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THE QUADRATIC INTEGRAL DOMAINS Ra[~3] and Ra[N-15]
I. THE QUADRATIC INTEGRAL DOMAIN Ral ~32]

Let px2+-qx+r =0, p# 0 with rational coefficients be a
quadratic equation irreducible over the rational field. Since the roots
remain unchanged if both sides of an equation are multiplied by the
common denominator of the coefficients, we may assume, without

loss of generality, that p, g, and r are integers of the rational

field which will be called rational integers p # 0. Let us consider
) 2 2 . . .

this case: q -4pr = 3k where k =t and t 1is a rational integer

not zero.

p is one of the roots of the equation. Since the equation is
irreducible, p is not a rational number. Denote by Ra(p) the
set of numbers at+bp where a and b range over the rational

numbers.

Theorem 1.1: There exists a rational integer m without a repeated

factor such that Ra(p) =Ra(vm).

Taking the particular case noted above, where

q2—4pr =3k, k= tzqé 0

-q+~N 3k —q-~N3k
then the roots are Py - —q%l—)——~, b, = —9-?5—1{— )

g+ 3k —
Let p = —9*—2‘?——, then ~N3k = 2pptq.



The first equation shows that every number of the form a+bp

can

be written in the form c¢+dN3k and the second equation shows all

numbers of the form a+bN3k are of the form c+dp. Then

Ra(p) = Ra(N3k).

2 .
Now set 3k = 3t , then a+bN3k =a+bta/3. So

Ra(p) = Ra(N3k) = Ra(v3) and m = 3.

. -q-"3k

A similar argument would hold if we let p 2o

. . . Z o, .
Example: Consider the quadratic equation 3x +bx+2 = 0.

of its roots so

-62\/12 _ -6+6\/3-4 _ —1+%'\f3

then

a+bp = a+b(-1+%\f3): (a-b)+ (%—)«B =c+dn3

and since

1
p - -1+‘3"\[3, N3 =3p43 ;

SO

a+bN3 = arb(3p+3) = (a+3b)+(3b)p ~c+dp

where a, b, ¢, d in both cases are rational.

P

is one



Hence, numbers of the form a+bp may be expressed as c+dnN3

and conversely. Or, in general, Ra(p) = Ra(N3).

Theorem 1. 2: The set Ra(N3) is a field.

Since the set Ra(N3) is contained in the complex field the

associative,

multiplication.

commutative and distributive laws hold for addition and

It is to be shown that the set is closed for the two

operations, the identity elements for each operation are contained in

the set, each element has an additive inverse in the set, and every

element except the identity in Ra(xN3) has its reciprocal in

ii)

closure:
(a1+b1'\f3) + (a2+b2\/3) = (a +a,) + (b1+b2)«/3
hence addition is closed.

E { /3y = ]
(31+b]\f3)\az+b2\¢ 3) (ala2+3b]b2)+(a1b2+a2bl)\f3

hence multiplication is closed.

identities:
{c+dnN3) + (0+0~3) = c+dN3

Therefore 0+0N3 = 0  is the additive identity.

—

Ra{~3).



(c+dN3)(1+0N3) = c+dN3

Therefore 14083 =1 is the multiplicative identity.

iii) inverses:

(c+dN3) + (-c-dN3) = 040~3

and every element of Raf3) has an additive inverse in

Ra(N3).

(C+d'\/—3)y =1 c# d £+ 0 since the additive identity is

excluded.
1 c-dnN3 c -d
Y= TcrdN3 T2 = )+ (5 33
o c —3d2 c:2—3d2 ¢ -3d

an element of Ra(N3),

¢ and d are rational and c2—3d2;é 0. If CZ—BdZIO

2
2 2
then ¢ = 3d or 3 = <

, d ;é 0 since this would
dZ

imply in the previous step that ¢ also be 0 and it was

given that ¢ £ d+#£ 0. So N3 = a rational number,

<
d b
2

. . . 2
which is a contradiction, hence ¢ -3d £ 0,

Theorem 1.3: Every number of Ra(nN3) satisfies a quadratic

equation with rational coefficients.



I a=a+bN3 is any number of Ra(N3), then its conjugate
is a=a-bN3 and a satisfies the equation
2 2 2 2 2 . . . o
(x-a) -3b =x -2axt+a -3b = 0. This equation is called the principal
: 2 2
equation of a= a+bN3. Its constant term N(a+b'\f3) = a -3b is
called the norm of a+bN3 and N(a) =aa. The negative of the

coefficient of x, T(a+bN3) = 2a, is called the trace of a+bN3.

2 2
Since a and b are rational, a -3b and 2a are rational.

Integers of Ra(n3)

The integers of Ra{N3) are the numbers of Ra(N3) which
. . . 2
will satisfy equations of the form x +px+q =0 where p and q
are rational integers. These numbers constitute the integral domain

Ra[ N3] of Ra(\N3).

Theorem 1.4: Every rational integer is in Ra[A3]. Every number

of Ra[~N3] which is rational is a rational integer.
If a 1is a rational integer then its principal equation is
2 2 . .
x -2ax+a’ =0 and is therefore in Ra[~3].
If conversely, a+bN3 is rational then b =0 and since
e . 2 2
a+bnN3 satisfies the equation x -2ax+a where 2a and a

are rational integers a must also be a rational integer.

Theorem 1.5: The conjugate of a number of Ra[~3] is in Ra[~3]:

for a+bN3 and a-bN3 have the same principal equation.



Hereafter the word integer will refer to integers of Ra[ N3].
The integers of the rational field will always be called rational

integers.

Theorem 1.6: The numbers of Ra[~N3] are given by a+bnN3

where a and b range over all rational integers.

Every number a=a+bnN3 of Ra(N3) satisfies the principal
. 2 2 2 . . :
equation x -2axt+a -3b = 0. The integers of Ra(N3) will satisfy
. 2 .
equations of the form x +px+q = 0, where p and q are rational
. 2 2 . .
integers. Therefore 2a =p and a -3b =g are rational integers.

If a+bnN3 is a number of Ra(N3) then a and b are rational

a b
1
or Ei =a, — =b where al, b., Cl are relatively prime
1 €1 Zal a?l —3b12
rational integers. Then - =P (1), -—]——2—-— =q (2), so c1 =2
1 €1
or 1 since if < £ 2 or 1 thenby (1) < and a2, would
have a common factor of bl by (2) contrary to our hypothesis

that 2, bl and c, are relatively prime. If cl:Z then by (2)

2
alZ and blZ would be divisible by 2 or alz - 3blZ =4q. I
al is odd and bl is even or al is even and b1 is odd the
contradiction is obvious. If al is odd and bl is odd, then

2 -
(2n+1) -3(2rn-+—l)Z = 4q

4n2+4n+l—24n12—12m—3

I
NN
0



4n2+4n—24m2—12m—2 = 4q
n2+n—6m —3m—% = q

But this is contrary to the fact that g 1is an integer. Hence

al and b1 must both be even. Therefore al, bl’ C1 would
have a common factor contrary to our hypothesis. So ¢, = 1 and
thus a, ~a and bl =b are rational integers.

