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1 Introduction

My research at Oregon State University can be classified as research in liquid state

theory, specifically inhomogeneous liquids. In total, I have contributed to two

theory papers on water, a soft sphere theory that will be submitted for publication

soon, and a square well fluid theory which is currently in progress. All of these

projects have a number of aspects in common: they all rely on classical density

functional theory (DFT) and they all require computational solutions. Monte-

Carlo (MC) simulations, which are highly accurate, are utilized in two of the

chapters as well.

The first few chapters give a brief background of the main theories used in

this dissertation. I start by discussing motivations for studying water and recent

notable research on water theories. I then describe statistical associating fluid

theory (SAFT) and how each free energy term plays a role in SAFT. The last of

these background chapters gives a brief history of density functional theory and

how it led to its classical counterpart; Fundamental measure theory is also included

as it is a classical DFT that is used throughout my research.

Chapters 5 and 6 are closely related theories of water which have been pub-

lished. The purpose of studying water is to better understand its behaviour at

nanoscale sizes. This can be beneficial in the study of biomolecular systems or for

studying chemical reactions in aqueous solutions.
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Chapter 5 presents a classical density functional theory for water by employing

SAFT as the Helmholtz free energy term. A tuning parameter is introduced in

the dispersion term of SAFT which changes the length scale over which dispersion

is correlated. The model of water is then fit to experimental surface tension at

ambient temperature along the water-vapor coexistence line.

In chapter 6, the association term of the previous chapter is modified using a

more theoretically sound correlation at contact, and the tuning parameter intro-

duced in Chapter 5 is adjusted for the new functional. Behavior of the improved

DFT compared with the previous chapter’s results are presented along with a

Lennard-Jones approximation of a krypton atom solute. All comparisons show

favorable results for the improved functional.

A majority of my effort was focused towards a soft sphere theory of fluids

based on soft fundamental measure theory (SFMT). We initially chose a quadratic

pair potential which could be used to solve for the weighted densities according to

SFMT, but this pair potential proved troublesome. The theory became much more

successful when we began using the Weeks-Chandler-Anderson (WCA) potential

and made a few approximations to SFMT. Chapter 7 presents this theory and its

results including comparison the Barker-Henderson hard sphere fluid. There is a

soft wall potential that we use for testing the soft sphere theory which I have fully

derived in Chapter 8.

Finally, Chapter 9 discusses my work on a square well fluid theory which is

currently in development. After working on the theory portion and running simu-

lation, it was found to have not-so-good agreement with MC simulation which led
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us to realize that it may need to be modified in some way if our analytic derivations

and code don’t have errors.
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2 Water

Water is considered an essential ingredient to sustain life, it is abundant on Earth,

and is considered “the universal solvent.” Water is the only substance on Earth

that exists naturally in its solid, liquid, and gaseous form. Unlike most substances,

when water transitions from liquid to solid state its density decreases, which is what

allows ice to float in water. These are all interesting, but what about the more

physical aspects of water?

Water has a rather high heat capacity, which can be thought of as its resistance

to temperature change with respect to energy input. This is why living near a

lake helps prevent large swings in temperature, thus regulating the climate of the

surrounding area. Water also has about four hydrogen bond sites (two donor and

two acceptor) near room temperature which allows interaction with other water

molecules and solutes.

Water has a high surface tension which allows some small insects (and even

lizards) to stand (or run) on bodies of water. Water ice has many different solid

phases, ten of which are labeled in Figure 2.1.

Figure 2.1 shows a phase diagram of water. The green circle with the “E” in it

at around 100 kPa and 300 Kelvin are typical conditions found on earth. Standard

atmospheric pressure at the surface of earth is about 101 kPa, and we can see that

moderate changes in temperature about “E” will give both solid and liquid states.
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Critical pointStandard Earthconditions
Triple point

Figure 2.1: A phase diagram of water [1]. The circle marked “E” located in the
liquid region at about 100 kPa of pressure and 300 K temperature is at typical
conditions found on Earth. Both the triple point and critical point are labeled.

One thing of note that is not apparent in Figure 2.1 is behavior about the

triple point (where all three states of water can exist simultaneously) and the

solid-liquid transition line. The triple point of water is at about 273.16 Kelvin

and 611.73 Pa, but at atmospheric pressure, freezing happens at the slightly lower

273.15 Kelvin. So what appears to be a straight solid-liquid transition line in

Figure 2.1 is actually a line sloped to the left from the triple point. This gives the

aforementioned fact that ice is less dense than liquid water. Phase diagrams for

most other substances have the solid-liquid transition sloped to the right which

gives a higher solid density.

Many studies of water have been performed using ab initio Molecular Dynamic

(MD) simulations. This method considers interatomic and intra-atomic forces on
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each atom and calculates the motion of each particle in the time domain. Although

this can be considered a complete method to study fluids, it is not very ideal. MD

simulations can typically follow only a few hundred water molecules per unit cell [6]

and can take months to make calculations due to the small time steps required for

accurate results.

Other methods to describe water have also met with undesirable results. An

example is a continuum model of water using traditional density functional theories

(DFT) that ignores dispersive forces such as van der Waals and instantaneous

dipole forces. This particular model finds that ice melts at 120◦C [7]. Even water

models with a dispersive correction find that the melting point is still too high at

80◦C [8]. Other corrections to this model make improvements at an increasingly

expensive computational cost.

A good theory of water would produce useful properties, equation of state,

correct behavior at interfaces, and would not be too computationally expensive.

The theories presented in chapters 5 and 6 are positive steps toward these goals.
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3 Statistical Associating Fluid Theory

Statistical associating fluid theory (SAFT) was formulated for describing homo-

geneous fluids and fluid mixtures that contain molecules which strongly interact

with each other. It has been useful in scientific fields that deal with fluids such

as chemical engineering. It has been used to study alcohols, electrolyte solutions,

water, n-alkanes, and mixed systems . I will briefly describe each term in SAFT,

and then look at each term individually in more detail.

3.1 SAFT terms

SAFT is an extension of Wertheim’s thermodynamic perturbation theory [9–12]

also called TPT1. SAFT is constructed to describe the contributions to the

Helmholtz free energy of associating fluids. The total Helmholtz free energy for a

fluid in SAFT is given by

F = Fid + Fhs + Fdisp + Fassoc + Fchain. (3.1)

Fid is the ideal gas energy term, Fhs is the energy contribution due to hard sphere

repulsion, Fdisp is the free energy due to dispersive interactions, Fassoc is the as-

sociation energy due to hydrogen bonds, and Fchain is the energy due to chain

formation in polymer fluids. Because Fchain does not play any important role in
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the research presented in this dissertation, I will not be discussing it here.

3.2 Ideal gas contribution

Due to the nature of entropy and the Helmholtz free energy in statistical mechanics,

the total free energy of a system can be broken up into an ideal gas free energy

plus excess free energies. The ideal gas free energy has been known analytically

for a long time, and it is the same result utilized in the SAFT ideal gas term.

Given an ideal gas made of N identical non-interacting particles with number

density ρ and at temperature T ,

Fid = NkBT
(
ln
(
Λ3n

)
− 1
)
. (3.2)

kB is the Boltzmann constant, n is the density particle density and, Λ is the de

Broglie thermal wavelength of a particle given by Λ =
(

2π~2

mkBT

)1/2

.

3.3 Hard sphere contribution

The hard sphere contribution to SAFT is the excess free energy due to a hard sphere

repulsion between molecules, which does not allow any portion of two particle

volumes to occupy the same space. Fundamental measure theory (FMT) [13] is a

classical density functional theory for describing hard sphere systems which is used

in this dissertation to determine the hard sphere contribution to SAFT. FMT will

be discussed in more detail in Chapters 4 and 5.
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3.4 Association term

The association free energy originates from short range interactions like hydrogen

bonding within a fluid that reduces the overall energy but does not cause formation

of polymer chains. Each molecule has an integer number of sites on its surface that

“associate” with the sites on other molecules. For example, the theories presented

in Chapters 5 and 6 have four association sites due to the nature of water. A

graphical representation of this is given in Figure 3.1 where the associating spheres

are show interacting (the green “glow”) when the correct association sites are

very close (donor/acceptor). The sphere immediately to the left shows a blue

site in range of another blue site where there is no association. This represents a

donor/donor or acceptor/acceptor site pair not interacting.

Since this is a statistical formulation, the key portion of the theory here deals

with the fractional number of sites not bonded for any particular particle. The

energy contribution due to association is

Fassoc = MkBT
M∑
i=1

[
lnXi −

Xi

2

]
+
M

2
(3.3)

where M is the number of association sites on each molecule and Xi is the fraction

of molecules not bonded at site i. For details of the dependence of Xi on tem-

perature, density and the probability of spheres being in contact see Eq. 5.20 and

Eq. 6.6.
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Figure 3.1: A representation of associating spheres. The three middle spheres are
in close proximity, but only the green “glow” shows the association sites on the
two spheres that are the correct types and close enough to interact.

3.5 Dispersive interactions

Dispersive forces, also known as London dispersion forces, are long range interac-

tions between non-polar atoms or molecules. Interactions such as instantaneous

dipole attraction is an example of such a force. Throughout this dissertation, the

dispersion free energy has form

Fdisp =

∫
(a1(r) + βa2(r))n(r)dr, (3.4)

where the a1 and a2 terms are just the first two terms in a high temperature

perturbation expansion and β = 1/kbT . This can be seen by looking at the βa2

term where each term would be of the order β(i−1)ai. If temperatures are high, β

is small enough so that higher order terms can be dropped.
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4 Classical Density Functional Theory

Classical thermodynamic theory has been very successful for ideal systems with

little or no local fluctuation in density, temperature, pressure, and other measurable

properties. These ideal systems are practically the definition of homogeneous,

where the value of measurable quantities are the same throughout. Surely, though,

only the most ideal systems are homogeneous, and any sort of interface such as

the transition between water and air will causes density fluctuation. Since most

systems have such interfaces and are not ideal, it would be very beneficial to have

a theory that can describe these inhomogeneous systems. If we have a theory

for inhomogeneous systems, we can more accurately describe the world around us

and make theoretical predictions which would be useful in a number of scientific

fields including chemistry, biophysics, and chemical engineering. Classical density

functional theory is a method for describing inhomogeneous systems of liquid and

gases, which has superseded almost all other theories for such systems due to its

simplicity and accuracy. Even though the theory had been around a while, it

wasn’t until computers became powerful enough that DFT could be fully realized.

