AN ABSTRACT OF THE THESIS OF

$\frac{\text { Sue Elaine Hardy Waldman }}{\text { (Name) }}$ for the $\frac{\text { M.S. }}{\text { (Degree) }}$ in $\frac{\text { Mathematics }}{\text { (Major) }}$

Date thesis is presented \qquad July 18, 1966

Title THE QUADRATIC INTEGRAL DOMAINS $\operatorname{Ra}[\sqrt{3}]$ AND $\operatorname{Ra}[\sqrt{-15}]$ Abstract approved_ Redacted for Privacy

This paper is the record of an exploration of two quadratic number fields. The first section is devoted to the field with elements of the form $a+b \sqrt{3}$ where a and b are rational numbers. This field contains an integral domain in which unique factorization holds. The second section is concerned with a field having an integral domain in which the unique factorization theorem does not hold; therefore ideals are introduced to restore this property. The elements of this field are of the form $a+b \sqrt{-15}$ where a and b are rational numbers.

THE QUADRATIC INTEGRAL DOMAINS $\operatorname{Ra}[\sqrt{3}]$ AND $\operatorname{Ra}[\sqrt{-15}]$

 bySUE ELAINE HARDY WALDMAN

A THESIS

submitted to
OREGON STATE UNIVERSITY
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Redacted for Privacy

Professor of Mathematics
In Charge of Major

Redacted for Privacy

Chairman of Department of Mathematics

Redacted for Privacy
 Dean of Graduate School δ

Date thesis is presented \qquad
Typed by Carol Baker

TABLE OF CONTENTS

Chapter Page
I. THE QUADRATIC INTEGRAL DOMAIN $\operatorname{Ra}[\sqrt{3}]$ 1
Integers of $\mathrm{Ra}(\sqrt{3})$ 5
Prime Numbers of $\operatorname{Ra}[\sqrt{3}]$ 14
II. THE QUADRATIC INTEGRAL DOMAIN $\operatorname{Ra}[\sqrt{-15}]$ 25
BIBLIOGRAPHY 57

THE QUADRATIC INTEGRAL DOMAINS $\operatorname{Ra}[\sqrt{3}]$ and $\operatorname{Ra}[\sqrt{-15}]$
I. THE QUADRATIC INTEGRAL DOMAIN $\operatorname{Ra}[\sqrt{3}]$

Let $\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0, \quad \mathrm{p} \neq 0$ with rational coefficients be a quadratic equation irreducible over the rational field. Since the roots remain unchanged if both sides of an equation are multiplied by the common denominator of the coefficients, we may assume, without loss of generality, that p, q, and r are integers of the rational field which will be called rational integers $p \neq 0$. Let us consider this case: $q^{2}-4 p r=3 k$ where $k=t^{2}$ and t is a rational integer not zero.
ρ is one of the roots of the equation. Since the equation is irreducible, ρ is not a rational number. Denote by $R a(\rho)$ the set of numbers $a+b p$ where a and b range over the rational numbers.

Theorem 1. 1: There exists a rational integer m without a repeated factor such that $\operatorname{Ra}(\rho)=\operatorname{Ra}(\sqrt{m})$.

Taking the particular case noted above, where

$$
q^{2}-4 p r=3 k, \quad k=t^{2} \neq 0
$$

then the roots are $\quad \rho_{1}=\frac{-q+\sqrt{3 k}}{2 p}, \quad \rho_{2}=\frac{-q-\sqrt{3 k}}{2 p}$.
Let $\rho=\frac{-q+\sqrt{3 k}}{2 p}$, then $\sqrt{3 k}=2 p \rho+q$.

The first equation shows that every number of the form $a+b \rho$ can be written in the form $c+d \sqrt{3 k}$ and the second equation shows all numbers of the form $a+b \sqrt{3 k}$ are of the form $c+d \rho$. Then $\operatorname{Ra}(\rho)=\operatorname{Ra}(\sqrt{3 k})$.

$$
\begin{aligned}
\text { Now set } 3 k & =3 t^{2}, \text { then } a+b \sqrt{3 k}=a+b t \sqrt{3} . \\
R a(\rho) & =R a(\sqrt{3 k})=R a(\sqrt{3}) \text { and } m=3 .
\end{aligned}
$$

A similar argument would hold if we let $\rho=\frac{-q-\sqrt{3 k}}{2 \rho}$.

Example: Consider the quadratic equation $3 x^{2}+6 x+2=0 . \quad \rho$ is one of its roots so

$$
\rho=\frac{-6+\sqrt{12}}{6}=\frac{-6+\sqrt{3 \cdot 4}}{6}=-1+\frac{1}{3} \sqrt{3}
$$

then

$$
a+b \rho=a+b\left(-1+\frac{1}{3} \sqrt{3}\right)=(a-b)+\left(\frac{b}{3}\right) \sqrt{3}=c+d \sqrt{3}
$$

and since

$$
\rho=-1+\frac{1}{3} \sqrt{3}, \quad \sqrt{3}=3 p+3 ;
$$

so

$$
a+b \sqrt{3}=a+b(3 p+3)=(a+3 b)+(3 b) p=c+d \rho
$$

where a, b, c, d in both cases are rational.

Hence, numbers of the form $a+b \rho$ may be expressed as $c+d \sqrt{3}$ and conversely. Or, in general, $\operatorname{Ra}(\rho)=\operatorname{Ra}(\sqrt{3})$.

Theorem 1.2: The set $\operatorname{Ra}(\sqrt{3})$ is a field.

Since the set $\operatorname{Ra}(\sqrt{3})$ is contained in the complex field the associative, commutative and distributive laws hold for addition and multiplication. It is to be shown that the set is closed for the two operations, the identity elements for each operation are contained in the set, each element has an additive inverse in the set, and every element except the identity in $\operatorname{Ra}(\sqrt{3})$ has its reciprocal in $\operatorname{Ra}(\sqrt{3})$.
i) closure:

$$
\left(a_{1}+b_{1} \sqrt{3}\right)+\left(a_{2}+b_{2} \sqrt{3}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \sqrt{3}
$$

hence addition is closed.

$$
\left(a_{1}+b_{1} \sqrt{3}\right)\left(a_{2}+b_{2} \sqrt{3}\right)=\left(a_{1} a_{2}+3 b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) \sqrt{3}
$$

hence multiplication is closed.
ii) identities:

$$
(c+d \sqrt{3})+(0+0 \sqrt{3})=c+d \sqrt{3}
$$

Therefore $0+0 \sqrt{3}=0$ is the additive identity.
$(c+d \sqrt{3})(1+0 \sqrt{3})=c+d \sqrt{3}$

Therefore $1+0 \sqrt{3}=1$ is the multiplicative identity.
iii) inverses:
$(c+d \sqrt{3})+(-c-d \sqrt{3})=0+0 \sqrt{3}$
and every element of $R a(\sqrt{3})$ has an additive inverse in $R a(\sqrt{3})$.
$(c+d \sqrt{3}) y=1 \quad c \neq d \neq 0 \quad$ since the additive identity is excluded.
$y=\frac{1}{c+d \sqrt{3}}=\frac{c-d \sqrt{3}}{c^{2}-3 d^{2}}=\left(\frac{c}{c^{2}-3 d^{2}}\right)+\left(\frac{-d}{c^{2}-3 d^{2}}\right) \sqrt{3}$
an element of $\operatorname{Ra}(\sqrt{3})$,
c and d are rational and $c^{2}-3 d^{2} \neq 0$. If $c^{2}-3 d^{2}=0$ then $c^{2}=3 d^{2}$ or $3=\frac{c^{2}}{d^{2}}, \quad d \neq 0$ since this would imply in the previous step that c also be 0 and it was given that $c \neq d \neq 0$. So $\sqrt{3}=\frac{c}{d}$, a rational number, which is a contradiction, hence $c^{2}-3 d^{2} \neq 0$.

Theorem 1.3: Every number of $\operatorname{Ra}(\sqrt{3})$ satisfies a quadratic equation with rational coefficients.

If $a=a+b \sqrt{3}$ is any number of $\operatorname{Ra}(\sqrt{3})$, then its conjugate is $\bar{a}=a-b \sqrt{3}$ and a satisfies the equation $(x-a)^{2}-3 b^{2}=x^{2}-2 a x+a^{2}-3 b^{2}=0$. This equation is called the principal equation of $a=a+b \sqrt{3}$. Its constant term $N(a+b \sqrt{3})=a^{2}-3 b^{2}$ is called the norm of $a+b \sqrt{3}$ and $N(a)=a \bar{a}$. The negative of the coefficient of $x, T(a+b \sqrt{3})=2 a$, is called the trace of $a+b \sqrt{3}$. Since a and b are rational, $a^{2}-3 b^{2}$ and $2 a$ are rational.

Integers of $\mathrm{Ra}(\sqrt{3})$

The integers of $\operatorname{Ra}(\sqrt{3})$ are the numbers of $\operatorname{Ra}(\sqrt{3})$ which will satisfy equations of the form $x^{2}+p x+q=0$ where p and q are rational integers. These numbers constitute the integral domain $\mathrm{Ra}[\sqrt{3}]$ of $\operatorname{Ra}(\sqrt{3})$.

Theorem 1.4: Every rational integer is in $\operatorname{Ra}[\sqrt{3}]$. Every number of $\mathrm{Ra}[\sqrt{3}]$ which is rational is a rational integer.

If a is a rational integer then its principal equation is $x^{2}-2 a x+a^{2}=0$ and is therefore in $\operatorname{Ra}[\sqrt{3}]$.

If conversely, $a+b \sqrt{3}$ is rational then $b=0$ and since $a+b \sqrt{3}$ satisfies the equation $x^{2}-2 a x+a^{2}$ where $2 a$ and a^{2} are rational integers a must also be a rational integer.

Theorem 1.5: The conjugate of a number of $\operatorname{Ra}[\sqrt{3}]$ is in $\operatorname{Ra}[\sqrt{3}]$: for $a+b \sqrt{3}$ and $a-b \sqrt{3}$ have the same principal equation.

Hereafter the word integer will refer to integers of $\mathrm{Ra}[\sqrt{3}]$. The integers of the rational field will always be called rational integers.

Theorem 1.6: The numbers of $\operatorname{Ra}[\sqrt{3}]$ are given by $a+b \sqrt{3}$ where a and b range over all rational integers.

Every number $a=a+b \sqrt{3}$ of $\operatorname{Ra}(\sqrt{3})$ satisfies the principal equation $x^{2}-2 a x+a^{2}-3 b^{2}=0$. The integers of $\operatorname{Ra}(\sqrt{3})$ will satisfy equations of the form $x^{2}+p x+q=0$, where p and q are rational integers. Therefore $2 a=p$ and $a^{2}-3 b^{2}=q$ are rational integers. If $a+b \sqrt{3}$ is a number of $\operatorname{Ra}(\sqrt{3})$ then a and b are rational or $\frac{a_{1}}{c_{1}}=a, \frac{b_{1}}{c_{1}}=b \underset{2 a}{\text { where }} a_{1}, b_{1}, c_{1_{2}}$ are relatively prime rational integers. Then $\frac{{ }^{c_{1}}}{c_{1}}{ }_{1}=p$ (1), $\frac{a_{1}^{2}-3 b_{1}^{2}}{c_{1}^{2}}=q \quad$ (2), so $c_{1}=2$ or 1 since if $c_{1} \neq 2$ or 1 then by $(1) c_{1}$ and a_{1} would have a common factor of b_{1} by (2) contrary to our hypothesis that a_{1}, b_{1} and c_{1} are relatively prime. If $c_{1}=2$ then by (2) a_{1}^{2} and b_{1}^{2} would be divisible by 2^{2} or $a_{1}^{2}-3 b_{1}^{2}=4 q$. If a_{1} is odd and b_{1} is even or a_{1} is even and b_{1} is odd the contradiction is obvious. If a_{1} is odd and b_{1} is odd, then

$$
\begin{aligned}
(2 n+1)^{2}-3(2 m+1)^{2} & =4 q \\
4 n^{2}+4 n+1-24 m^{2}-12 m-3 & =4 q
\end{aligned}
$$

$$
\begin{aligned}
4 n^{2}+4 n-24 m^{2}-12 m-2 & =4 q \\
n^{2}+n-6 m^{2}-3 m-\frac{1}{2} & =q
\end{aligned}
$$

But this is contrary to the fact that q is an integer. Hence a_{1} and b_{1} must both be even. Therefore a_{1}, b_{1}, c_{1} would have a common factor contrary to our hypothesis. So $c_{1}=1$ and thus $a_{1}=a$ and $b_{1}=b$ are rational integers.

