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THE QUADRATIC INTEGRAL DOMAINS Ra[ F3] and Ra[ 15] 

I. THE QUADRATIC INTEGRAL DOMAIN Ra[ tira] 

Let px2 +qx +r = 0, p 0 with rational coefficients be a 

quadratic equation irreducible over the rational field. Since the roots 

remain unchanged if both sides of an equation are multiplied by the 

common denominator of the coefficients, we may assume, without 

loss of generality, that p, q, and r are integers of the rational 

field which will be called rational integers P O. Let us consider 

this case: q2 -4pr = 3k where k = t2 and t is a rational integer 

not zero. 

p is one of the roots of the equation. Since the equation is 

irreducible, p is not a rational number. Denote by Ra(p) the 

set of numbers a +bp where a and b range over the rational 

numbers . 

Theorem 1. 1: There exists a rational integer m without a repeated 

factor such that Ra(p) = Ra(Nrm). 

Taking the particular case noted above, where 

q2-4pr = 3k, k = t2 0 

then the roots are p = 
qL +k 

1 2p 2 2p 

Let p 
-q +N 

2p ' 
then "i 3k = 2pp +q. 

T 

q -N k 

4 



The first equation shows that every number of the form a +bp can 

be written in the form c +d 3k and the second equation shows all 

numbers of the form a +b 3k are of the form c +dp. Then 

Ra(p) = Ra(ti k). 
Now set 3k = 3t2, then a +bue = a +bt [3. So 

Ra(p) = Ra(f) = Ra([3) and m = 3. 

A similar argument would hold if we let p - 
-q 

. 
2p 

Example: Consider the quadratic equation 3x2 +6x +2 = O. 

of its roots so 

then 

and since 

so 

-6+ 12 -6+\i3 4 1 

P 
= - -1+30 

p 

a+bp = a+b(-1+30)= (a-b)+ (b)0 =c+dA%3 

1 
p = -1 +- 0, 

3 
= 3 p+ 3 ; 

a+btir3 = a+b(3p+3) (a+3b)+(3b)p =c+dp 

where a, b, c, d in both cases are rational. 

2 

is one 

- 

_ 

a k 

6 6 
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Hence, numbers of the form a +bp may be expressed as c +d4-3 

and conversely. Or, in general, Ra(p) = Ra( '[3). 

Theorem 1. 2: The set Ra(Nr3) is a field. 

Since the set Ra('/3) is contained in the complex field the 

associative, commutative and distributive laws hold for addition and 

multiplication. It is to be shown that the set is closed for the two 

operations, the identity elements for each operation are contained in 

the set, each element has an additive inverse in the set, and every 

element except the identity in Ra( \13) has its reciprocal in r a('.f3) 

i) closure: 

(a1 +b1 ,13) + (a2 +b2Nf3) _ (al +a2) + (b1 +b2)3 

hence addition is closed. 

(al +b1Nr3)(a2 +b2tir3) _ a1a2+3b1b2)+(al 

hence multiplication is closed. 

identities 

(c +df3) c+dNr3 

+a2ó1)[3 

Therefore O -1-0v/3 -= 0 is the additive identity. 

ii) 

+ (0 +0N 3) 
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(c+d\r3)(1+0Nr3) = c+d\i3 

Therefore 1 +00 = 1 is the multiplicative identity. 

iii) inverses: 

(c +dNr3) + (- c -dq-3) = 0 +0%/-3 

and every element of Ra(i) has an additive inverse in 

Ra(Ï3). 

(c +dt\r-3)y = 1 ci d 0 since the additive identity is 

excluded. 

Y = 
1 c -d'\/-3 c -d 

c+dq3 
c2-3d2 - -3d c )+ c 3d2 )Nr3 

an element of Ra(f3), 

c and d are rational and c2 -3d2 O. If c2 -3d2 =0 
2 

then c 2 = 3d2 or 3- c d 0 since this would 
d 

imply in the previous step that c also be 0 and it was 

given that c -/ d -/ O. So i.Í3 = a rational number, 

which is a contradiction, hence c 
2 

- 3d 
2 

O. 

Theorem 1. 3: Every number of Ra(^f3) satisfies a quadratic 

equation with rational coefficients. 

- 

L 

d 
, 

r 

# 

4 

2 
, 
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If a= a +b4-3 is any number of Ra("i3), then its conjugate 

is á = a -b 'T3 and a satisfies the equation 

2 2 2 2 2 
(x -a) -3b = x -tax +a -3b = O. This equation is called the principal 

equation of a = a +b4-3. Its constant term N(a +b,\J-3) = a2 -3b2 -3b2 2 2 is 

called the norm of a +b,./-3 and N(a) = a á. . The negative of the 

coefficient of x, T(a +b[3) = 2a, is called the trace of a +b'.i3. 

Since a and b are rational, a2 -3b2 and 2a are rational. 

Integers of Ra([3) 

The integers of Ra(T3) are the numbers of Ra(NÎ3) which 

will satisfy equations of the form x2 +px +q = 0 where p and q 

are rational integers. These numbers constitute the integral domain 

Ra[ NT3] of Ra(Nr3). 

Theorem 1. 4: Every rational integer is in Ra[ F3] . Every number 

of Ra[ ^Ì3] which is rational is a rational integer. 

If a is a rational integer then its principal equation is 

x2- 2ax +a2 = 0 and is therefore in Ra[ f3]. 

If conversely, a +b4-3 is rational then b = 0 and since 

a +b,.Ì3 satisfies the equation x 
2 -2ax +a 

2 where 2a and a 
2 

are rational integers a must also be a rational integer. 

Theorem 1.5: The conjugate of a number of Ra[[3] is in Ra[^i3] : 

for a +bf3 and a -b -3 have the same principal equation. 
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Hereafter the word integer will refer to integers of Ra[ T3] . 

The integers of the rational field will always be called rational 

integers. 

Theorem 1.6: The numbers of Ra[ [3] are given by a +b '[3 

where a and b range over all rational integers. 

Every number a = a +b43 of Ra(Nr3) satisfies the principal 

equation x2- 2ax +a2 -3b2 = O. The integers of Ra([3) will satisfy 

equations of the form x2 +px +q = 0 , where p and q are rational 

integers. Therefore 2a = p and a2 -3b2 = q are rational integers. 

If a +b^i3 is a number of Ra( 'f3) then a and b are rational 
a1 b1 

or - = a, C = b where al, bl, c are relatively prime 
1 1 2a1 a 2 -3b1 

rational integers. Then -p (1), 1 -q (2), so c = 2 

1 cl 
or 1 since if c1 2 or 1 then by (1) c1 and al would 

have a common factor of b1 by (2) contrary to our hypothesis 

that al, b1 and cl are relatively prime. If c = 2 then by (2) 

al and bi would be divisible by 22 or al - 3b1 = 4q. If 

al is odd and b is even or a1 is even and b1 is odd the 

contradiction is obvious. If al is odd and b1 is odd, then 

(2n +1)2- 3(2m +1)2 = 4q 

4n2 +4n +1- 24m2 -1 2m -3 = 4q 

c 
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4n2 +4n- 24m2 -12m- 2 = 4q 

n2 +n- 6m2 -3m- 1 
= q . 

But this is contrary to the fact that q is an integer. Hence 

al and b1 must both be even. Therefore al, b1, c 
1 

would 

have a common factor contrary to our hypothesis. So c = 1 and 

thus al = a and b1 = b are rational integers. 

The numbers 1 and Nr3 form a basis for Ra[ Nr3] . In other 

words every number of the domain Ra[ f3] is given without repe- 

tition in the form a(1) +b(N[3) where a and b range independ- 

ently over all rational integers and conversely every such number is 

in the domain. 

