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THE COMPLETENESS AXIOM OF
LOBACHEVSKIAN GEOMETRY

INTRODUCTION

Any axiom system consists of a sequence of undefined notions,

defined notions, and the axioms which describe the behavior of these

notions. For example, the axiom, "There exist at least two points on

a line" relates two undefined notions --point and line. It does this

using a defined notion --"a point A is on a line / iff there is a

second point B so that the line incident on A and B is the line

" Note that the definition is expressed using the undefined terms,

point and line together with the undefined relation of incidence for

lines.

Of the several considerations regarding axiom systems, this

paper addresses only two in any detail. These are consistency and

categoricity. Specifically, we will prove that the completeness

axiom of Lobachevskian geometry is a theorem in the Poincare model.

All of the axioms of Lobachevskian geometry (as formulated in the

tenth edition of Hilbert's Foundations of Geometry) [5] except for the

axiom of completeness have already been shown to be theorems in

the Poincar4 model in work done by W. L. Zell [18] and R. W. Eschrich

[3].

When the completeness axiom is proved to be a theorem in the



Poincar4 model, the Poincare model will have been shown to be a

model of Lobachevskian geometry and the geometry will be known to

be as consistent as the real number system. The proof that the com-

pleteness axiom is a theorem in the model involves a proof that all

possible models of Lobachevskian geometry are isomorphic. This

part of the proof of the completeness axiom gives us a proof of the

categoricity of Lobachevskian geometry without further work.

Before we go further, we now specifically state what the

Poincare model is. This analytical formulation is found in Zell's

and Eschrich's papers. The existence of a parametric formulation

which is mentioned in "6." below, is proved as a theorem by Zell.

In the Poincare model:

A point is an ordered triple of real numbers (x, y, z) so

that x2 +y2 +z2 <1.

A plane is an equivalence class of equations having a repre-

sentative of the form,
2 2 2D(x +y +z +1) + Ax + By + Cz = 0,

where A2 + B2 + C2 >4D2 with A, B, C, D real con-

stants and x, y, z real variables.

A line is an equivalence class of pairs of equations having a

representative pair of the form
2 2 ZD(x +y +z +1) + Ax + By + Cz = 0,
2 2D'(x +y +z2 +1) + Aix + Bly + C'z = 0



where A, B, C, D, A', B1, C D' are real constants x, y, z

are real variables and

at least one point satisfies the system of equations *,

A2 + B2 + C2 >4D2 and A'2 + B'2 + C'2 >4D'2, and

rank (AB CD
)A'BIC'D' 2.

4. A line is incident on a pair of distinct points iff both points

are in the solution set of the line.

5. A plane is incident on three non-collinear points iff each

point is in the solution set of the plane.

6. If

x f(t), y = g(t), z = h(t) is a parametric representation

of a line (where f,g,h are real, continuous, monotonic

functions), and

k,k',k" are the values of the parameter t associated

with points ID, P', P",

then P' is between P and P" iff

k < k' < k" or k" < k' < k

7. Two segments PQ and RS are congruent iff there is a

finite product of inversions taking P to R and Q to

S, where an inversion is defined as follows in the model:

Let a. be a plane in the model with representative

2 2D(x 4-y -f-z2 +1) Ax + By + Cz = 0.

3



The inverse with respect to a of the point P = (a, b, c) is

(a+Ak, b+Bk, c+Ck) if D = 0 and k =

A A B B C
(-Th+ICEa+ - 2D +4/3+ +K[c+1)

I(a,b,c) = if D 0

and K - AZ B 2 CZ
(a+2D ) +(b+-2D) +(c+-2D)

8. L PQR and L are called congruent angles iff

A2+B2+C2

4D2

there is a finite product of inversions,

(a) ii(Q) Q1

P' is a point of the ray 4J(Q)LP(P)

R' is a point of the ray 4J(Q)4J(R)

Graphically, a "plane" is the portion of

a plane (through (0, 0, 0))inside the open unit

sphere (see Figure 1) or the portion of a

sphere (with center outside the unit sphere)

inside the unit sphere where the sphere meets

the unit sphere orthogonally (see Figure 2).

A line is the intersection of two planes. The

so that

Figure 1

aA+bB+cC

A2+132+C2

Figure 2

congruence group elements are products of inversions where an

inversion with respect to a plane can be visualized from what an

4



inversion is with respect to a line in the planar case (Figure 3). The

inverse of P, I(P) = P' is that

point P' so that if A is the

center of the circle (sphere) defining

the line (plane), then

II AP II API II r2 where r is

the radius of the circle (sphere) of

inversion (see Figure 3). It is

easily shown that orthogonal circles

l(P)

Figure 3.

5

leave each other invariant with respect to inversions of this sort and

thus the boundary of the unit ball is fixed under inversion with respect

to any "plane." The "flat" planes can be thought of as spheres of

infinite radius if one so desires. Their inversions are simply

reflections across the plane.

To show that these eight definitions (or realizations) of the

undefined terms of the Lobachevskian geometry do in fact define a

model of this geometry, we must prove that every axiom of the

Lobachevskian geometry is a theorem in the model. This is always

the method that must be followed to prove that a given thing is a model

of a given axiom system. As previously noted, in 1967 and 1968

W. L. Zell and R. W. Eschrich proved that all of the axioms of inci-

dence (or connection), order, congruence, parallels, and Archimedes

were theorems of this model. The one remaining axiom that needs to



be proved to be a theorem in this model is the completeness axiom.

The completeness axiom as now formulated states:

An extension of the set of points on a line with its order and
congruence relations that would preserve the relations
existing among the original elements as well as the funda-
mental properties of line order and congruence that follow
from the axioms of Incidence, Order, Congruence, and
Archimedes is impossible [5, p. 26].

This axiom was formulated by Paul Bernays in the 1950's and proved

to give Hilbert's earlier completeness axiom as a theorem [5]. The

notions of completeness were not formulated until after the death of

Lobachevski so it is not any blot on his work to find in them no

specific attention given to completeness considerations. His work is

in fact a brilliant treatise in its insights and sense of what is neces-

sary.

The specific argument used to prove that the completeness

axiom is a theorem in the Poincar4 model will be given shortly.

First we briefly examine what has been done in this regard. The most

complete work commonly available treating the completeness axiom

and the questions of consistency and categoricity of Lobachevskian

geometry is the Foundations of Geometry by Karol Borsuk and Wanda

Szmielew [2] which uses a "completeness axiom" that leads immedi-

ately to the proof of a Dedekind property for the points on any ordered

line. However, the redekind property is not shown to be a theorem

based on Hilbert's completeness axiom. It appears that this may be
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a very hard theorem to prove without recourse to a parallel axiom.

In fact it may be impossible to prove without essentially treating the

two possible parallel axioms as cases to establish the proof. We

already know it is a theorem in Euclidean geometry. We will show

that it is also a theorem of Lobachevskian geometry.

Since Borsuk and Szmielew do not claim to be proving the com-

pleteness axiom as formulated in the Hilbert axioms (nor to use his

other axioms as the basis of this proof) to be a theorem in their

model, it is improper to criticize them for not doing so. Neither do

they consider the Poincare model in Euclidean space but rather the

Beltrami-Klein planar model in the projective plane. No other pub-

lished attempts appear in the literature which address this problem

even so extensively as does the work of Borsuk and Szmielew.

In his study of Lobachevskian geometry, Hilbert developed some

properties regarding the relationship of the axioms I-IV and the com-

pleteness axiom in the planar case [6]. He does not--in any published

work--consider the question addressed in this paper.

Some persons, not fully understanding the problem addressed

here, have suggested that this present problem was done by Curtis

M. Fulton of the University of California at Davis in his paper Linear

Completeness and Hyperbolic Trigonometry [4]. However, following

my presentation of a paper on this work at the U. of C. at Davis in

April 1973, Professor Fulton (who was present) informed me that he
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had assumed what I was proving in order to get his very short proof of

the trigonometric results which will take so long to derive here.

Our proof that the completeness axiom is a theorem in the

Poincare model will be constructed as follows:

We shall demonstrate that there is a one-to-one map of the

set of points on any line into the real numbers. This will be

done as a theorem in absolute geometry.

Knowing of such an injection, we suppose that this injection

is an order preserving one-to-one correspondence. We

shall then show that on the basis of this assumption and

upon the basis of the axioms, we can construct a model of

the Lobachevskian geometry. This will show that the above

assumption does not lead to a contradiction. We will show

that the model constructed is the Poincare model and that

every model of Lobachevskian geometry is isomorphic to

the Poincare model. Hence the axiom of completeness is a

theorem in the Poincare model.

The establishment of the injection described in (1) above is

achieved by constructing a one-to-one correspondence between every

point on a line and a set of real numbers. This is done by pairing each

point with a unique binary infinite sequence--the base two radix

representation of the associated real number.

The process of proving the claim in (2) is much more difficult.



A list of the steps in the process should be helpful to one's following

of the subsequent presentation.

Based upon the key assumption ti-at a one-to-one corres-

pondence exists between the points of a line in Lobachevskian

geometry and the real numbers as described above we can:

construct a map
S.

set of classes of segments {0}

based on a., get a map

I
I A: set of classes of angles --- (0, Tr)

based on a. and b. , get the "Lobachevskian function"

H; IR --' (0, Tr).

We then use the axioms to establish specific values for

this last correspondence. We will define a coordinatization of

Lobachevskian space and show that the set of triples that can be

used to name the points of space (x,y,z) are exactly those

triples so that

cos211(x) + cos21-1(y) + cos21-1(z) < 1.

I

This will lead us to a one-to-one correspondence between the

defined terms point, line, plane, incidence (for lines), incidence

(for planes), betweenness, congruence (for segments) and congru-

ence (for angles) in the Poincare model and the corresponding

undefined terms in the geometry. This last construction is

canonical and gives the necessary isomorphism between all

models of Lobachevskian geometry needed to finish the proof.
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In the following pages the specific details will be given.

Before proceeding with the actual argument is seems worthwhile

to include here the undefined notions, the defined notions, the axioms,

and the theorems accepted without proof which shall be used in this

paper.

0.1 The undefined terms are point, line, and plane.

0.2 The undefined relations are as follows:

Incidence for lines is a symmetric relation between the set

of pairs of distinct points and the set of lines.

Incidence for planes is a symmetric relation between the

set of triples of non-collinear points and the set of planes.

Betweenness is a non-symmetrical relation between the

set of points and the set of pairs of points.

Congruence for segments is a relation between the set of

segments and itself. We use "="1 to denote this relation.

Congruence for angles is a relation between the set of

angles and itself. We use ":=-:" to denote this relation.

0.3 The defined notions are:

a. A point P is on a line / iff there is a point Q so

that the line incident on P and Q, denoted PQ, is

A. We also say P is a point of P is in /,

contains P, etc.
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A set of points each of which is on the same line i, is

said to be a collinear set.

A point P is on a plane a iff there are points Q and

R so that {13, Q, is a non-collinear set and the plane

incident on P, Q, and R is a. We also say P is

a point of a P is in a, a contains P, etc.

If every point of a line 1 is a point of plane a, we

say I is a line of a, is in a, a contains , etc.

If B is a point between points A and C we write

A-B-C.

If every point [line] of a set of points [lines] is a point

[line] of the same plane, they are called coplanar.

A segment, denoted AB, is the set of all points between

A and B.

A ray with end point A, denoted All, is the set of all

points P so that P B or A-P-B Or A-B -P .

If A, B, C are non-collinear, then triangle ABC,

denoted L ABC, is AB v AC v BC v {A, B, C}.

An angle is two non-collinear rays with a common end

point together with their common end point (which is called

the vertex of the angle).

LABC is congruent to A 'B 'C denoted

Ls ABCLAIBICI if LA= LA', LB= LB', Lc :;:Lc',
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AB 5- A'B', AC:7 A'C', and BC B'C'.

1. If every line of plane a, containing a given point P,

is perpendicular to line p at P, then we say p is

perpendicular to a at P, p and a are perpendicular

at P, or p is normal to P at

0.4 The axioms are

For every two points A, B there exists a line a

that is incident upon A and B.

For every two points A, B of a line 1 the line

incident upon A and B is f.

There exist at least two points on a line. There exist at

least three points that do not lie on a line.

I, 4. For any three points A, B, C that do not lie on the

same line there exists a plane a that is incident upon

them. For every plane there exists a point which it

contains.

I, S. For any three points A, B, C of plane a that do not

lie on one and the same line, the plane incident upon

them is a.

If two points A, B of a line a lie in a plane a

then every point of a lies in the plane a.

If two planes a, p have a point A in common, then

they have at least one more point B in common.
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8. There exist at least four points which do not lie in a

plane.

1. If a point B lies between a point A and a point C

then the points A, B, C

A

are three distinct points of a line, and B then also

lies between C and A.

II, 2. For two points A and C, there always exists at

least one point B on the line AC such that C

lies between A and B.

11,3. Of any three points on a line there exists no more than

one that lies between the other two.

II, 4. Let A, B, C be three points that do not lie on a line

and let a be a line in the plane ABC which does not

meet any of the points, A, B, C. If the line a passes

through a point of the segment AB, it also passes

through a point of the segment AC, or through a

point of the segment BC.

1. If A, B are two points on a line a, and A' is a

point on the same or on another line a' then it is

always possible to find a point B' on a given side of

the line a' through A' such that the segment AB

is congruent or equal to the segment A'B'. In symbols



A' B' C' a

A'B' and 13'C' be two segments which except for B'

also have no point in common. rn that case, if

AB AIB' and BC BIC'

then AC A'C' .

III, 4. Let be an angle in a plane a and a' a

line in a plane a and let a definite side of a' in

a' be given. Let h' be a ray on the line a' that

emanates from the point 0' . Then there exists in the

plane a one and only one ray k' such that the

it
iangle L (h k) s congruent or equal to the angle

L (R)i, r=i) and at the same time all interior points of

the angle L lie on the given side of

14

AB A113'

III, Z. If a segment A'131 and a segment A" B", are con-

gruent to the same segment AB, then the segment

A'B' is also congruent to the segment A" B", or

briefly, if two segments are congruent to a third one

they are congruent to-each other.

III, 3. On the line a let AB and BC be two segments

which except for B have no point in common.

Furthermore, on the same or on another line let

A B C a



Symbolically

L /

Every angle is congruent to itself, i.e.,

L ic*.) L

is always true.

III, 5. If for two triangles EABC and AA'B IC the congru-

ences

AB -=" A'B', AC A'Ci, L BAC LB'A'Ci

hold, then the congruence

L ABC.=' L A'13TC'

is also satisfied.

IV. (Lobachevski's Axiom). Let a be any line and A

a point not on it. Then there are at least two lines in

the plane, determined by a and A, that pass

through A and do not intersect a.

(Axiom of measure or Archimedes' Axiom). If AB

and CD are any segments, then there exists a number

n such that n segments CD constructed con-

tiguously from A, along the ray from A through

B, will pass beyond the point B.

(Axiom of line completeness). An extension of a set of

points on a line with its order and congruence relations

that would preserve the relations existing among the

15
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original elements as well as the fundamental properties

of line order and congruence that follow from Axioms

I-III, and from V, 1 is impossible.

In our subsequent work we shall have need of several absolute-

geometry results which are readily available in the literature. We

shall state below those used. At times these results will not be

referred to by number. Instead, the name of the theorem or a brief

statement of the theorem will be given.

0.5 THEOREM. (The plane separation theorem) Given a line

I and a plane containing it, then the set of all points of the plane not

on I are partitioned into two classes called sides of the plane as

determined by the given line I. Two points A and B are on the

same side of I iff AB and I have no point in common. Two

points are on opposite sides if AB and I have some point in

common [5, p. 8].

0.6 THEOREM. (Crossbar theorem) If D is in the interior

of L BAC, then AD intersects BC [10, p. 69].

0.7 THEOREM. (Exterior angle theorem) Any exterior angle

of a triangle is greater than either interior angle that is not adjacent

to it [5, p. 21].



0,8 THEOREM. In every triangle the greater angle lies

opposite the greater side [5, p. 22].