4.1 Density and distribution

Before giving a full theory background, I should talk briefly about what a density

distribution is. A general definition of density is an amount of “something” per
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volume, and in density functional theory (DFT) we are referring to the electron

density of a solid. But this density doesn’t have to be a single homogeneous

value of electrons per volume, it can be a density distribution. A distribution is a

function which can take on different values associated with every location in space.

What I’ll refer to as the density n(r) is a time averaged density distribution which

describes the density of particles at each point, r, in space.

4.2 Becoming a classical density functional theory

Density functional theory was formulated for dealing with systems with a large

number of electrons based on a quantum mechanical description of the electron

wave-function. The Thomas-Fermi model of electrons describes a system of free

electrons as an “electron gas” where the electrons are not considered individually

but as an electron density distribution that depends on position, n(r).

In 1964, Hohenberg and Kohn [14] utilized this idea of electron density and

came up with a variational formulation for the energy of a system in an exter-

nal potential, Vext(r). The theorem states that the energy of a system can be a

functional of density, E[n(r)], and that the ground state energy of the system is

determined by the correct density function for that energy. Any other density

function returns a higher energy value;

E0[n0(r)] < E[n(r)] for n0(r) 6= n(r) (4.1)
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where E0 and n0 are the minimum energy and its density respectively. This turned

a system of electrons into an energy minimization problem dependent on the den-

sity function n(r). A drawback to this at the time was that it could only predict

or approximate the ground state energy of the system at a temperature of T = 0

K.

The next year, 1965, Mermin took Hohenberg and Kohn’s idea and applied it

to a grand canonical ensemble at temperatures greater than zero [15]. Mermin’s

approach was to apply the ideas of classical thermodynamics and show that the

grand potential can be written as

Ω(T ) = min
n(r)

{
F [n(r), T ] +

∫
(Vext(r)− µ)n(r)dr

}
, (4.2)

where F [n(r), T ] is the Helmholtz free energy, and µ is the chemical potential. A

couple key points: F [n(r), T ] is completely independent of Vext(r), and temperature

is an input into the functional which can make predictions for T > 0 K. Even

with these advances, the theory was still only meant to be applied to an electron

gas. Over ten years later, Ebner et al. generalized this relation for application to

systems comprised of atoms and molecules (not just electrons) [16]. Hence, we now

have a classical density functional theory where n(r) describes the time averaged

number of atoms or molecules at each point in space.
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4.3 Fundamental measure theory

Fundamental measure theory (FMT) is a successful implementation of classical

density functional theory [13]. FMT describes hard sphere systems using weighted

densities based on “fundamental measures” of hard spheres (i.e. the radius, mean

radius of curvature, etc.). The weighted densities, ni, take the form

ni(r) =

∫
n(r′)wi(|r− r′|)dr′. (4.3)

where n(r′) is the density distribution of hard spheres, wi is a weight function,

and i = 0, 1, 2, 3, V 1, V 1 refer to specific weighted densities. For an example on

how these relate, the weight function w3 describes the volume in which each sphere

resides

w3(r) = Θ(|r| −R), (4.4)

where R is the hard sphere radius. Then n3 is the corresponding weighted density

n3(r) =

∫
n(r′)w3(|r− r′|)dr′ (4.5)

=

∫
n(r′)Θ(|r− r′| −R)dr′. (4.6)

This weighted density shown graphically in Figure 4.1 is for a hard sphere fluid

with n(r) =
∑
δ(ri).
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n3 = 1n3 = 0
R

Figure 4.1: A two dimensional slice of n3 for a hard sphere fluid with n(r) =∑
δ(ri). The value of n3 is 1 within the radius R of all hard spheres and 0 otherwise.

As another example, w2 describes the surface of the spheres,

w2(r) = δ(|r| −R) (4.7)

which the weighted density is shown graphically in Figure 4.2. The rest of the

weighting functions (w0, w1,w1V ,w2V ) have simple dependencies on w2, but it is

unnecessary to show them here as they will appear in Chapter 7 and the weighted

densities will appear in Chapter 5 of this dissertation.

How this relates to cDFT is in the excess free energy due to hard sphere repul-
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n2 = ∞

n2 = 0 R

Figure 4.2: A two dimensional slice of n2 for a hard sphere fluid with n(r) =∑
δ(ri). Value of n2 is ∞ at a the edge of the hard spheres and 0 otherwise.

sion:

Fhs[n] = kBT

∫ (
Φ1

(
n0(r), n3(r)

)
+ Φ2

(
n1(r), n2(r), n3(r),nV 1(r),nV 2(r)

)
+ Φ3

(
n2(r), n3(r),nV 1(r),nV 2(r)

))
dr , (4.8)

The Φs are a sort of energy densities (not exactly) that rely on the weighted

densities. The total free energy for a fluid is the ideal gas contribution, Fid, plus

whatever excess free energies exist in the system,

F = Fid + Fex. (4.9)
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So for the hard sphere fluid, our total free energy is only the Fid and Fhs summed.

This total free energy is then used in the grand potential (Equation 4.2) which can

now be minimized.
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5 A classical density-functional theory for water

The majority of the work in this chapter was performed by Jessica Hughes and

became a paper [4] not too long after my help in this study. My main contributions

to this work arose from simulating and plotting different configurations of rods in

water. Specifically, I plotted density profiles for water near one, two, and four

rod configurations. I found transition distances for the two and four rods systems

(Figures 5.6 and 5.7), and compared values of density at contact from simulation

to values analytically from the contact value theorem (Figure 5.4).

I contributed with other small tasks, but this paper mainly served as a stepping

stone to my understanding of classical density functional theory, SAFT, FMT, and

computational physics research.

5.1 Introduction

A large fraction of interesting chemistry—including all of molecular biology—takes

place in aqueous solution. However, while quantum chemistry enables us to calcu-

late the ground state energies of large molecules in vacuum, prediction of the free

energy of even the smallest molecules in the presence of a solvent poses a continu-

ing challenge due to the complex structure of a liquid and the computational cost

of ab initio molecular dynamics [17, 18]. The current state-of-the art in ab initio
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molecular dynamics is limited to a few hundred water molecules per unit cell [6].

On top of this, traditional density-functional theory (DFT) methods without the

use of dispersion corrections strongly over-structure water, to the point that ice

melts at over 120◦C [7]! There has been a flurry of recent publications implicating

van der Waals effects (i.e. dispersion corrections) as significant in reducing this

over-structuring [19–22]. However, one particular study found that water modeled

using a hybrid functional with dispersion corrections still has a melting point over

80◦C [8]. It has also been found that the inclusion of nuclear quantum effects can

provide similar improvements [23]. Each of these corrections imposes an additional

computational burden on an approach that is already feasible for only a very small

number of water molecules. A more efficient approach is needed in order to study

nanoscale and larger solutes.

5.1.1 Classical density-functional theory

Numerous approaches have been developed to approximate the effect of water as

a solvent in atomistic calculations. Each of these approaches gives an adequate

description of some aspect of interactions with water, but none of them is adequate

for describing all these interactions with an accuracy close to that attained by

ab initio calculations. The theory of Lum, Chandler and Weeks (LCW) [24],

for instance, can accurately describe the free energy cost of creating a cavity by

placing a solute in water, but does not lend itself to extensions treating the strong

interaction of water with hydrophilic solutes. Treatment of water as a continuum
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dielectric with a cavity surrounding each solute can give accurate predictions for

the energy of solvation of ions [25–30], but provides no information about the

size of this cavity. In a physically consistent approach, the size of the cavity will

naturally arise from a balance between the free energy required to create the cavity,

the attraction between the water and the solute, and the steric repulsion which

opens up the cavity in the first place.

One promising approach for an efficient continuum description of water is that

of classical density-functional theory (DFT), which is an approach for evaluating

the free energy and thermally averaged density of fluids in an arbitrary external

potential [16]. The foundation of classical DFT is the Mermin theorem [15], which

extends the Hohenberg-Kohn theorem [14] to non-zero temperature, stating that

Ω(T ) = min
n(r)

{
F [n(r), T ] +

∫
(Vext(r)− µ)n(r)dr

}
, (5.1)

where Ω(T ) is the grand potential of a system in the external potential Vext at

temperature T , n(r) is the density of atoms or molecules, µ is the chemical po-

tential and F [n(r), T ] is a universal free-energy functional for the fluid, which is

independent of the external potential Vext. Classical DFT is a natural framework

for creating a more flexible theory of hydrophobicity that can readily describe in-

teraction of water with arbitrary external potentials—such as potentials describing

strong interactions with solutes or surfaces.

A number of exact properties are easily achieved in the density-functional

framework, such as the contact-value theorem, which ensures a correct excess
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chemical potential for small hard solutes. Much of the research on classical density-

functional theory has focused on the hard-sphere fluid [13, 31–35], which has led

to a number of sophisticated functionals, such as the fundamental-measure theory

(FMT) functionals [13,32–37]. These functionals are entirely expressed as an inte-

gral of local functions of a few convolutions of the density (fundamental measures)

that can be efficiently computed. We will use the White Bear version of the FMT

functional [36, 37]. This functional reduces to the Carnahan-Starling equation of

state in the homogeneous limit, and it reproduces the exact free energy in the

strongly-confined limit of a small cavity.

A number of classical density functionals have been developed for water [38–51],

each of which captures some of the qualitative behavior of water. However, each

of these functionals also fail to capture some of water’s unique properties. For in-

stance, the functional of Lischner et al [47] treats the surface tension correctly, but

can only be used at room temperature, and thus captures none of the temperature-

dependence of water. A functional by Chuev and Skolov [46] uses an ad hoc

modification of FMT that can predict hydrophobic hydration near temperatures

of 298 K, but does not produce a correct equation of state due to their method

producing a high value for pressure. A number of classical density functionals

have recently been produced that are based on Statistical Associating Fluid The-

ory (SAFT) [41–43, 45, 48, 50, 52–57]. These functionals are based on a perturba-

tive thermodynamic expansion, and do reproduce the temperature-dependence of

water’s properties. We should give special mention to Sundararaman et al who

recently introduced a classical density functional for water using a model in which
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a water molecule is treated as a hard sphere attached to two tetrahedrally oriented

hard spheres representing voids, or orientations in which a hydrogen bond may not

be formed, with all attractive interactions being lumped into a single pair potential

treated in a mean field approximation [51].

