be filtered chain maps. A filtered chain

homotopy between Φ and Φ′ is a collection of chain homotopies Θ = {θp} where each θp is a chain
homotopy between φp and φ′p. If such Φ exists, we say Φ and Φ′ are filtered chain homotopic.

Proposition 6.1.5. Let Φ,Φ′ : F → F ′ be filtered chain maps which induce the families of
homomorphism Φ∗,Φ

′
∗. If Φ and Φ′ are filtered chain homotopic. Then Φ∗ = Φ′∗

Proof. Let F = {Xp, b}, F ′ = {X ′p, b′}, Φ = {φpd : Cd(X
p) → Cd(X

′p)}, and Φ′ = {φ′pd :

Cd(X
p)→ Cd(X

′p)}. The families of induced homomorphisms would then be Φ∗ = {(φp→p
′

d )∗},
Φ′∗ = {(φ′p→p

′

d )∗}. We want to show (φp→p
′

d )∗ = (φ′p→p
′

d )∗ for every p and d.

Given x ∈ Zd(Xp′). From the proof of Proposition 6.1.3, (φp→p
′

d )∗(x̄) = ip→p
′

d φpd(z) where
z ∈ Zd(Xp) and ip→p

′

d (z) = x. By Proposition 5.1.7, we can alternatively define Hp→p′
d (F ′) as

(ip→p
′

d )∗(Hd(X
′p)), in which case ip→p

′

d φpd(z) becomes (ip→p
′

d )∗(φ
p
d(z)). Note also that φpd(z) =

φd
p
∗(z̄).
Putting everything together, (φp→p

′

d )∗(x̄) = (ip→p
′

d )∗φd
p
∗(z̄). Similarly, (φ′p→p

′

d )∗(x̄) =

(ip→p
′

d )∗φ
′
d
p
∗(z̄).

Let Θ = {θp} be a filtered chain homotopy between Φ and Φ′. In particular θp is a chain
homotopy between the chain maps φp and φ′p. But this means φp and φ′p induces the same
homomorphisms, in particular φpd∗ = φ′d

p
∗. So (φp→p

′

d )∗ = (φ′p→p
′

d )∗ as desired.

We end this subsection by introducing a useful lemma for our next subsection.

Lemma 6.1.6. Let Φ : F → F ′ {φp : C(Xp)→ C(X ′p)}, Ψ : F ′ → F {ψp : C(X ′p)→ Cd(X
p)}

be filtered chain maps.
If each pair of chain maps φp and ψp has the property that ψp ◦ φp and φp ◦ ψp are chain

homotopic to the identity chain map, then F and F ′ have isomorphic persistent homology groups.

Proof. Since each ψp ◦φp is chain homotopic to the identity, there is a chain homotopy θp between
ψp ◦ φp and idC(Xp) for every p. Take this collection of chain homotopies as our filtered chain
homotopy and we conclude that Ψ ◦ Φ is filtered chain homotopic to the identity filtered chain
map, so by Proposition 6.1.5, (Ψ ◦ Φ)∗ = id∗.

Similarly (Φ ◦Ψ)∗ = id∗. So together we conclude that Φ∗ = (Ψ∗)
−1 is invertible and thus F

and F ′ have isomorphic persistent homology groups.
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6.2 Filtered Morse Complex

The construction of Morse filtrations is basically the same as the construction of Morse
complexes as discussed in Section 4. We construct acyclic partial matchings for each abstract
cell complex with some compatibility condition to be defined.

Then each acyclic partial matching will give us a Morse complex, and it can be shown that
the compatibility condition implies that these Morse complexes form a filtration of abstract cell
complexes with isomorphic persistent homology groups.

We begin by defining those acyclic partial matchings which we call a filtered acyclic partial
matchings.

Definition 6.2.1. Filtered Acyclic Partial Matching
Let F = {Xp, b} be a filtration of abstract cell complexes. A filtered acyclic partial matching

of F assigns to each frame Xp an acyclic partial matching (Ap, wp : Qp → Kp). Moreover, for
each p that Ap ⊂ Ap+1, Kp ⊂ Kp+1, Qp ⊂ Qp+1, and wp = wp+1 |Qp. Since the function wp

coincide we will omit the index and use w := wp.

And the definition of a Morse filtration follows very naturally.

Definition 6.2.2. Morse Filtration
Let F = {Xp, b} be a filtration of abstract cell complexes with filtered acyclic partial matchings

{(Ap, w : Qp → Kp)}. The Morse filtration of F induced by {(Ap, w : Qp → Kp)} , denoted by
M = {Ap, b′}, is the sequence of complexes ... ⊂ Ap−1 ⊂ Ap ⊂ Ap+1 ⊂ ... where each (Ap, b′) is
the Morse complex associated to the acyclic partial matching (Ap, w : Qp → Kp) of (Xp, b).