0.9 THEOREM. Every segment can be bisected [5, p. 23].

0.10 THEOREM. Given any finite number of three or more

points on a line it is always possible to label them

in such a way that A. is between A. and
Ak

if 1 < i< j <k <
t --

Besides this order of labeling there is only the reverse one that has

the same property [5, p. 7-8].

0.11 THEOREM. If two lines intersect, then there is a unique

plane containing them [10, p. 39].

0.12 THEOREM. Every angle has exactly one bisector [10,

p. 89].

0.13 THEOREM. There exists a unique perpendicular to a

given line and containing a given point [10, p. 107].

0.14 THEOREM. (Triangle Inequality) In any triangle

LABC, [AB] + [BC] > [AC] [10, p. 110].

0.15 THEOREM. (Polygonal Inequality) If A1, . An are

any points then
[A1 ..A ] + [A A3] + .+ {A 1A] > [AI A ]n n

[10, p. 125].

17



0.16 THEOREM. In triangles L.ABC and

,AAIEVC1, if

1. AB A'B', BC and
7.=." L

(called S. A. S. ),

a. LA=LAI, LBLBI, and
AB := AIBI, (called A.SA ),

CI

18

LA LAS, LIL B', and BC 1L-- B'C' (called S.A.A.) or

AB A'131, AC A'C', and BC B'C' (called S.S.S.),

then LABC ,6,A'B'C' [5, p. 14-19; 10, P. 84-101].

0.17 THEOREM. If a line is perpendicular to each of two

intersecting lines m and n at their point of intersection, then it

is perpendicular to the plane containing m and n [10, p. 177].

0.18 THEOREM. Any two lines perpendicular to the same

plane are coplanar [10, p. 179].

0.19 THEOREM. Given a point P and a plane a., there is

a unique line perpendicular to a through P [10, p. 180].

0.20 THEOREM. If two planes have a point in common, then

they have a line in common (a direct result of I, 6 and I, 7 above).

0.21 THEOREM. If i is perpendicular to two distinct

planes, then the planes do not meet [10, p. 183].
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0.22 THEOREM. In plane a if p, q, r are lines perpen-

dicular to line i at P, Q, and R, respectively, and p, q, r

meet line of a at points Q', R' respectively , then

P-Q-R iff [10, p. 136].

0.23 THEOREM. A line I not containing any vertex of

,AABC, meets at most two of the sides of AABC [10, p 63].

0.24 THEOREM. If a is the perpendicular bisecting plane

of a segment AB, then P is a point of a iff AP BP

[10, p.. 179].

Note: In 0.11 through 0.19 notions of segment and angle

inequality are used in the proofs. These notions are explicitly given

in Chapter 1 below.



I. SEGMENT CLASSES AND THE REAL NUMBERS--
THE KEY ASSUMPTION

In this section we develop the map Is which allows us to

demonstrate an injection of the set of points on a line into the real

numbers. This is done without recourse to the parallel axiom so the

results are theorems of absolute geometry. Some other results of

absolute geometry that will be assumed without proof in this and sub-

sequent sections are:

1.1 THEOREM. The undefined relation "congruence" for seg-

ments, denoted by II 7,1_ II is an equivalence relation [5, p. 18; 13;

14]. Also the undefined relation "congruence" for angles, denoted by
It 1. II is an equivalence relation [5, p. 18; 14].

The following definitions from absolute geometry will be used

(where the notation "A-B-C" is read "the point B is between the

points A and C").

1.2 DEFINITION. The segment AB is less than the seg-

ment CD, denoted AB < CD, means there is a point P so that

C-P-D and AB "-7- CP.

1.3 DEFINITION. The angle LABC is less than the angle

LDEF, denoted LABC < LDEF, means there is a point P so

that P is interior to LDEF and LABC LPEF.

20



We use the symbols "[AB]" and "[L ABC]" to denote the

equivalence classes of congruent segments and angles containing the

representatives AB and LABC respectively. Further, we define

addition for segments in the usual way [5, p. 51; 10, p. 247ff ].

1.4 DEFINITION. [AB] + [CD] is that class of segments

[EF] so that there is a point P with E-P-F, AB EP, and

CD PF. We write [AB] + [CD] = [EF].

The proof that this addition operation is well defined is also assumed

as one of the "standard" results of absolute geometry. An ideal class

[ is often introduced with the property that [ ] + [AB] = [AB]. This

acts as an additive identity element. Furthermore [ < [AB] for

every non-ideal class [AB].

It is possible to establish the existence of the midpoint of a seg-

ment without using the parallel axiom (0.9) so for any segment AB

one can always find a segment CD so that [CD] + [CD] = [AB].

With this in mind, the next definition is intuitively very reasonable.

1.5 DEFINITION. For any segment AB, the class of seg-

ments denoted by "1 /2[AB]" is the class of segments [CD] so

that if M is the midpoint of AB, then CD AM. Inductively we

define 1 /2(1 /2n[AB] ) = 1 /2n+1[AB]

We have an obvious ordering for the segment classes.

21
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1. 6 DEFINITION. [AB] < [CD] means AB < CD.

The notation n[AB] will, as usual, mean [AB] + + [AB]

with n summands.

These definitions are all independent of the representatives of

the classes considered in any given instance. To conserve space,

this verification is not carried out here since the method is well

known and does not contribute any added insight into the arguments or

statements.

1.7 LEMMA. If [AB] < [CD], then for any class [EF],

[AB] + [EF] < [CD] + [EF].

Proof: Let [GH] = [CD] + [EF]. Then by definition, there is a point

of GH so that GP 7 EF and PH = CD. Now [AB] < [CD]

implies there is a point Q of PH so that PQ = AB. This gives

us G-P-Q-H with [GQ] = [AB] + [EF] and we are done.

1.8 LEMMA. If [AB] < [CD] and [EF] < [OH], then

[AB] + [EF] < [CD] + [OH].

Proof: By 1. 7, [AB] + [EF] < [CD] + [EF] and

[CD] + [EF] < [CD] + [OH]. By transitivity the proof is complete.

1.9 LEMMA. If [AB] < [CD] then n[AB] < n[CD].

Proof: For equality the proof is obvious. Otherwise use induction.



If n = 1 we are done. Suppose k[AB] < k[CD]. Then

(k+1)[AB] = [AB]+ k[AB] < [CD] + k[CD] = (k+1)[CD] by 1.8 and by

induction we are done.

1.10 LEMMA. If AB and CD are any segments, then

there is an integer k so that 1 /21c[AB] < [CD].

Proof: Suppose that for every integer k 1 /2[AB] > [CD]. It then

follows, by 1.9, that [AB] > 2k[CD]. Now for every integer m >0

there is an integer k so that 2k > ni. We conclude that CD is

a segment so that for every sequence A = Ao, A1, A2, A k of
2

points of AB with A.-A.-Ak (0 < i < j < k < m) andj

Ai_lAi CD, we have AA < AA k AB contradicting Archi-m 2

medes axiom.

1.11 LEMMA. If [AB] < [CD] then there is a class [EF]

so that [AB] + [Er] = [CD].

Proof: [AB] < [CD] implies that there is a point E of CD so

that [AB] = [CE]. Now [CE] + [ED] = [CD] by Axiom III, 3 in 0.4.

[AB] + [ED] = [CD] and we are done.

We now proceed with some definitions leading closer to the

proof of the existence of an injection of the set of points on any line

into the real numbers.
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1.12 DEFINITION. Let [AB] and [CD] be any segment

classes. p.({AB], [CD]) = the greatest integer k so that k[AB] < [CD].

Clearly the value of p. is 0 if [AB] > [CD]. If

[AB] < [CD] Archimedes' axiom assures us that there is a number

so that m[AB] > [CD]. Since the set of integers is well ordered,

there is a least such number, M, so that k is always M-1.

The fact that p. is well defined can be proved by the usual argument

showing that the choice of representative can be arbitrary.

An intuitive formulation of the meaning of p. is that

counts the maximum number of contiguous segments of a given class

that do not reach beyond the end.of a given segment.

1.13 DEFINITION. Let [AB] and [CD] be any segment

1 /2r1[AB] + U([AB][CD],i)1 /2i[AB]

> [CD]

24

classes so that [CD] < [AB]. Let n be any integer. We induc-

t,ively define the three-variable function U to be

0 if [CD] is the "ideal" class so that
[CD] + [AB] [AB]

0 if n 1 and 1 /2[AB] > [CD]

1 if n = 1 and 1 /2[AB] < [CD]

U([AB],[CD],n) = 0 if n > 1
and

1 if n > 1

i=1 < [CD]



The function U gives us a way to assign a real number less

than one and equal to or greater than zero to any class [CD] less

than [AB] including the ideal segment class which acts as the addi-

tive identity in the arithmetic of the segment class addition. The

proof that U is well defined is left out, again, because of the

standard and messy nature of the argument.

1.14 THEOREM. If the number 1 is assigned to a given

(non-ideal) segment class [AB], then for each class of segments

[CD] < [AB] there is a unique real number r E [0,1) denoted by

r = m([CD]), so that if

then

:Sn =

r = 1. u. b. S

Proof: a. S is a non-empty set of real numbers since

S1 = 1/2 UGAB], [CD], 1) = 0 or 1.

S is bounded above by one since S < 1 /21 = 1 - 1 /2n < 1n
i=1

by a simple induction argument.

Since by fl " and "b" S is a non-empty set of real numbers

bounded above by one, then r exists and is equal to or less

than one.

1 /2jUgAB], [CD], l)

i=1

25
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r < 1 since [CD] < [AB] means there is a non-ideal class

[DE] so that [CD] + [DE] = [AB]. Now for some positive

integer k, 1 /2k[AB] < [DE] by 1.10. We observe that

r 1. u. b. S urnS < lim 1/2i) - 112k < 1 - 1/2k+1 < 1
n

co n
i=1

If [CD] is not the ideal class, m[CD] >0 since by 1.10

there is a k so that 1/2k[AB] < [CD]. Thus

U([AB],[CD],n) = 1 for at least one valu.e n > k so r >0.

If [CD] is the ideal class, then U([AB],[CD],n) = 0 so

r = 0.

For each class [CD], r is unique. r has the infinite

base-two numeral as its expression. The definition of

does not allow even two different expressions of r, let

alone two different values.

r cannot be associated with two different classes either.

This follows since if r = m({CD]) = rn([EF]) and

[CD] [EF] we show a contradiction occurs. Without loss

of generality let [CD] < [EF] This means there is a non-

ideal class [DG] so that [CD] + [DG] = [EF] and there is

an integer k so that 1 /2k[AB] < [DC] . Let



Sn = 1 /2iU([AB][CD], i) and Tn = 1 /2iU([AB], [EF], i).

i=1 i=1

Then r = urn Sn < lim
Sn + 1/2k+1 < lim Tn r which

n-00

is impossible.

This theorem gives us a unique number r, 0 <r < 1,

associated with every class [EF] < [AB] provided that 1 is

associated with [AB]. We now extend this notion to give a unique

number r E [0,00) associated with each segment class [CD].

1.15 THEOREM. Let [AB] be some (non-ideal) class

assigned the number 1. Let [CD] be any class. Let [C'D'] be

the class so that [C'D'] +1.4[AB][CDNAB] = [CD]. Then

[CID'] < [AB] and there is a unique real number

r 1[CD]l5 1-([AB], [CD]) + m[C 'DI] associated with [CD] and

r E [0, 00).

Proof: By the definition of 1.1. in 1.12 }J.([AB],[CD])[AB] < [CD]

and p.([AB], [CD]) is the largest integer so that this is true. If

id.([AB], [CD])[AB] = [CD] then [C'D'] is the ideal class and by

definition [CrIDI] < [AB]. If p.([AB], [CD})[AB] < [CD], then

[CID'] < [AB] since if not, we have a contradiction to the definition

of 11.
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If [CD] < [AB], [4[A13][CD]) = 0 and the real number

I[CD]is = m([CD]) is unique by 1.14.

If [CD] > [AB], 1[Cpils is unique by 1.14 and the definition

of 11. It is clearly non-negative. Note: Implicitly, the definition

of II draws on Archimedes' axiom to insure that every segment

determines a value for p.([AB], [CD]) and that I [cD] s can

assume arbitrarily large values.

At this point we have proved that there is an injective map I I

from the set of segment classes into the non-negative real numbers.

This is now extended to an injection of the set of points on a line into

frt. From what has already been done we see that the following defini-

tion gives a unique assignment of points to real numbers.

1.16 DEFINITION. Let A and B be distinct points on a

line /. Let [AB] be assigned the number one. If P is a point

on the ray of , assign the number l[A1/1 to P. If Q

is a point of / so that Q-A-B then assign the number - I [AQ] I s

to Q. Assign 0 to the point A.

We have at this point established an injection of the set of points

on any line into the set of real numbers. To establish a proof that the

completeness axiom is a theorem in the Poincar4 model we will now

assume that this injection can be extended to a one-to-one, order
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preserving correspondence without introducing a contradiction. To

establish the freedom from contradiction we will show that this

assumption allows us to construct a model upon the basis of the

axioms of the geometry and show this model is necessarily iso-

morphic to the Poincar4 model by giving a canonical method of

establishing an isomorphism between these and any other models.

It is well to note that as one develops the arithmetic of addition

of segment classes in the absolute geometry, a commutative group

structure can be established (not carried out in this paper) which

makes the injection given above into an injective group homomorphism.

The one-to-one correspondence we assume is the order preserving

map which is the extension of this homomorphism to an isomorphism.

The rationale for not including in this paper a verification that

the above injection is also a group homomorphism is that, first, the

method is essentially standard, and second, the fact that the extension

is an isomorphism is not a central part of the argument of the

remainder of the proof. Unlike in Euclidean geometry, we do not

have an easily developed multiplication leading to a field structure {5,

p. 131-149]. The field structure plays an important role in establish-

ing the completeness axiom as a theorem in the analytic geometry

model of Euclidean geometry but the Euclidean parallel axiom plays a

central role in this proof [5]. Once we have a field structure for the

ordered arithmetic of the segment classes, the completeness axiom
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in the geometry assures us that this field is the real number field (up

to isomorphism) and the Dedekind property for segments, rays,

lines, etc. follows. Such a derivation of the Dedekind property in

Lobachevskian geometry seems impossible. The procedure outlined

earlier (which is based on the assumption of the one-to-one corres-

pondence described) is a method of establishing proof without having

a field structure within the geometry. What we really need in our

method is the Dedekind property. Our assumption gives us this.

It is often hard in a paper such as this to decide how detailed

the background should be. One is disinclined to prove all background

theorems unless their proofs involve an essentially different method

of argument dictated by the hypotheses or axiom system adopted or

unless the theorem or proofs are not readily accessible in the litera-

ture. The choice to leave out or include a given theorem is usually

somewhat arbitrary. For example the proof that for n >3, one can

order n-points on a line (used in Lemma 1.7, Lemma 1.10, the defi-

nition of n[A,B], and the definition of addition a segment classes) is

not included. This is not easy to prove, but is accessible in the

literature (e.g. [5, p. 7-8] ). Furthermore the proofs given in the

literature are essentially the same as that which would be done here,

so inclusion of such a proof would not be particularly instructive.

Step "(1)" of the argument proving that the completeness axiom

is a theorem in the Poincare model is now done. The construction of
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III Is" assures us that we can have no more points than real num-

bers. We will prove the hypothesis that, "There are exactly as many

points as real numbers," does not lead to a contradiction. This

hypothesis will be called our "key assumption."



ANGLE CLASSES AND THE MEASURE OF ANGLES

The result from absolute geometry that congruence for angles is

an equivalence relation [5, p. 18; 14] allows us to define equivalence

classes of congruent angles. An addition for angle classes is harder

to formulate than for classes of segments since one cannot reasonably

expect the "sum" of two angles-- whatever that meansto always be

non-ambiguous (consider "adding" two obtuse angles). If two angles

are acute then an addition can be described but in general it is not

closed. Two acute angles, each larger than "half a right angle"

could only "sum" to an angle greater than a right angle so the sum is

not an acute angle- These observations, of course, draw upon the

notion of the measure of the "angle" of rotation relative to some fixed

reference position such as is used in trigonometry and analysis.