The numbers 1 and $\sqrt{3}$ form a basis for $\mathrm{Ra}[\sqrt{3}]$. In other words every number of the domain $\operatorname{Ra}[\sqrt{3}]$ is given without repetition in the form $a(1)+b(\sqrt{3})$ where a and b range independently over all rational integers and conversely every such number is in the domain.

Theorem 1.7: If θ_{1} and θ_{2} be a basis of $\operatorname{Ra}[\sqrt{3}]$ every basis of $\operatorname{Ra}[\sqrt{3}]$ is given by $\theta_{1}^{\prime}=a_{11} \theta_{1}+a_{12} \theta_{2}$,

$$
\begin{equation*}
\theta_{2}^{\prime}=a_{21} \theta_{1}+a_{22} \theta_{2} \tag{1}
\end{equation*}
$$

where

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|= \pm 1
$$

Assume θ_{1}^{\prime} and θ_{2}^{\prime} is a basis for $\operatorname{Ra}[\sqrt{3}]$. Then

$$
\theta_{1}=b_{11} \theta_{1}^{\prime}+b_{12} \theta_{2}^{\prime} \quad \text { and } \quad \theta_{2}=b_{21} \theta_{1}^{\prime}+b_{22} \theta_{2}^{\prime} .
$$

So

$$
\theta_{1}=\mathrm{b}_{11}\left(\mathrm{a}_{11} \theta_{1}+\mathrm{a}_{12} \theta_{2}\right)+\mathrm{b}_{12}\left(\mathrm{a}_{21} \theta_{1}+\mathrm{a}_{22} \theta_{2}\right)
$$

and

$$
\theta_{2}=b_{21}\left(a_{11} \theta_{1}+a_{12} \theta_{2}\right)+b_{22}\left(a_{21} \theta_{1}+a_{22} \theta_{2}\right)
$$

or

$$
\theta_{1}=\left(a_{11} b_{11}+a_{21} b_{12}\right) \theta_{1}+\left(a_{12} b_{11}+a_{22} b_{12}\right) \theta_{2}
$$

and

$$
\theta_{2}=\left(a_{11} b_{21}+a_{21} b_{22}\right) \theta_{1}+\left(a_{12} b_{21}+a_{22} b_{22}\right) \theta_{2} .
$$

Therefore $a_{11} b_{11}+a_{21} b_{12}=1, a_{12} b_{11}+a_{22} b_{12}=0$, $a_{11} b_{21}+a_{21} b_{22}=0, \quad a_{12} b_{21}+a_{22} b_{22}=1$ or

$$
\left|\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right|\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=\left|\begin{array}{ll}
a_{11} b_{11}+a_{21} b_{12} & a_{12} b_{11}+a_{22} b_{12} \\
a_{11} b_{21}+a_{21} b_{22} & a_{12} b_{21}+a_{22} b_{22}
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1
$$

hence it is necessary for the determinant of the coefficients to be ± 1.
Any number in the domain $\operatorname{Ra}[\sqrt{3}]$ can be written in terms of the basis. From (1) we know $\theta_{1}= \pm\left(a_{22} \theta_{1}^{\prime}-a_{12} \theta_{2}^{\prime}\right)$ and $\theta_{2}= \pm\left(a_{21} \theta_{1}^{\prime}-a_{11} \theta_{2}^{\prime}\right)$. If $\omega=c_{1} \theta_{1}+c_{2} \theta_{2}$ is any number of the domain then

$$
\omega=c_{1}\left[\pm\left(a_{22} \theta_{1}^{\prime}-a_{12} \theta_{2}^{\prime}\right)\right]+c_{2}\left[\pm\left(a_{21} \theta_{1}^{\prime}-a_{11} \theta_{2}^{\prime}\right)\right]
$$

or

$$
\omega= \pm\left(c_{1} a_{22}+c_{2} a_{21}\right) \theta_{1}^{\prime} \mp\left(c_{1} a_{12}+c_{2} a_{11}\right) \theta_{2}^{\prime} .
$$

Hence $\theta_{1}^{\prime}, \theta_{2}^{\prime}$ is a basis for $\operatorname{Ra}[\sqrt{3}]$ since every number of $\operatorname{Ra}[\sqrt{3}]$ may be written as a linear combination of θ_{1}^{\prime} and θ_{2}^{\prime} and every such combination is in the domain.

Since 1 and $\sqrt{3}$ is one basis θ_{1}, θ_{2}, for $\mathrm{Ra}[\sqrt{3}]$ then all $\theta_{1}^{\prime}, \theta_{2}^{\prime}$ may be written as: $\quad \theta_{1}^{\prime}=a_{11}+a_{12} \sqrt{3}, \quad \theta_{2}^{\prime}=a_{21}+a_{22} \sqrt{3}$ where

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|= \pm 1
$$

Theorem 1.8: The norm of a product is the product of the norms.

$$
N(\alpha \beta)=N(\alpha) N(\beta)
$$

Proof. $\quad a=a+b \sqrt{3} \quad \beta=c+d \sqrt{3} \quad a \beta=(a c+3 b d)+(a d+b c) \sqrt{3}$

$$
\begin{aligned}
N(a) & =a^{2}-3 b^{2} N(\beta)=c^{2}-3 d^{2} \quad N(a \beta)=(a c+3 b d)^{2}-3(a d+b c)^{2} \\
N(a \beta) & =a^{2} c^{2}+9 b^{2} d^{2}-3 a^{2} d^{2}-3 b^{2} c^{2} \\
& =a^{2} c^{2}-3 b^{2} c^{2}-3 a^{2} d^{2}+9 b^{2} d^{2} \\
& =c^{2}\left(a^{2}-3 b^{2}\right)-3 d^{2}\left(a^{2}-3 b^{2}\right)=\left(a^{2}-3 b^{2}\right)\left(c^{2}-3 d^{2}\right) \\
& =N(a) N(\beta) .
\end{aligned}
$$

Theorem 1.9: The norm of a quotient is the quotient of the norms.

$$
N\left(\frac{a}{\beta}\right)=\frac{N(a)}{N(\beta)} \quad \beta \neq 0
$$

Let a, β, and $N(a), N(\beta)$ be as in Theorem 1.8

$$
\frac{a}{\beta}=\frac{(a+b \sqrt{3})(c-d \sqrt{3})}{(c+d \sqrt{3})(c-d \sqrt{3})}=\frac{a c-3 b d}{c^{2}-3 d^{2}}+\frac{(b c-a d) \sqrt{3}}{c^{2}-3 d^{2}}
$$

Then

$$
\begin{aligned}
N\left(\frac{a}{\beta}\right) & =\left(\frac{a c-3 b d}{c^{2}-3 d^{2}}\right)^{2}-3\left(\frac{b c-a d}{c^{2}-3 d^{2}}\right)^{2} \\
& =\frac{a^{2} c^{2}+9 b^{2} d^{2}-3 b^{2} c^{2}-3 a^{2} d^{2}}{\left(c^{2}-3 d^{2}\right)^{2}}=\frac{a^{2}\left(c^{2}-3 d^{2}\right)-3 b^{2}\left(c^{2}-3 d^{2}\right)}{\left(c^{2}-3 d^{2}\right)^{2}} \\
& =\frac{a^{2}-3 b^{2}}{c^{2}-3 d^{2}}=\frac{N(a)}{N(\beta)} .
\end{aligned}
$$

If $a \cdot \beta=\gamma$ in $\operatorname{Ra}[\sqrt{3}]$ we say that a and β are divisors of γ. Further a divides γ in $\operatorname{Ra}[\sqrt{3}]$ if and only if there is a β in $\operatorname{Ra}[\sqrt{3}]$ such that $a \beta=\gamma$.

A number of $\operatorname{Ra}[\sqrt{3}]$ is called a unit if it divides 1 .

Theorem 1.10: A number ϵ of $\operatorname{Ra}[\sqrt{3}]$ is a unit if and only if $N(\epsilon)= \pm 1$. So $N(a+b \sqrt{3})=a^{2}-3 b^{2}= \pm 1$ if $a+b \sqrt{3}$ is a unit.

Conversely if $N(a+b \sqrt{3})= \pm 1$, then $a+b \sqrt{3}$ is a unit.
If α is a unit then there exists a β such that $\alpha \beta=1$.

$$
\begin{aligned}
N(a \beta) & =N(\alpha) N(\beta) \quad \text { by Theorem } 1.8 \\
N(1) & =N(\alpha) N(\beta) \\
1 & =N(\alpha) N(\beta)
\end{aligned}
$$

So $N(a)= \pm 1$ and $N(\beta)= \pm 1$. Conversely if $N(a)= \pm 1$, then

$$
a \bar{a}= \pm 1
$$

Therefore a divides l and a is a unit.

Theorem 1.11: All units of $\mathrm{Ra}[\sqrt{3}]$ are of the form $\pm(2+\sqrt{3})^{\mathrm{n}}$, where n is a positive or negative rational integer or 0 and all numbers of this form are units of $\operatorname{Ra}[\sqrt{3}]$.

If $\epsilon=2+\sqrt{3}$, then every positive power n of ϵ is a unit since $N\left(\epsilon^{n}\right)=[N(\epsilon)]^{n}=[\pm 1]^{n}= \pm 1$; hence ϵ^{n} is a unit. Furthermore ϵ^{0} is a unit for $\epsilon^{0}=1$. Since $\epsilon_{\epsilon}^{n-n}=1, \epsilon^{-n}$ is a unit also, or all negative powers of ϵ are units.

Different powers of ϵ give different units. $2+\sqrt{3}$ is greater than 1 so the positive powers will all be greater than 1 and will continually increase; hence no two positive powers are equal. Also $\epsilon^{-\mathrm{n}}=\frac{1}{\epsilon^{n}}$ so ϵ^{-1} is less than 1 and ϵ^{-n} will continually decrease as n increases; therefore no two negative powers will be the same nor will they equal any positive power. Hence every power of ϵ is a unit of $\operatorname{Ra}[\sqrt{3}]$ and two different powers always give different units.

We must further show that the powers of ϵ multiplied by ± 1 are all the units of $\mathrm{Ra}[\sqrt{3}]$; that is, if η be any unit of $\operatorname{Ra}[\sqrt{3}]$ then $\eta= \pm \epsilon^{n}$ where n is positive, negative or zero.

If $a+b \sqrt{3}$ is any unit of $\operatorname{Ra}[\sqrt{3}]$, then $a-b \sqrt{3},-a+b \sqrt{3}$ and $-\mathrm{a}-\mathrm{b} \sqrt{3}$ are also units of $\mathrm{Ra}[\sqrt{3}]$. In other words the number, its conjugate and their associates, associates being numbers which are the same except for a unit factor, are each units of $\mathrm{Ra}[\sqrt{3}]$ if any are.