We then establish that a Morse filtration is indeed a filtration of abstract cell complexes,
which also justifies using b′ as the sole boundary incidence function for every frame Ap ofM.
We first establish the following lemma.

Lemma 6.2.3. Let F = {Xp, b} be a filtration of abstract cell complexes with filtered acyclic
partial matching {(Ap, w : Qp → Kp)}. Let ρ = {α = q0, β1, ..., βl+1 = β} be a Qp′-sequence and
let p < p′. If µb(ρ) 6= 0, and α ∈ Xp, then ρ is also a Qp-sequence.

Proof. By Proposition 4.3.4, ρ is a saturated gradient path in Xq′ , i.e. αm q1 m ...m ql m β. In
other words, α � q1, w(q1) � q2,...,w(ql) � β.

Since Xp is a subcomplex of Xp′ and α ∈ Xp, by Definiton 3.1.6, q1 ≺ α implies q1 ∈ Xp.
Meanwhile by the way we defined w in Definition 6.2.1, q1 ∈ Xp implies w(q1) ∈ Xp. Repeating
the above procedure we conclude that β and all the qi’s are in Xp, so ρ is also a Qp-sequence.

Proposition 6.2.4. Let F = {Xp, b} be a filtration of abstract cell complexes with filtered acyclic
partial matching {(Ap, w : Qp → Kp)}. The associated Morse filtrationM = {Ap, b′} is indeed a
filtration of abstract cell complexes.

Proof. We want to show that each complex Ap is indeed a subcomplex of Ap′ for all p′ > p.
Recall from Definition 3.1.6, that means Ap ⊂ Ap′ , b′p = b′p′ , and given any α ∈ Ap and β ∈ Ap′ ,
β ≺ α implies β ∈ Ap.

Now we fix p. Then Definition 6.2.1 implies that Ap ⊂ Ap′ .
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We first let (Qp,lp,Cp) and (Qp
′
,lp′ ,Cp′) be the gradients induced by their corresponding

partial matchings. By Definition 4.2.2 we see that lp and lp′ depend exclusively on b, which is
shared among all the frames. Hence when restricted to elements in Qp the two relations have
identical behavior. For convenience we denote both of them as l.

We then will show that the boundary incidence functions of each complex coincide. Before
that is established, we temporarily denote each Morse complex in the Morse filtration by (Ap, b′p)

with the goal of showing b′p′ |Ap= b′p. This will then justify calling all b′p’s merely b′. We further
expand the meaning of l as we did in Notation 4.3.1, which also depends exclusively on b.

Let α, β ∈ Ap. By Remark 4.3.6, we can define b′p(α, β) =
∑

ρ∈Qp(α,β)

µb(ρ), where Qp(α, β)

is the set of all Qp-sequences (Definition 4.3.2) from α to β in Xp with respect to the acyclic
partial matching (Ap, w : Qp → Kp). We want to show b′p = b′p′ , that is, we want to show the
following equations holds. ∑

ρ∈Qp(α,β)

µb(ρ) =
∑

ρ∈Qp′ (α,β)

µb(ρ) (*)

To see that, we first note that the multiplicity function µb (Definition 4.3.2) used on both
sides of (∗) are in fact the same, since both are derived from b which is simultaneously the
boundary incidence function of all Xp. Furthermore, Qp(α, β) ⊂ Qp

′
(α, β) by Definition 4.3.2

and Qp ⊂ Qp′ .
Now, given ρ ∈ Qp′(α, β). Let ρ = (α = q0, ..., ql+1 = β). If µb(ρ) = 0, it is a zero summand

and for our purpose ρ can be completely ignored. Assume then that µb(ρ) 6= 0. Since α ∈ Xp

Lemma 6.2.3 shows ρ ∈ Qp(α, β). From this we conclude equation (∗) holds, and b′p = b′p′ .
Lastly we check that given α ∈ Ap, for every β ∈ Ap′ , β ≺ α in Ap′ implies β ∈ Ap. Now

β ≺ α in Ap′ implies b′(α, β) 6= 0 as the sum of some which means there must be at least one
ρ ∈ Qp′(α, β) such that µb(ρ) 6= 0, as b′(α, β) 6= 0 is the sum of these µb(ρ)’s. So we can apply
Lemma 6.2.3 again to show ρ is a Qp-sequence, which by extension means β ∈ Ap, as desired.