—

The numbers 1 and ~3 form a basis for Ra[~3]. In other

words every number of the domain Ra[ N3] is given without repe-
tition in the form a(l) +b(~v3) where a and b range independ-
ently over all rational integers and conversely every such number is

in the domain.

Theorem 1.7: If 61 and 62 be a basis of Ra[ N3] every

basis of Ra[~N3] 1is givenby 0! =a .6 +a._ 0

where a a

Assume 6'1 and 6‘2 is a basis for Ra['\/ﬁ3]. Then

— i 1 — 1 i
61 = b1161+b1262 and eZ*b?.lelerZZeZ'



So
) =Py yfa) 8y + 21,050 +b),(@,,0,+2,,08)
and
0,=b,)(a)18) +2;,0,) +b,,0a,,0,+2,,8))
or
) = (a)yb)) + 2,000 + ()b +2,,0,,08;
and
0, = (@) b,y +2,,b,5)0) + (a),b,) +2,,b5,09,
Therefore allbll + a21b12 =1, alell + a22b12 = 0,
a11Ppy t 25105, =00 agpby agb,, s o
P Pzl 1 212 LI RAP LIPS PLIPRLPPLIPY I B .
Pa1 Paal] 221 222 B L L P PLI o1

hence it is necessary for the determinant of the coefficients to be =1.
Any number in the domain Ra[ N3] can be written in terms

3 ::t l_ !
of the basis. From (1) we know 91 (azze1 1262) and

= 1 ! = P 1
92 (2191 1192). I o C191+C292 is any number of the

domain then

w=c l#@,,07-2),0)] +c [*a,0)-a),0))]

or



Hence 6'1,6'2 is a basis for Ra[ ’\f3] since every number of

Ra[ N3] may be written as a linear combination of 6'1 and G'Z

and every such combination is in the domain.

Since 1 and A~3 is one basis 61,62, for Ra[~N3] then

. i
N3, Oz—a +a22*x/3

1 ! 2 . 1 _
all © ,62 may be written as: 61 = a + a 21

1 11 12

where

Theorem 1.8: The norm of a product is the product of the norms.

N(aB) = N(a)N(B)

Proof. a=a+bN3 B =c+dN3 aB=(ac+3bd)+(ad+bec)N3

N(a) :a2—3b2 N(B) = c2—3d2 N((1B):(ac+3bd)2-3(ad+bc)2

2 2

a c + 9b2d2 - 3a2d2 - 3b2c2

N(aB)

2 2 2
a c ~3b2c2—3a2d2+ 9b2d

2
c (a2—3b2)—3d2(a2—3b2) 2 2

(@%-3b%)(c%-3a%)

1
1

= N(a)N(B)

Theorem 1. 9: The norm of a quotient is the quotient of the norms.

) = B# 0
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Let a, B, and N(a), N(B) be as in Theorem 1.8

(a+bN3)(c-dN3) _ ac-3bd (bc -ad)N3

a
B (c+dN3)(c-dN3) <2342 <2342
Then
2 2
a ac-3bd bc-ad )
NG = (F5—) -3, )
c”-3d c”-34¢

2 2 2.2 2 2 2 7
ac +9b d -3b ¢ —3a2d _a&(c2—3d2)—3b2(c2—3d2)
2 2 - 2
(c —3d2) (c2—3d2)

2% 3p° _ N(a)
c2—3d2 N(B)

If a-B=vy in Ra[N3] we saythat a and B are divi-
sors of y. Further a divides vy in Ral N3]  if and only if
there isa B in Ra[~N3] such that aB=y.

A number of Ra[A~N3] is called a unit if it divides 1.

Theorem 1.10: A number ¢ of Ra[~3] is a unit if and only if

2 .2
N(e) =+1. So N(a+bN3) =a -3b~ ==+1 if a+bnN3 1is a unit,
Conversely if N(a+bnN3) = 1, then a+bnN3 is a unit.

If a is a unit then there exists a 3 such that ap=1.

N(ap) = N(a)N({B) by Theorem 1.8

N(1) = N(a)N(B)



11

So N(a) =1 and N(B) =x1. Converselyif N(a) =% 1, then
aa = £ 1.
Therefore a divides 1 and a 1is a unit.

Theorem 1.11: All units of Ra[~N3] are of the form :i:(2+'\f3)n,

where n 1is a positive or negative rational integer or 0 and all
numbers of this form are units of Ra[~3].
If e = 2+N3, then every positive power n of € isa

unit since N(en) = [ N(e )]n = :i:l]n =+ 1; hence ¢™  is a unit.

. . 0 . n - -n
Furthermore ¢ is a unit for € =1. Since € € - 1, ¢
is a unit also, or all negative powers of € are units.
Different powers of € give different units. 2+N3 is greater

than 1 so the positive powers will all be greater than 1 and

will continually increase; hence no two positive powers are equal.

- 1 -1 -
Also ¢ . SO € is less than 1 and e o will continual-

€

ly decrease as n increases; therefore no two negative powers will
be the same nor will they equal any positive power. Hence every
power of ¢ 1is a unit of Ra[ N3]  and two different powers always
give different units.

We must further show that the powers of € muitiplied by
£ 1 are all the units of Ra[ \f3]; that is, if mn be any unit of

n . o .
Ra[~N3] then mn= e where n 1is positive, negative or zero.
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If a+byN3 is any unit of Ral N3], then a-bN3, -atbN3
and -a-bN3 are also units of Ra[A3]. In other words the
number, its conjugate and their associates, associates being numbers
which are the same except for a unit factor, are each units of Ra N3]
if any are.

Denote that one of these four units which has both terms posi-
tive by nl(b may be 0), the remaining three will be My n?l,
and -n'l.

Since mw, > 1, it follows that

1

+1
nlzen or En<n1<en (1)

where n is a positive integer or zero. Dividing (1), the latter

n

expression, by ¢ we have
!
1< — <e¢ (2)
n
€
M
where a is a unit for the quotient of two units is a unit. So let
€
M
— =x+yN3.
~ = xtyN;

€

Then
(xtyN3)(x-yN3) = £ 1

and since according to (2) xtyN3 > 1 then lx—y\f3]< 1 or
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-1 <x-yN3 <1, This, combined with
1 < x+ynN3 < 2443 (3)

gives 0 < 2x <3 +~3 and since x is a rational integer x =1
or x = 2.

But if x=1 (3) becomes
1 <1+yN3<24N3

= 1483 but 1483 is not a

n
which implies that y =1. So ——
€

unit since N(1+Nf3) # +1. Furthermore for x = 2 we have
1 < 2+yN3 < 24N3 .

There are no integral values of y which will satisfy this inequality.

Positive values make 2+ yN3 > 2+N3, negative values make
"

2+yN3 <1, andif y =0 then W 2, but 2 1is not a unit
€

since N(2) # £1. Hence (1) is impossible and we have nlzen,

which implies that My = —en; and since nln'l ==+ 1,

1 _ -
nll = i—ﬁ = % ¢ and -n'l =Fe Therefore, if mn be any one
€

of the four units 7, -n;, M), - that is any unit of Raf[ N3],

n . o .
we have mn-= e where n 1is positive, negative or zero.
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Prime Numbers of Ra[~3]

Nonzero numbers of Ran3 which are not units but are
divisible only by units are called prime numbers. To determine
whether an integer is prime or composite we may use methods
similar to that of the following example.