Denote that one of these four units which has both terms posifive by $\eta_{1}(b$ may be 0$)$, the remaining three will be $-\eta_{1}, \quad \eta_{1}^{\prime}$, and $-\eta_{j}^{\prime}$.

Since $\quad \eta_{1} \geq 1, \quad$ it follows that

$$
\begin{equation*}
\eta_{l}=\epsilon^{n} \quad \text { or } \quad \epsilon^{n}<\eta_{l}<\epsilon^{n+l} \tag{1}
\end{equation*}
$$

where n is a positive integer or zero. Dividing (l), the latter expression, by ϵ^{n} we have

$$
\begin{equation*}
1<\frac{\eta_{1}}{\epsilon}{ }_{\epsilon}^{n}<\epsilon \tag{2}
\end{equation*}
$$

where $\frac{\eta_{l}}{\epsilon^{n}}$ is a unit for the quotient of two units is a unit. So let

$$
\frac{\eta_{1}}{\epsilon_{\epsilon}}=x+y \sqrt{3} .
$$

Then

$$
(x+y \sqrt{3})(x-y \sqrt{3})= \pm 1
$$

and since according to
(2) $x+y \sqrt{3}>1$ then $|x-y \sqrt{3}|<1$ or
$-1<x-y \sqrt{3}<1$. This, combined with

$$
\begin{equation*}
1<x+y \sqrt{3}<2+\sqrt{3} \tag{3}
\end{equation*}
$$

gives $0<2 \mathrm{x}<3+\sqrt{3}$ and since x is a rational integer $\mathrm{x}=1$ or $\quad \mathrm{x}=2$.

$$
\text { But if } x=1 \text { (3) becomes }
$$

$$
1<1+y \sqrt{3}<2+\sqrt{3}
$$

which implies that $y=1$. So $\frac{\eta_{1}}{\epsilon}=1+\sqrt{3}$ but $1+\sqrt{3}$ is not a unit since $N(1+\sqrt{3}) \neq \pm 1$. Furthermore for $x=2$ we have

$$
1<2+y \sqrt{3}<2+\sqrt{3}
$$

There are no integral values of y which will satisfy this inequality. Positive values make $2+y \sqrt{3} \geq 2+\sqrt{3}$, negative values make $2+y \sqrt{3}<1$, and if $y=0$ then $\frac{\eta_{1}}{\epsilon}=2$, but 2 is not a unit since $N(2) \neq \pm 1$. Hence (1) is impossible and we have $\eta_{1}=\epsilon^{n}$, which implies that $-\eta_{1}=-\epsilon{ }^{n} ;$ and since $\eta_{1} \eta_{l}^{\prime}= \pm 1$, $\eta_{1}^{\prime}= \pm \frac{l}{\epsilon}= \pm \epsilon^{-n}$ and $-\eta_{1}^{\prime}=\bar{\mp}_{\epsilon}^{-n}$. Therefore, if η be any one of the four units $\eta_{1},-\eta_{1}, \eta_{1}^{\prime},-\eta_{1}^{\prime}$, that is any unit of $\operatorname{Ra}[\sqrt{3}]$, we have $\eta= \pm \epsilon^{n}$ where n is positive, negative or zero.

Prime Numbers of $\mathrm{Ra}[\sqrt{3}]$

Nonzero numbers of $\operatorname{Ra} \sqrt{3}$ which are not units but are divisible only by units are called prime numbers. To determine whether an integer is prime or composite we may use methods similar to that of the following example.

Assume

$$
5+\sqrt{3}=(a+b \sqrt{3})(c+d \sqrt{3})
$$

Then

$$
N(5+\sqrt{3})=N(a+b \sqrt{3}) N(c+d \sqrt{3})
$$

or

$$
22=\left(a^{2}-3 b^{2}\right)\left(c^{2}-3 d^{2}\right)
$$

There are three cases to consider:
i) $\quad a^{2}-3 b^{2}= \pm 1$

$$
c^{2}-3 d^{2}= \pm 22
$$

ii) $\quad a^{2}-3 b^{2}=-11$

$$
c^{2}-3 d^{2}=-2
$$

iii) $\quad a^{2}-3 b^{2}=+11$

$$
c^{2}-3 d^{2}=+2
$$

Case i) has $a+b \sqrt{3}$ a unit and need not be considered. Case ii) has solution $a=\mp 8, b= \pm 5, c= \pm 5, d= \pm 3$ or

$$
5+\sqrt{3}=(-8+5 \sqrt{3})(5+3 \sqrt{3})=(8-5 \sqrt{3})(-5-3 \sqrt{3}) .
$$

Since neither of the integers $-8+5 \sqrt{3}$ or $5+3 \sqrt{3}$ is a unit, $5+\sqrt{3}$ is a composite number. Other solutions of case ii) include
$a= \pm 17, \quad b= \pm 10, \quad c=\mp 5, \quad d= \pm 3$ or

$$
5+\sqrt{3}=(17+10 \sqrt{3})(-5+3 \sqrt{3})=(-17-10 \sqrt{3})(5-3 \sqrt{3}) .
$$

Case iii) has solution $a=\overline{+} 1, b= \pm 2, c= \pm 1, d= \pm 1$ or

$$
5+\sqrt{3}=(-1+2 \sqrt{3})(1+\sqrt{3})=(1-2 \sqrt{3})(-1-\sqrt{3}) .
$$

We see however, that each of these factorizations can be derived from any particular one by multiplying the factors by suitable units, and hence are not different, except for unit factors; that is

$$
\begin{aligned}
-8+5 \sqrt{3}=\epsilon^{-1}(-1+2 \sqrt{3}) & 5+3 \sqrt{3}=\epsilon^{1}(1+\sqrt{3}) \\
17+10 \sqrt{3}=\epsilon^{2}(-1+2 \sqrt{3}) & -5+3 \sqrt{3}=\epsilon^{-2}(1+\sqrt{3})
\end{aligned}
$$

where $\epsilon=2+\sqrt{3}$ and we have in general

$$
5+\sqrt{3}=\left[\pm \epsilon^{\mathrm{n}}(-1+2 \sqrt{3})\right]\left[\pm \epsilon^{-\mathrm{n}}(1+\sqrt{3})\right] .
$$

Theorem 1.12: If a is any integer of $\operatorname{Ra}[\sqrt{3}]$ and β is any integer of $\operatorname{Ra}[\sqrt{3}]$ different fromzero, there exists an integer γ of $\operatorname{Ra}[\sqrt{3}]$ such that

$$
\begin{equation*}
|N(\alpha-\gamma \beta)|<|N(\beta)| . \tag{1}
\end{equation*}
$$

Let $\frac{a}{\beta}=a+b \sqrt{3}$ where $a=r+r_{1}, b=s+s, \quad r$ and s being the rational integers nearest to a and b respectively, and hence $\left|r_{1}\right| \leq \frac{1}{2}, \quad\left|s_{1}\right| \leq \frac{1}{2}$. We then show that $\gamma=r+s \sqrt{3}$ will fulfill the required conditions.

$$
\text { Since } \frac{a}{\beta}-\gamma=r_{1}+s_{1} \sqrt{3}
$$

$$
\left|N\left(\frac{a}{\beta}-\gamma\right)\right|=\left|r_{1}^{2}-3 s_{1}^{2}\right| \leq \frac{3}{4}
$$

whence

$$
\left|N\left(\frac{a}{\beta}-\gamma\right)\right|=1
$$

or multiplying by $|N(\beta)|$,

$$
|N(\alpha-\gamma \beta)|<|N(\beta)|
$$

Example: Consider the integers of $\operatorname{Ra}[\sqrt{3}] \quad a=2+3 \sqrt{3}$ and $\beta=3+\sqrt{3}$

$$
\frac{a}{\beta}=\frac{2+3 \sqrt{3}}{3+\sqrt{3}}=\frac{(2+3 \sqrt{3})(3-\sqrt{3})}{6}=\frac{-3+7 \sqrt{3}}{6}=-\frac{1}{2}+\frac{7}{6} \sqrt{3}=a+b \sqrt{3}
$$

where $a=r+r_{1}=-1+\frac{1}{2}, \quad b=s+s_{1}=1+\frac{1}{6} . \quad$ Then

$$
\gamma=r+s \sqrt{3}=-1+\sqrt{3} .
$$

Then

$$
|N(a-\gamma \beta)=|N[(2+3 \sqrt{3})-(-1+\sqrt{3})(3+\sqrt{3})]|=|N(2+\sqrt{3})|=1
$$

and

$$
|N(\beta)|=|N(3+\sqrt{3})|=6 .
$$

So

$$
|N(a-\gamma \beta)|=1<6=|N(\beta)| .
$$

Hence there exists an integer γ in $\operatorname{Ra}[\sqrt{3}]$ such that the inequality (1) is true.

Theorem 1.13: If a and β are any two integers of $\mathrm{Ra}[\sqrt{3}]$ prime to each other, there exist two integers, σ and η of $\operatorname{Ra}[\sqrt{3}]$ such that

$$
a \sigma+\beta \eta=1 .
$$

If either a or β is a unit then the existence of the required integers σ and η is evident. If neither a or β is a unit, the determination of σ and η can be made to depend upon the determination of a corresponding pair of integers σ_{1} and η_{1} for a pair of integers a_{1} and β_{1}, prime to each other and such that the absolute value of the norm of one of them is less than both $|N(a)|$ and $|N(\beta)|$.

Assume $|N(\beta)| \leq|N(a)|, \quad$ which does not limit the generality of the proof.

By Theorem l. 12 there exists an integer γ such that

$$
|N(\alpha-\gamma \beta)|<|N(\beta)| .
$$

Then β and $a-\gamma \beta$ are a pair of integers a_{1}, β_{1}, prime to each other and such that the absolute value of the norm of one of them is less than both $|N(a)|$ and $|N(\beta)|$.

If now, two integers σ_{1}, η_{1}, exist such that $a_{1} \sigma_{1}+\beta_{1} \eta_{1}=1$; that is

$$
\beta \sigma_{1}+(a-\gamma \beta) \eta_{1}=1,
$$

so

$$
a \eta_{1}+\beta\left(\sigma_{1}-\gamma \eta_{1}\right)=1
$$

and hence $\sigma=\eta_{1}$ and $\eta=\sigma_{1}-\gamma \eta_{1}$.
If neither $\quad \alpha_{1}$ nor $\quad \beta_{1}$ is a unit the determination of σ_{1} and η_{1} for a_{1} and β_{1} may be made to depend similarly upon that of σ_{2} and η_{2} for a pair of integers α_{2} and β_{2} prime to each other and such that the absolute value of the norm of one of them is less than both $\left|N\left(a_{1}\right)\right|$ and $\left|N\left(\beta_{1}\right)\right|$.

By a continuation of this process we are able to always make the determination of σ and η depend eventually upon that of σ_{n} and η_{n} for a pair of integers a_{n} and β_{n} one of which is a unit. Since the existence of σ_{n} and η_{n} is evident, the existence of σ and η is proved.

