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THE COMPLETENESS AXIOM OF
LOBACHEVSKIAN GEOMETRY

INTRODUCTION

Any axiom system consists of a sequence of undefined notions,
defined notions, and the axioms which describe the behavior of these
notions. For example, the axiom, "There exist at least two points on

a line" relates two undefined notions --point and line. It does this

using a defined notion --"a point A is on aline £ iff there is a

second point B so that the line incident on A and B is the line
£." Note that the definition is expressed using the undefined terms,

point and line together with the undefined relation of incidence for

lines.

Of the several considerations regarding axiom systems, this
paper addresses only two in any detail. These are consistency and
categoricity. Specifically, we will prove that the completeness
axiom of Lobachevskian geometry is a theorem in the Poincaré model.
All of ghe axioms of Lobachevskian geometry (as formulated in the

tenth edition of Hilbert's Foundations of Geometry) [5] except for the

axiom of completeness have already been shown to be theorems in
the Poincaré model in work done by W.L. Zell [18] and R. W. Eschrich
[3]).

When the completeness axiom is proved to be a theorem in the




Poincaré model, the Poincaré model will have been shown to be a
model of Lobachevskian geometry and the geometry will be known to
be as consistent as the real number system. The proof that the com-
pleteness axiom is a theorem in the model involves a proof that all
possible models of Lobachevskian geometry are isomorphic. This
part of the proof of the completeness axiom gives us a proof of the
categoricity of Lobachevskian geometry without further work.
Before we go further, we now specifically state what the
Poincaré model is. This analytical formulation is found in Zell's
and Eschrich's papers. The existence of a parametric formulation
which is mentioned in "6." below, is proved as a theorem by Zell.
In the Poincaré model:
1. A point is an ordered triple of real numbers (x,y,z) so
that x2 +y2 + z2 <1.
2. A plane is an equivalence class of equations having a repre-
sentative of the form,
D(x2+y2+z2+1) + Ax + By + Cz = 0,
where A2 + B2 + C2 >4D2 with A, B, C, D real con-
stants and x, y, z real variables.
3. A line is an equivalence class of pairs of equations having a
representative pair of the form
D(x2+y2+z2+1) + Ax + By + Cz = 0,

*
2
D'(x +y2+z2+1) +A'x+B'y+C'z=0




where A,B,C,D,A'.B',C',D' are real constants, x,y,z
are real variables and

(a) at least one point satisfies the system of equations *,

2 2
(b) A +B2+C2>4D2 and A'2+B' +C'2>4D'2, and

ABCD

AlBlchl) = 2'

(c) rank (

- A line is incident on a pair of distinct points iff both points

are in the solution set of the line.

. A plane is incident on three non-collinear points iff each

point is in the solution set of the plane.

. If

(a) x=1£(t), y = g(t), z = h(t) is a parametric representation
of a line (where f,g,h are real, continuous, monotonic
functions), and

(b) k,k',k" are the values of the parameter t associated
with points P, P', P",

then P' is between P and P" iff
k <k'<k" or k"<k'<k.

- Two segments PQ and RS are congruent iff there is a

finite product of inversions taking P to R and Q to

S, where an inversion is defined as follows in the model:

Let a be a plane in the model with representative

2 2
D(x +y +z2+1) + Ax + By + Cz = 0.




-The inverse with respect to a

of the point

P =(a,b,c) is

(
+bB+
(atAk, b+Bk, c+Ck) if D=0 and k = _Zaf; 1; ch:
A"+B +C
A A B B C C
- — — - — ——— ,__ +_
(-5ptKlat33), >p TRIb+ 55 - 55 4Kl 55D
I(a,b,c) —é i D70
A%+B%4c? »
2
4D
and K =
A 2 B 2 C 2
(at55) + (b+55) "+ (c+5T)
\

8. /PQR and [/ P'Q'R'

there is a finite product of inversions,

(a) Y(Q) = Q'
———————
(b) P' is a point of the ray Y(Q)Y(P)
D e )
(c) R' is a point of the ray Y(Q)Y(R).

Graphically, a "plane" is the portion of
a plane (through (0,0, 0))inside the open unit
sphere (see Figure 1) or the portion of a
sphere (with center outside the unit sphere)
inside the unit sphere where the sphere meets
the unit sphere orthogonally (see Figure 2).

A line is the intersection of two planes. The

are called congruent angles iff

qJ: SO that

Figure 2

congruence group elements are products of inversions where an

inversion with respect to a plane can be visualized from what an




inversion is with respect to a line in the planar case (Figure 3). The

inverse of P, I(P)=P' is that

I(P)

point P' sothatif A is the
center of the circle (sphere) defining
the line (plane), then

lap| ||ap'| = r2 where r is

the radius of the circle (sphere) of

inversion (see Figure 3). It is

easily shown that orthogonal circles Figure 3.
leave each other invariant with respect to inversions of this sort and
thus the boundary of the unit ball is fixed under inversion with respect

to any "plane."

The \"ﬂat" planes can be thought of as spheres of
infinite radius if one so desires. Their inversions are simply
reflgctions across the plane.

To show that these eight definit’ions (or realizations) of the
undefined terms of the Lobachevskian geometry do in fact define a
model of this geometry, we must prove that every axiom of the
Lobachevskian geometry is a theorem in the model. This is always
the method that must be followed to prove that a given thing is a model
of a given axiom system. As previously noted, in 1967 and 1968
W.L. Zell and R. W. Eschrich proved that all of the axioms of inci-

dence (or connection), order, congruence, parallels, and Archimedes

were theorems of this model. The one remaining axiom that needs to



be proved to be a theorem in this model is the completeness axiom.

The completeness axiom as now formulated states:

An extension of the set of points on a line with its order and

congruence relations that would preserve the relations

existing among the original elements as well as the funda-

mental properties of line order and congruence that follow

from the axioms of Incidence, Order, Congruence, and

Archimedes is impossible [5, p. 26].

This axiom was formulated by Paul Bernays in the 1950's and proved
to give Hilbert's earlier completeness axiom as a theorem [5]. The
notions of completeness were not formulated until after the death of
Lobachevski so it is not any blot on his work to find in them no
specific attention given to completeness considerations. His work is
in fact a brilliant treatise in its insights and sense of what is neces-
sary.

The specific argument used to prove that the completeness
axiom is a theorem in the Poincaré model will be given shortly.
First we briefly examine what has been done in this regard. The most
complete work commonly available treating the completeness axiom

and the questions of consistency and categoricity of Lobachevskian

geometry is the Foundations of Geometry by Karol Borsuk and Wanda

Szmielew [2] which uses a "completeness axiom" that leads immedi-
ately to the proof of a Dedekind property for the points on any ordered
line. However, the Dedekind property is not shown to be a theorem

based on Hilbert's completeness axiom. It appears that this may be




a very hard theorem to prove without recourse to a parallel axiom.
In fact it may be impossible to prove without essentially treating the
two possible parallel axioms as cases to establish the proof. We
already know it is a theorem in Euclidean geometry. We will show
that it is also a theorem of Lobachevskian geometry.

Since Borsuk and Szmielew do not claim to be proving the com-
pleteness axiom as formulated in the Hilbert axioms (nor to use his
other axioms as the basis of this proof) to be a theorem in their
model, it is improper to criticize them for not doing so. Neither do
they consider the Poincaré model in Euclidean space but rather the
Beltrami-Klein planar model in the projective plane. No other pub-
lished attempts appear in the literature which address this problem
even so extensively as does the work of Borsuk and Szmielew.

In his study of Lobachevskian geometry, Hilbert developed some
properties regarding the relationshipof the.axioms I-IV and the com-
pleteness axiom in the planar case [6]. He does not--in any published
work--consider the question addressed in this paper.

Some persons, not fully understanding the problem addressed
here, have suggested that this present problem was done by Curtis
M. Fulton of the University of California at Davis in his paper Linear

Completeness and Hyperbolic Trigonometry [4]. However, following

my presentation of a paper on this work at the U. of C. at Davis in

April 1973, Professor Fulton (who was present) informed me that he



had assumed what I was proving in order to get his very short proof of

the trigonometric results which will take so long to derive here.

Our proof that the completeness axiom is a theorem in the

Poincaré model will be constructed as follows:

(1)

We shall demonstrate that there is a one-to-one map of the
set of points on any line into the real numbers. This will be
done as a theorem in absolute geometry.

Knowing of such an injection, we suppose that this injection
is an order preserving one-to-one correspondence. We
shall then show that on the basis of this assumption and
upon the basis of the axioms, we can construct a model of
the Lobachevskian geometry. This will show that the above
assumption does not lead to a contradiction. We will show
that the model constructed is the Poincaré model and that
every model of Lobachevskian geometry is isomorphic to
the Poincaré model. Hence the axiom of completeness is a

theorem in the Poincaré model.

The establishment of the injection described in (1) above is

achieved by constructing a one-to-one correspondence between every

point on a line and a set of real numbers. This is done by pairing each

point with a unique binary infinite sequence--the base two radix

representation of the associated real number.

The process of proving the claim in (2) is much more difficult.



A list of the steps in the process should be helpful to one’s following
of the subsequent presentation.

Based upon the key assumption tkat a one-to-one corres-
pondence exists between the points of a line in Lobachevskian
geometry and the real numbers as described above we can:

a. construct a map | [S: set of classes of segments —~ [R+u{0}-
b. based on a., get a map
| IA: set of classes of angles — (0, )
c. based ona. and b., get the "Lobachevskian function”
n: R — (0,w).
# We then use the axioms to establish specific values for
‘this last correspondence. We will define a coordinatization of
Lobachevskian space and show that the set of triples that can be

used to name the points of space (x,y.,z) are exactly those

triples so that
2 2 2
cos [I(x) + cos M(y) + cos II(z) < 1.

This will lead us to a one-to-one correspondence between the
defined terms point, line, plane, incidence (for lines), incidence
(for planes), betweenness, congruence (for segments) and congru-
ence (for angles) in the Poincaré model and the corresponding
undefined terms in the geometry. This last construction is
canonical and gives the necessary isomorphism between all

models of Lobachevskian geometry needed to finish the proof.
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In the following pages the specific details will be given.

Before proceeding with the actual argument is seems worthwhile
to include here the undefined notions, the defined notions, the axioms,
and the theorems accepted without proof which shall be used in this
paper.

0.1 The undefined terms are point, line, and plane.

0.2 The undefined relations are as follows:

a. Incidence for lines is a symmetric relation between the set

of pairs of distinct points and the set of lines.

b. Incidence for planes is a symmetric relation between the

set of triples of non-collinear points and the set of planes.

c. Betweenness is a non-symmetrical relation between the

set of points and the set of pairs of points.

d. Congruence for segments is a relation between the set of

ne

segments and itself. We use to denote this relation.

e. Congruence for angles is a relation between the set of

i

angles and itself. We use to denote this relation.

0.3 The defined notions are:

a. Apoint P isonaline £ iffthere isa point Q so
that the line incident on P and Q, denoted PQ, is
£. We alsosay P isapointof £, P isin £, [

contains P, etc.
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. A set of points each of which is on the same line (£, is

said to be a collinear set.

- Apoint P is on a plane a iffthere are points Q and

R so that {P,Q,R} is a non-collinear set and the plane

incident on P, Q, and R is a. We also say P is

a pointof a, P is in a, a contains P, etc.
- If every point of a line £ is a point of plane a, we
say [{ is alineof a, £ isin a, a contains £, etc.

- If B 1is a point between points A and C we write

A-B-C.

. If every point [line] of a set of points [lines] is a point

[line] of the same plane, they are called coplanar.

- A segment, denoted AB, is the set of all points between

A and B.

- A ray with end point A, denoted A—,E?, is the set of all

points P sothat P =B or A-P-B or A-B-P.

i. If A,B,C are non-collinear, then triangle ABC,

denoted AABC, is AB . AC U BC u {A,B,C}.

- An angle is two non-collinear rays with a common end

point together with their common end point (which is called

the vertex of the:angle).

- 6ABC is congruentto AA'B'C', denoted

AABC 2 AA'B'C' if /AT /A, [BE/B', [CZ/C,
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B'C'.

"
mn

AB Z A'B', AC £ A'C', and BC

. If every line £ of plane a, containing a given point P,

is perpendicular to line p at P, then we say p is

perpendicular to a at P, p and a are perpendicular

at P, or p is normal to P at [£.

——

0.4 The axioms are:

I 1.

I,2.

I 3.

For every two points A,B there exists a line a

that is incident upon A and B.

For every two points A,B of aline [/ the line
incident upon A and B is {.

There exist at least two points on a line. There exist at

least three points that do not lie on a line.

I,4. For any three points A, B,C that do not lie on the

same line there exists a plane a that is-incident upon
them. For every plane there exists a point which it

contains.

I,5. For any three points A,B,C of plane a that do not

lie on one and the same line, the plane incident upon

them is a.

I,6. Iftwo points A,B of aline a lie in a plane a

then every point of a lies in the plane a.

I,7. If two planes a,B have a point A in common, then

they have at least one more point B in common.



I, 8-

11, 3.

I1, 4.

I, 1.
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There exist at least four points which do not lie in a
plane.
If a point B lies between a point A and a point C
then the points A, B,C

A B C
& —9 >— L >

are three distinct points of a line, and B then also
lies between C and A.

For two points A and C, there always exists at
least one point B on the line AC suchthat C

lies between A and B.

Of any three points on a line there exists no more than
one that lies between the other two.

Let A,B,C be three points that do not lie on a line
and let a be a line in the plane ABC which does not
meet any of the points, A,B,C. If the line a passes
through a point of the segment AB, it also passes
through a point of the segment AC, or througha
point of the segment BC.

If A, B are two points on a line a, and A' isa
point on the same or on another line a' then it is
always possible to find a point B' on a given side of
the line a' through A' such that the segment AB

is congruent or equal to the segment A'B'. In symbols



Il1, 2.

I, 3.

I11, 4.
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AB ¥ A'B'
If a segment A'B' and a segment A" B", are con-
gruent to the same segment AB, then the segment
A'B' is also congruent to the segment A" B", or

briefly, if two segments are congruent to a third one
they are congruent to-each other.

On the line a 1let AB and BC be two segments
which except for B have no point in common.

Furthermore, on the same or on another line a' let

A B C a

< -9 - 8- e
A' B' c' a'

< g L -o—

A'B' and B'C' be two segments which except for B'

also have no point in common. In that case, if

It4

AB % A'B' and BC =B'C'
then AC T A'C'.
4 }

Let [_(h,'lz) be an angle in a plane a and a a

line in a plane a' and let a definite side of a’ in

a' be given. Let h' bea ray on the line a' that
emanates from the point 0'. Then there exists in the
plane a' one and only one ray k' such that the
angle |/ (B,¥) is congruent or equal to the angle

>
/ (h',k') and at the same time all interior points of

the angle /[ (}?',I{)') lie on the given side of a'.



III, 5.

Iv.
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Symbolically

-

[ (B8 =/ @ K.

Every angle is congruent to itself, i.e.,

[ B = LB,
is always true.
If for two triangles AABC and AA'B'C' the congru-
ences

AB T A'B', ACZTA'C', / BAC® [ B'A'C'

hold, then the congruence

/[ ABC =/ A'B'C'
is also satisfied.
(Lobachevski's Axiom). Let a be any line and A
a point not on it. Then there are at least two lines in
the plane, determinedby a and A, that pass
through A and do not intersect a.
(Axiom of measure or Archimedes' Axiom). If AB
and CD are any segments, then there exists a number
n such that n segments CD constructed con-
tiguously from A, along the ray from A through
B, will pass beyond the point B.
(Axiom of line completeness). An extension of a set of
points on a line with its order and congruence relations

that would preserve the relations existing among the
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original elements as well as the fundamental properties
of line order and congruence that follow from Axioms
I-1II, and from V, 1 is impossible.

In our subsequent work we shall have need of several absolute-
geometry results which are readily available in the literature. We
shall state below those used. At times these results will not be
referred to by number. Instead, the name of the theorem or a brief

statement of the theorem will be given.

0.5 THEOREM. (The plane separation theorem) Given a line
£ and a plane containing it, then the set of all points of the plane not
on £ are partitioned into two classes called sides of the plane as
determined by the given line f£. Two points A and B are on the
same side of (£ iff AB and { have no point in common. Two
points are on opposite sides if AB and { have some point in

common [5, p. 8].

0.6 THEOREM. (Crossbar theorem) If D is in the interior

—>
of L_BAC, then AD intersects BC [10, p. 69].

0.7 THEOREM. (Exterior angle theorem) Any exterior angle
of a triangle is greater than either interior angle that is not adjacent

to it [5, p. 21].
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0.8 THEOREM. In every triangle the greater angle lies

opposite the greater side [5, p. 22].
0.9 THEOREM. Every segment can be bisected [5, p. 23].

0.10 THEOREM. Given any finite number of three or more

points on a line it is always possible to label them Al’AZ’ I ’An

in such a way that Aj is between Ai and Ak if 1 <i<j<kgn.

Besides this order of labeling there is only the reverse one that has

the same property [5, p. 7-8].

0.11 THEOREM. If two lines intersect, then there is a unique

plane containing them [10, p. 39].

0.12 THEOREM. Every angle has exactly one bisector [10,

p. 89].

0.13 THEOREM. There exists a unique perpendicular to a

given line and containing a given point [10, p. 107].

0.14 THEOREM. (Triangle Inequality) In any triangle

AABC, [AB]+[Bc]>[Ac] [10, p. 110].

A are

0.15 THEOREM. (Polygonal Inequality) If Al’ s A

any points then [AIAZ] + [AZA ]+ ...+ [An-lAn] > [AlAn]

[10, p. 125].
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0.16 THEOREM. Intriangles AABC and <
AA'B'C', if
1. AB=A'B', BC2B'C', and / B% /[ B' , B
(called S. A.S.), c
2. [ A= LA, [_B = LB', and
AB = A'B', (called A.S.A.), A B

3. /A= /A", [ B/ B' and BCZB'C' (calledS.A.A.) or

1

4. AB = A'B', AC=A'C', and BC 2 B'C' (called S.S.S.),

i

then AABC = AA'B'C' [5, p. 14-19; 10, p. 84-101].

0.17 THEOREM. If aline { is perpendicular to each of two
intersecting lines m and n at their point of intersection, then it

is perpendicular to the plane containing m and n [l0, p. 177].

0.18 THEOREM. Any two lines perpendicular to the same

plane are coplanar [10, p. 179].

0.19 THEOREM. Givena point P anda plane a, there is

a'unique line 2 perpendicular to a through P [10, p..180].

0.20 THEOREM. If two planes have a point in common, then

they have a line in common (a direct result of I, 6 and I, 7 above).

0.21 THEOREM. If { is perpendicular to two distinct

planes, then the planes do not meet [10, p. 183].
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0.22 THEOREM. In plane a, 1if p,q,r are lines perpen-
dicular to line £ at P,Q, and R, respectively, and p,q,r
meet line £' of a atpoints P',Q',R' respectively., then

P-Q-R iff P'-Q'-R'[l0, p. 136].

0.23 THEOREM. A line { not containing any vertex of

AABC, meets at most two of the sides of AABC [10, p- 63].

0.24 THEOREM. If a is the perpendicular bisecting plane
of a segment AB, then P is a pointof a iff AP = BP

[10,p. 179].

Note: In 0.11 through 0.19 notions of segment and angle
inequality are used in the proofs. These notions are explicitly given

in Chapter 1 below.
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I. SEGMENT CLASSES AND THE REAL NUMBERS- -
THE KEY ASSUMPTION

In this section we develop the map which allows us to

[ 1
demonstrate an injection of the set of points on a line into the real
numbers. This is done without recourse to the parallel axiom so the
results are theorems of absolute geometry. Some other results of

absolute geometry that will be assumed without proof in this and sub- ;

sequent sections are:

1.1 THEOREM. The undefined relation "congruence" for seg-

"#",  is an equivalence relation [5, p. 18; 13;

ments, denoted by
14]. Also the undefined relation "congruence" for angles, denoted by

"Z", is an equivalence relation [5, p. 18; 14].

The following definitions from absolute geometry will be used
(where the notation "A-B-C" is read "the point B is between the

points A and C").

1.2 DEFINITION. The segment AB is less than the seg-
ment CD, denoted AB < CD, means there is a point P so that

C-P-D and AB % CP.

1.3 DEFINITION. The angle /ABC is less than the angle
[DEF, denoted [ABC < /DEF, means there is a point P so

that P is interior to /DEF and /ABC % /PEF.
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We use the symbols "[AB]" and "[/ ABC]" to denote the
equivalence classes of congruent segments and angles containing the
representatives AB and [ABC respectively. Further, we define

addition for segments in the usual way [5, p. 51; 10, p. 247ff.].

1.4 DEFINITION. [AB]+[CD] is that class of segments
[EF] so that there is a point P with E-P-F, AB = EP, and

CD = PF. We write [AB]+[CD] = [EF].

The proof that this addition operation is well defined is also assumed
as one of the "standard" results of absolute geometry. An ideal class
[ ] is often introduced with the property that [ ] + [AB] = [AB]. This
acts as an additive identity element. Furthermore [ ] < [AB] for
every non-ideal class [AB].

It is possible to establish the existence of the midpoint of a seg-
ment without using the parallel axiom (0.9) so for any segment AB
one can always find a segment CD so that [CD]+ [CD] = [AB].

With this in mind, the next definition is intuitively very reasonable.

1.5 DEFINITION. For any segment AB, the class of seg-
ments denoted by "1/2[AB]" is the class of segments [CD] so
that if M is the midpoint of AB, then CD = AM. Inductively we

n+1l

define 1/2(1/2"°[AB])=1/2"""[AB].

We have an obvious ordering for the segment classes.
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1.6 DEFINITION. [AB] < [CD] means AB < CD.

The notation n[AB] will, as usual, mean [AB]+ ...+ [AB]
with n summands.

These definitions are all independent of the representatives of
the classes considered in any given instance. To conserve space,
this verification is not carried out here since the method is well
known and does not contribute any added insight into the arguments or

statements.

1.7 LEMMA. If [AB] < {[CD], then for any class [EF],

[AB] + [EF] < [cD] + [EF].

Proof: Let [GH] = [cD] + [EF] Then by definition, there is a point
P of GH sothat GP =EF and PHZ CD. Now [AB] < [cD]
implies there is a point Q of PH so that PQ = AB. This gives

us G-P-Q-H with [GQ]Z2[AB]+[EF] and we are done.

1.8 LEMMA. If [AB] < [cD] and [EF] < [GH], then

[AB] + [EF] < [cD] + [GH].

Proof: By 1.7, [AB]+ [EF] < [cD]+[EF] and

[cD] + [EF] < [cD] + [GH]. By transitivity the proof is complete.
1.9 LEMMA. If [AB] <[CD] then n[AB] < n[CD].

Proof: For equality the proof is obvious. Otherwise use induction.
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If n=1 weare done. Suppose k[AB] < k[CD]. Then
(k+1)[AB] = [AB] + k[AB] < [CD] + k[CD] = (k+1)[CD] by 1.8 and by

induction we -are done.

1.10 LEMMA. If AB and CD are any segments, then

there is an integer k so that l/Zk[AB] < [cD].

Proof: Suppose that for every integer k l/Zk[AB] >[CD]. It then
follows, by 1.9, that [AB] > Zk[CD]. Now for every integer m >0
there is an integer k so that 2k > m. We conclude that CD is
a segment so that for every sequence A = AO, Al’ AZ’ s Azk of
) —
points of AB with Ai-Aj—Ak (0 £i<j<k<m) and
A, A *CD, wehave AA < AA k < AB contradicting Archi-
i-1774 m 2K —

medes' axiom.

1.11 LEMMA. If [AB] <[CD] then there is a class [EF]

so that [AB] + [EF] = [CcD].

Proof: [AB] < [CD] implies that there is a point E of CD so
that [AB]=[CE]. Now [CE]+ [ED]=[CD] by Axiom III, 3 in 0. 4.

[AB] + [ED] = [CD] and we are done.

We now proceed with some definitions leading closer to the
proof of the existence of an injection of the set of points on any line

into the real numbers.
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1.12 DEFINITION. Let [AB] and [CD] beany segment

classes. p([AB],[CD]) = the greatest integer k so that k[AB] S[CD].

Clearly the value of p is O if [AB] >[cDp]). 1If
[AB] < [CD] Archimedes' axiom assures us fhat there is a humber
m so that m[AB] >[CD]. Since the set of intégers is well ordered,
there is a least such number, M, so that k is always M-l.
The fact that p is well defined can be proved by the usual argument
showing that the choice of representative can be arbitrary.

An intuitive formulation of the meaning of p is that p
counts the maximum number of contiguous segments of a given class

that do not reach beyond the end.of a given segment.

1.13 DEFINITION. Let [AB] and [CD] be any segment
classes so that [CD] < [AB]. Let n be any integer. We induc-
tively define the three-variable function U to be
( 0 if [CD] is the "ideal" class so that

[cD] + [AB] = [AB]
1 and 1/2[AB] >[cCD]

1 if n=1 and 1/2[AB] < [cD]
u({aBl.[cD],n) :< 0 if

o
-
iy
)
I

ja]
\Y%
—

n-1 > [cD]
1/2°[AB]+ Z u(aBl[cDl.i)1/2'[AB]
- i=1 < [cD]
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The function U gives us a way to assign a real number less
than oné and equal to or greater than zero to any class [CD] less
than [AB] including the ideal segment class which acts as the addi-
tive identity in the arithmetic of the segment class addition. The
proof that U is well defined is left out, again, because of the

standard and messy nature of the ‘argument.

1.14 THEOREM. If the number 1 is assignedto a given

(non-ideal) segment class [AB], then for each class of segments

[cD]l < [AB] there is a unique real number r € [0,1) denoted by

r = m([CD]), so that if

n
S :S = ZI/ZiU([AB],[CD];i) ,
n n

i=1

16)]
i

then

r=1u.b.S

Proof: a. S is a non-empty set of real numbers since

S, =1/2u([aB].[CD],1) =0 or 1.
n
b. S is bounded above by one since Sn < z 1/2'=1-1/2" <1

i=1
by a simple induction argument.

c. Since by "a" and "b" S is a non-empty set of real numbers
bounded above by one, then r exists and is equal to or less

than one.
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d. r <1 since [CD]‘ < [AB] means there is a non-ideal class
[DE] so that [CD]+[DE]=[AB]. Now for some positive
integer k, l/Zk[AB] < [DE] by 1.10. We observe that

n

. s
r=lub.S= lim S_< lim (21/21).1/z“<1.1/zk 1oy

n—+ o n—"v |
i=1

e. If [CD] is not the ideal class, m[CD] >0 since by 1.10
there isa k so that l/Zk[AB] < [cD]. Thus
U([AB],[CD],n) = 1 for at least one value n>k so r >0.

f. 1f [CD] is the ideal class, then U([AB],[CD]l,n) =0 so
r = 0.

g.- For each class [CD], r is unique. r has the infinite
base-two numeral as its expression. The definition of U
does not allow even two different expressions of r, let
alone two different values.

h. r cannot be associated with two different classes either.
This follows since if r = m([CD]) = m([EF]) and
[cD] # [EF] we show a contradiction occurs. Without loss
of generality let [CD] < [EF]. This means there is a non-
ideal class [DG] sothat [CD]+ [DG]=[EF] and there is

“

an integer k so that 1/2 [AB] < [DC]. Let
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n n
S_ = Z 1/21U([AB][CD], i) and T = z 1/in([AB],[EF],i)-
i=1 i=1

Then r=1lim S < lim § + 1/2k+1 < 1lim Tn: r which
n—"©0 n n—~ oo n n—+o

is impossible.

This theorem gives us a unique number r, 0<r <1,
associated with every class [EF] < [AB] providedthat 1 is
associated with [AB]. We now extend this notion to give a unique

number r ¢ [0,00) associated with each segment class [CD].

1.15 THEOREM. Let [AB] be some (non-ideal) class
assigned the number 1. Let [CD] be any class. Let [C'D'] be
the class so that [C'D'] + w([AB}[cD))[AB] = [CD]. Then
[C'D'] < [AB] and there is a unique real number
r-= |[CD]|S = n([AB],[CD]) + m[C'D'] associated with [CD] and

r € [0,0).

Proof: By the definition of p in 1.12 p([AB].[CD])[AB] < [CD]
and p([AB],[CD]) is the largest integer so that this is true. If
r([AB],[cD])[AB] = [CD] then [C'D'] is the ideal class and by
definition [C'D'] < [AB]. 1f w([AB],[cD)[AB] < [CD], then
[C'D'] < [AB] since if not, we have a contradiction to the definition

of .
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If [CD] < [AB], p([AB][CD]) = 0 and the real number
I[CD”S = m([CD]) is unique by 1.14.

1f [cD] >[AB], |[cDIl|. is unique by 1.14 and the definition

S
of p. It is clearly non-negative. Note: Implicitly, the definition
of p draws on Archimedes' axiom to insure that every segment
determines a value for p([AB],[CD]) and that |[CD]|S can

assume arbitrarily large values.

At this point we have proved that there is an injective map l ,S
from the set of segment classes into the non-negative real numbers.
This is now extended to an injection of the set of points on a line into

R. From what has already been done we see that the following defini-

tion gives a unique assignment of points to real numbers.

'1.16 DEFINITION. Let A and B be distinct points on a
line £. Let [AB] be assigned the number one. If P isa point
—>
on the ray AB of {, assign the number I[AP]IS to P. If Q
is'a point of £ so that Q-A-B then assign the number - l [AQ]’S

to Q. Assign 0 to the point A.

We have at this point established an injection of the set of points
on any line into the set of real numbers. To establish a proof that the
completeness axiom is a theorem in the Poincare model we will now

assume that this injection can be extended to a one-to-one, order
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preserving correspondence without introducing a contradiction. To
establish the freedom from contradiction we will show that this
assumption allows us to construct a model upon the basis of the
axioms of the geometry and show this model is necessarily iso-
morphic to the Poincaré model by giving a canonical method of
establishing an isomorphism between these and any other models.

It is well to note that as one develops the arithmetic of addition
of segment classes in the absolute geometry, a commutative group
structure can be established (not carried out in this paper) which
makes the injection given above into an injective group homomorphism.
The one-to-one correspondence we assume is the order preserving
map which is the extension of this homomorphism to an isomorphism.

The rationale for not including in this paper a verification that
the above injection is also a group homomorphism is that, first, the
method is essentially standard, and second, the fact that the extension
is an isomorphism is not a central part of the argument of the
remainder of the proof. Unlike in Euclidean geometry, we do not
have an easily developed multiplication leading to a field structure [5,
p- 131-149]. The field structure plays an important role in establish-
ing the completeness axiom as a theorem in the analytic geometry
model of Euclidean geometry but the Euclidean parallel axiom plays a
central role in this proof [5]. Once we have a field structure for the

ordered arithmetic of the segment classes, the completeness axiom
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in the geometry assures us that this field is the real number field (up
to isomorphism) and the Dedekind property for segments, rays,
lines, etc. follows. Such a derivation of the Dedekind property in
Lobachevskian geometry seems impossible. The procedure outlined
earlier (which is based on the assumption of the one-to-one corres-
pondence described) is a method of establishing proof without having
a field structure within the ~géometry. What we really need in our
method is the Dedekind property. Our assumption gives us this.

It is often hard in a paper such as this to decide how detailed
the background should be. One is disinclined to prove all background
theorems unless their proofs involve an essentially different method
of argument dictated by the hypotheses or axiom system adopted or
unless the theorem or proofs are not readily accessible.in the litera-
ture. The choice to leave out or include a given theorem is usually
somewhat arbitrary. For example the proof that for n >3, one can
order n-points on a line (used in Lemma 1.7, Lemma 1.10, the defi-
nition of n[AB], and the definition of addition of segment classes) is
not included. This is not easy to prove, but is accessible in the
literature (e.g. [5, p. 7-8] ). Furthermore the proofs given in the
literature are essentially the same as that which would be done here,
so inclusion of such a proof would not be particularly instructive.

Step "(1)" of the argument proving that the completeness axiom

. . . 7/ . .
is a theorem in the Poincaré model is now done. The construction of
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"I IS assures us that we can have no more points than real num-
bers. We will prove the hypothesis that, "There are exactly as many

points as real numbers," does not lead to a contradiction. This

hypothesis will be called our "key assumption."
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II. ANGLE CLASSES AND THE MEASURE CF ANGLES

The result from absolute geometry that congruence for angles is
an equivalence relation [5, p. 18; 14] allows us to define equivalence
classes of congruent angles. An addition for angle classes is harder
to formulate than for classes of segments since one cannot reasonably
expect the "sum" of two angles - - whatever that means--to always be
non-ambiguous (consider "adding" two obtuse angles). If two angles
are acute then an addition can be described but in general it is not
closed. Two acute angles, each larger than "half a right angle"
could only "sum" to an angle greater than a right angle so the sum is
not an acute angle. These observations, of course, draw upon the
notion of the measure of the "angle" of rotation relative to some fixed
reference position such as is used in trigonometry and analysis.