It is particularly worth noting that the proof of Proposition 6.2.4 does not depend on most
of the finiteness conditions we used in this paper. And thus it translates very nicely to other
variants of the theory such as the one suggested in Remark 5.1.4.

With the above proposition established, we now show our main theorem of this section.

Theorem 6.2.5. Let F = {Xp, b} be a filtration of abstract cell complexes with filtered acyclic
partial matching {(Ap, w : Qp → Kp)} which induces the Morse filtrationM = {Ap, b′}. Then
the persistent homology groups of F andM are isomorphic, that is for every p, p′, d, the following
equation holds.

Hp→p′
d (F) ∼= Hp→p′

d (M)

The proof of this theorem will be done inductively and will be similar to the proof of Theorem
4.3.7. Before that however we will have to identify a key property of every cell in a filtration of
abstract cell complexes.
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Definition 6.2.6. Birthframe
Let F = {Xp, b} be a filtration of abstract cell complexes. We define the birthframe of each

cell β ∈
⋃
pX

p by XB(β) where B is defined as follows.

B(β) := min{p | β ∈ Xp}

Remark 6.2.7. Note that β ∈ Xp for all p ≥ B(β) by the subcomplex relation, see Definition
3.1.6. Moreover if β ≺ α in any Xp, B(β) ≤ B(α), since by the subcomplex property α ∈ XB(α)

implies β ∈ XB(α).

Then we introduce a filtered version of a q-reduced complex as in Definition 4.3.8.

Definition 6.2.8. q-reduced Filtration
Let F = {Xp, b} be a filtration of abstract cell complexes with filtered acyclic partial matching

{(Ap, w : Qp → Kp)}. For q ∈
⋃
pQ

p, the q-reduced filtration of F is Fq = {Xp
q , bq}, where

(Xp
q , bq) is the q-reduced subcomplex of (Xp, b) when p ≥ B(q), and (Xp

q , bq) = (Xp, b) otherwise.

Obviously, "reduce by q" only makes sense for Xp when q ∈ Xp, thus the definition. The
next proposition shows that what we get is indeed a filtration of abstract cell complexes. In fact
similar to the case of just abstract cell complexes, the (persistent) homology groups are also
preserved.

Proposition 6.2.9. Let F = {Xp, b} be a filtration of abstract cell complexes with filtered acyclic
partial matching {(Ap, w : Qp → Kp)}. For any q ∈

⋃
pQ

p, the q-reduced filtration Fq = {Xp
q , bq}

is indeed a filtration of abstract cell complexes.

Proof. We first define a simple filtered acyclic partial matching {(Apq , w : Qpq → Kp
q )}. For

p < B(q), note q /∈ Qp ⊂ Xp, and we define Apq = Xp, Qpq := ∅, Kp
q := ∅. For p ≥ B(q), note

that q ∈ Qp ⊂ Xp, then we define Apq := Xp \ {q, w(q)}, Qpq := {q}, Kp
q := {w(q)}. The acyclic

condition is trivially true since Qpq is at most a one-element set, while the other conditions of
Definition 6.2.1 are clearly satisfied.

Now we make an observation that the Morse filtration induced by {(Apq , w : Qpq → Kp
q )} is

exactly the q-reduced filtration. More precisely, the Morse complex induced by (Apq , w : Qpq → Kp
q )

on each Xp is the q-reduced complex.
For p < B(q) this is again trivial since both complexes are Xp itself. For p ≥ B(q), it follows

from Remark 4.3.11.
Hence, Proposition 6.2.4 proves that the q-reduced filtration is indeed a filtration of abstract

cell complexes.

Proposition 6.2.10. Let F = {Xp, b} be a filtration of abstract cell complexes with filtered
acyclic partial matching {(Ap, w : Qp → Kp)}. For any q ∈

⋃
pQ

p, let the q-reduced filtration be
Fq = {Xp

q , bq}. Then for every p, p′, d, the following equation holds.

Hp→p′
d (F) ∼= Hp→p′

d (Fq)
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Proof. Let q ∈
⋃
pQ

p.
For p < B(q), define φp : C(XP ) → C(Xp

q ) and ψp : C(Xp
q ) → C(Xp) to be the identity

chain map.
For p ≥ B(q), we know from Proposition 4.3.13 that there are chain maps φp : C(Xp)→ C(Xp

q )

and ψp : C(Xp
q ) → C(Xp) such that φp ◦ ψp and ψp ◦ φp are chain homotopic to the identity

map, since Xp
q is the q-reduced complex of Xp.

It remains to show that the collection of chain maps defined by Φ = {φp} and Ψ = {ψp} are
indeed filtered chain maps, and Lemma 6.1.6 will finish the proof. Hence we need to show that
the following diagrams commute.