Assume

5483 = (a+bN3)(c+dN3)
Then
N(5+N3) =N(a+bN3)N(c+dn3)
or

22 = (a%-3b%)(c%-3d%) .

There are three cases to consider:

i) a2—3b2 =1 c2—3dZ =+ 22
ii) a2—3bZ = - 11 c:2-3d2 = - 2
1ii) a2—3b2 =4+ 11 c:2—3dZ =4+ 2

Case i) has a+bN3 a unit and need not be considered. Case ii)

has solution a=%8, b=%=5, ¢ =%5, d=%=3 or

5+83 = (-8+5N3)(5+43~3) = (8-5N3)(-5-3~3).

Since neither of the integers -8+5 N3 or 5+43N3  is a unit, 5483

is a composite number. Other solutions of case 1ii) include
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a=%17, b=%x10, c=+5, d==%3 or

5483 = (17+1083)(-5+3N3) = (-17-103)(5-3~/3).

Case 1ii) has solution a=+1, b=%x2, ¢c==%1, d=%1 or

5483 = (-1+283)(1483) = (1-2~/3)(-1-~3) .
We see however, that each of these factorizations can be derived
from any particular one by multiplying the factors by suitable units,

and hence are not different, except for unit factors; that is

_84+5W3 = ¢ "L (-142W3) 54383 = ¢ L(144/3)

1]
1]

2

¢ 2(C14243) 54383 = ¢ S(1443)

il
1

17+10N 3

where ¢ = 2473 and we have in general
n -n
5483 = [ e (-1+203)][ e " (14N3)] .

Theorem 1.12: If a is any integer of Ra[~N3] and B is any

integer of Raf N3] different from zero, there exists an integer vy

of Ra[AN3] such that

[N(a-v@) | < N(BY]. (1)
Let % = a+bN3 where a = r+r1, b = S+S’L’ r and s
being the rational integers nearest to a and b respectively, and
1 1 .
hence |r1| < > |51| < 5 We then show that vy = r+sN3  will

fulfill the required conditions.

Since -y = r1+slfxf3

mle



2 2 3
NGV = [r-3s 71 <7

whence

a

(G

V|~ 1

or multiplying by IN(ﬁ) l,

IN(a-yB)| < [NE@)] .

Example: Consider the integers of Ra[~N3] a= 2+33 and

B =3+N3
%: 2;3\«[/;3: (2+3~f36))(3-~f3)= -3+Zuf3: '%ﬂé@ - aibA3
1 1
where a=r+r1 :-l+-?:, b:s+s1 :H'—(;' Then
vy = r+sN3 = -1483 .
Then

| N(a-yB) = | N[ (2+3~3)-(-1+n3)(3+N3)] | = [N(2+N3)] =1

and

IN@B)| = |N(3+N3)|= 6.

IN(a-yB)| =1 <6=|N@)| .

16
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Hence there exists an integer vy in Ra[ N3] such that the

inequality (1) is true.

Theorem 1.13: If a and P are any two integers of Ra[~3]

prime to each other, there exist two integers, ¢ and mn of Ra[N3]

such that
ac +pfn=1

If either a or f 1is a unit then the existence of the re-
quired integers o and m is evident. If neither a or p isa
unit, the determination of ¢ and m can be made to depend upon
the determination of a corresponding pair of integers T, and n
for a pair of integers a, and [31, prime to each other and such
that the absolute value of the norm of one of them is less than both
IN(@)| and [N

Assume !N(B)| < |N(0.) l, which does not limit the generality

of the proof.

By Theorem 1. 12 there exists an integer vy such that

IN(a-vB)| < |N(B)]| -

Then f and a-yP are a pair of integers a Bl’ prime to each
other and such that the absolute value of the norm of one of them is

less than both |N(a)| and |N(B)]|.
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If now, two integers o1 My exist such that a9, +L31n1 =1;
that is

60_1 + (G'_Y‘s)nl = 1,

SO

and hence o = N and n = oY

If neither a nor 61 is a unit the determination of ¢

1 1

and N for O and 61 may be made to depend similarly upon

that of o, and n, for a pair of integers a, and BZ prime to
each other and such that the absolute value of the norm of one of them
is less than both |N(a1)| and |N(Bl)l.

By a continuation of this process we are able to always make
the determination of ¢ and m depend eventually upon that of T
and n, for a pair of integers a and Bn one of which is a unit.

Since the existence of T and n is evident, the existence
n

of o and n is proved.

Example: Consider a= 24373 and PB=3+N3. a and P are

relatively prime since a-= 2+3~/3  is a prime number of Ral[~3]
and a is not a factor of PB. If B were divisible by a thena
y would exist such that ay =8. But, if ay = then

N(a)N(y) = N(B) or (-23)(N(y)) = 6 or N(y) = ;—;) . There is no



19

Yy 1in Ra[~3] such that N(y) = % So a and f are rela-

tively prime and
IN(B)| = 6 <23 = |[N(a)].

Is therea o and 7 in Ra[~N3] such that as +fn=17?

By Theorem 1. 12 there exists vy such that

|N(a-yB)| < |N{B)| i.e. y=-1+N3.

So
a-yB= 243 = B,
B= 343 = a
Then
(110'1 + Blnl =1
or
=1. (1)

661+(a~vf3)n1 =

But a-yB is a unit; therefore let n be its conjugate or associate

1

of its conjugate and ¢ ] be zero. So (1) becomes

(3+4N3)(0) + (24N3)(2-N3)=1.

From (1) o =My and n=0,-yny. So o =2-V3 and

n = 0-(-1+N3)(2-~3) = 5-3~3 and
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aoc +PBn= (243N3)(2-N3)+(3+N3)(5-3N3) = -5+4n3+6-483 = 1 .

Hence thereisa o and an mn in Ra[A~N3] to satisfy the

required condition.

Corollary 1.13: I a and f are any two integers of Raf N3],

there exists a common divisor, &, of a and f such that every
common divisor of a and B divides &, and there exists two
integers, o and m, of Ra[~3] suchthat ar +fn=26.

I o and f are relatively prime then by Theorem 1.13
ar +Bn=1 (1) and 1=56.

If a and f are not prime to each other then a=a.8 and

1

5:516 where a and ﬁl are relatively prime. Thenif a=a

1 1

and ﬁ:ﬁl in (1) and we multiply by & we have

(1160' + f316n: 5
or

aoc +PBn = &

Every common divisor of a and B divides &6 and & is
the divisor sought. The divisor & 1is called the greatest common

divisor of a and pB.

Theorem 1. 14: If the product of two integers a and B of Ral N3]

is divisible by a prime number 6 at least one of the integers is
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divisible by 0.

Let af= 0y where vy is an integer of Ra[~N3] and
assume a notto be divisible by 6. Then a and 6 are rela-
tively prime and from Theorem 1. 13 there exist two integers ¢ and
n of Ra[~N3] suchthat ac +6n=1.

Multiplying by p the equation becomes:

Par +pon=p . (1)

But aof=06y so (1) is ©Oye +POM=P or O(yor+Pn)=pf where

(yo +Bm) 1is an integer of Ra[~N3], hence B is divisible by 6.