This notion is quite different from the notion of angle in geometry,
though both are certainly related (at least intuitively).

Considerable care must be exercised to avoid the inadvertent
interchange of angle--the defined object of geometry--and angle in the
sense of a directed rotation or the real value of a "wrapping" function
as in trigonometry and analysis. To avoid this, it is sometimes
necessary to include methods of argument that seem unnecessarily
involved or even obscure unless the reader remembers that such an

interchange of the separate notions of angle is at best logically °
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dangerous. The so-called angle sum theorem of absolute geometry

states:

2.1 THEOREM. If D and D' are points in the interior of
angles /AOB and [/ A'O'B' respectively and [ AOD 2 /A'O'D'
and / DOB = / D'O'B', then

[ AOB = [ A'O'B".

Proof: Without loss of generality
we may suppose OA = O'A' and

OB 2 O'B'. By the cross-bar

theorem (0. 6) rays OB and
—_—

O'D' meet AB and A'B' in
points P and P' respectively.

—
Let P" be the point of O'D'

so that OP = OP". Then

1 on o
/[ O'A'P". On A'P

1

AOAP = ACA'P" by SAS so [ OAP

let B" be the point so that AB ¥ A'B". Then AOAB = AO'A'B"

by SAS and OB = O'B". By "segment subtraction theorem

BP = B"P" and AOPB 2 A0'P"B" by S.S.S. and therefore

[ P"O'B" = /[ POB and /[POB = /[P'O'B' forces
[ P'"O'B" = /[ P'O'B'. Because B' and B'' are on the same side
of line QO'D', B' =B" (result of Axioms III-1, III-2) and

[ AOB = / A'O'B' as desired.
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2.2 DEFINITION. Let [/ABC] and [/DEF] be classes of

acute angles. The class [/ABC]+ [/DEF] is the class of angles
[LGHI] so that there is a ray f—I—f interior to LGHI with

[GHJ = [ABC and [/JHI = /DEF.

This definition is independent of representatives and clearly makes
sense as we see below. Let HG be any ray. On a given side of
line HG (for notation see 0. 3) we have a uniq\ie ray HJ so that
[GHT = [ABC. Since /GHJ is acute its supplement is obtuse and
the interior of the supplement is defined by the ray of HG from H
and on the opposite side of HJ from G,

we have a ray HI so that [JHI ¥ /DEF.
The rays Hi and fIJ are on the same side

of GH and thus /GHI is an angle with the

right characteristics to allow us to use the angle

"sum" theoremto provethe definition is non-ambiguous and reasonable.

2.3 LEMMA. If AABC is a triangle with a non-acute angle
—_— ——
at C, and AD is the bisector of [BAC, then AD meets

BC at E and CE < EB.

Proof: The existence of E is assured by the

cross-bar theorem. Since JACE is non-acute, C
A

referring to AABE we have AC < AE and referring to AABC

we have AC < AB. (The two inequalities for segments follow from
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the absolute geometry theorems that state that the angle sum of any
triange is no greater than two right angles and that the greatest side
is opposite the greatest angle) AC < AB implies there is a point F
on AB sothat AF = AB. Thus AAEC % AAEF by SAS. Now
[ ABC < /[ BFE since [/ BFE is congr’uent to the exterior angle at
C of AABC. Finally EF <EB and CE = EF implies

CE < EB as claimed.

2.4 LEMMA. ¢ [/ ABC], [/ A'B'C'], [/ DEF] are acute

angle classes with / ABC < / A'B'C', then

((DEF]+{/ ABC] <[/ DEF] + [/ A'B'C']

Proof: [{ A'B'C'] + [/ DEF] is defined to be the angle class con-
. —_p
taining the representative / GHI so that there is a ray HJ
interior to / GHI with / DEF = / GHJ and /[ A'B'C’' = / JHI.
Since [[_ ABC] < [[_ A'B'C'] there is a

— .
ray HK interior to / JHI so that

[ JHK 2 /| ABC. By the angle "addition" H

theorem [4 GHK] = [/ ABC] + [/ DEF]

and [/GHK] < [/ GHI] = [/ A'B'C'] + [/ DEF] and we are done.

2.5 LEMMA., If AABC has a non-acute angle at C, and if

D is the midpoint of BC, then [ BAD < / DAC.
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Proof: Let A? be the angle bisector
—

of /| BAC. AF meets BC at E

by the cross-bar theorem. By Lemma

2.3 CE <EB. Let E' be the point

1t

of EB sothat BE'=EC. Let M

be the midpoint of EE'. By segment "addition" theorem we have
MB = MC so M = D. With the ordering given by these results we
have C-E-D-E'-B [5, p. 7-8, th 6]. Thus / DAC >/ CAE and

[ CAE = /[ BAE > / BAD and we are done by transitivity.

2.6 LEMMA. If n[L ABC] < [[_ rt], then there is an angle

class (ntl)[/ ABC]=n[/ ABC] + [/ ABC].

Proof: If n =1 then by definition (n+l)[L ABC] exists. If n>1
then clearly [/ ABC < / rt by definition and we are done by

definition. 2. 2.

Clearly, (n+l)[/ABC] may be a non-acute angle class and in
that case (nt2)[/ABC] may or may not make sense. The next
lemma assures us that we can always make n[/ABC] ''exceed' any

acute angle class provided /ABC < /rt.

2.7 THEOREM. If [/ ABC] and [/ DEF] are any acute
angle classes, then there is a positive integer n so that

n[/ ABC] >[/ DEF].
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Proof: We need to show that n[L ABC] exists and that the given

inequality holds for some n. If

[ DEF < /[ ABC take n=2. If
—

[ DEF >/ ABC let EG be the

ray interior to / DEF so

[ FEG = / ABC. Let F. be the

1
point of E.? on DF (whose

v

existence is assured by the cross- E F

bar theorem). By Archimedes' axiom

—>
we have a sequence of points FO = F, Fl’ ce e, Fm on FD so that
F-F.-F_ if 0<i<j<k<m and F, ,F, S FF  for each

i ) "k - - i-171 1
i=1,...,m, and FF > FD. By the angle addition theorem we get
m
= > ¥
Z[LF.IEFHI] [[ FEF ] [/ FED]
i=0

By Lermma 2.3 we know [[_ FiEFi~‘~l] < [[_ ABC], for © <i<m-l

and by 2.4

v F. EF.]+[/L FiEFH_l] < 2[/ ABC]

for 0 <i<m-1. Nowif m[/ ABC] is defined, we have

m[/ ABC] > Z[L F, E¥]=[LFEF _1>[/ FED]

i=1
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and we are done.
From 2.6 we know that if k[[_ ABC] < [L rt], then
(k+1)[/ ABC] is defined so for m[/ ABC] to be undefined we must
have some value n < m so that n[/ ABC] is defined and
n[[_ ABC] > [/_ rt]. Thus there is a number n satisfying the
hypothesis because [L DEF] is an acute angle class. This com-

pletes our proof.

Once the properties of segment, angle, and triangle congruence
are developed even a little, one can show that every
angle has a bisector. This is done by selecting
points A' and B' on the sides of

[ AOB so that OA'Z OB'. Letting

M Dbe the midpoint of A'B' gives one ©

triangle AA'OM = AB'OM. This ensures

—>
that / A'OM = / B'OM and OM is

called the bisector of / AOB. (0.12)

2.8 DEFINITION. Let [/ AOB] be any angle class. Let
1/2[[_ AOB] be the angle class containing the representative LAOM
where OM is the bisector of angle [/ AOM. Inductively define the
class l/Zkﬂ[[_ AOB] =1/2 (l/Zk[L AOB]) where k is a positive

integer.
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2.9 THEOREM. If [/ ABC] and [/ DEF] are any classes

of angles, then there is an integer k so that l/Zk[[_ABC] <[/ DEF].

Proof: If [ DEF >/ rt then pick k =2. Suppose / DEF < / rt.
Without loss of generality we may suppose [/ ABC is also acute
(since in any case l/Z[L ABC] is a class of acute angles and the
powers of k would at most be increased by one). If no such k
existed we would always have ~1/Zk[[_ ABC]>[/ DEF], i.e.,

[/ ABC] > Zk[LDEF] for all k. This contradicts Theorem 2.7 and

we are done.

Putting Theorems 2.7 and 2.9 together, we can now establish

"

the map described in the introduction.

1]
R

2.10 DEFINITION. Let [/ rt] be the class of right angles.
Let [/ ABC] be any non-obtuse angle class. Inductively define the

two-variable function mn to be

[ 0 if [/ ABC] is the ideal class so that

[L ABC] + [/ rt] = [/ rt]

1 and l/Z[Lrt] >[/ ABC]

0 if n=
n([/ ABC],n) :< 1 if n=1 and 1/2[/ rt] <[/ ABC]
0 if n>1
1 if n>1} and
n-1
1/2%[ [ rt] + Z n([ L ABCL)12Y/ rt] {:%ggg%

i=1
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The function n gives us a way to assign a real number r -in
the half open interval (0,w/2] uniquely to every angle class whichis

not obtuse. (Again the "well-definedness' argument is left out.)

2.11 THEOREM. Let [[/ rt]lA =n/2. Let [/ ABC] beany
class of non-obtuse angles. Then there is a unique real number

r = I[LABC]IA sothat 0 <r <w/2 <and

n

r =l.u.b. {sn:srl =w/2 z 1/2'([ L ABC],i)}
i=1
Proof: (Using 2.7 and 2.9 together with 2. 10 the proof is essentially

identical to the proof of 1. 14 so will not be repeated here.)

2.12 THEOREM. If we assume the extension of the injection
| ‘S to all real numbers, then the injection | IA is a surjection

onto (0,w/2].

Proof: Let [/ POQ be a right angle. Let r be any number
between O and w/2 and suppose there is no angle class [[_ ABC]
corresponding to r. Let S ={[/ DEF]:|[/ DEF”A < r} andlet
T = {{/ GHI]: |[[_GHI]|A >r} . By the use of the cross-bar theorem

we immediately get two sets

S ={[OF']: F' is the point of PQ so that [/ POF'] = [/ DEF]}

T = {[O1']:1' is the point of PQ so that [/ POI'] = [/ GHI]}.
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Clearly, every class in S is less than every class of T from the

definition of l ’A and ordering of angle classes. Using | !S we

get two more sets

S'={s I[OF']]S:[OF',] € S}

|[o1']]g:lor'] e T}

fi

T' = {¢

S' and T' are sets of reals so that the Dedekind hypothesis is
satisfied so there is a number k so that k is the fir’st’ element of
T' or the last element of S'. By our "extension" hypothesis there
is a point K on PQ sothat [PK] corresponds to k andhence
an angle class [L POK] corresponding to r (a contradiction) and

the theorem is proved.

1]

Based on our key assumption that is a bijection and

[ 1

the results of 2. 12 we can extend to (0,w) in the usual

I,

manner by the following definition of the extension of " to all

nl ‘A

classes.

2.13 DEFINITION. Let [/ ABC] be any angle class. If
[L ABC] is a non-obtuse angle class then E|[LABC](A: I[LABC](A.
If [L ABC] is an obtuse angle class, then let [(_ ABC] be the

class of supplements of representatives of [/ ABC]. Define

EHL ABC]IA =7 - H/_ ABC”A. In all subsequent work we will use

nl i 1"

'A

"

th bol
e symbo A

to mean "E| |




This concludes part (b) of the steps of the argument outlined

in the introduction since now | |A: Set of angle classes — (0, w).

42
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III. THE ANGLE OF PARALLELISM AND THE
"LOBACHEVSKIAN FUNCTION" Il
In the two preceding chapters we have established an assignment
of numbers to segment classes and to angle classes. Implicitly this
gives us the notion of measure for both segments and angles and the

coordinatization of any line. This is because (based on the key

" 1t

assumption) we can extend the injections and to

| ] 1,

sur jections as described earlier. We can thus use results established
on the basis of "metric" or "ruler" axioms such as in Moise [10] and
even the results of measure concepts as used by Lobachevski [9]. We
shall draw upon these sources to make possible a somewhat shorter
development than would be possible if these same results were proved
in this paper also. There seems no good reason to redo that work
which can be obtained directly from the literature once the results of
Chapters 1 and 2 are established. Our present goal is to establish the
Lobachevskian function I[I. Whenever the literature follows a path
that would require significant other details than those given there,
those details will be developed independently in this paper.

Fuclid essentially proved the following theorems of absolute
geometry. (These have later been proved on the more logically sound
basis of Hilbert axioms) [10, p. 93-97].

If a is a plane, a isalineof a, and A is a point of

a not on a, then
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(1) There is a unique line p of a thatis incidenton A
and perpendicular to line a at a point ‘P’ of line a
(P is called the foot of the perpendicular from A to a).

(2) There is a unique line b of plane a AA .

;'S
W

that is perpendicular to line p at A. p

(3) The line b does not meet line a. RE RN
\J
The following lemma is an easy result of the Lobachevskian parallel

axiom and the results (1), (2), (3) above.

3.1 LEMMA. Let a, a, A, and p beas above. Then in
each half plane of a determined by p, there are points I and
Q on opposite sides of line p in plane a so that

(1) LPAL and L_PAQ are

both acute and

—> —
(2) AL and AQ neither meet

line a.

Proof: By (3) above, the perpendicular b to p at A in a
does not meet line a. Lobachevski's parallel axiom assures us
there is another line £ in a sothat £ is different from b,
L . —> -
incident on A, and does not meet a. Let’ AL and AL' be the
opposite rays from A on {£. Since £ is notthe perpendicular

to p at A, either [ PAL or [ PAL' isacute. Renaming if

-
necessary, suppose [ PAL is acute. AL does not meet a since
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—
£ does not meet a. By Axiom III-4, there is a unique ray AQ in

the half-plane of o determined by p and not containing L so

~ —> e .
that [/ PAQ =/ PAL. AQ does not meetline a, because if it

—y
then AL must meet line

did meet line a at some point S,
a atapoint T sothat S-P-T and SP = PT. This proves the
lemma.

3.2 THEOREM. Let a, a, A, and p be as above. Ona

—>
given side of p in plane a, there is a unique ray AR* so that

—
1. AR* does not meet line a,

2. /[ PAR* is an acute angle,

e

—
3. if AS is any ray of a onthe same side of p as R

and [ PAS < /[ PAR*, then A meets line a ata

: -2 : :
point of the ray PQ of line a on R*'s side of p.

Proof: Let Q be a point of line a distinct from P on the given

side of p.

Let

B be a point so

that

there is a point

L

P-A-B. By Lemma 3.1,

of plane

a on Q's side of p so that

T does not meet PQ

that

does not meet

‘Pasch's axiom 1

[/PAL 'is acute.

PQ,

ine

and so
Thus AT,
and by

AL meets

L
~

BQ
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—

at R. But R ison Q's sideof p so R is a point of AL.

Let

—_—
D={S:S=R or S isapointof QR sothat AS does
—
not meet PQ}

E = (RQu {R}) - D.

Let us order these sets as follows, S < T iff QS < QT. Now
—>
D7¢ since ReD, E#¢ since for every Q' of PQ with
— '
P-Q-Q', AQ' meets RQ ata point Q". Further,
D v E=RQ\J{R},Dr\E=¢ and S < T for every element S
in E and T in D.
Now E has no last element since if S' 1is such a last ele-
— —
ment AS' meets AQ at K. Let K' be any point so that
! d : " tau
A-K-K' and AK' meets RQ ata point S so that Q-S-S
and S">S' in E.

We now make our first use of our assumption. We claim D
necessarily has a first element since otherwise the correspondence
with the real numbers will give us a Dedekind class of reals with no
first element in a set that must, in the reals, have a first element.
Hence there is a point R* of D so that all these necessary condi-

tions for the theorem are satisfied. Uniqueness follows immediately

from the construction of the argument.

3.3 DEFINITION. In the notation of Theorem 3.2, the angle
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L PAR* - is called the angle of parallelism associated with PA and

line AR* is said to be parallel to line PQ in the direction of

B3

The results of Theorem 3.2 and the definition in 3.3 are included

in Section 16 of Lobachevski's The Theory of Parallels [9]. His proof

is valid if the Dedekind property is assumed instead of the complete-
ness axiom of Hilbert. Lobachevski attaches metric notions to his
treatment at this point by defining the angle of parallelism

H(I[AP][S) = I[Z_ APRﬂIA (in terms of this paper's notation). Please
realize that this is intended only to explain this paper's steps and no
way is meant to play down the imaginative work done by Lobachevski.
As noted earlier, we must justify the claim that there is in fact an

angle which can rightfully be called THE angle of parallelism for a

given segment class. The results given above justify such a claim.

Lobachevski's next result--in his Section 17--gives:

3.4 THEOREM. "A straight line maintains the characteristic
of parallelism at all its points" [9, p. 15].
His proof is valid from the standpoint of our present work. He

then gives the following theorem:

3.5 THEOREM. "Two lines are always mutually parallel”

[9, p. 16].
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In the proof he gives for this theorem he gives one step in which
one must "...slide the figure EFAB until it coincides with AG,...."
This "sliding" can be precisely stated and proved in several ways.

One such way is given by Moise [10]} in which he proves the following

results. We use his more operational notation:

3.5.0 DEFINITION. Let AB and PD be two lines ina

—> —> .
plane a which do not meet. Then PD v PA U AB v {A,P} is

P
called the open triangle ADPAB

provided B and D are on the

same side of AP. If every interior A B >

—>
ray of / APD intersects AB,
S c
we say ﬁ is critically parallel P

—
to AD and write PDlﬁ' : D

\

[10, p. 311-312]. A B

3.5.1 THEOREM. If

—

D|K]_3> and C-P-D, then

iy

CB| AR [10, p. 312].

>

]
we

A%

— —>
5.2 THEOREM. If PD|AB and P-C'-D, then

3.
— —
'D|AB [l0, p. 313].

Q

- g .
3.5.3 DEFINITION. Two rays r and r' are equivalent

rays if one contains the other [10, p. 313].
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—>
3.5.4 THEOREM. If T is equivalent to %' and ¥|AB,

—>
then %'|AB. (10, p- 313].

3.5.5 THEOREM. If T and 2' are equivalent rays, re

-7 > -2
and s' are equivalent rays, and ?l?, then r'|s' [l0, p. 313].

3.5.6 THEOREM. The critical parallel to a given ray through

a given external point is unique [10, p. 314].

—
3.5.7 DEFINITION. If PDIP:%, then the open triangle

ADPAB is called a closed triangle with AP called the finite side

— —
and PD and AB called the infinite sides or simply sides [10,

p.- 317].

3.5.8 DEFINITION. Two closed triangles are called equivalent
if the rays that form their infinite sides are equivalent in pairs for
some pairing. Furthermore, ADPAB is called isosceles if
L P = [ A [1l0, p- 314,317]. Note: there is obviously no predictable

relationship between the finite sides of equivalent triangles.

3.5.9 THEOREM. Closed triangle ADPAB is equivalent to
an isosceles closed triangle ADPA'B' which has P as vertex

[10, p. 314,317].

3.5.10 THEOREM. Critical parallelism is a symmetric rela-

tion [10, p. 314].
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It is clear that 3.5.10 is essentially another formulation of 3.5.
However, the string of theorems giving 3.5.10 is needed in some form
to justify the "sliding" used by Lobachevski. In fact a sort of transi-

tivity of parallels also follows.

—_— > i
3.5.11 THEOREM. If AB|CD, CD|EF and AB is not

—p - P
equivalent to EF, then AB|EF [10, p. 315].

As may be noted by the references given for 3.5.7-3.5.9, our
introduction of the defintion of closed triangles is not sequenced
exactly as in Moise. This is done with no introduction of ambiguity
and saves some time later when we state the "External Angle
Theorem" for closed triangles (3.12) which plays an important role
in subsequent proofs.

Lobachevski’s Section 19 begins with:

3.6 THEOREM. In any rectilinear triangle the sum of the
three angles cannot be greater than two right angles [9, p. 16].

His proof involves supposing that this angle sum is greater than
m+a for a >0. This uses the trigonometry-analysis notion of
angles greater than a straight angle. This can easily be avoided by
a method such as that used by Moise in his Chapters 7 and 10 [10].

It is interesting to note that Girolamo Saccheri [15] had established

essentially this result one hundred years earlier but did not recognize
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the significance or even the validity of allowing the introduction of
Lobachevski's axiom and the resulting strict "less-than" result for
this angle sum and w. Moise's treatment, which is certainly not

unique, proceeds by the following route.

3.6.1 DEFINITION. If A,B,C,D are coplanar points with
AB| AD at A, DC| AD at D, ABZCD, then
OABCE = {A, B, C, D} U ABuU BC u CDuw AD is called a Saccheri

quadrilateral with AD the lower base, BC the upper base and

AB and CD the sides.

3.6.2 THEOREM. In any Saccheri quadrilateral, the upper

base angles are congruent.

3.6.3 THEOREM. In any Saccheri quadrilateral, the upper
base is congruent to the lower base or to a segment greater than the

lower base.

3.6.4. THEOREM. In any Saccheri quadrilateral [JABCD

C
with lower base AD, [ BDC >/ ABD .
3.6.5 THEOREM. In any right triangle i T
AABD with right angle at A, 1
A D

L aBD| , + [/ ADH]| , < n/2.

3.6.6. THEOREM. Every right triangle has two acute angles.
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3.6.7 THEOREM. The hypotenuse of a right triangle is longer

than either of its legs.

3.6.8 THEOREM. In AABC, let D be the foot of the per-

pendicular to AC. If AC is the longest side of AABC, then A-D-C.

3.6.9 THEOREM. In any triangle AABC, we have

[[LA1] o + [[LBI], + 1[c]l, <= [10, p. 125-130].

Lobachevski next establishes in Section 20,

3.7 THEOREM. "If in any rectilineal triangle the sum of the
three angles is equal to two right angles, so is also the case for every
other triangle" [9, p. 17].

He then observes, "From this it follows that only two hypotheses
are allowable: Either is the sum of the three angles in all rectilineal
triangles equal to w, or this sum is in all less than =" [9, p. 18].

His next result [9, p. 18] is, "From a given point we can always
draw a straight line that shall make with a given straight line an angle

1

as small as we choose. " This is effectively our Theorem 2. 9.

In his Section 22, Lobachevski establishes,

3.8 THEOREM. "If two perpendiculars to the same straight
line are parallel [i.e., critically parallel] to each other, then the
sums of the three angles in a rectilineal triangle is equal to two right

angles" [9, p. 19].
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His argument, though somewhat "old-fashioned" in its choice of
mathematical verbs is logically sound. The next two theorems, how-
ever, use a proof which seems to justify some substantially greater
detail than that given by him. His proof involves limiting arguments
which need a firmer base in light of our present mathematical notions
of completeness and continuity. His theorem states:

For every given angle (of measure) a there is a line (segment

of length) p such that (the measure of the angle of parallel-

ism) I(p) =a [9, p.- 19].
The parentheses are ours. To establish this result on our present
foundation we define the Lobachevskian function II. We then show I

is a decreasing function which can have any real value between 0

and w/2.

3.9 THEOREM. Let A,a and A',a' be points and lines of
planes a and a' respectively. Let:

1. A and A' be points noton a and a' respectively, and

2. p and p' be the perpendiculars from A and A' to

Q

and a' respectively with Q on p and Q' on p'

so that ﬁé’lﬁ* and = &

Then PA = P'A' iff

[ PAR*E [ P'A'R'%. T




Proof: 'only if." Suppose

[ PAR* </ P'A'R'* given that

PA = P'A'. Then interior to
—
[ P'A'R'* there is aray A'S' so

that / PAR*= / P'A'S'. But by

—>
the definition of [/ P'A'R'%, A'S'
—
meets P'Q' at T'.

PT =P'T' and by S.A.S.
[ PAT = /| PAR*.

is impossible.

Pt

R

Sl
Tl

Now there is a point

AAPT 2 AA'P'T!

¢\

—
on PQ so that

so that

— — .
This forces AR%* tomeet PQ at T which

By symmetry this part of the proof is done.

AP < A'P'

"if 1]
given that

Let M'

Now suppose

[ PAR* % [ P'A'R'%.

be a point between A'

and P'

so that

A'M' = AP. Let

>7

m' be the perpendicular to A'P'

at M' in a'. Then there is a

—

T

R*

8

0

ray P'N' [ M'P'Q' A

— _—.—» -
P'N'|M'M" (where M" Mred—NL! M"

interior to

so that

is any point of m' on the same side

of A'P' as Q). But then (by
—' ' & - e
AR'"* at

e
3.5.10) P'N' meets

a point K'. By Pasch's axiom M'M" meets A'R'*. By between-
p y MV

J—
ness considerations M'M" meets A'K' at L' (every point of
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;; E
A'K' is on the same side of A'P' as M'M" and no point of m'
—_
except those on M'M" is so situated). Let L be the point of
—_— . ~
AR* so AL = A'L’. Then APAL = AP'A'L' byS.A.S. Thus by
— el

uniqueness of perpendiculars to AP at P in a, PQ=PL and

again a contradiction results.

This theorem assures us that the following function is well

defined:

3.10 DEFINITION. If [AB] is any segment class and
[[_ ABR*] 1is the class of angles containing the angle of parallelism
associated with AB, then the Lobachevskian function H lR+ g lR+
is defined by H([[AB][S) = |[L ABR*][A where | [S "is taken to

be positive, i.e., with no reference point as in 1.16.

Lobachevski introduced this function and developed many results

concerning it [9, p. 13].

3.11 LEMMA. If |[AB]lS:a, |[CD]|S=b, and a >b,

then T(a) < N(b).

L
Pl
Proof: Let a be the plane
. . . =
determined by line { and a point P
TARONR*
L noton {£. Let p be the T ¥
perpendicular from L to [/ « o 7
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with foot Q andlet P and P' be points of p so that Q-P-P'
with PQ=CD and P'Q= AB. On a given side of p in a let
R* and R'*t be points so that LQPR"'< and LQP'R'* are the
angles of parallelism for PQ and P'Q respectively. By 3.5.10
and 3.5.11, we know P__R->’"<|—13~'_I—{—>""< so line PR* does not meet

”
'R". If [II(a) > [I(b), then there is a ray P'R" interior to

o

~

—_ —
[ PP'R'* such that / PP'R" % / QPR* But PR*|P'R'* forces
cm— ...9
P'R" to meet PR* at some point T. In APP'T, /[ QPT isan
exterior angle so /QPT >/ PP'R" (by exterior angle theorem of

absolute geometry). But [/ QPT = / QPR * = /PP'R" which is

impossible so [I{(a) < NI(b) as claimed.

—

We now have the tools with which to draw upon Moise's formu-

lation of the following theorem.

3.12 THEOREM. (The Exterior Angle Theorem for Closed
Triangles) In every closed triangle, each exterior angle is greater
than its remote interior angle [10, p. 317].

The proof he gives uses only materials so far included in this

paper. 3.12 is then used together with 3.10 and 3. 11 to prove that:

3.13 THEOREM. If [AB]>[A'B'], then

n(|[AB]| . < n(|[A'B']|.), i.e., the Lobachevskian function is

S S

strictly decreasing.
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Proof: (This proofis in Moise [10, p. 319] but is sufficiently ele-
gant as to justify its inclusion. To simplify its statement we use the
figure at the right to schematically give the

relationship of the rays, lines, points,

P|
etc.) Let AP and AP' be repre-
P D!
sentatives of [AB] and [A'B'] D
respectively. Let APD and < ‘ -
L Al Q

L AP'D' be the angles of parallelism associated with [AB] and
ot . — >
[A'B'] respectively. Now by previous work, PDIAQ and

— —
AQ|PD soby3.5.11 PD|P'D' and hence by 3.12 we are done.

The next two theorems follow easily and, with their proofs, are

given in Moise [10, p. 319-320].

3.14 THEOREM. The upper base anglés of a Saccheri

quadrilateral are acute.

3.15 THEOREM. For every triangle, AABC, we have

LAl + 118l +1Lc], <

This leads to the definition of what has come to be known as the

defect of a triangle.

3.16 DEFINITION. The defect of AABC, denoted &(ARC),

is 6(ABC) =1 - |LA|A— |LB[A—|LC|A.
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This leads to.three theorems which have been stated and proved in
Moise in a manner which is sound with respect to the mathematical

foundation in this paper. These are;

3.17 THEOREM. Let AABC be any triangle with B-D-C.

Then &(ABC) = 6(ABD) + §(ACD).

3.18 THEOREM. If two triangles are similar, they are

congruent.

3.19 THEOREM. lim Il(a) = 0.

a—"x
(At this point Moise proceeds to develop area notions not rele-
vant to this work.) We now have the machinery to prove Lobachevski's

next theorem [9, p. 19, No. 23] which we rephrase just a bit.

3.20 THEOREM. For every
acute angle LPOQ, there is a
line £ which is perpendicular to

OQ and which is parallel to OP

in the direction of ’O_?P B,
P
Proof: Let [/ POQ be any acute
: B,
angle. Let B be a pointon
B=
6_13 and let A be the foot of o } ) >~ . ‘ -
A=A, Ay Q A,

the perpendicular from B to
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—

0Q. Since / POQ is acute, A ison OQ. Suppose all the

perpendiculars from points on OQ in the plane a determined by
— .

OQ and P, meet OPF. Consider the following sequence of points

on o%:

Let AO = A.

—>
Let A1 be the point of OQ so that O—AO—A1 and
- —

OA, = AOAI . Inductively define An to be that point of OQ"- so

that O-A -A and OA = A A
n n n

1 1 o184y Let Bn be the point of

— —_
OP where the perpendicular to QQ at An meets = OP.
This defines an infinite family of triangles which we consider as

follows (cf. hypothesis and 3, 17):

6(OA1BO) = 26(‘OAOBO) < 6(OA1B1),
6(OA2B1) = 26(OA1B1) < 6(OA2B2),
5(OA B ) = 26(0CA B ) < 8(CA B ),
n n-1" n-1"n-1" n n

i-e., for any n >1, 2n6(OAOBO) < 6(OAan) by induction. Now by
definition 6(OAan) < w and 6(OAOBO) >0 and we have a contra-
diction to the Archimedian property for real numbers. Hence at least
| —
one of the perpendiculars from a point on 66 does not meet OP.
+ .
We have a natural ordering of the lines Q.R., j € R, which
11
are perpendicular to 0OQ at points Qj of OQ inplane a as

follows: We say QjRj<QkRk provided O—QJ.—Qk~ Now let
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L= {p:p is a line of a and p J_O_Q_ at a point of OQ},

—>
={sts ¢ L and s meets OP},

jn

—
={t:t ¢ L, and t does not meet OP}.

—

1+

By our work above s €S and te T implies s <t with § 7 ¢
and T # ¢. By the Dedekind property for points on a line, which fol-

lows from our key assumption, T has a "first" element. (Obviously

S cannot have a last element)and since S and T give rise to

natural Dedekind classes of points of (5—5 this result holds.

A
//‘
Let A'B' be the "first" element Py B
of T with A' on OQ and B' P

on P's side of 0OQ. We claim

—> —> ‘
A'E'IOP. Let A'C be any ray ¢
. . ey | Oe ’
interior to angle [/ OA'B', and 0 D A

~—>

suppose it does not meet OP. Thus C is interior to L POQ
also. The perpendicular from C to OQ meets OQ at D of

1 . . _9 . 1 1 .
OA’'. Then this perpendicular CD meets OP (since A'B' is
the first element of T) at P'. Hence A'C meets OP' by
Pasch's axiom. By elementary betweenness arguments, A'C meets

(] . . ———> -’> ] 1 .
OP), a contradiction. Hence A'B'|OP and hence A'B' is paral-

—
lel to OFP in the direction of OPF . and we are done.

3.21 COROLLARY. Every acute angle is the angle of parallel-

ism for some segment.
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Proof: In the notation above ,|ZPOQ|,A=H(|[OA'”S) .

3.21.1 COROLLARY. For every angle [ AOB there is a
. -~ .
line £ that is parallel to QA in the direction of OA and also is

parallel to OB in the direction of (-)-g

—5
Proof: IL.et OF Dbe the bisector of

[ AOB. Let £ be the line perpendicu-

lar to OP and parallel to QA in the

direction of 6-12 and let F be the

foot of this perpendicular on OP. By
3.19 I/_AOFIA = H(|[OF]|S) = ILBOFIA and we are done.

The'line £ in 3:21.'l is said to be parallel to both sides of /AOB,

3.22 THEOREM. The function I assumes ail Valués between

0 and w/2.
Proof: Immediate from Corollary 3.21.