This notion is quite different from the notion of angle in geometry,

though both are certainly related (at least intuitively).

Considerable care must be exercised to avoid the inadvertent

interchange of angle--the defined object of geometry- -and angle in the

sense of a directed rotation or the real value of a "wrapping" function

as in trigonometry and analysis. To avoid this, it is sometimes

necessary to include methods of argument that seem unnecessarily

involved or even obscure unless the reader remembers that such an

interchange of the separate notions of angle is at best logically
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dangerous. The so-called angle sum theorem of absolute geometry

states:

2. 1 THEOREM. If D and D' are points in the interior of

angles LAOB and LAI°TBI respectively and L AOD LA 1°'D'

and L DOB L D'O'B', then

L AOB LAADTBI

Proof: Without loss of generality

we may suppose OA O'A' and

OB 0'B'. By the cross-bar

theorem (0. 6) rays Ol and

O'D' meet AB and A'B'

points P and P' respectively.

Let P" be the point of O'D'

so that OP OP". Then

AOAP ,60'A'P" by SAS so L OAP -= LO' A'Pn . On

A'-->
A'P"

let B" be the point so that A13 A'B". Then LOAB 7- 4 OIA'B"

by SAS and OB 0113". By "segment subtraction theorem

BP 71.- B"P" and AOPB L(DIP"B" by S.S.S. and therefore

LP"O'B" POB and LPOB LPIOIBI forces

L P"O'B" P'01.131. Because B' and B" are on the same side

of line O'D', B' = B" (result of Axioms III-1, 111-2) and

LAOB LAIO'B' as desired,
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BC at E and CE < EB

Proof: The existence of E is assured by the

cross-bar theorem, Since LACE is non-acute

referring to LABE we have AC < AE and referring to

34

2.2 DEFINITION. Let [LABC1 and [LDEF] be classes of

acute angles. The class [LABC] -1- [LDEF] is the class of angles

[LGHI] so that there is a ray HJ interior to LGHI with

LGHT LABC and LJHI LDEF.

This definition is independent of representatives and clearly makes

sense as we see below. Let HG be any ray. On a given side of

line HG (for notation see 0. 3) we have a unique ray HJ so that

LGHJ LABC. Since LGHJ is acute its supplement is obtuse and

the interior of the supplement is defined by the ray of HG from

and on the opposite side of HJ from G,

we have a ray HI so that LJHI2-e" LDEF

The rays HI and HJ are on the same side

of GH and thus LGHI is an angle with the

right characteristics to allow us to use the angle

"sum" theorem to prove the definition is non-ambiguous and reasonable.

2.3 LEMMA. If LABC is a triangle with a non-acute angle

at C, and AD is the bisector of LBAC, then AD meets

ABC

we have AC < AB. (The two inequalities for segments follow from



the absolute geometry theorems that state that the angle sum of any

triange is no greater than two right angles and that the greatest side

is opposite the greatest angle) AC < AB implies there is a point

on AB so that AF AB. Thus is AEC LAEF by SAS. Now

L ABC LBFE since LBFE is congruent to the exterior angle a

C of ZNABC Finally EF < EB and CE EF implies

CE < EB as claimed.

2.4 LEMMA. If EL ABC], [Z_ A IB IC1, EL DEFJ are acute

angle classes with L ABC < L AtBIC? , then

[LDEF] + IlL ABC] <[L DE} + (L

Proof: [L A'13'C'] + [L DEF] is defined to be the angle class con-

taining the representative L am so that there is a ray H,T

interior to L MR with L DEF L GHJ and

Since EL ABC] < [L A'B'C'] there is a
--->ray HK interior to L JET so that

L JHK L ABC. By the angle "addition"

theorem [LGHK] = EL ABC] + [LDEF]

and [LGHK] < [L GHI] = [LDEFJ

L A TB IC LJHI.

and we are done.

2, 5 LEMMA, If ABC has a non-acute angle at C, and if

D is the midpoint of BC, then L BAD < L DAC.
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Proof: Let Al be the angle bisector

of L BAC. AF meets BC at E

by the cross-bar theorem. By Lemma

2.3 CE < EB. Let E' be the point

of EB so that BE' = EC. Let M
A

be the midpoint of EE'. By segment "addition" theorem we have

MB 7 MC so M = D. With the ordering given by these results we

have C-E-D-E'-B [5, p, 7-8, th 6]. Thus L DAC > L CAE and

L CAE L BAE > L BAD and we are done by transitivity.

2.6 LEMMA. If nit. ABC] < IL t], then there is an angle

class (n+1)[L ABC] = n[L ABC] + [L ABC].

Proof: If n 1 then by definition (n+1)[L ABC] exists. If n > 1

then clearly L ABC < L rt by definition and we are done by

definition 2, 2.

Clearly, (n+1)LABC] may be a non-acute angle class and in

that case (n+2)[ZABC] may or may not make sense. The next

lemma assures us that we can always make xi[LABC] "exceed" any

acute angle class provided LABC < Zrt.

2.7 THEOREM. If IL ABC] and [L DEF] are any acute

angle classes, then there is a positive integer n so that

n[L ABC] > [LDEF].
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Proof: We need to show that n[L ABC] exists and that the given

inequality holds for some n. If

L DEF < L ABC take n = 2. If

L DEF > L ABC let EG be the

ray interior to L DEF so

L FEG L ABC. Let F1 be the

point of on DF (whose

existence is assured by the cross-

rri[L ABC] IL- F.1 EF
il 1-

bar theorem). By Archimedes axiom
-->we have a sequence of points F0 = F, F1, .. Fm on FD so that

F.-F.-F if 0<i<j<k<m and F. F. = FF for each
i j k 1-1 1 1

i = 1, ... m, and FF > FD. By the angle addition theorem we getm

[L FiEFi+1] = EL FEFm] > [L FED]

i=0

By Lemma 2.3 we know [LF.EF. < [L ABC], for 0 <i <m-1

and by 2.4

IL Fi_ lEFi] + IL F jEF i+0 < z[L ABC]

for 0 < i < m-1. Now if niL ABC] is defined, we have

=[L FEFm] > [L FED]
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integer.
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and we are done.

From 2. 6 we know that if k[L ABC] < [L rd, then

(k+1){L ABC] is defined so for m[L ABC] to be undefined we must

have some value n < m so that n[L ABC] is defined and

n[1._ ABC] IL rt]. Thus there is a number n satisfying the

hypothesis because EL DEF] is an acute angle class. This com-

pletes our proof.

Once the properties of segment, angle, and triangle congruence

are developed even a little, one can show that every

angle has a bisector. This is done by selecting

points A' and B' on the sides of

LAOB so that OA' = OB' Letting

M be the midpoint of A'B' gives one

triangle LAIOM B 'OM. This ensures

that LA'OM L B 'OM and OM is

called the bisector of LA013. (0.12)

2.8 DEFINITION. Let [LAOB] be any angle class. Let

1/2[L A013] be the angle class containing the representative LAOM

where OM is the bisector of angle L AOM. Inductively define the

class 1/2k+1{L A0B] = 1/2 (1/2k[L A013]) where k is a positive
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2.9 THEOREM. If [L ABC] and [L DEF] are any classes

of angles, then there is an integer k so that 1/2kELABC] < ELDEF].

Proof: If L DEF > L rt then pick k = 2. Suppose L DEF < L

Without loss of generality we may suppose L ABC is also acute

(since in any case 1/2[L ABC] is a class of acute angles and the

powers of k would at most be increased by one). If no such k

existed we would always have 1
/2k[/.

> [L DEF] , i.e.,

[L ABC] >2kELDEF] for all k. This contradicts Theorem 2.7 and

we are done.

Putting Theorems 2.7 and 2.9 together, we can now establish

the map ni "
A described in the introduction.

2.10 DEFINITION. Let IL rt] be the class of right angles.

Let EL ABC] be any non-obtuse angle class. Inductively define the

two-variable function 1-1 to be

ri([LABC],n) =

0 if { ABC] is the ideal class so that

EL ABC] -I- [L rt] = EL rt]

0 if n = 1 and 1 /2[L rt] > EL ABC]

1 if n = 1 and 1 /2EL rt] <[L ABC]

)0 if n >1
1 if n >1 and

1/2n[L t]

n-1

i=1

11([ LABC1,01121(Lrt >[LABc]
< [LABc]
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The function 1 gives us a way to assign a real number r in

the half open interval (0,n/2] uniquely to every angle class which is

not obtuse. (Again the "well-definedness" argument is left out.)

2.11 THEOREM. Let 1[L rt] I = n /2. Let [L ABC] be any

class of non-obtuse angles. Then there is a unique real number

r = I[LABC]IA so that 0 < r < n/2 and

r 1.u.b. (S :Sn = Tr 1/2 ri({L ABC], i))
i=1

Proof: (Using 2.7 and 2.9 together with 2.10 the proof is essentially

identical to the proof of 1.14 so will not be repeated here.)

2.12 THEOREM. If we assume the extension of the injection

I Is to all real numbers, then the injection
I I A

is a surjection

onto (0, n /2].

Proof: Let L POQ be a right angle. Let r be any number

between 0 and n/2 and suppose there is no angle class [L ABC]

corresponding to r. Let S = {[LDEF]: I IL DEE] I A < r} and let

T {[L GM]: I [L r} . By the use of the cross-bar theorem

we immediately get two sets

S = {[OF']: F' is the point of PQ so that [L POF'] = [L DEF]}

T = I' is the point of PQ so that [L P011 = [L GHI]}.
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Clearly, every class in S is less than every class of T from the

definition of
I I A

and ordering of angle classes. Using
I I s we

get two more sets

SI = = 1[0Fi]l5:[OF1 E §_}

T1 = {t 1{0Iiils°[0I1 E

S' and T' are sets of reals so that the Dedekind hypothesis is

satisfied so there is a number k so that k is the first element of

T or the last element of 5'. By our "extension" hypothesis there

is a point K on PQ so that [PK] corresponds to k and hence

an angle class IL POK] corresponding to r (a contradiction) and

the theorem is proved.

Based on our key assumption that "I
1a

is a bijection and

the results of 2.12 we can extend it
I I " to (0,7)

A
in the usual

manner by the following definition of the extension of

classes.

2.13 DEFINITION. Let IL ABC] be any angle class. If

IL ABC] is a non-obtuse angle class then E I [LABC]I = I[LABC]lA.

If IL ABC] is an obtuse angle class, then let [L ABC] be the

class of supplements of representatives of [L ABC]. Define

EU_ ABC]lA - 1{L ABC] l A. In all subsequent work we will use

the symbol "1 I A" to mean "E I 'A"

A" to all



This concludes part (b) of the steps of the argument outlined

in the introduction since now
I I A:

Set of angle classes (0, Tr).
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III. THE ANGLE OF PARALLELISM AND THE
"LOBACHEVSKIAN FUNCTION"

In the two preceding chapters we have established an assignment

of numbers to segment classes and to angle classes. Implicitly this

gives us the notion of measure for both segments and angles and the

coordinatization of any line. This is because (based on the key

surjections as described earlier. We can thus use results established

on the basis of "metric" or "ruler" axioms such as in Moise [10] and

even the results of measure concepts as used by Lobachevski [9]. We

shall draw upon these sources to make possible a somewhat shorter

development than would be possible if these same results were proved

in this paper also. There seems no good reason to redo that work

which can be obtained directly from the literature once the results of

Chapters 1 and 2 are established. Our present goal is to establish the

Lobachevskian function II. Whenever the literature follows a path

that would require significant other details than those given there,

those details will be developed independently in this paper.

Euclid essentially proved the following theorems of absolute

geometry. (These have later been proved on the more logically sound

basis of Hilbert axioms) [10, p. 93-97].

If a is a plane, is a line of a, and A is a point of

a not on a, then
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assumption) we can extend the injections II I I 11 and " I I

A



There is a unique line p of a that is incident on A

and perpendicular to line a at a point P of line a

(P is called the foot of the perpendicular from A to a).

There is a unique line b of plane a

that is perpendicular to line p at A.

The line b does not meet line a.

The following lemma is an easy result of the Lobachevskian parallel

axiom and the results (1), (2), (3) above.

3.1 LEMMA. Let a, a, A, and p be as above. Then in

each half plane of a determined by p, there are points L and

Q on opposite sides of line p in plane a so that
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Proof: By (3) above, the perpendicular b to p at A in a

does not meet line a. Lobachevskits parallel axiom assures us

there is another line I in a so that I is different from b,

/incident on A, and does not meet a. Let AL and AL' be the

opposite rays from A on I. Since I is not the perpendicular

p at A, either L PAL or L PAL' is acute. Renaming if

necessary, suppose L PAL is acute. AL does not meet a since

L PAL and LPAQ are

both acute and
-->AL and AQ neither meet

line a.



45

does not meet a. By Axiom 111-4, there is a unique ray AQ in

the half-plane of a determined by p and not containing L so

that L PAQ L PAL. AQ does not meet line a, because if it

did meet line a at some point 5, then AL must meet line

a at a point T so that S-P-T and SP PT. This proves the

lemma.

3.2 THEOREM. Let a, a, A, and p be as above. On a

given side of p in plane a, there is a unique ray At so that

AR* does not meet line a,

L PAR* is an acute angle,
-4

if AS is any ray of a on the same side of p as R*

and LPAS < L PAR*, then A-.7 meets line a at a

point of the ray PQ of line a on R*Is side of 13.

Proof: Let Q be a point of line a distinct from P on the given

side of p. Let B be a point so

that P-A-B. By Lemma 3. 1,

there is a point L of plane

a on Q's side of p so that

AL does not meet 0 and so

that LPAL is acute. Thus AL

does not meet PQ, and by

Pasch's axiom line AL meets BQ



Let

--a
R. But R is on Q's side of so R is a point of AL.

D {S:S = R or S is a point of QR so that AS does

not meet PQ}

E = (RQ {R}) - D.

Let us order these sets as follows, S < T iff QS < QT. Now

D (I) since R E D, E cp since for every Q' of PQ with

AQ' meets RQ at a point Further,

D E = RQ j {R}, D c E (I) and S < T for every element S

in E and T in D.

Now E has no last element since if S' is such a last ele-

ment AS' meets AQ at K. Let K' be any point so that
----aA-K-K` and AK' meets RQ at a point S" so that Q-S'-S11

and S" >S' in E.

We now make our first use of our assumption. We claim D

necessarily has a first element since otherwise the correspondence

with the real numbers will give us a Dedekind class of reals with no

first element in a set that must, in the reals, have a first element.

Hence there is a point R* of D so that all these necessary condi-

tions for the theorem are satisfied. Uniqueness follows immediately

from the construction of the argument.
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3.3 DEFINITION. In the notation of Theorem 3.2, the angle
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L PAR* is called the angle of parallelism associated with PA and

line AR* is said to be parallel to line EQ in the direction of

PQ.

The results of Theorem 3.2 and the definition in 3.3 are included

in Section 16 of Lobachevskils The Theory of Parallels [9]. His proof

is valid if the Dedekind property is assumed instead of the complete-

ness axiom of Hilbert. Lobachevski attaches metric notions to his

treatment at this point by defining the angle of parallelism

11( I [AP] I s) IEL APIA' (in terms of this paper 's notation). Please

realize that this is intended only to explain this paper's steps and no

way is meant to play down the imaginative work done by Lobachevski

As noted earlier, we must justify the claim that there is in fact an

angle which can rightfully be called THE angle of parallelism for a

given segment class. The results given above justify such a claim.

Lobachevski's next result--in his Section 17gives:

3.4 THEOREM. "A straight line maintains the characteristic

of parallelism at all its points" [9, p. 15].

His proof is valid from the standpoint of our present work. He

then gives the following theorem:

3.5 THEOREM. "Two lines are always mutually parallel"

, p. 16].
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In the proof he gives for this theorem he gives one step in which

one must "... slide the figure EFAB until it coincides with AG,

This "sliding" can be precisely stated and proved in several ways.