5.1.2 Statistical associating fluid theory

Statistical Associating Fluid Theory (SAFT) is a theory describing complex fluids

in which hydrogen bonding plays a significant role [55,58]. SAFT is used to accu-

rately model the equations of state of both pure fluids and mixtures over a wide

range of temperatures and pressures. SAFT is based on Wertheim’s first-order

thermodynamic perturbation theory (TPT1) [9–12], which allows it to account for

strong associative interactions between molecules.

The SAFT Helmholtz free energy is composed of five terms:

F = Fid + Fhs + Fdisp + Fassoc + Fchain, (5.2)

where the first three terms—ideal gas, hard-sphere repulsion and dispersion—

encompass the monomer contribution to the free energy, the fourth is the as-

sociation free energy, describing hydrogen bonds, and the final term is the chain

formation energy for fluids that are chain polymers. While a number of formula-

tions of SAFT have been published, we will focus on SAFT-VR [59], which was

used by Clark et al to construct an optimal SAFT model for water [45]. All but
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one of the six empirical parameters used in the functional introduced in this paper

are taken directly from this Clark et al paper. As an example of the power of this

model, it predicts an enthalpy of vaporization at 100◦C of ∆Hvap= 39.41 kJ/mol,

compared with the experimental value ∆Hvap= 40.65 kJ/mol [2], with an error of

only a few percent. We show a phase diagram for this optimal SAFT model for

water in Figure 5.1, which demonstrates that its vapor pressure as a function of

temperature is very accurate, while the liquid density shows larger discrepancies.

The critical point is very poorly described, which is a common failing of models

that are based on a mean-field expansion.

SAFT has been used to construct classical density functionals, which are often

used to study the surface tension as a function of temperature [40–45,48–50,56,57].
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Such functionals have qualitatively predicted the dependence of surface tension

on temperature, but they also overestimate the surface tension by about 50%,

and most SAFT-based functionals are unsuited for studying systems that have

density variations on a molecular length scale due to the use of a local density

approximation [41–43,45,49,50,57].

Functionals constructed using a local density approximation fail to satisfy the

contact-value theorem, and therefore incorrectly model small hard solutes. The

contact-value theorem relates the pressure on a hard surface to the contact density

of the fluid at that surface:

p(rc) = n(rc)kBT, (5.3)

where rc is the position at which a molecule is in contact with the hard surface,

n(rc) is the density at that point of contact, and p(rc) is the pressure that the fluid

exerts on the surface at the same point. This pressure is defined as a ratio of force

to solvent accessible surface area. For a solute which excludes the solvent from an

arbitrarily small volume, the contact density will be the same as the bulk density,

and therefore we can integrate the above pressure to find that the excess chemical

potential of a small hard solute is proportional to the solvent-excluded volume:

F = nkBTV. (5.4)

The contact-value theorem is violated by local classical density functionals such as

those using a local density approximation or a square-gradient term, but is satisfied

by non-local classical density functionals, such as those using a weighted-density
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approach.

5.2 Theory and Methods

We construct a classical density functional for water, which reduces in the homo-

geneous limit to the optimal SAFT model for water found by Clark et al. The

Helmholtz free energy is constructed using the first four terms from Equation 5.2:

Fid, Fhs, Fdisp and Fassoc. In the following sections, we will introduce the terms of

this functional.

5.2.1 Ideal gas functional

The first term is the ideal gas free energy functional, which is purely local:

Fid[n] = kBT

∫
n(x)

(
ln(n(x)Λ3)− 1

)
dx, (5.5)

where n(x) is the density of water molecules and Λ is the thermal wavelength

Λ =
(

2π~2

mkBT

)1/2

. The ideal gas free energy functional on its own satisfies the

contact value theorem and its limiting case of small solutes (Equations 5.3 and

5.4). These properties are retained by our total functional, since all the remaining

terms are purely nonlocal.
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5.2.2 Hard-sphere repulsion

We treat the hard-sphere repulsive interactions using the White Bear version of the

Fundamental-Measure Theory (FMT) functional for the hard-sphere fluid [36,37].

FMT functionals are expressed as the integral of the fundamental measures of

a fluid, which provide local measures of quantities such as the packing fraction,

density of spheres touching a given point and mean curvature. The hard-sphere

excess free energy is written as:

Fhs[n] = kBT

∫
(Φ1(x) + Φ2(x) + Φ3(x))dx , (5.6)

with integrands

Φ1 = −n0 ln (1− n3) (5.7)

Φ2 =
n1n2 − nV 1 · nV 2

1− n3

(5.8)

Φ3 = (n3
2 − 3n2nV 2 · nV 2)

n3 + (1− n3)2 ln(1− n3)

36πn2
3 (1− n3)2 , (5.9)
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where the fundamental measure densities are given by:

n3(x) =

∫
n(x′)Θ(|x− x′| −R)dx′ (5.10)

n2(x) =

∫
n(x′)δ(|x− x′| −R)dx′ (5.11)

nV 2 = ∇n3 (5.12)

n1 =
n2

4πR
(5.13)

nV 1 =
nV 2

4πR
(5.14)

n0 =
n2

4πR2
. (5.15)

The density n3 is the packing fraction and n0 is the average density at contact

distance. For our functional for water, we use the hard-sphere diameter of 3.0342 Å,

which was found to be optimal by Clark et al. [45]

5.2.3 Dispersion free energy

The dispersion free energy includes the van der Waals attraction and any orientation-

independent interactions. We use a dispersion term based on the SAFT-VR ap-

proach [59], which has two free parameters (taken from Clark et al [45]): an

interaction energy εd and a length scale λdR.

The SAFT-VR dispersion free energy has the form [59]

Fdisp[n] =

∫
(a1(x) + βa2(x))n(x)dx, (5.16)
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where a1 and a2 are the first two terms in a high-temperature perturbation expan-

sion and β = 1/kBT . The first term, a1, is the mean-field dispersion interaction.

The second term, a2, describes the effect of fluctuations resulting from compression

of the fluid due to the dispersion interaction itself, and is approximated using the

local compressibility approximation (LCA), which assumes the energy fluctuation

is simply related to the compressibility of a hard-sphere reference fluid [60].

The form of a1 and a2 for SAFT-VR is given in reference [59], expressed in

terms of the packing fraction. In order to apply this form to an inhomogeneous

density distribution, we construct an effective local packing fraction for dispersion

ηd, given by a Gaussian convolution of the density:

ηd(x) =
1

6
√
πλ3

ds
3
d

∫
n(x′) exp

(
− |x− x′|2

2(2λdsdR)2

)
dx′. (5.17)

This effective packing fraction is used throughout the dispersion functional, and

represents a packing fraction averaged over the effective range of the dispersive

interaction. Here we have introduced an additional empirical parameter sd which

modifies the length scale over which the dispersion interaction is correlated.

5.2.4 Association free energy

The final attractive energy term is the association term, which accounts for hydro-

gen bonding. Hydrogen bonds are modeled as four attractive patches (“association

sites”) on the surface of the hard sphere. These four sites represent the two hydro-
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gen bond donor sites, and two hydrogen bond acceptor sites. There is an attractive

energy εa when two molecules are oriented such that the donor site of one overlaps

with the acceptor site of the other. The volume over which this interaction occurs

is κa, giving the association term in the free energy two empirical parameters that

are fit to the experimental equation of state of water (again, taken from Clark et

al [45]).

The association functional we use is a modified version of Yu and Wu [54],

which includes the effects of density inhomogeneities in the contact value of the

correlation function gHSσ , but is based on the SAFT-HS model, rather than the

SAFT-VR model [59], which is used in the optimal SAFT parametrization for

water of Clark et al [45]. Adapting Yu and Wu’s association free energy to SAFT-

VR simply involves the addition of a correction term in the correlation function

(see Equation 5.22).

The association functional we use is constructed by using the density n0(x),

which is the density of hard spheres touching a given point, in the standard SAFT-

VR association energy [59]. The association free energy for our four-site model has

the form

Fassoc[n] = 4kBT

∫
n0(x)ζ(x)

(
lnX(x)− X(x)

2
+

1

2

)
dx, (5.18)

where the factor of 4 comes from the four association sites per molecule, the func-

tional X is the fraction of association sites not hydrogen-bonded, and ζ(x) is a
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dimensionless measure of the density inhomogeneity.

ζ(x) = 1− nV 2 · nV 2

n2
2

. (5.19)

The fraction X is determined by the quadratic equation

X(x) =

√
1 + 8n0(x)ζ(x)∆(x)− 1

4n0(x)ζ(x)∆(x)
, (5.20)

where the functional ∆ is a measure of hydrogen-bonding probability, given by

∆(x) = κag
SW
σ (x)

(
eβεa − 1

)
(5.21)

gSWσ (x) = gHS
σ (x) +

1

4
β

(
∂a1

∂ηd(x)
− λd

3ηd

∂a1

∂λd

)
, (5.22)

where gSWσ is the correlation function evaluated at contact for a hard-sphere fluid

with a square-well dispersion potential, and a1 and a2 are the two terms in the

dispersion free energy. The correlation function gSWσ is written as a perturbative

correction to the hard-sphere fluid correlation function gHS
σ , for which we use the

functional of Yu and Wu [54]:

gHSσ =
1

1− n3

+
R

2

ζn2

(1− n3)2
+
R2

18

ζn2
2

(1− n3)3
. (5.23)
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Figure 5.2: Comparison of Surface tension versus temperature for theoretical and
experimental data. The experimental data is taken from NIST. [2] The length-
scaling parameter sd is fit so that the theoretical surface tension will match the
experimental surface tension near room temperature.

5.2.5 Determining the empirical parameters

The majority of the empirical parameters used in our functional are taken from the

paper of Clark et al on developing an optimal SAFT model for water [45]. This

SAFT model contains five empirical parameters: the hard-sphere radius, an energy

and length scale for the dispersion interaction, and an energy and length scale for

the association interaction. In addition to the five empirical parameters of Clark

et al, we add a single additional dimensionless parameter sd—with a fitted value

of 0.353—which determines the length scale over which the density is averaged

when computing the dispersion free energy and its derivative. We determine this

final parameter by fitting the computed surface tension to the experimental surface

tension with the result shown in Figure 5.2. Because the SAFT model of Clark et al
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overestimates the critical temperature—which is a common feature of SAFT-based

functionals that do not explicitly treat the critical point—we cannot reasonably

describe the surface tension at all temperatures, and choose to fit the surface

tension at and around room temperature. We note here that we could have chosen

to fit the surface tension with a square-gradient term in the free energy instead

of adjusting the length scale for the dispersive attraction. This would result in a

functional that violates the contact-value theorem which, among other problems,

would fail to satisfy Equation 5.4 for the excess chemical potential of small solutes.