Let us now draw several results together. In 3.10 we defined
m: rRT - RrY by defining nl[AB]IS = I[LABR*]IA. Since [ ABR*
is an angle of parallelism, I1 is clearly positive (cf. def. 3.3, 3.2,
and 2.13). By 3.21, every acute angle is the angle of parallelism for
some segment so, by definition, the supplement of any obtuse angle

is the angle of parallelism for some segment. Let us assign angles to
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points on an ordered line as follows: In plane a let:

Then

- PO be any line,

- OR Dbe the perpendicular to PO at O 1in a,

- Q beany point of PO, A
- Q' be any paint of -4 so that '\
—9 Q
a3 |Ok.
Pé¢ o
- I Qe 6?, assign o R
< * - =
LOQQ' to Q l(i.e., a7
- Q
assign the angles of par- 7
: v
et
allelism associated with OQ), /ﬁ{? !
v vl
. If Q=P assign L ri, P ¢
. If P-O-Q, let P" be any "

— — o
point of PQ so that QP" 1is equivalentto PO (cf.3.5.3)
then assign / P"QQ' to Q (i.e., assign the supplement

of the angle of parallelism associated with OQ).

Theorems 3.13 and 3.21 assure us that such an assignment is con-

tinuous and one-to-one (based on our assumption that the injection

from points on a line to the real numbers (1. 16) is a bijection in the

sense described in Chapter 1).

Using the extension of

" |A“ (described in 2. 13) to all angle

classes we are now in a position to state and accept the following
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extensions of Il which allows us to enlarge the range stated in

3.22:

3.22.1 DEFINITION. In plane a, let
1. PO be any line (£,
2. OR be perpendicular to PO at O in a,
3. x  be any real number,

(" the point Q of 6_5 so that |[OQ]|S = x

if x>0
4. Q(x) be{ the point O if x=0
the point Q of £ so that P—O-Q and

L |[OQ]|S=|X| if x<0,
5. Q'(x) be any point of a so that mlb_ﬁ, and
6. P"(x) be any point of { so that m is equivalent

—_

to PO (cf. 3.5.3).
Then define Tl(x) = I[LP"(x)Q(x)Q'(x)]IA-
It is clear that for x >0
Ti(x) = M(x) and that

II: R —~ (0,w). For simplicity

of notation, throughout the rest of

Q'(x)

this paper we will use the sumbol '"II"
\
to mean "W". Since "| IS" is A Q)
) P'(x)
always non-negative TI| [AB]lS = 1| [AB]|S v '



64
'so no ambiguity is possible here. The only difference is when we are
using negative reals. The use of # is not specifically needed until
Chapter 6 and for all intermediate work the earlier meaning of the
symbol 1 is sufficient. However, this seems the best place to
develop this extension to maintain continuity of exposition as much as

is possible in so long an argument.

3.23 LEMMA. Let [ AOB be any angle. If £ is parallel
—~— _— .

to OA and OB in the direction of OA and OB respectively,
then £ is perpendicular to the bisector OP of [ AOB ata

—
point F of OP.

A
Proof: Let OF be the perpendicular from A'
O to { withfoot F. Let A' and B' F
o —
— >
be points of £ sothat FA'|OA and
. B!
—_— -
FB'|OB. By definition § FOA and
B

[ FOB are angles of paralleliéfn associated
with OF andby 3.2 and 3.9, these are both acute and mutually
congruent angles.

|

o —>
Thus the bisector of [/ AOB is a rayof QOF. Let OF' be

1

the bisector of / AOB. Suppose OF Z OF' and F-O-F'. Then
by an argument such as that for 3.20 we get that the perpendicular to
OF at F' is also parallel to OA and OB in the direction of

— ~
GA and OB. Thus ([ F'OA = / F'OB and both are acute by 3. 2.
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Thus at O we have acute angles [F'OA and
[FOA as supplementary. That is A

—
impossible. Thus OF is the bisector

of [AOB as claimed.

3.24 THEOREM. If

1. /AOB = /A'O'B',

2. 4 and L' are parallel to both sides of /AOB and
[A'O'B' respectively,

3. P and P' are the feet of the perpendiculars from O and
O' to £ and £' respectively,

then OP =2 O'P'. A

— —
Proof: By 3.23 OP and OP’' arethe o

bisectors of /AOB and /[A'O'B'
respectively. If OP < O'P', B
[POA > /[P'O'A’ by 3.13, a con-

tradiction. By symmetry O'P' < OP

is also impossible and we are done.

Theorem 3.24 is a key theorem

in that it allows us to select one class
of segments in a canonical way just as in absolute geometry it is
possible to canonically select a certain class of angles. The ability

to select a reference angle class, (specifically the class of right
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angles) allows us to choose, on the basis of the axioms, a reference
standard for the function | IA' Specifically I’[Lrt’t]‘A =w/2. Let
[RT] be the class of segments which has as representation the seg-
ment OP sothatif / AOP isa right‘ angle, then P is the foot
of the perpendicular to the line £ which is parallel to both sides of
/ AOB. This class contains all such segments for all right angles
according to 3.24. It will be shown that the most reasonable value to
select for I[RT]IS = H-I(I [—LZ"I"'EJIA) is In(N2 +1) when we have

elected to assign w/2 to the class of right angles.

3.25 DEFINITION., We will call the class [RT] (above) the

canonic¢al ' class or standard class of segments and its representaives

canonical segments or standard segments.

We have now defined the Lobachevskian function I and
selected a reference class--the canonical class-~of segments which
relates angles and segments. We now proceed with developing the
results to actually evaluate II. Lobachevski developed, very cleverly,
two figures which he called oricycles [9, p. 30] and orispheres [9,

p. 33)] and used spherical geometry and trigonometry to establish
values for TII. This waork was imaginatively done and justifies his
name,:rather. than  others', being attached to this geometry. Only

he took the initative to develop the theorems to describe the basic
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properties so fully. However, in a foundations work such as this,
care must be taken to build only on the stated foundation--in this case
Hilbert's axioms. The development we use will somewhat parallel
Lobachevski’s but will supply proofs which are founded upon Hilbert's

axioms.
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IV, PENCILS AND ORICYCLES

In this section we lay the foundation for the development of the
oricycles and orispheres together with their properties which are
useful later in computing the formula for the "Lobachevskian function”

As has been said already, Lobachevski follows a route not
always adaptable to our foundation. In our subsequent work we will
draw heavily on the definitions given by Shirokov [16].and will prove
many of the theorems he proves. We will follow essentially the same
path he does, Some of his proofs are not adaptable to this paper since
he largely ignores the completeness axiom and uses arguments for
which we have no justification. When this occurs we shall include
appropriate additional proofs and results. These results will make it
possible for us to compute the values for 11 stated and used by
Lobachevski. The development of the oricycles which we will make
in this and the next chapter doegs~r-as noted abover-require a substan-
tial addition of proof above that given by Shirokov.

We shall--as near as is possible--make every attempt to
specify what of the subsequent results are specifically Shirokov's.

A majority of the proofs and results for oricycles are ours though the
general direction is given by Shirokov, However, once the results

for oricycles have been carefully developed to account properly for
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the completeness axiom, Shirokov's development for orispheres needs
hardly any additional proof than that given by him. The orisphere
results do not need any completeness results beyond that which we
need and provide in the propositions and proofs given for oricycles.
Thus, once we have established the results for oricycles needed by
Shirokov to obtain the orisphere results, we will again draw heavily
on the literature for the development of results for and from ori-
spheres.

We now establish two helpful lemmas.

4.0.1 LEMMA. If
1. C is the midpoint of segment AB in plane a,

2. m is the perpendicular bisector of AB in a,

w

. £ is the line of a which is perpendicular to m at P
where P # C, and
4. A' and B' are the feet of the perpendicular to { con-
taining A and B, respectively,
then
1. OA'ABB' is a Saccheri quad-
rilateral with base A'B', and

2. P is the midpoint of A'B'.

Proof: To avoid a contradiction to the

exterior angle theorem we must conclude that £ and AB do not
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meet and also AA', PC, and BB' do not meet each other since
otherwise we have a triangle with an exterior angle congruent to a
remote interior angle. Thus the triangles discussed below all exist:

AACP = ABCP by S.A.S. and thus AP % BP. Furthermore
[ APA'= /| BPB' since they are complements of congruent angles.
Hence AAPA'Z ABPB' by S.A.A. so that: |

1. AA' 2 BB' and by definition OA'ABB' is a Saccheri

quadrilateral with base A'B', and

2. A'P 2 PB' so P is the midpointof A'B' as claimed.

4.0.2. LEMMA. In Saccheri quadrilateral ©A'ABB' of plane
o with base A'B', aline £ of a is the perpendicular bisector

of 'A'B’, iff ¢ 'is the perpendicular bisector of ~AB.
A

Proof: Let P be the foot of the
perpendicular bisector £ of A'B'.

As above we see that the exterior

angle theorem ensures that £ not

Rl
meet AA' and BB'. In triangles ‘ L 4 ,
At v 11) v B!
AA'AB' and AABB' we use Pasch's !
axiom to conclude £ meets AB' and AB, respectively. Let

C be the point of AB on [£.
Now AAA'P 2 ABB'P by S.A.S. and thus AP = BP. Also

[ APC # /| BPC since they are complements to congruent angles.
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Thus AAPC = ABPC by S.A.S. and it follows that AC = BC and

1] AB at C.
The converse is immediate from 4.0. 1.

4.0.3 DEFINITION. Two coplanar lines which do not meet and

are not parallel in any direction are called divergent or hyperparallel

lines.

4.0.4 LEMMA. Any two hyperparallel lines have a common

h o

\

perpendicular. ‘ t

.

Proof: Let AA' and BB' be
hyperparallel lines. From any
- =D

point C of AA', let CE|B'B

and C?hg—]g' Now, based on

e
-~

Theorem 3.20, we have lines FF' A F c X G A
and GG' which are perpendicular to AA' at F. . and G
_— | —> —_— = :
respectively and so that FF'|CE and GG'|CD. Let M be the -
midpoint of FG- andlet m be the perpendicular to BB' from
M with foot N. Without loss of generality we may suppose B and
B' areon F's and G's sides of MN respectively. Let MO
— —_— - —_—  —

and MO' be the rays so that MO|NB and MO'|NB'. By 3.9

~ — =
/ NMO = / NMO'. By 3.5.11 ("transitivity" of parallels) MO|FF

and MO'|GG'. Since FM = MG, FF'| AA' and GG'| AA' we
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have / FMO = / GMO' by3.9. Thus / FMN 2/ GMN by
"angle sum theorem" and thus NM | AA' at M also and we are

done.

4.1 DEFINITION. The set of all lines of a plane containing a

given point C is called a pencil of intersecting lines with center C

[16, p. 35].

4.2 DEFINITION. The set of all lines of a plane which are

perpendicular to a given line £ is called a pencil of divergent lines

with axis £ [16, p. 35].

4.3 DEFINITION. The set of all lines of a plane which are
parallel toa given line £ in a given direction AB of £ s

called a pencil of parallel lines in the direction of AB (or simply a

pencil of parallel lines if the direction is clear) [16, p. 35].

4.4 THEOREM. The perpendicular bisectors of the sides of a

triangle belong to one pencil [9, p. 29; 16, p. 36].

Proof: Let the perpendicular
bisectors of the side opposite

[ A beline a andlet

the midpoint of BC be A",

etc. as shown .



73

Case 1. Suppose a and ¢ meetin a point P. Consider
segments AP, BP, and CB. In AAC'P and ABC'P we have
AC'=BC', [AC'BZ/ BC'P and C'P =C'P sobyS.A.S.
AAC'P = ABC'P. By symmetry we also have ABA'P = ACA'P.
Hence AP Z BP = CP and AAPC is isosceles making
| CAP = / ACP.

Therefore, if B' is the midpoint of AC, AAB'P = ACB'P
by S.A.S.. This makes B'P the perpendicular bisector of AC and

a, b, and c are all in the pencil of intersecting lines with center P.

Case 2. Suppose a and ¢ are hyperparallel and hence by
Lemma 4.0.4 have a common perpendicular {. Then AB and BC

are both hyperparallelto £ so A, B,

B
and C arenoton {. From
|
C! |
A, B, and C construct the
perpendiculars to { with c 2
A B' c
feet A", B", and C" J
respectively. By Lemma —L L Lo
AII B“ C“

4.0.1 OA"ABB" and DB"BCC" are Saccheri quadrilaterals
with common side BB" so AA" = CC". Thus DA"ACC" isa
Saccheri quadrilateral. Hence the perpendicular bisector b of

AC. is perpendicular to £ (by 4.0.2)and a, b, and c¢ are all

in the pencil of divergent lines with axis {.
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Case 3. If a and c¢ are parallel in a given direction, then
b is parallel to both a and c¢ -inthis same direction, since
otherwise we should have a contradiction to Cases 1 and 2 above
(cf. 4.0.4). Hence a, b and c are all in the same pencil of

parallels.

4.5 DEFINITION. Two points A and B correspond to one

another relative to a pencil of lines, iff they are symmetrical with

respect to some line of the pencil (denoted: A*B) [16, p. 39].

v

4.6 THEOREM. In a given plane a, if P*Q and R*Q

then P*R.
Proof: If P =R, we are done trivially. Hence suppose P 7R.

Casel. If P, Q and R are collinear, then the only pencil
under which P*Q and R*Q is a divergent pencil with P, Q, R

all on the axis of the pencil. The existence of the perpendicular
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bisector of PR gives P#*R.

Case 2. If P, Q and R are noncollinear, then the perpen-
dicular bisectors of the sides of APQR are all in the:same pencil

(by Thm. 4.4) and the theorem is immediate.

4.7 THEOREM. For any given pencil §, the relation "*"
is an equivalence relation on the set of points of the plane a con-

taining §.

Proof: I.et A be any pointof a. Then A is on a unique line
m of £. This follows because:

(a) if & 1is a pencil of intersecting lines with center C,
AC is'alineof £ and is unique.

(b) If £ is a divergent pencil with'axis £, there is a unique
line m through A and perpendicularto £. m isa
line of £ and perpendiculars are unique.

(c) if & 1is a parallel pencil in the direction of ¥ on line
r, there is a unique line m through A sothat m  is
parallel to the line r. in the direction of T provided A
isnoton r. Then m is alineof £ and we are done.
If A ison r we are done trivially. Uniqueness fol-

lows by 3. 2.

Reflexive. A is on a unique line m of § and A is
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trivially symmetric to itself with respect to m. Therefore A*A.

Symmetrical. If A is symmetricto B with respect to m,

then the definition of symmetry to a line gives B symmetric to A.

Thus A*B implies B3*A.

Transitive. P*Q and Q*R imply P*Q and R*Q by

symmetrical above. But P*Q amd R*Q imply P*R by .

Theorem 4. 6. Hence P*¥Q and Q%R imply P*R.

4.8 DEFINITION. Let £ be a pencil in a plane a. Then

denote by £[A] the equivalence class of A with respect to £

1"t
xR

4.9 THEOREM. If £ is a pencil of intersecting lines in o
with center C and A is a point of a different from C, then

¢[A] is the circle = with radius AC and center C.

Proof: Let P#*A. If A and P are distinct
points, there is a line m of § which'is
the perpendicular bisector of AP at M.
ACMP = ACMA by S.A.S. and PC £ AC so
PeX. If P=A, PeZX=. Thus ¢EA]JC =.
Let P beapointof Z. If P=A wehave P*A. Other-

wise let CM be the bisector of [ PCA. CP=CA so [P% /A
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and thus APMC 2 AAMC by A.S.A. Thus CM is the perpendicular
bisector of AP and P*A. This givesus Z C E[A] and we are

done. If P-C-A, the proof is obvious.

4.10 THEOREM. If £ is a divergent pencil with axis £ in

plane a, and A is a pointof a noton [, then

~

¢E[A]=E ={P|P is a point of @ and PP'Z AA' where P' and A'

are the feet of the perpendicular to £ through P and

A respectively }.

Proof:

1. (([A]C E). If P is a point of £[A] and P = A, then
M A

PeE. If P74 A then thereisa
P

line m of § which is the

perpendicular bisector of PA at

M. By Lemma 4.0.1 DOP'PAA’ pr Al
is a Saccheri quadrilateral with base P'A' so PP'= AA’
and g[A] C E.

2. (EC ¢[A]). If P=A, then P« ¢g[A]l. If P#A, then
OP'PAA' is a Saccheri quadrilateral and by Lemma 4.0.2
the perpendicular bisector m of the base A'P' is the
perpendicular bisector of AP, so P¥*A. Hence E C tlA]

and we are done.
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4.11 THEOREM. If £ is a divergent pencil with axis £ in
plane a, and A isapointof a noton £, then §[A] con-

tains no point of £.

Proof: Suppose ‘P ¢ £(A] and P isa point of {. Thenif P’
is the foot of the perpendicular to { through P, then P =P'.
In that case PP' is not a segment so cannot be congruent to AA'
as required by Theorem 4.10. This is impossible and the theorem

is proved.

4.12 DEFINITION. If £ is a divergent pencil with axis £
in a plane a and A is apointof a noton £, then E[A] is

called an equidistant curve associated with £ [16, p. 39].

4.13 DEFINITION. If § is a parallel pencil in the direction
-
of r inaplane ® and A isa pointof w, £[A] is called an

oricycle, or limiting curve in the direction of * [16, p- 39].

4.14 THEOREM. If ¢[A] is a circle, an equidistant curve or
an oricycle and if P, Q, and R are distinct points of E[A], then

P, Q and R are non-collinear [16, p. 39].

Proof: If P, Q, and R are collinear, then the three lines of the
pencil with which P, Q, and R are symmetric are perpendicular

to the same line. Hence the pencil £ is a divergent pencil with base

¢




79
PQ = PR = QR. But this is impossible since £[A] is forced to be
an equidistant curve and hence has no points in common with the base

(4. 11 and 4. 12).

Note: Throughout the rest of this paper the symbol "¢[A]" will be

used to mean an oricycle.
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V. PROPERTIES OF ORICYCLES AND ORISPHERES- -
THE VALUES OF Il
To simplify the following writing we will denote |[/ ABC]] A

by m/ABC' and n(I[AB]ls) by N|AB| or 0|[AB]].

5.1 THEOREM. Let
-—>
1. £[A] be an oricycle in plane a and in the direction of r,
2. P, Q be distinct points of this oricycle,
3. p, g be the lines of § incidenton P and Q respec-
tively, and
4. P, ¢ be the rays of p and q from P and Q in the
direction of parallelism of p and g, respectively.

Then

Proof: 1. P,Q ¢ £[A] implies P*Q so the perpendicular bisector
m of PQ in a is inthe pencil § (Definition 4.5). If M is
the midpoint of PQ, then mLﬁﬁ; = 1|MQ| = | MP| = mLf;é —I;
By definition [MQ] = [AB]/2.

2.1f £]p at P and £ is incident on a second point R

of §£[A], then by 1. mLﬁg=H][%-]-] <w/2 so l/_L/p. This
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is impossible.
-
If !/(p then for one of the rays from P on £, say /{,
o :
L2 p, 1is acute. Thus by 3.21 there is a segment class [PT] so
that N|PT| =m/Zp. Let T bethe pointof £ so PT isa
. : _>|'9 t
representative of the given class. Let TS|p andlet P' beon [
so that P-T-P' and PT = TP'. Then
by definition, TS |4 at T and
P*P'. Hence P'e £[A] so £ has

a second point of this oricycle. Thus

by contrapositive, the statement is

proved.

3. Immediate from Step 1.

5.2 THEOREM. If

—

. H=¢[A], H' = ¢'[C] are oricycles in planes a and a
respectively,
—> -—>' . . .
2. AA' and CC' are rays in the directionof § and ¢§
respectively,
3. B is some point of H different from A, and
4. D isa point of a' sothat [A'AB = / C'CD,
then
—
1. CD is incident on a point E of H' different from

C, and
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2. AB = CE.

Proof: 1. By 5.1-3, /C'CD is acute and by 5.1-2 meets H' in

then

a point E different from C.

2. By 5.1-1 we have HILAZB—][ :HI-[QEEJI . Thus AB = CE.
B
: 2 > >

5.3 THEOREM. If

1. H= §[A] is an oricycle in plane a and in the direction of
—
AA',

2. P is a point of H different from A,
T —

3. PP'|AA', and

4. m is the perpendicular bisector of AP at M/,

1. m 1is alineof £,
2. m is incident on a unique point M of H,
3. AM £ MP, and

4. M is exteriorto [PAA'.
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Proof: 1. By 5.1, m[_A'AP=n|[ﬁ°‘—Zﬂl = | AM'|.

Thus M'M" is parallel to AA' in
—
the direction of AA' so me §.
2. Let M'M"|AR'. Now by

3.5.9 closed triangle AA'AM'M" is

equivalent to an isosceles closed
triangle AA'AMM" (since [/AM'M" is a right angle, we know
M-M'-M"). Furthermore by 5.1, we know m/A'AM = II| LéZIXLH .
Thus if D is the midpoint okf AM, the perpendicular to AM at
D isin €. Thus A*M and M ¢ H as claimed. We now must
show M is unique. Suppose m meets H in a second point N.
Let n be the perpendicular bisector of MN. Then n e §. But
me§ (byl.)and m meets n, a contradiction.

3. AAMM' Z APMM' by S.A.S. so AM = MP.

4. As noted in Step 2., M-M'-M" so M is exterior to

[PAA".

5.3.1 COROLLARY. If H = £[A] is an oricycle in plane a
—>
and in the direction of AB and m is anylineof £, then m

is incident on a unique point M of H.

Proof: If A isa pointof m, we are done. Let Q be the foot

of the perpendicular p from A to m. Let P be the point of
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p sothat A-Q-P and AQ = QP.
Then A*P by definition, P ¢ H,

and by 5.3 m is-incident on a

point M of H. <

5.4 DEFINITION. Let £[A]=H be an oricycle in plane a
and let t bealineof a sothat t meets H in exactly one
point or equivalently (by 5.1) t is perpendicular to a line of £ at

some point P of H. Then we say t istangentto H at P.

5.5 DEFINITION. Two oricycles H and H' are saidto be
congruent iff there is a one-to-one correspondence f:H — H' so
that for any two distinct points P and Q of H, we have

PQ = {(P)f(Q). f is called a congruence [16, p. 41].
5.6 THEOREM. Any two oricycles are congruent [16, p. 41].

Proof: Let H = £[A] and

H' = £'[A'] be two oricycles in a

planes a and a' respectively

with a and a' lines of £ and 3‘7

g' through A and A' respec-

tively. Let B and B' be points a

of a and a' sothat AB and &
>

—_
A'B' are in the direction of




85

parallelismof £ and &' respectively. Let f:H —~ H' be

defined as follows:

(a)

We claim

(2)

first choose a correspondence between the half planes

defined by a andby a' in @ and a' respectively.
For each point P of H, Ilet

A if P=A

P' sothat /[BAP = [B'A'P' if P 7A and P'¢H'
£(P) =<

is in the half plane chosen to correspond to the

\ half plane determined by a and containing P.

f is a congruence between H and H'..

f is a bijection: Suppose P and Q are distinct points

of H. Ifoneis A, we are done sO suppose both are not
A. If P and Q are in-different half planes of = a
determined by a, then f(P) 7 f(Q) so suppose they are
in some half plane of a determined by a. Since A, P
and Q are noncollinear (Thm. 4.14) LBAP/é {BAQ

so f(P) 7 f(Q) follows (4.14 and 5.1). 5.2 gives onto.

fPEQR) EPQ: A,P,Q and A',P',Q' are noncollinear

(by 4. 14) so consider AAPQ and AA'P'Q'. AP = A'P'

. ) ‘ . 1 1
since H(L%-El) =m/BAP = m/B'A'P' = H(ﬁé*é'l?—']) from 5. L
and 3.22.1 gives us AP = A'P'. By symmetry we also have

AQ 2 A'Q'. By ''angle difference'' we also have
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(PAQ= /P'A'Q'" so AAPQZAA'P'Q' byS.A.S. Hence

PQZP'Q" = f(P)f(Q) as claimed.

5.6.1 COROLLA>RY. Let H, A, B, a, H', A', B', and a'
be as in 5. 6. ,
l. f m/PAB = nlﬁ‘-zfj | and
P isin a, then P is

on H.

2. If P ison H, P not A,
and /P"A'B'= /[PAB, then
there is a unique point P' on

—
AP" so P' ison H' and

AP = A'P'.

Proof: The argument for 5.6 handles both parts except the existence

of P which follows from 5. 1.

5.7 THEOREM. Let £[A]=H and £'[A'] = H' be two
oricycles. There are exactly two possible choices for the values of
f:H — H' so that:

l. f is a one-to-one correspondence,

2. For two specific points P e H and P'e H', {(P) = P', and

3. AB = f(A){(B) for every two distinct points A, B ¢ H.

Proof: Let p and p' be the unique lines of £ and §' which
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are incident upon ‘P and P' reSpectiiiely. Let A be-any point
of H different from P. A isthus noton p andif a is the
plane containing the pencil §, A determines a unique half-plane of
a as determined by p. Let a be the unique line of £ incident
on A. Let AD and PQ be rays
of a and p so that ;33)“;6
Then [PAD = /APQ andeach has

"measure" Hl'[%lz'll by 5.1. Let

—-—9 P
P'Q' bethe rayof p' from P' €
in the direction of parallelism for §'

in plane a'. Then on each side of

p' in a' there is exactly one ray
—_ —>

P'A' or P'A" so that <«

~ ~

[Q'P'A'= /Q'P'A" = /QPA. On
each ray there is exactly one point

which we may name A' or A"

~

respectively so that P'A' = P'A" 2 PA with A' and A" both |
on H' (by 5.6.1). Following the proof of 5.6 we see that f(A)
assigned to either A' or A" willlead to a congruence such as
constructed in 5.6. A" and A' are the only possible values of

f(A).

5.7.1 COROLLARY. There is a unique congruence f:H — H'
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so that for any two distinct points A and B of H and any two
distinct points A' and B' of H' with AB  A'B' we have

f(A) = A' and £f(B)=B"'.

Proof: By 5.7 we have exactly two possible congruences between H

and H' with f(A) = A'. Exactly one of these also has £f(B) = B'.

5.8 THEOREM. If £, m,n are three distinct lines of a
parallel pencil £ in a plane a, thenthereisaline p¢ & of a

which meets all three of £, m,n.

Proof: Let L, M and N be arbitrary points of £, m, and n
respectively. If L, M and N are collinear, we are done. Suppose
L, M and N are not collinear. Let I_—.i', MM' and NN' be rays
of £, m, and n in the direction of
parallelismof §. If M and N are
on opposite sides of £ then MN

meets £ and MN is a line as

desired. Suppose M, N are on the
same side of f£. If N and L' are on the same sideof LM then

. - —-)l
is'a ray interior to L'LM and since LL'|MM we have
y

2l &l

meets MM' also and we are done. Suppose N and L'
are on-opposite sides of LM. Then NL' meets LM at a point

—  —>
Q. Let L" beapointof £ sothat L-L'-L". Then L'L"|NN'.
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JQL'L" is an exterior angle (of ALQL") opposite [L of
' . "";_) . . T n

AQL'L. Then there is a ray L'P interior to /QL'L so

~ . e 4
[_L'LQ = LL "L' P and then by definition of critical parallels, L'P

—_
meets NN' at some point R. LM meets ANL'R at Q' and
otherwise satisfies Pasch's axiom so LM meets NR and we are

done.

This theorem is surprisingly hard to prove, and unless con-
sidered carefully, seems so obvious as to not even need stating.
However, it can be shown that, unlike Euclidean geometry in which
every transversal meets every line of a parallel pencil, in
Lobachevskian geometry no line meets every line of any parallel
pencil. With this in mind one is lead to appreciate the significance of
a theorem which allows us to show that for any three elements of any
given pencil of parallels, there is some line which meets all three.

Theorem 5.8 gives rise to the following theorem leading to a

betweenness relation for elements of a given parallel pencil.

5.9 THEOREM. If {,m,n are distinct lines of a parallel
pencil in a plane o and p and p' are two lines which meet
£,m, and n inpoints IL,M,N and L' ,M',N' respectively, then

L-M-N iff L'-M'-N'.

Proof: Suppose L-M-N. Then L and N are on opposite sides
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of m. Now every point of £ is on the
same side of m as is L and every
‘point of n is on the same side of m

as is N since the lines are parallel

and thus do not intersect. Thus every
point of { is on the opposite side of m from N' andthus L'N'

meets m. This is necessarily at M' so L'-M'-N'.

5.10 DEFINITION. If £,m, and n are three distinct lines

of a parallel pencil £ of a plane a, we say m is between
and n, written f{-m-n, iff some line of a meets {,m, and n
at L,M, and N respectively with L-M-N. (If TR In are

n (n >3) distinct lines of a parallel pencil £ of a plane a, we
immediately get by induction, by 5.8, 5.9, and 0.10, that these lines
may be labelled in such a way that li—lj—lk iff 1<i<j<k<n.

We write 21-12—. .. -ln).

The results of 5.8 and 5.9 assure us that 5. 10 makes sense.

5.11 LEMMA. If k,{,m,n are lines of the parallel pencil
£ of plane a, the following are true:

1. k-£-m implies m-£-k,

2. exactly one of k,f,m is between the other two,

3. any four distinct lines can be named k,{,m,n in such an
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order that k-{-m-n,
4. given k and £, there arelines h and j of § so

that k-h-£ and k-£-j.

Proof: Because of the betweenness properties of points on a line,
results 1., 2., and 4. follow immediately. Result 3. will be immedi-
ate if we can show there is a line which meets all four of the lines
k,f£,m,n. By 5.8 there is a line p which meets k,/{ and m in
points K,1L,M. If p meets n also, say at N, then the four
points K,L,M,N can be renamed so that K-L-M-N and the
obvious renaming of the lines gives the theorem. Suppose p does
not meet n. Now rename as
needed to get k-£-m. We see that
K,L, and M on p (and thus
k,£,m) are all on the same side of

n in o (otherwise KM meets n).

Let N be any point of n. Then [{
meets either KN or MN in AKMN (by Prasch's axiom). If £
meets KN at Q, then M and N are on the same side of  £.
This gives M on N's sideof £ andon L's side of n.

with the result that L and N are on opposite sidés of m. There-
fore QN meets m and XN meets all four of k,Z,m,n. As

above these can be renamed and ordered k-£-m-n. By symmetry
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we are done (i.e., if £ meets MN at Q).

5.11.1 COROLLARY. If 1 ...,ln are n lines of a paral-

1,
lel pencil £ in plane a, thenthese n lines can be named in
such a way that [ 1-12—. . -ln. (For the proof, use induction and

5.11.)

These results give us a betweenness for elements of a parallel
pencil which we will now use to develop an ordering for the points on

any oricycle.

5.12 DEFINITION. If A,B, and C are distinct points of an
oricycle H = £[A], we saythat B is between the points A and
C on H, denoted A*Bx*C, iff theline b of § through B is
between the lines a and ¢ of £ through A and C respec-
tively in the sense of Definition 5.10. (Furthermore for any finite
number of points Al’AZ’ R ’An’ n >3, we can rename these

points so that for the corresponding lines .8y, 0,2 of £ we

> - - - . i * T . . .
have a -a, a_ We write A1 A2 An [cf. 5.10].)

5.13 THEOREM. If on oricycle H we have A*B*C, then
1. A,B, and C are distinct points of H, and

2. C*B*A.
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Proof:
1. Follows directly from Definition 5. 12,

2. Follows directly from 5. 11.

5.14 THEOREM. For any two points A and C of oricycle
H, there is at least one point B of H so that A*B*C, and

there is at least one point D of H so that A*C*D.

The proof of 5. 14 is immediate from 5.11 and so is the proof of

the following theorem.

5.15 THEOREM. For any three distinct points A,B,C of
oricycle H, exactly one of A*B*C, A*C*B, or B*A*C is

true.

5.16 DEFINITION. If A and B are two distinct points on

oricycle H, we define arc AB = {P:P ¢ H and A*P*B}.

5.17 DEFINITION. Let H and H' be any two oricycles.
We say arc AB of H is congruent to arc A'B' of H' iff
there is a congruence f:H — H' so that f(A) = A' and £(B) =B".

We denote that arc AB is congruent to arc A'B' by

~

arc AB = arc A'B"'.

5.18 THEOREM. Congruence for arcs of oricycles is an
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equivalence relation.

Proof: Reflexive: arc AB = arc AB since the identity correspond-

ence, I, is a congruence between oricycles and I(A) = A, I(B) = B.