Theorem 1.7: If 81 and 02 be a basis of Ra[ Nr3] every 

basis of Ra[ N[3] is given by 81 
= 

a1181 + a1202, 

where 

Assume 

a 
11 

a21 

82 = a21A1 + a2282 
(1) 

1 

a12 

t l. 

a22 

81 and 82 is a basis for Ra[ Nr3]. Then 

8l = bl l81 + b1282 and 02 = b) b 
22 2' ' 

= 



So 

and 

or 

and 

O1 = b11 (a1101 + a1202) + b12(a2101 + a2202) 

02 = b21(a1101 + a1202) + b22(a2101 + a2202) 

01 - (allbll + a21b12)01 + (a12b11 + a22b12)02 

02 (allb21 + a21b22)01 + (a12b21 + a22b22)02 . 

8 

Therefore allbll 
+ a21b12 1, a12b11 + a22b12 = 0, 

a 
11 

b 
21 + a21b22 0, 

a 
12 21 

b 
+ a22b22 =1 or 

b11 b12 all a12 a 
11 

b 
11 

+a 
21 

b 
12 a12b11+a22b12 

1 0 

=1 

b21 b22 a21 a22 a11b21+a21b22 a12b21+a22b22 
0 1 

hence it is necessary for the determinant of the coefficients to be ±1. 

Any number in the domain Ra[ f3] can be written in terms 

of the basis. From (1) we know 01 = ±(a220 '1- a120Z) and 

02 = 

±(a 
21 1-a 1102'). 0' If 

= 
c101+ c202 is any number of the 

domain then 

or 

= cl[ ±(a2201-a1202)] + c2[ ±(a2101 a1102)] 

c _ ±(c1a22+c2a21)O1 + (c1a12+c2a11)0Z . 

W 

= 

- 

- 

" 
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Hence 0i, 02 is a basis for Ra[ 4-3] since every number of 

Ra[ 'T3] may be written as a linear combination of el' and 02 

and every such combination is in the domain. 

Since 1 and Ï3 is one basis 01'02' for Ra[ 'T3] then 

all 01,0' may be written as: 0' = all + a12'í3, 02= a21 +a22 /3 

where 

all a12 

a 
a21 a22 

Theorem 1. 8: The norm of a product is the product of the norms. 

N(aß) = N(a)N(p) 

Proof. a = a +b[3 ß = c +dT3 aß= (ac +3bd) +(ad +bc)473 

N(a)= a2 -3b2 N((3) = c2 -3d2 N(aP)= (ac +3bd)2- 3(ad +bc)2 

N(aß) = a 
2 

c 
2 

+ 9b2d2 - 3a2d2 - 3b c 
2 2 

= a 2 2-3b2c 2-3a2d2+ 9b 
2d 2 

= c2(a2 3b2) 3d2(a2 3b2) - (a2- 3b2)(c2 -3d2) 

= N(a)N(P) . 

Theorem 1. 9: The norm of a quotient is the quotient of the norms. 

N(ß) N(ß) 
124 o 

t 1 . 

- 

= 



Then 
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Let a, ß, and N(a), N(ß) be as in Theorem 1.8 

a (a+b'f3)(c -d\f-3) ac -3bd (bc-ad),f3 
ß (c+dNr3)(c-dq-3) c2-3d2 + c2-3d2 

N(a) ac-3bd 2 3(bc-ad 7_ 

c2-3d2 c2-3d2 

a2c2+9b2d2-3b2c2-3a2d2 aL(c2-3d2)-3ó2(c2-3d2) 

(c2 -3d2)2 (c2 -3d2) 2 

a2-3b2 N(a) 

c2-3d2 N(ß) 

If a ß = y in Ra[ \3] we say that a and ß are divi- 

sors of y. Further a divides y in Ra[ 'T3] if and only if 

there is a ß in Ra[ f3] such that aß = y. 

A number of Ra[ 'f3] is called a unit if it divides 1. 

Theorem 1. 10: A number E of Ra[ N[3] is a unit if and only if 

N(E ) = ±1. So N(a +b '13) = a2-3b2 = t 1 if a+b'f3 is a unit 

Conversely if N(a +b'f3) = f 1, then a +b'.[3 is a unit. 

If a is a unit then there exists a ß such that aß = 1. 

N(aß) = N(a)N(ß) 

N(1) _= N(a)N(ß) 

1 = N(a)N(ß) 

by Theorem 1.8 

- ( 
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So N(a) = ± 1 and N(3) = ± 1. Conversely if N(a) = ± 1, then 

aá = 1. 

Therefore a divides 1 and a is a unit. 

Theorem 1.11: All units of Ra[ [ Ñ3] are of the form 

where n is a positive or negative rational integer or 0 and all 

numbers of this form are units of Ra [ NT3] . 

If e = 2 +\r3, then every positive power n of E is a 

unit since N(E n) = [ N(E )] n = [ f1] n = ± 1; hence E is a unit. 

Furthermore E is a unit for E = 1. Since E 
n -n -n 

= 1, E 
-n 

is a unit also, or all negative powers of E are units. 

Different powers of E give different units. 2 +[3 is greater 

than 1 so the positive powers will all be greater than 1 and 

will continually increase; hence no two positive powers are equal. 

Also E 

-n 
= 1 so e -1 is less than 1 and E 

-n 
will continual- 

n 
E 

ly decrease as n increases; therefore no two negative powers will 

be the same nor will they equal any positive power. Hence every 

power of E is a unit of Ra[ 4-3] and two different powers always 

give different units. 

We must further show that the powers of E multiplied by 

± 1 are all the units of Ra [ Nr3] ; that is, if p be any unit of 

Ra[ \/-3] 3] 
n then = f E where n is positive, negative or zero. 

3)11 , t (2 +`V 

0 0 

ri 
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If a +bf3 is any unit of Ra[ f3], then a -b'f3, -a +b'f3 

and -a -bf3 are also units of Ra [ f3]. In other words the 

number, its conjugate and their associates, associates being numbers 

which are the same except for a unit factor, are each units of Ra [0] 

if any are. 

Denote that one of these four units which has both terms posi- 

tive by r1l (b may be 0), the remaining three will be 

and 

Since nl > 1, it follows that 

n 1 
= En or E En+1 

ril, 1, 

where n is a positive integer or zero. Dividing (1), the latter 

expression, by E n we have 

where 

Then 

111 

n 
E 

rl 
1 < - < E (2) 

n 
E 

is a unit for the quotient of two units is a unit. So let 

l - = x+ y'f3 . 

E 

(x+yNT3)(x-yrf3) = t 1 

and since according to (2) x +y'f3 > 1 then Ix-y4-31< 1 or 

n 

-p'). 



-1 < x -y0 < 1. This, combined with 

1 < x+yq-3 < 2+0 (3) 

gives 0 < 2x < 3 +0 and since x is a rational integer x = 1 

or x = 2. 

But if x = 1 (3) becomes 

1 < 1 +y4-3 < 2+43 

which implies that y = 1. So 
Ti' 

n 
E 

unit since N(1 +0) ±1. Furthermore for x = 2 we have 

1 < 2 +y0 < 2 +0 . 

There are no integral values of y which will satisfy this inequality. 

Positive values make 2 + y4-3 > 2 +0, negative values make 
r11 

2 +y0 < 1, and if y = 0 then - 
n 

= 2, but 2 is not a unit 

since N(2) ± 1. 

which implies that 

= 1 +0 but 1 +0 is not a 

13 

1 -n 
Ti = ±- 

n 
= t 

E 

of the four units 

E 

Hence (1) is impossible and we have n 1= E , 

pl 

and 

n 
= -E ; and since 

E n. 

11111'1 = ± 1, 

Therefore, if n be any one 

pl' pl' pl' -Ill' is any unit of Ra [ ^Ì3], 

we have n _ ±E where n is positive, negative or zero. 