Example: Consider $\alpha=2+3 \sqrt{3}$ and $\beta=3+\sqrt{3} . a$ and β are relatively prime since $a=2+3 \sqrt{3}$ is a prime number of $\mathrm{Ra}[\sqrt{3}]$ and a is not a factor of β. If β were divisible by a then a γ would exist such that $a_{\gamma}=\beta$. But, if $a_{\gamma}=\beta$ then $N(\alpha) N(\gamma)=N(\beta)$ or $(-23)(N(\gamma))=6$ or $N(\gamma)=\frac{-6}{23}$. There is no
γ in $\operatorname{Ra}[\sqrt{3}]$ such that $N(\gamma)=\frac{-6}{23}$. So a and β are relatively prime and

$$
|N(\beta)|=6<23=|N(a)|
$$

Is therea σ and η in $\operatorname{Ra}[\sqrt{3}]$ such that $a \sigma+\beta \eta=1$? By Theorem l.l2 there exists γ such that

$$
|N(\alpha-\gamma \beta)|<|N(\beta)| \quad \text { i. e. } \quad \gamma=-1+\sqrt{3} .
$$

So

$$
\begin{aligned}
a-\gamma \beta & =2+\sqrt{3}=\beta_{1} \\
\beta & =3+\sqrt{3}=a_{1} .
\end{aligned}
$$

Then

$$
a_{1} \sigma_{1}+\beta_{1} \eta_{1}=1
$$

or

$$
\begin{equation*}
\beta \sigma_{1}+(\alpha-\gamma \beta) \eta_{1}=1 . \tag{1}
\end{equation*}
$$

But $a-\gamma \beta$ is a unit; therefore let η_{l} be its conjugate or associate of its conjugate and σ_{1} be zero. So (1) becomes

$$
(3+\sqrt{3})(0)+(2+\sqrt{3})(2-\sqrt{3})=1 .
$$

From (1) $\sigma=\eta_{1}$ and $\eta=\sigma_{1}-\gamma \eta_{1}$. So $\sigma=2-\sqrt{3}$ and $\eta=0-(-1+\sqrt{3})(2-\sqrt{3})=5-3 \sqrt{3}$ and

$$
a \sigma+\beta \eta=(2+3 \sqrt{3})(2-\sqrt{3})+(3+\sqrt{3})(5-3 \sqrt{3})=-5+4 \sqrt{3}+6-4 \sqrt{3}=1 .
$$

Hence there is a σ and an η in $\operatorname{Ra}[\sqrt{3}]$ to satisfy the required condition.

Corollary 1.13: If a and β are any two integers of $\operatorname{Ra}[\sqrt{3}]$, there exists a common divisor, δ, of α and β such that every common divisor of a and β divides δ, and there exists two integers, σ and η, of $\operatorname{Ra}[\sqrt{3}]$ such that $a \sigma+\beta \eta=\delta$.

If a and β are relatively prime then by Theorem 1. 13 $a \sigma+\beta \eta=1$ (l) and $l=\delta$.

If α and β are not prime to each other then $a=a_{1} \delta$ and $\beta=\beta_{1} \delta$ where a_{1} and β_{1} are relatively prime. Then if $a=a_{1}$ and $\quad \beta=\beta_{1}$ in (1) and we multiply by δ we have

$$
a_{1} \delta \sigma+\beta_{1} \delta \eta=\delta
$$

or

$$
a \sigma+\beta \eta=\delta .
$$

Every common divisor of a and β divides δ and δ is the divisor sought. The divisor δ is called the greatest common divisor of α and β.

Theorem 1.14: If the product of two integers α and β of $\operatorname{Ra}[\sqrt{3}]$ is divisible by a prime number θ at least one of the integers is
divisible by θ.
Let $\alpha \beta=\theta \gamma$ where γ is an integer of $\operatorname{Ra}[\sqrt{3}]$ and assume a not to be divisible by θ. Then a and θ are relatively prime and from Theorem 1.13 there exist two integers σ and η of $\operatorname{Ra}[\sqrt{3}]$ such that $a \sigma+\theta \eta=1$.

Multiplying by β the equation becomes:

$$
\begin{equation*}
\beta a \sigma+\beta \theta \eta=\beta . \tag{1}
\end{equation*}
$$

But $a \beta=\theta \gamma$ so (1) is $\theta \gamma \sigma+\beta \theta \eta=\beta$ or $\theta(\gamma \sigma+\beta \eta)=\beta$ where $(\gamma \sigma+\beta \eta)$ is an integer of $\operatorname{Ra}[\sqrt{3}]$, hence β is divisible by θ.

Corollary 1.14: If the product of any number of integers of $\mathrm{Ra}[\sqrt{3}]$ is divisible by a prime number, θ, at least one of the integers is divisible by θ.

If $a_{1} \cdot a_{2} \cdot a_{3} \cdots a_{n}=\theta \beta$ (1) where $a_{1}, \cdots, a_{n}, \theta, \beta$, in
$\operatorname{Ra}[\sqrt{3}]$ and $\gamma=a_{2} \cdot a_{3} \cdots a_{n}$ then (1) may be written as $a_{1} \gamma=\theta \beta$.
By Theorem 1. 14, θ divides a_{1} or γ. If a_{1} is
divisible by θ the corollary is proved. If instead γ is divisible by θ then since $\gamma=a_{2} \gamma_{1}, \quad \theta$ divides a_{2} or γ_{1}. Continuing in the same manner as before the number of factors in question is reduced one at a time until only two are left. Then by Theorem 1.14 one of the other must be divisible by θ.

Theorem 1.15: (Unique Factorization Theorem) Every integer of $\mathrm{Ra}[\sqrt{3}]$ can be represented in one and only one way as the product of prime numbers.

Let a be an integer of $\operatorname{Ra}[\sqrt{3}]$. If a is not a prime number, then $a=\beta \gamma$ where β and γ are integers of $\operatorname{Ra}[\sqrt{3}]$ neither of which is a unit. It follows then that $N(\alpha)=N(\beta) N(\gamma)$. Since $N(\beta) \neq \pm 1$ and $N(\gamma) \neq \pm 1$, we have $|N(\beta)|<|N(a)|$ and $|N(\gamma)|<|N(a)|$.

If β is not a prime number we have as before $\beta=\beta_{1} \gamma_{1}$ where β_{l} and γ_{l} are integers neither of which is a unit, hence $\left|N\left(\beta_{1}\right)\right|<|N(\beta)|$ and $\left|N\left(\gamma_{1}\right)\right|<|N(\beta)|$. If β_{1} is not a prime number, we proceed in the same manner and, since $|N(\beta)|$, $\left|N\left(\beta_{1}\right)\right|, \quad\left|N\left(\beta_{2}\right)\right| \cdots \quad$ form a decreasing series of positive rational integers, we must, after a finite number of such factorizations, reach in the series $\beta, \beta_{1}, \beta_{2}, \beta_{3} \cdots$ a prime number θ_{1}. Thus a has the prime factor θ_{1} and we have $a=\theta_{1} a_{1}$.

Proceeding similarly with a_{1}, incase it is not a prime number, we obtain $a_{1}=\theta_{2} a_{2}$ where θ_{2} is a prime number, and hence $a=\theta_{1} \theta_{2} a_{2}$.

Continuing this process we must reach in the series a, a_{1}, a_{2}, \cdots a prime number θ_{n} since $|N(a)|,\left|N\left(a_{1}\right)\right|$, $\left|N\left(a_{2}\right)\right| \cdots \quad$ form a decreasing series of positive rational integers. We have thus $a=\theta_{1} \theta_{2} \theta_{3} \cdots \theta_{\mathrm{n}}$ where the θ^{\prime} s are all prime
numbers; that is a can be represented as a product of a finite number of factors all of which are prime numbers.

We now need to show that this representation is unique.
Suppose that $a=\phi_{1} \phi_{2} \phi_{3} \cdots \phi_{m}$; then it follows that
$\theta_{1} \theta_{2} \theta_{3} \cdots \theta_{\mathrm{n}}=\phi_{1} \phi_{2} \phi_{3} \cdots \phi_{\mathrm{m}}$. From Corollary 1. 14 we can conclude that if $\theta_{1} \theta_{2} \theta_{3} \cdots \theta_{\mathrm{n}}=\phi_{1} \phi_{2} \phi_{3} \cdots \phi_{\mathrm{m}}$ then at least one of the $\phi^{\prime} s$ say ϕ_{1} is divisible by θ_{1} and hence associated with θ_{1} that is $\phi_{1}=\epsilon{ }_{1} \theta_{1}$, where ϵ_{1} is a unit. Dividing by θ_{1} we have $\theta_{2} \theta_{3} \cdots \theta_{\mathrm{n}}=\epsilon_{1} \phi_{2} \phi_{3} \cdots \phi_{\mathrm{m}}$. From this it follows that at least one of the remaining ϕ^{\prime} s say ϕ_{2} is divisible by θ_{2} and hence associated with it. Thus $\phi_{2}=\epsilon_{2} \theta_{2}$ where ϵ_{2} is a unit, and hence

$$
\theta_{3} \theta_{4} \cdots \theta_{\mathrm{n}}=\epsilon_{1}{ }_{2} \phi_{3} \phi_{4} \cdots \phi_{\mathrm{m}}
$$

Proceeding in this manner we see that with each θ there is associated at least one ϕ, and, if two or more θ^{\prime} s be associated with one another, at least as many ϕ 's are associated with these θ 's and hence with each other.

In exactly the same manner we can prove that with each ϕ there is associated at least one θ, and, if two or more ϕ^{\prime} s be associated with one another, at least as many θ^{\prime} s are associated with these ϕ 's and hence with one another.

Hence since we always consider two associated factors as the
same, the two representations are identical. For if in our representation there occur e factors associated with a certain prime, there will be exactly e factors in the other representation associated with the same prime.

We can write every integer, a, of $\operatorname{Ra}[\sqrt{3}]$ in the form $a=\epsilon \theta_{1}{ }^{e}{ }_{1} \theta_{2}{ }^{e} \cdots \theta_{n}{ }^{\mathrm{e}}{ }^{n}$ where $\theta_{1}, \theta_{2} \cdots \theta_{n}$ are the unassociated prime factors of a and ϵ a suitable unit. This representation is unique.
II. THE QUADRATIC INTEGRAL DOMAIN $\operatorname{Ra}[\sqrt{-15}]$

Consider a quadratic equation $p x^{2}+q x+r=0, p \neq 0$
irreducible over the rational field; again we may assume without loss of generality that p, q, and r are rational integers. Now consider the case where $q^{2}-4 \mathrm{pr}=-15 \mathrm{k}$ where $\mathrm{k}=\mathrm{t}^{2}$ and t is a nonzero rational integer.
ρ is one of the roots of the equation. Since the equation is irreducible, ρ is not a rational number. Denote by $\operatorname{Ra}(\rho)$ the set of numbers $a+b \rho$ where a and b range over the rational numbers.

Theorem 2.1: There exists a rational integer m without a repeated factor such that $\operatorname{Ra}(\rho)=\operatorname{Ra}(\sqrt{m})$.

For the case referred to above $m=-15$. Since the proof is similar to that for $m=3$, we omit the proof and consider the following example:

Example: Consider the equation $2 x^{2}-x+17=0, \quad \rho \quad$ is one of its roots so

$$
\rho=\frac{1+\sqrt{-135}}{4}=\frac{1}{4}+\frac{3}{4} \sqrt{-15 .}
$$

Then

$$
a+b \rho=a+b\left(\frac{1}{4}+\frac{3}{4} \sqrt{-15}\right)=\left(a+\frac{1}{4} b\right)+\frac{3 b}{4} \sqrt{-15}=c+d \sqrt{-15}
$$

and since

$$
\rho=\frac{1}{4}+\frac{3}{4} \sqrt{ }-15, \quad \sqrt{-15}=\frac{4 \rho-1}{3}
$$

and

$$
a+b \sqrt{-15}=a+b\left(\frac{4}{3} \rho-\frac{1}{3}\right)=\left(a-\frac{1}{3} b\right)+\left(\frac{4}{3} b\right) \rho=c+d \rho
$$

where a, b, c, d in both cases are rational. Hence numbers of the form $a+b \rho$ may be expressed as $c+d \sqrt{-15}$ and conversely. Therefore $\operatorname{Ra}(\rho)=\operatorname{Ra}(\sqrt{-15})$.