Symmetrical: arc AB = arc CD implies there is a congruence
of oricycles f sothat f(A)=C and f(B)=D. f isa bijection
so f exists and is a congruence (cf. 5.5 and 5.7.1) so

arc CD = arc AB as desired.

arc EF means

IR}

Transitive: arc AB = arc CD and arc CD
there are congruences of>oricyc1es f and g so that f(A) =C,
f(B) =D, g(C)=E and g(D) = F. Easily it is seen that geof isa
congruence of oricycles so that (gof)(A) = E, (gf)(B) = F and

hence arc AB = arc EF.

We can now develop an ordering for points on an oricycle, show
that this ordering is a Dedekind ordering, and in general that an

oricycle, while not a line (cf. 4. 14), is remarkably line-like. It is

probably wise (at this time) to point out
that an oricycle in the Poincaré model
(i.e., the realization of an oricycle in
this model) is the set of points on a
Euclidean ci.rcle tangent to the interior

of the boundary of the model of the plane

at the point (of the boundary of the model)
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which is the "intersection" point of all the Poincaré lines of a given

pencil. One example is shown.

5.19 DEFINITION. We say arc AB < arc CD iff there is a

point E sothat C*E*D and arc AB = arc CE,

5.20 THEOREM. For every pair of oricycles H = £[A] and
H' = ¢'[A'], for any arc PQ of H, and for any point P' of
H', there is a unique point Q' of H' on either side of the line p

of &' incident on P' sothat arc PQ = arc P'Q’".

Proof: Let ;' be the ray of p' from P' in the direction of

parallelism of £'. On either side of p' in the plane of this pencil
there is a unique ray T so that m L;'? = Hl.lf.?,l.' . ¥ meets H'
in a unique point Q' (in either case) so that PQ = P'Q' (by 5.1

and 5.2). By 5.7.1 there is a unique congruence of oricycles sending
P to P' and Q to Q'  Thus arc PQ = arc P'Q' for Q' on

either side of p' and we are done.

5,21 THEOREM. If

1. ¢fA]=H is any oricycle in plane a,

2. P and Q are distinct points of H,

3. M is the midpoint of PQ,

4, m is the perpendicular bisector of PQ in a,

then
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l. m meets arc PQ in some point M/,

2. arc PM' = arc M'Q.

Proof: 1. By 5.3, m meets H ata

1

point M', PM'=M'P and m € §.

Let p,q be lines of £ incident

on P,Q respectively. P-M-Q

implies p-m-q and thus P*M'*Q

so m meets arc PQ.
2. By5.3 PM'= M'Q. Let f:H— H be the congruence such
that f(M') = M' and f(P)=Q (cf. 5.7.1). Thus

arc PM' = arc M'Q and we are done.
Theorem 5. 21 leads immediately to the following:

5.22 DEFINITION. Let arc AC be any arc of oricycle H
where H is in plane o. Define arc AB/2 to be the arc AM
where M is the unique point of H on the perpendicular to AB

in a. M is called the midpoint of arc AB.

5.23 COROLLARY. If arc AB is any arc of oricycle H,

then arc AB/2 = arc BA/2.

~

Proof: By 5.22 we have arc AB/2 = arc AM and

arc BA/2 = arc BM by definition. Now by 5.21, arc AM = arc MB
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and by 5.18, arc MB = arc BM. Thus, by 5.18, arc AM Z arc BM

and arc AB/2 £ arc BA/2.

5.24 LEMMA. Let £[P]=H be any oricycle in plane a in
—
the direction of PP'. Let Q be any other pointof H and let
p.q Dbe the lines of £ incident on P and Q respectively. If
£ is any line of £ between p and q, then [ meets
arc PQ of H at a point L, meets PQ ata point L', and

_ >
LL'|PP".

Proof: By 5.3.1, £ is incident ona point L of H .and by
Defintion (5.12) P*L*Q making L a pointof arcPQ. The
betweenness for the parallel lines requires P and Q to be on
opposite sides of £ andthus PQ meets { ata point L'.
_  —
It remains to show that LL'|PP'. Let L" be a point of £
—_— —

so that LL"|PP'. Suppose L'-L-L".
Now /PLL" and /QLL" are
acute (by Theorem 5.1). But in
APQL. we have /PLQ is the

"sum" of /PLL' and /QLL',

with both of the latter obtuse (since
their complements are acdte) which
is impossible. Hence L' 1is on

—
LL" and we are done.
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5.25 THEOREM. If §£[A]=H, §&'[P]=H' are oricycles in
planes a and a' respectively, B and Q points of H and
H' different from A and P respectively, ;:;\’|B_l;', 1-;3'|53'
in the direction of parallelism of H and H' respectively, then
the following are equivalent.

1. AB < PQ,

2. [A'AB > [/P'PQ,

3. arc AB < arc PQ [16, p. 44].

Proof: "1. iff 2. " Immediate from 5.1 and 3.13 since

m/A'AB = 1| '[AZ—B]" and m/P'PQ = H|LP—CA| which, together with

2
[aB] [PQ]
2 < 2

AB < PQ implying gives us m/A'AB >m/P'PQ
and the equivalence follows.
"2. implies 3." [A'AB is acute by 5.1 . Hence the unique
—
ray PB" on Q's side of PP' such

that /_A'ABELP'PB" meets H' at

BI

a point say R, with AB = PR (5.2).

Let R' be a pointof a' so that

— >

RR'|PP'. Thus #l. /P'PQ < /[P'PR
— — h

so PQ meets RR' (by definition of

critical parallels) at some point R".

We need to show P*R*Q. Suppose

—
P*Q*R. Then PP'-QQ'-RR' so QQ
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—_—
meets PR as we already know, but also meets PR atpoint Q"
— — —
so that QQ"]PP' (5.24). Hence Q" is on QQ' requiring
LP'PR < /P'PQ contradicting #1 above. This gives P*R*Q as
desired so arc AB < arc PQ.
"3. implies 2." Let R be

the point of arc PQ so that P*R*Q

and arc AB = arc PR. Let R' be
—_—  —>
a point of a' so that RR'|PP'

~—
Lemma 5.24 now requires RR' to

e —

meet PQ at R" sothat RR"|PP'. It is enough to show that
PR < PQ. Since P*R*Q, we have [/PRQ]=[/PRR"]+[/QRR"].

— — — gy
But RR"|PP' and RR"|QQ' tellsus /RQR" < / QRR" and
[RPR" < / PRR" (since AP'PRR' and AQ'QRR' are isosceles
closed triangles). Thus in APQR, /PRQ is the greatest angle and
thus PQ the greatest side. Thus PR < PQ giving AB < PQ,

which in turn (by "1. iff 2. ") gives [A'AB > /P'PQ as desired.

5.25.1 COROLLARY. If ¢[A]l=H, ¢&'[P]=H' are oricycles
in planes a and a' respectively, and B and Q are points of

H and H' respectively, then AB = PQ iff arc AB = arc PQ

[16, p. 44].

Proof: By 5.25, arc AB < arc PQ and arc AB >arc PQ both

require AB 7 PQ, and we are done.
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5.25.2 COROLLARY. If B and C are points of arc AD
of oricycle H, and A*B*C*D, then arc BC < arc AD and

BC < AD.

Proof: By definition arc BC < arc BD so BC < BD (5.25).
Also arc BD < arc AD so

BD < AD (5.25). Thus

BC < AD and arc BC < arc AD

by 5. 25.

5.25.3 COROLLARY. If

arc AB = arc PQ, then arc AB/2 % arc PQ/2.

Proof: Let £&[A]=H and

£'[P]l = H' be oricycles in

!

planes a and a' andin

— —
the direction of AA' and PP'

respectively. By 5.25.1

AB = PQ hence by 5.1
m/BAA' = m/QPP' so from
the definition of measure,
[BAA'= /QPP'. Let c and

m be the perpendicular bisectors

of AB and PQ at C' and
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M' in a and a' respectively. Then (by5.24) ¢ and m
— —
meet H and H' at C and M respectively so that CC'|AA'
e —
and MM'|PP'.
Let R be a point of m on the side of PQ containing M
so that RM'= CC'. Thus AACC'Z APRM' by S.A.S.
Nowlet d and s be the perpendicular bisectors of AC and
PR at D and S in a.and a' respectively. By 5.3, de §.
—
Also s ¢ £' sinceif s meets MM' at T then d meets
—— - ~
CC' at E sothat CE =RT with ACDE = ARST by S.A.S.
which is impossible. By a symmetrical argument (using the result
that /RPM'S /CAC' by corresponding parts of congruent triangles
and "angle sum' theorem) s  is parallel to PP' and m in the
. . -q .
direction of MM'. (Note: to verify direction of parallels just con-
sider any ray 53 interior to J/RSS' where S' ison s andon
the P' side of PR. Then use critical parallelism of d in the
_ ‘
CC' direction.) Hence R ison H' andon m so R =M.

Thus PM = AC and by 5.25.1 and Definition 5.22 we are done.

We are now about ready to give a Dedekind ordering to the
points on any given oricycle. This can be done by constructing an

"order -preserving" map as done below.

5.26 LEMMA. Let £[A]=H be any oricycle in plane a

. —>
and in the direction of AA'. Let P and Q be distinct points of
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H. We define a mapping g:arc PQ —~ PQ as follows: for each

point

R

of arc PQ, let R' be the pointof PQ so that

RR'|AA’, and define g(R)=R'. Then

Proof
|
|

with

then

a) g is a one-to-one correspondence,

b) if R,S,T are any points of arc PQ, then g(R)-g(S)-g(T)

if R*S*T, and

c)if R is any point of arc PQ, then P-g(R)-Q.

a)

Clearly g makes sense since 5.24 assures us of the
existence of both R and R' given either one and the
uniqueness is trivial. This also assures - us g is one-to-
one and onto.

Follows immediately from Definitions 5.10 and 5. 12.

R in arc PQ iff P*R*Q so g(R) is a pointof PQ

and we are done.

5.27 THEOREM. Let £[A]=H be any oricycle in plane a

arc AB any arcof H. If

1.

2.

3.

S, T are non-empty subsets of arc AB,
Svu T=arcAB and S~ T=¢, and

PeS and Qe T implies arc AP < arc AQ,

. PeS and A*PI*P (with P. € H) implies P. €S,

1
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2. PeT and P*P,*B (with P, ¢ H) implies P, ¢ T, and
3. There is a point K of arc AB so that if P ¢ arc AB
then arc AP < arc AK implies P ¢S and
arc AP >arc AK implies P e T, i.e., either S has

a "last" element or T has a "first" element.

Proof: Let g:arc AB — AB be as defined in Lemma 5.26 and
immediately we get

g(S) v g(I) = AB,

g(S) ~ g(T) = ¢,

g(S) # ¢ and g(T)7 ¢ .

Furthermore arc AP < arc AQ gives us A*P*Q and conse-
quently a-p-q in which a,p, and q are the lines of § incident
on A,P, and Q respectively so that g(A) -g(P)-g(Q) and
AP' < AQ' (cf. Lemma 5.26). But segments have the Dedekind
property, from our key assumption, so we know
1. P'eg(8) and A-P|-P' implies P, «gls),
2. P'e g(T) and P'-P’Z—B implies P'2 € g(T), and
3. There is a point K' of segment AB so that if P'e AB
then AP' < AK' implies P'e g(S)
and AP'> AK' implies P' e g(T).

From these results and 5. 26, we get the proof immediately.
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This result leads directly to the Archimedian property which is
our next theorem about arcs of oricycles. First we introduce
another, very natural, definition. Since any line £ of the defining
pencil of an oricycle H meets H exactly one time and [

separates the plane into two disjoint half planes, we state:

5.28 DEFINITION. Let £[A]=H be any oricycle in plane a
—>

and in the direction of AA'. Furthermore let

1. P,Q,R be distinct points of H, and

2. p,q,r be the lines of £ incidenton P,Q, and R

respectively.

Then we say R is on the same (opposite) side of P as (from) Q
in H iff r is onthe same (opposite) side of p as (from) g

in the pencil § in plane a.

5.29 LEMMA. Let £[A]l=H and £'[P]=H' be oricycles
in a and a' in the directions of A?' and i’?’ respectively.
If arc BC is anyarcof H and Q is any pointof H', then on

a given side of Q in H' there is a unique point R of H' so

"l

that arc BC = arc QR.

Proof: Let b and q be the unique lines of § and §’ incident
on B and Q, respectively. Let B' and Q' be points of b

—_— S — )
and q, respectively, so BB'|AA' and QQ'|PP'. Now on a given
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side of q there is a unique ray
— ~
QR' sothat /Q'QR'= /B'BC.

Then by 5. 6.1 there is a unique

. —
point R on QR' sothat R is

BI
on H' and BC 2 QR, which is -
the same as requiring
arc BC = arc QR (by 5.25.1) and
we are done.
: -
Q Q'

5.30 THEOREM. (Archimedian property for arcs of oricycles)
For any arc AB of oricycle H and any arc CD of oricycle H!,

there is a positive integer n so that, given the sequence of points of

H, A_=AA,...,A so that
0 1 n
1. Ai is on B's sideof A, for i=1,...,n,
2. arcAi_lAigarcCD, for i=1,...,n,

3. A*A %A, for 0<i<j<k<n,
i) 'k S~ -

then arc AAn > arc AB.

Proof: If arc CD >arc AB thenon B's sideof A in H

there is a point A, of H sothat arcCD = arc AA1 by 5.29.

If arc CD = arc AB, let A1 = B. On the side of B opposite
from A on H, there is a point AZ of H so that
arc BA, = arc CD by 5.29 giving Ay=A, A =B, A, and with

AO*AI*A2 and arc AA.2 >arc AB as desired.
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If arcCD < arc AB we prove by contradiction using 5.27.
Suppose that for every integer n we have arc A'An < arc AB. Let

us define two sets S and T as follows:

S ={P:P ¢ arc AB and arc AP < arc AAk for some k =1,2,...}

T = (arc AB) - S .

S#¢ since A, ¢S. Infactevery A isin S since AA[<AA ..

Also T 7 ¢ since arc CD < arc AB means there is a point B'

so that B*B'*A and arc CD % arc BB'. If B' werein S, then

for some k arc AB' < arc AAk < arc AB, i.e., B'*Ak*B so
arc AkB < arc CD. Thus by 5.29 there is a point Ak+1 satisfying
all the above conditions and with A*Ak*B *Ak+1 so B isin S

by 5.25.2, which is impossible. All the hypotheses of 5.27 are
satisfied and hence there is a point K of arc AB so that when-
ever P e arc AB then arc AP < arc AK implies P €S and
arc AP >arc AK implies P eT. K isnotin S because Ke S
requires there be a point Am € S with arc AK < arc AAm- But
this means A_ € T also which is impossible. Since

m

T =(arc AB) -S, KeT.

arc CD < arc AK because otherwise either A1 or A2 would

be in T which is false. Thus there is a point B' of arc AK so

that (#1) arc CD = arc B'K. Now B'e S so there is an integer

k so arc AB' < arc AAk. This requires A*B'*AK*K. We see that
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from this we get B’*Ak*A *K by the definition of S. Thus

k+1

arc CD = arc AkAk+l < arc B'K by 5.25.2 contradicting (#1) above.
Thus we have a point B' of S sothat arc AB' >arc AAk for

every k so S is not a possible set and the theorem follows.

5.31 LEMMA. If
1. £ is a parallel pencil in plane a in a given direction =,
2. p and q are distinct lines of §, and
3. P and P' are distinct points of p,
then
1. q is incident on two distinct points Q and Q' of
oricycles H = £[P] and H' = £[P'] respectively,
2. PP' = QQ', and
3. if in addition PP'|a, then
(a) 0Q'|a,
(b) PQ >P'Q",

(c) arc PQ >arc P'Q".

Proof: 1. Since equivalence class H is distinct from equivalence
class H' andby 5.3 q is incident on a unique point Q of H
and a unique point Q' of H', then Q and Q' are distinct.

2. Online q there is a point Q" so that Q" is on the
same side of PQ inplane a asis P' and PP'Z QQ". (See

figures below.) Now using 5.1 and supplementary angles if
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necessary, we have /PQQ" = [QPP'.
Let m be the perpendicular bisector
of PQ at M and we have, by 5.3,

that m 1is a line of § between p

and q (by definition) so m meets

P'Q". at some point M' (5.3.1 and
Definition 5. 12). We now have
AMQQ" = AMPP' by S.A.S. and by
the "angle difference" theorem and

corresponding congruent parts of

triangles, we get /Q"MM'= /P'MM'

and MQ" = MP', so AQ"MM'Z AP'MM' by S.A.S. Thus m is
the perpendicular bisector of P'Q" and P'*Q" by definition. But
then Q" e H' and Q" is a point of q so by uniqueness of the
symmetrical point Q" = Q' and hence PP'= QQ' as desired.

3. (a) By the argument in 2. above we immediately see that
I_D_I;'I: forces C—f&l: since P' and Q' are on the same side of
line PQ in plane a and (a)is proved.

(b) For reference let P" and Q" be points of p and q
so that P-P’'-P" and Q-Q'-Q" Asin (2) let m be the perpen-
dicular bisector of PQ at M. The proof of (2) gives us that m
is the perpendicular bisector of P'Q' at M' as well. Now

[M'P'P" = /M'Q'Q" are acute (by 5.1) so the lines r and s
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perpendicular to P'Q' at P' and
Q' meet line PQ in points R
and S of MP and MQ respec-

tively. The proof of this is an easy

argument using rays of r and s
interior to /PP'M' and [QQ'M',

hyperparallelism of r, s, and m

and the cross-bar theorem. Then

~

AMM'P' = AMM'Q' by S.A.S.. This gives [ RMP'Z /SMQ' and

mn

[MP'R £ /MQ'S by complements of congruent angle so that

112

ARMP' 2 ASMQ' by A.S.A. Hence OP'Q'SR is a Saccheri
quadrilateral so P'Q' < RS < PQ by 3.6.3 so arcP'Q'<arcPQ

by 5.25 and we are done.
This theorem allows us to formulate the following definition.

5.32 DEFINITION. Given
1. £ is a pencil of parallels in a in the direction of ES
2. p and q are distinct lines of §,
3. P and P' distinct points of p, and
4. Q and Q' the distinct points of £[P] and £[P'] where
g meets each of these oricycles.
The distance between arc PQ and arc P'Q' is |[PP']|S-

Furthermore we say arc PQ and arc P'Q' are concentric arcs
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of E[P] and ¢g[P'] [16, p. 44].

5.33 LEMMA. Let arc AB and arc A'B' be concentric
Sl
arcs of E[A]l=H and E[A]=H', respectively, with AA' in the
direction of §. Let C be any point of H so that A*B*C and
arc AB = arc BC. Finally let c¢ be the line of £ incident on C.
Then ¢ meets H' ina point C' sothat A'$B'*C' and

arc A'B' £ arc B'C".

C

Proof: By5.3.1, ¢ meets H' c'
at C' and, by Definition 5.12,
AA'-BB'-CC' giving A'sB'*C'. 5
Now 5.31 gives us AA' = BB' = CC' o
while 5.1,5.2, and 5.25.1 give us

~ Al
that AB = BC and
[ABB' = /[BCC' so A
AABB' 2 ABCC' by S.A.S. Thus, using corresponding parts and
the "angle subtraction" theorem we have also AAA'B’' £ ABB'C'.
Hence A'B'=B'C' and by 5.25.1 we have arc A'B' ® arc B'C'

as needed.

We leave this particular discussion for a time to proceed with
the development of the measure of arcs of oricycles. First we estab-

lish two very useful theorems.
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5.3 THEOREM. If A,B are distinct points of oricycle

—>
H = £[A] in plane a and in the direction of AA' and if

|[AB]| <2H-1(17/4), then t and s, the tangent lines to H at

S
A and B, respectively, meet at a point P. Furthermore, if p

is the line of £ incident on P, then p is incident on a unique

) —
point C of arc AB, onapoint C' of AB and CC'|AA'.

Proof: L.et M be the midpoint
of AB andlet a,m,b be the
lines of £ incidenton A, M,B
respectively and let B' be a

. -2 -—
point of b so that BB'|AA'.
Now m/A'AB = I Léz—]ﬂ| = | AM]|

by 5.1 and |[AM]|. < 1" (n/4).

S
Thus [/A'AB] > 1/2[/rt] (by 3.13).

Let T bea pointof t on M's <13 A

side of a. Then

[LTAM] < 1/2[/rt] so AT meets

m at a point P (by definition of critical angles). By symmetry S
meets m ata point P'. But AAMP = ABMP', by A.S.A., so
P=P' and m is the perpendicular bisector of AB. By definition,
m is between a and b so m meets arc AB at C and

—_— —> -
AB at C'. Then CC'|AA' as desired, by 5.24. Finally, let
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p=m and the theorem is proved.

5.34.1 COROLLARY. For the points P,C, and C' of

Theorem 5.34, P-C-C'.

Proof: C ison H so [A'AC and /B'BC are both acute, by
5.1. Further C is between a and b, so C is interior to
both [B'BP and [A'AP givingus C interior to /[APB-:

By 5.25 we are done.

5.35 THEOREM. Let £[A]=H be any oricycle in plane a
and in the direction of AA'. Let A,B be distinct points of H
with |AB|S < ZH_I(N/4). If P is the point of intersection of the

lines t and s which are tangentto H at A and B respec-

tively, then every point C of arc AB is in the interior of LAPB.

Proof: Let B' be a pointof a
—

so BB'|AA'. Then, by 5.1 for

every point C of arc AB,

/[B'BC and [A'AC are acute

so C is on the same side of AP

as A', the same side of BP as
A' and, by the definition of arc BC,

C is between AA' and BB' so

C is interior to [APB as claimed.
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The argument has now progressed to the place where we can
develop a measure for arcs of oricycles that will give the equations
tying the values of the Lobachevskian function I to the values of
I IA already selected, will give trigonometric identities allowing
precise study of the coordinatized Lobachevskian space, and ultimately
give the canonical isomorphism needed to finish the proof that the
completeness axiom is a theorem in the Poincard model. The length
of this argument is long but seems necessary to establish the validity
of the "obvious" interrelated properties of oricycles, lines of defining
pencils, "chords" of oricyclés, arcs of oricycles, etc.

Lobachevski reaches the conclusions developed so far concern-
ing oricycles in an argument covering about three pages [9, p. 30-33].
He does not establish the validity of these results in either an
exhaustive manner nor in a way that easily adapts to the Hilbert
formulation of the axioms. In Shirikov [16] one sees an outline of
some of these results but again large parts of the necessary argument
are not even mentioned as needing to be done. Borsuk [2] follows a
development which requires a considerable further development of the
topology than is necessary in this paper's approach. His argument is
not noticeably shorter even after the topology is developed so it seems
reasonable to follow a more classical approach.

Before continuing further, we draw upon Theorem 5. 18, which

states that congruence of arcs of oricycles is an equivalence relation
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to formulate the following definitions. These definitions will make

the subsequent work more concise.

5.36 DEFINITION. [arc AB] is the equivalence class of arcs
of oricycles congruent to arc AB. We define [arc AB] < [arc CD]

iff arc AB < arc CD.

5.37 DEFINITION. [arc AB] + [arc CD] is the equivalence
class of arcs of oricycles farc EF] so that if arc EF is a repre -
sentative, then there is a i)oint G of arc EF so that
arc AB = arc EG and arc CD % arc GF. As usual we will use the
symbol nfarc AB] to mean [arc AB] + 00t [a.rc AB] with

n-summands.

5.38 DEFINITION. 1/2[arc AB] 1is the class of arcs
[arc AM] sothat M is the midpoint of arc AB (in the notation of
5.22 1/2[arc AB] = [arc AB/2].). Inductively we define

1/2k[arc AB] = 1/2(1/2k—1[arc AB)).

5.39 DEFINITION. We define O[arc AB] to be the empty
class of arcs of oricycles with the property that

Olarc AB] + [arc CD] = [arc CD].

5.40 LEMMA. If arc AB is an arc of oricycle H in plane

a, A_=AA

0 ey An is a sequence of points of H so that

1’
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1. A.1 ison B's sideof A, for i=1,...,n,

OAl’ for i=1,...,n, and

2. arc A, A T arc A
i-1771
3. Ai*Aj*Ak, for O S_i <j<k<n,

then [arc AAn] = nlarc AAl].

Proof: [arc AAZ] = 2[arc AAI] by Defintion 5.38 and by induction

[arc AAn] = nlarc AAI] using Definition 5.38.

5.41 DEFINITION. A finite set of distinct points

P={a :A,Al,---,An=B} so that A LA are points of

0 1’ n-1

arc AB of oricycle H inplane a, and AO*AI*...*Alrl is

called a partition of arc AB.

5.42 DEFINITION. Let P ={A =A A .»A_=B} bea

1
n

partition of arc AB andlet L(P) = Z lAi-lAi|S' Let
i=1

S = {L(_If):f_ is a partition of arc AB}. Then we say the length of

—
arc AB, denoted AB, is thel.u.b.S.

(Note: Ifl.u.b.S exists we will say  AB_exists.) This definition is
a standard sort of formulation. It makes sense provided S is in
fact bounded above. The following lemmas will verify that S is in

fact always bounded above.

5.43 LEMMA. If P and Q are partitions of arc AB, and
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P $Q, then L(P)< L(Q).

Proof: For at least two points P,1 l’Pi of P thereis at least

one point Qj of Q sothat P *QJ,*P,I- P

) Q. and P, are
i-1 j i

i-1’

noncollinear (4. 14) so by the triangle inequality of absolute geometry,

[P Pl so L@ <LEwv {Qj}). Repeating

i-1

Ql+[opP ] >‘[P.1_1

this argument a finite number of times using the properties of
betweenness for points on an arc of an oricycle we get a finite
sequence of inequalities L(P) < L(P U{QJ}) <...< L(Q) with

transitivity giving the desired result.

5.44 LEMMA. Let arc AB be an arc of oricycle H in
plane a. Let arc CD be any arc of an oricycle with

~ N N
arc AB = arc CD. Suppose AB exists. Then CD exists and

TN TN

AB = CD,

Proof: Let P = {c.,..., Cn} be any partition of arc CD. Let

0
Q={A, -..,A} be defined by

(a) A =A and A =B,
0 n

(b) Ai ison B's side of A onoricycle H, 0 < i <n,
(c) [arc AAi] = [arc CC.l], 0<i<n.

From the definition of a partition, we know arc CC,1 < arc CC'1+1

for 0 <i<n andthus by (c) we know arc AA.1 < arc AA'1+ for

1’

0<i<n, and Q is thus a partition of arc AB by definition.
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mn
@]

We will now show Ai-lAi . 1C.l for 0 <1i<n. Using

(b), (c), 4.14, 5.1, 5.25, 5.25.,1, 5.25.2, and the "angle difference”

theorem from absolute geometry, we have

(in AAA, _A, and ACC. . C.) that
i-1771 i-171
. x i<
LA,l_lAA.l Lc.l_lcc.l, l1<i<n
AA _=cCC, , 2<i<n
-1 i-1 - -
AAigCCi’ 2<i<n
thus AAAi-lAi = ACCi-ICi by
S.A.S. giving Ai-lAi = Ci-lci

as desired.
Thus by symmetry we can
conclude that every partition P

of arc CD corresponds to a

partition Q of arc AB so

A0=A

that L(P) = L(Q) and conversely. Hence, by definition, CD

L Py
exists and AB = CD.

5.45 LEMMA. If B is a point of arc AC and AB, AC,

P — P L
and BC exist, then AB + BC = AC.

Proof: B a point of arc AC implies that for every point D of
arc BC, A*B*D*C (by definition). Thus if

Ez{A =A,A,---,Am=B} and Q={BO=B,B Bn=C} are

1,"’,

partitions of arc AB and arc BC respectively, then
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A,1 for 0 <i<m, Aieg,

B. . for m <i< mt+n, B, € Q,
i-m - = i-m =

is a partition of arc AB and L(P)+ L(Q) = L(R).
Using Lemma 5.43, we see that any partition R of arc AC
can be enlarged (if necessary) to R'= R u {B} giving partition P

and Q' of arc AB and arc BC respectively in which

L(P" + L(Q") = L(R'") > L(R). By Definition 5.42 the theorem follows.

5.46 LEMMA. Let H be an oricycle in plane a and in the
—
direction of AA' andlet arc AB be any arcof H so
[[AB]IS < Zn_l(‘ﬂ' /4). If D is the point of intersection of the
tangentsto H at A and B in a, and C is any point of

—
arc AB, then AC meets BD at some point C'.

Proof: By 5.34 and 5.35, the

point D exists and C is 4,]24
interior to /ADB. By 5.1, 5.16,

5.25 we have

[A'AB < /A'AC < /|A'AD so

—_ .
AC is interior to [(DAB and
thus meets BD at a point C'

by the cross-bar theorem applied to AABD.
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5.47 LEMMA. Let H be an oricycle in plane a and in the
—
direction of AA'. Let arc AB be any arcof H so that

l(n /4). Let D be the point of intersection of the

AB]|_ < 2n
[aB]| < 2n
tangents to H at A and B in a. Let C be any point of

—> —
arc AB. If B" and C" are the points of BC on AD and AC
on BD respectively, then the

tangent t to H at C in

a meets AB" at S and BC"

at T.

\' 2

Proof: Let CC'|AA'. (The
existence of B", C" and D is

assured by 5.34 and 5.46.) Let

E be any pointof t on A's
side of CC'. By 5.1 we know that t is perpendicular to CC'
while [C'CA and /C'CB are acute. Furthermore, by the
definition of supplementary angles [C'CB" is obtuse since

LC'CB is acute. Thus we have

[C'CA < [C'CE < [C'CB".

—

Then by the cross-bar theoremm CE meets AB" at S, andby

symmetry we are done.
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5.48 LEMMA. Let arc AB be anarc of oricycle H in

-—? -1
plane o and in the direction of AA'. Let I[AB]IS <21 “(w/4).

Then @ exists.

Proof: By 5.34 and 5.35 the tangentsto H at A and B in a
meet in a point D and every point of arc AB is interior to

[ADB. Let P_={A_, ..., An} be a partition with n+l distinct

0

elements A_= A, ..., An =B of arc AB. We use induction on n

0
H

to prove the following proposition:
L(il) < |[aD]|4 + |[BD]|S :
Let n = 1: Then
L(P,) = |[AB]|S and the inequality
follows from the "triangle inequality"
theorem of absolute geometry.

Suppose the proposition is

true for every partition with n = k-1.

Let Pk be any partition as above.

- —_—
Then, by 5.46 BAk , mMmeets AD at B'" and the tangentto H
at A, in o meets AB" at S, by 5.47. By the induction

hypotheses and 5.35 every point of Pk—{B} is interior to LASAk_

——

1

and L(Pk—{B}) < I[As]lS + |[sa Using the "triangle

k-l]IS'

inequality " we get
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[AD] + [DB] = [AS] + [sB"] + [B"D] + [DB]
>[As] + [sB"] + [B"B]

k-1) + 14 Bl

= [AS] + ([sB"]+[B"A
> [AS] + [SAk_l] + [Ak_lB]

Hence |

B]|

|[AD]|S + |[DB]|S > |[As]lS + |[sA ]|S + |[A

k-1 k-1 S

> L(Pk-{B}) + I[Ak_lB]|s

= L(Pk) .

So by induction L(Pn) is bounded above for all n and by Definition

5.42, AB exists.

5.49 THEOREM. For any arc PQ of oricycle H in plane

Pt .
a, PQ exists.

1(1r/4), we are done, using 5.47. Let

o

Proof: If l[PQ]|S< 2n”
arc AB be any arc of H so that |[AB]|S< 21 "(w/4). Then by
5.30, 5.40, and well-ordering, there is a number n=1,2,... so
that nlarc AB] >[arc PQ] and so that (n-1)[arc AB] < [arc PQ].

If (n-1l){arc AB] = [arc PQ] then using induction, 5.45, and 5.48,

N P

nAB = PQ and we are done. If (n-1l)[arc AB] < [arc PQ] < n[arc AB]
then there is ‘an arc class [arc BC] < [arc AB] so that

(n-l[arc AB] + [arc BC] = [arc PQ]. Thus, again by induction, 5.45,

it

o~ o~ oy
and 5.48, (n-1)AB + BC = PQ. This completes the argument.
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It is interesting to look back over the necessary machinery
needed to translate the three pages of Lobachevski's work (mentioned
earlier) into an appropriate sequence of arguments based on the
axioms of Hilbert. It was not easy, but the results will prove to be

well worth the effort.

N

5.50 THEOREM. arc AB 2 arc CD iff AB = CD.

Proof: By 5.49, @ and CD both exist. The "only if" part of
this statement is just Lemma 5.44. To establish the "if" part we
establish the contrapositive. If arc AB < arc CD then there is a
~ —~ ~~
point E of arc CD so that arc AB = arc CE making AB = CE
o~ T~ ~~ e o
by 5.44. However, by 5.45, CE + ED = CD so that AB < CD.