- 

1 
E -111 = + 

that 

±En 
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Prime Numbers of Ra[ N3] 

Nonzero numbers of RaNr3 which are not units but are 

divisible only by units are called prime numbers. To determine 

whether an integer is prime or composite we may use methods 

similar to that of the following example. 

Assume 

Then 

or 

5 +ßl3 = (a +b\r3)(c +d[3) 

N(5+Nr3) =N(a+bNr3)N(c+d\r3) 

22 = (a2- 3ó2)(c2- 3d2) . 

There are three cases to consider: 

i) a2-3b2 = t 1 c2-3d2 = ± 22 

ii) a2-3b2 = - 11 c2-3d2 = - 2 

iii) a2 -3b2 = + 11 c2 -3d2 = + 2 

Case i) has a +b .[3 a unit and need not be considered. Case ii) 

has solution a = + 8, b = ± 5, c = ± 5, d = ± 3 or 

5 +f3 = (- 8 +5Nr3)(5 +3,\[3) = (8- 5 \r3)(- 5 -3 \r3). 

Since neither of the integers -8 +5 [3 or 5 +3 T3 is a unit, 5 +[3 

is a composite number. Other solutions of case ii) include 
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a = ± 17, b =± 10, c = +5, d = t3 or 

5 +T3 = (17 +100)(- 5 +3 .T3) = (-17-10f3)(5-3'[3), 

Case iii) has solution a = + 1, b = f 2, c = f 1, d = ±1 or 

5 +4Ì3 = (- 1 +20)(l +4-3) = (1- 24-3)(- 1 -4-3) . 

We see however, that each of these factorizations can be derived 

from any particular one by multiplying the factors by suitable units, 

and hence are not different, except for unit factors; that is 

-8+54Ì3 = E -1(-1+20) 5+34-3 = E 1(1+0) 

17+104Ì3 = E 2(-1+24Ì3) -5+30 = E 2(1+0) 

where E = 2 +4-3 and we have in general 

5 +0 = [ fEn(-1+20)][ ±E -n(1+0)] 

Theorem 1, 12: If a is any integer of Ra[ 0] and ß is any 

integer of Ra[ 4Ì3] different from zero, there exists an integer 

of Ra[ 4-3] such that 

I N(a-Yß) I< I N(ß) I. (1) 

Y 

a Let ß= a +b4-3 where a= r +r1, b s +s.l, r and s 

being the rational integers nearest to a and b respectively, and 

hence 1 

Ir1I < 
2° s 

1 
< < 2 . We then show that 

fulfill the required conditions. 

Since 
ß 

-y = ri +s14 -3 

= r +s4-3 will 

. 

I Y 

= 



whenc e 

= Irl -3s1 5_ 4 

N(cl-Y)I .. 1 

or multiplying by I N(ß) I , 

I N(a-Yß) I < I N(ß) I 
. 

Example: Consider the integers of Ra[ rÎ3] a= 2 +3f3 and 

p = 3+>`Î3 

a 2+30 (2+3NÎ3)(3-r.1-3) -3+74-3 -1+10 - a+br\Î3 
P 3+14-3 6 6 2 6 

where a = r+r 
1 

= -1 + 
2, 

b = s +s = 1+ 6 Then 

Then 

and 

So 

Y=r+srf3=-1+rf3. 

I N(a-Yß) = I 
N[ (2+3rf3)-(- 1+4-3)(3+r.Î3)] = I N(2+rf3) I= 1 

IMP)! N(3+^Î3) I= 6 . 

N(a-Yß) I= 1< 6= I N(ß) I 

16 

IN(ß-Y)I 

I 

= I 

, 

I 
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Hence there exists an integer Y in Ra[ 4-3] such that the 

inequality (1) is true. 

Theorem 1. 13: If a and ß are any two integers of Ra [ 43] 

prime to each other, there exist two integers, v and of Ra[ 'f3] 

such that 

acr + ß r)= 1 . 

If either a or ß is a unit then the existence of the re- 

quired integers Cr and rl is evident. If neither a or ß is a 

unit, the determination of v and ri can be made to depend upon 

the determination of a corresponding pair of integers o-1 and X11 

for a pair of integers al and ßl, prime to each other and such 

that the absolute value of the norm of one of them is less than both 

N(a) 
I 

and I N(ß) I . 

Assume I N(ß) I < I N(a) I , which does not limit the generality 

of the proof. 

By Theorem 1. 12 there exists an integer Y such that 

I N(a-Yß) I< N(ß) I. 

Then ß and a- yß are a pair of integers al, ßl, prime to each 

other and such that the absolute value of the norm of one of them is 

less than both I N(a) 
I 

and IN(P) I. 

rl 

I 



that is 

so 

18 

If now, two integers o pl, exist such that 
a1cr 1 + ß1p1 = 1; 

130-1 + (a -v(3)p1 = 1 , 

apl + ß(61-ypl) = l 

and hence o- = pl and p = 
o 1 -y . 

If neither al nor 
P1 

is a unit the determination of (r1 

and pl for al and ßl may be made to depend similarly upon 

that of cr2 and p2 
for a pair of integers a2 and p2 prime to 

each other and such that the absolute value of the norm of one of them 

is less than both IN(al) I and IN(ß1)I. 

By a continuation of this process we are able to always make 

the determination of o- and n depend eventually upon that of o 
n 

and p for a pair of integers a and ß one of which is a unit. 
n n n 

Since the existence of o- n 
and ri 

n 
is evident, the existence 

of a and n is proved. 

Example: Consider a= 2 +3,\F3 and ß= 3 + '[3. a and p are 

relatively prime since a= 2 +3 'f3 is a prime number of Ra ( 3] 
and a is not a factor of P. If ß were divisible by a then a 

y would exist such that ay = ß. But, if ay = f3 then 

N(a)N(y) = N(p) or (-23)(N(y)) = 6 or N(y) = 
6 

. There is no 
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in Ra[ T3] such that N(y) = 23 . So a and ß are rela- 

tively prime and 

So 

Then 

or 

N(P)1 = 6< 23 = 1N(a) I. 

Is there a o- and ri in Ra [ F3] such that ao- +13r= 1 ? 

By Theorem 1. 12 there exists y such that 

I N(a-Yß) I < IN(p) ( 
i. e. y = -1+^/3. 

a-yß = 2+0 = ßl 

= ß 3+,4-3 = al . 

a1ol+ßlrl=i 

ßg1+ (a- Yß)rll = 1. (1) 

But a- yß is a unit; therefore let i1 be its conjugate or associate 

of its conjugate and o be zero. So (1) becomes 

(3 +t./3)(0) + (2 +0)(2 -0) = 1 . 

From (1) g = ni and rl= crl-W1 
1. 

r, = 0-(-1+0)(2-N/3) = 5-3N/3 and 

So o- = 2 -f3 and 

y 
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acr + VI= (2+3T3)(2-[3)+(3+T3)(5-3'f3) = -5+40+6-40 = 1 . 

Hence there is a 6 and an n in Ra [ N[3] to satisfy the 

required condition. 

Corollary 1. 13: If a and (3 are any two integers of Ra [ f3], 

there exists a common divisor, b, of a and ß such that every 

common divisor of a and ß divides b, and there exists two 

integers, 6 and Tl, of Ra[ N[3] such that aci + ßri = 6 

If a and ß are relatively prime then by Theorem 1. 13 

acr +Pi= 1 (1) and 1= b. 

If a and ß are not prime to each other then a= alb and 

P = ß18 where al and ßl are relatively prime. Then if a= al 

and ß = Pi in (1) and we multiply by b we have 

or 

altos + P1671= 6 

aCr + = 6 . 

Every common divisor of a and ß divides b and b is 

the divisor sought. The divisor 6 is called the greatest common 

divisor of a and P. 

Theorem 1. 14: if the product of two integers a and ß of Ra[ N[3] 

is divisible by a prime number 0 at least one of the integers is 

. 
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divisible by O. 