Theorem 2.2: The set $\operatorname{Ra}(\sqrt{-15})$ is a field.
Since the complex numbers form a field and $\operatorname{Ra}(\sqrt{-15})$ is a subset of the complex field the associative, commutative and distributive laws hold for addition and multiplication. It remains to be shown that the set is closed under the two operations, the identity element for each operation is contained in the set and every element except the additive identity in $\operatorname{Ra}(\sqrt{-15})$ has its reciprocal in $\operatorname{Ra}(\sqrt{-15})$.
i) closure:

$$
\left(a_{1}+b_{1} \sqrt{-15)+\left(a_{2}+b_{2} \sqrt{-15}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \sqrt{-15} .{ }^{-15}}\right.
$$

hence addition is closed.
hence multiplication is closed.
ii) identities:

$$
(c+d \sqrt{-15})+(0+0 \sqrt{-15})=c+d \sqrt{-15}
$$

Therefore $0+0 \sqrt{-15}=0$ is the additive identity.

$$
(c+d \sqrt{-15})(1+0 \sqrt{-15})=c+d \sqrt{-15}
$$

Therefore $1+0 \sqrt{-15}=1$ is the multiplicative identity.
iii) inverses:
$(c+d \sqrt{-15})+(-c-d \sqrt{-15})=0+0 \sqrt{-15}=0$
and every element of $\mathrm{Ra}(\sqrt{-15})$ has an additive inverse in $\operatorname{Ra}(\sqrt{-15})$.

$$
(c+d \sqrt{-15})\left(\frac{1}{c+d \sqrt{-15}}\right)=1 \quad c \neq d \neq 0
$$

since additive identity excluded.
$\frac{1}{c+d \sqrt{-15}}$ is an element of $\operatorname{Ra}(\sqrt{-15})$ since
$\frac{1}{c+d \sqrt{-15}}=\frac{c-d \sqrt{ }-15}{c^{2}+15 d^{2}}=\frac{c}{c^{2}+15 d^{2}}-\frac{d}{c^{2}+15 d^{2}} \sqrt{-15}$
where c, d are rational and $c^{2}+15 d^{2} \neq 0$.

If $c^{2}+15 d^{2}=0$ then $c^{2}=-15 d^{2}$ or $\frac{c^{2}}{d^{2}}=-15$,
$d \neq 0$ for the previous step would imply if $d=0$
that $c=0$ contrary to the given statement $c \neq d \neq 0$.
So $\frac{c}{d}=\sqrt{-15}$ but $\frac{c}{d}$ is rational which is a contradiction and $c^{2}+15 d^{2} \neq 0$.

The proofs to many of the theorems of $\operatorname{Ra}(\sqrt{-15})$ are similar to the proofs of the same theorems of $\operatorname{Ra}(\sqrt{3})$. When this is the case the theorem will be stated without proof.

Theorem 2.3: Every number of $\operatorname{Ra}(\sqrt{-15)}$ satisfies a quadratic equation with rational coefficients.

If $a=a+b \sqrt{-15}$ is any number of $\operatorname{Ra}(\sqrt{-15)}$, then its conjugate is $\bar{a}=a-b \sqrt{-15}$ and a satisfies the equation

$$
(x-a)^{2}+15 b^{2}=x^{2}-2 a x+a^{2}+15 b^{2}=0
$$

This equation is called the principal equation of $a=a+b \sqrt{-15 . ~ T h e ~}$ constant term $N(a+b \sqrt{-15})=a^{2}+15 b^{2}$ is called the norm of $a+b \sqrt{-15}$ and $N(a)=a \bar{a}$. The negative of the coefficient of $x, T(a+b \sqrt{-15})=2 a$ is called the trace of $a+b \sqrt{-15}$. Since a and b are rational, $a^{2}+15 b^{2}$ and $2 a$ are also rational.

The integers of $\operatorname{Ra}(\sqrt{-15})$ are the numbers of the field $\operatorname{Ra}(\sqrt{-15})$ which will satisfy equations of the form $x^{2}+p x+q=0$
where p and q are rational integers. These numbers constitute the integral domain $\mathrm{Ra}[\sqrt{-15}]$ of $\mathrm{Ra}(\sqrt{-15})$.

Theorem 2.4: Every rational integer is in $\operatorname{Ra}[\sqrt{-15}]$. Every number of $\mathrm{Ra}[\sqrt{-15}]$ which is rational is a rational integer.

Theorem 2.5: The conjugate of a number of $\operatorname{Ra}[\sqrt{-15}]$ is in $\operatorname{Ra}[\sqrt{ }-15]$.

Theorem 2.6: The numbers of $\mathrm{Ra}[\sqrt{-15}]$ are given by $a+b \sqrt{-15}$ where a and b are either rational integers or are both halves of odd integers.

Every number $a=a+b \sqrt{-15}$ of $R a(\sqrt{-15})$ satisfies the principal equation $x^{2}-2 a x+a^{2}+15 b^{2}=0$. The integers of $\operatorname{Ra}(\sqrt{-15})$ will satisfy equations of the form $x^{2}+p x+q=0$ where p and q are rational integers. Therefore $2 a=p \quad a^{2}+15 b^{2}=q$ are rational integers.

If $a+b \sqrt{-15}$ is a number of $\operatorname{Ra}(\sqrt{-15)}$ then a and b are rational or $\frac{a_{1}}{c_{1}}=a, \frac{b_{1}}{c_{1}}=b$ where a_{1}, b_{1}, c_{1} are relatively prime rational integers. Then

$$
\frac{2 a{ }_{1}}{c_{1}}=p \quad \text { (1) and } \quad \frac{a_{1}^{2}+15 b^{2}}{c_{1}^{2}}=q \quad \text { (2) }
$$

So $c_{1}=2$ or $c_{1}=1$ for unless $c_{1}=2$ or $c_{1}=1$ by (1) c_{1} and a_{1} would have a common factor which would also be a fartor of b_{1} by (2) contrary to our hypothesis that a_{1}, b_{1} and c_{1} are relatively prime. If $c_{1}=2$ then by (2) $c_{1}^{2}=4$ is a factor of $a_{l}^{2}+15 b_{l}^{2}$. If a_{1} is odd and b_{l} is odd then

$$
\begin{aligned}
& a_{1}^{2}+15 b_{1}^{2}=(2 n+1)^{2}+15(2 m+1) \text { where } m \text { and } n \text { are rational } \\
& \text { integers }
\end{aligned}
$$

Therefore if $c_{1}=2$ and a_{1} and b_{l} are odd then $a=\frac{a_{1}}{2}$ and $\mathrm{b}=\frac{\mathrm{b}_{1}}{2}$. If a_{1} and b_{1} are both even they have a common factor or with c_{1} contrary to our hypothesis. If a_{1} is odd and b_{l} even $a_{1}^{2}+15 b_{1}^{2}$ is odd and not divisible by 4 . Similarly if a_{1} is even and b_{1} is odd. If $\mathrm{c}_{1}=\mathrm{l}$ then $\mathrm{a}_{1}=\mathrm{a}$ and $\mathrm{b}_{1}=\mathrm{b}$ or a and b are rational integers.

The numbers 1 and $\frac{1}{2}+\frac{1}{2} \sqrt{-15}$ form a basis for $\operatorname{Ra}[\sqrt{-15}]$. In other words every number of the domain $\operatorname{Ra}[\sqrt{-15}]$ is given without repetition in the form $a(1)+b\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15)}\right.$ where a and b range independently over all rational integers and conversely every such number is in the domain.

Theorem 2.7: If 1 and $\frac{1}{2}+\frac{1}{2} \sqrt{-15}$ is a basis of $\operatorname{Ra}[\sqrt{-15}]$, every basis of $\operatorname{Ra}[\sqrt{-15}]$ is given by $\theta_{1}^{\prime}=a_{11}+a_{12}\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)$, $\theta_{2}^{\prime}=a_{21}+a_{22}\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right) \quad$ where

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|= \pm 1
$$

Example: Solving the equations given in the general theorem, Theorem1.7, for θ_{1} and θ_{2}

$$
\theta_{1}= \pm\left(\mathrm{a}_{22} \theta_{1}^{\prime}-\mathrm{a}_{12} \theta_{2}^{\prime}\right)
$$

and

$$
\theta_{2}= \pm\left(a_{21} \theta_{1}^{\prime}-a_{11} \theta_{2}^{\prime}\right)
$$

Therefore if $\quad \theta_{1}^{\prime}=\frac{21}{2}+\frac{5}{2} \sqrt{-15}, \quad \theta_{2}^{\prime}=4+\sqrt{-15} \quad$ is a basis then $\theta_{1}=1$ and $\theta_{2}=\frac{1}{2}+\frac{1}{2} \sqrt{-15}$ can be written in terms of it.

$$
\text { i. e. } \quad \begin{aligned}
1 & =\left[2\left(\frac{21}{2}+\frac{5}{2} \sqrt{-15}\right)-5(4+\sqrt{-15})\right] \\
& =[21+5 \sqrt{-15}-20-5 \sqrt{-15}] \\
& =1
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{2} \sqrt{-15} & =-\left[3\left(\frac{21}{2}+\frac{5}{2} \sqrt{-15}\right)-8(4+\sqrt{-15})\right] \\
& =-\left[\frac{63}{2}+\frac{15}{2} \sqrt{-15-32-8 \sqrt{-15}]}\right. \\
& =-\left[-\frac{1}{2}-\frac{1}{2} \sqrt{-15}\right] \\
& =\frac{1}{2}+\frac{1}{2} \sqrt{-15} .
\end{aligned}
$$

So $\theta_{1}=2 \theta_{1}^{\prime}-5 \theta_{2}^{\prime}$ and $\theta_{2}=-\left(3 \theta_{1}^{\prime}-8 \theta_{2}^{\prime}\right)$.

Theorem 2.8: The norm of a product is the product of the norms.

$$
N(a \beta)=N(a) N(\beta) .
$$

Theorem 2.9: The norm of a quotient is the quotient of the norms.

$$
N\left(\frac{a}{\beta}\right)=\frac{N(a)}{N(\beta)} \quad \beta \neq 0
$$

Theorem 2.10: A number ϵ of $\operatorname{Ra}[\sqrt{-15}]$ is a unit if and only if $N(\epsilon)= \pm 1$.

Theorem 2.11: The units of $\mathrm{Ra}[\sqrt{-15}]$ are ± 1.

$$
\text { If } \epsilon=a+b \sqrt{-15, ~ t h e n ~} N(\epsilon)=N(a+b \sqrt{-15})=a^{2}+15 b^{2}=+1
$$

since the norm of $a+b \sqrt{-15}$ is always positive. So this gives the solution $a= \pm 1, b=0$ hence ± 1 are the only units of $\operatorname{Ra}[\sqrt{ }-15]$.

The definitions concerning prime numbers of $\operatorname{Ra}[\sqrt{-15}]$ are identical to those of $\operatorname{Ra}[\sqrt{3}]$. Consider the following examples:

Example 1: To determine if $7+3 \sqrt{-15}$ is prime or composite let

$$
7+3 \sqrt{-15}=(a+b \sqrt{-15})(c+d \sqrt{-15})
$$

So

$$
N(7+3 \sqrt{-15})=N(a+b \sqrt{-15}) N(c+d \sqrt{-15})
$$

then

$$
\begin{gathered}
94=\left(a^{2}+15 b^{2}\right)\left(c^{2}+15 d^{2}\right) \\
\text { case i): } \quad a^{2}+15 b^{2}=2 \quad \text { or } \quad \text { case ii) } \quad a^{2}+15 b^{2}=1 \\
c^{2}+15 d^{2}=47
\end{gathered} \quad c^{2}+15 d^{2}=94 .
$$

Case i) is impossible since a and b must be rational integers or halves of odd integers. From ii) it follows that $a+b \sqrt{-15}$ is a unit. Hence $7+3 \sqrt{-15}$ is a prime in $\operatorname{Ra}[\sqrt{-15}]$.