One such way is given by Moise DO] in which he proves the following

results. We use his more operational notation:

3.5.0 DEFINITION. Let AB and PD be two lines in a
.0.

plane a, which do not meet. Then PD v PA v AB v {A, P} is

called the open triangle LDPAB

provided B and D are on the

same side of AP. If every interior

ray of L APD intersects AB,

we say IZ is critically parallel

to AD and write PD I .A.1

[10, p. 311-312].

3.5.1 THEOREM. If

PD I At and C -P -D, then

CD' [10, p. 312].

3.5.2 THEOREM. If PD I AB and P-C -D, then
,

C'DIAB [10, p. 313].

->3.5.3 DEFINITION. Two rays r and r are equivalent

rays if one contains the other [10, p. 3133.
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3.5.4 THEOREM. If is equivalent to and t I AB,

then 7.711AB [10, p. 313].

3.5.5 THEOREM. If r and r are equivalent rays, s

and s are equivalent rays, and ri s, then r I s [10, p. 313].

3.5.6 THEOREM. The critical parallel to a given ray through

a given external point is unique 1110, p. 314].

- -7*3.5.7 DEFINITION. If PD I AB then the open triangle

DPAB is called a closed triangle with AP called the finite side

and PD and AB called the infinite sides or simply sides [10,

p. 317].

3.5.8 DEFINITION. Two closed triangles are called equivalent

if the rays that form their infinite sides are equivalent in pairs for

some pairing. Furthermore, ADPAB is called isosceles if

LP -7" LA [10, p. 314,317]. Note; there is obviously no predictable

relationship between the finite sides of equivalent triangles.

3.5. 9 THEOREM. Closed triangle ADPA13 is equivalent to

an isosceles closed triangle DPAIBI which has P as vertex

[10, p. 314,317].

3.5.10 THEOREM. Critical parallelism is a symmetric rela-

tion [10, p.314].
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It is clear that 3.5.10 is essentially another formulation of 3.5.

However, the string of theorems giving 3.5.10 is needed in some form

to justify the "sliding" used by Lobachevski. In fact a sort of transi-

tivity of parallels also follows.

3.5.11 THEOREM. If AB I CD, CD I EF
-->

equivalent to EF, then AB I EF [10, p. 315].

and AB is not

As may be noted by the references given for 3.5.7-3.5.9, our

introduction of the defintion of closed triangles is not sequenced

exactly as in Moise. This is done with no introduction of ambiguity

and saves some time later when we state the "External Angle

Theorem" for closed triangles (3.12) which plays an important role

in subsequent proofs.

Lobachevski's Section 19 begins with:

3.6 THEOREM, In any rectilinear triangle the sum of the

three angles cannot be greater than two right angles [9, p. 16].

His proof involves supposing that this angle sum is greater than

Tr + a for a > 0. This uses the trigonometry-analysis notion of

angles greater than a straight angle. This can easily be avoided by

a method such as that used by Moise in his Chapters 7 and 10 [10].

It is interesting to note that Girolarno Saccheri [15] had established

essentially this result one hundred years earlier but did not recognize



the significance or even the validity of allowing the introduction of

Lobachevski's axiom and the resulting strict "less-than" result for

this angle sum and Tr. Moises treatment, which is certainly not

unique, proceeds by the following route,

3. 6. 1 DEFINITION. If A, B, C, D are coplanar points with

J. AD at A, DC 1AD at D, AB CD, then

DABCE = {A, B, C, D} v AB v BC CD v AD is called a Saccheri

quadrilateral with AD the lower base, BC the upper base and

AB and CD the sides.

3. 6.2 THEOREM. In any Saccheri quadrilateral, the upper

base angles are congruent.

3.6.3 THEOREM. In any Saccheri quadrilateral, the upper

base is congruent to the lower base or to a segment greater than the

lower base.

3. 6.4. THEOREM. In any Saccheri quadrilateral ABCD

with lower base AD, L BDC > L ABD .

3. 6.5 THEOREM. In any right triangle

AABD with right angle at A,

ABE31 A + AD4I A < TT /a.

3. 6. 6 THEOREM. Every right triangle has two acute angles.
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3.6.7 THEOREM. The hypotenuse of a right triangle is longer

than either of its legs.

3.6.8 THEOREM. In tABC, let D be the foot of the per-

pendicular to AC. If AC is the longest side of ABC, then A-D-C.

3. 6. 9 THEOREM. In any triangle ABC, we have

I[LB]A 1[LCUA Tr [10, p. 125-130].

Lobachevski next establishes in Section 20,

3.7 THEOREM. "If in any rectilineal triangle the sum of the

three angles is equal to two right angles, so is also the case for every

other triangle" [9, p. 17]

He then observes, "From this it follows that only two hypotheses

are allowable: Either is the sum of the three angles in all rectilineal

triangles equal to Tr, or this sum is in all less than Tr" [9, p. 18].

His next result [9, p. 18] is, "From a given point we can always

draw a straight line that shall make with a given straight line an angle

as small as we choose. " This is effectively our Theorem 2.9.

In his Section 22, Lobachevski establishes,

3 . 8 THEOREM. "If two perpendiculars to the same straight

line are parallel [i.e., critically parallel] to each other, then the

sums of the three angles in a rectilineal triangle is equal to two right

angles" [9, p. 19].
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His argument, though somewhat "old-fashioned" in its choice of

mathematical verbs is logically sound. The next two theorems, how-

ever, use a proof which seems to justify some substantially greater

detail than that given by him. His proof involves limiting arguments

which need a firmer base in light of our present mathematical notions

of completeness and continuity. His theorem states:

For every given angle (of measure) a there is a line (segment

of length) p such that (the measure of the angle of parallel-

ism) 11(p) = a [9, p. 19].

The parentheses are ours. To establish this result on our present

foundation we define the Lobachevskian function H. We then show

is a decreasing function which can have any real value between 0

and Tr /2.

3.9 THEOREM. Let A, a and A', a' be points and lines of

planes a and a' respectively. Let:

. A and A' be points not on a and respectively, and

2. p and p' be the perpendiculars from A and A'

a and a' respectively with Q on and Q' on

so that PQI AR* and

P'Q' AIR'*.

Then PA P IA iff

L PAR* 1: P TR 1*.



Proof: "only if." Suppose

L PAR* < PIA:RI* given that

PA PIA'. Then interior to

L there is a ray A'S' so

that L PAR* -= L PIA'S'. But by
-->the definition of L P'A'R'*, A'S'

meets P'Q' at T'. Now there is a point T on PQ so that

PT I: PIT' and by S.A.S. LI APT '= AAIPITI so that

L PAT L PAR*. This forces AR* to meet PQ at T which

is impossible. By symmetry this part of the proof is done.

Now suppose AP < A`P`

given that L PAR* =7. LP *

Let M' be a point between

and P' so that A'M' AP. Let

m' be the perpendicular to A'P'

at M' in a Then there is a

A'P' as Q'). But then (by

3.5.10) P'N' meets AR'* at

a point K'. By Pasch's axiom MM" meets AlRI*. By between-

ness considerations M'M' meets A'K' at L' (every point of

54

ray P 'N' interior to Lm1p1 QI

so that P '1M 'M 'I (where mll

is any point of m on the same side



A'K' is on the same side of A'P' as M'Mu and no point of m1

except those on is so situated). Let L be the point of

AR* so AL A'L'. Then APAL AP'A'L' by S. A.S. Thus by
-4

uniqueness of perpendiculars to AP at P in PQ = PL and

again a contradiction results.

This theorem assures us that the following function is well

defined:

3.10 DEFINITION. If [AB] is any segment class and

[L ABR*] is the class of angles containing the angle of parallelism

associated with AB, then the Lobachevskian function 11: R+ R+

is defined by 11(1[AI:311s) = 14_ ABR*1I where 1 Is is taken to

be positive,i.e., with no reference point as in 1.16.

Lobachevski introduced this function and developed many results

concerning it [9, p. 13].

3.11 LEMMA. If 1[A1311s = a, 1[CD]Is = b, and a > b,

then 11(a) < 11(b).

Proof: Let a be the plane

determined by line 1 and a point

L not on 1. Let p be the

perpendicular from L to 1
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with foot Q and let P and P be points of p so that Q-P-P'

with PQ CD and P1Q 7-- AB. On a given side of p in a let

R* and R'* be points so that L QPR* and L QP'R I* are the

angles of parallelism for PQ and PrQ respectively. By 3.5.10

and 3.5.11, we know PR*IPIRT* so line PR* does not meet

PIR'*. If II(a) > Il(b), then there is a ray P'R" interior to
, *

PP'12'):= such that L PP'R" L QP R* But PR*/ P 'RI* forces
-->PR" to meet PR* at some point T. In APP1T, L QPT is an

exterior angle so LQPT > L PP RI' (by exterior angle theorem of

absolute geometry). But L QPT LQPR LPP'R" which is

impossible so II(a) <11(b) as claimed.

We now have the tools with which to draw upon Moise's formu-

lation of the following theorem.

3.12 THEOREM. (The Exterior Angle Theorem for Closed

Triangles) In every closed triangle, each exterior angle is greater

than its remote interior angle [10, p. 317].

The proof he gives uses only materials so far included in this

paper. 3.12 is then used together with 3.10 and 3.11 to prove that:

3.13 THEOREM. If [AB] > [A then

n(l[ABils < n(1[AIBi]ls), i.e. , the Lobachevskian function is

strictly decreasing.
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Proof: (This proof is in Moise [10, p. 31911 but is sufficiently ele-

gant as to justify its inclusion. To simplify its statement we use the

figure at the right to schematically give the

relationship of the rays, lines, points,

etc.) Let AP and AP' be repre-

sentatives of [AB] and [A1131]

respectively. Let L APD and

AP'DI be the angles of parallelism associated with [AB] and
,

[A IB 1,1 respectively. Now by previous work, PD1AQ and
,

;6741 /37151 so by 3.5.11 PD I PID' and hence by 3.12 we are done.

The next two theorems follow easily and, with their proofs, are

given in Moise [10, p. 319-320].

3.14 THEOREM. The upper base angles of a Saccheri

quadrilateral are acute,

3.15 THEOREM. For every triangle, AABC, we have

ILAIA ILBIA ILclA <

This leads to the definition of what has come to be known as the

defect of a triangle.

3.16 DEFINITION. The defect of tABC, denoted 5(ABC),

is 5(ABC) = it ILAIA ILBIA



This leads to three theorems which have been stated and proved in

Moise in a manner which is sound with respect to the mathematical

foundation in this paper. These are

3.17 THEOREM. Let AABC be any triangle with B-D-C.

Then 8(ABC) = 8(ABD) + 5(ACD).

3.18 THEOREM. If two triangles are similar, they are

congruent.

3. 19 THEOREM. lirn II(a) =
aco

(At this point Moise proceeds to develop area notions not rele-

vant to this work. ) We now have the machinery to prove Lobachevski's

next theorem [9, p. 19, No. 23] which we rephrase just a bit.

3.20 THEOREM. For every

acute angle LPOQ, there is a

line which is perpendicular to

OQ and which is parallel to OP

in the direction of

Proof: Let L POQ be any acute

angle. Let B be a point on

FP and let A be the foot of

the perpendicular from B
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o(0A1B0) = 25(0A0B0) < 8(0A1B

5(0A2B ) = 26(0A1131) < 6(0A2B),

6(0A Bn n- 26(0An_i n_B < (5(0A Bn n

i.e. , for any n > 1, 2116(0A0B0) < 5(0AriBn) by induction. Now by

definition 5(0AnBn) < and 5(0A0B0) > 0 and we have a contra-

diction to the Archimedian property for real numbers. Hence at least

one of the perpendiculars from a point on 06 does not meet O- P.

We have a natural ordering of the lines

are perpendicular to OQ at points Q.

follows: We say Q.R. < Q Rk k

Q.R., j E R+, which
3 1

O Q in plane a as

provided 0-Q.- Now let
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0Q. Since P°Q is acute, A is on 0Q. Suppose all the

perpendiculars from points on OQ in the plane a determined by
4OQ and P, meet OP. Consider the following sequence of points

on

Let Ao = A
-->be the point of OQ so that 0-A0-A1 andLet Al

0A0 = A0 A1 . Inductively define A to be that point of OQ so

that 0-An-1-An and OA A A . Let B be the point ofn-i n-1 n
OP where the perpendicular to OQ at

An
meets OP.

This defines an infinite family of triangles which we consider as

follows (cf. hypothesis and 3, 17):



L {p:p is a line of a and pi OQ at a point of OQ

S = {s: 5 E L and s meets OP},

T = {t: t E L and t does not meet OP}.

By our work above s S and t E T implies s < t with S

and T By the Dedekind property for points on a line, which fol-

lows from our key assumption, T has a "first" element. (Obviously

S cannot have a last element)and since S and T give rise to

natural Dedekind classes of points of O this result holds.

Let A'B' be the "first" element

of T with A' on OQ and B'

on P's side of OQ. We claim

A'& 10P. Let A IC be any ray

interior to angle L OAIBI, and

suppose it does not meet OP. Thus C is inter ior to LP°Q
also. The perpendicular from C to OQ meets OQ at D of

OA'. Then this perpendicular CD meets OP (since A' is

the first element of T) at P'. Hence AIC meets OP' by4
Pasch's axiom. By elementary betweenness arguments, AJC meets

OP', a contradiction. Hence A113'1 OP and hence A' is paral-

lel to OP in the direction of OP and we are done-

3.21 COROLLARY. Every acute angle is the angle of parallel-

ism for some segment.
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Proof: Let OP be the bisector of

L AOB . Let be the line perpendicu-

lar to OP and parallel to OA in the

direction of OA and let F be the

foot of this perpendicular on OP. By

3.19 L AOFIA =11(1{0F]ls) I L BOF I and we are done.

The. line ,f in 3. 21.1 is said to be parallel to both sides of LA013,

3.22 THEOREM. The function II assumes all values between

0 and Tr /2.

Proof: Immediate from Corollary 3.21.

Let us now draw several results together. In 3.10 we defined

11: R+ by defining H I [AB] I s = [L ABR*) IA. Since L ABR

is an angle of parallelism, H is clearly positive (cf. def. 3.3, 3.2,

and 2.13). By 3.21, every acute angle is the angle of parallelism for

some segment so, by definition, the supplement of any obtuse angle

is the angle of parallelism for some segment. Let us assign angles to
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Proof: In the notation above IZPO
1 --T1(1[0

3. 21. 1 COROLLARY. For every angle L .A013 there is a

line i that is parallel to OA in the direction of OA and also is

parallel to OB in the direction of



points on an ordered line as follows; In plane a let:

PO be any line,

OR be the perpendicular to PO at 0 in a,

Q be any point of PO,

Q' be any *point of a so that

Then

If Q E CP, assign

L OQQIto Q (i, e. ,

assign the angles of par-

allelism associated with OQ),

If Q = P assign L

If P-O-Q, let P" be any

point of PQ so that QP" is equivalent to (ef. 3.5.3)

then assign L P"QQ1 to Q (i.e., assign the supplement

of the angle of parallelism associated with 0Q)

Theorems 3. 13 and 3.21 assure us that such an assignment is con-

tinuous and one-to-one (based on our assumption that the injection

from points on a line to the real numbers (1.16) is a bijection in the

sense described in Chapter 1).

Using the extension of "I
IA

I I (described in 2- 13) to all angle

classes we are now in a position to state and accept the following

(3-3, al .

/ Q

P"
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extensions of II which allows us to enlarge the range stated in

3.22:

3.22. 1 DEFINITION. In plane a, let

PO be any line I ,

OR be perpendicular to PO at 0 in a,

to mean

3. x be any real number,

the point Q

II in II

Q(x) be the point 0 if x = 0

the point Q of I so that P-0-Q and

L. 1[005= lx1 if x < 0,

Qi(x) be any point of a so that Q(77)(77-)11 81, and

P"(x) be any point of I so that Q"(x)Pn(x) is equivalent

to PO (cf. 3. 5. 3).