Corollary 1. 14: If the product of any number of integers of Ra[~N3]

is divisible by a prime number, 6, at least one of the integers is
divisible by 6.

If al-az-as---anseﬁ (1) where Qystt s @y 6,8, in

Ra[~N3] and Y=o, e then (1) may be written as alyzeﬁ.

By Theorem 1.14, 6 divides a, or . It a is

divisible by 6 the corollary is proved. If instead vy 1is divisible
by 6 then since vy = a,Yy 6 divides a, or v,. Continuing
in the same manner as before the number of factors in question is

reduced one at a time until only two are left. Then by Theorem 1. 14

one of the other must be divisible by 6.
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Theorem 1.15: (Unique Factorization Theorem) Every integer of

Ra[ N3] can be represented in one and only one way as the product
of prime numbers.

Let a be an integer of Ra[ N3]. If a is nota prime
number, then a=pfy where pf and vy are integers of Ra[ N3]
neither of which is a unit. It follows then that N(a)=N(B)N(y).
Since N(B) 4 1 and N(y) 4 %1, we have ,N(B)|< |N((1)| and
IN()| < [N(a)].

If B 1is not a prime number we have as before fp= Blyl
where Bl and vy, are integers neither of which is a unit, hence
ING )| < IN(@)| and [N(y)) < IN(B)|. I B, is nota prime
number, we proceed in the same manner and, since IN(B) I,
|N(Bl) [, |N(62)| .-+ form a decreasing series of positive rational
integers, we must, after a finite number of such factorizations, reach
in the series 6,61,62,63--- a prime number ©6.. Thus «a has

1

the prime factor 0 and we have a-= 91(1

1 1’

Proceeding similarly with @ incase itis nota prime number,
we obtain a, = 6,a where © is a prime number, and hence

1 2 2 2

Continuing this process we must reach in the series

a,a,,a,, a prime number Gn since |N((1)|, |N((11)|,
|N((12)| .-+ form a decreasing series of positive rational integers.
We have thus a=6.6_0,---0 where the 0's are all prime

17273 n
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numbers; that is a can be represented as a product of a finite
number of factors all of which are prime numbers.

We now need to show that this representation is unique.
Suppose that a= ¢1 ¢2¢3- . ¢m', then it follows that
616263‘ . Gn = ¢1¢2¢3' . ¢m. From Corollary 1. 14 we can conclude
that if 616263' - Gn = ¢1 ¢2¢3' .- ¢m then at least one of the ¢'s

say ¢1 is divisible by 61 and hence associated with 0 that is

1
¢1 ~ € 161, where ¢ ] is a unit. Dividing by 61 we have
<. =€ s . is it foll 1 t
6263 Gn € 1(7)2(7)3 ¢m From this it follows that at least one

ofthe remaining ¢'s say ¢2 is divisible by 62 and hence

associated with it. Thus ¢2 = 6262 where € > is a unit, and
hence

030,770 meqe 030, 0

Proceeding in this manner we see that with each 6 there is
associated at least one ¢, and, if two or more 8's be associated
with one another, at least as many ¢'s are associated with these
0's and hence with each other.

In exactly the same manner we can prove that with each ¢
there is associated at least one 6, and, if two or more ¢'s be
associated with one another, at least as many 0's are associated
with these ¢'s and hence with one another.

Hence since we always consider two associated factors as the
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same, the two representations are identical. For if in our repre-
sentation there occur e factors associated with a certain prime,
there will be exactly e factors in the other representation associ-

ated with the same prime.

We can write every integer, a, of Ra[ \B] in the form
e1 e.2 e
a=¢0. 0. “--.90 ™ where 6., 6.---08 are the unassociated
1 2 n 1 2 n

prime factors of a and € a suitable unit. This representation

is unique.
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II. THE QUADRATIC INTEGRAL DOMAIN Ra[~-15]

. 2

Consider a quadratic equation px +gxt+r =0, p £ 0
irreducible over the rational field; again we may assume without
loss of generality that p,q, and r are rational integers. Now

. 2 ; :

consider the case where q -4pr = -15k where k =t and t s
a nonzero rational integer.

p is one of the roots of the equation. Since the equation is
irreducible, p is not a rational number. Denote by Ra(p) the

set of numbers a+bp where a and b range over the rational

numbers.

Theorem 2.1: There exists a rational integer m without a

repeated factor such that Raf(p) = Ra(Nm).
For the case referred to above m = -15. Since the proof
is similar to that for m = 3, we omit the proof and consider the

following example:

Example: Consider the equation sz-x+17 =0, p 1is one of its

roots so

Then

atbp = a+b( + \fb = (a+— b)+-——\f-15 = c+dN-15
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and since

1 4p-1
b= Z+;31-~f-15, N-15 = =B

and

4 1 1 4
a+bN-15 = a+b(7p - 3) = (a-3b)+ (3blp = ctdp

where a, b, ¢, d 1in both cases are rational. Hence numbers of
the form a+bp may be expressed as c+dN-15 and conversely.

Therefore Ra(p) = Ra(nN-15).

Theorem 2. 2: The set Ra(\N-15) is a field.

Since the complex numbers form a field and Ra(N-15) is a
subset of the complex field the associative, commutative and distribu-
tive laws hold for addition and multiplication. It remains to be shown
that the set is closed under the two operations, the identity element
for each operation is contained in the set and every element except

the additive identity in Ra(N-15) has its reciprocal in Ra(n-15).

i) closure:
(al+bl'\[—15)+ (a2+b2xf—15) = (al+a2)+(b1+b2)~f-15
hence addition is closed.

(al+b1'\f—15)(a2+b2\/-15) = (alaz-15b1b2)+(a1b2+a2b1)\ﬁ15
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hence multiplication is closed.
1) identities:
(c+dN-15) + (0+0N-15) = c+dN-15

Therefore 0+0n-15 = 0 is the additive identity.

(c+d'\f-15)(1+0'\f—15) = c+dN-15

Therefore 1+0N-15 =1 1is the multiplicative identity.

111) jnverses:
(c+dN-15) + (-c-dN-15) = 0+40n-15 = 0

and every element of Ra(v-15) has an additive

inverse in Ra(N-15).

(C+dJ~15)(—mlei'Ig“):l c£ d# 0

since additive identity excluded.

—Z:d—l'\Tfl_g is an element of Ra(N-15) since
1 - -1
R dn-15 _ c ) d 15

craN 15 21542 cFasa® c2i18a°

2
where ¢, d are rational and ¢ +15d2 74 0.
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o

If c2+15d2:0 then c2=—15d2 or = -15,

e

d # 0 for the previous step would imply if d =0

that ¢ = 0 contrary to the given statement ¢ £ d# 0.

C

So g = ~N-15 but is rational which is a contra-

<
d
.. 2 2

diction and ¢ +15d # 0.

The proofs to many of the theorems of Ra(V-15) are similar
to the proofs of the same theorems of Ra('\f3). When this is the case

the theorem will be stated without proof.