Let aß= ey where y is an integer of Ra [ t\r3] and 

assume a not to be divisible by O. Then a and O are rela- 

tively prime and from Theorem 1. 13 there exist two integers cr and 

r of Ra[ NÌ3] such that ao- + 6r1 = 1. 

Multiplying by ß the equation becomes: 

But aß = 8Y so (1) 

ßao-+ß8r1= ß . (1) 

is 9Ycr +ß8rI= ß or 8(Yo-+ß1-1) = ß where 

is an integer of Ra[ [3] , hence ß is divisible by O. 

Corollary 1. 14: If the product of any number of integers of Ra[] 

is divisible by a prime number, 0, at least one of the integers is 

divisible by O. 

If al a2 a3 an = 813 (1) where al, , a ß, in 

Ra[ 0] and y = a2 a3 . an then (1) may be written as 

By Theorem 1. 14, 0 divides al or Y If 

CIO op' 

al is 

divisible by 8 the corollary is proved. If instead y is divisible 

by A then since Y = a2Y1, O divides a2 or y1. Continuing 

in the same manner as before the number of factors in question is 

reduced one at a time until only two are left. Then by Theorem 1.14 

one of the other must be divisible by 0. 

(Tr +ßg) 
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Theorem 1. 15: (Unique Factorization Theorem) Every integer of 

Ra[ 'T3] can be represented in one and only one way as the product 

of prime numbers. 

Let a be an integer of Ra[ '[3 ] . If a is not a prime 

number, then a= ßy where ß and y are integers of Ra [ NI-3] 

neither of which is a unit. It follows then that N(a) = N(ß)N(y). 

Since N(P) ± 1 and N(y) L ±1, we have I N(P) I < I N(a) I and 

INN) I < ( N(a) I - 

If ß is not a prime number we have as before f3 = Plyl 

where ßl and yl are integers neither of which is a unit, hence 

I MP') I < 
I 

IN(P)I 
I 

and I N(y 1) 
I 

< IN(p)I 
I 

If ß l is not a prime 

number, we proceed in the same manner and, since I N(ß) I , 

N(ßl) I , I N(ß2) I form a decreasing series of positive rational 

integers, we must, after a finite number of such factorizations, reach 

in the series ß,ßl,ß2'ß3 a prime number 01. Thus a has 

the prime factor 01 and we have a= 01a1. 

Proceeding similarly with al , in case it is not a prime number, 

we obtain al = 02a where 02 is a prime number, and hence 

a = 0102a2 

Continuing this process we must reach in the series 

a, al, a2, a prime number On since 
I 
N(a) 

I 

I N(al) 
I 

N(a2) I form a decreasing series of positive rational integers. 

We have thus a= 010203 On where the 0's are all prime 

, 

# 
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numbers; that is a can be represented as a product of a finite 

number of factors all of which are prime numbers. 

We now need to show that this representation is unique. 

Suppose that a= 9510203- Om; then it follows that 

On 
= 0102953 Om' From Corollary 1. 14 we can conclude 

that if 010203 
' 0n °1 /)2 °3 °m then at least one of the O's 

say 951 is divisible by 01 and hence associated with 01 that is 

Ol = E 161, where E is a unit. Dividing by 01 we have 

9293 6n 
= e 1O2O3 0m' From this it follows that at least one 

of the remaining 95's say 952 is divisible by 02 and hence 

associated with it. Thus 952 = E 202 where E is a unit, and 

hence 

6364. 6n E 1 om 

Proceeding in this manner we see that with each 0 there is 

associated at least one ¢, and, if two or more 0's be associated 

with one another, at least as many ¢'s 

0's and hence with each other. 

In exactly the same manner we can prove that with each 

are associated with these 

there is associated at least one 6, and, if two or more O's be 

associated with one another, at least as many 0's are associated 

with these ¢'s and hence with one another. 

Hence since we always consider two associated factors as the 

. . 

. . 

0 

- 

2 
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same, the two representations are identical. For if in our repre- 

sentation there occur e factors associated with a certain prime, 

there will be exactly e factors in the other representation associ- 

ated with the same prime. 

We can write every integer, a, of Ra[ ßi3] in the form 
el e2 

a = 01 On where where 01, 02 On are the unassociated 

prime factors of a and E a suitable unit. This representation 

is unique. 

e2 



II. THE QUADRATIC INTEGRAL DOMAIN Ra[ 15] 

Consider a quadratic equation px2 +qx +r = 0, p 0 

irreducible over the rational field; again we may assume without 

loss of generality that p, q, and r are rational integers. Now 

consider the case where q2 -4pr = -15k where k = t2 

25 

and t is 

a nonzero rational integer. 

p is one of the roots of the equation. Since the equation is 

irreducible, p is not a rational number. Denote by Ra(p) the 

set of numbers a +bp where a and b range over the rational 

numbers. 

Theorem 2. 1: There exists a rational integer m without a 

repeated factor such that Ra(p) = Ra('im). 

For the case referred to above m = -15. Since the proof 

is similar to that for m = 3, we omit the proof and consider the 

following example: 

Example: Consider the equation 2x2 -x +17 = 0, p is one of its 

roots so 

Then 

1+,\T-135 1 3 
p = - 4+4 15. 

a+bp = a+b ( + 4 15 ) = (a + 4 b)+ 4 Nl 15 - = c +dP\i- 15 

L 
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and since 

and 

1 3 
15 - 4-1 

p 4+415, 3 

4 1 1 4 
a+b,\F- 15 = a+b(3p - 3) = (a - - b) 

3 
+ ( 3 b)p = c+dp 

where a, b, c, d in both cases are rational. Hence numbers of 

the form a +bp may be expressed as c +d"/ -15 and conversely. 

Therefore Ra(p) = Ra(Nr- 15 ). 

Theorem 2. 2: The set Ra(f 1.5) is a field. 

Since the complex numbers form a field and Ra(41 15) is a 

subset of the complex field the associative, commutative and distribu- 

tive laws hold for addition and multiplication. It remains to be shown 

that the set is closed under the two operations, the identity element 

for each operation is contained in the set and every element except 

the additive identity in Ra( \ -15) has its reciprocal in Ra([-15). 

i) closure: 

(a1 +b1J -15)+ (a2 +b2Nr- 15) _ (a1 +a2) +(b1 +b2)ß 15 

hence addition is closed. 

(a1 +b1Nr- 15)(a2 +b2N1 -15) _ (a1a2- 15b1b2) +(a1ó2 +a2b1)\ -15 

= 
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hence multiplication is closed. 

ii) identities: 

(c +dom 15) + (0 +0^/ -15) = c +dF-15 

Therefore 0 +0N/ -15 = 0 is the additive identity. 

(c +d NT- 15)(1 +0Nr- 15) = c +dom 15 

Therefore 1+0N/115 = 1 is the multiplicative identity. 

iii) inverses: 

(c +dNT-15) + (- c- dT/- 15) = O +0,1 -15 = 0 

and every element of Ra(N -15) has an additive 

inverse in Ra([-15). 

(c+dhr- 15) ( c+d 15 ) = 
1 c d 0 

since additive identity excluded. 

1 

c +dß-15 
is an element of Ra(N -15) since 

1 c-d,\F- 15 c d f 15 

c+d./-15 c2+15d2 c2+15d2 c2+15d2 

2 

where c, d are rational and c +15d 0 . 
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2 

If c2+15d2 = 0 then c2 = -15d2 or = -15, 
d 

d 0 for the previous step would imply if d = 0 

that c = 0 contrary to the given statement c d O. 

So = F-15 but d is rational which is a contra- 

diction and c 2+ 15d2 O. 

The proofs to many of the theorems of Ra(Nr -15) are similar 

to the proofs of the same theorems of Ra(f3). When this is the case 

the theorem will be stated without proof. 

Theorem 2.3: Every number of Ra(Nr- 15) satisfies a quadratic 

equation with rational coefficients. 