Example 2: To determine whether 15 is prime or composite in $\operatorname{Ra}[\sqrt{-15}]$ let $15=(a+b \sqrt{-15})(c+d \sqrt{-15})$.

Then

$$
225=\left(a^{2}+15 b^{2}\right)\left(c^{2}+15 d^{2}\right)
$$

$$
\begin{aligned}
\text { case i) } \begin{aligned}
a^{2}+15 b^{2} & =1
\end{aligned} & \text { case ii) } & a^{2}+15 b^{2}=3 \\
c^{2}+15 d^{2} & =225 & c^{2}+15 d^{2}=75 \\
\text { case iii) } a^{2}+15 b^{2} & =5 & \text { case iv) } a^{2}+15 b^{2}=9 \\
c^{2}+15 d^{2} & =45 & c^{2}+15 d^{2}=25 \\
\text { case v) } a^{2}+15 b^{2} & =15 & \\
c^{2}+15 d^{2} & =15 &
\end{aligned}
$$

Case ii) and iii) are impossible since a and b must be rational integers or halves of odd integers. Case i) indicates that $a+b \sqrt{-15}$ is a unit. Case iv) yields a solution $a= \pm 3, b=0$, $c= \pm 5, d=0$ and case v) gives the solution $a=0, b= \pm 1, c=0$, $\mathrm{d}= \pm 1$. Hence 15 is composite in $\operatorname{Ra}[\sqrt{-15]}$ and $15=(3)(5)=(\sqrt{-15})(-\sqrt{-15})$. It must now be determined if these factors are prime.

$$
\begin{aligned}
& \text { If } 3=(a+b \sqrt{-15})(c+d \sqrt{ }-15) \text { then } 9=\left(a^{2}+15 b^{2}\right)\left(c^{2}+15 d^{2}\right) \\
& \text { case i) } a^{2}+15 b^{2}=1 \\
& c^{2}+15 d^{2}=9 \\
& \text { If } 5=(a+b \sqrt{-15})\left(c+d \sqrt{-15)} \text { then } 25=\left(a^{2}+15 b^{2}+15 b^{2}=3\right.\right. \\
& \text { (} 5=3 \\
& \left.2+15 d^{2}\right)
\end{aligned}
$$

$$
\begin{array}{lll}
\text { case i) } a^{2}+15 b^{2}=1 & \text { case ii) } & a^{2}+15 b^{2}=5 \\
c^{2}+15 d^{2}=25 & c^{2}+15 d^{2}=5 \\
\text { If }-\sqrt{-15}=(a+b \sqrt{-15})(c+d \sqrt{-15)} & \text { then } & 15=\left(a^{2}+15 b^{2}\right)\left(c^{2}+15 d^{2}\right) \\
\text { case i) } \quad a^{2}+15 b^{2}=1 & \text { case ii) } & a^{2}+15 b^{2}=3 \\
c^{2}+15 d^{2}=15 & c^{2}+15 d^{2}=5
\end{array}
$$

For each of these numbers case i) indicates $a+b \sqrt{-15}$ is a unit and case ii) is impossible since a and b must be rational integers or halves of odd integers. Therefore 3,5 and $-\sqrt{-15}$ are prime in $\operatorname{Ra}[\sqrt{ }-15]$.

$$
\text { If } \sqrt{-15}=(a+b \sqrt{-15})(c+d \sqrt{-15}) \text { then }-15=\left(a^{2}+15 b^{2}\right)\left(c^{2}+15 d^{2}\right)
$$

which is impossible since the norm of $a+b \sqrt{-15}$ and of $c+d \sqrt{-15}$ is always positive and $\sqrt{-15}$ is also prime in Ra$] \sqrt{-15}$].

Therefore there are two ways to factor 15 into prime factors in $\operatorname{Ra}[\sqrt{-15}]$ which illustrates that the property of unique factorization into primes does not exist in this domain.

In order to restore this property of unique factorization to $\mathrm{Ra}[\sqrt{-15}]$, we introduce the concept of ideal numbers.

If every pair of numbers of $\operatorname{Ra}[\sqrt{-15}]$ not both zero had a g.c.d. expressible linearly in terms of the numbers we could prove
unique factorization (see Theorems 1.12, 1.13, 1.14 and 1.15) It is the lack of a g.c.d. which is the fundamental difficulty. An example illustrates.

Consider the set S of positive integers which are $\equiv \mathrm{l}$ modulo 3. This set is closed under multiplication. A number of S may be called prime if it cannot be written as a product of two numbers of S. Factorization into primes is not unique:

$$
220=55 \cdot 4=22 \cdot 10
$$

where $55,4,22$, and 10 are all primes.
The difficulty is due to the absence from S of the other integers. We therefore introduce these missing numbers by using a notation involving only the numbers of S. Let (a, b) denote the g.c.d. of a and b so

$$
2=(4,22)=(4,10) \quad 11=(55,22) \quad 5=(55,10)
$$

Thus $220=(4,22)(4,10)(55,22)(55,10)$ is uniquely factored into ideal numbers.

The set of numbers $\alpha \sigma+\beta \eta=\delta$ of $\operatorname{Ra}[\sqrt{3}]$ consists exactly of the multiples of δ where δ is the g.c.d. of a and β or in symbols $\delta=(a, \beta), \alpha, \beta, \sigma$ and η are integers of $\operatorname{Ra}[\sqrt{3}]$. Set up the correspondence $a \sigma+\beta \eta \leftrightarrow(a, \beta)$. The problem is so to define multiplication of sets that this correspondence shall
be an isomorphism. In $\operatorname{Ra}[\sqrt{-15}]$, two numbers a and β do not necessarily have a g.c.d. The sets $a \sigma+\beta \eta$ where σ and η range independently over $\mathrm{Ra}[\sqrt{-15] ~ d o ~ e x i s t, ~ h o w e v e r, ~ a n d ~ a r e ~}$ the ideals of $\operatorname{Ra}[\sqrt{-15}]$.

An ideal of $\operatorname{Ra}[\sqrt{-15}]$ is a set of integral numbers of $\operatorname{Ra}[\sqrt{-15}]$ not all 0 which is a group relative to addition, and which is closed under multiplication by all the numbers of $R a[\sqrt{-15] .}$

Theorem 2.12: In every ideal there exist two numbers ω_{1}, ω_{2} such that the numbers of the ideal are given by $k_{1} \omega_{1}+k_{2} \omega_{2}$ where k_{1}, k_{2} range over the rational integers.

These numbers form a minimal basis for the ideal.
Let 1 and $\frac{1}{2}+\frac{1}{2} \sqrt{ }-15$ be a basis for $\operatorname{Ra}[\sqrt{-15] . ~ I f ~}$ $a \neq 0$ is a number of the ideal A, then A contains $\pm a \bar{a}= \pm \mathbb{N}(a)$, and so A containspositive integers. Let ω_{1} be the smallest positive integer in A. Of all numbers $\delta=\ell_{1}+\ell_{2}\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15)}\right.$ in A having $\ell_{2} \neq 0$, choose as ω_{2} one such in which ℓ_{2} is positive and minimal. Let $a=a_{1}+a_{2}\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)$ be any number of
A. Write

$$
a_{2}=\ell_{2} k_{2}+r_{2} \quad 0 \leq r_{2}<\ell_{2} .
$$

Then

$$
a-k_{2} \omega_{2}=\left(a_{1}-k_{2} \ell_{1}\right)+r_{2}\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15)}\right.
$$

is in A, and if r_{2} were not zero, the definition of ω_{2} would be violated. Thus $a-k_{2} \omega_{2}=a_{1}-k_{2} l_{1}=b$. Now write

$$
\mathrm{b}=\omega_{1} \mathrm{k}_{1}+\mathrm{r}_{1} \quad 0 \leq \mathrm{r}_{1}<\omega_{1}
$$

so that $a-k_{2} \omega_{2}-k_{1} \omega_{1}=r_{1}$. Since ω_{1} was minimal, $r_{1}=0$, and

$$
a=k_{1} \omega_{1}+k_{2} \omega_{2} .
$$

Corollary 2. 12: Every rational integer in A is divisible by ω_{1}.

Theorem 2.13: If ω_{1}, ω_{2} is a minimal basis for an ideal A in $\operatorname{Ra}[\sqrt{-15}]$, every minimal basis is given by

$$
\omega_{1}^{\prime}=a_{11} \omega_{1}+a_{12} \omega_{2} \quad \omega_{2}^{\prime}=a_{21} \omega_{1}+a_{22}{ }^{\omega 2},
$$

where the a's are rational integers such that

$$
\left|\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|= \pm 1
$$

and every such pair $\omega_{1}^{\prime}, \quad \omega_{2}^{\prime}$ is a minimal basis. The proof follows as in Theorem 1.7.

Theorem 2.14: Every ideal A has a minimal basis $k, \ell+r \theta$, where k is the smallest positive integer in A and $0 \leq \ell<k$.

In the proof of Theorem 2. 12, we saw that we could choose a basis $\omega_{1}=k, \quad \omega_{2}=m+r\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)$ where k was the smallest positive integer in A.

Set

$$
m=q k+\ell \quad 0 \leq \ell<k .
$$

The transformation $\quad \omega_{1}^{\prime}=\omega_{1}=k, \quad \omega_{2}^{\prime}=\omega_{2}-q \omega_{1}=\ell+r\left(\frac{1}{2}+\frac{1}{2} \sqrt{-1}\right) \quad$ is of determinant 1 , so the result follows from Theorem 2. 13 .

Theorem 2.15: Every ideal A has a minimal basis of the form $\omega_{1}=\mathrm{ra}, \quad \omega_{2}=\mathrm{r}\left(\mathrm{b}+\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right) \quad$ where $\quad \mathrm{r}$ and a are positive integers, and $0 \leq b<a$. Moreover

$$
\begin{aligned}
& b^{2}+b+\frac{1}{4}[1-(-15)] \equiv 0 \quad \bmod a \\
& b^{2}+b+4 \equiv 0 \quad \bmod a
\end{aligned}
$$

Such a basis is called a canonical basis.
Using the notation for Theorem 2. 14, since k is in A, $k\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)$ is in A. Set

$$
k=a r+t \quad 0 \leq t<r .
$$

Then

$$
\mathrm{k}\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)-\mathrm{a} \omega_{2}=-\mathrm{a} \ell+\mathrm{t}\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)
$$

is in A. This is impossible unless $t=0$, in which case r divides k . Hence $\omega_{1}=\mathrm{ra}, \quad \omega_{2}=\ell+\mathrm{r}\left(\frac{1}{2}+\frac{1}{2} \sqrt{ }-15\right)$.

Since $\ell+r\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)$ is in A, so is

$$
\ell\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)+r\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)^{2}=\ell\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)+r\left[\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)-4\right] .
$$

Set

$$
\ell=\mathrm{br}+\mathrm{t}_{1} \quad 0 \leq \mathrm{t}_{1}<\mathrm{r} .
$$

Then

$$
r\left[\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)-4\right]+\ell\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)-(b+1) \omega_{2}=-4 r+t_{1}\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)-(b+1) \ell
$$

is in A so ${ }^{t}{ }_{1}=0$ and r divides ℓ. Hence there is a basis

$$
\omega_{1}=r a, \quad \omega_{2}=r\left(b+\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)
$$

where r and a are positive. Since by Theorem 2.14, $0 \leq \mathrm{rb}<\mathrm{ra}$, we have $0 \leq \mathrm{b}<\mathrm{a}$.