5.3 Results and discussion

5.3.1 One hydrophobic rod

We begin by studying a single hydrophobic rod immersed in water. In Figure 5.3

we show the excess chemical potential at room temperature, scaled by the solvent

accessible surface area of the hard rod, plotted as a function of hard-rod radius. We

define the hard-rods radius as the radius from which water is excluded. For rods

with radius larger than 0.5 nm or so, this reaches a maximum value of 75 mN/m,

which is slightly higher than macroscopic surface tension. In the limit of very large

rods, this value will decrease and approach the macroscopic value. As seen in the

inset of Fig. 5.3, for rods with very small radius (less than about 0.5 Å) the excess

chemical potential is proportional to volume, satisfying Equation 5.4, which results

from the contact-value theorem.
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We show in Figure 5.4 density profiles for different radii rods, as well as the pre-

diction for the contact value of the density as a function of rod radius, as computed

from the excess chemical potentials plotted in Figure 5.3. The agreement between

these curves confirms that our functional satisfies the contact-value theorem and

that our minimization is well converged. As expected, as the radius of the rods

becomes zero the contact density approaches the bulk density, and as the radius

becomes large, the contact density will approach the vapor density.

5.3.2 Hydrophobic interaction of two rods

We now look at the more interesting problem of two parallel hard rods in water,

separated by a distance d, as shown in Figure 5.5. At small separations there is

only vapor between the rods, but as the rods are pulled apart, the vapor region

expands until a critical separation is reached at which point liquid water fills the

region between the rods. Figure 5.5 shows density profiles before and after this

transition for rods of radius 0.6 nm. This critical separation for the transition to

liquid depends on the radii of the rods, and is about 0.65 nm for the rods shown

in Figure 5.5. The critical separation will be different for a system where there

is attraction between the rods and water. At small separations, the shape of the

water around the two rods makes them appear as one solid “stadium”-shaped

object (a rectangle with semi-circles on both ends).

To understand this critical separation, we consider the free energy in the macro-
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Figure 5.5: Density profiles illustrating the transition from vapor to liquid water
between the rods. The radius is 0.6 nm, the top figure is at a separation of
0.6 nm and the bottom is 0.7 nm. Figure 5.6 shows the energy for these and other
separations.
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scopic limit, which is given by

F = γA+ pV. (5.24)

The first term describes the surface energy and the second term is the work needed

to create a cavity of volume V . Since the pressure term scales with volume, it can be

neglected relative to the surface term provided the length scale is small compared

with γ/p, which is around 20 µm, and is much larger than any of the systems we

study. For micron-scale rods, the water on the sides of the ‘stadium’ configuration

will bow inward between the rods and the density will reduce to vapor near the

center point where the rods are closest to each other.

Starting from the surface energy term, we can calculate the free energy per

length, which is equal to the circumference multiplied by the surface tension.

Working out the circumference of the stadium-shape leads us to

F = (2πr + 4r + 2d)γ (5.25)

where γ is the surface tension, r is the radius of the rods, and d is the separation

between rods illustrated in Figure 5.5. The force per length is the derivative of

the free energy with respect to the separation d, from which we conclude that the

force per length is twice the surface tension.

We plot in Figure 5.6 the computed free energy of interaction per unit length

from our classical density functional (solid lines), as a function of the separation

d, along with the free energy predicted by our simple macroscopic model (dashed
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Figure 5.6: Free energy of interaction (also known as the potential of mean force)
versus separation for two hydrophobic rods ranging in radius from 0.2 nm to 1.2 nm.
All were arbitrarily offset to zero at large separations for ease of comparison. The
transition corresponds to the phase change from vapor to liquid between the rods
as pictured in the density profiles in Figure 5.5.

lines). The models agree very well on the force between the two rods at close

separations, and have reasonable agreement as to the critical separation for rods

greater than 0.5 nm in radius.

Walther et al [61] studied the interactions between two carbon nanotubes,

which are geometrically similar to our hydrophobic rods, using molecular dynamics

with the SPC model for water. Their simulations used nanotubes of diameter

1.25 nm and separations ranging from about 0.3 nm to 1.5 nm. In agreement

with our findings for two purely hydrophobic rods, Walther et al find that in the

absence of Lennard-Jones attraction between carbon and oxygen, there is a drying

transition at a distance comparable to the diameter of the nanotube. In contrast

to this, when the attraction between nanotubes and water is turned on, they find
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that the drying transition occurs at much shorter distances, comparable to the

diameter of water.

5.3.3 Hydrophobic interactions of four rods

We go on to study four parallel hard rods, as examined by Lum, Chandler and

Weeks in their classic paper on hydrophobicity at small and large length scales [24].

As in the case of two rods—and as predicted by Lum et al—we observe a drying

transition, as seen the density plot shown in Figure 5.8. In Figure 5.7, we plot

the free energy of interaction together with the macroscopic approximation, and

find good agreement for rods larger than 0.5 nm in radius. This free energy plot is

qualitatively similar to that predicted by the LCW theory [24], with the difference
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that we find no significant barrier to the association of four rods.

5.3.4 Hydration energy of hard-sphere solutes

A common model of hydrophobic solutes is the hard-sphere solute, which is the

simplest possible solute, and serves as a test case for understanding of hydrophobic

solutes in water [62]. As in the single rod, we begin by examining the ratio of the

excess chemical potential of the cavity system to the solvent accessible surface

area (Figure 5.9). This effective surface tension surpasses the macroscopic surface

tension at a radius of almost 1 nm, and at large radius will drop to the macroscopic
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Figure 5.10: Density profiles around hard-sphere solutes of different radii. Predic-
tions from our classical density-functional theory are in solid red, while the dotted
line shows the result of a molecular dynamics simulation of SPC/E water [3].

value. As with the single rod, we see the analytically correct behavior in the

limit of small solutes. For comparison, we plot the free energy calculated using a

molecular dynamics simulation of SPC/E water [3]. The agreement is quite good,

apart from the issue that the SPC/E model for water significantly underestimates

the macroscopic surface tension of water at room temperature [63].

Figure 5.10 shows the density profile for several hard sphere radii, plotted

together with the results of the same SPC/E molecular dynamics simulation shown

in Figure 5.9 [3]. The agreement with simulation is quite reasonable. The largest

disagreement involves the density at contact, which according to the contact value

theorem cannot agree, since the free energies do not agree.
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5.4 Conclusion

We have developed a classical density functional for water that combines SAFT

with the fundamental-measure theory for hard spheres, using one additional em-

pirical parameter beyond those in the SAFT equation of state, which is used to

match the experimental surface tension. This functional does not make a local

density approximation, and therefore correctly models water at both small and

large length scales. In addition, like all FMT functionals, this functional is ex-

pressed entirely in terms of convolutions of the density, which makes it efficient to

compute and minimize.

We apply this functional to the case of hard hydrophobic rods and spheres in

water. For systems of two or four hydrophobic rods surrounded by water, we see a

transition from a vapor-filled state a liquid-filled state. A simple model treatment

for the critical separation for this transition works well for rods with diameters

larger than 1 nm. In the case of spherical solutes, we find good agreement with

SPC/E simulations.
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6 An Improved classical density-functional theory for water

This chapter is a slightly modified version of a published paper [64] which utilizes

results from another paper [65] (created by our research group) on the research in

Chapter 5. All modifications to the published paper in this chapter are conversions

from citations (Hughes et al. [4]) to chapter and equation reference from this

dissertation. All figures have been left in their original form where the legends

label Hughes et al. in comparison to “this work.” The captions are modified to

clarify that Hughes et al. is a reference to Chapter 5 from this dissertation.

6.1 Introduction

Water, the universal solvent, is of critical practical importance, and a continuum

description of water is in high demand for a solvation model. A number of re-

cent attempts to develop improved solvation models for water have built on the

approach of classical density functional theory (DFT) [66–72]. Classical DFT is

based on a description of a fluid written as a free energy functional of the density

distribution. There are two general approaches used to construct a classical DFT

for water. The first is to choose a convenient functional form which is then fit to

properties of the bulk liquid at a given temperature and pressure [47,66–72]. Using

this approach, it is possible to construct a functional that reproduces the exact

second-order response function of the liquid under the fitted conditions. However,
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this class of functional will be less accurate at other temperatures or pressures—

and in the inhomogeneous scenarios in which solvation models are applied. The

second approach is to construct a functional by applying liquid-state theory to a

model system, and then fit the model to experimental data such as the equation

of state [4, 41–46,48–51].

A widely used family of models used in the development of classical density

functionals is based on Statistical Associating Fluid Theory (SAFT) [58]. SAFT is

a theory based on a model of hard spheres with weak dispersion interactions and

hydrogen-bonding association sites, which has been used to accurately model the

equations of state of both pure fluids and mixtures over a wide range of tempera-

tures and pressures [55, 73]. The association contribution to the free energy uses

Wertheim’s first-order thermodynamic perturbation theory to describe an associat-

ing fluid as hard-spheres with strong associative interactions at specific sites on the

surface of each sphere [9–12]. These association sites have an attractive interaction

at contact, and rely on the hard-sphere pair distribution function at contact gHS
σ

in order to determine the extent of association. While this function is known for

the homogeneous hard-sphere fluid, it must be approximated for inhomogeneous

systems, such as occur at liquid interfaces.

In another paper from my research group, the pair distribution function at con-

tact in various inhomogeneous configurations [65] was examined by Schulte et al.

Schulte et al. tested the accuracy of existing approximations for the pair distribu-

tion function at contact [54, 56], and derived a significantly improved approxima-

tion for the averaged distribution function at contact. In this paper we apply this
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improved gHSσ to the SAFT-based classical density functional for water developed

in Chapter 5. This functional was constructed to reduce in the homogeneous limit

to the 4-site optimal SAFT model for water developed by Clark et al. [45]. The

DFT of Chapter 5 uses the association free energy functional of Yu and Wu [54],

which is based on a gHSσ that has since found to be inaccurate [65]. In this paper,

we will examine the result of using the improved functional for gHSσ developed in

Chapter 5 to construct an association free energy functional.