Then define 111(x) = I [LP"(x)Q(x)Q'(

It is clear that for x > 0

111(x) = II(x) and that

III: R -- (0, Tr). For simplicity

of notation, throughout the rest of

this paper we will use the su.mbol

Since II I I II

I IS

OP so that 1[00 s = x

always non-negative ill [AB] Is =HI [AB] I s

if x > 0
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so no ambiguity is possible here. The only difference is when we are

using negative reals. The use of ICI is not specifically needed until

Chapter 6 and for all intermediate work the earlier meaning of the

symbol II is sufficient. However, this seems the best place to

develop this extension to maintain continuity of exposition as much as

is possible in so long an argument,

3.23 LEMMA. Let L AOB be any angle. If i is parallel

to OA and OB in the direction of OA and OB respectively,

then I is perpendicular to the bisector OP of L. AOB at a
-->

point F of OP.

Proof: Let OF be the perpendicular from

0 to I with foot F. Let A' and B'

be points of I so that FA 'I OA and
-->
FBI' OB. By definition L FOA and

L FOB are angles of parallelism associated

with OF and by 3.2 and 3.9, these are both acute and mutually

congruent angles.

Thus the bisector of L AOB is a ray of OF. Let OF' be

the bisector of LA0B Suppose OF OF' and F-O-F'. Then

by an argument such as that for 3.20 we get that the perpendicular to

OF at F' is also parallel to OA and OB in the direction of

OA and OB. Thus L F'0A L FIOB and both are acute by 3.2.



Thus at 0 we have acute angles LVOA and

LFOA as supplementary. That is

impossible. Thus OF is the bisector

of LAOB as claimed.

3.24 THEOREM. If

LAOB LA0'131,

f and are parallel to both sides of LAOB and

LAIO'Bj respectively,

P and P' are the feet of the perpendiculars from 0 and

0' to i and 11 respectively,

then OP 7.= O'P'.

Proof: By 3.23 OP and OP' are the

bisectors of LAOB and LAIC)'Bi

respectively. If OP < OF',

LPOA > LP'0 IA' by 3. 13, a con-

tradiction. By symmetry O'P' < OP

is also impossible and we are done.

Theorem 3.24 is a key theorem

in that it allows us to select one class

of segments in a canonical way just as in absolute geometry it is

possible to canonically select a certain class of angles. The ability

to select a reference angle class, (specifically the class of right
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angles) allows us to choose, on the basis of the axioms, a reference

standard for the function 1

1A (LrfllA. Specifically = Tr /2. LetI

[RT1 be the class of segments which has as representation the seg-

ment OP so that if L AOP is a right angle, then P is the foot

of the perpendicular to the line 1 which is parallel to both sides of

L AOB. This class contains all such segments for all right angles

according to 3.24, It will be shown that the most reasonable value to

select for j[RT]ls = 11-1(1{IftlIA) is ln(N/ 2 +1) when we have

elected to assign Tr/2 to the class of right angles.

3.25 DEFINITION, We will call the class [RT] (above) the

canoniaal class or standard class of segments and its representaives

canonical segments or standard segments.

We have now defined the Lobachevskian function fl and

selected a reference class--the canonical class--of segments which

relates angles and segments. We now proceed with developing the

results to actually evaluate 11. Lobachevski developed, very cleverly,

two figures which he called oricycles [9, p. 30] and orispheres [9,

p, 33} and used spherical geometry and trigonometry to establish

values for II. This work was imaginatively done and justifies his

name, -rather than others', being attached to this geometry. Only

he took the initative to develop the theorems to describe the basic
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properties so fully. However, in a foundations work such as this,

care must be taken to build only on the stated foundation--in this case

Hilbert's axioms. The development we use will somewhat parallel

Lobachevski's but will supply proofs which are founded upon Hilbert's

axioms.



IV. PENCILS AND ORICYCLES

In this section we lay the foundation for the development of the

oricycles and orispheres together with their properties which are

useful later in computing the formula for the "Lobachevskian function's

As has been said already, Lobachevski follows a route not

always adaptable to our foundation, In our subsequent work we will

draw heavily on the definitions given by Shirokov [16]and will prove

many of the theorems he proves. We will follow essentially the same

path he does. Some of his proofs are not adaptable to this paper since

he largely ignores the completeness axiom and uses arguments for

which we have no justification. When this occurs we shall include

appropriate additional proofs and results. These results will make it

possible for us to compute the values for II stated and used by

Lobachevski. The development of the oricycles which we will make

in this and the next chapter doesas noted aboverequire a substan-

tial addition of proof above that given by Shirokov.

We shall--as near as is possible--make every attempt to

specify what of the subsequent results are specifically Shirokovls.

A majority of the proofs and results for orioycles are ours though the

general direction is given by Shirokov, However, once the results

for oricycles have been carefully developed to account properly for
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the completeness axiom, Shirokov's development for orispheres needs

hardly any additional proof than that given by him. The orisphere

results do not need any completeness results beyond that which we

need and provide in the propositions and proofs given for oricycles.

Thus, once we have established the results for oricycles needed by

Shirokov to obtain the orisphere results, we will again draw heavily

on the literature for the development of results for and from ori-

spheres.

We now establish two helpful lemmas.

4. 0. 1 LEMMA. If

1. C is the midpoint of segment AB in plane a,

Z. m is the perpendicular bisector of AB in

i is the line of a which is perpendicular to m at P

where P C, and

A' and B are the feet of the perpendicular to I con-

taining A and B, respectively,

then

. DA'AB131 is a Saccheri quad-

rilateral with base A'B', and

2. p is the midpoint of A'B'.

Proof: To avoid a contradiction to the

exterior angle theorem we must conclude that I and AB do not



meet and also AA', PC, and BB' do not meet each other since

otherwise we have a triangle with an exterior angle congruent to a

remote interior angle. Thus the triangles discussed below all exist:

d ACP LBCP by S. A.S. and thus AP BP. Furthermore

L APA' L BPB' since they are complements of congruent angles.

Hence APA' BPB by S.A. A. so that:

. AA' BB' and by definition CiA'ABB' is a Saccheri

quadrilateral with base A'B', and

2. AfP PB' so P is the midpoint of A'B' as claimed.

4.0. 2. LEMMA. In Saccheri quadrilateral CI A'ABB1 of plane

a. with base A'B', a line

of A'B', iff is the perpendicular bisector of AB.

Proof: Let P be the foot of the

perpendicular bisector of A'B'.

As above we see that the exterior

angle theorem ensures that I not

meet AA' and BB'. In triangles

A'ABI and ABB' we use Pasch's

axiom to conclude meets AB' and AB, respectively. Let

C be the point of AB on I .

Now AKP b1313tP by S. A.S. and thus AP BP. Also

L APC L BPC since they are complements to congruent angles.

a is the perpendicular bisector
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Thus AAPC ABPC by S. A.S. and it follows that AC BC and

JAB at C.

The converse is immediate from 4.0.1.

4.0.3 DEFINITION. Two coplanar lines which do not meet and

are not parallel in any direction are called divergent or hyperparallel

lines.

4.0.4 LEMMA. Any two hype rparallel lines have a common

perpendicular.

Proof: Let AA' and BB' be

hyperparallel lines. From any

point C of AA', let CE I B '13

and I BB'. Now, based on

Theorem 3.20, we have lines FF1

and GG' which are perpendicular to AA' at F and G

--> ,-->
respectively and so that FF' ICE and GG' I CD. Let M be the

midpoint of FG and let m be the perpendicular to BB' from

M with foot N. Without loss of generality we may suppose B and

B' are on F's and G's sides of MN respectively. Let KI-6

--+
and MO' be the rays so that MO I NB and MO' INB I. By 3.9

L N MO 1= L NMO By 3 . 5. 11 ("transitivity" of parallels) MO I FF'

-4and MO'IGGI. Since FM MG, FFIl AA and GG' 1 AA' we



have L FMO L GMOI by 3.9. Thus L FMN L GMN by

angle sum theorem" and thus NMI AA' at M also and we are

done.

4.1 DEFINITION. The set of all lines of a plane containing a

given point C is called a pencil of intersecting lines with center C

[16, P. 35].

4.2 DEFINITION. The ..,set of all lines of a plane which are

perpendicular to a given line is called a pencil of divergent lines

with axis [16, p. 35].

4.3 DEFINITION. The set of all lines of a plane which are

parallel to a given line I in a given direction ABof I is

called a pencil of parallel lines in the direction of A-1 (or simply a

pencil of parallel lines if the direction is clear) [16, p. 35].

4.4 THEOREM. The perpendicular bisectors of the sides of a

triangle belong to one pencil [9, p. 29; 16, p. 36].

Proof: Let the perpendicular

bisectors of the side opposite

L A be line a and let

the midpoint of BC be

etc. as shown.
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and C are not on 1. From

respectively. By Lemma
A"

4.0. 1 DA"ABB" and DB "BCC"
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Case 1. Suppose a and c meet in a point P. Consider

segments AP, BP, and CB. In ki.AC'P and A.BCIP we have

AC' L ACsB BCIP and CIP C'P so by S.A.S.

AACIP 3:- Bctp. By symmetry we also have ABA1P 3 CA1P.

Hence AP BP CP and APC is isosceles making

L CAP L ACP.

Therefore, if B' is the midpoint of AC, ABIP CBP

by S.A.S.. This makes B'P the perpendicular bisector of AC and

a, b, and c are all in the pencil of intersecting lines with center P.

Case 2. Suppose a and c are hyperparallel and hence by

Lemma 4.0.4 have a common perpendicular 1. Then AB and BC

are both hyperparallel to I so A, B,

B" con

are Saccheri quadrilaterals

A, B, and C construct the

perpendiculars to 1 with

feet A", B", 3.nd C"

with common side BB" so AA" CC". Thus A"ACC" is a

Saccheri quadrilateral. Hence the perpendicular bisector b of

AC is perpendicular to I (by 4.0. 2) and a, b, and c are all

in the pencil of divergent lines with axis I.



Case 3. If a and c are parallel in a given direction, then

b is parallel to both a and c in this same direction, since

otherwise we should have a contradiction to Cases 1 and 2 above

(cf. 4.0.4). Hence a, b and c are all in the same pencil of

parallels.

4.5 DEFINITION. Two points A and B correspond to one

another relative to a pencil of lines, iff they are symmetrical with

respect to some line of the pencil (denoted: A*B) [16, p. 39].

then P*R.

Proof: If P = R, we are done trivially. Hence suppose P R.

Case 1. If P, Q and R are collinear, then the only pencil

under which P*Q and R*Q is a divergent pencil with P, Q, R

all on the axis of the pencil. The existence of the perpendicular

if P*Q and R*Q
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a.4.6 THEOREM. In a given plane



bisector of PR gives P*R.

Case 2. If P, Q and R are noncollinear, then the perpen-

dicular bisectors of the sides of APQR are all in the same pencil

(by Thm. 4.4) and the theorem is immediate.

4.7 THEOREM. For any given pencil g, the relation

is an equivalence relation on the set of points of the plane a con-

taining g .

Proof: Let A be any point of a. Then A is on a unique line

of g . This follows because:

if g is a pencil of intersecting lines with center C,

AC is a line of g and is unique.

If g is a divergent pencil with axis 1, there is a unique

line m through A and perpendicular to 1. m is a

line of g and perpendiculars are unique.

if g is a parallel pencil in the direction of r on line

r, there is a unique line m through A so that m is

parallel to the line r in the direction of "i+ provided A

is not on r. Then m is a line of g and we are done.

If A is on r we are done trivially. Uniqueness fol-

lows by 3. 2.

Reflexive. A is on a unique line m ofg and A is
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trivially symmetric to itself with respect to m. Therefore A*A.

Symmetrical. If A is symmetric to B with respect to m,

then the definition of symmetry to a line gives B symmetric to A.

Thus A*B implies B*A.

Transitive. P*Q and Q*R imply P*Q and R*C2 by

symmetrical above. But P*Q and R*Q imply P*R by

Theorem 4.6. Hence P*Q and Q*R imply P*R.

4. 8 DEFINITION. Let t be a pencil in a plane a. Then

denote by OA] the equivalence class of A with respect to

and "*" .

4.9 THEOREM. If t is a pencil of intersecting lines in

with center C and A is a point of a different from C, then

t[A] is the circle E with radius AC and center C.

Proof: Let P*A. If A and P are distinct

points, there is a line m of t which is

the perpendicular bisector of AP at M.

CMP CMA by S. A.S. and PC -7- AC so

P E E . If P = A, P E E. Thus [16k] C E.

Let P be a point of E. If P = A we have P*A. Other-

wise let CM be the bisector of L PCA. CP 7= CA so LP 7-- LA
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and thus Ls PMC AMC by A.S. A Thus CM is the perpendicular

bisector of AP and P*A. This gives us E C [.A.] and we are

done. If P-C-A, the proof is obvious.

4.10 THEOREM. If is a divergent pencil with axis i in

plane and A is a point of a not on I , then

E = {PIP is a point of a. and PP' II= AA' where P' and A'

are the feet of the perpendicular to I through P and

A respectively }.

Proof:

1. ([A] C E). If P is a point of [10L] and P = A, then

P E E. If P A then there is a

line m of which is the

perpendicular bisector of PA at

M. By Lemma 4. O. 1 OPIF'AA'
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A

is a Saccheri quadrilateral with base P'A' so PP' AA'

and t[A] C E-

2. (E C t[A]). If P = A, then P E [A]. If P A, then

OP'PAA1 is a Saccheri quadrilateral and by Lemma 4.0.2

the perpendicular bisector m of the base A'P' is the

perpendicular bisector of AP, so P*A Hence E C t[A]

and we are done.
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4.11 THEOREM. If is a divergent pencil with axis / in

plane a and A is a point of a not on I, then g[A] con-

tains no point of /.

Proof: Suppose P E grA} and P is a point of 1. Then if 13'

is the foot of the perpendicular to / through P, then P = 13' .

In that case PP' is not a segment so cannot be congruent to AA'

as required by Theorem 4.10. This is impossible and the theorem

is proved.

4.12 DEFINITION. If g is a divergent pencil with axis

in a plane a and A is a point of a not on /, then [A] is

called an equidistant curve associated with / [16, p. 39].

4.13 DEFINITION. If is a parallel pencil in the direction

of r in a plane Tr and A is a point of Tr, [A] is called an

oricvcle, or limiting curve in the direction of [16, p. 39].

4.14 THEOREM. If [A] is a circle, an equidistant curve or

an oricycle and if P, Q, and R are distinct points of g[A], then

P, Q and R are non-collinear [16, p. 39].

Proof: If P, Q, and R are collinear, then the three lines of the

pencil with which P, Q, and R are symmetric are perpendicular

to the same line. Hence the pencil is a divergent pencil with base



PQ = PR = QR. But this is impossible since [A] is forced to be

an equidistant curve and hence has no points in common with the base

(4.11 and 4.12).

Note: Throughout the rest of this paper the symbol AP' will be

used to mean an oricycle.
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V. PROPERTIES OF ORICYCLES AND ORISPHERES- -
THE VALUES OF II

To simplify the following writing we will denote I ABC1I

by mi_ABC' and II( I [A1311 s) by III AB I or n I [AB]l

5. 1 THEOREM. Let
-41. t[A] be an oricycle in plane a and in the direction of r,

2. P, Q be distinct points of this oricycle,

3. p, q be the lines of t incident on P and Q respec-

tively, and

4. 1, -ct be the rays of p and q from P and Q in the

direction of parallelism of p and q, respectively.

Then

mLmtHIl,[PQ]2

I ip at P in a iff I

has no other point of t[A], and

2. If 1 p

UAL then by 1.

Proof: 1. P, Q E [A] implies P*Q so the perpendicular bisector

m of PQ in a is in the pencil (Definition 4.5). If M is
I

-4
the midpoint of PQ, then mLQP q = MQ I = HI MP I = mLPQ p.

By definition [MQ] {AB}/2.

P and I is incident on a second point R

LA1.I
311 /2.

2
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LP11. ; LQP < Lrt.

so This



is impossible.

If 1 p then for one of the rays from P on 1 , say 1,
,Li p, is acute. Thus by 3.21 there is a segment class [PT} so

that II I PT I = mLlft: Let T be the point of 1 so PT is a

representative of the given class. Let TS 1-p* and let P1 be on

so that P-T-P' and PT TP1. Then

by definition, TS 1 T and

P*P'. Hence P1 E [A] SO 1 has

a second point of this oricycle. Thus

by contrapositive, the statement is

proved.