: . o~ ~
By symmetry we have that arc AB 7 arc CD implies AB 7 CD

and by this contrapositive we conclude the theorem is true.

5.51 THEOREM. Let arc AB and arc A'B' be concentric
P
arcs (cf. 5.35). Then the ratio AB/A'B' depends only on the dis-

tance between the arcs [16, p. 45].

Proof: There is no loss of generality to suppose A*B*C on H
and do the proof as follows.

Suppose . arc AB and ar~c BC are commensurable, i.e.,
there is an arc PQ so that mlarc PQ] = [arc AB] and

n[arc PQ] = [arc BC] for some positive integers m,n. Implicitly,
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we thus get sequences of points

{a >

n
Jo and {Bj}O’ of arc AB

and arc BC respectively so that

= 3 ...k = = b3 M, .. %
A AO>A1> Am B BO B1 Bn

with arc A, A, = B.,
i 17;

arcPQ TarcB,
i-1 j-

1<i<m, 1

JA

j <n or (by 5.50)

@i = f’?) :@J By 5.12 and

5.11.1 this induces sequences {Al'}l(;n
and {BJ’}E, of arc A'B' and

arc B'C! respectively, with

A= A kA% . A' = B' =B/ %B!*. ..%*B'. Furthermore by 5.33 and
0 "1 m 0 1 n

N N

5.50, Ai' Ai'—‘—P'Q'

/—\
1 =B! B!, 1<i<m, 1<j<n, where
j 1< RS

j-1

—_
[arc P'Q']=[arcA(')A']. By 5.31, arc PQ 7arc P'Q' andif AA'

is in the direction of the pencil defining arc AB, then

arc P'Q' < arc PQ. However, by 5.37, 5.45, and 5.50 we have

—~ /‘\ —~
AB mPQ m mP'Q' A'B'
—~ T~ T~ T~
BC nPQ n nP'Q'" B'C'
AB _ BC
so that ———=—="—  and by 5. 31 this ratio depends on the distance
A'B' B'C'

between the arcs.
If arc AB and arc BC are non-commensurable we can
apply the classical and well known limiting arguments used in such

arguments as this [10, Chap. 20].
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The results of 5.51 were observed and stated by Lobachevski

[9, p. 32-33). He also stated the results of the following corollary:

5.51.1 COROLLARY. If arc AB and arc A'B’ are con-
. —__)] . . . . . .
centric arcs and AA' is in the direction of the associated pencil of

—~~
parallels, then AB /A'B' > 1.
Proof: Immediate from 5.31, 5.50, and 5.51.

Lobachevski further observes (in our notation) that:

—~~ P
If we therefore for HAA']]S =1 put AB = eA'B', then

N~
we must have for every x, A'B'= ABe *. Since e is
an unknown number only subjected to the condition e >1
and further the linear unit for x may be taken at will,
therefore we may, for the simplification of reckoning, so
choose it that by e is to be understood the base of
Napierian logarithms [9, p. 33].
This choice of e can be more directly justified on the basis

of our present foundation. Shirokov [16, p. 46] gives basically the

following argument.

5.52 THEOREM. Let arc AB and arc A'B' be concentric
— .
arcs so that AA' is in the direction of parallelism of the associated
NN
pencil of parallels. If x = I[AA'”S then AB/A'B'= eX/k where

k is a positive real number [16, p. 46].

Proof: Let arc A"B" be a third concentric arc so that A-A'-A"

and let yzl[A'A”]ls. Then by 5.51:
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/\' i) ~—~
AB _x), ARy, BB x4y
g8 Km0 e

AIIBII All

and in each case the value of f is greater than 1 (by 5.51.1).
Thus (#1) £(x)-f(y) = f(xty) and, by 5.31, f is increasing. To
show f is an exponential function, we need only show f is also
continuous and positive. From our "key assumption" we know every

real number corresponds to a point on line A' so that for every

=

x >0, thereis an arc XY with X on AA' and concentric with

——————

arc AB. Thus for every x, f(x) is defined. It remains to show

lim f(x) = f(a) for every a >0.
XxX™a
Intuitively this is obvious but we

require a formal argument. Let
arc XY, arc AB and arc A'B' be
concentric arcs with |[AA']]_ =a

S

and |[XA]l = 6. If XA is in Y

the direction of parallelism, then by 5.31 XY >AB. By the polygonal

inequality from absolute geometry [10, p. 124] and from 5. 31

XYl <[AB] + 2[xA]l, i.e., [XY]-[AB] < 2[XA] so that

|[xY] - [AB]IS < 26. Thus in the limit |[XY]|S = |[AB].|S and thus by
—~ —~

5.25.1 arc XY 2 arc AB in the limit, so that in the limit XY = AB

el
and f(x) = f(a). By a symmetrical argument with AX in the direc-

tion of parallelism, the argument is complete.
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5.53 THEOREM. In any plane a, let
R
1. £ be the pencil in the direction of OX,
2. OY | OX at O,
3. A be any point of QY different from O,
—— ver—
4. AA' be the line of £ incident on A with AA'lOX,
—
5. B be the unique point of AA' on H = §(O) (cf. 5.3.1
and 5. 1),
6. the line m be the unique line of £ which is parallel to
both sides of right angle [YOX (cf. 3.21.1),
7. M be the unique point of m on H (cf. 5.31), and

TN

8. s = OB, t'—'gl\?, u = |[0A]] V=|[AB]|S,

S’

then s =t tanh(u/k) and
e(V/k) = cosh(u/k) where

k is the constant in 5.52

[16, p. 48-49].

Proof: Casel. A is on

—
OY. Without loss of generality

we may suppose O-A-Y. By

5.1 [OAA' is acute and by
the "vertical-angle" theorem and
3.20, there is aline n on the side of a opposite A' with

respect to OY sothat n is perpendicularto AA' at some point
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N and parallel to OY in the direction of AY. Let NN'|AY
with N' on n. Let H'=§£[N]. By5.3.1, m meets H' ata
point P. Since m is parallel to OY in the direction of oY
. e p— —_—

(6. of hypothesis) and NN'|OY and NA|OX, from 3.5.11
("transitivity" of critical parallels) m is parallel to both sides of
right angle [A'NN'. If F and G are the feet of the perpendicu-
lars from O and N, respectively, to m, then OF = NG,
by 3.24.

We now observe that on the opposite side of m from O and
N there are points O" and N" of OF and NG respectively
with OF ¥ FO" and NG = GN". Thus by definition (4.5 and 4. 8)
O" and N" areon H and H' respectively. But m is the
perpendicular bisector of OO" and of NN" so (using 5.25.1)
arc NN" = arc OO" and (by 5.25.3) arc OM = arc NP. This gives

N P ~
us OM = NP =t by hypothesis 8. and by 5.50, /NAY = /OAB by
' : —_—— e—

the "vertical-angle" theorem. From the facts that NN'|AY and
——p | ——
OX|AA', we see by definition that /NAY and /[OAB are the
angles of parallelism for segments AN and AO which requires
AN 2 AO (3.9) so |[AN]|S = u.

We now have arc NP and arc BM as concentric arcs with
—
NB in the direction of the pencil associated with H and H'. Also
we have N-A-B. Thus the distance between these arcs is utv

(from our work above) and by 5.52




line n perpendicular to AA'
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E!E-_S- = e(u+v) /k or t-s = te(_u—v) /k (i)

Case II. Suppose A-O-Y.
Now on X's side of a with

respect to line OQOY, there is a

at N and there is a point N'
—_—, —
of n sothat NN'|OY (by

3.20). Let H'=§¢[N]. Then

since m ¢ § there is a unique

point P of H' on m

(5.3.1). Just as in Case 1,
~ - ~~
arc OM = arc NP and AN = OA. Thus NP =t and we get
t+ (u-v)/k (u-v)/k

__E_s_ = e or t+s = te . (ii)

(u-v)/k. (-u-v)/k

Now adding (i) and (ii) we get 2t = t(e +e ) so that
u/k, -u/k
eV/k = E—"-I-Te"‘—"‘ = cosh(u/k) (iii)
Subtracting (i) from (ii) gives us
u/k -u/k
s = ¢t € - e
v/k
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Thus by (iii) we have

s = t tanh(u/k),

From our construction we see t is constant so s is a function of

u. This completes the argument.

Our next step is to extend the notion of oricycles to orispheres.
When that is done we shall return to the main argument of the proof of
the completeness axiom as a theorem in the Poincaré model.

It is interesting to note that Shirokov has gotten the above
results from a different base in just 15 pages having provided proof
of each step. He uses Hilbert's axioms but does not consider the
Archimedian and completeness axioms however. Doing so requires
substantial additional effort. As has already been mentioned,
Shirokov’s proofs given for the development of orispheres are sound
once the above "fill-in" has been done. We shall not copy the proofs
of his work on orispheres into this paper but rather give the results
and provide proof only when necessary to develop a result not
previously done or not in the spirit of Hilbert's axiomatic treatment.

Lobachevski defined orispheres in terms of the revolving of an
oricycle about any line of the defining pencil [9, p. 33]. Shirokov
defines them in a manner analogous to that which he gives for
oricycles. Before stating his definition he develops some results

relating to the notion of parallelism for lines in space and the notion
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of parallel as extended to planes. His first lemma is, when translated

into our notation:

5.54 LEMMA. Let a and b be parallel lineé in plane | Y,
parallel in the direction of b. If a and B are distinct inter- .
secting planes containing a and b respectively, then their line of
intersection c¢ is parallel to both a and b inthe direction of

-
b [16, p. 50; cf. also 9, p. 22-23].

The next result is Lobachevski's proposition 25 which he proves

in a manner which fits our criterion and which includes 5.54 as a part

of the argument.

5.55 THEOREM. Two lines which are parallel to a third line in
the same direction are parallel to each other in this same direction

[16, p. 51; 9, p. 22-23].

A standard result of absolute geometry is:[10, p. 180, Theorem
17]: given any point P not on a given plane a there is a unique
line p on P that meets a, say at A, and is perpendicular to every

line of a incident on A. (In this case we say p_ _is perpendicular

to _a at A.) Also if we have two lines p and q perpendicular

to a, then p and gq are coplanar.[10, p. 179, Theorem 12].
Thus the plane determined by any line £ not in a andthe line p

from any point P of { sothat p is perpendicularto a :at A
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is the plane containing all lines q from a point Q of £ and
perpendicular to a.

These results allow us to talk accurately about the perpendicular
projectionof [f onto a as is done by Shirokov. The only time this
projection is not a line is in case £ is already perpendicular to a
[16, p. 51].

"...under this projection we

Shirokov states that in general,
obtain the line A'B' inthe plane a - i.e. the projection of the line
AB. Since they lie in the same plane, the lines AB and A'B' can

either 1) intersect,... 2) diverge, ... or 3) be parallel.' This gives:

5.56 DEFINITION. Iflines AB and A'B' are as above,
and 1) these lines intersect, we say that AB and a intersect,
2) these lines are divergent (i.e., hyperparallel) we say that AB
and o are divergent, and 3) these lines are parallel in the direction
of T, we say that AB and a are parallel in the direction of T

[16, p. 52].
The results of 5.55 immediately give the

5.57 THEOREM. If a line is parallel to some line lying in

plane a, then it is parallel to plane a[16, p- 52],

Shirokov's next definition is:
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5.58 DEFINITION. Two planes are said to be parallel if it is
possible to construct a third plane which is perpendicular to both of

them and which intersects them in parallel lines [16, p. 53].

He justifies the validity of this definition by proving--though not
stating the theorem as a specific theorem in his work--the absolute
geometry result that for any two distinct planes it is always possible
to construct a plane perpendicular to both given planes [16, p. 52-53].

"

This leads to a theorem, "...of great significance for the con-

struction of Lobachevskian geometry... " [16, p. 54].

5.59 THEOREM. Through aline AA' parallel to the plane
a, there is exactly one plane parallel to a; all other planes con-

taining AA' intersect a [16, p. 54].

Shirokov then defines pencils in space, corresponding points

relative to these pencils, and orispheres.

5.60 DEFINITION. The set of all lines and planes in space
which

1. are incident on a given point C is called a pencil of inter-

secting lines and planes with center C;

2. are perpendicular to a given plane a is called a pencil of

divergent lines and planes with carrier plane a;

—
3. are parallel to a given line {4 in a given direction £ is
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called a pencil of parallel lines and planes in the direction

of 1 [16, p. 54-55].

He then observes:

All these three types of pencils possess certain common
properties. Thus through every point of space [excluding
the center in the case of an intersecting pencil of lines
and planes] there passes one and only one line of the
pencil; two points of the space which do not lie on the same
line of the pencil determine a unique plane of the pencil;
lines of the pencil belonging to planes of the pencil form a
pencil [of lines] of the corresponding type; two lines of the
pencil determine a plane of the pencil; if two planes which
pass through two lines of the pencil intersect, then their
line of intersection belongs to the pencil; two lines of the
pencil determine a pencil, as well as do three independent
planes of the pencil, and so on [16, p. 55].

Next comes a definition and theorem analogous to 4.5 and 4. 7:

5.61 DEFINITION. Two points are said to correspond relative
to the given pencil of lines and planes if they are situated symmetri-

cally with respect to some line belonging to this pencil [16, p. 55].

5.62 THEOREM. The relation correspond--denoted as A*B--
means that A and B correspond with respect to a given pencil of

lines and planes. It is an equivalence relation.

Proof: The reflexive and symmetric properties are proved exactly as

in 4.7. Shirokov gives a proof of transitivity [16, p. 55-56].

The resulting equivalence classes are given special names.
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5.63 DEFINITION. Let X be a pencil of lines and planes in
space and let X[A] be the equivalence class of points corresponding
to point A with respectto XZ. Then
1. if X is an intersecting pencil and A is not the center C
of =, Z[A] is called a sphere with center C and radius
AC,
2. if X is a divergent pencil, =[A] is called an equidistant
surface, and
3. if X is a parallel pencil in the direction of T, =[A] is

called a limiting surface or orisphere in the direction of T

[16, p. 57-58].

Note: From now on we will always use X to mean a parallel pencil

of lines and planes.

5.64 DEFINITION. If X is a parallel pencil in the direction
of T then the lines of Z are called its axes and the planes of X

are called the diametral planes of the orisphere XZ[A] [16, p. 58].

Shirokov then proves (as does Lobachevski)

5.65 THEOREM. If a non-diametral plane has a point in com-
mon with an oricycle, then it either intersects this surface in a circle
or is tangent to it at one point [16, p. 58-59; 9, p. 35). (Note: Com-

pare with the corresponding results for lines and oricycles in 5.1
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See also [12] .)

Then comes the basic theorem necessary to get us back into the
results proved by Lobachevski. In fact he gives essentially the same

theorem from another development.

5.66 THEOREM. Let XZ[A] be any orisphere. With the fol-
lowing realizations of the undefined terms, the axioms of Euclidean
plane geometry are theorems, i.e., Euclidean plane geometry holds
on =XZ[A]:

1. P is a point if P e Z[A],

2. £ = €£[P] is aline if £[P] is an oricycle determined by a

diametral plane of £ and XZ[A],

3. £ = §[P] is incident on point Q iff Qe £,

4. point Q is between points P and R iff P, Q, and

R - are distinct points of £ and P*Q*R,

5. segment KE = arc AB is congruent to segment
CD = arc CD iff arc AB Z arc CD.

6. By ray CATB) we will mean all the points P of the oricycle
¢E[A] containing B so that P is on B's sideof A
in the sense of 5.28. We then define anglé as
o/ABC = {B} u ogz w o]_;:(? o/ABC is congruent to
o/A'B'C' iff the dihedral angles determined by the

diametral planes defined by A,B and B,C or by A.B'
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and B',C' respectively are congruent in the sense of

absolute geometry [16, p. 58-61].
Note: Let o0AABC denote a triangle on an orisphere.

Shirokov proves all the plane Euclidean axioms of Hilbert
except the Archimedian and completeness axioms are theorems in
this model. However, we have done the latter in this paper as 5.27
and 5.30. It is in this argument that Theorem 5.59 is used--recall

5.59 is the theorem referred to by Shirokov as "...of great signifi-

cance. .. ."

Shirokov next develops the basic identities for Lobachevskian

geometry.

5.67 THEOREM. Let AABC be a right triangle with acute
angles /A and [/B. Let a=m/A and B =m/B. Further let

a= |[BC]| b= |[A'C]ls, and ¢ = |[ABHS where AB is the

g’
hypotenuse. Let k be the constant described in 5.53. Then
1. cosh(c/k) = cosh(b/k)cosh(a /k),
2-a. tanh(b/k) = tanh(c/k)cos a,
2-b. tanh(a/k) = tanh(c/k)cos B,

3-a. sinh(a/k) = sinh(c/k)sin a,

H

3-b. sinh(b/k) = sinh(c/k)sin 8,

3

4-a. tanh(a/k) = sinh(b/k)tan a,
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4-b. tanh(b/k) = sinh(a/k)tan B,
5. cosh(c/k) = cot a cot B,

cosh(a/k)sin B, and

6-a. cos a

6-b. cos P = cosh(b/k)sina [16, p. 62-66].

H

Although the proof of this is given in Shirokov, it seems useful to
reproduce parts of this proof so the flavor of the argument can be
available here. The method revolves about two constructions as fol-
lows. These are illustrated in Figures (i) and (ii) below. Let AA'
be the perpendicular to the plane of AABC andlet BB' and CC'
—_— —>
be the lines incident on B and C so that BB'|AA' and
— L e— .
CC'|AA'. Let XZ[A] =S be the orisphere determined by the pencil
2 defined by these parallel lines. The three diametral planes
determined by AA', BB' and CC' intersect the orisphere S in
three oricycles which meet AA' at A, BB' at B. and CC' at

1

C thus defining a triangle oAAB1C1 on the orisphere S.

Figure (ii).
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Since S is tangent to the plane of A, B, and C at A, then the meas-

ure of oLBlAC1 is also a and oAAB1C1 is a right triangle with

— —~ —~
o/C as right angle. Let . AB, =s,, B C s, and A.C =s

1 53 171~ %1 2’

Let arc CB2 be concentric to arc ClB in the plane of BB'

1
and C as shown.
In a completely symmetrical manner with BB'" perpendicular
—_—  — _— ) —
to the plane of AABC at B, AA"|BB" and CC"lBB" we get

oABA'IC‘1 with o/B of measure f and oLC'1 a right angle.

Point A'2 and arc CA'2 are defined symmetrically to B, and

2
arc CBZ.
N SN .
By 5.52, CBZ/ClBl = ed/k where d = ‘[CCI]IS, giving
> -d/k . .
8, ~ CBZe . Using t as in 5.53, and the results of 5.53,
8, = t tanh(a/],-z)e.d/k .
Further, applying 5.53 directly,
s, =t tanh(b /k),
8 = t tanh(c/k).
. . d/k _
Again drawing on 5.53 we get e = cosh(b/k) so that
_ . tanh(a/k)

51 7t Cosh(b/k)

From 5. 66 we have that the Pythagorean theorem holds for OAABlCl
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ivin sz"s2+s2
g g 378 , or

2
tanhz(c/k) = @-h—é—a& + tanhz(b/k)
cosh (b /k)

= sechz(b /k)tanhz(a/k) + tanhz(b/k)
= (l-tanhzb/k)tanhz(a/k) + tanhz(b/k)

sinhz(a /k)coshz(b/k) -sinhz(a/k)sinhz'(b /k)+sinh2(b /k)co shz(a /k)
coshz(a /k)coshz(b /k)

sinhz(a/k)[co shz(b /k)~-sinh2(b /k)]+sinh2(b /k)coshz(a /k)
coshz(a /k)coshz(b/k)

coshz(a /k)-1 + sinhz(b /k)coshz(a /k)

coshz(a /k)coshz(b /k)

coshz(a /k)| 1+sinh2(b /k)]-1
coshz(a/k)coshz(b /k)

coshz(a /k)coshz(b /k)-1

coshz(a/k)coshz(b/k)
=1- 2 1 2 '
cosh (a/k)cosh (b/k)
Thus
T:m = coshz(a/k)coshz(b/k) s
S0

coshz(c /k) = coshz(a/k)coshz(b /k),

giving cosh(c/k) = cosh(a/k)cosh(b/k) as desired for "1.".
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From the formula s, =8, cosa [see Figure (i)] we get

2.a. tanh(b/k) = tanh(c/k) cos a.

Using symmetrical arguments for the configuration pictured in Figure

(ii) we get r, = r, cos B and

2.b. tanh(a/k) = tanh(c/k)cos B.

In a like manner, using the appropriate configuration and the
Euclidean results for oAABIC1 or oABA'IC'1 as appropriate, the

remaining results are verified.

These same results are also proved by Norden [12. p. 169-174]
in a somewhat different manner.

The next result is called "Lobachevski's fundamental formula
[the function II(x)]" by Shirokov [16, p. 69]. It is developed by
Borsuk [2, p. 331-334], Norden [12, p. 176-177], Shirokov [16, p. 69-
71], and Lobachevski [9, p- 39-41)], each using a quite different
method of justification but clearly all inspired by Lobachevski's
insights.

Shirokov's approach is to consider the closed right triangle
AA'ACC' with right angle, [ACC'. Helets B be any point of
CC' and considers AABC with acute angles [A and /B so

that m/A =a, m/B = B, |[Ac]ls=b, HBC]|S=a, and
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I[AB]IS = ¢. From absolute A

geometry we know AB > BC as ¢

AB is the side opposite the

greatest angle [/C. Thus, know- Al
ing cos a = cosh(a/k)sin B from c " B T
5.67, lim cos a = lim cosh(a/k)sin p < 1. This requires

a0 a~—™"ow

lim sin B =0 or lim B=0 sothat lim (a) =I(b). From
a—"*" o a—o a— 00

2.a of 5.67 we have cos a = tanh(b/k)/tanh(c/k), so

lim cos a = cos II(b) = lim tanh(b/k)/tanh(c/k)
a~—™" o a —™ o

I

lim tanh(b/k)/tanh(c/k)

c—*> 00

tanh b/k.

H

In other terms, tanh b/k = cos II(b). But

" Nb) _ N l-cos I(b)
an 2 " N I+cos T(b)

_ N 1-tanh(b/k)
"~ N Tttanh(b/k)

J b/k, -b/k b/k, -b/k

_ € +e -€ +e

- J b/k -b/k b/k -b/k
e +e +e -€e

Sl

S

_ [ v/k2z _ -b/k
= A (e ) = e
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This is "Lobachevski's fundamental formula":

m(b) _ -b/k

l:an‘2

Shirokov does nothing more toward the examination of the con-
stant k. However, we now consider it further and justify our
earlier comment that the canonical segment would best be assigned
the number, 1n(N2Z2 +1).

LYy

If b=1 "(n/4), "Lobachevski's fundamental formula' gives

tan T = / l-cos w/4
8 l+cos w /4

_ "\/7 -1

NZ +1

=N (N2 -1)

us:

2
N AR LTS

Simple algebra gives eb/k =NZ+1 sothat b/k =In(W2 +1). The

choice of b = 1n(N2 +1) requires k = 1. This is the best choice to
simplify computation and to simplify all of the results for the rela-
tionships in 5. 67. Recall that the segment class associated with
H-I(ILLZEL:HA) is the canonical class of segments (3.25). We have
assigned w/2 to the class of right angles, so the segment class
associated with H-l(n/4) is the canonical class. Thus we have

justified the following:
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5.68 DEFINITION. The number associated with the canonical

segment class is In(N2Z +1) = H—l(w/4).
Immediately this gives

5.69 THEOREM. tang—(z'}—) =e X for all x.
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VI. THE CONCLUDING ARGUMENT

From 2.13 we can conclude that for any angle [ABC,

|\[{aBC]|, =7 - |[/ABC]] where [/ABC] is the class deter-

A A

mined by the supplement of /ABC. This follows directly from 2.13,
the definition of supplements, and the assignment of =w/2 to the
class of right angles. Thus we may conclude from the definition of II

(3.22.1) that, for all x, II(-x) =« - [(x). This immediately gives:

6.1 LEMMA.

l. sin I(-x) = sin M(x), and

2. cos M(-x) = -cos N(x) [9, p. 19-21; 2, p. 334].

. I -
By using the results of 5.69, i.e., tan —(E'X—) =e * or
. M(x) x .
equivalently cot T e we can compute the following results:

6.2 THEOREM. For any two real numbers x and vy,

1. sin M(xty) = sin I(x) sin II(y) and

"1 % cos (%) cos M(y) ’

cos M(x) = cos N(y)
. = . : . -335].
2. cos I(xty) 1 £+ cos I(x) cos MN(y) [9, p- 42; 2, p. 334-335]

Proof: "1." sin [(x) = sin(2Arccot ex) by 5.69

il

2 sin(Arccot ex) cos (Arccot ex)

Zx)l/Z] Zx)l/Z]

H

2[e™/(1+e

zex/(1+e2X).‘

[1/(1+e



Thus

sin [I(x+y)

Now

and hence

By 6.1 we get

cos I(x)

+
25"V /(1+e

2+ 2e
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2x+2y)

2% 2
Xey

fl

cos(2 Arccot ex)

2 2
cos (Arccot ex) - sin (Arccot ex)

o er
= 5o -
l+e X 1+eZX
. l_er
1+eZX
T .
sin M(xty) = sin II(x) sin II(y)

1+ cos II(x) cox I(y) '

sin II(x) sin I{y)

sin(xxy) = .

1 £ cos II(x) cos M(y)
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Similarly
2x 2
l-e Xe y

2x 2
e TV

2
cos M(xty) = 3
1+

2 2x 2 2 2 2x 2
l-e x+e2y-e Xe y-I-l-l-e X—e y—e Xe y

2 2 2% 2y 2x 2
l+e ¥ te? Y +a?%e Y 11 e “F eVt %Y

(1-e2%)(1+e2Y) + (1+e2%)(1-&2Y)
(1+e2xv)(l+e2y) + (l—ezx)(l—ezy)

2x

(1-e2%)(1+e2Y) , (lte )(l-ezy)
2x

(1+e°%)(1+e2Y)  (lte ﬂ1+e2y)
(l—ezxﬂl-ezy)

(1+e2xﬂl+e2y)

1+

This, together with 6.1, gives

cos N(x) = cox M(y)
1+ cosIl(x) cosli(y)

cos M(xzxy) =

6.3 LEMMA. Let AABC be a right triangle with [C the
right angle, m/A =a, m/B = B, I[ABHS = ¢, I[AC”S = b, and

lfs=a. Then

1. n(c+n” 1 (8)) + a = Ti(b), and

|[BC]

2. Ti(b) + a = N(c-1"1(8)) [9, p.- 39-41; 2, p. 335-336].

Proof: "1.'" Inthe plane of AABC, let B' be a pointof CB

so that C-B-B'; let D be a pointof AB sothat A-B-D and
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HBD],S = n’l(ﬁ); on the' B'

—
side of AB let AA' be the ray

so that m/BAA' = H(c+H-1((3)); and

finally let DD' be the line b
B
perpendicular to AB at D
—_—
with DD' onthe B' side of a
AB .

A C

¥

By the definition of [BAA’,

— c— .
AA'|DD' and by the definition of segment BD and by vertical
_-)l .—_)l 1 L . n s 11
angles DD'|BB'. By "transitivity" of critical parallels (3.5.11),
—— | — — —p --—-)' —
AA'|BB'. But CB' is equivalent to BB' (3.5.3)so CB'|AA'_ @
and "1." is proved.
"2." In the plane of AABC,
—
let D be a point of BA and

|[BD]| =d=1" "(B); opposite

—
B's side of AC let AA'be the

ray such that m/_CAA' = TI(b),

and let DD' be perpendicular
-_

to AB at D with DD' on

C's side of AB.

—— e
Then AA'|BC, by defini-

tion of [CAA' and by 3.5.3, - '

—_ —
and BCIDD' , by choice of y
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—_
D; so, by 3.5.11, "transitivity" of parallels, AA'|DD' (provided

— —
AA' 4 DD' in which case we are trivially done since TI(0) = w/2

by definition and AA' | AB).
If A-D-B we are done immediately.

If D-A-B, then

1t

7 - ({b)+a) = I~} (B)-c)

i

n(d-c)

m - (c-d), by3.22.1,

r - T(c-T" ().

"

Thus

as claimed.

6.4 THEOREM. Let AABC be a right triangle with /[C

a right angle, m/A=a, m/B =8, |[AB”S = C HAC]IS = b,

and I[BC]|S = a. Then
1. sin lI(c) = sin N(a) sin N(b), and

2. cos II(b) = cos Il(c) cos a [9, p. 42 ff.; 2, p. 339].

Proof: From 6.3, letting d = H_l(ﬁ), we have

o
g
T
fom|
0
-+
&
+
o)

and

=)
c
T
o}
(]
]
&
]
o

This gives us



(iii) cos Il(c+d) - cos I(c-d)
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(i) cos II(b) = cos Il(c+d) cos a - sin [I(ct+d) sin q,
and
(ii) cos II(b) = cos Il{c-d) cos a + sin l(c-d) sin a.

Using 6.2 and the fact that d = H—l(,B), we get

cos Il(c) + cos B _ cos MM(c) - cos B
1+ cos Il{(c) cos P 1- cos Il(c) cos B

2 cos PB(1 -cosZH(yc))

2 2
1- cos Tl(c)cos P

2 sinZH(c)cos B

2

1- cosZH(c)cos B

and

sin II(c) sin B sin Il(c) sin 3
1+ cos I{c) cos B 1- cos Il(c) cos B

(iv) sin l(ctd) + sin M(c-d) =

2 sin Il(c) sin B

2
1- cosZH(c)cos B

Now subtracting (ii) from (i) and substituting the results of (iii)

and (iv) into the resulting equation, we get

2
T . 2 s
2 sin II(c) sin B sin a = sin M(c) cos P cos a.

(v)

2 2
1- cos Ii(c) cos P 1- cos I(c) cos P

This immediately gives

(v" sin P sin a = sin ll(c) cos P cos a,
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or, equivalently

(v'") gsin M(c) = tan a tan B .

Again, from 6.3 we have

M(b) - o = HN(c+d),

and
(b) + a =M(c-4d).
-1
As above, we use 6.2 and the definition of d =1 "(B) to get
. A ) _sinIl(c) sin B
(vi) sin I{b) cos a - cos I(b) sin a = Trcos M(c) cos B
and
o .
(vii) sin lI(b) cos a + cos II(b) sin a = sin Il(c) sin P

l-cos lI{c) cos B

Adding (vi) and (vii) gives us

sin II(c) sin B sin M(c) sin P
1+ cos M(c) cos B 1- cos II(c) cos P

2 sin II(b) cos a =

2 sinIl(c) sin B

2
1- coszl'I(c) cos P

__2tana tan P sin P from (v'') above

2
1—(1—tan2a tan PB)cos P

- 2 tan o tan B sin B cosza

2 2 2
cos a(l-cos PB)+sin a sin P

sin a
= cos a -
cos B




Thus we have

(viii) sin I(b) = sin a/cos B .
By a symmetrical argument we get
(ix) sin M(a) = sin P/cos a.
We can now use (v'"), (viii), and (ix) to conclude
(x) sin II(c) = sin lI(a) sin M(b) .
Using (x), together with (v"), (viii), and (ix) we

2
(xi) cos M(b) =1 - sinZa/cosZB

[coszﬁ-sinza]/coszﬁ

1t

= [cosZB—sinza(cosZB+sinZB)] /cosZB

2 2 2
= [coszﬁ(l-sinza)+sin asin B]/cos B

2 2 2 2 2
[cos“acos B+sin asin Bl/cos B

2 2 2
= cos a + [sin asinZB]/cos B

[1+ sin asin P ]cosza

cos dacos P

=[1+s inZH(a)s inZII(b)]cosza

2 2
[1+sin M(c)]cos a

1

2 2
cos Il(c) cos a.

Now b and c¢ are both positive and 0 <a < w/2

151

see that

so we conclude
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from (xi) that

H

cos II{b) = cos M(c) cos a,

and we are done.

6.4.1 COROLLARY. Let AABC be a triangle with
[[AB]lg =, [[ACllg=b, and [[BCll =a. Then /C isaright

angle iff sinIl(c) = sin II(b) sin M(a).

Proof: The "only if" is just 6.4. Let CD be the | rayon A's

p
side of BC in the plane determined A
L
A
be A, B and C. Let A' be the D
—
point of CD so that I[CA']]S = b.
Then in AA'BC we have '
sin M(a) sin M(b) = sin I|[A'B ”s' ¢ .

Hence A'B 2 AB and AABC % AA'BC by S.S.S. and /C isa

right angle as claimed.
The next lemma is very useful later.