6.2 Method

The classical density functional for water of Chapter 5 consists of four terms:

F [n(r)] = Fideal[n(r)] + FHS[n(r)] + Fdisp[n(r)] + Fassoc[n(r)] (6.1)

where Fideal is the ideal gas free energy and FHS is the hard-sphere excess free

energy, for which we use the White Bear functional [36]. Fdisp is the free energy

contribution due to the square-well dispersion interaction; this term contains one

empirical parameter, sd, which is used to fit the surface tension of water near one

atmosphere. Finally, Fassoc is the free energy contribution due to association, which

is the term that we examine in this paper.
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6.2.1 Dispersion

The dispersion term in the free energy includes the van der Waals attraction and

any orientation-independent interactions. Following Chapter 5, we use a dispersion

term based on the SAFT-VR approach [59], which has two free parameters (taken

from Clark et al [45]): an interaction energy εd and a length scale λdR.

The SAFT-VR dispersion free energy has the form [59]

Fdisp[n] =

∫
(a1(x) + βa2(x))n(x)dx (6.2)

where a1 and a2 are the first two terms in a high-temperature perturbation expan-

sion and β = 1/kBT . The first term, a1, is the mean-field dispersion interaction.

The second term, a2, describes the effect of fluctuations resulting from compression

of the fluid due to the dispersion interaction itself, and is approximated using the

local compressibility approximation (LCA), which assumes the energy fluctuation

is simply related to the compressibility of a hard-sphere reference fluid [60].

The form of a1 and a2 for SAFT-VR is given in reference [59], expressed in

terms of the packing fraction. In order to apply this form to an inhomogeneous

density distribution, we construct an effective local packing fraction for dispersion

ηd, given by a Gaussian convolution of the density:

ηd(x) =
1

6
√
πλ3

ds
3
d

∫
n(x′) exp

(
− |x− x′|2

2(2λdsdR)2

)
dx′. (6.3)

This effective packing fraction is used throughout the dispersion functional, and
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Figure 6.1: Comparison of Surface tension versus temperature for theoretical and
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scaling parameter sd is fit so that the theoretical surface tension will match the
experimental surface tension near room temperature.

represents a packing fraction averaged over the effective range of the dispersive

interaction. Eq. 6.3 contains an additional empirical parameter sd introduced in

Chapter 5, which modifies the length scale over which the dispersion interaction is

correlated.

6.2.2 Association

The association free energy for our four-site model has the form:

Fassoc[n] = kBT

∫
nsite(x)

(
lnX(x)− X(x)

2
+

1

2

)
dx (6.4)
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where nsite(r) is the density of bonding sites at position r:

nsite(r) =


4n(r) this work

4n0(r)ζ(r) Hughes et al. (Eq. 5.18 this dissertation)

(6.5)

where the factor of four comes from the four hydrogen bond sites, the fundamental

measure n0(r) is the average density contacting point r, and ζ(x) is a dimensionless

measure of the density inhomogeneity from Yu and Wu [54]. The functional X(r)

is the fraction of association sites not hydrogen-bonded, which is determined for

our 4-site model by the quadratic equation

X(x) =

√
1 + 2n′site(r)κag

SW
σ (x) (eβεa − 1)− 1

n′site(r)κag
SW
σ (x) (eβεa − 1)

, (6.6)

where

n′site(r) =


4
πσ2

∫
n(r′)δ(σ − |r− r′|)dr′ this work

4n0(r)ζ(r) Hughes et al. (Eq. 5.20 this dissertation)

(6.7)

is the density of bonding sites that could bond to the sites nsite(r), and

gSWσ (x) = gHS
σ (x) +

1

4
β

(
∂a1

∂ηd(x)
− λd

3ηd

∂a1

∂λd

)
, (6.8)
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where gHS
σ is the correlation function evaluated at contact for a hard-sphere fluid

with a square-well dispersion potential, and a1 and a2 are the two terms in the

dispersion free energy defined above (Eq. 6.2). The radial distribution function of

the square-well fluid gSWσ is written as a perturbative correction to the hard-sphere

radial distribution function gHS
σ . The functional of Chapter 5 uses the gHS

σ from

Yu and Wu [54]. In this Chapter, we use the gHS
σ derived by Schulte et al. [65].

As in Chapter 5, we use Clark’s five empirical parameters, and fit the calculated

surface tension to experimental surface tension at ambient conditions by tuning

the parameter sd, which adjusts the length-scale of the average density used for the

dispersion interaction. With the improved association term, we find these agree

when sd is 0.454, which is an increase from the value of 0.353 found in Chapter 5.

In order to explore further the change made by the improved association term, we

compared the new functional with that of Chapter 5 for the two hydrophobic cases

of the hard rod and the hard spherical solute.

6.3 Results

We will first discuss the case of a single hard rod immersed in water. Figure 6.2

shows the density profile of water near a rod with radius 1 Å. The density computed

using the functional of this paper is qualitatively similar to that from Chapter 5,

with a comparable density at contact—consistent with having made only a mod-

erate change in the free energy. The first density peak near the surface is higher

than that from Chapter 5, and the peak has a kink at the top. This reflects the
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Figure 6.2: Density profiles for a water around a single hard rod of radius 0.1 nm.
The solid red profile is from the functional developed in this paper and the dashed
blue profile is the result from Hughes et al. [4] (Chapter 5 in this dissertation). For
scale, under the profiles is a cartoon of a string of hard spheres touching in one
dimension. The horizontal black dotted line is the bulk density for water and the
vertical line on the left at 0.1 nm represents the rod wall.
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Figure 6.3: Broken hydrogen bonds per nanometer for hard rods immeresed in wa-
ter. The solid red line uses the functional developed in this paper while the dashed
blue line uses the functional from Hughes et al. [4] (Chapter 5 in this dissertation).
For large enough rods, the graph increases linearly for both functionals.

improved accuracy of the gHS
σ from Chapter 5, since beyond the first peak water

molecules are unable to touch—or hydrogen bond to—molecules at the surface of

the hard rod. This is illustrated under the profiles in Figure 6.2 by a cartoon of

adjacent hard spheres that are increasingly distant from the hard rod surface.

In addition to the density, we examine the number of hydrogen bonds which

are broken due to the presence of a hard rod. We define this quantity as

Nbroken HB = 2

∫
(X(r)−Xbulk)nsite(r)dr (6.9)

where Xbulk = 0.13 is the fraction of unbonded association sites in the bulk. The

factor of 2 is chosen to account for the four association sites per molecule, and the
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fact that each broken hydrogen bond must be represented twice—once for each

of the molecules involved. In Fig. 6.3 we show the number of hydrogen bonds

broken by a hard rod per nanometer length, as predicted by the functional of

Chapter 5 (dashed line) and this work (solid line), as a function of the radius of

the hard rod. In each case in the limit of large rods, the number of broken bonds

is proportional to the surface area. At every radius, the functional of Chapter 5

predicts approximately four times as many broken hydrogen bonds as the improved

functional.

A common test case for studying hydrophobic solutes in water is the hard-

sphere solute. Figure 6.4 shows results for the number of broken hydrogen bonds

caused by a hard-sphere solute, as a function of the solute radius. As in Fig. 6.3,

the number of broken bonds scales with surface area for large solutes, and the

number of broken bonds is about four times smaller than the number from the

functional of Chapter 5. For solutes smaller than 3 Å in radius, there is less than a

tenth of a hydrogen bond broken. This is consistent with the well-known fact that

small solutes (unlike large solutes) do not disrupt the hydrogen-bonding network

of water [74].

Finally, in order to compare with experimental results, we examined the hy-

dration of Krypton. To describe the interaction of water with krypton, we use a

Lennard-Jones potential with values ε = .9518 kJ/mol and σ = 3.42 Å calculated

using the Lorentz-Berthelot mixing rules and the Lennard-Jones parameters for

water from SPC/E calculations [75]. Figure 6.5 shows the krypton-oxygen partial

radial distribution function gKr−O(r), which gives the relative probability density
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Figure 6.4: Broken hydrogen bonds for hard spheres immeresed in water. The
solid red line uses our the functional developd in this paper while the dashed blue
line is from Hughes et al. [4] (Chapter 5 in this dissertation).

that an oxygen atom resides at a distance r from a krypton atom centered at

the origin. We present theoretical curves computed using both this work and the

functional of Chapter 5, which we compare with experimental data from extended

x-ray absorption fine structure spectroscopy (EXAFS) [5]. The new functional

shows improved agreement with experiment in the height and position of the first

maximum as well as the hight and position of the first minimum in gKr−O(r) when

compared with that of Chapter 5

6.4 Conclusion

We have modified the classical DFT for water developed in Chapter 5 by with

the more accurate radial distribution function at contact developed by Schulte et
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al. [65], which affects the predicted hydrogen bonding between water molecules.

We found that while this modification has a relatively mild effect on the free

energy and density profiles, it predicts fewer broken hydrogen bonds around hard

hydrophobic solutes and at aqueous interfaces. The improved functional does

indeed show better agreement with experiment when used to compute the partial

radial distribution function of a krypton atom dissolved in water.
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7 A soft sphere fluid functional based on Soft Fundamental

Measure Theory

7.1 Introduction

The idea of liquids as composed of hard spheres dates back over two millenia [76]. In

the 20th century, we came to understand atoms as inherently soft, but it was shown

that their repulsion could still be accurately described using a hard-sphere model,

provided the radius is chosen to be temperature dependent [77–79]. These works

cemented the hard-sphere model as the reference system of choice for the theory

of liquids [45, 59, 80]. One reason for the wide use of the hard-sphere fluid hard

sphere fluid as a reference system is that it is widely studied and well understood,

not only for the homogeneous fluid [81], but also in the more challenging case

of the inhomogeneous fluid [13, 33, 36]. However, the hard-sphere fluid remains

a non-physical model, which is also numerically inconvenient in its use of delta

functions.

Fundamental Measure Theory (FMT) is a classical density functional theory

for the free energy of the hard-sphere fluid developed by Rosenfeld [13]. Due to its

combination of computational efficiency with accuracy, FMT has since been used

as the basis for a wide variety of classical density functionals [4,64,82–84], including

those in the previous two chapters. In 1999, Schmidt introduced Soft Fundamental
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Measure Theory (SFMT) [85], which directly treats soft repulsive potentials in a

framework based on the highly successful FMT developed by Rosenfeld [13]. SFMT

has been used to describe the behavior of a star polymer in solution [86–89], as

well as repulsive potentials applicable to atoms [89,90].