Cd(X
p) Cd(X

p′) Cd(X
p) Cd(X

p′)

Cd(X
p
q ) Cd(X

p′
q ) Cd(X

p
q ) Cd(X

p′
q )

ip→p′
d

φpd φp
′

d

ip→p′
d

ip→p′
d ip→p′

d

ψp
d ψp′

d

For the first diagram, note that Cd(Xp) is a submodule of Cd(Xp′). When p ≥ B(q), by
definition φpd and φp

′

d are both identities on every basis element except on q and w(q) and also
act the same way on q and w(q) . Hence φpd = φp

′

d |Cd(Xp). When p < B(q), φpd is always the
identity and so φpd = φp

′

d |Cd(Xp) still holds. Hence the first diagram commutes.
For the second diagram, similarly, when p ≥ B(q), φpd = φp

′

d |Cd(X
p
q )

by definition, which also
holds when p < p′ < B(q) when both functions are the identity. When p < B(q) ≤ p′, note that

ψp
′

d (α) = α − b(α, q)

b(w(q), q)
w(q) only differs from the identity when b(α, q) 6= 0, i.e. q ≺ α. But

then as remarked in Definition 6.2.6, B(α) ≥ B(q) = p′ and so α /∈ Cd(Xp
q ). That is ψp

′

d is the
identity on Cd(X

p
q ) and φpd = φp

′

d |Cd(X
p
q )

still holds. Hence the second diagram commutes.

Proof of Theorem 6.2.5. Let F = {Xp, b} be a filtration of abstract cell complexes with filtered
acyclic partial matching {(Ap, w : Qp → Kp)}, which induces the Morse filtrationM = {A, b′}.

Similar to the proof of Theorem 4.3.7, we inductively remove pairs of non-critical cells
q ∈

⋃
pQ

p and w(q) ∈
⋃
Kp from F .

More precisely, let
⋃
pQ

p = {q1, ..., qn} and define filtrations F0 = {Xp
0 , b0}, ...,

Fn = {Xp
n, bn} so that F0 = F and for every i, Fi+1 is the qi+1-reduced filtration of Fi. Then by

Proposition 6.2.10, for every p, p′, d, Hp→p′
d (Fi) ∼= Hp→p′

d (Fi+1). So by induction we can conclude
that every Fi has isomorphic persistent homology groups.

Lastly, we can fix p and look at each i. Let {(Api , w : Qpi → Kp
i )} be the acycling partial

matching it adapted in the process. If qi+1 ∈ Xp
i , then X

p
i+1 is the qi+1-reduced complex of Xp

i .
Otherwise Xp

i = Xp
i+1. Note that at Xp

n, all qi’s in
⋃
pQ

p = {q1, ..., qn} have been removed and
Qp in particular is empty, but by Lemma 4.3.15 that means (Xp

n, bn) is just (A, b′). Since this
is true for every p, Fn is preciselyM and soM and F have isomorphic persistent homology
groups as desired.
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7 Conclusion and Future Direction

The work of Forman [3] laid the foundation of discrete Morse theory. In this paper we have
demonstrated one of the applications of discrete Morse theory. Specific to TDA, we have shown
how Mischaikow and Nanda [4] connected discrete Morse theory and persistent homology and
showed how to use discrete Morse theory to accelerate the computation of persistent homology
by drastically reducing the number of cells involved, as discussed in Section 6. They have also
provided what has now become a commonly used algorithm, see [4] for more details.

Moreover, the framework of abstract cell complexes, introduced by Tucker [7] and refined by
Mischaikow and Nanda, has the potential to be further expanded and applied to other theories
of CW complexes. One also could find applications to not just persistent homology, but also
many of its variants. Here we list some related questions and research subjects.

• Zigzag persistence [13] is a generalization of persistent homology with various potential
applications, and the same framework to optimize computation introduced in this paper
also seems applicable. Some work has already been done on this particular topic, see [14].

• In the construction of our framework we employed a few finiteness and discreteness
conditions with impunity, since they align very well with the practical applications in data
analysis. For example, an abstract cell complex is restricted to having finitely many cells,
and a filtration is restricted to having finitely many frames and thus is indexed discretely.
What results can we get if we consider some of these parameters to be infinite?

• A generalization of persistent homology would be to replace the ordered index set by some
partially ordered set. The work done in this paper seems to translate very well to this
particular setting. How about if we employ an even more complicated index set?

The rise of TDA provided algebraic topology many new applications of its theories and
stimulated many new ideas, and discrete Morse theory is one good example of both. It is exciting
how many abstract results have found its way to practical uses in real life because of it, and I
look forward to more of this happening in the future.
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