Theorem 2. 3: Every number of Ra(N-15) satisfies a quadratic

equation with rational coefficients.
If a=a+bN-15 1is any number of Ra(N-15), then its

conjugate is a = a-bN-15 and a satisfies the equation
2 2 2 2 2
(x-a) + 15b =x -2axta + 15b =0,

This equation is called the principal equation of a-= a+bN-15. The
2 2 .
constant term N(a+bN-15) = a +15b is called the norm of a+bn-15
and N(a) = aa. The negative of the coefficient of x, T(a+bnN-15)= 2a
is called the trace of a+bnN-15. Since a and b are rational,
2 2 .
a +15b and 2a are also rational.

The integers of Ra(N-15) are the numbers of the field

Ra(v-15) which will satisfy equations of the form x2+px+q =0



where p and ¢

the integral domain Ra[~N-15] of

Theorem 2.4: Every rational integer is in Ra[ '\/_—15].

Ra[ N-15]

number of

Theorem 2.5:

Ra[ ~-15].

Theorem 2. 6:

where a and b

of odd integers.

Every number

the principal equation

are rational integers.

The conjugate of a number of Ra[ N-15]

The numbers of

a=a+bN-15 of

XZ—Zax+a2+15b2::O.
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These numbers constitute

Ra(N-15).

Every

which is rational is a rational integer.

is in

Ra[ v-15] a+bnN-15

are given by

are either rational integers or are both halves

Ra(\N-15)

satisfies

The integers of

2
Ra(N-15) will satisfy equations of the form x +px+q=0 where p
. . 2 2
and q are rational integers. Therefore 2a =p a +15b =g¢q
are rational integers.
If a+bN-15 is a number of Ra(N-15) then a and b
! 3!
are rationalor —=a, — =b where a.,, b.,, c are relatively
< < 1 1 1
prime rational integers. Then
?.a1 al+15b‘2
=p (1) and =q (2)
c 2
1 c
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So CI:Z or clzl for unless c1:2 or C1:1 by (1)

c1 and al would have a common factor which would also be a

factor of b by (2) contrary to our hypothesis that a b1 and

1
. . 2 .
c, are relatively prime., If ¢, = 2 then by (2) ¢, = 4 is a
2 2 . .
factor of 2, + 15b1 . If a, is odd and b1 is odd then
2 2 2 .
a,1+15b1 = (2n+1) +15(2m+1) where m and n are rational

integers

4n2+4n+ 1+ 60m2+ 60m+ 15

4(n2+n+ 15m2+ 15m+4) .

a
1
Therefore if c1 =2 and al and b1 are odd then a:—z— and

b
1
b = > If 2, and b1 are both even they have a common factor
or with S contrary to our hypothesis. I a, is odd and b1

2 2
even a, + 15b1 is odd and not divisible by 4. Similarly if a,
is even and bl is odd. If ¢, = 1 then a, =a and b1 =b

or a and b are rational integers.

1 1
The numbers 1 and B + E'\/_—IS form a basis for Ra[~-15]
In other words every number of the domain Ra[~-15] is given
1 1
without repetition in the form af(l) + b(E+E'\/_—15) where a and

b range independently over all rational integers and conversely

every such number is in the domain,
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1 1
Theorem 2.7: If 1 and E+E'\/_-15 is a basis of Ra[A/-15],

1 1
: _ : : 1 — = =
every basis of Raf N-15] is given by 91 a11+a12( >+ 2'\/_ 15),

1 1
- — L=
92 a21+a22(2+2'\/—15) where

11 12

21 22

Example: Solving the equations given in the general theorem,

Theorem1.7, for 91 and 92

0)=%(,,07-2,,9))
and
0, = *(a,;,07-2,,05)
Therefore if 0} = —2—21 +—52—M_15, 0, = 444/-15 is a basis then

=1
0 and 92

1 1
1 ‘Z+E'\/—— 15 can be written in terms of it.

i.e. 1 = [2(—22—1+%xf-15)_5(4+xf-15)]

1

[ 21 458 -15-20-58-15]

and
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"

11 21 5
E+?f_15 -[3(5+5N-15)-8(4+W-15)]

I

—[%+~l§'\f—15—32—8'\f-15]

1 1
- ) -E'\f—IS]

il

1
—N-1
+2'\f5

1l

N

= 20' -50!' - _(30"
So 6 91 92 and 92 (30

- 1
1 1 892)'

Theorem 2.8: The norm of a product is the product of the norms.

N(ap) = N(a)N(B).

Theorem 2.9: The norm of a quotient is the quotient of the norms.

Theorem 2.10: A number e of Ra[~-15] is a unit if and only if

N{e) = 1.

Theorem 2.11: The units of Ra[N-15] are 1.

If € =a+bV-15, then N(e) = N(a+bN-15) :a2+15bZ =+1
since the norm of a+bN-15 is always positive. So this gives the

solution a = % 1, =0 hence =1 are the only units of Ra[n-15]
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The definitions concerning prime numbers of Ra[ - 15] are

identical to those of Ra[A~N3]. Consider the following examples:

Example 1: To determine if 7+ 37-15 is prime or composite

let
7+38N-15 = (a+bN-15)(c+dn-15) .
So
N(7+3N-15) = N(a+bn-15)N(c+dn-15)
then

94 = (a’+15b%)(c2+15d°) .

1
—

2 2
or case ii1) a +15b

il
(W)

2
case i): a +15b2

2 2
c2+15d 47 c +15d2 94

i

Case i) is impossible since a and b must be rational
integers or halves of odd integers. From 1ii) it follows that

a+bN-15 is a unit. Hence 7+3~N-15 1is a prime in Ra[~-15].

Example 2: To determine whether 15 is prime or composite

in Ra[~N-15] let 15 = (a+bn-15)(c+dn-15).

Then

225 = (a2+15b%)(c 2+154%)
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2 2 2 2
case i) a +15b case iil) a +15b

=1 = 3
2
C2+15d2= 225 C2+15d =75
2 2
case iii) a +15b = 5 case iv) a2+15b2 =9
C2+15d2 = 45 c2+l5d2 = 25
case V) a2+15b2 =15
C2+15d2 = 15

Case ii) and iii) are impossible since a and b must be
rational integers or halves of odd integers. Case i) indicates
that a+bN-15 is a unit. Case iv) yields a solution a = %3, b = 0,

+5, d=0 andcase v) gives the solution a =0, b==1, c =0,

[@]
H

£ 1. Hence 15 is compositein Ra[v-15] and 15 = (3)(5)=(-15)(t15).

[o ]
1

It must now be determined if these factors are prime.

2 20,2 .2

If 3= (a+bN-15)(c+dnN-15) then G=(a +15b )(c +15d")
2 2 2

case i) a ST ~ane i) a +15b7 =3
c2+15d2 =9 C2+15d2 =3

2 2
If 5 - (atbV-15)(c+dn-15) then 25 = (a°+15b°)(c +15d°)



2
case ii) a +15b2 =5

1]
—

2
case i) a +15b'2

c2+15d‘2 25 +15d" =5

e}

>
It N-15 = (a+by-15)(c+dN-15) then 15 = (a“+15b%)(c “+15d%)

1]
—

case 1i) aZ+15b2 case ii) a +415b =3

2 2

c +15d 15 c2+15dZ =5

1]

For each of these numbers case i) indicates a+bN-15  is a unit
and case ii) is impossible since a and b must be rational
integers or halves of odd integers. Therefore 3, 5 and -AN-15 are

prime in Ra[N-15].