In this paper, we will apply SFMT to study the Weeks-Chandler-Anderson

(WCA) repulsive potential [91]. This potential reproduces the repulsive force of a

Lennard-Jones interaction, which makes it an ideal model for interatomic repulsion.

Mathematically, the WCA pair potential is given by

Vwca(r) =


4ε
[(

σ
r

)12 −
(
σ
r

)6
]

+ ε, 0 < r < 2R

0, otherwise.

(7.1)

where ε and σ are the usual Lennard-Jones parameters and R is a single sphere

radius which is related by σ = 25/6R. In this paper we will used the dimensionless

reduced density n∗ ≡ nσ3 and reduced temperature T ∗ ≡ kBT/ε.

7.2 Methods

7.2.1 Soft Fundamental Measure Theory

Soft fundamental measure theory (SFMT) is a generalization of FMT to soft in-

teractions developed by Schmidt [85]. Like Rosenfeld’s FMT [13], the free energy

is written as an integral of functions of a set of weighted densities known as fun-
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damental measures :

AHS[n] = kBT

∫
(Φ1(r) + Φ2(r) + Φ3(r)) dr , (7.2)

with integrands

Φ1 = −n0 ln (1− n3) (7.3)

Φ2 =
n1n2 − nV 1 · nV 2

1− n3

(7.4)

Φ3 =
n3

2 − 3n2nV 2 · n2
V 2

24π(1− n3)2
(7.5)

which is derived from dimensional crossover from the exact free energy in the

zero-dimensional cavity limit [85]. The fundamental measures

ni(r) =

∫
n(r′)wi(|r− r′|)dr′ (7.6)

are defined as convolutions with weight functions similar to those of hard-sphere

FMT. Like hard-sphere fundamental measures, the new weight functions are con-

structed so as to deconvolve the Mayer function,

f(r) = exp(−βV (r))− 1 (7.7)
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where β = 1/kBT . The weighting functions are related by

wV 2 = w2
r

r
wV 1 = w1

r

r
(7.8)

w1 =
w2

4πR
w0 =

w2

4πR2
(7.9)

w3(r) =

∫ ∞
r

w2(r′)dr′, (7.10)

where it is helpful to note that the integral in Eq. 7.10 is a one-dimensional integral

over radius.

Furthermore, Schmidt proves that SFMT produces the exact functional in the

low-density limit, provided the weighting function that defines n2 is related to the

slope of the Mayer function by a convolution with itself

df(r)

dr
=

∫
dr′w2(r′)w2(r − r′), (7.11)

with the other weighting functions given by the equations above [90]. We note that

these equations are satisfied by traditional hard-sphere FMT as well as SFMT,

for the same reason: they are needed in order to ensure the correct low-density

behavior. Equation 7.11 is the challenge point for SFMT: deconvolving the Mayer

f function for a realistic potential is challenging, which has limited the number of

applications of this theory to simple liquids.

There are two options for constructing a theory directly using SFMT: either one

must choose a pair potential and deconvolve the Mayer function to solve for w2—

which is difficult—or one can construct a w2 and solve for the pair potential that
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weighting function represents. In the original papers introducing SFMT, Schmidt

exclusively studied models analytically in which the potential is proportional to

temperature [85, 90]. While this proportionality is correct for purely entropic in-

teractions, such as the star polymer in solution studied in several papers [85], this

assumption is not applicable to energetic interactions such as dominate repulsion

between molecules. Here we will discuss the error function model (or erf model)

introduced by Schmidt in Ref. 90.

The erf model corresponds to a Gaussian form for the weighting function w2

The weight function for the erf model is

w2(r) =
1

Ξ
√
π
e−

(r−α/2)2

Ξ2 (7.12)

where Ξ and α are parameters with dimensions of length. This choice for w2 results

in a form containing an error function for the w3 weighting function, the Mayer f

function, and the pair potential:

w3(r) = 1
2

(
1− erf

(
r − α/2

Ξ

))
(7.13)

f(r) = 1
2

(
erf

(
r − α

Ξ

)
− 1

)
(7.14)

Verf(r) = −kT ln

[
1
2

(
erf

(
r − α

Ξ

)
+ 1

)]
. (7.15)

The erf potential is shown in Fig. 7.1, and the first derivative of the Mayer f func-

tion corresponding to this potential is shown in Fig. 7.2. Sadly, as is evident from

Eq. 7.15, this simple functional relationship only holds for one chosen temperature.
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At other temperatures, the same potential leads to an entirely different form for f

and w2, which is not analytically tractable.

7.2.2 Barker-Henderson hard sphere

Another approach to account for the temperature dependence of realistic fluids is

Barker-Henderson’s approach [78]. This theory takes any general repulsive pair

potential, V (r), and creates a hard sphere reference fluid with a temperature de-

pendent diameter and higher order repulsive terms. The hard sphere diameter

is

d =

∫ ∞
0

(
1− e−βV (r)

)
dr. (7.16)

We utilize this variable diameter to create a White Bear [36] hard sphere DFT and

compare its behavior with the soft sphere DFT we construct in this paper.

We use the White Bear version of the Fundamental-Measure Theory (FMT)

functional [36], which describes the excess free energy of an inhomogeneous hard-

sphere fluid. The White Bear functional reduces to the Carnahan-Starling free

energy for homogeneous systems, and has been found to be accurate under a wide

range of inhomogeneous configurations.

AHS[n] = kBT

∫
(Φ1(r) + Φ2(r) + Φ3(r)) dr , (7.17)
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with integrands

Φ1 = −n0 ln (1− n3) (7.18)

Φ2 =
n1n2 − nV 1 · nV 2

1− n3

(7.19)

Φ3 = (n3
2 − 3n2nV 2 · nV 2)

n3 + (1− n3)2 ln(1− n3)

36πn2
3 (1− n3)2 , (7.20)

using the weighted density

n2(r) =

∫
n(r′)w2(|r− r′| −R)dr′ (7.21)

=

∫
n(r′)δ(|r− r′| −R)dr′ (7.22)

where the remaining weighted densities are given by Eqs. 7.6 through 7.10.

7.2.3 Soft FMT for the WCA fluid

Our approach to model the WCA fluid is to approximate the WCA potential by

using the erf potential with temperature-dependent parameters. We select the

parameters Ξ and α to match the value and derivative of Verf(r) and Vwca(r) at

the distance α, corresponding to the maximum slope of the Mayer f function. In

essence, this is similar to the Barker-Henderson approach, in which a hard-sphere

potential with temperature-dependent diameter is used to model a soft repulsive

fluid.

We begin by equating the values of the potentials at distance α, which tells us
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Figure 7.1: The WCA potential, and approximations to this potential constructed
for two different temperatures.

that the α parameter must be given by

α = σ

 2

1 +
√

kBT
ε

ln 2

 1
6

. (7.23)

The alpha parameter roughly measures the length-scale of the interaction, and like

the Barker-Henderson diameter, decreases with increasing temperature. Finally,

equating the slope of both potentials at r = α yields the other parameter

Ξ =
α

6
√
π
(√

ε
kBT

ln 2 + ln 2
) , (7.24)

which is a measure of the effective softness of the interaction, and increases with

the temperature. We show the resulting approximation for the potential in Fig-

ures 7.1 for two different temperatures. We see the temperature dependence of
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Figure 7.2: The derivative of the Mayer f function from the WCA potential, and
the convolution of the fitted Gaussian w2 with itself at two different temperatures.
According to Eq. 7.11 these should be identical in order to accurately reproduce
the low-density behavior of the fluid.

the approximation in comparison to the WCA potential, with the approximation

at higher temperatures being more accurate for smaller differences. Vertical dot-

ted lines show the values of α at which Verf and Vwca are matched, a solid black

vertical line represents the distance at which the WCA force goes to zero, and the

horizontal dotted lines illustrate the two temperatures. At both temperatures, the

largest deviations are seen at very small distances, and thus very high potential

energies.

Figure 7.2 compares the derivative of the Mayer f function corresponding to the

WCA pair potential with convolution of the the fitted Gaussian w2 from Eq. 7.12

with itself, as in Eq. 7.11. The two vertical dotted lines show the α where the

potential functions have been matched, and the the solid vertical line shows where

the WCA force, and potential, and thus f ′wca, goes to zero. The erf result extends
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slightly past the cutoff at which f ′wca vanishes for both temperatures, but does

quickly go to zero. At lower lower temperatures w2 and f ′ are more peaked and

approach the cutoff, as the system approaches hard-sphere behavior in which these

functions are Dirac δ functions.

In Appendix A.1 we provide analytical expressions for the Fourier transforms of

each of the weighting functions. In this step, we make one additional approximation

beyond the erf approximation, which is to approximate w0 as a linear combination

of w1 and w2, which results from a power series approximation valid in the low-

temperature limit, when Ξ� α.

7.3 Results

For all of our simulations, we construct a Barker-Henderson hard sphere fluid with

a diameter determined by Eq. 7.16 using the WCA potential as the pair potential.

The BH fluid is known to give good results, so we use it as a reference for our

DFT.

7.3.1 Homogeneous limit

As a simple test for the equation of state, we compare the theory for a homogeneous

soft-sphere fluid to Monte Carlo simulation. The results shown in Figure 7.3 display

very good agreement for lower densities across all temperatures shown in Figure

and at higher temperatures which are not shown. Differences between the DFT
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Figure 7.3: Reduced pressure versus temperature. The SFMT result is plotted as
solid lines, with simulation results as dashed lines. The reduced pressure is defined
in terms of the Lennard-Jones parameters as p∗ ≡ pσ3/ε.

(solid lines) and MC results (dashed lines) become quite apparent at n∗ = 0.6 and

above, even at temperatures above the melting transition. Our theory consistently

predicts higher pressures than simulations show, which is surprising given that

Fig. 7.1 shows that the force should be underestimated by our theory at high

packing.

For the remainder of our figures, we will focus on just two bulk reduced densi-

ties: 0.6 and 1.0. We have examined a wide variety of densities, and found that the

agreement with simulation consistently improves as the density is decreased, and

so we decided to focus on just these two interesting cases. At a reduced density

of 0.6, our functional is right on the brink of its discrepancy with simulation, as

is evident from Fig. 7.3. In contrast, the very high reduced density of 1.0 is well
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beyond the point where our SFMT has considerably broken down quantitatively,

and can demonstrate how it fails.