3. Immediate from Step

5.2 THEOREM. If

H t[A], H1 = t'[C] are oricycles in planes a and a

respectively,
-4

AA' and CC' are rays in the direction of t and

respectively,

B is some point of H different from A, and

D is a point of a so that LAIAB L C'CD,

then

1. CD is incident on a point E of H1 different from

C, and
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then

2. AB 1= CE

Proof: 1. By 5.1-3, LC'CD is acute and by 5.1-2 meets H' in

a point E different from C.
I2. By 5.1-1 we have III

[AB] [CE]
2 I - I . Thus AB CE.

2

5.3 THEOREM. If

H = t[A] is an oricycle in plane a and in the direction of

AA',

P is a point of H different from A,

--> ,

PPsIAAI, and

m is the perpendicular bisector of AP at M',

m is a line of

m is incident on a unique point M of H,

AM MP, and

M is exterior to LPAAI.
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Proof: 1. By 5. 1, mLA'AP [AP]ni2
,

Thus WM" is parallel to AA' in

the direction of AA' so m E .

2, Let Mid" 1 AA*1. Now by

3. 5. 9 closed triangle AIAM'M" is

equivalent to an isosceles closed

triangle AIAMM" (since LAM'M" is a right angle, we know

M-M'-M"). Furthermore by 5.1, we know mLA'AM = 11-14.-L411

Thus if D is the midpoint of AM, the perpendicular to AM at

is in Thus A*M and M E H as claimed. We now must

show M is unique. Suppose m meets H in a second point N.

Let n be the perpendicular bisector of MN. Then n E . But

m E t (by 1.) and m meets n, a contradiction.

AMMI APMMI by S.A.S. so AM -1 MP.

As noted in Step 2., M-M'-M" so M is exterior to

LPAAI

5.3.1 COROLLARY. If H = [A] is an oricycle in plane a

-
and in the direction of AB and m is any line of t , then m

is incident on a unique point M of H.

Proof: If A is a point of m, we are done. Let Q be the foot

of the perpendicular p from A to m. Let P be the point of
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p so that A-Q-P and AQ QP.

Then A*P by definition, P E H,

and by 5.3 m is incident on a

point M of H.

5.4 DEFINITION. Let t[A] = H be an oricycle in plane

and let t be a line of a so that t meets H in exactly one

point or equivalently (by 5.1) t is perpendicular to a line of

some point P of H. Then we say t is tangent to H at P.

5.5 DEFINITION. Two oricycles H and H' are said to be

congruent iff there is a one-to-one correspondence f:H H' so

that for any two distinct points P and Q of H, we have

PQ f(P)f(Q). f is called a congruence [16, p. 41].

5. 6 THEOREM. Any two oricycles are congruent [16, p. 41].

Proof: Let H = t[A] and

H' = t'[.A1 be two oricycles in

planes a and a respectively

with a and lines of t and

through A and A' respec-

tively. Let B and B' be points

of a and a' so that AB and

A'B' are in the direction of
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parallelism of and respectively. Let f: H H'

defined as follows:

first choose a correspondence between the half planes

defined by a and by a' in a and respectively.

For each point P of H, let

r- A' if P = A

PI so that LBAP LB'AIP' if P 4 A and F' H'
f(P) =

is in the half plane chosen to correspond to the

half plane determined by a and containing P.

We claim f is a congruence between 1-1 and H'.

(1) f is a bijection:: Suppose P and Q are distinct points

f H. If one is A, we are done so suppose both are not

A. If P and Q are in different half planes of

in some half plane of a. determined by a. Since A, P

and Q are noncollinear (Thm. 4.14) LBAP LBAQ

so f(P) 4 f(Q) follows (4.14 and 5.1). 5.2. gives onto.

(2) f(P)f(Q) PQ: A, P, Q and A', P Q' are noncollinear

(by 4.14) so consider APQ and isA'P'QI. AP A'P'

AI CA1P3since n( [P
) rn.Z BAP = fl() from 5.1,

2
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determined by a, then f(P) f(Q) so suppose they are

and 3.22.1 gives us APS.' A11:31. By symmetry we also have

AQ '41AIQ'. By ttangle difference we also have



be as in 5.6.
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LPAQ LPIAIQI so APQ AIP IQ' by S. A.S. Hence

PQ P'Q' f(P)f(Q) as claimed.

5.6.1 COROLLARY. Let H, A, B, a, H', A', B', and

If mLPAB = 111 rAPi
2

is in ci, then P is

and

on H.

If P is on H, P not A,

and LP"A'B' LPAB, then

there is a unique point Fo on

AP" so P' is on H' and

AP

Proof: The argument for 5.6 handles both parts except the existence

of P which follows from 5.1.

5. 7 THEOREM. Let [A.] H and = H' be two

oricycles. There are exactly two possible choices for the values of

f:H H' so that:

f is a one-to-one correspondence,

For two specific points P c H and P' E H', f(P) = P', and

AB :=" f(A)f(B) for every two distinct points A, B E H.

Proof: Let p and be the unique lines of and which
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are incident upon P and P' respectively. Let A be any point

of H different from P. A is thus not on p and if a is the

plane containing the pencil t, A determines a unique half-plane of

a as determined by p. Let a be the unique line of t incident

on A. Let AD and PQ be rays

I a and p so that ADIPQ.

Then LPAD LAPQ and each has
[AP]

HI 2 I
by 5.1. Let

P'Q' be the ray of p' from P'

in the direction of parallelism for t

in plane a'. Then on each side of

IImeasure!,

p' in

PIA'

there is exactly one ray

or P " so that

LQ1p IA I LQ tp fA LQPA.

each ray there is exactly one point

which we may name A' or A"

respectively so that PIA' PIA"-7=- PA with A' and A" both

on H' (by 5. 6.1). Following the proof of 5.6 we see that f(A)

assigned to either A' or A'' will lead to a congruence such as

constructed in 5. 6. A" and A' are the only possible values of

f(A).

5. 7.1 COROLLARY. There is a unique congruence f:H H'



so that for any two distinct points A and B of H and any two

distinct points A' and B' of H' with AB A'B' we have

f(A) = A' and f(B) B'.

Proof: By 5.7 we have exactly two possible congruences between H

and HI with f(A) = A'. Exactly one of these also has f(B) = B'.

5.8 THEOREM. If 1, m,n are three distinct lines of a

parallel pencil in a plane a, then there is a line p g of

which meets all three of 1, m, n.

Proof: Let L, M and N be arbitrary points of /, m, and n

respectively. If L, M and N are collinear, we are done. Suppose

L, M and N are not collinear. Let Li', mil and -NM be rays

of 1, m, and n in the direction of

parallelism of If M and N are
on opposite sides of 1 then MN

meets / and MN is a line as

desired. Suppose M, N are on the

same side of 1. If N and LI are on the same side of LM then

LN is a ray interior to
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and since LL '1 MM' we have

LN meets MM' also and we are done. Suppose N and L'

are on opposite sides of LM. Then NL' meets LM at a point

Q. Let L" be a point of 1 so that L-L'L". Then L'L"I NN'.



LQL'Ll' is an exterior angle (of bLQL") opposite LL

LQL1L. Then there is a ray L'P interior to LaLIL" so 4
LL'LQ LL"L' P and then by definition of critical parallels, L'P

meets NN' at some point R. LM meets bNLIR at Q' and

otherwise satisfies Pasch's axiom so LM meets NR and we are

done.

This theorem is surprisingly hard to prove, and unless con-

sidered carefully, seems so obvious as to not even need stating.

However, it can be shown that, unlike Euclidean geometry in which

every transversal meets every line of a parallel pencil, i

Lobachevskian geometry no line meets every line of any parallel

pencil. With this in mind one is lead to appreciate the significance of

a theorem which allows us to show that for any three elements of any

given pencil of parallels, there is some line which meets all three.

Theorem 5.8 gives rise to the following theorem leading to a

betweenness relation for elements of a given parallel pencil.

5.9 THEOREM. If /,m,n are distinct lines of a parallel

pencil in a plane a and p and p1 are two lines which meet

1, m, and n in points L, M, N and LI, MI, N' respectively, then

L-M-N iff L'-M'-N'.

Proof: Suppose L-M-N. Then L and N are on opposite sides
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of m. Now every point of 1 is on the

same side of m as is L and every

point of n is on the same side of m

as is N since the lines are parallel

point of 1 is on the opposite side of m from N'

meets m This is necessarily at M' so
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and thus LIN'

5.10 DEFINITION. If ,m, and n are three distinct lines

of a parallel pencil t of a plane a, we say m is between 1

and n, written 1 -m-n, iff some line of a meets 1,m, and n

at L, M, and N respectively with L-M-N. (If . , in are

n (n > 3) distinct lines of a parallel pencil of a plane a, we

immediately get by induction, by 5.8, 5. 9, and 0.10, that these lines

may be labelled in such a way that1. jk iff 1 < i < j < k < n.

We write 12 -. . n).

The results of 5.8 and 5.9 assure us that 5.10 makes sense.

and thus do not intersect. Thus every

5.11 LEMMA. If k, A?, m, n are lines of the parallel pencil

of plane a, the following are true:

k -I -m implies m-1 -k,

exactly one of k, i,m is between the other two,

any four distinct lines can be named k, , m,n in such an
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order that k-/ -m-n,

4. given k and I , there are lines h and j of so

that k -h and k -j .

Proof: Because of the betweenness properties of points on a line,

results 1., Z., and 4. follow immediately. Result 3. will be immedi-

ate if we can show there is a line which meets all four of the lines

m, n. By 5. 8 there is a line p which meets k, and m in

points K, L, M. If p meets n also, say at N, then the four

points K, L, M, N can be renamed so that K-L-M-N and the

obvious renaming of the lines gives the theorem. Suppose p does

not meet n. Now rename as

needed to get k-/ -m. We see that

K, L, and M on p (and thus

k, I , m) are all on the same side of

in a (otherwise KM meets n).

Let N be any point of n. Then

meets either KN or MN in tKMN (by Pasch's axiom). If

meets KN at Q, then M and N are on the same side of .

This gives M on N's side of I and on L's side of n

with the result that L and N are on opposite sides of m. There-

fore QN meets m and KN meets all four of k, I, m, n. As

above these can be renamed and ordered k-A? -m-n. By symmetry



we are done (i.e., if meets MN at CV),

5.11.1 COROLLARY. If
'1

. . , are n lines of a paral-

lel pencil g in plane a, then these n lines can be named in

such a way that I 112- - . (For the proof, use induction and

5.11)

These results give us a betweenness for elements of a parallel

pencil which we will now use to develop an ordering for the points on

any oricycle.

5.12 DEFINITION. If A, B, and C are distinct points of an

oricycle H = [.A], we say that B is between the points A and

on H, denoted A*B*C, iff the line b of through B is

between the lines a and c of g through A and C respec-

tively in the sense of Definition 5.10. (Furthermore for any finite

number of points A1, A2, , An, n >3, we can rename these

points so that for the corresponding lines a a .. a of g
1' 2, nwe

have
a1 -a-... -an. We write A l*A2*. . . *An [cf. 5.10].)

5.13 THEOREM. If on oricycle H we have A*B*C, then

A, B, and C are distinct points of H, and

C*B*A.
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Proof:

Follows directly from Definition 5.12,

Follows directly from 5.11.

5,14 THEOREM. For any two points A and C of oricycle

H, there is at least one point B of H so that A*I3 *C , and

there is at least one point D of H so that A*C*D.

The proof of 5.14 is immediate from 5.11 and so is the proof of

the following theorem.

5.15 THEOREM. For any three distinct points A, B,C

oricycle H, exactly one of A*B*C, A*C*B, or B*A*C is

true.

5.16 DEFINITION. If A and B are two distinct points on

oricycle H, we define arc AB = {P:P E H and ,A*P*B}.

5.17 DEFINITION. Let H and H' be any two oricycles.

We say arc AB of H is congruent to arc A'B' of H' iff

there is a congruence f:H H' so that f(A) = A' and f(B) = B'.

We denote that arc AB is congruent to arc A'B' by

arc AB .= arc Al131

5.18 THEOREM. Congruence for arcs of oricycles is an
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equivalence relation.

Proof: Reflexive: arc AB := arc AB since the identity correspond-

ence, I, is a congruence between oricycles and I(A) = A, I(B) = B.

Symmetrical; arc AB arc CD implies there is a congruence

of oricycles f so that f(A) = C and f(B) = D. f is a bijection

so f-1 exists and is a congruence (cf. 5.5 and 5.7.1) so

arc CD arc AB as desired.

Transitive: arc AB arc CD and arc CD 1- arc EF means

there are congruences of oricycles f and g so that f(A) C,

f(B) = D, g(C) = E and g(D) = F. Easily it is seen that g of is a

congruence of oricycles so that (g of)(A) = E, (g of)(B) = F and

hence arc AB ;- arc EF.

We can now develop an ordering for points on an oricycle, show

that this ordering is a Dedekind ordering, and in general that an

oricycle, while not a line (cf. 4.14), is remarkably line-like. It is

probably wise (at this time) to point out

that an oricycle in the Poincare model

(1. e., the realization of an oricycle in

this model) is the set of points on a

Euclidean circle tangent to the interior

of the boundary of the model of the plane

at the point (of the boundary of the model)
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which is the "intersection" point of all the Poincar4 lines of a given

pencil. One example is shown.

5.19 DEFINITION. We say arc AB < arc CD iff there is a

point E so that C):(E*D and arc AB ;- arc CE.

5.20 THEOREM. For every pair of oricycles H = t[A] and

H' = [Al, for any arc PQ of H, and for any point P' of

H', there is a unique point Q' of H' on either side of the line p

of incident on P' so that arc PQ-7= arc P'Q'.

Proof: Let pl be the ray of p' from P' in the direction of

parallelism of V. On either side of p' in the plane of this pencil
--> [PQ]there is a unique ray so that m LP'r = ni I

r meets H'

in a unique point Q' (in either case) so that PQ P'Q' (by 5.1

and 5.2). By 5. 7. 1 there is a unique congruence of oricycles sending

P to P' and Q to Q'. Thus arc PQ arc P'Q' for Q' on

either side of ID' and we are done.

5,21 THEOREM. If

t[A] = H is any oricycle in plane a

P and Q are distinct points of H,

M is the midpoint of PQ,

4, m is the perpendicular bisector of PQ in a,
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m meets arc PQ in some point M',

arc PM' arc MQ.

Let p,q be lines of incident

on P, Q respectively. P-M-Q

implies p-m-q and thus P*M'*Q

so m meets arc PQ.

2. By 5.3 PM' M'Q. Let f: H

that f(M1) = M' and f(P) = Q (cf. 5.7.1). Thus

arc PM' -"-= arc MIQ and we are done.

Theorem 5.21 leads immediately to the following:

5.22 DEFINITION. Let arc AC be any arc of oricycle H

where H is in plane a. Define arc AB /2 to be the arc AM

where M is the unique point of H on the perpendicular to AB

in a. M is called the midpoint of arc AB.

5.23 COROLLARY. If arc AB is any arc of oricycle H,

then arc AB/2 = arc BA/2.

Proof: By 5.22 we have arc AB/2 arc AM and

arc BA/2 arc BM by definition. Now by 5.21, arc AM arc MB
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H be the congruence such

Proof: 1. By 5.3, m meets H at a

point M', PM' 7- MIP and E



97

and by 5.18, arc MB arc BM. Thus, by 5.18, arc AM arc BM

and arc AB/2 arc BA/2.

5. 24 LEMMA. Let [12'} = H be any oricycle in plane a in

the direction of PP'. Let Q be any other point of H and let

p, q be the lines of incident on P and Q respectively. If

/ is any line of between p and q, then / meets

arc PQ of H at a point L, meets PQ at a point L', and

Proof: By 5.3.1, is incident on a point L of H and by

Defintion (5.12) P*1_,*Q making L a point of arc PQ. The

betweenness for the parallel lines requires P and Q to be on

opposite sides of and thus PQ meets at a point L'.