If a= a +b T 15 is any number of Ra(Nr- 15), then its 

conjugate is á. = a -b'[ 15 and a satisfies the equation 

2 2 2 2 2 (x-a)2 + 15b2 = x2 - 2ax+a + 15b2 = O. 

This equation is called the principal equation of a= a +bue . 15 The 

constant term N(a +bue 15) = a2 +15b2 is called the norm of a +bue 15 

and N(a) = aá . The negative of the coefficient of x, T(a +bN -15)= 2a 

is called the trace of a +bue 15. Since a and b are rational, 

a2 +15b2 and 2a are also rational. 

The integers of Ra([ 15) are the numbers of the field 

2 Raef 15) which will satisfy equations of the form x2 +px +q = 0 

c 

o 

t2 
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where p and q are rational integers. These numbers constitute 

the integral domain Ra[NÍ -15] of Ra(^/ -15). 

Theorem 2.4: Every rational integer is in Ra[ NT-15]. Every 

number of Ra[ '/- 15] which is rational is a rational integer. 

Theorem 2.5: The conjugate of a number of Ra[ 15] is in 

Ra[ 15]. 

Theorem 2. 6: The numbers of Ra[ [-15 ] are given by a +b'115 

where a and b are either rational integers or are both halves 

of odd integers. 

Every number a = a +bß.1 -15 of Ra(. -15) satisfies 

the principal equation x2- 2ax +a2 +15b2 = O. The integers of 

2 Ra(- 15) will satisfy equations of the form x +px +q = 0 where 

and q are rational integers. Therefore 2a = p a2 +15b2 = 

are rational integers. 

q 

p 

If a +b4- 15 is a number of Ra(T 15) then a and b 
al 

are rational or = a, 
b 

1 
= b where al, 

1 
b , 

1 
cl 

1 
are relatively 

c1 

prime rational integers. Then 

2a a2 +15b2 
1- p (1) and 1 2 

1 c1 

Nr- 

c 
1 

q (2) 
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So c1 = 2 or c1 = 1 for unless c1 = 2 or c1 = 1 by (1) 

c1 and al would have a common factor which would also be a 

fac or of b1 by (2) contrary to our hypothesis that al, b1 and 

c are relatively prime. If c 1= 2 then by (2) c 1 = 4 is a 

factor of al + 15b12 . If al is odd and b1 is odd then 

a.1 +15b1 = (2n +1)2 +15(2m +1) where m and n are rational 
integers 

= 4n2 +4n+ 1+ 60m 2+ 
60m+ 15 

= 4(n 2 +n+ 15m2+ 15m +4) . 

a 
Therefore if c1 =2 and al and bl are odd then a = 2 and 

b 
b = 

1 2 . If al and bl are both even they have a common factor 

or with c1 contrary to our hypothesis. If al is odd and b1 

even al + 15b1 is odd and not divisible by 4. Similarly if al 

is even and b is odd. If c1 = 1 then a 1= a and b 1= b 

or a and b are rational integers. 

The numbers 1 and 2 
1 

+ 
21 

\F-15 form a basis for Ra[-15J. 

In other words every number of the domain Ra[\- 15] is given 

1 l 
without repetition in the form a(1) + b(2 + 

2 
15) where a and 

b range independently over all rational integers and conversely 

every such number is in the domain. 



1 1 Theorem 2.7 : If 1 and 2 2 + V 15 is a basis of Ra[ Nr -15] , 

every basis of Ra[ x/-15] is given by 01= all +aí2(2+ 2N -15), 

92 = a21 +a22(1 2 +1 2\r- 15) where 

all a12 

a21 a22 

= f 1 

Example: Solving the equations given in the general theorem, 

Theorem1.7, for 01 and 02 

and 

91 f (a2261-a 92) 

02 = ±(a O' 
21 1 

. 

21 5 Therefore if 91 = 2 + 2 x-15 , 02 = 4 +,1 -15 is a basis then 

1 1 
01 = 1 and 02 = 2 2 + - 15 can be written in terms of it. 

i. e. 1 = [ 2( Zl+Z 15)-5(4+Nr- 15)] 

= 1 

and 

21+5,\F-15-20-5\F-15] 

31 

a110') 

[ = 
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2+ Z 15 = -[ 3( 15)-8(4+^I-15)] 

63 15 

= -[ 
+--T-15-3z-8T-l5] 

1 1 
= -[ -2 - 2 x-15] 

1 1 
= 2 15 

So 01 = 20' -502 and 02 = -(301 -802). 

Theorem 2. 8: The norm of a product is the product of the norms. 

N(a3) = N(a)N(P). 

Theorem 2. 9: The norm of a quotient is the quotient of the norms. 

N(ß) 
N(ß) 

p 0 . 

Theorem 2. 10: A number E of Ra[ 15] is a unit if and only if 

N(E ) = ± 1 . 

Theorem 2. 11: The units of Ra[ \/-15] are ±1 . 

If E = a +bNi-- 15 , then N(E ) = N(a +b,.Ì - 15) = a2+ 15b2 = +1 

since the norm of a +b^/ -15 is always positive. So this gives the 

solution a = ± 1, b = 0 hence ± 1 are the only units of Ra[f-15]. 
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The definitions concerning prime numbers of Ra[ [- 15] are 

identical to those of Ra[ T3]. Consider the following examples: 

Example 1: To determine if 7+ 3,\F-15 is prime or composite 

let 

So 

then 

7+3,\F-15 = (a+bNr- 15 )(c+d\1-15 ) . 

N(7+3^,r- 15) = N(a+b\f-15)N(c+dRÍ-15) 

94 = (a2+15b2)(c2+15d2) . 

case i): a2 +15b2 = 2 or case ii) a2 +15b2 
21-15b 2 

= 1 

c2+15d2 = 47 c2+15d2 = 94 

Case i) is impossible since a and b must be rational 

integers or halves of odd integers. From ii) it follows that 

a+b^/-15 is a unit. Hence 7 +3'.- 15 is a prime in Ra[ 15] . 

Example 2: To determine whether 15 is prime or composite 

in Ra[ [-151 let 15 = (a +bue 15) (c +d\/ -15 ). 

Then 

225 = (a2 +15b2)(c2 +15d2) . 
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case i) a2 +15b2 = 1 case ii) a2 +15b2 = 3 

c2+15d2 = 225 c2+15d2 = 75 

case iii) a2 +15b2 = 5 case iv) a 
2 
+15b 

2 
= 9 

c2+15d2 = 45 c2+15d2 = 25 

case v) a2 +15b2 = 15 

c2+15d2 = 15 

Case ii) and iii) are impossible since a and b must be 

rational integers or halves of odd integers. Case i) indicates 

that a +b'i -15 is a unit. Case iv) yields a solution a = f 3, b = 0, 

c = ± 5, d = 0 and case v) gives the solution a = 0, b = ± 1, c =0, 

d = ± 1. Hence 15 is composite in Ra[f- 15] and 15 = (3)(5)= (wT- 15)(- 13). 

It must now be determined if these factors are prime. 

If 3 = (a+btir-15)(c+dNr-15) then 9 = +15b2)(c2 +15d2) 

case î) a2+13 
b2 

= 1 ii) a2+15b2 = 3 

2+15d 2 2 2 = 9 c+15d c 3 

If 5 = (a +b- 15)(c +d/ -15) then 25 = (a2+15b2)(c2 +15d2) 



case i) a2 +15b2 =1 

c2+15d2 = 25 

case ii) a2 +15b2 = 5 

c2+15d2 = 5 

35 

If 15 = (a +b- 15)(c +dq--15) then 15 = (a2 +15b2)(c2 +15d2) 

case i) a2 +15b2 = 1 case ii) a2 +15b2 = 3 

c2+15d2 = 15 c2+15d2 = 5 

For each of these numbers case i) indicates a +b\i- 15 is a unit 

and case ii) is impossible since a and b must be rational 

integers or halves of odd integers. Therefore 3, 5 and - N'r -15 are 

prime in Ra[r- 15] . 