7.3.2 Soft spheres near a hard wall

To begin with the simplest test for inhomogeneous one dimensional behavior, we

will look at the density profile for the soft sphere fluid near a hard wall. We note

that a hard wall, in this context, is interpreted as a potential felt by our spheres

that abruptly transitions from zero to infinity, in contrast to the hard wall felt

by a rubber ball, which has a soft potential energy as the ball changes shape.

Figure 7.4 shows the density profile for the WCA fluid near a hard wall. The top

plot shows density profiles for n∗ = 0.6 and the bottom for n∗ = 1.0. We see that

lower densities and higher temperatures produce almost exact results, while lower

temperatures and higher densities reveal disagreement.

We find that the Barker-Henderson approach with the White Bear hard-sphere

functional gives almost identical predictions to our method, with discrepancies

between our SFMT and Barker-Henderson that are consistently much smaller than

the error of either method relative to the Monte Carlo simulations.

7.3.3 Soft spheres near a soft wall

As a second and more physical case, we construct a wall of made of a continuum

of WCA spheres with density ρ (see Chapter 8 for derivation). The potential at a
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Figure 7.4: Density distribution of WCA fluid near a hard wall.
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distance z from such a wall is

VSW (0 < z ≤ R0) = 2πρε
[2σ12

W

45

(
1

z9
− 1

R9
0

)
+
σ6
W

3

(
1

R3
0

− 1

z3

)
+
z3 −R3

0

6
+ (R0 − z)

(
R2

0

2
+
σ6
W

R4
0

− 2σ12
W

5R10
0

)]
. (7.25)

The distance R0 is equal to a radius of a sphere which makes up the wall plus the

radius of a sphere in the fluid. The potential is zero when z > R0, and is infinite

for z ≤ 0. Both ε and σW are Lennard-Jones parameters between the wall and the

fluid. R0 and σW are related by σW = 25/6R0.

In Figure 7.5, we compare our soft sphere DFT against MC simulation and a

BH fluid near a soft wall with the potential given in Equation 7.25. We plot the

reduced density versus reduced distance from the surface of the wall for n∗ = 0.6

at different temperatures. Again, the results of our soft sphere fluid is as good as

the BH fluid overall.

7.3.4 Soft spheres radial distribution function

For three dimensional comparisons, we plot radial distribution functions computed

using the test-particle approach. Results for reduced densities below n∗ = 0.6

have been omitted as they were exact over temperature ranges from T ∗ = 0.01 to

T ∗ = 10. The top frame of Fig. 7.6 (top) shows the radial distribution for a range of

temperatures at a reduced density of n∗ = 0.6. We see very good agreement of our

DFT with Monte-Carlo simulation at this reduced density. Our DFT’s behavior at
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using the Barker-Henderson approach.
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higher temperatures are in almost exact agreement, while the lower temperatures

have slight disagreement just after the first peak at contact and in the subsequent

oscillations where it underestimates the amplitude of oscillation. Comparison with

the Barker-Henderson results shows our DFT to have a similar magnitude of error

relative the exact radial distribution function.

In Fig. 7.6 (bottom), we plot the results for a reduced density of n∗ = 1.0

for three different temperatures. While both Barker-Henderson hard spheres and

our DFT both overestimate the density at contact, our theory differs more at the

lowest temperature shown here. For the density oscillations, our DFT’s error is

comparable to that of the Barker-Henderson results.

7.3.5 Argon

Finally, to connect with experiment, we model liquid the radial distribution func-

tion of Argon by computing the radial distribution of a WCA fluid surrounding

a single Lennard-Jones particle. We consider three density/temperature pairs for

which experimental data is available [92–94], and which roughly span the range of

reduced densities from 0.6 to 1.0. The three experimental results were performed at

vapor pressure, 9.92 MPa, and 1.1 GPa; and at temperatures of 85 K, 48 K, and 293

K respectively. For each system we compute the radial distribution function with

Monte Carlo simulation, as well as SFMT and the Barker-Henderson approach.

For our WCA fluid and Lennard-Jones test particle, we used the Lennard-Jones

parameters developed by Verlet: σ = 3.405 Å and ε = 119.8 K [95].
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Figure 7.7: Radial distribution functions of Argon. From left to right the experi-
mental data was taken at 85 K and vapor pressure, at 293 K and 1.1 GPa, and at
48 K and 9.92 MPa.

Figure 7.7 shows the resulting radial distribution functions. Our Monte Carlo

data confirms that the WCA fluid can give a reasonably good prediction of the

radial distribution function of a real liquid, albeit with some discrepancy in the first

and second peak. Here the discrepancy between theory and simulation is somewhat

larger, but again our new functional performs comparably to the Barker-Henderson

approach. Both theories significantly overestimate the height of the first peak.

7.4 Conclusion

The theory presented in this paper is as good as a Barker-Henderson hard sphere

fluid for a range of densities and temperatures. The advantage of our theory is

that we can use it as is rather than needing to accommodate for discontinuities

and delta functions of hard sphere fluids.
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8 Soft wall potential derivation

This is the derivation for the Weeks-Chandler-Anderson (WCA) wall potential

used for testing the soft sphere fluid in Chapter 7. We start with the WCA pair

potential between two spheres:

VWCA(|r− r′|) =


4ε

[(
σ
|r−r′|

)12

−
(

σ
|r−r′|

)6
]

+ ε |r− r′| < R0

0 |r− r′| ≥ R0

(8.1)

where R0 is the addition of the radii of the two spheres. We construct a wall of

WCA spheres by placing the centers of the spheres that make up the wall surface

at z = 0 all along the x-y plane, and fill space from the plane to z = −∞ with

constant particle density ρ as shown in Figure 8.1. We then integrate on a test

particle at r to find the total potential at that point due to all contributions from

the wall,

VSW (r) =

∫∫∫
ρ(r′)VWCA(|r− r′|)dr′ (8.2)

Since we have an infinite plane at the wall surface, we can exploit symmetry

by placing our test particle a distance z above the wall on the z-axis axis and inte-

grating over cylindrical coordinates. This simplifies our center-to-center distance
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Figure 8.1: A visual diagram of the soft wall and the test particle. Green spheres
make up the wall and blue spheres represent the fluid. The test particle has been
placed on the z-axis to exploit symmetry in the integration. The x-y plane is
located at the centers of the spheres that form the surface of the wall. z is the
distance from that plane to the center of the test particle. The spheres that the
wall is composed of are assumed to be much denser than shown here, and only
those spheres whose centers are within the “Volume of integration” contribute.
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to be

|r− r′| =
√
r′2 + (z − z′)2 (8.3)

and allows the φ integration to simply become a factor of 2π. Since we must have

r′2 + (z− z′)2 ≤ R2
0, the limits in the r̂ direction go from zero to

√
R2

0 − (z − z′)2.

I’ll save some space in the integration by calling this γ. Since the distance z − z′

can never be larger than R0, the limits in the ẑ direction now go from z − R0 to

zero. This only applies as long as z− z′ ≤ R0, otherwise the entire integral is zero.

The following is the step-by-step integration of our function:

VSW = 2πρε

0∫
z−R0

γ∫
0

(
4

[
σ12
W r
′(

r′2 + (z − z′)2
)6 −

σ6
W r
′

(r′2 + (z − z′)2)3

]
+ r′

)
dr′dz′

(8.4)

= 2πρε

0∫
z−R0

(
−2σ12

W

5R10
0

+
σ6
W

R4
0

+
R2

0 − (z − z′)2

2
+

2σ12
W

5(z − z′)10
− σ6

W

(z − z′)4

)
dz′

(8.5)

= 2πρε

[
z3

6
+

2σ12
W

45z9
− σ6

W

3z3
− R3

0

6
− 2σ12

W

45R9
0

+
σ6
W

3R3
0

− (z −R0)

(
R2

0

2
+
σ6
W

R4
0

− 2σ12
W

5R10
0

)]
(8.6)
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Now to clean this up a bit

VSW (0 < z ≤ R0) = 2πρε

[
2σ12

W

45

(
1

z9
− 1

R9
0

)
+
σ6
W

3

(
1

R3
0

− 1

z3

)

+
z3 −R3

0

6
+ (R0 − z)

(
R2

0

2
+
σ6
W

R4
0

− 2σ12
W

5R10
0

)]
(8.7)

with VSW = 0 when z > R0 and VSW =∞ when z ≤ 0.
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9 Square well potential

9.1 Introduction

In Chapter 6 we tested an improvement for the association term of the free energy,

and in Chapter 7 we focused on a theory that could effectively replace the hard

sphere reference fluid in SAFT. In this chapter, I present a theory that would

contribute to an improvement for the dispersive interaction and could thus be

used in the dispersive free energy term, Fdisp, in SAFT. This theory is in progress

and exhibits less than ideal results. The purpose of this chapter is to present the

theory, the current results, and suggest some possible solutions.

9.2 Theory

The square well fluid is not a novel fluid; it has been widely studied. This study

differs by utilizing an approximation for the hard sphere pair distribution function

at contact which was developed by our research group.
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Figure 9.1: Graphical representation of the square well potential. σ is the hard
sphere diameter, λ is the well width relative to σ, and ε well depth.

9.2.1 Square well potential

The pair potential that describes a square well is

VSW(r) =


∞ r < σ

−ε σ < r < λσ

0 λσ < r

(9.1)

where ε is the depth of the attractive well, λ is the relative width of the well with

respect to σ, and σ is twice the hard sphere radius. A visual representation of this

potential is shown in Figure 9.1. One thing to note is that λ will be on the order
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of 1, so this is a relatively long range interaction between hard spheres.

9.2.2 Perturbation

Since solutions to the hard sphere fluid are accurately known, we can treat this

system with perturbation theory. In perturbation theory, the total potential for a

given position is

vΛ(r) = vexact(r) + Λw(r) (9.2)

where vexact(r) is potential for our reference system that we know exactly, w(r) is

our perturbative potential, and Λ is an dimensionless constant that gives us our

“amount” of perturbation.