It remains to show that LLIIPPI. Let L" be a point of

so that LLITIPPI. Suppose L'-L--L".

Now LPLL" and LQLL" are

acute (by Theorem 5.1). But in

APQL we have LPLQ is the

"sum" of LPLL' and LQLL',

with both of the latter obtuse (since

their complements are acute) which

is impossible. Hence L' is on
--->
LL" and we are done.



5. 25 THEOREM. If [A] H, = H' are oricycles in

planes a. and a' respectively, B and Q points of H and

H' different from A and P respectively, AA' I BB', PP ' I QQ1

in the direction of parallelism of H and W respectively, then

the following are equivalent.

AB < PQ,

LAIAB > LPIPQ,

arc AB < arc PQ [16, p. 44].

Proof: "1. iff 2. " Immediate from 5.1 and 3.13 since

.[___IA2B [PQ1mLAIAB = I and mLPIPQ = which, together with
2

AB < PQ implying [AB]2-- < [PQ]
2 , gives us mLA'AB > mj_PIPQ

and the equivalence follows;

"2. implies 3. " LAIAB is acute by 5.1 . Hence the unique

ray PB" on Q's side of PP' such

that LAIAB LP'PB" meets H' at

a point say R, with AB = PR (5.2).

Let R' be a point of a' so that

Thus #1. LP'PQ < LP'PR

so PQ meets RR' (by definition of

critical parallels) at some point R".

We need to show P*R*Q. Suppose

P*Q*R. Then PP '-QQ1-RR so QQ1
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meets PR as we already know, but also meets PR at point Q"

so that QQ" I PP' (5.24). Hence requiringQ" is on QQ'

LPIPR < LP1PQ contradicting #1 above. This gives P*R*Q as

desired so arc AB < arc PQ,

"3. implies 2. " Let R be

the point of arc PQ so that P*R*Q

and arc AB arcarc PR. Let R' be

a point of a' so that RR 'IPP'.

Lemma 5.24 now requires RR' to

meet PQ at R" so that RR " I PP'. It is enough to show that

PR < PQ. Since P*R*Q, we have [LPRQ] = [LPRRul [LQRRH]
--* ,

But RR" I PP' and RR" I QQ1 tells us LRQR" < L QRR" and

LRPR" < LPRR" (since PIPRIV and QIQRRI are isosceles

closed triangles). Thus in Ls PQR, LPRQ is the greatest angle and

thus PQ the greatest side. Thus PR < PQ giving AB < PQ,

which in turn (by "1. iff 2. u) gives LA'AB > LP'PQ as desired.

5.25.1 COROLLARY. If = H, V[P] H' are oricycles

in planes a and a respectively, and B and Q are points of

H and H' respectively, then AB PQ iff arc AB 7:- arc PQ

[16, p. 44].

Proof: By 5.25, arc AB < arc PQ and arc AB >arc PQ both

require AB PQ, and we are done.
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5.25.2 COROLLARY. If B and C are points of arc AD

of oricycle H, and A*B*C*D, then arc BC < arc AD and

BC < AD.

Proof: By definition arc BC < arc BD so BC < BD (5.25).

Also arc BD < arc AD so

BD < AD (5.25). Thus

BC < AD and arc BC < arc AD

by 5.25.

5.25.3 COROLLARY. If

arc AB arc PQ, then arc AB/2 arc PQ/2.

Proof: Let [.2k] = H and

1D] H' be oricycles in

planes a and a' and in
-4

the direction of AA' and PP'

respectively. By 5.25.1

AB PQ hence by 5.1

mLBAA' = LQPP so from

the definition of measure,

LBAA' Z_QPP . Let c and

m be the perpendicular bisectors

of AB and PQ at C' and



M' in a and a' respectively. Then (by 5.24) c and in

meet H and H' at C and M respectively so that CC' I AA'

and -1/M1117)-PI.

Let R be a point of m on the side of EQ containing M

so that RM' CC'. Thus ACC' PRMI by S.A.S.

Now let d and s be the perpendicular bisectors of AC and

PR at D and S in a and a respectively. By 5.3, d g .

Also s E t' since if s meets MM' at T then d meets

CC' at E so that CE RT with A CDE A RST by S. A. S.

which is impossible. By a symmetrical argument (using the result

that LRPM' -`2= LCACI by corresponding parts of congruent triangles

and "angle sum" theorem) s is parallel to PP' and m in the

direction of MM'. (Note: to verify direction of parallels just con-

sider any ray Si interior to LRSS' where S' is on s and on

the P' side of PR. Then use critical parallelism of d in the

CC' direction) Hence R is on H' and on m so R = M.

Thus PM := AC and by 5.25.1 and Definition 5.22 we are done.

We are now about ready to give a Dedekind ordering to the

points on any given oricycle. This can be done by constructing an

"order-preserving" map as done below.

5.26 LEMMA. Let OA] H be any oricycle in plane

and in the direction of AA'. Let P and Q be distinct points of
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H. We define a mapping g: arc PQ PQ as follows: for each

point R of arc PQ, let R be the point of PQ so that

RR ' I AA', and define g(R) = R'. Then

g is a one-to-one correspondence,

if R,S, T are any points of arc PQ, then g(R)- g(S)- g(T)

if R*S*T, and

if R is any point of arc PQ, then P-g(R)-Q.

Proof:

Clearly g makes sense since 5.24 assures us of the

existence of both R and R' given either one and the

uniqueness is trivial. This also assures us g is one-to-

one and onto.

Follows immediately from Definitions 5. 10 and 5. 12.

R in arc PQ iff P-ItR*Q so g(R) is a point of PQ

and we are done.

5.27 THEOREM. Let g[A] = H be any oricycle in plane a

with arc AB any arc of H. If

1. S, T are non-empty subsets of arc AB,

T = arc AB and S T = 41) , and

3. P E S and Q e T implies arc AP < arc AQ,

then

1. P E S and
A*1314cP

(with P1 E H) implies P1 e 5,
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P E T and P*P2*B (with P2 E H) implies P2 E T, and

There is a point K of arc AB so that if P E arc AB

then arc AP < arc AK implies P E S and

arc AP > arc AK implies P E T, i. e either S has

a "last" element or T has a "first" element.

Proof: Let g: arc AB AB be as defined in Lemma 5.26 and

immediately we get

g(S)j g(T) = AB,

g(S) g(T) = 4),

g(S) (I) and g(T) 4,

Furthermore arc AP < arc AQ gives us A*P*Q and conse-

quently a-p-q in which a, p, and q are the lines of incident

on A, P, and Q respectively so that g(A) -g(P)-g(Q) and

AP' < AQ' (cf. Lemma 5.26). But segments have the Dedekind

property, from our key assumption, so we know

P' E g(S) and A-Pti-P' implies Pi E g(5),

p' E g(T) and P'-P2r-B implies 1D E g(T), and

There is a point K' of segment AB so that if P' E AB

then AP' < AK' implies P' E g(S)

and AP' > AK' implies ID' E g(T).

From these results and 5.26, we get the proof immediately.
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This result leads directly to the Archimedian property which is

our next theorem about arcs of oricycles. First we introduce

another, very natural, definition. Since any line I of the defining

pencil of an oricycle H meets H exactly one time and I

separates the plane into two disjoint half planes, we state:

5.28 DEFINITION. Let [.A] = H be any oricycle in plane a

and in the direction of AA'. Furthermore let

P,Q,R be distinct points of H, and

p, q, r be the lines of incident on P,Q, and R

respectively.

Then we say R is on the same (opposite) side of P as (from) Q

in H iff r is on the same (opposite) side of p as (from)

in the pencil in plane a.

5.29 LEMMA. Let [.11i] = H and = H' be oricycles

in a and a in the directions of and 17)?' respectively.

If arc BC is any arc of H and Q is any point of H', then on

a given side of Q in H' there is a unique point R of H so

that arc BC 1. arc QR.

Proof: Let b and q be the unique lines of and incident

on B and Q, respectively. Let B' and Q' be points of b

and q, respectively, so BB '1 AA' and QQ` I PP'. Now on a given



side of q there is a unique ray

so that LQIQR' LBIBC.

Then by 5.6.1 there is a unique

point R on QR1 so that R is

on and BC QR, which is

the same as requiring

arc BC arc QR (by 5.25.1) and

we are done.

R!

9'

5.30 THEOREM. (Archimedian property for arcs of oricycles)

For any arc AB of oricycle H and any arc CD of oricycle H',

there is a positive integer n so that, given the sequence of points of

H, A = A A ... A so that
' 1 n

A. is on B's side of A, for i = 1, ...,n,

arc A. A. := arc CD, for i 1, ...,n,
1 1

A.*A.*Afor 0 < < j < k < n,k'

then a.rc AAn > arc AB.

Proof: If arc CD > arc AB then on B's side of A in H

there is a point A1 of H so that arc CD 2; arc AA, by 5.29.

If arc CD arc AB, let A B. On the side of B opposite

from A on H, there is a point A2 of H so that

arc BA2 arc CD by 5.29 giving Ao = A, A, B, A2 and with

A
*A1 *A and arc AA2 > arc AB as desired.



If arc CD < arc AB we prove by contradiction using 5.27.

Suppose that for every integer n we have arc AA < arc AB. Let

us define two sets S and T as follows:

S = {P:P E arc AB and arc AP < arc
AAk

for some k = 1,2, ...}

T (arc AB) - S

S I(I) since A E S. In fact every A is in S since AA. < AA .+1.i+1.

Also T I 4) since arc CD < arc AB means there is a point B'

so that 13*BI*A and arc CD arc BB'. If B' were in S, then

for some k arc AB' < arc AAk < arc AB, i.e., B *A *B so

arc AkB < arc CD. Thus by 5.29 there is a point Ak+1 satisfying

all the above conditions and with
A*Ak*B*Ak+1

so B is in S

by 5.25.2, which is impossible. All the hypotheses of 5.27 are

satisfied and hence there is a point K of arc AB so that when-

ever P E arc AB then arc AP < arc AK implies P E S and

arc AP > arc AK implies P E T. K is not in S because K E S

requires there be a point A E S with arc AK < arc AA . Butm

this means A E T also which is impossible. Sincem

T = (arc AB) - S, K E T .

arc CD < arc AK because otherwise either Al or2 would

be in T which is false. Thus there is a point B' of arc AK so

that (#1) arc CD 7 arc BIK. Now 13 E S so there is an integer

k so arc AB' < arc AAk This requires A*BI*Ak*K. We see that
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then

q is incident on two distinct points Q and Q' of

oricycles = [1:).1 and H' = [1:)1] respectively,

PP' QQ', and

if in addition 17)-Pjl-a, then

QQ'l a ,

PQ > P'Q',

arc PQ >arc P'Q'.

Proof: 1. Since equivalence class H is distinct from equivalence

class H' and by 5.3 q is incident on a unique point Q of H

and a unique point Q' of H', then Q and Q' are distinct.

2. On line q there is a point Q" so that Q" is on the

same side of PQ in plane a as is P' and PP' := QQ". (See

figures below. ) Now using 5.1 and supplementary angles if
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from this we get B*Ak*Ak+1 *K by the definition of S. Thus
'

arc CD -= arc Ak Ak+1 < arc B'K by 5.25.2 contradicting (#1) above.

Thus we have a point B' of S so that arc AB' > arc AAk for

every k so S is not a possible set and the theorem follows.

5.31 LEMMA. If

is a parallel pencil in plane a in a given direction -a?,

p and q are distinct lines of and

P and P' are distinct points of p,
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Lmlpfplf are acute (by 5.1) so the lines r and s

necessary, we have LPQQ" LQPP'.

Let m be the perpendicular bisector

of PQ at M and we have, by 5.3,

that m is a line of between

and q (by definition) so m meets

PIQ" at some point MI (5.3.1 and

Definition 5.12). We now have

MQQ" MPP' by S. A. S. and by

the "angle difference" theorem and

corresponding congruent parts of

triangles, we get LQIIMMI LP'MM1

and MQ" MP 1, so A Q "MM AP IMM' by S. A. S. Thus is

the perpendicular bisector of PIC)" and Pl*Q" by definition. But

then Q" E H' and Q" is a point of q so by uniqueness of the

symmetrical point QII _ Qt and hence PP QQ1 as desired.

3. (a) By the argument in 2. above we immediately see that

PP', a forces QQII a since P' and Qc are on the same side of

line PQ in plane a and (a) is proved.

(b) For reference let P11 and Q" be points of p and q

so that P-P'-P" and Q-Q'-Q". As in (2) let m be the perpen-

dicular bisector of PQ at M. The proof of (2) gives us that m

is the perpendicular bisector of P'Q' at M' as well. Now



perpendicular to PiQI at P' and

Q' meet line PQ in points R

and 5 of MP and MQ respec-

tively. The proof of this is an easy

argument using rays of r and s

interior to LPPIMI and LQQ°1\41,

hyperparallelism of r, s, and m

and the cross-bar theorem. Then

MMP°ANIM'QI by S.A.S. This

LmPIR LmQ 'S by complements of

gives LRMPI LSMQ' and

congruent angle so that
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RMP SMQ' by A.S. A. Hence OP 'Q'SR is a Saccheri

quadrilateral so P'Q' < RS < PQ by 3.6.3 so arc P'Q' < arc PQ

by 5.25 and we are done.

This theorem allows us to formulate the following definition.

5.32 DEFINITION. Given

is a pencil of parallels in a in the direction of

p and q are distinct lines of ,

P and P distinct points of p, and

Q and Q' the distinct points of [1::)] and

q meets each of these oricycles.

The distance between arc PQ and arc P'Q' is I [PP IIS

where

Furthermore we say arc PQ and arc P'Q' are concentric arcs



of [F)] and [P'] [16, P. 44].

5.33 LEMMA. Let arc AB and arc A'B' be concentric

arcs of t[A] = H and [./V] = H', respectively, with AA' in the

direction of Let C be any point of H so that A*B*C and

arc AB7-- arc BC. Finally let c be the line of t incident on C.

Then c meets H' in a point C' so that A'*B'*C' and

arc A'B' arc BC'.

Proof: By 5.3. 1, c meets H'

C1 and, by Definition 5. 12,

AA'-BB'-CC' giving AI*131*C'.

Now 5.31 gives us AA' 77: BB' := CC'

while 5.1, 5.2, and 5. 25.1 give us

that AB BC and

LABB1 /BCC' so

AABB' ABCC' by S.A.S. Thus, using corresponding parts and

the "angle subtraction" theorem we have also AAA'13/ ABBIC'.

Hence A'81 B'C' and by 5.25.1 we have arc A'B' arc B'C'

as needed.

We leave this particular discussion for a time to proceed with

the development of the measure of arcs of oricycles. First we estab-

lish two very useful theorems.
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5.34 THEOREM. If A, B are distinct points of oricycle
---->

H = [.P1] in plane a and in the direction of AA' and if

-1
I [ABil < zn (Tr/4), then t and

and B, respectively, meet at a point P. Furthermore, if p

is the line of incident on P, then p is incident on a unique

point C of arc AB, on a point C' of AB and CC' 1 AA'.

Proof: Let M be the midpoint

of AB and let a, m, b be the

lines of t incident on A, M, B

respectively and let B' be a

point of b so that BB'.
INow mLA'AB = rid --2[AB]--1 = HIAMI

by 5.1 and [AM] I s < II-1(Tr/4).

Thus [LA'AB] > 1/2[Lrt] (by 3.13).

Let T be a point of t on M's

side of a. Then
---->

[LTAM] < 1 /2[Lrtj so AT meets

m at a point P (by definition of critical angles). By symmetry S

meets m at a point P'. But INAMP BMP I, by A.S. A. , so

P and m is the perpendicular bisector of AB. By definition,

m is between a and b so meets arc AB at C and

AB at C'. Then CC ' I AA' as desired, by 5.24. Finally, let

the tangent lines to H at
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and the theorem is proved.

5.34. 1 COROLLARY. For the points P, C, and C' of

Theorem 5. 34, P-C -C

Proof: C is on H so LA'AC and LBIBC are both acute, by

5.1. Further C is between a and b, so C is interior to

both LBIBP and L.A'AP giving us C interior to LAPB

By 5.25 we are done.