6.5 LEMMA. Let A, B, C, and D be points of plane a.
If DABCD is the quadrilateral so that /A, /B, /C areall right
angles with I[AB]IS = x, I[BC]IS =y, and I[CD]'S = z, then

cos M(x) = sin M(y) cos M(z) [2, p. 138].

Proof: Let I[BD]IS =u, m/ABD =a, and m/CBD =p. Clearly
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D

a+P=wn/2. In AABD we apply
Z
6.4, part 2, to get
1 C

(i) cos a = cos I(x)/cos M(u). u y
In ACBD we similarly get | B

,_‘ a
(i) cos B = cos Il(y)/cos M(u). A X B

‘But we know B =m/2 -a so, from (ii), we get
(iii) sin a = cos Il(y)/cos M(u).
Now from (i) and (iii) we have

2 cosZH(x)+coszﬂ(Y)

2
(iv) 1l =cos a+sin a = > )
cos I(u)
i.e., we have
2 2 2
(v) cos TM(u) = cos TM(x) + cos IN(y) .

If we apply 6.4, part 1 to ABCD, we get

(vi) sinzl'[(u) = sinzl'[(y) sinzl'[(z) .

From (v) we conclude that
2
(vii) 1 - sinzl'[(u) = coszl'[(x) + 1 - sin M(y) .
Combining (vi) and (vii) we have

(viii) sinzl'[(y) sinzl'[(z) = sinzl'[(y) - coszl'[(x) .
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Equation (viii) is equivalent to

. 2 2 2

(ix) sin I{y) cos II(z) = cos I(x)

Since x>0, y >0, and z >0, we conclude from (ix) that

cos II(x) = sin M(y) cos II(z) .

In Chapter I we described how we could use " |S" to assign
numbers to the points on any line (1. 16). This assignment allows us

to define a coordinate system for Lobachevskian space in the usual

way -

6.6 DEFINITION. Let

1. a be any plane,

2. OX be any line of a,

3. OY be the line of a perpendicularto OX at O,

4. OZ be the line perpendicular to a at O, and

5. zero be the real number associated with O on each line.
Then

1. OX, OY, and OZ are called the X-, Y- and Z-axes
respectively,

2. (x,y,z) is called the coordinate triple or the coordinates

of point P iff x, y, and z are the numbers associated

with the feet of the perpendicular from P tothe X-, Y-,



155

and Z-axes respectively, and

3. the plane determined by the Wl— and Wz-axes (where

W1 e {X,Y,Z} and W2 e {X,Y,2} - {Wl}) is called the

-plane. These are each called

1

w Wz—plane or the WZWI

coordinate planes.

Since there is a unique line incident on P and perpendicular to
each axis, every point has a unique coordinate triple associated with
it. However, unlike Euclidean geometry, every ordered triple of
reals is not the coordinate triple of some point. To see that this is
so, consider the following example in the XY -plane.

— ' . .
Let OB be the bisector of LXOY where, without loss of
__-} ——> . . .
generality, OX and OY are chosen as positive rays. It is

impossible to have (x 0) name any point in the XY -plane if

0’ Yo’

X, >1In(NZ2 +1) and Yo >1In(NZ +1). This is true since the perpen-

N

diculars in the XY -plane from the t_/'

Y ¢
points associated with 1n(NZ +1) 4
are parallel to OB in the direc-

—>

tion of OB and are on opposite
sides of OB. This follows from o X .

our arbitrary assignment H-l(n/4) = 1n(N2 +1).
We shall now show that (a,b,c) c¢an be the coordinates of a

2 . .
point P iff cosZH(a) + cosZH(b) + cos II(c) < 1. To do this we first
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establish some useful lemmas. In the subsequent work we shall
assume some planes, lines, and directions have been taken in space

to give us a coordinate system in the sense of definition 6.6 above.

6.7 LEMMA. If { is anyline and P is any point then

there is a unique plane X\ incident on P and perpendicular to £.

Proof: By 0.12, there exists a unique line p incident on P and
perpendicular to f at Q. The lines p and £ intersectat Q
and thus, by 0.11, determine a plane a. ,

By 0.19, there is a unique line m

incident on Q and perpendicular to E’ >
a. By 0.17, the plane A deter-

mined by m and p is perpendicu-

lar to £, since { is perpendicular to both m and p at their

point of intersection. Any other plane p perpendicular to £ and
containing P, say at point Q' of £, musthave PQ' 1
through P. Thus Q' =Q (since perpendiculars from P to [

are unique). Hence g =X and we are done.

6.8 LEMMA. If
1. £ and m are lines of plane a,
2. £ and m are perpendicular at O,

3. n is the perpendicular to a at O,
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4. P is any point, and

5. \ and p are the unique planes containing P and

perpendicular to £ and m, sayat L and M,

respectively,
then
1. the line p containing P and perpendicular to a, say
at Q, is the line of intersection of XN and g, and
2. p and n are coplanar.
Proof: "1." X\ meets the plane of £ and m in aline LQ'.

Let LN' be perpendicular to LQ' at L in X. Then, by 0.17,
LN' is perpendicular at L to the plane determined by £ and m

(LN' is perpendicular to { since \ is perpendicularto [ as

well as perpendicular to LQ'.) Thus A
n
LN' and PQ are perpendicular o M

to the same plane and are coplanar.

This means PQ isin A\. By a

N
symmetrical argument, PQ is
in p, and hence PQ is the
line of intersection.
"2." From our hypothesis s
n and PQ are both perpendicular L
f

to the plane of f and m so, by

0.17 they are coplanar.



158
It is interesting to observe that while _I;Q_J_E_Q and
M_Q_L_P_Q_, in general, LQ is not perpendicular to MQ. In fact,
they will be perpendicular only when Q 1ison £ or m. Inthe
figure above we have sketched the points O' and M' with the
perpendiculars at all vertices marked. In general all three of the

angles at P are acute.

6.8.1 COROLLARY. If P is any point in space, and P’ |is
the foot of the perpendicular to the XY-plane [or XZ- and YZ-plane,
respectively] and P has coordinates (x,y,z), then P' has

coordinates (x,y,0) [or (x,0,z) and (0,y,z) respectively].

Proof: By 6.8, P' is a point of the planes perpendicular to the X-
and Y-axes at the points of these axes associated with x and vy
respectively. But this requires the lines from P' perpendicular to
the X-, Y-, and Z-axes to have feet associated with x, y, and 0
respectively. Thus by Definition 6.6, P' has coordinates (x,y,0).

The remaining two cases follow immediately by symmetry.

6.9 THEOREM. P is a point with coordinates (a,b,c) iff

cosZH(a) + coéZH(b) + cosZH(c) < 1.

Proof: "only if": If P has coordinates (0,0,0) we are done, trivi-
ally. Let us suppose P has coordinates (a,b,c) # (0,0,0).

Then let p = I[OP]IS. ILet A, B, and C be the points of the X-,
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Y-, and Z-axes associated with a, b, ¢ respectively and by

Definition 1.16 conclude |[OA]|_ = |a]l, |[0B]|S = |b| and

S

|[OC]|. = |c| - Let Q, R, and S be the feet of the perpendiculars

S
through P tothe XY-, XZ-, YZ-planes respectively.

Case 1. P is not in
any coordinate plane: Let < S
[[oQllg = a. [[aR]|g = r, c
= = R 1
|[AQ]|S s, |[RP]|S u, ) P
|[[QP]l, = v. % B
S (@] ——
By 6.8 and 6.5 we have r v
q
1. cos I(s) = cos N(|b|)/sin I(|a]) :
2. cos N(r) = cos N(|c|)/sin T(|a])
A s Q

3. cos II(v) = cos 1 (r)/sin Ii(s)

cos N(|cl)/sin N(]al)

sin[Arccos(cos (| b])/sin n(la|))]’ from 1. and 2.,

_ cos ({c|)/sin N(|a])
J 1—cos2H(|a|)—cosZH(|b|)/s'm n(|al)

_ cos M(|cl)
N/ l-coszﬂ(a)-coszn(b)

since

cosZH(x) = cosZH(|x| )s
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4. sin l(q) = sinM(]al|) sinT(s) by 6.4 and 6.8

sin (| a| )\/ l—coszn(a)-coszn(b)/sin n(|al)

(cf. computation of 3.)

N/ 1 -cosZH(a) -co sZH(b)

5. sin ll(p) = sin (q) sinI(v) by 6.4 and 6.8

___cos (| cl) |
*\/ l-coszn(a)-coszn(b)

)

= sin lI(q) sin Arcsin(

_ \[ l-coszn(a)—coszn(b) J 1-cosZH(a)-cosZH(b)-coszn(c)

J l—coszn(a) —cosZH(b)

2 2
= '\[l-cos H(a)—.cos,ZH(b)-cos [(c)
Now since TII(p) € (0,w), sinIl(p) >0 we have
2 2 2
cos Il(a) + cos M(b) + cos M(c) < 1.

Case 2. P is in a coordinate plane: By symmetry we may
suppose P = Q. Then by Step 4 above we are done if Q7 A.
Case 3. If P = A we are trivially done-

By symmetry we have completed this half of the proof.

"if": Suppose (a,b,c) is an ordered triple so that

2
cosZH(a) + cosZH(b) + cos I(c) < 1.

Case 1. Suppose a,b,c are all non-zero. Let A be the

point on the positive X-axis associated with |a|. Let A' be
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associated with -|a| on the X-axis.

In the XY -plane there is a ray

o

OR, R being on the side of the XY-

plane determined by the X-axis and

A 4

containing the positive part of the

Y -axis, so that

cos Il(a)

«/ cos ZH(a)+coszﬂ(b)

1. 6= mLAOR = Arccos( )

On OR there is a point Q so that

2. cos Il(q) = '\/ZOSZH(a)fcosZH(b)

with q = I[OQ]]S .

Let F Dbe the foot of the perpen-

dicular from Q to the X-axis. Let

f=|[OF]|S. If a>0, cosli(a) >0

and thus [AOR is acute so

cos 6 cos II(q) = cos II(f) by 6.4, i.e.,

cos [l(a)

J cosZH(a)fCOSZH(b)

\/ cosZH(a)+cosz(b) = cos II(a) = cos I(f)

go F is A andthus Q has first coordinate a. If a <0,
cos II(a) < 0 and LA'OR is acute, so cos(w-8) = -cos 6. and
as above -cosll(a) = cosI(f) so F =A'. Thus Q has first

coordinate a.
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Now let B be the point on the positive Y axis which is the
foot of the perpendicular from Q to the Y-axis. Then if 6 < /2,

m[_BOQ =7/2 -0 and

3. cos(mw/2-0)cos II(q) = sin 6 cos Il(q)

] cos b [ o 2ra) +cosI(b)

'J cosZH(a)+coszﬂ(b)

= cos H(tb‘) = cos H(I[OB”S)'

since |cos I(b)] = cos M(|b|). Let Q' be the point of 0OQ so
that Q-0-Q' and OQ = 0Q'.- Let B' be the point of the Y-axis
so that B-O-B' and OB = OB'. Then by vertical angles,

[BOQ = /B'OQ' and by S-A.S., aBOQ 2 aAB'OQ'. Thus by 3.,

if b>0, Q has coordinate b. If b < 0 Q' has coordinate b.
For 6 >wn/2, we use a symmetrical argument with appropriate

changes of signs.

*% We thus know that there is a point Q in the XY-plane with

coordinates {(a,b,0) when a,b and ¢ are as given.

Now let OS be the perpendicular to the XY-plane, andlet P
be the point of OS so P is in the same half plane (of the plane
containing the Z axis and OQ) determined by OQ as-is the

positive part of the Z-axis, with P selected so that
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»
I
cos I(p) = cos I ; ) { which we know exists rp
N l-cos (q)

by our hypothesis and our key assumption). . c

P
Let G be the foot of the perpendicular from

Q
P to the Z-axis. Then by 6.5

A

cos H(][OG](S) sin I(q) cos Ti(p)

*J l-coszl'l(q) cog_l'-l_(izgl)_‘
N/T-cos N(q)

cos H(]c|).

If ¢>0, P has coordinates (a,b,c) using 6.8. If ¢ <0 let
P' be symmetrical to P with respectto OQ. Then by 6.8,
P' has coordinates (a,b,c).

Case 2. By symmetry we need only consider when ¢ = 0.
In that case the point Q described in ** above satisfies the condi-
tions required.

Case 3. If two coordinates are zero the proof is immediate by

our key assumption. Thus we have completed the proof.

6.9.1 COROLLARY. Let P be any point and let (a,b,c) be

the coordinates of P. Let p = |[OP]|S. Then

2
1. sin I(p) = J l-coszﬂ(a)-coszﬂ(b)-cos M(c), and

2. cos Il(p) = \[ coszﬂ(a)+coszl'l(b)+coszl'[(c) .

Proof: Suppose P 7O since p =0 gives trivial proof.
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1. In Case 1 of the "only if" part of the argument in 6.9, Equa-

2 2 2
tion 5. gives sin Il(p) = \/—l-cos ll(a)-cos I(b)-cos II(c) .
2. Since p >0 cosIl(p) =N l-sinZH(p)

= \/ co sZH(a)+coszﬂ(b)+coszﬂ(c)

It is becoming quite tiresome to use the notation cos Il(a),
cos II(x), etc. In the subsequent development a much more frequent
use of cos° Il is necessary. For this reason we introduce a short-

hand notation for the values of this very important function.

NOTATION: If x is any real number "x" will be used to denote

cos Il(x).

At times we will not use this shorthand if it seems necessary to
place greater stress on the use of cos oIl than the shorthand seems
to provide.

It is of extreme importance to avoid any carelessness in the
reading of this shorthand. The results of 6.9.1-2, for example,
appear remarkably Euclidean when written in this shorthand, i.e., if
I[OP]IS =p, p*= '\/g_2+hz+£2 where (a,b,c) is the coordinate triple
for P.

It is only when we keep in mind that, for example, p is the
cosine of the number assigned to the angle of parallelism associated

with the segment class [OP], that the above formula comes to us
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with appropriate meaning.

6.10 LEMMA. Let O and P be distinct points of line £.
Choose the assigment of reals to £ so that O is associated with
0 and P is associated with a positive number. Let A be any
point not on {. Finally let B be the foot of the perpendicular to
£ through A andlet b be associated with B. Then if

6 = m/AOP and I[Ao]ls =r, cos §=b/r.

Proof: Case 1. Suppose B is a
point of OP. Then in triangle AAOB

we have, by 6.4, cos 6 = b/r.

A
v

Case 2. Suppose B = O. Then B o

- )

fl

b=0 and ©6=w/2 and 0 = cosw/2 =cos w/2/r.

Case 3. Suppose B-O-P. Then [AOB is supplémentary to
[AOP and by Definition 2.13, m/AOB = - 6 and, by 6.4,
cos (m-8) = cos I(| b] )/r. But cos (7-6) = -cos & and b <0 so
Mmb) =« - l'[|b| (cf. 3.22.1). Thus cos H(|b|) = -cos II(b) = -b

givingus cos 6 =b/r, as desired.

6.10.1 COROLLARY. Let A,B,O0,P,Q,f,r,b, and 6 be as
above. If A' is any point so that A-O-A', B' is the foot of the
perpendicular to f through A/, I[OB"”S = b', and I[OA']IS =r',

then cos 6 = -b'/r'.



Proof: Let ¢ =m/A'OP. By 6.10,
cos ¢ =b’/r’. However,

cos ¢ = cos(w-0) = -cos O so we are
done.

6.10.2 COROLLARY. Let

166

A

BI

Al

1. A be a point of the XY-plane different from the origin,

2. A have coordinates

(a’ b’ O)’

—_— —_ .
3. OX and OY be the positive X-axis and Y -axis, respec-

tively,
4. m/AOX =6, m/AOY = ¢, and
5. |[Ao]|S = r.
Then
l.if A ison Y's sideof OX, b=rsin®, and
2. if A is on the opposite side of OX from Y, b= -rsin®.
Proof: (1) if 867 w/2 ¢ ==x(r/2-0)
By 6.10 b = r cos(x[n/2-8])
3
= r cos(mw/2-8) A
(a,b
=rsin®. B
If 6=mn/2 P
_ 0
b=z o >
=rsinw/2.
A\ 4




167

(2) Let B be the foot of the perpendicular

|

to the Y-axis from A. Then by 6.4,

1

r cos(m-¢)

-r cos (@). \(p N

cos HI [OB]I
S

N

Now ¢=w/2+86 so b
B
cos HI[OB]|S= +r sin 6. J
. A
Since B is on the negative Y-axis, b = -r sin 0, since

b = —I[OB]!S by definition. If © =w/2, b= -r sin n/2.

6.11 DEFINITION. Let A, O, and P be collinear with A
and O distinct and with (a,b,c),(0,0,0) and (x,y,z) their
respective coordinates. Then

1 if P ison OAR or P=0

ol(a,b, c), (x,y,2)] =
-1 if P-O-A

6.12 LEMMA. If { is the line incident on the points O

and A where O has coordinates (0,0,0) and A has coordi-

nates (a,b,c) so a2+b2+c2 >0, andif P is any point of £,
say with coordinates (x,y,z), then as vectors (x,y,z) =t(a,b,c)
where

ol(a, b, c)(x, v, z)]

Proof: Suppose A is not on a negative axis. Let a, B, and Yy
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be m/AOX, m/AOY, and m/AOZ
for any points X,Y,Z on the positive

rays of the X-, Y-, and Z-axes

respectively. Let P be any other

point of QA . Finally let I[OA]|S =r

and let HOPHS = s where the /

coordinates of A and P are (a,b,c) and (x,y,z) respectively.

Case l. If P 1ison OA, by 6.10 we have

cos a = g_/g = x/s,

cos f3 = E/_I; = X/S»

cos y = c/r = z/s,
i,e., (x,y,2z) =t(a,b,c) where ¢t-= s/r

Case 3. If P-O-A, by6.11.1 we have (as above)
(x,y,2) = -t(a,b,c) where =s/r. Now, by 6.9.1,
t = &&2+X2+52 /«/i2+_192+_c_2.

This together with 1., 2., and 3. and the definition of ¢

completes the proof for A not on a negative axis’. Suppose A

is on the negative X-axis. Then (a,b,c)=1(a,0,0), £ is the
X-axis and thus (x,y,z) = (x,0,0). Thus we see

(x,0,0) = (§2/_a_2)(g, 0,0)¢[(a, 0,0, (x,0,0)] and by symmetry of argu-

ment we are done.
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We now consider necessary and sufficient conditions for given

coordinates to name a point on a given line through the origin O.

6.13 LEMMA. Let O, P, and A be points with coordinates
(0,0,0),(x,y,2z), and (a,b,c) respectively. P is a point of line
QA iff (in vector notation) there is a real number t so that

' 2 2.-1/2
(x,y,2) =tla,b,c) with lt] < (i2+13_ tc ) 1,/ .

Proof: '"only if": If P ison OA, this is just Lemma 6.12 and
we are done.

"if": On OA there is a point Q so that |[OQ]|S = q with
éos l(q) = '\/}_{_ +12+52. Let Q have coordinates (x',y',z'). Then

by 6. 12 we have (x', =t'(a,b,c) where (by using 6.9.1) '~

_q_/'\/a +b +c 0'[ x AR z)]

Thus cos II(w) = £ cos I(w') for (w,w') = (x,x"),(y,y") or (z,2z")
respectively. Examining the construction of the argument for 6. 12
we see that either P has the same coordinates as Q or P has
the same coordinates as the point Q' of OA sothat Q-0-Q'
with OQ = OQ'. Since the planes perpendicular to the X-, Y-, and
Z-axes which determine the points Q and Q' are unique, P =Q

or P =Q' and we are done.

6.14 LEMMA. If A and P are distinct points of the

XY -plane with coordinates (a,b,0) and (p,q,0), respectively,
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and if |[AP]| = m, then sinII(m) =(Nﬁ—gz-92 '\/l-_p_z-g_z)/(l-_:a_p_-_@g_)

S
2z, p. 349].

Proof: Let D and E be the feet of the perpendiculars to the

Y-axis containing A and P respectively. Let F and G be
the feet of the perpendiculars, s and t, tothe X-axis containing
A and P respectively. Finally, let Q be the foot of the
perpendicular to line t containing A (cf. figures b’elow).

By definition we know that I[OF]]S = |é|, I[OD]IS = |b|,
oG]

Ve

({aF]|

|p

fl

, and [[OE]| = |a|. Let [[AQ]l4 =¢c, [[PQ]]g =4,

f, 1[GQ]|S=g, and I[GP]|S=k.

Suppose A and P are eachnot on the X-axis or Y-axis and

1l

S

P

F #G. Then consider quadrilaterals o ADOF, o AQGF, and

N

OPEOG. We apply Lemma 6.5 to get

(i) cos II(f) = cos »H([b[)/sin, (|al), (

(ii) cos II(k)

[¢]

cos I(|q|)/sin TI(| p|),

2t ¢ )
(iii) cos II(g) = sin H(|a-p‘) cos II(f), and §

(iv) cos H(|a-p|) = sin II(g) cos II(c). o

N~

Now letting sgn be the signum func- \NEE J

A Pl

tion and using 6.1, Equations (i) and
(ii) can be rewritten as
(i') cos II(f) = sgn(b) cos II(b)/sinII(a) f

(ii') cos TI(k) = sgn(q) cos II(q)/sin II(p)

A
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Examination of (i), (ii), (iii), (iv), (i'), and (ii') will assure us
that these equations are all true when either of A or P is on the
Y -axis.
Now, if sgn(b) sgn(q) =1 or 0, d= |k-g|. However, if
sgn(b) sgn(q) = -1, d = ktg. Thus by 6.2, we have

sin (k) sin [{(g)
1-sgn(b) sgn(q) cos M(k) cos M(g)

(v) sin T(d) =

If PY4Q, in AAPQ we apply 6.4 to get
(vi) sin [I(m) = sin I1(d) sin II(c).
If P=Q, then d=0, sinll(d) =1, m=c and Equation (vi) still

holds.

Now using (v) and (vi), we get

sin (k) sin II(g) sin H(c)
1-sgn(b) sgn(q) cos M(k) cos M(g) ~

(vii) sin M(m) =

From (ii'), we get

2
sin (k) = 1 - cosZH(k)

1 - coszn(q)/[l-coszﬂ(p)]

2
l-coszn(p)fcos N(q)
l—cosZH(p)

Thus we have
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(viii) sinZH(k) = (1-]3Z —9_2)/(1—32).

Using (i'), (iii), and (iv), we get

H

2 2 2
sinZH(g) sinZH(c) sin I(g) - sin II(g) cos I(c)

2 2
sin II(g) - cos Il(a-p), by (iv),

H

2
sinZII(a-p) - cos II(g)

sinZH(a—p)[l—coszn(f)], by (iii),

i

sinZH(a) sinZH(p) [1- cosZH(b)]

[1-cos M(a) cos H(p)]z sinZH(a)
by 6.2 and (i'),

sinZH(a) sinZH(p)[sinZH(a)-cosZH(b)l

[1-cos M{a) cos H(b)]zsinZH(a)

[1»cosZH(p)][l-coszn(a)—coszn(b)l
[1-cos M(a) cos H(b)]z

i-e.,

(ix) sinZH(g) sinZH(c) = (1-1)_2)(1-&2-}3_2)/(1—3_ Q)Z .

Thus, in the expression of sinIl(m), the square of the numerator is

computed, by (viii) and (ix), to be

2 .2
)

2
(x) [(1-p%-g%) /(1-p2)][(1-p)(1-2%-B%) /(1-2 b)

- (1-p2-gP)(1-a%-b2) /(1-a b)2.

For the denominator we see that
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1 - sgn(b) sgn(q) cos M(k) cos M(g)

M(q) . (b e
=1 - %:—E—H-:g sin [l(a-p) csois T(a) by (i'), (ii'), and (iii),
cos [I(b) cos I(q) | ‘éin M(a) sin (p) by 6. 2

" sin M{a) sin N{p) l-cos N(a) cos M(p)’

1- cos Ml(a) cos M(p) - cos M(b) cos [1(q)
1- cos M(a) cos M(p) '

(xi) 1 - sgn(b) sgn(q) cos M(k) cos M(g) = (1-a p-b q)/(1-a p)-

Since m >0, from (vii), (x), and (xi), we have

sin M(m) = [v 1-a°-b" N1-p°-q°/(1-a b)]/[(1-a p-b @) /(1-a b)]

= Jl-iz-hz ~f1-£2~9.2/(1-i2-h q),
as desired.

Now suppose F =G 70O. Then A =Q and we have

k+f if sgn(b) sgn(q) = -1
|k-f| if sgn(b) sgn(q) =1 or O.
Thus, by 6.1 and 6.2 we have

sin (k) sin TI(f)
1-sgn(b) sgn(q) cos M(k) cos II(f)

(xii) sin [I(m) =

By Lemma 6.5 we have

(xiii) cos II(f) = sgn(b) cos M(b)/sin MM(a), and
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(xiv) cos I(k) = sgn(q) cos M(q)/sin I(p),
so that

2 [1-cos’M(k)][1-cos1(5)]
(xv) sin II(m) = -cos TI(k) -COSs )

[1 cos IlI{b) cos II(q) ]2
" sin M{a) sin M(p)

2
_ [sinZH(a) -CcOS H(b)][sinzﬂ(p) -cosZH(q)l

[sin TM(a) sin M(p) - cos I(b) cos I'I(q)]2

But a = p, so from (xv) we have

[1 '9.2 ‘P_Z][l '_'92 'SLZ]

2
[1-2%-b%11-p%-q°]

[1-ap-b al’

i.e., since m > 0,

sin M(m) = \fl—_a_z—lgz *\[l-pwz-ghz/(l-g__p_-hg_) .

Suppose A and P are onthe X-axis. We consider three
cases.

Case 1. A or P is the origin: m = max{|a],|p|} since
one of a or p=0. By symmetry, let us suppose a 7 0.

If a#io,
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sin H(|a|) sin Ml(a), by 6.1,

\/l»__a;2

= \/1-22-22 JI-BZ-SLZ/(I-iB-P_&):

since b=p=q = 0.

Case 2. O-A-P or O-P-A! m= |a-p| so

sin l(a-p), by 6.1,
= l-gz N 1—32/(1-1}1), by 6.2

=12 b V1-p" g (1-a p-b @), since b=q= 0.

sin [I(m)

Case 3. A-O-P: m = |a] + |p| so

sin [M{m) = N 1—32 N l—p_z/(l-g p) by 6.2 and because a and

p differ in signs.

Thus, just as in Case 2 above we are done since b =gq = 0.
Finally, if A and P are both onthe Y-axis, we use an
argument symmetrical to that for the case of both A and P on the

X-axis to complete the last step of the proof.

6.15 THEOREM. If A and P are distinct points with

coordinates (a,b,c) and (p,q,r) andif [[AP]lS=t, then

sin 1(t) = N 1-2°-p%-¢” Jl-az-az-zzf(l-_a. p-bg-c 1)

Proof: Let D and E be the feet of perpendiculars to the Z-axis
containing A and P respectively. Let F and G be the feet

of the perpendiculars, o and T, to the XY-plane containing A
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and P respectively. Let Q be the foot of the perpendicular to
the line T containing the point A.

We know, by 6.8.1, that F and G  have coordinates

(a,b,0) and (p,q,0) respectively. Let '[AQ”szh, |[PQHS =d,

I[AF]IS = f, |[GQ]|S =g, and HGPHS = k. We know that
|[OD]|S = |c| and |[OE]|SZ |r|. We let I[OF]|s=u and
|[OG]| = v.

Suppose A and P are not both in XY-plane and F ¥ G.

Then by 6.9.1
(i) sin M(u) = N 1-a —}32 , and
(ii) sin M(v) = N l-p™-q~ .

If welet w = |[FG]| then, by 6. 14, we have

S’

(iii) sin MM{w) = \/l—gz—lqz «/ l—p_Z-g_Z /(1-a p-b q)-

A




Examination of quadrilaterals OADOF, OOPEOG,

O AQGF, gives,

(iv) cos II(f) = cos H(]cl /sin TI(u)

= sgn(c c/\/l -a -b by 6.5 and (i),

and

(v) cos I(k) = cos H(|r|)/sin (v)
= sgn(r) r/ I—RZ—QZ , by 6.5 and (ii), and
(vi) cos II(g) = sin Il{w) cos M(f) by 6.5

Finally we get

(vii) cos [I(w) = sin II(g) cos lI(h) by 6.5.

177

sgn(c c\/l-R -q /(1 -a p-bgq) by 6.14 and (iv).

Examination of (iv), (v), (vi), and (vii) will show that these all

hold when either of A or P is on the Z-axis.

If P7Q, inrighttriangle AAPQ, we have
(viii) sin T(t) = sin M(h) sin 1I(d).

We see that (viii) is also true if P = Q.

Now just as in the proof of 6. 14

"

if sgn(c) sgn(r) =0 or 1, d-= |k-g|, while

if sgn(c) sgn(r) = -1, d=k+ g.

Thus
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sin (k) sin II(g)
1-sgn(c) sgn(r) cos (k) cos M(g)

and Equation (viii) becomes

sin I(h) sin M(k) sin M(g)
1-sgn(c) sgn(r) cos M{k) cos M(g)

(%) sin Ti(t) =

Consideration of the numerator of (x) squared gives us

(%) sinzﬂ(h) sinZH(k) sinZH(g)

= (l-cosZH(h)) sinZH(k) s'mZH(g)
= [l—coszﬂ(w)/sinzﬂ(g)] s'mZH(k) s'mZI'[(g) from (iv)
= [s'mZH(g)-cosZH(w)] s'mZH(k)

[s'mZH(w) -cosZH(g)][l-co SZH(k)]

2 2 2 2 2 2 2
(lI-a -b )(1-p -32) c (1-p -q) r
- 1-
2
)

2 2 2
(l-ap-bgq) l-p g

1

(l-ap-bg
by 6.14, (v) and (vi),

2 2 2
= (1-a%p- A 1-pP-g® ) /lrap-b @)

Considering the denominator of (x), we get

(xil) 1 - sgn(c) sgn(r) cos (k) cos I(g)

1-p>-a° e 1-p%-q%) /(1-a p-b @)] from (ii), (vi),

"
—
1
L |
Ir
~
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combining (x), (xi), and (xii), we have

\ﬁ- Z-EZ —_c_z Jl-}zz -9.2-12 /(1-a p-b q)

a
(l-ap-bg-r c)/(1-ap-b g)

sin II(t) =

=1 -2’ b°-¢’ J1 -p°-q%-r’/(1-ap-bg-r o

as claimed.

E
Now suppose F =G 7 O. _P
~ N
Then m is determined to be
D >m
k+f if sgn(c) sgn(r) = -1 > ‘
m = B
|k-f| if sgn(c) sgn(r) =1 or O. || )
3
Thus by 6.1 and 6.2 we have ) .
O -7

~
La:)

sin [I(k) sin TI(f u=v
l-sgn(c) sgn(r)k £ .

(xiii) sin M(m) =

N

By Lemma 6.5 and 6.9.1 we have
F=G

(xiv) £ = sgn(c) g/'\/ 1—3_2—]9_2 , and
(xv) k = sgn(r) 1/'\} 1—}_)_2-9_2 i

Thus (xiii) and the fact that F = G allows us to write

2 2

(1-£7)(1-k
Z_

Lo

)

2]2
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since m >0 we have

N/‘1__%2_]92._32. JT_Ez_ﬂz_Ez

l-ap-bg-cr

sin II(m)

as claimed.

If A and P are on the Z-axis, then the result follows just
as the case for A and P on the X-axis in 6.14 so we shall leave
out the details here. If A and P are onthe XY-plane we apply

6.14 directly. Thus we are done.

6.15.1 COROLLARY. Let P be any point different from the
origin. Let P and I have coordinates (p,q,r) and (i j, k).
Then 1 is the midpoint of segment OFP iff (i, j, k) =¢t(p, g, r)

2 -1
where t = (1+ I-RZ-S -r ) .

Proof: By 6.13, I ison OP iff (ij, k) =t(p, g r) for some
appropriate choice of t. I is the midpoint of OFP iff
(i) Ol = 1P,

Let I =(ij,k), P =(p,g,r). We now see that (i) is true iff

(ii) WNI-I+I =NI-I.IN1-P-P/(1-I-P), by 6.9.1 and 6.15.

This equation is valid iff
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(iii) N1-P-P=1-1P. Now IP-= tP-P for some .t and
(iv) holds iff t= (1-N1-P-P)/P-P

-1
or equivalently t = (1 +NI-P-P) as claimed.

6.16 LEMMA. If

1.2 is any line of the 'XY-plane,

2.4 does not contain the origin O,

3. A is the foot of the perpendicular from O to £,
4. A has coordinates (a, b, 0), and

5.P is a point with coordinates (x,y, 0),

then P is a point of { iffi§+_t_>__zziz+_l32.