If Nr-15 = (a +b- 15)(c +dNr-15) then - 15= (a2 +15b2)(c2 +15d2) 

which is impossible since the norm of a +bf- 15 and of c +dNÍ - 15 

is always positive and f -15 is also prime in Ra]fÍ -15] . 

Therefore there are two ways to factor 15 into prime 

factors in Ra{[-15] which illustrates that the property of unique 

factorization into primes does not exist in this domain. 

In order to restore this property of unique factorization to 

Ra[f -15] , we introduce the concept of ideal numbers. 

If every pair of numbers of Ra[ f -15] not both zero had a 

ge c. d. expressible linearly in terms of the numbers we could prove 

-N 
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unique factorization (see Theorems 1. 12, 1. 13, 1. 14 and 1. 15) It 

is the lack of a g. c. d. which is the fundamental difficulty. An exam- 

ple illustrates. 

Consider the set S of positive integers which are = 1 

modulo 3. This set is closed under multiplication. A number of 

S may be called prime if it cannot be written as a product of two 

numbers of S. Factorization into primes is not unique: 

220 =55.4= 22.10 

where 55, 4, 22, and 10 are all primes. 

The difficulty is due to the absence from S of the other 

integers. We therefore introduce these missing numbers by using 

a notation involving only the numbers of S. Let (a, b) denote 

the g. c, d. of a and b so 

2 = (4, 22) = (4, 10) 11 = (55, 22) 5 = (55, 10) 

Thus 220 = (4, 22)(4, 10)(55, 22)(55, 10) is uniquely factored into 

ideal numbers. 

The set of numbers aor +ßrß = 6 of Ra[ .T3] consists 

exactly of the multiples of 5 where 5 is the g. c. d. of a and 

3 or in symbols 5 = (a, ß), a, E3, Cr and T1 are integers of 

Ra[ 0]. Set up the correspondence ao- +ßrß (a, ß). The problem 

is so to define multiplication of sets that this correspondence shall 

f-> 
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be an isomorphism. In Ra[ 15] , two numbers a and ß 

do not necessarily have a g. c. d. The sets aQ- +(3rd where cr and 

range independently over Ra[ 'f -15] do exist, however, and are 

the ideals of Ra[r- 15] . 

An ideal of Ra[ 15] is a set of integral numbers of 

Ra[T -15] not all O which is a group relative to addition, and 

which is closed under multiplication by all the numbers of Ra[tii-151 . 

Theorem 2. 12: In every ideal there exist two numbers col, w2 such 

that the numbers of the ideal are given by k1w1 +k2w2 where kl, kZ 

range over the rational integers. 

These numbers form a minimal basis for the ideal. 

1 1 

Let 1 and 2 + -15 -2 N/ be a basis for Ra[ 15 . If 

a 0 is a number of the ideal A, then A contains ±aá = ±N(a), 

and so A contains positive integers. Let w1 be the smallest 
1 1 

positive integer in A. Of all numbers 5 = f 
1 2NT-15) 

in 

A having f2 0, choose as w2 one such in which 22 is 

I 1 

positive and minimal. Let a = al +a2(2+ 2 Nf- 15) be any number of 

A. Write 

Then 

a2 = 2k2+r2 0 <r2<f2 

1 1 

a-k2w2= (al k2f I)+r2(2+2N/-15) 

11 
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is in A, and if r2 were not zero, the definition of w2 would 

be violated. Thus a- k2w2 
2 2 

= al -k2Q = b. Now write 

b = wlkl+rl 0<r < 

so that a- k2w2 -klwl = r1. Since w1 was minimal, r1 = 0, and 

a = kiwi +k2w2. 

Corollary 2. 12: Every rational integer in A is divisible by col 

Theorem 2. 13: If wl, w2 is a minimal basis for an ideal A in 

Ra{ [ 15] , every minimal basis is given by 

wl - a11w1+a12w2 w2 a21w1+a22w2 

where the a's are rational integers such that 

all a12 

a21 a22 

= t 1 

and every such pair wl, wZ is a minimal basis. The proof 

follows as in Theorem 1.7. 

2 
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Theorem 2. 14: Every ideal A has a minimal basis k, + r0, 

where k is the smallest positive integer in A and O < Q < k. 

In the proof of Theorem 2. 12, we saw that we could choose a 

1 1 basis wl = k, 
2 

= m +r(2+ 2 - 15) where k was the smallest 

positive integer in A. 

Set 

m - gk+.Q 0< Q< k . 

The transformation wi = wl = k, wZ = w2 -qwl = f +r(2+ 
2 

^i 1,) is 

of determinant 1, so the result follows from Theorem 2. 13. 

Theorem 2. 15: Every ideal A has a minimal basis of the form 

1 1 
wl ra, W2 = r(b+ 2 +2N - 15) where r and a are positive 

integers, and 0 < b < a. Moreover 

b +b+ 4{ 1- ( -15)] E 0 mod a 

b +b +4 E 0 mod a 

Such a basis is called a canonical basis. 

Using the notation for Theorem 2. 14, since k is in A, 

1 
+ + 2 k(2 15) is in A. Set 

k ar+t 

Then 

0 < t < r . 

w2 

= 



k( 2+2 15) - aw2 = -ai +t( 2+2 15) 

is in A. This is impossible unless t = 0, in which case r 

1 1 

divides k. Hence wl = ra, w2 = Q +r(2+ 2 ̂ i -15). 

Since .Q +r(2 1 
+21 \ -15) is in A, so is 

Set 

Then 

40 

.Q( 1+1-15) + r(1+1 15)2 = e(1+- 
2 

N/-15)+4 (-2+-2 \J-15)-4]. 
2 2 2 2 

,Q =br+tl 0<tl< r. 

r[(2+ 
Z 

-15)-4] +.Q (2+ 2 Ñ--15) -(b+ 1)w2 = -4r+t1( 2+ 2 '.- 15)- (b+1)/ 

is in A so t 
1 

= 0 and r divides ,Q. Hence there is a basis 

w1 = ra, w2 = r(b+2+2tir 15) 

where r and a are positive. Since by Theorem 2. 14, 

0 < rb < ra, we have 0 < b < a. 

Since w2( 
1 2+ 1 2 15) - (b +1)w = -rb2-rb-4 is a rational 

integer in A, it is divisible by ra by Corollary 2.12. That is 

b2 +b +4 = 0 mod a . 



Example: Consider the ideal C = (5, 

basis col = 5 and w2 = 2 5 
+ N- 

1 

15. Then 

Z+ 2 ̂ /-15) 

and 

wl =5 = ra 

1 1 5 1 
w2 

2 
r(b+2+2Nr-15) = 15 

= r(b+ 2+ 2 / 15) = (2+ 2+2- 15) 

So r = 1, b = 2 and a = 5 and O < 2 < 5 and 

with minimal 

41 

b2 +b +4 = 10 = 0 mod 5 . Therefore w1,w2 is a canonical basis. 

The product AB of two ideals A and B is defined to be 

the set of all numbers obtained by multiplying every number of A 

by every number of B, and then adding and subtracting these 

numbers until no new ones are obtained. This set of numbers 

satisfies the definition of ideal. 

For example: if A = (w1,w2) and B = (X1 x2) then AB 

consists of the numbers k w X +k w x +k w X +k w X where 
1 1 1 2 1 2 3 2 1 4 2 2 

k1, k2, k3, k4 range over all numbers of Rai Nr- 15 j 

If all the numbers of an ideal A are multiples by numbers 

of Ra[ [ 15] of one number a, the ideal A is called principal 

and is written (a). 

If every number of an ideal A is replaced by its conjugate, 

the resulting set is an ideal A called the conjugate of A. 