K N-15 = (atby15)(ctdn-15) then -15=(a’+15b%)(c%+15d%)

which is impossible since the norm of a+bn-15 and of c+dN-15
is always positive and n/-15 1isalso prime in Rala/-15].

Therefore there are two ways to factor 15 into prime
factors in Ra[N-15] which illustrates that the property of unique
factorization into primes does not exist in this domain.

In order to restore this property of unique factorization to
Ra[N-15], we introduce the concept of ideal numbers.

If every pair of numbers of Ral n-15] not both zero had a

g.c.d. expressible linearly in terms of the numbers we could prove
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unique factorization (see Theorems 1.12, 1.13, 1.14 and 1.15) It
is the lack of a g.c.d. which is the fundamental difficulty. An exam-
ple illustrates.

Consider the set S  of positive integers which are = 1
modulo 3. This set is closed under multiplication. A number of
S may be called prime if it cannot be written as a product of two

numbers of S. Factorization into primes is not unique:

220 =55-4=22-10

where 55, 4, 22, and 10 are all primes.

The difficulty is due to the absence from S of the other
integers. We therefore introduce these missing numbers by using
a notation involving only the numbers of S. Let (a,b) denote

the g.c.d. of a and b so

2 = (4,22) = (4,10) 11 = (55,22) 5 =(55,10)

Thus 220 = (4, 22)(4, 10)(55, 22}(55,10) 1is uniquely factored into
ideal numbers.

The set of numbers ac+pn=56 of Ra[N3] consists
exactly of the multiples of & where ©6 1is the g.c.d. of a and
B or in symbols & = (a,B), a, B, and mn are integers of
Ra[ /3]. Set up the correspondence ac+Bne> (a,B). The problem

is so to define multiplication of sets that this correspondence shall



be an isomorphism. In Ra[N-15], two numbers a and f
do not necessarily have a g.c.d. The sets aoc+Bn where o and
n range independently over Ra[v-15] do exist, however, and are
the ideals of Ra[nN-15].

An ideal of Ra[N-15] 1is a set of integral numbers of

Ra[v-15] not all 0 which is a group relative to addition, and

o

which is closed under multiplication by all the numbers of Ra[N-15

Theorem 2.12: In every ideal there exist two numbers Wy, guch

[ 9]

that the numbers of the ideal are given by klwl+k2w2 where kl_,l.«tz

range over the rational integers.
These numbers form a minimal basis for the ideal.
1 1
Let 1 and S+ E\f-ls be a basis for Ra[A-15]. If

a# 0 1is a number of the ideal A, then A contains ta@ = £ N{a),

and so A contains positive integers. Let W, be the smallest

. . . . 1 1~ .
positive integer in A. Of all numbers & =1 1+£2(z+ ?\/—15) in
A  having 22 4 0, choose as wZ one such in which ﬂz is

o . 1 1 -
positive and minimal. Let a = al+a2(z+z\f—15) be any number of
A, Write

= 0<r, <
RPN AP ALY =T

Then
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is in A, and if r, were not zero, the definition of wz would

be violated. Thus a- kzwz = al—kzﬂ1 = b. Now write

b:w1k1+r1 0_<_r1<w1
so that a-kzwz-klwl = Since w, was minimal, ry = 0, and
a = klwl +k2w2.
Corollary 2.12: Every rational integer in A is divisible by Wy -
Theorem 2.13: If wl,wz is a minimal basis for an ideal A in
Ra[N-15], every minimal basis is given by
w! = a11w1+a]2w2 wé:a21w1+a22w2 ,

where the a's are rational integers such that

11 12
= *1
21 %22
and every such pair w'l, wfz is a minimal basis. The proof

follows as in Theorem 1.7.
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Theorem 2.14: Every ideal A has a minimal basis k, £ +1r0,

where k is the smallest positive integer in A and 0</{ <k.
In the proof of Theorem 2. 12, we sawthat we could choose a
1 1 .
basis w) = k, w, = m+r(z+-2-'\f—15) where k was the smallest

positive integer in A.

Set
m = gk+{ 0<4¢ <k
The transformation ! =w =k, ol =w, -qw, = !+r(-l—+~l-\f¥1f) is
1 1 ’ 2 2 1 ' 2 2
of determinant 1, so the result follows from Theorem 2. 13.
Theorem 2.15: Every ideal A has a minimal basis of the form

1 1
wlzra, wZ:r(b+E+E'\f—15) where r and a are positive

integers, and 0 <b <a. Moreover
2 1 -
b +bt7{1-(-15)] =0 mod a
2 —
b +b+4 =0 mod a

Such a basis is called a canonical basis.
Using the notation for Theorem 2. 14, since k 1is in A,

1 1
k(»z+sz-15) is in A. Set

k = ar+t O0<t<r.

Then



k(—1-+%\f-15) -aw

1 1
> 2_-a£+t(2+2«f_15)

is in A. This is impossible unless t =0, in which case r

1 1
divides k. Hence w, =ra, w2:£+r(z+z'\f—15).

1 1
Since 17.+r(-2-+z'\f—15) is in A, sois

2(%+%«ﬁ15) + r(%+%«f-15)2 = ﬁ(%+%'\[—15)+r[ (%+%M_15).,4]

Set

Then

[(3+3N015)-4] 125+ N0 1) (bt o, = -drat (545

40

(=+=~N-15)-(b+1)2

1'2 2

isin A so t

i

] 0 and r divides {.

1 1 ~
w, = ra, wzgr(b+2+2N—15)

where r and a are positive. Since by Theorem 2. 14,

0 <rb<ra, wehave 0<b<a.
. 1 1 2
Since wz( E+E\[_15) - {(b+t1lw_ = -rb -rb-4

> is a rational

integer in A, it is divisible by ra by Corollary 2.12. That is

b2+b+4 = 0 mod a

Hence there is a basis
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5 1

Example: Consider the ideal C = (5, E+E«f-15) with minimal

5 1
1 = - —4 — -15.
basis wl 5 and wz 2+ ZN/. 5 Then

and

€
i

1 1 5 1
= r(b+2+2\f—15) = 2+2\f-15

1

1 1 1 1 -
r(b+2+2\f-15)—(2+2+2f\f-15),

So r=1, b=2 and a=5 and 0<2<5 and

bz+b+4 =10=0 mod 5. Therefore wl,wz is a canonical basis.

The product AB of two ideals A and B is defined to be
the set of all numbers obtained by multiplying every number of A
by every number of B, and then adding and subtracting these
numbers until no new ones are obtained. This set of numbers

satisfies the definition of ideal.

For example: if A = (wl,w Y and B = (XI’X ) then AB

2 2

consists of the numbers klwlxl+k2wlxz+k3wle+k4wzxz where

yk Lk

kl’kZ 3’74

range over all numbers of Ra[ N-15].

If all the numbers of an ideal A are multiples by numbers
of Ra[N-15] of one number a, the ideal A 1is called principal
and is written (a).

If every number of an ideal A is replaced by its conjugate,

the resulting set is an ideal A called the conjugate of A.