Since $\omega_{2}\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)-(b+1) \omega_{2}=-r b^{2}-r b-4$ is a rational
integer in A, it is divisible by ra by Corollary 2.12. That is

$$
b^{2}+b+4 \equiv 0 \bmod a .
$$

Example: Consider the ideal $C=\left(5, \frac{5}{2}+\frac{1}{2} \sqrt{-15}\right)$ with minimal basis $\omega_{1}=5$ and $\omega_{2}=\frac{5}{2}+\frac{1}{2} \sqrt{-15}$. Then

$$
\omega_{1}=5=\mathrm{ra}
$$

and

$$
\begin{aligned}
\omega_{2} & =r\left(b+\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)=\frac{5}{2}+\frac{1}{2} \sqrt{-15} \\
& =r\left(b+\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)=\left(2+\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right) .
\end{aligned}
$$

So $r=1, b=2$ and $a=5$ and $0 \leq 2<5$ and $b^{2}+b+4=10 \equiv 0 \bmod 5$. Therefore ω_{1}, ω_{2} is a canonical basis. The product $A B$ of two ideals A and B is defined to be the set of all numbers obtained by multiplying every number of A by every number of B, and then adding and subtracting these numbers until no new ones are obtained. This set of numbers satisfies the definition of ideal.

For example: if $A=\left(\omega_{1}, \omega_{2}\right)$ and $B=\left(X_{1}, X_{2}\right)$ then $A B$ consists of the numbers $k_{1} \omega_{1} X_{1}+k_{2} \omega_{1} X_{2}+k_{3} \omega_{2} X_{1}+k_{4} \omega_{2} X_{2}$ where $k_{1}, k_{2}, k_{3}, k_{4}$ range over all numbers of $\operatorname{Ra}[\sqrt{ }-15]$.

If all the numbers of an ideal A are multiples by numbers of $\operatorname{Ra}[\sqrt{-15}]$ of one number a, the ideal A is called principal and is written (a).

If every number of an ideal A is replaced by its conjugate, the resulting set is an ideal \bar{A} called the conjugate of A.

Theorem 2.16: $\quad \overline{\mathrm{AB}}=\overline{\mathrm{A}} \overline{\mathrm{B}}$.

If

$$
A=\left(\omega_{1}, \omega_{2}\right) \quad \text { and } \quad B=\left(x_{1}, x_{2}\right)
$$

then

$$
\begin{aligned}
& \left.\overline{A B}=\overline{\left(\omega_{1} x_{1}\right.}, \overline{\omega_{1} x_{2}}, \overline{\omega_{2} x_{1}}, \overline{\omega_{2} x_{2}}\right) \\
& \bar{A} \bar{B}=\left(\overline{\omega_{1}} \overline{x_{1}}, \overline{\omega_{1}} \overline{x_{2}}, \overline{\omega_{2}} \overline{\chi_{1}}, \overline{\omega_{2} \bar{x}_{2}}\right) .
\end{aligned}
$$

Theorem 2.17: If $A=\left(r a, r\left(b+\frac{1}{2}+\frac{1}{2} \sqrt{-15))}\right.\right.$ then $A \bar{A}=\left(r^{2} a\right)$.
The number $r^{2} a$ is called the norm of A, written $N(A)$.

Proof. The product $A \bar{A}$ consists of all numbers
(1) $\quad k r^{2} a^{2}+\lambda r^{2} a\left(b+\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)+\mu r^{2} a\left(b+\frac{1}{2}-\frac{1}{2} \sqrt{-15)+v r^{2}\left(b^{2}+b+4\right)}\right.$
where k, λ, μ and v range over all numbers of $\operatorname{Ra}[\sqrt{-15}]$. By Theorem $2.15 \quad c=\frac{b^{2}+b+4}{a}$ is an integer. The transformation

$$
\mathrm{k}=\mathrm{k}_{1}, \quad \lambda=\lambda_{1}+v_{1}, \quad \mu=\lambda_{1}, \quad v=\mu_{1}
$$

takes the set of numbers (1) into the set
$k_{1} r^{2} a^{2}+\lambda_{1} r^{2} a\left(b+\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)+v_{1} r^{2} a\left(b+\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)+\lambda_{1} r^{2} a\left(b+\frac{1}{2}-\frac{1}{2} \sqrt{-15}\right)+\mu_{1} r^{2}\left(b^{2}+b+4\right)$

$$
\begin{equation*}
=k_{1} r^{2} a^{2}+\lambda_{1} r^{2} a(2 b+1)+\mu_{1} r^{2} a c+v_{1} r^{2} a\left(b+\frac{1}{2}+\frac{1}{2} \sqrt{-15)} .\right. \tag{2}
\end{equation*}
$$

Hence every number of (2) is in (1). The converse is true, since $k_{1}=k, \quad \lambda_{1}=\mu, \quad \mu_{1}=v, \quad v_{1}=\lambda-\mu$.

Let $g=(2 b+1, a, c)$. Since $g \mid a$ and $g\left|c, g^{2}\right| a c$ or $b^{2}+b+4=a c \equiv 0 \bmod g^{2}$. Since $g\left|2 b+1, \quad g^{2}\right| 4 b^{2}+4 b+1$ or $4 b^{2}+4 b+1 \equiv 0 \bmod g^{2}$. So

$$
b^{2}+b+4 \equiv 4 b^{2}+4 b+16 \equiv\left(4 b^{2}+4 b+1\right)+15=0 \bmod g^{2}
$$

Therefore $15 \equiv 0 \bmod \mathrm{~g}^{2}$. Since 15 has no square factor >1. $g=1$.

We can then see that the set of numbers
(3)

$$
k_{1} r^{2} a^{2}+\lambda_{1} r^{2} a(2 b+1)+\mu_{1} r^{2} a c
$$

is the same as the set $\mathrm{pr}^{2} \mathrm{a}$. Obviously every number of (3) is in fria. Since $a, 2 b+1$ and c are relatively prime, there exist rational integers p, q, t such that

$$
1=p a+q(2 b+1)+t c .
$$

Multiply through by r^{2} a. Then

$$
r^{2} a=p r^{2} a^{2}+q r^{2} a(2 b+1)+t r^{2} a c
$$

so that every number of $\mathrm{\rho r}^{2} \mathrm{a}$ is in (3).
The set (2) is now seen to be equal to the set

$$
\rho r^{2} a+v_{1} r^{2} a\left(b+\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)
$$

But obviously every number of this set is a multiple of $r^{2} a$, and conversely, every multiple of $\mathrm{r}^{2} \mathrm{a}$ is in the set, with $v_{1}=0$. Thus $A \bar{A}=\left(r^{2} a\right)$.

Theorem 2.18: If $S A=S B$, where S, A, and B are ideals, then $A=B$.

The numbers of A are given by

$$
k_{1} \omega_{1}+k_{2} \omega_{2}
$$

where ω_{1}, ω_{2} form a basis for A and k_{1}, k_{2} are in $R a[\sqrt{-15] .}$ Let $s=N(S)$. The numbers of (s) are given by λs. Thus the numbers of (s)A consist of the numbers

$$
\lambda k_{1} s \omega_{1}+\lambda k_{2} s \omega_{2}=\eta_{1} s \omega_{1}+\eta_{2} s \omega_{2}
$$

where η_{1}, η_{2} range over $\operatorname{Ra}[\sqrt{ }-15]$. Thus every number of
(s)A is of the form sa where a is in A. If $S A=S B$, then $\bar{S} S A=\bar{S} S B$, and by Theorern 2.17

$$
(s) A=(s) B
$$

where s is a rational integer. That is, for every number a in A there is a number β in B such that

$$
\mathrm{sa}=\mathrm{s} \beta, \quad \mathrm{a}=\beta
$$

and conversely. Hence every α is in B and every β is in A, so that $A=B$.

$$
\text { If three ideals } A, B, C \text { of } \operatorname{Ra}[\sqrt{-15}] \text { are in the relation }
$$

$A B=C$, we say that A divides C and B divides C. A and B are called factors of C.

Theorem 2.19: A divides C if and only if every number of C is in A.

If $A=\left(\omega_{1}, \omega_{2}\right)$ and $B=\left(x_{1}, x_{2}\right)$ then $A B=C$ consists of all numbers

$$
k \omega_{1} x_{1}+\lambda \omega_{1} x_{2}+\mu \omega_{2} x_{1}+r_{1} \omega_{2} x_{2}
$$

where k, λ, μ, η vary over $\operatorname{Ra}[\sqrt{-15}]$. But this can be written in either of two ways.

$$
\left(k x_{1}+\lambda x_{2}\right) \omega_{1}+\left(\mu x_{1}+\eta x_{2}\right) \omega_{2}, \quad\left(k \omega_{1}+\mu \omega_{2}\right) x_{1}+\left(\lambda \omega_{1}+\eta \omega_{2}\right) x_{2}
$$

so every number of C is in A and also in B.
Conversely, suppose that every number of C is in A. Theri every number of $C \bar{A}$ is in $A \bar{A}=(a)$ where a is a positive integer. That is, all numbers of $C \bar{A}$ are given by βa, where β varies over a certain set B of numbers of the domain. It must now be proven that B is an ideal.

Since $C \bar{A}$ is an ideal, for every two numbers β_{1} a and $\beta_{2} a$ of $C \bar{A}$ there are numbers $\beta_{3} a, \beta_{4} a$ and $\beta_{5} a$ of $C \bar{A}$ such that

$$
\beta_{1} a+\beta_{2} a=\beta_{3} a \quad \beta_{1} a-\beta_{2} a=\beta_{4} a, \quad k \beta_{1} a=\beta_{5} a
$$

for every k in $\operatorname{Ra}[\sqrt{-15}]$. Hence

$$
\beta_{1}+\beta_{2}=\beta_{3}, \quad \beta_{1}-\beta_{2}=\beta_{4}, \quad \mathrm{k} \beta_{1}=\beta_{5}
$$

so that B is an ideal. It follows from Theorem 2. 19 and $\bar{A} C=(a) B=\bar{A} A B$ that

$$
C=A B .
$$

Theorem 2.20: A positive integer t occurs in but a finite number of ideals.

Let the ideal A containing t have a canonical basis (ra, $r b+r\left(\frac{1}{2}+\frac{1}{2} \sqrt{-15}\right)$), where $r>0, a>0,0 \leq b<a$. By Corollary 2.12, ra divides t. For a given t, there are not more than t choices for each of the positive integers r, and b, and therefore not more than t^{3} such ideals A.

Theorem 2.21: An ideal C is divisible by only a finite numbere of ideals.

By Theorem 2.17 $C \bar{C}=(c)$, where c is a positive integer. By Theorem 2.19, c is in C and also in every ideal which divides C. By Theorem 2. 20, there is but a finite number of such divisors.

If an ideal P different from the unit ideal (1) is divisible by no ideal other than itself and (1), it is called a prime ideal. All other ideals except (1) are composite.

An ideal G is called a greatest common divisor of A and B if G divides A and G divides B and ifevery common divisor of A and B divides G.

Theorem 2.22: Every pair of ideals A and B possessessuriquo
g.c.d., G. It is composed of all numbers $a+\beta$ where a ranges over A and β over B.

The set G of all numbers $\alpha+\beta$ satisfies the definition of ideal. Since every number of A is in G and every number of
B is in G, G is a common divisor of A and B.
Let E be any common ideal divisor of A and B; that
is, any ideal containing all the numbers of A and ail the numbers of B. Since it is closed under addition, it contains all numbers $a+\beta$ of G and hence divides G.