1"

onlz if". Let

Proof:
1. |oAllg=r [OPllg=p,
2. X and Y be on the positive X- and Y-axes respectively,
3. X' be on the X-axis so that X'-0-X,
4. 8 = m/AOX, 0'- m/AOX', ¢ = m/AOP, ¢' = m/POX, and

'l = mZPOX'.
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Case 1: OP is interior to

182

/AOX: A and P are on the same \
side of the X-axis so o' =0 - ¢. R
By 6.10 and 6.10.2: P
r
(1) a=rcos b, o ' @ P
(ii) b=+%r sin 0, f: o Xo'
- - < Pumey
< o X
(iii) x = p cos(6-9), v
(iv) y = =p sin(0-9¢), A
where the signs used for r and
\ ° *
p are always the same in (ii) and <€ o\ py ?
(iv). By 6.4 we conclude,
AN 7
(v) p=r/cos ¢ . P
Using (iii), (iv), and (v), we get 1 »
v
(vi) x = r(cos O+sin 6 tan ¢) = a = b tan ¢,
(vii) y = *r(sin 6-cos 0 tan ¢) = b ¥ a tan ¢.
Thus
(viii) *tan ¢ = (x-a)/b provided b 40 or
(viii') #*tan ¢ = (b-y)/a provided a ¥ 0.
Since one of a or b is different from zero, first suppose b £ 0.

Then using (vii) and (viii)

hx=hz+az-azs-
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By a symmetrical use of (vi) and (viii') with a # 0, we also get the
same result.
—
Case 2: OA is interior to

[POX: Inthis case ¢'=86+ ¢.

The proof is just as for Case 1.

with the appropriate changes in sign for (iii), (iv), (vi), and (vii),
with the condition that the signs for r and p wusedin (ii) and (iv)
always be chosen the same.
—
Case 3: OX is interior to
LAOP: In this case ¢'=¢ -06. As
above we get, by 6.4, 6.10, 6.10.2

with A and P on opposite sides r

of the X-axis,

(i) a=rcos b,

(ii) b=%r sin 6,
(iii) x = p cos (¢-0),
(iv) y = #p sin (¢-6),

where the signs for r and p in (ii) and (iv) are always chosen
opposite.
The desired result then follows just as in Case 1.
——>| f . . 1" ' .
Case 4: OX' is interior to [AOP: ¢" =¢ -6'. Again A

and P are on opposite sides of the X-axis and the computation is
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just as in Case 3 with 0 replaced by

1

6' and ¢' replaced by ¢". The

0
selection of signs is the same as in 7\ .
Case 3. y o
. . ¢
Case 5: A is on the X-axis: P

Proof is immediate from Cases 3

and 4 with € and ©' set equal to zero respectively.
Case 6: A = P: Proof is trivial.
2 2
"if'". Suppose P has coordinates (x,y,0) and axtby=a tb .
If P=A, P ison £, asdesired. If P7A, Ilet I[AP]IS = q.

Then by Theorem 6. 15

sin T(q) = ('\/1—_a__2—_l?_2 \/1—§Z~X2)/(1-_q_ x-b y)-

By hypothesis

sin M(q) = (\/l—az—b2 '\/l—xz-y_z) /(l—az—bz)
= '\/l—xz—y;2 /«/l—g_z—b_ = gin M(p) /sin MN(r),

so sinIl(p) = sin 1lI(q) sin M(r). Thus by 6.4.1 AOPA is a right

triangle with right angle at A so P ison { and we are done.

It is well to note that the choice of signs described in Cases
1-4 is not a free choice. The pairing of signs is forced from the
——p —_— — —_—
juxtaposition of the rays OA, OP, OX and OX' and the results of

6.10.2. Lemmas 6.13 and 6. 16 together with the following corollary
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essentially give equations for all lines through the origin and lines in

any coordinate plane.

6.16.1 COROLLARY. If £ is any line of the WIWZ—plane
not containing the origin O, in which W1 e {X,Y, 2},
W, e {xX,vY,2} - {Wl}, A is the foot of the perpendiculars from O
to £, and A has coordinates (a,b,c), and P coordinates

2 2 2
(x,y,z), the P ison (f iff ax+bytcz=a +b +c .

Proof:
1. 1If W1W2-p1ane is the XY-plane, ¢ and =z are zero by
definition and 6. 16 gives the result immediately.
2. If Wlwz-plane is the XZ-plane, b and y are zero and

by an argument symmetrical to that for 6. 16 we are done.

3. If WIWZ-plane is YZ-plane, we get the result just as in 2.

The following results provide us with equations relating the

‘components of the coordinates of certain collinear points.

6.17 LEMMA. If A and P are distinct points of the
XY -plane with coordinates (a,b,0) and (p,q,0) respectively,

then U is a point of the line AP with coordinates (x,y,0), iff

(g-b)x + (a-p)y =29 - p b.

Proof: Let (c,d,0) be the coordinate triple associated with the
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foot of the perpendicular to AP and containing the origin. Suppose
AP is not a line through the origin. Then oneof ¢ or d s

different from zero. By 6.16 we have
(i) catdb=cptdg
or equivalently
(i)  ela-p) = d(g-b).
Let us suppose d 7 0. Then p =a forces q =b in Equa-

tion (ii) and thus P = P'. This contradicts the hypothesis. Thus

when d#0, p#a andwe get,

(ii) c/d = -(b-q)/(a-p)-

Using 6.16 and dividing by d, we get U ison AP iff

Substituting (iii) into (iv) and multiplying the result by (a-p)
gives us,

(v) (g-b)x + (a-p)y = (g-2)c t (a-p)d.

Since (a,b,0) also satisfies the hypothesis of 6. 16, in particular,
(v) becomes

(vi) (g-bla + (a-p)b = (g-a)c + (a-p)d,

or equivalently

(vii) 29 -bp-=(g-a)c+(a-pd.
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Substituting (vii) into (v) we get the desired equation.
(viii)  (g-b)x +(a-ply=ag-bp

If c 70, we getthe same result by symmetry.
Now suppose AP contains the origin. Since A and P
- . 2 .2 2, 2
are distinct, either a +b  #0 or p +q 7 0. Suppose the former.

Then by 6. 13 we immediately get

(ix) x = a\/(§ +y )/(a +b ),

and

bJ(x2+x2)H§F+EZ), iff U ison AP

t

(x) Yy
Suppose that a 7 0. Then from (ix) and (x) we have,

(xi) y=bx/a or ay-bx=0

If P is also not the origin, by a symmetrical argument, we get
(xii) Py -9x=0.

Either (xi) or (xii) applied to the specific coordinates (a,b,0) and

(p,q,0) will give,

(xiii) ap-bg=0.

Thus from (xi), (xii), and (xiii),

(xv) (@-b)x + (a-p)y =ap -bgq as desired.

This is also valid when not both A and P are different from the
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origin, and we are done.

6.17.1 COROLLARY. If P and P' are distinct points of
the XZ-plane [YZ-plane] with coordinates (p,0,q) and (p',0, q')

[(0,p,q) and (0,p',q")] respectively, then U is any point of line
P

PP' with coordinates (x,0,y) [(0,x,y)], if and only if

(@'-@)x + (p-p)y=p4a' -p9-
Proof: Immediate by symmetry from 6.17.

6.18 THEOREM. If A and P are distinct points with
coordinates (a,b,c) and (p,q,r), respectively, then U is any
point of line = AP with coordinates (x,y,2), iff
(x,¥,2) = (p. g, r) +t{a-p,b-g, c-1) [in vector nofation] with
t = (w-s)/(d-s) where (w,d,s) e {(x,a,p),(y.b,q),(z c, r)} and

d-s 7 0.

Proof: Let A' P, U'; A",P",U", and A",P",U" be the
"feet" of the perpendiculars to the XY-, XZ- and YZ axes, respec-
tively, and containing A, P, and U respectively. From 0.18,
0.20, and 6.8.1 we see that these points
have coordinates as follows:

A' _'(a: b: 0): P' "(P: q: 0): U' '_(X: Y, 0):

A" "(a: O: C): P” "(P: O: r): U" ""(X: O: Z):

AHI__(O, b: C): P"'——(O: q, r): U”"'(O: Yy, Z)-
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Applying 6. 17 and 6. 17. 1, we get the results that U', U" and U"

are as described iff

and

which in turn give, respectively,

(i) (g-b)x + (a-ply = (4-b)p * (2-p)q
(ii) (r-o)x + (a-p)z = (r-c)p + (a-plr ,
(iii) (r-o)y + (b-g)z = (r-¢c)q + (b-9)r -

Now if each of the differences a-p, b-q, c-r 70 we get

(iv) (x-p)/(a-p) = (y-9)/(b-q) = (z-r)/(c-x) = ¢

or

(v) (x,¥,2) = (p,gq,r) +tla-p,b-gq.¢-1) .

If exactly one of the differences is zero, say a-p = 0, we have for

example (p,b,c), (p,q,r), (p,y,z) are the coordinates of A, P,
and U respectively and examination of Equation (1), (ii), and (iii)
will give (y-q)/(b-g) = (z-r)/(c-r) =t and Equation (v) holds iff U
is a point of AP.

Since A and P are distinct, not all the differences can be
zero. Hence t is always defined. Our above argument (by sym-

metry) always assures us that t exists and has the same values for
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given points A and P, thus removing any possible ambiguity in

defining t as the given quotient and we are done.

6.18.1 COROLLARY. Let A, P, U be points with coordi-
nates (a,b,c), (p,gq,r) and (x,y,z) respectively, then A-U-P

iff (x,y,2z)=(p,q.r) +tla-p,b-qg,c-r) with 0 <t <1l

Proof: If A-U-P, then A, U, and P are collinear and by 6.18,
(x,y,2) = (p, 4, r) + tla-p,b-g, c-r) where t=(w-5)/(d-g) where
(w,d, s) € {(x,a,p),(y,b,q),(z,c,r)} and d-s # 0.

Since A and P are distinct, one of a-p, b-q, c-r is
non-zero. Suppose a-p # 0. Then the planes a, f, and v,
perpendicular to the X-axis at A', U', and P' and containing the
points A, U, and P, respectively, contain the points A, U, and
P of line AP with A-U-P. Hence by Appendix A-2, A'-U'-P'.
The points A', U', and P' have coordinates (a,0,0), (x,0,0) and
(p,0,0). Now x is between a and p from the definition of the
assignment of numbers to the coordinate axes. Thus a < x < p or
a>x>p. Thus a-p<x-p<0 or a-p>x-p>0 i.e., either
0 < -1(x-p) < (-1)(a-p) or O < (x-p) < a-p. Hence 0 < }T:fg= t < 1.
By symmetry we are done.

Let (x,y.2z) = (p.q,r) +tla-p,b-q,c-r) with 0<¢t<1.

Since ~ A and P are distinct, one of a-p, b-q, c-r is not

zero. Suppose a 7 p. Then by 6.18 and direct computation
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t = (x-p)/(a-p) and U is a point of AP. By an argument
analogous to that above we get A-U-P. By symmetry of argument

we are done.

6.18.2 COROLLARY. Let A, A', A" be points with coordi-
nates (a,b, c),(a',b',c"), (a",b",c"), respectively, online [
which has an equation (x,y,2z) = (p,gq,r) * t(u-p, v-q, w-r). Then
A-A'-A" iff the values k,k',k" of t associated with A, A’ A"

have the property that k < k' < k" or k" <k'<k.

Proof: From 6.18.1 we know A-A'-A" iff

(i) (2", b',c") = (a, b, c)(1-j) + (a",b", c")j, where 0 <j <1,
and
(ii) (2" b c) = (a",b", c")(1-i) + (a, b, ¢)i, where 0 <i<l.

From our hypothesis and (i) and (ii), we have

(iii) @' b', c" = [(p, q, ) (1-k)+(u, v, w)k](1-j)
+ (e, g, r)(1-k")Hu, v, wk"]j ,

and

=

N
o

o
[0
i

[(p, g, p)(1-k")+(u, v, wk"](1-i)

+ [(p, g, £)(1-k)+(u, v, wkli -
From (iii) and (iv),

(v) @' b, c" = (p, g, r) + [k+j(k"-k)(u-p, v-q, w-1r) ,



(vi) @'b'c" = (p,g,r) + [k"+i(k-k")(u-p, v-q, W-1) -

Thus from the hypothesis

il

(vii) k'

H

(viii) k'

If k' >k, (vii) gives
If k2> k", (vii) gives

This completes the proof.

6.19 LEMMA. If a

1. A is the foot of the perpendicular to a containing the

origin,

2. A has coordinates

3. U is any point with coordinates

then U

Proof: If O, A, and U

I[OUHS = s, and I[AU]IS =u, then
Z 2
sin l(r) =N1-a -b —_C_Z, by 6.9.1,
2
sinl(s) =N1-x -y -z , by 6.9.1,

k +j(k"-k), for

k" + i(k-k") . for

k < k'

k > k'

is a pointof a iff ax+bytcz

0<j<1,

0 <i<1l1.

while (Vﬁi) gives k' < k'

while (viii) gives k' >k'.

is a plane, so that

(a,b,c)? (0,0,0), and

(x,y,2),
2 2
= _g._2+h tc .
are noncollinear, with |[OA]|

2 2 2
sin II(u) ='\/T—_a_ -b -¢ \[1-3;_ -y -z /(1-ax-by-c z),

Then we know AQUA

A iff

sin II{s) = sin II{r) sin I(t),

is a right triangle with right angle at

(cf. 6.4.1). But

by 6. 15.

192
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iff

iff

axtby+cz=a +b +c, asclaimed.

By the definition of perpendicularity for a line and a plane and the

uniqueness of perpendiculars to a line at a point A, we conclude

2 2 2
u, as given, is on a iff g§+hz+_c__£:a +b tc

By 6.12, O, A, and U are collinear iff (x,y,2) = t(a,b, c)

where t = ('\[§2+x2+5_2 /\[gz'l']gz‘l'gz)(f[(a,b, chix, vy, 2)] -

2 2 2
2§+hx+35:(9_+92+gz)t:32+9 +c” iff t=1.

Now t = [cos M(s)/cos N(r)]o[(a,b,c), (x,y,2)] =1 iff s =r.
To have of(a,b,c), (x,v, z)] = 1 under these circumstances we

necessarily have (a,b,c) = (x,y,z). Thus U =A (cf. 6.9.1, 6.11,

2.2

6.12). Thus the equation ax+tbyt+tcz=a + + ¢ is trivially

|o

true when the above conditions are given for U and A.

6.19.1 COROLLARY. The perpendicular bisecting plane of the
segment OP (where O is the originand P has coordinates
(p,q,r) # (0,0,0)) isthe plane a which has an equation of the form

2 2 ) 2 2 2 -1
axtbytcz=a +b +gz where (a,b,c) = (p.q.x)(1#NT-p-g-r) -

Proof: Direct from 6.19 and Corollary 6.15. 1.
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Before stating the next theorem we make some relevant observa-

2 : 2 2
tions. If 1 >a +‘_QZ + SZ >d2 and k = d/(_a_z‘l'h +c ), then both

(a,b,c) and (ak,bk,ck) determine points of Lobachevskian
geometry. The former triple determines the point A whose
coordinates are (a,b,c). This follows from 6.9 since A has

2 2 2
coordinates (a,b,c) iff a +b +c¢ < 1. The latter triple also

determines a point. Clearly

(ak)™ + (bk) + (ck) = (gz+gz+gz)d2/(gz+hz+gz)2

42 /(_a_LZ+EZ+_9_2) <1l.

i

Thus we know |ak| <1, |bk] <1, and |_c_k| < 1.
-1 -1 -1
Let a =cos (ak), B =cos (bk), y=cos (ck). By the
definition of the Lobachevskian function [I, there are unique num-

bers ‘a', b', and c¢' so that

Then by definition, a'=ak, b'=bk, and c¢'=ck and, by 6.9,
(ak, bk, ck) determines the point A' of Lobachevskian geometry
whose coordinates are (a',b',c').

Furthermore the point A' is on the line ©OA. This follows
because

< S -
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and hence by 6.13, A' ison OA as claimed.

These results allow us to state the following theorem.

6.20 THEOREM. Let A be a point, different from the

origin, with coordinates (a,b,c). Let d be any number such that

Let
$ = {X:X is a point with coordinates (x,y,z) so that

xtbytcz=4d}.

Then P is a pointof $ iff P is a point of the plane a which
is perpendicular to the line QA at the point A' whose coordinates

are (a',b',c') where a'-=ak, b'=bk, c'=ck with

2
k =d/(a +EZ+£2).

Proof: As was observed above, the point A' is certainly deter-

mined under the stated hypotheses of this theorem.

"if": Suppose A' is not the origin. Then by 6.19, P with

coordinates (x,y,z) is on a iff

EZ+EY+£Z:i@+E@+£@:
2 2
i.e., (a xtb ytc z)k = (a *b tc )k ,
2 2 2 2 2 2
or axtbytcz=(a +tb +tc)d/(a +tb tc) =4,
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Now suppose A' is the origin. Then k=0 and d=0 by
necessity. Suppose P, O = A', and A are non-collinear. Then

let r = |[OA]|S, s = |[OP]|. and h = |[AP]|S- By the definition of

S

perpendicularity for lines and planes AAOP is a right triangle with
4\

right angle at O. Thus by 6.4.1

we must have

(i) sin II(h) = sin II(r) sin TI(s).

Using 6.9.1 and 6. 15 Equation (i)

becomes

Jl_iz_hz_gzhjl_iz_xz_éz

l-ax-by-cz

(ii) vz

Equation (ii) is true iff 1 -ax-by-cz=1 or, equivalently,
axtbhytcz=d=0.
If P ison OA then P =0 and trivially

a

I%

+Ex+££=d20.

Thus P is in $, so this half of the theorem is proved.
"only if": Under the same conditions for (a,b,c) and d as given
in the hypothesis, consider the Euclidean analytic geometry equation
(iii) axtby+tct=d.

In Euclidean analytic geometry, (iii) describes the set of all points of

the Euclidean plane normal to the line with equation
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(iv) (X, 4, &) = tla,b, c)

where the parameter t has domain the set of all real numbers.

The line described by (iv) meets the plane described by (iii)
in the Euclidean point (ak, bk, ck) where k = d/(_a_1_2+_]_3_2+_92). c e
This all in Euclidean geometry of course.

However, our observations preceding the statement of this
theorem assure us that, under the hypothesis of this theorem,
(ak, bk, ck) determines a Lobachevskian point A' with coordinates
(a',b',c') sothat (a',b',c') = (ak, bk, ck), A' is a point of OA,
and A'7 A since k7 1.

Now let P be any point of OA in $. Then
(£v.2) = (@boj and (a4b2+cd)j=d e, j=alaipite’) =k
and thus P = A'. Thus A' is the only pointof OA in $ and
conversely.

Now let P be any point of $ different from A'. Further-
s = [[a'P]]

more, let: h = I[AP]IS, r = HAA'”S» S

By 6.15 and the definition of $, d, and k, we have

sin I(h) = [(1—3_2—]_3_2—5_2)(1—XZ—X2—£2)]1/2/(1—d) ,
sin N(r) = [(1-12-92-52)(1-azkz-_zkz-czkz)]l/2 /(1-4d) ,
sin (s) = [(1-x2-y2-22)(1-a2k2-b2kZ -2 2 p1-aw) |

since
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l-d =1 -ax-by-cz
1-4d =1 -(a +hz+gz)k,
l1-dk = 1 -(ax+by +c z)k

But

2 2.2 2.2
2022 0 22 o1 L Btk

._.
]
j
.
]
=
]
|o
pa
i

1 -4dk .

Thus by substitution and direct computation we have
sin II(h) = sin [(r) sin [I(s) .

Thus by 6.4.1 A'P is perpendicular to A'A at A' andthus P

is'in a and we are done.

The theorem above tells us a great deal about the "equation" of a
given plane a. It is not constructive in the sense that a method is
given for explicitly writing an equation of the plane determined by
three specific non-collinear points. Such an explicit constructive
formulation can be readily given if we make use of some Euclidean
results on the triples associated with the coordinates of the three
points given. One must carefully read the next few remarks to keep
fully in mind when the results are Euclidean on the triples (x,y, z),
etc. and when they are Lobachevskian results.

—_ —

Let V = (p-i,g-j,r-k), W = (u-i,v-j,w-k) be two vectors

— ey e

determined by the coordinates of I, P, U. The vector A=V x W
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is in the direction of the Fuclidean line normal to the Euclidean plane
detéermined by the Euclidean points (i,j,k), (p,q.r), (4, v, w). In

particular,

A = [(@-i)(w-k) - (r-K)(v-i), (r k) (w-i) - (p-i)(w-K), (p-i)(v-1)-(g-i)(u-i)]

From analytical Euclidean geometry [cf. 11, p. 87 ff. ] we know that

the plane containing the given points has equation,
(i) a'x +bly+tclz=4d",

where the perpendicular distance from the plane to the origin is

[2,2, 2 .. . .
|d| /INa " +b +c . Now each of (4i,],k), (p,g,r), (4,¥v,w) is interior

2
to the unit ball so necessarily a' +b' +c¢' >d' .
iy 2 _— 1 1 IZ - n

Furthermore |A|” =a'" +b' +¢' =square of "the area of the
parallelogram, two of whose adjacent sides are ¥ and W" [17,
p- 68]. Elementary computation assures us |K‘2 < 4 since each
of the points defining V and W are inside the unit ball. Thus,
letting (a,b,c) = (

2 2 2
1>a +b +c¢ >d and (i) becomes

a',b',c¢")1/2 and d=d'/2 gives us
2
(ii) ax + by +>£z = d.

Restriction of (x,y,z) to values of (x,y,z) so that

x +y +2z <1 gives us the following result from 6.20:
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6.20.1 COROLLARY. Let I, P, and U be any three non-
collinear points of Lobachevskian space with coordinates (i, j, k),
(p,q,r), (u,v,w), respectively. X, with coordinates (x,y,z), is
a point of the plane determined by I, P, U iff ax+bytcz=4d
where (a,b,c) = 1/2(Vx W) with V = (p-i, q-j, r-k),

W = (u-i,v-j, w-k) and where d=aitbjtck. Note that in

particular d= (igw-irv+tjiru-jpwtkpv-kgul/2.

We now recall a common relation which is generally used with-
out being explicitly written down. Since it is so well known we do not
assign it a specific number in our sequencing.

An equation f(x,y,z) = ¢ is said to be equivalent to equation
g(x,y,z) =d iff their solution sets are the same. This is an equiva-
lence relation on the set of equations with three independent real
variables. This is a common relation and the verification that it is
an equivalence relation is both simple and obvious so it will not be
formally given here.

This relation allows us to extend the results of 6.20 to

6.20.2 COROLLARY. (x,y,z) is in the solution set of an
equation from the equivalence class of equations of three independent

real variables having the equation ax+by +tcz=d with

2 2 2 2 .
1>a” +b +c¢ >d” asarepresentative iff the point P with

coordinates (x,y,z) is a point of the plane a which is
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perpendicular to QA at the point A' whose coordinates are

2,2 2
(ak, bk, ck) with k =d/(a +b +c ).

2 2 2
Proof: (a,b,c) names some point since a +b +c <1 andthe

remainder of the theorem is direct from 6.20.

At this time we pause for a moment in our development to con-
sider what we have developed so far. We have shown upon the basis of
our axioms and/or basic assumption that:

. . . . . 2 2 2
1. P is a point with coordinates (x,y,z) iff x +y +z < 1
(6.9).

2. If A and P are distinct points with coordinates (a, b, c)

and (p,q,r), and t:|[AP]|S, then

2 2

sin II(¢) = \/(1-3_ % )(1-32-&2-12)/(1:%2 -bg-cr)
thus essentially giving us a distance formula (6.15). (In fact
we can do exactly that using 5. 69 and the natural log func-
tion.)

3. If A and P are distinct points, the points of line AP
have coordinates (x,y,z) satisfying the formulas
(x,v,2z) = (p,q,r) + tla-p,b-q,c-r) for appropriate values of
t (6.8) which, by 6.18.2, gives an analytic expression for
betweenness.

4. Finally we have been able to characterize the relation of

incidence between planes and three non-collinear points in
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terms of solution sets of certain classes of equation (6.20.2).
These theorems characterize various notions about points and
their interrelationship with lines, planes, and numbers. Their planar
counterparts have been considered by Beltrami [1, pP- 284—342],
Klein [7, p. 573-625] and Borsuk [2, p. 334-345] in various degrees
of detail and upon various axiomatic bases. Beltrami and Klein did
the necessary work to allow us to describe what Borsuk calls the’

"Beltrami coordinate system on [a] plane..." [2, p. 341-344].

Borsuk, using his own earlier work relating to projective planes,
considers analytic (Cartesian) geometry of the plane, CZ’ as a sub-
space of projective (analytic) two space, P, and defines what he

calls-Klein space, K to be the interior of the unit disk in CZ'

2
He uses the points of K, as the points for what he calls:the
"Klein-Beltrami" model [2, p. 245 ff.]. In this model he develops a
measure using preservation of crossratio by projective transforma-
tions together with the properties of the subset of projective trans-
formations which leave K, fixed. He develops an isometry

2
between K2 and a Lobachevskian plane with coordinatization so that
point P with coordinates (x,y) (by our coordinatization) has
Beltrami coordinates (x,y) [2, p. 341-344]. From this he shows
Lobachevskian geometry of a plane as described by his axioms is

categorical [2, p. 344-345]. However, our problem has been harder

in that Hilbert's axioms are much more primitive (as we have noted




203
earlier) and also we are concerned with space Lobachevskian
geometry and the Poincaré model which is in Euclidean space.

If we extend the notion of the Beltrami coordinate system to
assign P (with our coordinates (x,y,z)) the coordinates (x,y,2),
6.9 assures us we have an obvious map from Lobachevskian space
. . . . 3 . 3 3
into the interior of the unit ball B in E”=R”. 6.18 and 6.20.2
assure us that the lines and planes are mapped in an.obvious way to the
. . . . 3 . 3 . .
intersection of lines and planes (in E~) with B . It is neither our
desire nor of any real value to our development to further consider
this model except to explain the evolution of the map from
ILobachevskian space to the open unit ball B3 which we will describe
shortly.

As one examines the ways one might possibly construct an
isomorphism between Lobachevskian space and the Poincaré model,
the results summarized above and a study of the so called Beltrami-
Klein model direct one to an examination of the plane Poincaré model
and the Beltrami-Klein model for ideas. Kutuzov discusses various
interpretations of Lobachevskian plane geometry [8, p. 560-570].
Kutuzov states:

If we construct a hemisphere the equator of which
coincides with the circumference of the Beltrami map

and orthogonally project this map upon the hemisphere,

and if we then stereographically project the hemisphere

from a pole S which lies on the equator onto a plane a

perpendicular to the diameter passing through the pole

of projection S, we obtain on the plane a Poincaré's
...model of the geometry of Lobachevskii (sic) [8, p. 570].
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(His accompanying figure makes clear what this translation
leaves somewhat unclear. His figure is shown at the right.) This
leads to the consideration of the
three-space analog of this construc-
tion, i.e., a projection of the unit

3 .
ball B into the lower
"hemisphere" of the "four sphere'

2 2

2 2
> = {(x,y,z2,w):x ty +z +(w-1) =1},

4

and s tereographic projection of this

hemisphere from (0,0,0,2) into the "hyperplane" with equation
w = 0. This maps B3 into the open ball with radius 2. Shrinking
. 3 3
by a factor of 1/2 gives a map from B~ — B .
We now describe analytically the construction of this pairing of
points so roughly outlined above.

3 .
Let (a,b,c,0) be a point of the unit three-ball B viewed

as a manifold of E4- Let

2
24 = {(x,y, 2z, wk x2+y2+z2+(w—1) =1 and w< 1} .

Let T =(0,0,0,2). Then the projection of (a,b,c,0) onto 24

2 2 .
is the point (a, b, c, 1-\/1—a2-b -c ). Now the "line" through

(0,0,0,2) and (a,b,c,d) of X, has equation:

(x,y,z,w) = (0,0,0,2) +t(a,b,c,d-2) where te R,



/i'e' (X, Ys Z, W) = (tas tbs tC, 2+t(d'2))

For any point on this line with fourth coordinate 0,

2 +t(d-2)=0, i.e., t=2/(2-4).

Thus

(x,y,2,0) =(2a, 2b, 2¢, 0)1/(2-4d) .
Thus the stereographic image of (a,b,c,1- l-az—b —CZ) is
(2a, 2b, 2c, 0)(1/(1+'\/1-a2—b2-c2) ). Shrinking by 1/2 gives

(a, b: c, O) - (a: b, c, O)[l /(1+J1-_a_2-hz's_2) ] .

This leads to the following definition:

6.21 DEFINITION. For each point P with coordinates

(p,q,r), we define

—-—— - , 2 2
(p,q,r) = (2,3,1)[1/(1+ 1—22-3 -r )] .

6.22 LEMMA. Let A and P be any points with coordi-

nates (a,b,c) and (p,q,r), respectively. Then

(as b, C) = (P, q: r) lff (a, b, C) = (P, q, r)'

Proof: The "only if" part of the argument is obvious from the
Definition 6.21.
Now suppose (a,b,c) = (p, q, r). Then by 6.21

(a,b,c)k = (p,gq,r)j where
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_ 1

1
k = and j = .
2 2 2
1+\[1~_a.2—b.2-_c_ 1+N1-p"-9"-r

Suppose j < k. Then j/k <1 and (a,b,c)=(p.q 1] /k

a<p, b<g, c¢<r. Thusif a=|[OA]|S and B=|[OP]|S

then T(a), T(B) € (0,7/2] and by 6.9.1,

~ 2 2
sin I{a) = '\/1~;a_2—h2—_q_2_>_'\/1-p_2—g_ -r = sin nepe).

Hence
1 +sinIl(B) <1+ sin M(a)
and
S T
1< 1+sin (a) - l+sin I (a) :_j_
— 1+sin II(B) 1 k

1+sin 1T (B)
so 1<j/k<l giving j=k and (a,b,c)=(p,q1r). By
symmetry, if j >k, we have (a,b,¢c) = (p, 9, 1) Since

cos oIl is one-to-one, we are done.
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SO

6.23 THEOREM. P is a point of Lobachevskian geometry with

—2 -2 =2
coordinates (x,y,z) iff x +y—2+z < 1.

Proof: If P is a point with coordinates (x,y,z) and p = I[OP”S

then
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-2 - —2 2, 2 f 2 2 2 2 2 24-1
x +y2 +z = (_}Ez-i-x tz 1t2N1-x -y -z +1-x -y -z ]

= cosZH(p)/[H- sin I'I(p)]2 by 6.9.1

_ 1-sin T(p) < 1
l+sin T(p)

since 0 < sin ii(p) < 1.
- - = . . . —2 =2 2
Now let (x,y,z) be as defined in 6.21, with x +y +z < 1.

- == -2 =2 =2 w
Then clearly (u,v,w) = (x,y,2z)2/(1+x +y +z ) has the property that

-2 —2 —2

2 2 2 4(x2+y2F7)

u +tv +w = 2_2_22<l.
[1+x ty +z ]

Furthermore each of u, v, w is less than one in absolute value.

Now let Xy T W Yo TV, Zy T W Using 6.9 let (xo,yo,zo) be the

— - —

unique point corresponding to (EO’XO’E-O)' Then Xg = % Y =y

and z0=z since
(xo,yo,zo)
2 2
= (u,v,w)[1/(1N1-u"-v -w )]
_ (; - ;) 2 1
- ,Y, -
=2 —2 -2 [ =2 —2 =2 =2 2 22,222
l+x +y +z 1+ l+2(x2+y2+z2)+(x ty +z ) -4(x ty +z )
-2 —2 =22
(1+x +y +z2)
= (xy.2) =2 —2 =2 2
(1422 +y 12 J [1-(x"+y"+2)]
= (x,y,2)

as claimed and by 6. 22 we are done.
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6.23.1 COROLLARY. Let P and U have coordinates

(p,q,r) and (u,v,w) respectively. Let I[PU]IS = § and

P = (P, q, r) U = (u, Vv, W)' Then

(1-P+ P)(1-U+U)

(14P- P)(1+U-U)-4P+ U

sin TI(§) =

Proof: Referring to the computation used in 6.23 we know

(p, g, r) = 2(p, q,-r_) /(1+P- P). Hence by symmetry and 6,15 we have

- =1/2

11211420 5+T. 0)%-4(T-U)]

[1+2B. P+(B- P)%-4P-P]
(1+P- P)(1+U"* U)

sin T1(§)

4P. U
(1+P- P)(1+U- U)

1-

(1-P-P)(1-U.U)

(1+4P-P)(1+U-U)-4P- U

as claimed.