5 

= 
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Theorem 2.16: AB = A B . 

If 

then 

A = (w1, w2) and B = (X1, X2), 

AB = (co1X1, w1X2, w2X1, w2X2), 

A B= (cÙ1 X1, c..) x2, 
1 

w2X1, w2X2). 

1 1 - 2, 

Theorem 2.17; If A = (ra, r(b ++ 2 15)) then AA = (r a). 

The number r2a is called the norm of A, written N(A). 

Proof. The product AA consists of all numbers 

(1) kr2a2+Xr2a(b+2+2^f-15)+µr2a(b+Z - -15)+Y r (b +b-1-4) 
2 

2 

where k, X , µ and y range over all numbers of Ra[N/ 15] . By 

Theorem 2. 15 c 
b2 +b+ 4 

== is an integer. The transformation 
a 

k-k1' X 
X1+vl, µ = X1' v - µl 

takes the set of numbers (1) into the set 
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2 2 2 1 1 2 1 1 2 1 1 2 2 
klr a +X r a(b+2+2 15)+vlr a(b+2+2 -15)+Xlr a(b+2 215)+µ,r (b+b+4) 

(2) = k1r2a2+X 1r2a(2b+1)+µ1r2ac+v1r2a(b+ 2+ 2 - 15) a 

Hence every number of (2) is in (1). The converse is true, since 

kl = k, = µ, µ1 = y, v1 = . X 

Let g = (2b+ 1, a,c). Since g and gjc, g 
2 jac or 

= ac 0 mod g2. Since g j 2b +1, g214b2 +4b +1 or 

4b2 +4b +1 = 0 mod g2. So 

b2+b+4 = 4b2 +4b+ 16 ° (4b` +4b+ 1) + 15 °= 0 mod 

Therefore 15 = 0 mod g2. Since 15 has no square factor > 1, 

g - 1. 

(3) 

We can then see that the set of numbers 

k1r2a2 + X 1r2a(2b+1) + E1r2ac 

is the same as the set pr2a. 2a. Obviously every number of (3) is 

n pr2a. Since a, 2b +1 and c are relatively prime, there 

exist rational integers p, q, t such that 

1 == pa +q(2b +1) +t:c . 

-µ 

la 

b2 +b +4 °- 

g 2 . 

2 
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Multiply through by r2a. Then 

r2a = pr2a2 +gr2a (2b +1) +tr2ac 

so that every number of pr2a is in (3). 

The set (2) is now seen to be equal to the set 

2 2 1 1 pr a + v1r a (b+ 2 +- 
2 

\/-15) . 

But obviously every number of this set is a multiple of r2a, and 

conversely, every multiple of r2a is in the set, with v = O. 

Thus AA= (r2a). 

Theorem 2. 18: If SA = SB, where S, A, and B are ideals, 

then A = B. 

The numbers of A are given by 

where 

klal +k2w2, 

form a basis for A and k 
1'1( 2 

are in Ra[NF- 151 . 

Let s N(S). The numbers of (s) are given by Xs. Thus the 

numbers of (s )A consist of the numbers 

Xkl +Xk2sc2 = T11sal +r12sa2 

where r1, n2 range over Ra[Nr -15] . Thus every number of 

i 

wl' w2 

= 
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(s)A is of the form sa where a is in A. 

If SA = SB, then SSA= SSB, and by Theorem 2. 17 

(s)A = (s)B, 

where s is a rational integer. That is, for every number a 

in A there is a number ß in B such that 

sa = sß, a = ß , 

and conversely. Hence every a is in B and every p is in A, 

so that A B. = 

If three ideals A, B, C of Ra[r-15] are in the relation 

AB =C, we say that A divides C and B divides C. A 

B are called factors of C. 

Theorem 2. 19: A divides C if and only if every number of C 

is in A. 

If A _ (wl , and and B = 
(X1 

, X2) then AB = C consists 

of all numbers 

kw1X1 +\w1X2+1-w2Xl + 
riw2X2 

where k, X, µ, î vary over Ra[ [ -15] . But this can be written 

in either of two ways. 

and 

w2) 



(kXl+XX2)w1+(µX1+pX2)w2, (kwl +µw2)X1 + (%w +r .o2)X2 
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so every number of C is in A and also in B. 

Conversely, suppose that every number of C is in A. Then 

every number of CA is in AA,: (a) where a is a positive 

integer. That is, all numbers of CA are given by pa, where 

j3 varies over a certain set B of numbers of the domain. It must 

now be proven that B is an ideal. 

Since CA is an ideal, for every two numbers 31a and 

p2a of C A there are numbers ß3a, ß4a and ¡35a of C A 

such that 

ß1a +ß2a = ß3a (31a -ß2a = 134a, k (31a = ß5a 

for every k in Ra[T-15] , Hence 

kß1 

so that B is an ideal. It follows from Theorem 2. 19 and 

AC (a)B = A AB that 

C = AB. 

Theorem 2.20: A positive integer t occurs in but a finite number 

of ideal,. 

ßl +ß2 

- 

-- p3, pl-p2----p4, p5 
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Let the ideal A containing t have a canonical basis 
1 1 (ra, rb +r(2+ 2 15)), where r > 0, a > 0, 0 < b < a. 

Corollary 2.12, ra divides t. For a given t, there are not 

more than t choices for each of the positive integers r, a and 

b, and therefore not more than t3 such ideals A. 

Theorem 2. 21: An ideal C is divisible by only a finite number 

of ideals. 

By Theorem 2. 17 CC = (c), where c is a positive integer. 

By Theorem 2. 19, c is in C and also in every ideal which di- 

vides C. By Theorem 2. 20, there is but a finite number of such 

divisors. 

If an ideal P different from the unit ideal (1) is divisible 

by no ideal other than itself and (1), it is called a prime ideal. All 

other ideals except (1) are composite. 

An ideal G is called a greatest common divisor of A and 

B if G divides A and G divides B and if every common 

divisor of A and B divides G. 

Theorem 2. 22: Every pair of ideals A and B possesses a unique 

g. c. d. , G. It is composed of all numbers a+ ß where a 

ranges over A and ß over B. 

The set G of all numbers a+ (3 satisfies the definition of 

ideal. Since every number of A is in G and every number of 

By 
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B is in G, G is a common divisor of A and B. 

Let E be any common ideal divisor of A and B; that 

is, any ideal containing all the numbers of A and all the numbers 

of B. Since it is closed under addition, it contains all numbers 

a+ (3 of G and hence divides G. 

Suppose that G and G1 are two g, c. d's of A and 

B. Then G = K1G1, G1 = KG, so that 

Hence 

(1)G = K KG 
1 

. 

K1K = (1). 

Since N(K1) N(K) = 1 

K1 = K -(1). 

Two ideals are called relatively prime if their g. c. d is 

Corollary to Theorem 2. 22: If A and B are relatively prime, 

there exists an a in A and a [3 in B such that a+ (3 

Theorem 2. 23: If A divides BC and is prime to B, then A 

divides C. 

f A is prime to B then by the corollary to Theorem 2.22 

(1). 

1. 
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a.+R= 1, ya+vß y 

for every y in C. Since A divides BC the number y(3 

BC is in A. So is ya, and so therefore is y. Then A 

divides C by Theorem 2. 19. 

Theorem 2.24: Every composite ideal can be factored into prime 

ideals in one and, except for order of the factors, in only one way. 

By Theroem 2. 21 every ideal can be factored into a finite 

number of prime ideals. 

Let C be a composite such that 

C AlA2A3 ... An 

where the A's are prime ideals. 