0
by
Wi

Theorem 2. 16: B

A= (w,,w) and BZ(XI,X),

then

K‘é: \; A £ -—_‘_—:-_ s
() X s @) X0 9 Xp0 ©9p%5)

1 1 , - ,
Theorem 2. 17: If A = (ra,r(b-{—z-{—z'\f-lS)) then AA = (rza),

2
The number r a is called the norm of A, written N(A}.

Proof. The product AA consists of all numbers
2 2 2 11 ~ 2 1 1 2,2
(1) kr a +\r a(b+E+E\/-15)+pr a(b+—2'——2"\f—15)+vr (b +b+4)
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where k, N\, p and v range over all numbers of Ra[~V-15]. By
2
4
Theorem 2.15 c ':b—i—bi-—— is an integer. The transformation

takes the set of numbers (1) into the set



2 2 2 11 2 .11 2 11 2,2
k r7a T a(b+2+2«f-15)+v1r a(b+2+2'\/—-15)+)\1ra(b+2—2\/:15)+pir (b3+b+4)

2 2 2 2 2 11
(2) =k ra N T2 (2bs1)4p rracty T a('b+—2’+‘2“'\/——-15)°

1
Hence every number of (2) is in (1). The converse is true, since

k. =k, \. = - =\
R ULt S H

Let ¢ = (2bt1l, a,c). Since gla and glc, ¢
2 2 5
b +b+4 =ac = 0 mod g . Since ngb+1, g2|4b +4b+1  or

2
4b2+4b+150 mod g . So

2 2 2 2
b +b+4 = 4b +4b+16 = (4b +4b+1) +157= 0 mod g? .

2
Therefore 15=0 mod g . Since 15 has no square factor > 1,

g = 1.
We can then see that the set of numbers
2 2 2 2
(3) klr a + )\lr a(2b+1) + T ac
. 2 . . .
is the same as the set pr a. Obviously every number of (3) is
2 . . .
in pr a. Since a, 2b+l and c¢ are relatively prime, there

exist rational integers p, q, t such that

1 = pa+tq(2b+1)+tc .
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Multiply through by r a. Then

2 2 2 2 2
ra=pra +qr a (2b+l)+tr ac

2
so that every number of pr a is in (3).

The set (2) is now seen to be equal to the set

2 2 1 .
pr a + v, T a(b+z+12\f—lb) .

. . . . 2
But obviously every number of this set is a multiple of r a, and

2 s .
conversely, every multiple of r a 1is in the set, with v = 0.

7

Thus AA = (rza).

Theorem 2.18: If SA =SB, where S, A, and B are ideals,

then A = B.

The numbers of A are given by

K o +k
19 TR

w., form a basis for A and k. ,k are in Ra[~N-151.

where wl, > 175

Let s = N(S). The numbers of (s) are given by As. Thus the

numbers of (¢)A consist of the numbers

T M. SW, F N,5W

2k
X 1sw1+)\kzsw2 1 1 )5,

where n,. M, Trange over Ra[N-15]. Thus every number of



(sYA is of the form sa where a 1is in A,

If SA =SB, then SSA=SSB, andby Theorem 2.17
(s)A = (s)B,

where s 1s a rational integer. That is, for every number «

in A there is a number £ in B such that

and conversely. Hence every a 1isin B and every £ is in

so that A = B.

If three ideals A, B, C of Ra[N-15] are inthe relation

AB=C, we saythat A divides C and B divides C. A

B are called factors of C.

Theorem 2.19: A divides C if and only if every number of

is in A.

and

¥ A= (r,ol,coz) and B = <X1’X2) then AB = C consists

of all numbers

k J AL 2 N
GpXyE OGO X ) e

where Lk, N, p, m vary over Ral '\[—15] . But this can be written

in either of two ways.
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(kx1+>\x2)w1+(uxl+nx2)w2, (kcolﬂmz)x1 + (leﬂ“nwz)xz

so every number of C isin A andalsoin B.

Conversely, suppose that every number of C isin A. Then
every number of CA is in AA = {a) where a is a positive
integer. That is, all numbers of CA are given by fa, where
B varies over a certain set B of numbers of the domain. It must
now be proven that B is an ideal.

Since CA is an ideal, for every two numbers Bla and

5221 of CA there are numbers Baa, 54a and 553 of CA

such that
Blath,a = Psa Bja-Pra=Pya, kpPja=Psa
for every k in Ra[n-157. Hence

BB, “ By B ByB, kB =B,

co that B is an ideal. It follows from Theorem 2.19 and

AC - (a)B = AAB that
C = AB.

Theorem 2.20: A positive integer t occurs in but a finite number

of ideats.
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Let the ideal A <containing t have a canonical basis
1 1
(ra, rb+r(z+‘2"\/_-l5)), where r> 0, a>0, 0<b<a. By
Corollary 2.12, ra divides t. For a given t, there are not
more than t choices for each of the positive integers r, a, and

3
b, and therefore not more than t such ideals A.

Theorem 2.21: An ideal C 1is divisible by only a finite number

of ideals.

By Theorem 2.17 CC = (c), where ¢ 1is a positive integer
By Theorem 2.19, ¢ 1isin C andalso in every ideal which di-
vides C. By Theorem 2. 20, there is but a finite number of such
divisors.

If an ideal P different from the unit ideal (1) is divisible
by no ideal other than itself and (1), it is called a prime ideal. All
other ideals except (1) are composite.

An ideal G 1is called a greatest common divisor of A and
B if G divides A and G divides B and if every common

divisor of A and B divides GG.

Theorem 2.22: Every pair of ideals A and B possessessuniguo

g.c.d., G. It is composed of all nuimmbers a+ B where «a
ranges over A and P over B.
The set G of all numbers a+ P satisfies the definition of

ideal. Since every number of A isin G and every number of
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B isin G, G 1is a common divisor of A and B.

Let E be any common ideal divisor of A and B, that
is, any ideal containing all the numbers of A and ail the numbers
of B. Since it is closed under addition, it contains all numbers
a+ B of G andhence divides G.

Suppose that G and G1 are two g.c.d's of A and

B. Then G = KlGl, Cr1 = KG, so that

()G = KlKG

Hence

KlK = (1).
Since N(Kl)- N(K) =1

K, =K=(1).

Two ideals are called relatively prime if their g.c.d is (1),

Corollary to Theorem 2.22: If A and B are rclatively prime,

there exists an o in A anda $ in B suchthat o+B=1.

Theorern 2.23: I A divides BC and is primeto B, then A

divides C.

¥ A is prime to B then by the corollary to Theorem 2.24



a+PB=1, vyatyB=vy

for every y in C. Since A divides BC the number vyp of
BC isin A. Sois vya, and sothereforeis y. Thea A

divides C by Theorem 2.19.

Theorem 2.24: Every composite ideal can be factored inte prime

ideals in one and, except for order of the factors, in only one way,
By Theroem 2. 21 every ideal can be factored iatc a finite
number of prime ideals.

Let C Dbe a composite such that

C - AIAZAS An

where the A's are prime ideals.