Examination of the argument of 6.23 will assure us that for any
point P with coordinates (x,y,z), we have

- - - —2 =2 =2
(x,7,2) = (x, v, z)2/(1+x +y +z ). From Corollary 6.20.2 we thus have

6.24 THEOREM. (x,y,2z) is in the solution set of an equation
from the equivalence class of equations of three real variables having

the representative equation
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-2 —2 - - - - 2 2 2 2
D(x +y +z2+l) + Ax + By + Cz = 0 with A +B +C~ >4D

iff the point P with coordinates (x, y, z) is a point of the plane o
which is perpendicular to the line OQ at the point Q' whose

coordinates are

2 2 2
(——?k,-?k,—%k) with k = 4D/A"+B +C.

Proof: Justlet A = -2a, B = -2b, C= -2¢, D=4 in 6.20.2 and

use the observation preceding the statement of this theorem.

. 6.24.1 COROLLARY. If P is any point, different from the
origin O, with coordinates (p,g,r), then the perpendicular
bisecting plane a of the segment OFP has a representative equa-

tion of the form

_2 — ———a —— —

—2 —2 —2 2 —
(1/2)(p +q +r )(x +y +z2+l) -px-qy-rz=0.

Proof: From 6.19.1 we know a has an equation of the form

2 2
axtbytcz=a th +22, where
(a,b,c) = (p.g, x)(1N1-p -g -r ). But, by Definition 6. 21
(a,b,c) = 1/2(;, E, r) and the corollary follows directly from 6.24.

From 0.20 we know that two distinct planes with a point in com-
mon have a line in common. If { is any line we may use axiom

I,3,8 to get, first, a point not on {, thus a plane a containing £,
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and, second, a point noton a, andthus a second plane f, dis-
tinct from a, which also contains £. We conclude that for any
two distinct intersecting planes we have a unique line and for any line
? there exist distinct planes whose common line is {. This,

together with 6.24, leads us to state:

6.25 THEOREM. U is a point of line £, with coordinates
(x,y,z), iff (x, ;, z) is in the solution set of a representative pair

of equations from the equivalence class of pairs of equations having a

representative pair of the form

—2 —2 —2 - - —
D(x +ty +z +1) + Ax + By + Cz =0

- -2 =2 - — —
D'(x2+y +z +1) + A'x + B'y + C'z = 0
where
2 2

1. A +B2+C2>4D2 and A'2+B'2+C'2>4D'-

2. The equations have at least one solution .

A B C D

3. rank (A' B' ¢' D'

) =2

Proof: We only need to observe that condition 3. is necessary and
sufficient to assure the normal lines to the two planes are not perpen-
dicular to a common plane. This will assure us that the planes meet
in at most a line if they meet in a point. A direct application of 6. 24

completes the proof.
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We now turn our attention to an analytic formulation for
betweenness-in terms of the "over-bar" triples. Let A, P, U be
any points with coordinates (a,b,c), (p,q,r) and (x,y,z) respec-

tively. From 6.18, we know U is online AP iff
(i) (x,y,2) = (p, g, £)(1-t) + (a,b, o)t

with t = (w-s)/(d-s), where (w,d,s) ¢ {(x, a, p), (y, b,q), (2, c, 1)}

and d-s # 0. From (i) we see that for t in an appropriate open

interval we have

(ii) x = p + t(a-p) = £(t),
(iii) y=9q+ttb-q) = glt),
(iv) z = r +t(c-r) = hit),

where f, g, and h are monotomic by 6.18.2 and the proof of
6.18.1.

Thus, by Definition 6. 21,

,\
-
o
=
|
il
A
L ad
il
.
fad
L ad
=
=
2
L ad
=

(iii")  y = G(t) = g(t)k(t),

H(t) = h(t)k(t),

N |
n

(iv")

where k(t)=1/(1+\/1—f2(t)-g2(t)-h2(t). Clearly F,G, and H are

also monotomic and A-U-P iff t <t <t or t >t >t
a u p a u P

where tx is the parameter associated with point X of AP. We

have thus proved most of the following theorem.
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6.26 THEOREM. Let A, P, U have coordinates (a,b,c),
(p,q,r), and (x,y,z), and U be online AP. Then there exist
monotomic functions X = F(t), _}; = G(t), z = H(t) with t in an

open interval. If such a parametric formulation is given, A-U-P

iff t <t <t or t <t <t .
a u p p u a

Proof: It is sufficient to apply 6.18. 2 directly to complete the

argument.

6.27 LEMMA. Let P and U be distinct points different
from the origin O and not collinear with O. Let them have
coordinates (p,q,r) and (u,v,w). Further, let P = (p,q,r)

and U =(4,v,w). Thenif 6 = m/POU, cos 6 = p.U/WP-PNU.U).

Proof: Let U' be the foot of the perpendicular from P to OU.
Let U'=tU. (The existence of an appropriate t is assured by
6.13.)

Case 1. U'=0: This means QP | QU and cos 8 = 0. In

——

right triangle AOPU we use the sine /
formula of 6.4 and 6. 15 to get P
NT-B-BNT-0-T

1P U =~N1-p-PNI1-U'T,

which, since PP and U-U are both

-\6

between O and 1, istrueiff P-U = 0. U'T0 U

Thus the theorem is true for /POU a right angle.
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Case 2. U' =1U: By 6.4 we have

cos 8 =NT-U/NB-P = U U/WNB-ENT D).

Using the sine formula in 6.4 and 6. 15
(1-U- UNT-B P

we get N1-P-P = 1-p U o

so that 1-U.U = 1-P-U or equivalently

U-U = P-U. Thus the theorem is proved for U'=10.
Case 3. O-U'-U: 0<t< 1. By

6.18, using 6.4 and 6.15 again, we have

for triangle APUU',

Z
o
g

Z
&
=

{
5
I
Ta
I
&
Ic

1-P-U (1-P-U')(1-U-U" - U U

PN

3
>

giving us (1-P-Ut){(1-U-Ut) = (1-P-U)(1-U-Ut ). This is equivalent to

i
o
]
=l
[«
w

2
U-Ut" - (P-U+U-U)t + B-U

20U
L ., BU
u-u
But 0<t<1 so t=="2>0 and |P-U|=P-U . Hence
2
Jorg Juud Jewireu
0 TJ5F  NE-BE | NEE

and we are done for O-U'-U.
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Case 4. O-U-U’: [POU is acute and from absolute geometry
considerations, the perpendicular from U to OP will meet OP

at a point P'. Apply Case 3 to this symmetrical case.

Case 5. U'-O-U: By 6.18.2 we F
know t <0. In righttriangle aAPUU',
P-U
we apply 6.4 and 6.15 to get t :EEI_
just as we did in Case 3. Now )
NT T U © U

cos 0O

~cos ¢ 7 - g
0s ¢ 5

Ju-u t° Je v’ |p.U]

NB-P  NE'PNU-U  NE-ENT'D

2
since U-.U >0. But t< 0 forces '\/(_12-_) = -P-U and we are

done.

6.27.1 COROLLARY. Let P and U be distinct points dif-
ferent from the origin and not collinear with the origin O. Let P
and U have coordinates (p,q,r) and (u,v,w) respectively and

u,_\-r,_\:v). Then if © = mLPOU,

—

let 1—3=(p,q,r) and U =

cos O = I_D'EF/('\I--IS'—I5 '\/E'ﬁ) .

Proof: From 6.21 we know

P = Pk where k = (1+x/1-ga_P)'l.
Furthermore

- -1

U =U4 where £ = (1+I1-Us0)
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Now by 6. 27,

P U/WE-BNT-U

cos 0O

"
Ig

» Ukt /(kINP-PNT-T

f’--fl/(\/-f’»—f’ NU-U

1]

since k,{4 >0, and the claim is proved.

In his thesis devoted to a proof that the congruence and

. . . . / .
Archimedes axioms were theorems in the Poincare model, Eschrich

defined a transformation which he called "inversion. This trans-

formation is an extension of the plane inversion maps common in the
study of the planar Poincaré model [cf- 8, p. 347ff; 10, p. 348 ff. I

Eschrich's definition is:

6.28 "DEFINITICN: Given a 'plane’

D(_;(2+_372+—2+—z-2 +1) + Ax + B; +Cz = 0, the inverse P' with respect to

a of the 'point' P = (p,q,r) is defined as

f -2(Ap+Bq+Cr)

2

(;+sA,E+sB,;+sC) where s = , if D=0,

Al c?
P =§ (-A/2D + t[p+A/2D], -B/2D +t[q+B /2D], -c/2D +t[r+C/2D))

2 2 2 2
where t = [(A‘+B +C7)/4D7]-1 f D40 "

. (p+A /2D)2+(g+B /2D) 2+ (z+C /2D)%

(3, p. 1-2].



216
Our next lemma will prove that the points associated with P
and U are the same "distance apart" as the points associated with

P' and U'. Please note that the 1_3, —I—I, P, U, etc. which we see

used here are not points. They are triples which are associated with

the points of the geometry. The points are still undefined objects.
We have only associated a triple of one sort or another with the points

of the geometry.

6.29 LEMMA. Let P and U be distinct points. Let P’
and U' be the points associated with the P' and U' which are
defined in 6.28. If o = |[PU]| and o'= |[[P'u'llg, then
sin II(c) = sin II(c').

Proof: Let P = (p,q,r), U= (@, v,w), P'=(p.q’r"),
U= (v, w).

Casel. D =0: We first observe that

- - = = - - - 2 2
P.P'=D'P + 2s(Ap+Bq+Cr) + s2al+B%+c?)
- = (AD+Bg+Cr)> (Ap+Ba+Cr)”
PP -4 pzqzr)2+4 pz qz rz
A“+B +C A“+B +C
from definition of s, 6.28
- P. P.

By symmetry we have U'"U'=U-U. Furthermore we have



2(Au+Bv+Cw)
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2(Ap+Bg+Cr)

P.U'=P-U- > (Ap+Bq+Cr) - s (Au+Bv+Cw)
A“+B+C A“+B +C
i 4 (Au+Bv+Cw)(Ap+Bg+Cr)
A%4plec?
=P-U
Thus, by 6.23.1, sinli(c) = sin (') .
Case 2. D 0. From 6.28 we have
— A - B - B C - C
Pal-=x t ), - == =), - == + t(r+ 5=
[- 55 Pt 35) - 35 * tat zp)s - 3p T 20!
2! 2 2
1B+
Let k='A—"BZ < -1,
4D
.~ A2 ~ B2, 6 - C.2
j = pt3p) tlatsy) *+(r3p)
and hence, |t = k/j.
2 2. .2
. - — |A%+B7+C A — B— B. C—, C 2
Wpre Bm2 I (pt =)t (qt =)t o= (rt5) ] H ()
(i) PP . Zt[ZD(p+ZD)+ZD(q T 2D)] t(j)
A%4p%ic? A—-—A. B~B. C—C
A EB HC o A TR 2 () e (rtem) T+
1 Y 1 - 2t{ S5 (ptop)typlatop)toplT o) Tk
k,A— A. B~ B, C— C K>
-1+ kr A S 8 B G =(r+=)] + —
‘ 1 +k - 232G5pt5p)t 3 patop) ontT 2o 3
| k.,— A2 — B2 — C.2 A — B — B
| S 1+= L2 = L e o A D2y 2=(q+==
i 1 j[(p+2D) tHat55) +(rt5p) 255P*3p)-23pat )
2 2 2
ZECZB(H'Z%HAZJ“BZ’JrCz'l]
4D° 4D” 4D
=1 -k/j(1-P-P)
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In a symmetrical way we get that

(ii) U"TU'=1 - k/2(1-U-U)

- - 2 - 2
where f = (u+A/ZD)Z+(v+B/ZD) +(w+C/2D) .

Thus (1-P"P)(1-0"T") = k> /j2(1-P-P)(1-U-T) .

This expression is the numerator in the formula for sin II(c')

given in 6.23. 1.

Now let

H' = -(A/2D)(p+A/2D) - (B/2D)(q+B/2D) - (C/2D)(F+C/2D) ,

K' = -(A/2D)(a+A /2D) - (B/2D)(v+B/2D) - (C/2D)(w+C/2D) ,

L' = (p+A/2D)(a+A/2D) + (q+B /2D)(v+B /2D) + (r+C/2D)(w+C/2D),
H=P-P -1,

K=U-U - 1.

We compute the denominator for the expression of sin N(c'y as

described in 6.23.1 as follows:

(l_l_f)l. f)l)(l_l_al.-[_-]-l) - 4f,|. I_JI
= (2+kH/j)(2+kK/2) - 4P"- U' from (i) and (ii) above

2 2
k
:4-+2'1.S'H+21—{-K+'1.<—HK—4-4k-4l.{“H'-4'k'K'—4""'- L’
j 2 i j £ i

= 2(k/j)(H-2H'") + 2(k/2)(K-2K') + (kZ/jl)(HK—4L') - 4k

= 2(k/5)(j+k) + 2(k/0)(£+k) + (k% /j2) (HK-4L) - 4k =
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= (kz/jl)(2j+21+HK—4L')

= (k‘2 /it)(HK+2[(p+A /2D)2+(E+A /2d)2+(E+B /2D)2+(;+B /ZD)2+(?+C /ZD)'2

+Hw+C /ZD)Z-Z(§+A /2D)(a+A /2D)

_2(q+B /2D)(v+B /2D)-2(r+C /2D)(w+C /2D)] )
- (% /i) R+ 2 (p-0) 2 Ha-v) 2+ -w) 1)
- &2 /30)[(B- B)(T-T)+1-P-P-U- U+2P- P+2U- U -4P-T]

2 — — — — —_—
= (k" /jH)[(1+P- P)(1+U-U)-4P-U] .
Thus, by 6.23.1 and these computations, we have

(k2 /30)(1-B-P)(1-U-T)
(kZ/jz)[(1+13-E)(1+G-E)-4§-I—J]

sin M{(¢') =
= gin [I(o)
as claimed, and we are done.

6.30 DEFINITION. Let points P and P' have coordinates
(p,q,r) and (p',q'.r') respectively. Let P = (;,?1,—1-) and
P'=(p',q', 7). We define F(P,a)=P' iff P' is the point
associated with the triple P' and P' is the inverse of P with

respect to a as defined in 6.28. Denote the identity map by

F(P,0). We will call F(-,a) a reflection map.

6.31 THEOREM. For any given plane a, the correspondence

F defined above is a bijection of Lobachevskian space onto itself
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which maps lines into lines, rays into rays, and congruent segments

into congruent segments.

Proof: F is a bijection by 6.22 and 6.23. That it maps lines to
lines follows from 6: 25 and Eschrich's Lemma 10 [3, p- 6] which
states that if £ 1is the set of all (;, ;r-, ;) satisfying a pair of equa-
tions such as we have in 6.25, F({f,a) is also such a set. That F
maps rays into rays follows from the definition of rays, 6. 26, and
Eschrich's Lemma 11 [3, p. 10]. That F maps congruent seg-

ments onto congruent segments follows from Eschrich's Lemma 11

and 6.29.

6.32 LEMMA. If P is any point, different from the origin
O, with coordinates (p,q,r), and a is the perpendicular bisecting

plane of the segment OP, then F(P,a)=O.

Proof: By 6.24.1 a has a representative equation of the form
(1/2)(§2+§2+?2)(§2+§2+‘£2+1) -px-qy-rz=0. Thus by Eschrich's
Lemma 8 [3, p- 4-5], we immediately have the result that
P'=(0,0,0) andthus by 6.22, 6.23, and 6.31, we have F(P,a) =0

as claimed.

6.33 LEMMA. Let P and U be distinct points with

coordinates (p,q,r) and (u,v,w). If O is the originand P,

U, and O are non-collinear, P = (p,q,r), and -I-J' = (u, v, W),
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then the point  Q corresponding to

B = 1/2[(BNP-P) + @NT V)]

is on the bisector of the angle [POU.

Proof: From Euclidean geometric considerations we know —C—), as a
Euclidean point, is on the Euclidean segment joining the points on the
unit sphere corresponding to the unit vectors f’/m and
UMWNU-U. Assuch, Q is a Fuclidean point interior to the unit
sphere so 'JBT) <1 andthus, by 6.23, there is a point Q of

Lobachevskian space corresponding to the triple Q.
—2 =2 =2 - - - .
Let D(x +y +z +1) + Ax + By + Cz = 0 be a representative of
the class of equations describing the plane a determined by P, U,

and O (6.24). Then D=0 (6.20.1 and proof of 6.24) and since

P and U both satisfy this equation, then so does Q and Q is

a point of a (6.24).

Let
6 = m/POU,
¢ = m/POQ,
¢y = m/UOQ .

From 6.27.1 we have
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cos ¢ = P- QN (P - P)Q Q)

P. (PK+UL)

1
e —— — where K =——"—
«/ P+ P[(PK+UL)+ (PK+UL)

_ B.PK +P-
J B-B(®-PK’HU-

UL
OL%+2P-ULK)

_ WP+ B-INT-0)° 1/2
4[P P(1/2+1/2P- TN (P-P)U- V)]

i

: W b NU-U+P-0)2/U-U

1/2
ZP P('\/ P'\/ .U +P» U)/'\/(P P)(U U

- 142, 0 /(WP .-P NU. 1) ]1/2
2

= cos (0/2), by 6.27.1.

In a symmetrical way we get

cos ¢ = cos 8/2.

Since 0 <0<
and Q

is in the plane a,

oQ

absolute geometry considerations force

to be the bisector of [/POU

and we are done.

6.34 LEMMA. Let

P and U be distinct points so that
OP 20U. If O, P, and U are not collinear, then the plane

a
having a representative equation of the form
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<l
A

is the plane determined by any point on the bisecting ray of /POU
and the line perpendicular to the plane determined by O, P, and U

at O. Furthermore F(P,a)=1U.

Proof: Let P and U have coordinates (p,q,r) and (u,v,w).

Let P = (E,E,?) and U = (E,;,;/)- By 6.33,

Q-= 1/2(15/'\‘1—3'-15 +U/NU U) is on the angle bisector of /POU.

Since OP % OU, we know, by 6.9.1, NP-P=NU-U. Then, by

elementary algebra, using Definition 6. 21, '\/1_3'5 = '\/GG Thus,

we have

5 =1/2B+0)NP-P) .

From 6.20.1, 6.20, 6.24 we see that the plane a determined by 6
and the line { perpendicular, at O, to the plane of O, P and
U is the plane having the representative equation above. 0OQ is the
perpendicular bisector of PU by S.A.S. and the cross-bar theorem,
and the line perpendicular to the plane determined by O, P and U
at the midpoint of PU is, by 0.18, coplanar with Z£. Hence a is

the perpendicular bisecting plane of PU as claimed.
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To complete the proof, we observe that Eschrich's Theorem 11

[3, p. 10-11] proves that the set of all triples of the form

— — —

(x, ; z) + t(p,q, r)

is mapped by inversion into the set of all triples of the form
(;, -}:, ;) = s(G,;, \—v) with the explicit pairing given by
s = t(f’-f’/ﬁ-?]) (which in our case makes s =t) when an inversion

is "across" a "plane" whose equation is (in our case) in the above

form. Thus F(P,a) =U as claimed and the lemma is proved.

6.35 LEMMA. If OA, OB, and OC are distinct non-
equivalent rays, OA = OB, and LAOC = LBOC, then line OC
is in the plane P determined by the bisector of [AOB and the
line OP perpendicular to the plane a determined by A, O,

and B.

Proof: We first show that OC is
a line of the perpendicular bisector
plane f of AB. Let M be
the midpoint of AB and let

MN be the line perpendicular

to a at M. AAOM = ABOM
by S.A.S. so OM_l_AB at M. Thus the plane f determined by

O and MN is the perpendicular bisecting plane of AB. By 0. 24,
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Q is a point of the perpendicular bisecting plane of segment AB
iff AQ S BQ. Hence O and C are both points of B since in
AAOC and ABOC we have congruence by S.A.S. By Axiom I, 6,
the line OC isinf

Let OP be perpendicular to a at O. Then by 0.18, OF
isin P and, byI,5, B is the plane determined by OFP ’and OM.

Thus the theorem is proved.
6.36 LEMMA. If P is a point of plane a, then F(P,a)=P.

Proof: Let P have coordinates (p,q,r). If D=0, by 6.28, we

get Ap + Bq + Cr=0 so =0 and P'=P. By6.30 F(P,a) =P
as desired.

If D70, in 6.28 we get the denominator of the parameter

(;+A/2D)2 + (q+B /2D)% + (z+C /2D)°
324 2 + 72 4 1 + (1/D)(Ap+Ba+CT) + (1/DY)(a%+B+C?) -1
=(1/D2XA2+B2+C2) - 1,

since P is a pointof a. Hence t=1 and hence P' = P. Thus

F(P,a) = P by 6.30.

6.37 LEMMA. Let O be the origin. If PO =UO, P-O-U,

and a is the plane perpendicular to PU at O, then F(P,a)=U.
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Proof: By 6.20 and 6. 24 we see that a has an equation of the form
;; +E;+;;: 0 where P has coordinates (p,q,r). P and U

are collinear with the origin so by 6.18, U =tP for some number

t. By 6.9.1 NP.-P=NU-U = |t| NB-P so |t] = 1. Since
U-0-P, 6.18.2 tells us .t = -1 since t=1 correspondsto P,
t =0 correspondsto O.

Thus U = -P, and, in 6.28; 1—3':(;+s;,a+s€, r+sr), where

s = -2(P-P/P-P)=-2. Thus, P'=-P=0U. Hence by 6.30

F(P,a) = U as claimed.

We now introduce some notation to make the statement of the
next theorem less cumbersome. If a is any plane denote F(P, a)
by FQ(P). This allows us to speak of the composition of two reflec-

tions.

6.38 LEMMA. If P is any point and a is any plane, then

(Fao‘Fa)(P) = P.

Proof: If P is a point of a, we are done by 6.36. If P is
not in a, let P = (p,q,r) (where (p,q,r) are the coordinates
of P) and by Eschrich's Lemma 6 [3, p. 3] and 6. 29 if —Q':-l;',

then Q' =P and by 6.30 we are done.

We now recapitulate those results which we have just proved

and which allow us to prove the next two very important results.




6.29

6.30

6.31

6.32

6.34

6.35

6.36

6.37

6.38
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tells us every reflection map is congruence preserving for
segments.
provides us with an identity reflection map which we now denote
by I.
tells us reflection maps are line, ray, betweenness, preserving
maps-.
tells us we can always send one end P of a segment to the
original O by using a as the perpendicular bisecting plane
(p.-b.p.) of OP.
tells us we can always send P to U when OP = ou, if
P #U, byusing a as the p.b.p. of PU when P,0,U are
non-collinear. |
tells us that given distinct non—equivalenit rays 67&, 6]—?:, and
¢ with [AOC I [ BOC, then OC is inthe p.b.p.of AB.
tells us that points of the reflecting plane are fixed.
tells us that whenever P-O-U and PO ZO0OU, and a is
the p.b.p. of PU, then F(P,a) =T,

tells us F;l = F

a

6.39 THEOREM. PU % P'U', iff there are a finite number of

reflection maps F,,...,F_ so that if F:Fno---oF, F(P) = P’

1’ 1

and F(U) =U".



228

",
:

Proof: only if

Casel. P=P' and U =U':s Let F1=I and we are done.

Case 2. P =0:

Subcase 2.i. P'=0: If U =TU' use Case l.

a.1l. If UFU' and U, O, U' are collinear then
U-O-U'. Let vy bethe p.b.p. of PP'. Then by
6.36 and 6.37 we are done if F1 = Fy-

a.2. If U4U' and U, O and U' are non-collinear,
let Yy bethe p.b.p. of UU' andlet F, = FY and
we are done by 6.34 and 6.37 (since Yy contains O).

Subcase 2.ii. P'7#0O: Let B bethe p.-b.p- of OP' and
let F, = F‘3 . By 6.32 this puts FB(P') = O. Now

we are in the configuration of Subcase 2.i and we are

done.
Case 3. P#0: Let a be thep.b.p. of PO. By 6.32 we

have Fa(P) =0, solet F, =F and apply Case 2.

"if". Proof is immediate by 6.29 and transitivity of congruence for

segments.

6.40 THEOREM. /PQR ¥ /[P'Q'R' iff there area finite num-

ber of reflection maps Fl’ e, Fn ‘so that if F = Fno. -0 Fl’

F(Q) = Q', F(GR) = Q'R', and F(QP)=QP"
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Proof: "only if": With no loss of generality let QP = Q'P,
QR = Q'R’.
—_— — — —_—
Case 1. QP = Q'P' and QR =Q'R': Let F, 6 = I and we
are done-.
Case 2. Q= 0:

Subcase 2.i.. Q'=0 and P =P":

(a) If R =R' let F, = I and we are done.
(b) If R#R' and R' is in the plane determined by
P,Q, and R, thenlet & bethe p.b.p. of RR'
b.1. If E)—ﬁ and 5?' are opposite rays on RR',
QP isin & since [PQR = /[P'QR'. Let
F1 = FG and by 6.37, 6.36 and 6.31 we are done.

b.2. If 6;{ and QR' are not opposite rays, R # R'
implies R and R' areon opposite sides of
QP andby S.A.S. the point M of RR' on
QP is the midpoint of RR' and QP | RR' at
M. Thus QP isin & andby 6.36, 6.34 and
6.31 F1 = F6 is an appropriate choice which
finishes the proof.

(c) f R7R' and R' is not in the plane determined by
P, Q and R, thenlet & bethe p.b.p. of RR'.- By
6.35 QP = OP is in the plane & and by 6.34, 6.37,

and 6.31 F1 = F6 is an appropriate choice which
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finishes the proof.

Subcase 2.ii. Q'=0 and P 7P': Let y bethep.b.p.

of PP'. Then let F1 = FY and by 6.36, 6.37, and
6.31 or by 6.36, 6.34, and 6.31 (depending on whether
OP and OP are opposite rays or not, respectively)
FI(P) = P' and we are placed in the configuration of
Subcase 2.i and are done.

Subcase 2.iii. Q'7 O: Let B be the p.b.p. of Q'O. Then
let Fn = F{3 (for appropriate n) and by 6. 34
Fn(Q') = O and we are placed in the configuration of
either 2.i or 2.ii and are done using 6. 38.

Case 3. Q7#0: Let a bethep.b.p. of OQ. Set F,=F,
and by 6. 32 FI(Q) - O and we are in the configuration of Case 2,

and thus we are done.

"if": With no loss of generality we may let QP = Q'P' and

QR Z Q'R'. By 6.29 we know F(P)=P' and F(R) = R' so again
by 6.29, PR = P'R' using transitivity of congruence of segments.
Thus by S.5.S., APQR = AP'Q'R' and thus [/PQR = [P'Q'R’

as claimed.

6.41 THEOREM. The completeness axiom is a theorem in the

. Vé
Poincaré model.
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Proof: Our basic assumption has allowed us to prove the preceding
results. We have shown that there is a model of the geometry based
on the assumption in the following way:

By 6.23 we know P is a point iff there exist coordinates

. . . - — - . -2 2,2
agsociated with the point, of the form (p,q, r) with p +q +r <1.

By 6.24 we know that a is a plane iff there exists an equiva-
lence class of equations having a representative of the form

2 2
2+C > 4D and X

D(xZ+y24z°+1) + Ax + By + Cz = 0 with Al+ B
is a point of a iff (;, ;,_z_) is in the solution set of a member of
this class of equations.

By 6.25 we know that £ is a line iff there exists an equiva-
lence class of pairs of equations having a representative pair of the
form

D(x24y2+2°+1) + Ax + By + Cz = 0,
D'(xo+y 42’t1) + A + B'y + C'z = 0,
with
1. a2+ B2+ c? >4D2, a?+plict? >4D'2,

2. the pair of equations has at least one common solution,

A B C D
3. rank(A, B' C D,):Z,
and X 1ison f{ iff (;, ;, ;) is in the solution set of a representa-

tive pair from the class.

By 6.26 we know that for A, P, X any collinear distinct
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points, there exists monotonic functions x = F(t), y = G(t), 7z = H(t),
with t in an open interval. For such a prametric formulation,

-U. i < < .
A P iff tA tU tP or l:A>|:U>|:p

By 6.39 and 6.30 PU = P'U' iff there are a finite number of
inversions mapping P to P' and U to U

Finally, by 6.40 and 6.30 /PQR = /P'Q'R' iff there are a

— — —_— 4
finite number of inversions mapping Q to Q' QP onto Q'P,

= -
and QR onto Q'R'.

Thus we have an isomorphism between the model constructed
from the geometry and the Poincaré model. Clearly the construction
used is available in any model of Lobachevskian geometry so we have
a canonical isomorphism between all models, and the Poincare model
is isomorphic to any model of Lobachevskian geometry. Our basic
or key assumption does not lead to a contradiction so the completeness
axiom is a theorem in the Poincaré model and we are done.

In summary, we recall our method. We have proved that our

key assumption (first discussed on pages 8 and 9 and further discussed

and described explicitly on pages 28 through 31) does not lead to a con-
tradiction. We have done this by showing that if the set of points on a

line is the set of real numbers with their ordinary field properties, the
axioms of Lobachevskian geometry force the meanings of the undefined

terms to be those of the Poincaré model. Hence the completeness
axiom is a theorm of the Poincaré model and the Poincaré model is a

model of Lobachevskian geometry based on Hilbert's axioms.
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APPENDIX

A-1. THEOREM. The points of space not on a plane a may
be separated into two classes, called the half spaces determined by
a, so that I) any two points P, Q are in the same class iff PQ
contains no point of a, whereas II)two points P, Q are in dif-
ference classes iff PQ contains a point of a (compare with

planar case in Hilbert, p. 9, Theorem 10, [5]).

Proof: I. By Axiom I, 8 there is a point

A noton a. Let P and Q be P

any points of space not on a so that
PQ has no point of a.

Case l: A, P, and Q are

collinear. Then by Axioms II, 1, 3

exactly one of A-P-Q, A-Q-P, or
P-A-Q istrue. If AP or AQ hasapoint B of a, thenin
the first two possibilities, we necessarily have A-B-P-Q or
A-B-Q-P respecﬁvely, since P-B-Q is impossible and A-B-P
and A-B-Q are necessary. Thus each of AP and AQ hasa
point of a is either does. If P-A-Q, then clearly neither AP
nor AQ can meet a since PQ does not.

Case 2: Suppose A,P,Q are not collinear. Then consider

A6APQ. If AP contains a point B of a, then by, Axioms I, 4,5,
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the plane . p determined by A, P, and Q, meets a in a line £
containing B, by 0.20. The line { meets AQ, by Pasch’s
axiom since PQ has no point of a. Clearly, by symmetry, if
AP has no point of a, AQ has no pointof a.

II. Suppose PQ contains exactly one point B of a.

Case l. A, P, Q are collinear: As above we have exactly
one of A-P-Q, A-Q-P, P-A-Q. We are given P-B-Q so if either
of the first two occurs, AQ does not contain a point of a and
AP does. If P-A-Q, then either P-A-B-Q or P-B-A-Q
since A 7 B. In any case exactly one of AP or AQ contains a
point of a.

Case 2. A, P, Q are non-collinear: Then as in Case I-2
above, we consider the plane [ determined by A,P,Q and in
AAPQ observe that the line £, determined by a and p and
containing B of PQ, meets exactly one of AP or AQ by
Pasch’s axiom and 0.23.

We are now ready to define the relation r between the set of
points of space not on a and itself by Ar B iff AB does not
meet a or B =A. "r" is an equivalence relation since i) Ar A,
ii) Ar B implies Br A, and iii) ArB and Br C implies
Ar C. This latter is an immediate result of the argument above.
Let S ={P:Ar P for some fixed point A noton a and P

any point not on a}
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Let S be the complement of S in the set of all points not on a.
Then S is not empty (by II, 2) and by the argument above S and

S partition the set of all points not on o.

A-2. THEOREM. If a, 8, and y are three distinct planes
all perpendicular to line £ at A, B, and C respectively and if

line m meets eachof a, B, and

s

y at A', B', and C' respectively, /
A' A

then A-B-C iff A'-B'-C'.

Proof.: Since, by 0.21, any two R \

’
/
/ B B!

distinct planes perpendicular to the \
same plane do not meet a, 8,
/ c o
and y have no points in common. T
J] é\
Jd

If A-B-C, then, from the above,

A, B, A', B' are all on the same side of plane a as A and B,
by Theorem A-1 above, since AB, BB', A'A, all contain no points
of y. Thus we have A'-B'-C' or B'-A'-C'. If A'-B'-C', we
are done. B'-A'-C' is impossible since A and C are in opposite
half spaces determined by $, A' and A are in the same half space
as are C' and C, and hence by A-1, A'C' contains a point of .
B' is the only possible such point and hence, A'-B'-C'. Thus

A-B-C implies A'-B'-C' and by symmetry we are done.