Suppose that G and G_{1} are two g.c.e's of A and
B. Then $G=K_{1} G_{1}, G_{1}=K G$, so that

$$
\text { (1) } G=K_{1} K G
$$

Hence

$$
K_{1} K=(1) .
$$

Since $\quad N\left(K_{1}\right) \cdot N(K)=1$

$$
K_{1}=K=(1) .
$$

Two ideals are called relatively prime if their g.c.d is (1).

Corollaryto Theorem 2.22: If A and B are relatively prime, there exists an a in A and a in B such that $a+\beta=1$.

Theorern 2.23: If A divides $B C$ and is primeto B, then A divides C.

$$
\text { If } A \text { is prime to } B \text { then by the corollary to Theorem } 2.22
$$

$$
\alpha+\beta=1, \quad \gamma a+\gamma \beta=\gamma
$$

for every γ in C. Since A divides $B C$ the number $\gamma \beta$ of $B C$ is in A. So is γa, and sotherefore is γ. Then A divides C by Theorem 2.19.

Theorem 2. 24: Every composite ideal can be factored into prime ideals in one and, except for order of the factors, in only one way. By Theroem 2. 21 every ideal can be factored into a finte number of prime ideals.

Let C be a composite such that

$$
C=A_{1} A_{2} A_{3} \cdots A_{n}
$$

where the A's are prime ideals.
Suppose that

$$
C=B_{1} B_{2} B_{3} \cdots B_{m}
$$

is a second sech representation. Then

$$
A_{1} A_{2} A_{3} \cdots A_{n}=B_{1} B_{2} B_{3} \cdots B_{m}
$$

Since A_{1} is a prime ideal dividing $B_{1} B_{2} B_{3} \cdots B_{m}$, then by Theorem 2.23 it divides some B_{i}. Since B_{i} is also a prime ideal, $A_{1} B_{1}$. By a rearrangemert of the order of the B 's if
necessary we may assume $A_{1}=B_{1}$. Then since $A_{1} \neq 0$

$$
A_{2} A_{3} \cdots A_{n}=B_{2} B_{3} \cdots B_{m}
$$

As before, A_{2} divides one of the remaining B's say B_{2}, and hence equals it. We proceed in this manner until all the A's or all the B's are exhausted. It is now evident that $n=m$, for otherwise we should have a product of primes equal to 1 .
It follows therefore that every ideal C can be writien
uniquely as a product of prime ideals

$$
C=A_{1} A_{2} A_{3} \cdots A_{n} .
$$

Example: Factor (15) into prime ideals.

$$
(15)=(3)(5)=(\sqrt{-15})(-\sqrt{-15})
$$

But these are not prime ideals for

$$
\begin{equation*}
(3, \sqrt{-15})(3, \sqrt{-15})=(9,3 \sqrt{-15}, 3 \sqrt{-15},-15) \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
& (5, \sqrt{-15})(5, \sqrt{-15})=(25,5 \sqrt{-15}, 5 \sqrt{-15},-15)=(5) \\
& (3 \sqrt{-15})(5, \sqrt{-15})=(15,5 \sqrt{-15}, 3 \sqrt{-15},-15)=(\sqrt{-15})=(-\sqrt{-15}) .
\end{aligned}
$$

$$
(15)=(3, \sqrt{-15})(3, \sqrt{-15})(5, \sqrt{-15})(5, \sqrt{-15})=(3, \sqrt{-15})^{2}(5, \sqrt{-15})^{2} .
$$

(3, $\sqrt{-15}$) is a prime ideal, for if this is not the case then two ideals, A and B, neither of which is (1), must exist such that

$$
(3, \sqrt{-15})=A B .
$$

Let $A=\left(a_{1}, a_{2}, \cdots, a_{m}\right), \quad B=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)$. Then

$$
(3, \sqrt{-15})=\left(a_{1}, a_{2}, \cdots, a_{m}\right)\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right) .
$$

By Theorem 2.19, 3 and $\sqrt{-15}$ are numbers of each of the ideals of A and B and hence

$$
(3, \sqrt{ }-15)=\left(a_{1}, \cdots, a_{m}, 3, \sqrt{-15}\right)\left(\beta_{1}, \cdots, \beta_{n}, 3, \sqrt{ }-15\right) .
$$

Let $a_{i}=a+b \sqrt{-15}, \quad b e$ any one of the integers $a_{1}, a_{2}, \cdots, a_{m}$. where a and b are integers or halves of odd integers. If a is a rational integer then a is of the form $3 c, 3 c+1$, or $3 c-1$ where of is a rational integer. Similarly if a is half of an odd integer it is of the from $3 c, 3 c+1$, or $3 c-1$ where c is half of an odd integer. We have therefore

1) $\quad a_{i}=b \sqrt{-15}+3 \mathrm{c}$
2) $a_{i} \because b \sqrt{-15}+3 c+1$
3) $a_{i}=b \sqrt{-15}+3 c-1$.

If 1) is the case a_{i} may be omitted from the symbol A. If 2) is the case, we have $a_{i}-b \sqrt{-15}-3 c=1$ and 1 may be introduced into the symbol of A. All other numbers could then be omitted and we would have $A=(1)$. If 3) is the case, we have $b \sqrt{-15+3 c-a_{j}-1}$ and again $\mathrm{A}=(1)$.

Proceeding in this manner with each of the numbers
$a_{1}, a_{2}, \cdots a_{m}$ we find that either all of the numbers $a_{1}, a_{2}, \cdots, a_{m}$ are linear combinations of 3 and $\sqrt{-15}$ and hence may be omitted from the symbol of A, in which case we have $A=(3, \sqrt{-15)}$ or some number of A is not a linear combination of 3 and $\sqrt{-15}$, in which case l may be introduced into the symbol of A and $A=(1) . \quad$ The same is evidently true for B. We have therefore as the only possible factorization of $(3, \sqrt{-15})$

$$
(3, \sqrt{-15})=(1)(1)=(1)
$$

or

$$
=(3, \sqrt{-15})(3, \sqrt{-15})
$$

or

$$
=(1)(3, \sqrt{-15})
$$

or

$$
=(3, \sqrt{-15})(1) .
$$

If 4) is the case then l must be a number of the ideal
or

$$
1=3(x+y \sqrt{-15})+\sqrt{-15}(u+v \sqrt{-15}) .
$$

Thus $1=3 x-15 v$ and $0=3 y \sqrt{-15}+u \sqrt{-15}$. But if x and v are rational integers or halves of odd integers, $\quad 1=3 x-15 v$ is impossible since the second number only is divisible by 3. Hence 1 is not a number of the ideal $(3, \sqrt{-15)}$ and $(3, \sqrt{-15}) \neq(1)$ so 4) is impossible.
5) is also impossible for we have previously shown

$$
(3, \sqrt{-15})^{2}=(9,3 \sqrt{-}-15,3 \sqrt{-15},-15)=(3)
$$

but $\sqrt{-15}$ is not a multiple of 3 so $(3, \sqrt{-15}) \neq$
The only divisors of $(3, \sqrt{-15})$ are therefore the ideal itsclf and (1). Hence $(3, \sqrt{-15)}$ is a prime ideal.

It may be shown similarly that $(5, \sqrt{-15)}$ is a prime ideal.
As before if $(5, \sqrt{-15})$ is not a prime ideal then two ideals, A and B, neither of which is (1), must exist such that

$$
(5, \sqrt{-15})=\mathrm{AB} .
$$

Let $A=\left(a_{1}, \alpha_{2}, \cdots, a_{m}\right), \quad B=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)$.
Then $(5, \sqrt{ }-15)=\left(\alpha_{1}, \alpha_{2}, \cdots, a_{m}\right)\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)$. By Theorern 2.19 5 and $\sqrt{-15}$ are numbers of each of the ideals A and B and hence

$$
(5, \sqrt{-15})=\left(a_{1}, \cdots, a_{m}, 5, \sqrt{-15}\right)\left(\beta_{1}, \cdots, \beta_{n}, 5, \sqrt{-15}\right)
$$

Let $a_{i}=a+b \sqrt{-15}, \quad b e$ any one of the integers $a_{1}, a_{2}, \cdots, a_{m}$, where a and b are integers or halves of odd integers. If a is
a rational integer then a is of the form $5 c, 5 c+1,5 c-1$, $5 c+2$, or $5 c-2$ where c is a rational integer. Similarly if a is half of an odd integer it is of the same form where c is half of an odd integer. We have therefore

1) $\quad a_{i}=b \sqrt{-15}+5 c$
2) $\quad a_{i}=b \sqrt{-15}+5 c+1$
3) $\quad a_{i}=b \sqrt{-15}+5 c-1$
4) $\quad a_{i}=b \sqrt{-} 15+5 c+2$
5) $\quad a_{i}=b \sqrt{-15}+5 c-2$.

If 1$)$ is the case we find that a_{i} is a linear combination of 5 and $\sqrt{-15}$ so $A=(5, \sqrt{-15})$. If 2$)$ or 3$)$ is the case 1 may be introduced into the symbol of A and all other numbers omitted and we would have $A=(1)$. If 4) is the case then $a_{i}-b \sqrt{-15-5 c}=2$
 The same is evidently true for B. We have therefore as the only possible factorizations of $(5, \sqrt{-15)}$

$$
\begin{align*}
(5, \sqrt{-15)} & =(1)(1)=(1) \\
& =(2)(2)=(4) \\
& =(1)(2)=(2) \\
& =(2)(1)=(2) \\
& =(2)(5, \sqrt{-15)}=(10,2 \sqrt{-15)=(2)} 10) \\
& =(5, \sqrt{-15)(2)=(10,2 \sqrt{-15)}=(2)} 111) \\
& =(5, \sqrt{-15)(5, \sqrt{-15})=(5)} \\
& =(1)(5, \sqrt{-15)} \\
& =(5, \sqrt{-15)(1)}
\end{align*}
$$

If 6) is the case then 1 must be a number of the ideal or $1=5(x+y \sqrt{ }-15)+\sqrt{-15(u+v}(\sqrt{-15})$. Thus $1=5 x-15 v$ and $0=5 y \sqrt{-15}+u \sqrt{-15}$. But if x and v are rational integers or halves of odd integers, $\quad 1=5 \mathrm{x}-15 \mathrm{v}$ is impossible since the second number only is divisible by 5. Hence 1 is not a number of the ideal and therefore $(5, \sqrt{-15)} \neq 1$. If 7) is the case, then 4 must be a number of the ideal or $4=5(x+y \sqrt{-15})+\sqrt{-15}(u+v \sqrt{-15})$.
 are rational integers or halves of odd integers $4=5 \mathrm{x}-15 \mathrm{v}$ is impossible since the second number only is divisible by 5 . So 4 is not a number of the ideal and $(5, \sqrt{-15}) \neq(4)$. Likewise if 8), 9),

10), or 11) is the case, then 2 is a member of the ideal so in the same manner as before $2=5 \mathrm{x}-15 \mathrm{v}$ which is impossible since only the second number is divisible by 5 . So 2 is not a number of the ideal and $(5, \sqrt{-15)} \neq(2) . \quad 12)$ is also impossible for $\sqrt{-15}$ is not a multiple of 5 so $(5, \sqrt{-15)} \neq(5)$.

The only divisors of $(5, \sqrt{-15)}$ are therefore the ideal itself and (1). Hence $(5, \sqrt{-15)}$ is a prime ideal.

BIBLIOGRAPHY

1. MacDuffee, Cyrus Colton. An introduction to abstract algebra. New York, John Wiley and Sons, Inc., 1940. 303 p.
2. Reid, Legh Wilber. The elements of the theory of algebraic numbers. New York, The MacMillan Company, 1910. 454 p.