Suppose that

17273 77 Pm

is a second such representation.  Then

Since Al is a prime ideal dividing BIBZBS .o Bm’ then by

Theorem 2.23 it divides some 3., Since DB, is also a prime
i i

ideal, A] 3 By a rearrangement of the order of the B's if

1°



50

necessary we may assume A1 = Bl. Then since A1 £ 0
A_A -A = B.B B
23 n 23 m
As before, A2 divides one of the remaining B's say BZ, and

hence equals it. We proceed in this manner until 2il the A's or all
the B's are exhausted. It is now evident that =n = m, for other-
wise we should have a product of primes equal to L

It follows therefore that every ideal € can be written

uniquely as a product of prime ideals

= A A_ - A .
C Al 2A3 zn

Example: Factor (15) into prime ideals.
(15) = (3)(5) = (N-15)(-N-15)
But these are not prime ideals for
(3. A -15){3,N-15) = (9,3V-15, 3V-15,-15), = (3}

and

[215) = (25, 5~/ -15, 5+/-15, -15) =

—~—
(93]
~—

(3n-15)(5,N-15) = (15, 5815, 38-15, -15) = (N-15) = {-~-15) .
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(15) = (3,N-15)(3, N-15)(5,N-15)(5,N-15) = (3,&/”.15)2(5,Nf_15)2.

(3,N-15) is a prime ideal, for if this is not the case then two ideals,

A and B, neither of which is (1), must exist such that
(3,N-15) = AB .

Let Ar(al,az,"',am), B = (BI,BZ,---,B)V Then

(3, N-15) = (a0 .- -na MB B, u B )

By Theorem 2.19, 3 and ~-15 are numbers of each of the ideals

of A and B and hence

(3,N-15) = ((11,'",urn,B,'\f—15)(Bl,-w,[3 ,3,N-158) .

Let ai = a+hN-15, Dbe any one of the integers al , QZ, LA
where a and b are integers or halves of odd integers. I a
is a rational integer then a 1is of the form 3¢, 3c+l, or 3c-1
where ¢ 1s a rational integer. Similarly if a 1is half of an odd

integer it 1s of the from 3¢, 3c+l, or 3c-1 where ¢ is half

of an odd integer. We have therefore

1) a, - bN-15 + 3¢

2) o, bV =15 + 3¢+l

3) ;= bN-15+3c-1
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If 1) is the case a, may be omitted from the symbol A. If 2)
is the case, we have ai-b\/_—15—3c =1 and 1 may be introduced
into the symbol of A. All other numbers could then be omitted and
we would have A = (1). If 3) is the case, we have bn-154+ 3c--air-1
and again A = (1).
Proceeding in this manner with each of the numbers

% <o arn we find that either all of the numbers al, (12: < ,am‘
are linear combinations of 3 and ~-15 and hence may be omitted
from the symbol of A, in which case we have A=(3, N-15)  or
some number of A is not a linear combination of 3 and +-15,
in which case 1 may be introduced into the symbol of A and

A = (1). The same is evidently true for B. We have therefore as

the only possible factorization of (3, N-15)

(3,N-15) = (1)(1) = (1) 4)

or

= (3,N-15)(3,N-15) 5)
or

= (1)(3,N-15)
or

= (3,N-15)(1) .

I 4) is the case then 1 must be a number of the ideal

or

1 = 3(x+y~N-15)4N-15{utvn -15).



53
Thus 1 = 3x-15v and 0 = 3y"/-15+uN-15. Butif x and v are
rational integers or halves of odd integers, 1 = 3x-15v 1is impos-
sible since the second number only is divisible by 3. Hence 1 is
not a number of the ideal (3,~N-15) and (3,N-15) #(1) so 4) is
impossible.

5) 1is also impossible for we have previously shown
(3,N=15)% = (9,38-15, 315, -15) = (3)

but ~N-15 is not a multiple of 3 so (3,N-15) £ (3).
The only divisors of (3,N-15) are therefore the ideal itself
and (1). Hence (3,N-15) is a prime ideal.
It may be shown similarly that (5, N-15) is a prime ideal.
As before if (5,N-15) is not a prime ideal then two ideals,

A and B, neither of which is (1), must exist such that
(5,N-15) = AB.

2,...,511)_

Then {5,N-15)= ((Ll,uz, e, am)(ﬁl’ BZ, cee, Bn) By Theorem 2.19

5 and ~N-15 are numbers of each of the ideals A and B and hence

(5,N-15) ={a_, "",a ,5 ~N-15B., ,B ,5,~N-15).
1 m 1 n

Let . = a+baN-15, be any one of the intege a.,a_, -
(& '[ . iny one o 1e 1 egfrs 1 CIZ m

where a and b are integers or halves of odd integers. If a is
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a rational integer then a is of the form 5c, 5c¢c+l, 5c-1,
5¢+2, or b5c-2 where c isa rational integer. Similarly if

a 1is half of an odd integer it is of the same form where ¢ 1is half

of an odd integer. We have therefore
1) ai:bxf-15+5c
2) a, = bN-15 + 5c+l
3) a,l:b'\f—l5+5c—l
4) ai:b'\f—l5 + 5c4+2
5) a, = bn-15 + 5¢-2.

If 1) is the case we find that (1i is a linear combination of 5

and ~N-15 so A =(5,N-15). If 2) or 3) is the case 1 may
be introduced into the symbol of A and all other numbers omitted
and we would have A = {1). If 4) is the case then a,l—b'\/“—IS-‘Bc: 2
or A =(2). I 5) is the case bN-15+ 5(:-(1,1 =2 soagain A =(2).

The same is evidently true for B. We have therefore as the only

possible factorizations of (5,N-15)
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(5,8-15) = (1)(1) = (1) 6)
= (2)(2) = (4) 7)
= (1)(2) = (2) 8)
= (2)(1) = (2) 9)

i
i

(2)(5,N-15) = (10, 2A/-15) = (2) 10)

(5,N-15)(2)

it

(10, 28-15) =

i
—~
oo
—

11)

i

I

(5,N-15)(5,N-15) = (5) 12)
= (1)(5,~N-15)

= (5,N-15) (1)

If 6) 1is the casethen 1 must be a number of the ideal or
1 = 5(x+yN-15) + N-15{u+v(N-15). Thus 1 =5x-15v and
0 = 5yN-15+uN-15. Butif x and v are rational integers or
halves of odd integers, 1 =5x-15v is impossible since the second
number only is divisible by 5. Hence 1 is not a number of the
ideal and therefore (5,N-15)# 1. If 7) is the case, then 4
must be a number of the ideal or 4 = 5(x+y'\f—15)+'\/—— 15 (utvN -15).
Thus 4 =5x-15v and 0 =5yN-15+uN-15. Butif x and v
are rational integers or halves of odd integers 4 = 5x-15v is impos-
sible since the second number only is divisible by 5. So 4 is not

a number of the ideal and (5,~-15) # (4). Likewise if 8), 9),
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10), or 11) is the case, then 2 is a member of the ideal so in
the same manner as before 2 =5x-15v which is impossible since
only the second number is divisible by 5. So 2 is not a number
of the ideal and (5, N-15) #£ (2). 12) is also impossible for N -15
is not a multiple of 5 so (5,N-15) # (5).
The only divisors of (5,N-15) are therefore the ideal itself

and (1). Hence (5,N-15) is a prime ideal.
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