Suppose that 

C; = B1B2B3 - Bm 

is a sec ;° d such representation. Then 

v 

Since Al is a prime ideal dividing B1B2B3 

Theorem 2. 23 it divides some i3.. Since B. is also a prime 

Brn, then by 

idea Al ta. By a rearrangement of the order of the B's if 

of 

AlA2A3 .. Arl 131r32133 Brri ' m 
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necessary we may assume Al B1. Then since Al 74 0 

A2 A3 An = B2 B3 - B 
rn 

As before, A2 divides one of the remaining B's say B2, and 

hence equals it, We proceed in this manner until all the A's or all 

the B's are exhausted. It is now evident that n = rn, for other- 

wise we should have a product of primes equal to 1. 

It follows therefore that every ideal C can be written 

uniquely as a product of prime ideals 

C Al A A3 
2 

A 

Example: Factor (15) into prime ideals. 

(15) (3)(5) (q--15)(-Nr-15) 

But these are not prime ideals for 

(3, \[-15)(3,Nr-15) (9, 3N/-1_, 3\r-15,-15 

and 

So 

(3) 

\i-15)(5,`\F-15) = (25, 5\/-15, 5NF-15, -15) = (5) 

(15, 5\/-15, 3\r-15, Nf-15) = (-NI-15) . 

= 

= 

-: 

(3,i-15)(5,^Ï-15) = -ï5) - 

_ 

_ 

5 
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(15)(3,-15)(3, NT- 15)(5, NT- 15)(5, Nl-15) _ (3, Nr 15)2(5, wr-15)2 . 

(3, 15) is a prime ideal, for if this is not the case then two ideals, 

A and B, neither of which is (1), must exist such that 

(3, 15) = AB . 

Let A = (a1, a2, ... , am), B = (ß1,ß, ... ßn). Then 

(3, N-15) _ (al, a2, am)(ßl, 132, . 
, ßn) 

By Theorem 2. 19, 3 and 15 'T are numbers of each of the ideals 

of A and B and hence 

(3, NT-15) _ (a 3, - 15)(ßl, ... ßn 

Let a. a +bue -15, be any one of the integers al, a2, a 

where a and b are integers or halves of odd integers. a a 

is a rational integer then a is of the form 3c, 3c+1, or 3c 

where c is a rational integer. Similarly if -.. is half of an odd 

integer it is of the from 3c, 3c +i, or 3c -1 where c is half 

of an odd integer. We have therefore 

1) a, -= bNT- 15 + 3c i 

2) e = btiT- 15 + 3c+1 

3) c:_; = b NT- 15 + 3c -1 . 

T 

. 

, 

i 
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If 1) is the case a. may be omitted from the symbol A. If 2) 

is the case, we have a.-b[-l5-3c = 1 and 1 may be introduced 

into the symbol of A. All other numbers could then be omitted and 

we would have A = (1). If 3) is the case, we have btir- 5 + 

and again A = (1). 

Proceeding in this manner with each of the numbers 

al , a2, a we find that either all of the numbers a , a , art r 

are linear combinations of 3 and tir 15 and hence may be omitted 

from the symbol of A, in which case we have A= (3, N% 15) or 

some number of A is not a linear combination of 3 and ^J- 15 , 

in which case 1 may be introduced into the symbol of A and 

A = (1). The same is evidently true for B. We have therefore as 

the only possible factorization of (3, // -15) 

3c-.a.7=1 

or 

or 

or 

or 

(3, Nr-15) _ (1)(1) _ (1) 4) 

(3,-15)(3,-15) 5) 

(1)(3, Nr-15) 

_ (3,Ni -- 15)(1) . 

is the case then 1 must be a number of the ideal 

1 = 3 (x +)/N 15) +AF -15 (u +vtir- 15). 

If 4) 

n 

_ 

-- 



Thus 1 = 3x -15v and 0 = 3yß./ -15 +u [ 15. But if 
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and v are 

rational integers or halves of odd integers, 1 = 3x -15v is impos- 

sible since the second number only is divisible by 3. Hence 1 is 

not a number of the ideal (3, f-15) and (3, N% -15) 74 (1) so 4) is 

impossible. 

5) is also impossible for we have previously shown 

(3,-15) 2 _ (9,3-15,315, -15) - (3) 

but 15 is not a multiple of 3 so (3, V-15) (3). 

The only divisors of (3, 15) are therefore the ideal itself 

and (1). Hence (3, x.%15) is a prime ideal. 

It may be shown similarly that (5, NT-15) is a prime ideal. 

As before if (5, 15) is not a prime ideal then two ideals, 

A and. B, neither of which is (1), must exist such that 

(5,Nr-15) _= AB. 

Let A = (a1,a2,,a B = (131,(32,...,ßr1) 

Then (5, Ni-15) = (ci , a2, 
. 

, am)(ßl, ß2' , ßn). By Theorem 2. 19 

and \ -15 are numbers of each of the ideals A and B and hence 

( 5 ti 1 - 1 5 ) ( a . , am 5 , , . . , P ... ßn 5, tir -15). 

Let c.i = - a +b- 1 5 , be any one of the integers a , a2, , am, 

where a and b are integers or halves of odd integers. If a is 

x 

5 

= %Í- 

V 

n, 
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a rational integer then a is of the form 5c, 5c +1, 5c -1, 

5c +2, or 5c -2 where c is a rational integer. Similarly if 

a is half of an odd integer it is of the same form where c is half 

of an odd integer. We have therefore 

1) a. = bNr- 15 + 5c 
i 

2) a. = bNi-15 + 5c+1 
i 

3) a. =b\r-15 + 5c-1 
i 

4) a. = bNr- 15 + 5c+2 
i 

5) a. = bNr-15 + 5c-2. 
i 

If 1) is the case we find that ai is a linear combination of 5 

and \F-15 so A = (5,'. -15). If 2) or 3) is the case 1 may 

be introduced into the symbol of A and all other numbers omitted 

and we would have A = (1). If 4) is the case then a. -bf -15 --5c 2 
i 

or A = (2). If 5) is the case bN- 15 +5c -a. = 2 so again A =(2). 

The same is evidently true for B. We have therefore as the only 

possible factorizations of (5, 15) 
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(5, \F-15) = 

= 

= 

= 

(1)(1) 

(2)(2) 

(1)(2) 

(2)(1) 

= (1) 

= (4) 

= (2) 

= (2) 

6) 

7) 

8) 

9) 

_ (2)(5, Nr- 15) _ (10, 2NI--15) = (2) 10) 

= (5, NF-15)(2) = (10, 2A1-15) = (2) 11) 

= ( 5 , - 1 5 ) ( 5 , - 1 5 ) _ (5) 12) 

= (1)(5, ^i-15) 

= (5,1\F-15) (1) 

If 6) is the case then 1 must be a number of the ideal or 

1 = 5(x +y- 15) + Ni -15 (u+v(Nr- 15). Thus 1 = 5x -15v and 

0 = 5yß/ -15 + u' -15. But if x and v are rational integers or 

halves of odd integers, 1 = 5x -15v is impossible since the second 

number only is divisible by 5. Hence 1 is not a number of the 

ideal and therefore (5, NF-15) 1. If 7) is the case, then 4 

must be a number of the ideal or 4 5 (x +yN- 15) +tip - 15 (u +v T 15 ). 

Thus 4 = 5x -15v and 0 = 5y-tir 15+uNi-15. But if x and v 

are rational integers or halves of odd integers 4 = 5x -15v is impos- 

sible since the second number only is divisible by 5. So 4 is not 

a number of the ideal and (5, ti[-i5) 74 (4). Likewise if 8), 9), 

= 

7' 
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10), or 11) is the case, then 2 is a member of the ideal so in 

the same manner as before 2 = 5x -15v which is impossible since 

only the second number is divisible by 5. So 2 is not a number 

of the ideal and (5,T -15) (2). 12) is also impossible for Nr15 

is not a multiple of 5 so (5, 15) (5) . 

The only divisors of (5, 15) are therefore the ideal itself 

and (1). Hence (5, 15) is a prime ideal. 

# 

sT 
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