If we want to know the total potential of the whole system, we sum over all

particle pairs:

VN(Λ) =
∑
ij

vΛ(rij) (9.3)

9.2.3 Square well contribution in homogeneous case

The square well contribution to the free energy is based on thermodynamic pertur-

bation theory (sometimes known as the “high temperature expansion”). We use a

dispersion term based on the SAFT-VR approach [59], which has two parameters

an interaction energy εd and a length scale λdR.
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The SAFT-VR dispersion free energy has the form [59]

Fdisp[n] =

∫
(a1(r) + βa2(r))n(r)dr, (9.4)

where a1 and a2 are the first two terms in a high-temperature perturbation expan-

sion and β = 1/kBT . The first term, a1, is the mean-field dispersion interaction.

a1 is given by

a1(r) =

∫
dr′n(r′)g(2)

HS(r, r′)Φ(|r− r′|) (9.5)

where Φ is the pair potential, g
(2)
HS is the two particle correlation function of the

hard-sphere refernce fluid, and n is the single particle density. This expression

looks almost like a convolution, which suggests working in Fourier space. For

computational efficiency, we must Fourier transform this term over r. Being that

that only the g
(2)
HS and Φ terms contain r, we will only need to transform those

terms together. The necessary transforms are shown in Section 9.2.5 below.

The second term, a2, describes the effect of fluctuations resulting from com-

pression of the fluid due to the dispersion interaction itself, and would be approx-

imated using the local compressibility approximation (LCA), which assumes the

energy fluctuation is simply related to the compressibility of a hard-sphere refer-

ence fluid [60]. Currently for this theory we don’t use a2, but it may be needed to

fix disagreement we shall see in Figures 9.3 and 9.3.
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9.2.4 The contact value approximation for the hard-sphere pair dis-

tribution function

Our research group recently introduced efficient an approximation for the pair

distribution function of the inhomogeneous hard-sphere fluid [96]. This approxi-

mation takes the form:

g(2)(r1, r2) =
gS(r12, gσ(r1)) + gS(r12, gσ(r2))

2
(9.6)

where gS(r, gσ) is a separable fit to the radial distribution function of the homo-

geneous hard-sphere fluid, and gσ(r) is an approximation for the pair distribution

function of an inhomogeneous hard-sphere fluid averaged over contact with a sphere

located at position r.

9.2.5 Polynomial expansion

We formulate gS as a polynomial expansion up to fourth order so that

gS(r; gσ) = gσ +
∑
i

γi(gσ)ξi(r) (9.7)

= gσ +
4∑
i=1

(
4∑
j=1

(gσ − 1)jκji

)( r
σ
− 1
)i
, (9.8)
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where, to be clear about γi and ξi

γi(gσ) =

(
4∑
j=1

(gσ − 1)jκji

)
(9.9)

ξi =
( r
σ
− 1
)i
. (9.10)

To turn this into usable code for computation, we need to perform a Fourier trans-

form on gs(r, gσ)vSW (r),

g̃s(k, gσ) =

∫∫∫
gs(r, gσ)uSW (r)e−ik·rd3r (9.11)

With only radial dependence in gs, the Fourier transform becomes

g̃s(k, gσ) =
4π

k

∫ ∞
0

(
gσ +

∑
i

γiξi(r)

)
Φ(r)r sin(kr)dr (9.12)

= −ε4π
k

∫ λσ

σ

(
gσ +

∑
i

γiξi(r)

)
r sin(kr)dr. (9.13)

For the gσ term, we treat it like a “zeroth” term where ξ0(r) = 1, so that we’re

only transforming the potential well multiplied by gσ. Fourier transforms of each

term are shown below starting from the gσ term then the i terms in numerical

order.

4π

k

∫ λσ

σ

gσr sin(kr)dr =
4πgσ
k

∫ λσ

σ

r sin(kr)dr

=
4πgσ
k3

[
sin(kλσ)− kλσ cos(kλσ)− sin(kσ) + kσ cos(kσ)

]
(9.14)
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4π

k

∫ λσ

σ

γ1ξ1r sin(kr)dr =
4πγ1

k

∫ λσ

σ

( r
σ
− 1
)
r sin(kr)dr

=
4πγ1

k4σ

[{
2− λk2σ2(λ− 1)

}
cos(kλσ)− 2 cos(kσ)

− kσ
{

sin(kσ) + (1− 2λ) sin(kλσ)
}]

(9.15)

4π

k

∫ λσ

σ

γ2ξ2r sin(kr)dr =
4πγ2

k

∫ λσ

σ

( r
σ
− 1
)2

r sin(kr)dr

=
4πγ2

k5σ2

[{
k2σ2(1− 4λ+ 3λ2)− 6

}
sin(kλσ)

− kσ
{

4 + λ(k2σ2(λ− 1)2 − 6)
}

cos(kλσ)

+ 6 sin(kσ)− 2kσ cos(kσ)

]
(9.16)

4π

k

∫ λσ

σ

γ3ξ3r sin(kr)dr =
4πγ3

k

∫ λσ

σ

( r
σ
− 1
)3

r sin(kr)dr

=
4πγ3

k6σ3

[
kσ
{

6 sin(kσ) + (18− 24λ+ k2σ2(λ− 1)2(4λ− 1)) sin(kλσ)
}

+
{

6k2σ2(λ− 1)(2λ− 1)− λk4σ4(λ− 1)3 − 24
}

cos(kλσ)

+ 24 cos(kσ)

]
(9.17)
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Figure 9.2: Radial distribution function for a filling fraction of 0.2, ε = 1, σ = 1,
and λ = 1.3 for three temperatures. The dotted lines are Monte-Carlo simulation
and the solid lines are theory. The general shape is correct, but we do see significant
differences.

4π

k

∫ λσ

σ

γ4ξ4r sin(kr)dr =
4πγ4

k

∫ λσ

σ

( r
σ
− 1
)4

r sin(kr)dr

=
4πγ4

k7σ4

[{
k2σ2(λ− 1)(36− 60λ+ k2σ2(λ− 1)2(5λ− 1)) + 120

}
sin(kλσ)

+ kσ
{

24 cos(kσ)− (24(5λ− 4)− 4k2σ2(λ− 1)2(5λ− 2)

+ λk4σ4(λ− 1)4) cos(kλσ)
}
− 120 sin(kσ)

]
(9.18)
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Figure 9.3: Radial distribution function for a filling fraction of 0.3, ε = 1, σ = 1,
and λ = 1.3 for three temperatures. The dotted lines are Monte-Carlo simulation
and the solid lines are theory. The general shape is correct, but we do see significant
differences.
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9.3 Homogeneous fluid results

We simulate the radial distribution function of a homogeneous square well fluid

with filling fractions 0.2 and 0.3 using the theory described, using the test-particle

approach, in which we simulate a fluid in an external potential representing a single

particle. We use the same hard sphere diameter, well depth ε, well width λ, and

temperatures for both simulations. We compare the radial distribution function

g(r) against against Monte-Carlo simulation in Figures 9.2 and 9.3.

It can be seen that although the general shape of the radial distribution is

the same, there are significant deviations in the g at contact, and the behaviors

of the oscillations just after the well stops. In Fig 9.3 it is apparent that the

lower temperature result gives the wrong bulk filling fraction. These less than

satisfactory result leads us to believe that we may need to include a2 in our theory,

or there is a mistake made either in the derivation or the code.

9.4 Conclusion

This theory currently produces results which are qualitatively similar to Monte-

Carlo simulation, but lack of strong agreement and breakdown at lower tempera-

tures will need to be addressed. Specifically, the behavior at lower temperatures

approaching liquid suggest a problem in the bulk limit.
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10 Conclusion

In this dissertation I have discussed motivations for studying water, introducted

statistical associating fluid theory (SAFT), and presented a background of classical

density function theory (cDFT) including fundamental measure theory. I began

with a cDFT for water based on an existing SAFT model. I followed this with three

attempts to improve individual terms in the SAFT free energy. First, we applied

an improved correlation function at contact to address issues with the association

term. Secondly, I have displayed my work on a soft sphere fluid theory based on soft

fundamental measure theory, which could provide an improved reference system

replacing that of hard spheres. This theory produces results that are as good as

Barker-Henderson hard spheres over a wide range of densities and temperatures but

does not require the extra care needed to handle the step and delta functions that

arise in the density functional theory of hard spheres. Furthermore, the soft sphere

fluid is more physical for almost all liquids. Finally, I have discussed my progress

towards an improved theory for the inhomogeneous square well fluid, which will

require more consideration before it is tractable.
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APPENDIX

A Weighting functions in Fourier space for soft sphere fluid

A.1 Weighting functions in Fourier space

We Fourier transform our weight functions to perform simulations in Fourier space.

We find that

w̃3(k) =
4π

k

∫ ∞
0

rw3(r) sin(kr)dr (A.1)

=
4
√
π

k3

∫ ∞
−σ/2a

[
sin(k(au+

σ

2
))− k(au+

σ

2
) cos(k(au+

σ

2
))
]
e−u

2

du. (A.2)

This is not an analytic function, but we assume that we are working at low enough

temperatures so that our function reduces to zero by u = − σ
2a

. We extend the
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lower limit to −∞ then

w̃3(k) ≈ 4π

k3
e−(ak2 )

2
[(

1 +
a2k2

2

)
sin

(
kσ

2

)
− k

2
σ cos

(
kσ

2

)]
(A.3)

We apply the same method to the other weight functions and find that:

w̃2(k) =
2π

k
e−(ak2 )

2
(
a2k cos

(
kσ

2

)
+ σ sin

(
kσ

2

))
(A.4)

w̃1(k) =
1

k
e−(ak2 )

2

sin

(
kσ

2

)
(A.5)

w̃2V (k) =
iπ

k
e−(ak2 )

2
[ (
σ2 − a4k2

)
cos

(
kσ

2

)
− 2σ

(
a2k +

1

k

)
sin

(
kσ

2

)]
k̂

(A.6)

w̃1V (k) =
i

k
e−(ak2 )

2
[
σ

2
cos

(
kσ

2

)
−
(
a2k

2
+

1

k

)
sin

(
kσ

2

)]
k̂, (A.7)

w̃0(k) contains a 1
r

term in its integrand that can be expanded as an infinite series.

The first two terms were kept and could be expressed in terms of w̃1(k) and w̃2(k).

w̃0(k) =
2

σ

[
2w̃1(k)− 1

2πσ
w̃2(k)

]
(A.8)

This results in another approximation we must make. In real space we modify n0

to agree with Equation A.8. So

n0(r) ≈ 2

α

[
2n1(r)− 1

2πα
n2(r)

]
(A.9)
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