5. 35 THEOREM. Let [A.] H be any oricycle in plane a,

and in the direction of AA'. Let A, B be distinct points of H

with I AB l < 211-1 err /4). If P is the point of intersection of the

lines t and s which are tangent to H at A and B respec-

tively, then every point C of arc AB is in the interior of LAPB.

Proof: Let B' be a point of a.

so 131311AA'. Then, by 5.1 for

every point C of arc AB,

LB 'BC and LA 'AC are acute

so C is on the same side of AP

as A', the same side of BP as

A' and, by the definition of arc BC,

C is between AA' and BB' so

is interior to LAPB as claimed.
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The argument has now progressed to the place where we can

develop a measure for arcs of oricycles that will give the equations

tying the values of the Lobachevskian function II to the values of

I I A already selected, will give trigonometric identities allowing

precise study of the coordinatized Lobachevskian space, and ultimately

give the canonical isomorphism needed to finish the proof that the

completeness axiom is a theorem in the Poincare' model. The length

of this argument is long but seems necessary to establish the validity

of the "obvious" interrelated properties of oricycles, lines of defining

pencils, "chords" of oricycles, arcs of oricycles, etc.

Lobachevski reaches the conclusions developed so far concern-

ing oricycles in an argument covering about three pages [9, p. 30-33].

He does not establish the validity of these results in either an

exhaustive manner nor in a way that easily adapts to the Hilbert

formulation of the axioms. In Shirikov [16] one sees an outline of

some of these results but again large parts of the necessary argument

are not even mentioned as needing to be done. Borsuk [2] follows a

development which requires a considerable further development of the

topology than is necessary in this paper's approach. His argument is

not noticeably shorter even after the topology is developed so it seems

reasonable to follow a more classical approach.

Before continuing further, we draw upon Theorem 5.18, which

states that congruence of arcs of oricycles is an equivalence relation



to formulate the following definitions. These definitions will make

the subsequent work more concise.

5. 36 DEFINITION. [arc AB] is the equivalence class of arcs

of oricycles congruent to arc AB. We define [arc AB] < [arc CD]

iff arc AB < arc CD.

5.37 DEFINITION. [arc AB] + [arc CD] is the equivalence

class of arcs of oricycles [arc EF] so that if arc EF is a repre-

sentative, then there is a point G of arc EF so that

arc AB = arc EG and arc CD 2: arc GF. As usual we will use the

symbol n[arc AB] to mean [arc AB] + ...+ [arc AB] with

n-summands.

5.38 DEFINITION. 1/2[arc AB] is the class of arcs

[arc AM] so that M is the midpoint of arc AB (in the notation of

5.22 1 /2[arc AB] = [arc AB /2].). Inductively we define

- 11/2 [arc AB] = 1/2(1/2k [arc AB]).

5.39 DEFINITION. We define O[arc AB] to be the empty

class of arcs of oricycles with the property that

O[arc AB] + [arc CD] = [arc CD].

5.40 LEMMA. If arc AB is an arc of oricycle H in plane

a A0 =A' A1 ... An is a sequence of points of H so that
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A. is on B's side of A, for i = 1, , n,

arc Ai-lAi arc A0A1' for i = 1, and

A.*A.*Ak' for 0<i<j<k<n ,

then [arc AA]n = n[arc
AA1

].

Proof: [arc AA2 Z[arc AA1
by Defintion 5.38 and by induction

[arc AA] = n[arc AA1] using Definition 5.38.

5.41 DEFINITION. A finite set of distinct points

P = {A0 = A, A1, , An = B} so that A1, ...,An_1 are points of

arc AB of oricycle H in plane a, and A *A *. . . *An0
is

called a partition of arc AB.

5.42 DEFINITION. Let P = = A' A , An = B} be a

partition of arc AB and let L(P

i=1

S = {L(P):P is a partition of arc AB}. Then we say the length of

arc AB, denoted AB, is the 1. u. b. S.

(Note: If 1. u.b.S exists we will say AB exists. ) This definition is

a standard sort of formulation. It makes sense provided S is in

fact bounded above. The following lemmas will verify that S is in

fact always bounded above.

A. A, I . Let
S
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5.43 LEMMA. If P and Q are partitions of arc AB, and



P FQ, then L(P) < L(Q).

Proof: For at least two points P P of P there is at leasti-1' i _

one point Q. of fa so that Pi- l*Qi*pi. Pi-1, Q. and Pi are
3

noncollinear (4.14) so by the triangle inequality of absolute geometry,

[P.
1

Q + [Q.P.] > [.1p.}, so L(P) < L(P {Q.}).1- ).

this argument a finite number of times using the properties of

betweenness for points on an arc of an oricycle we get a finite

sequence of inequalities L(P) < L(P i {Q1) < L(Q) with

transitivity giving the desired result.

5.44 LEMMA. Let arc AB be an arc of oricycle H in

plane a . Let arc CD be any arc of an oricycle with

arc AB 7-= arc CD. Suppose AB exists. Then CD exists and

AB = CD.

Proof: Let P = {CO3 Cn} be any partition of arc CD. Let

Q = {A0, .. , An} be defined by

A =A and An = B,
0

A. is on Ws side of A on oricycle H, 0 < i < n,

[arc AA.] = [arc CC.], 0 < i < n.

From the definition of a partition, we know arc CC. < arc CCin.

for 0 < i < n and thus by (c) we know arc AA. < arc AAi+1' for

0 < i < n, and Q is thus a partition of arc AB by definition.

Repeating
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We will now show A. A. C. C. for 0 < < n. Using
- 1 1

(b), (c), 4, 14, 5. 1, 5. 25, 5.25. 1, 5, 25. 2, and the "angle difference

theorem from absolute geometry, we have

(in AAA. A. andACC. C.) that1-1 1. 1

1 <t <

AA. CC.i-1' 2 < i < n

AA. CC., < i <n

thus AAAj.-1Ai CCi_iCi by

A.S. giving Ai_lAi 1C C.

as desired.

Thus by symmetry we can

conclude that every partition P

of arc CD corresponds to a

partition Q of arc AB so

that L(P) = L(Q) and conversely. Hence, by definition, CD

exists and AB = CD.

5.45 LEMMA. If B is a point of arc AC and AB, AC,

and BC exist, then AB + BC AC

Proof: B a point of arc AC implies that for every point D of

arc BC, A*B*D*C (by definition). Thus if

P = {A = A, A'
'

. . , Am =B} and Q = {B = B, B, . .. , B =C} are
0 l 0

1
ri

partitions of arc AB and arc BC respectively, then



R ={D ,.
m+n} with

for 0 < < m, A. E P,

for m < i < m+n, B. E Q,
1-na I - --"°

is a partition of arc AB and L(P) + L(Q) = L(R).

Using Lemma 5.43, we see that any partition R of arc AC

can be enlarged (if necessary) to R' = R {B} giving partition PI

and Q' of arc AB and arc BC respectively in which

L(P') + L(Q1) = L(RI) >L(R). By Definition 5.42 the theorem follows.

5.46 LEMMA. Let H be an oricycle in plane a and in the

direction of AA' and let arc AB be any arc of H so

I [AB] I s < 21-1-1 err / 4) . If D is the point of intersection of the

tangents to H at A and B in a, and C is any point of
--+

arc AB, then AC meets BD at some point C'.

Proof: By 5.34 and 5.35, the

point D exists and C is

interior to LADB. By 5.1, 5.16,

5.25 we have

LA'AB < LA'AC < LA'AD so

AC is interior to LDAB and

thus meets BD at a point C'

by the cross-bar theorem applied to A.ABD.
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on BD respectively, then the

tangent t to H at C in

a meets AB" at S and BC"

at T.

Proof: Let CC 'IAA'. (The

existence of B", C" and D is

assured by 5.34 and 5.46.) Let

E be any point of t on A's

side of CC'. By 5.1 we know that t is perpendicular to CC'

while LC 'CA and LC 'CB are acute. Furthermore, by the

definition of supplementary angles LCICB" is obtuse since

LCICB is acute. Thus we have

LCICA < LC'CE < LC'CB"

Then by the cross-bar theorem CE meets AB" at S, and by

symmetry we are done.
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5.47 LEMMA. Let H be an oricycle in plane a and in the

direction of AA'. Let arc AB be any arc of H so that

I [AB]l s < zn- l(rr /4). Let D be the point of intersection of the

tangents to H at A and B in a. Let C be any point of

arc AB. If B" and C" are the points of BC on AD and AC



5.48 LEMMA. Let arc AB be an arc of oricycle H in

plane a. and in the direction of AA'. Let I [AB11 s < 211-1(rr/4).

Then AB exists.

Proof: By 5.34 and 5.35 the tangents to H at A and B in a

meet in a point D and every point of arc AB is interior to

LADB. Let P = {A., A } be a partition with n+1 distinct0'

elements A = A ... A = B of arc AB. We use induction on
0 n

to prove the following proposition:

L(P) < I[AD]l5 + I[BD]l5

Let n = 1: Then

L(P1) = I [AB]I and the inequality

follows from the "triangle inequality"

theorem of absolute geometry.

Suppose the proposition is

true for every partition with n = k-1.

Let Pk be any partition as above.

Then, by 5.46 BAk_j_ meets AD at B" and the tangent to

Ak -1 in a meets AB" at S, by 5.47. By the induction

hypotheses and 5.35 every point of P,- {B} is interior to LASAk_i

and L(P,-{B}) < I [AS] I s + I[SAk_i]ls. Using the "triangle

inequality" we get
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[AD] + [DB] = [AS] + [S13 n] + [B "D] + [DB]

> [AS] + ISB"l+ [13"B]

= [AS] + ([SBII]+[BHAk- ]) + [Ak- 1
B]

1

> [AS] + [SAk_i] + [A B]

Hence

I [ADJI s I [DB]l s > I [AO +I [S k- 1I + I [Ak-1S

(Pk-{B}) + I [Ak -113115

= L(Pk,

So by induction L(P) is bounded above for all n and by Definition

5. 42, AB exists.

5.49 THEOREM. For any arc PQ of oricycle H in plane

a, PQ exists.

Proof: If 1[PQ]ls< ( /4), we are done, using 5.47. Let

-1arc AB be any arc of H so that I [A13] Is < 211 (Tr/4). Then by

5.30, 5.40, and well-ordering, there is a number n = 1 2, ... so

that n[arc AB] > [arc PQ] and so that (n-1)[arc AB] < [arc PQ].

If (n-1)[arc AB] = [arc PQ] then using induction, 5.45, and 5.48,

nAB = PQ and we are done. If (n-l)[arc AB] [arc PQ] < n[arcAB]

then there is an arc class [arc BC] < [arc AB] so that

(n-1)[arc AB] + [arc BC] = [arc PQ]. Thus, again by induction, 5.45,

and 5.48, (n-1)AB + BC = PQ. This completes the argument.
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It is interesting to look back over the necessary machinery

needed to translate the three pages of Lobachevski's work (mentioned

earlier) into an appropriate sequence of arguments based on the

axioms of Hilbert. It was not easy, but the results will prove to be

well worth the effort.

5.50 THEOREM. arc AB = arc CD iff AB = CD.

Proof: By 5.49, AB and CD both exist. The "only if" part of

this statement is just Lemma 5.44. To establish the "if" part we

establish the contrapositive. If arc AB < arc CD then there is a

point E of arc CD so that arc AB arc CE making AB = CE

by 5.44. However, by 5.45, CE + ED = CD so that AB < CD.

By symmetry we have that arc AB 7 arc CD implies AB 1 CD

and by this contrapositive we conclude the theorem is true.

5.51 THEOREM. Let arc AB and arc KB' be concentric

arcs (cf. 5.35). Then the ratio AB /A'B' depends only on the dis-

tance between the arcs [16, p. 45].

Proof: There is no loss of generality to suppose A*B*C on

and do the proof as follows.

Suppose arc AB and arc BC are commensurable, i.e.,

there is an arc PQ so that m[arc PQ] = [arc AB] and

n[arc PQ] = [arc BC] for some positive integers m, n. Implicitly,



we thus get sequences of points

{A.)111 and {B.}n, of arc AB
0 3 0

and arc BC respectively so that

A=A 0 1 0 1*A*. *A = B B*B*...
*Bn

with arc A. A. = arc PQ "-= arc B. B.,1-1 J

1 <i < m, 1 <j <n or (by 5.50)

Ai-1 Ai = PQ = B. B.. By 5.12 and3-1 3

5.11.1 this induces sequences {Alm
0

and {B'i}n0 , of arc A'B' and

arc B'C respectively, with

A' = A' *A' *. *A' = B' = B' *B' *.. *B'
0 1 m 0 1

5.50, = P'Q' = 1 < i < m, 1 < j < n, where

[arc P'Q'] = [arc AA}. By 5.31, arc PQ I arc P'Q' and if AA'

is in the direction of the pencil defining arc AB, then

arc P'Q' < arc PQ. However, by 5.37, 5.45, and 5.50 we have

AB mPQ m AII3'

BC nPQ n nP'Q' B'C'

AB BCso that =

A'B' B'C'
between the arcs.

and by 5.31 this ratio depends on the distance

If arc AB and arc BC are non-commensurable we can

apply the classical and well known limiting arguments used in such

arguments as this [10, Chap. 20].
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Furthermore by 5.33 and



The results of 5-51 were observed and stated by Lobachevski

[9, p. 32-33]. He also stated the results of the following corollary:

5.51.1 COROLLARY. If arc AB and arc AB' are con-

centric arcs and AA' is in the direction of the associated pencil of

parallels, then AB / AB' > 1.

Proof: Immediate from 5.31, 5. 50, and 5.51.

Lobachevski further observes (in our notation) that:

If we therefore for I [AA111 = 1 put AB = eA1131, then

we must have for every x, A'131 = ABe'. Since e is
an unknown number only subjected to the condition e > 1
and further the linear unit for x may be taken at will,
therefore we may, for the simplification of reckoning, S
choose it that by e is to be understood the base of
Napierian logarithms [9, p. 33].

This choice of e can be more directly justified on the basis

of our present foundation. Shirokov [16, p. 46] gives basically the

following ar gun-le nt .

5.52 THEOREM. Let arc AB and arc A'B' be concentric

arcs so that AA' is in the direction of parallelism of the associated
°*".pencil of parallels. If I [AA 11 s then AB /A1B ex/k where

k is a positive real number [16, p. 46].

Proof: Let arc A"B" be a third concentric arc so that A-A°-A"

and let y = [A 'A "] I s. Then by 5.51:
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AB A'B' AB= f(x) , - f(y) , f(x+y)
A'B' A"B"

and in each case the value of f is greater than 1 (by 5.51.1).

Thus (#1) f(x) f(y) = f(x+y) and, by 5.31, f is increasing. To

show f is an exponential function, we need only show f is also

continuous and positive. From our 'key assumption" we know every

real number corresponds to a point on line AA' so that for every

x > 0, there is an arc XY with X on AA' and concentric with

arc AB. Thus for every x, f(x) is defined. It remains to show
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lirn f(x) = f(a) for every a > 0.
a

Intuitively this is obvious but we

require a formal argument. Let

arc XY, arc AB and arc A'B' be

concentric arcs with I[AA'J = a

and I [XA] I s = b. If XA is in

the direction of parallelism, then by 5.31

inequality from absolute geometry 1110, p. 124] and from 5.31

[XY] < [AB] + 2[XA], i.e., [XY] - [AB] < 2[XA] so that

I[XY] - [ABlis < 28. Thus in the limit I [XY] I s = I [A13]1 s and thus by

5.25.1 arc XY arc AB in the limit, so that in the limit XY = AB

and f(x) = f(a). By a symmetrical argument with AX in the direc-

tion of parallelism, the argument is complete.

XY >AB. By the polygonal



5.53 THEOREM. In any plane a., let

be the pencil in the direction of OX,

OY 1 OX at 0,

A be any point of OY different from 0,

AA' be the line of incident on A with AA' OX,

B be the unique point of AA' on H (0) (cf. 5.3.1

and 5.1),

the line m be the unique line of which is parallel to

both sides of right angle LYOX (cf. 3.21.1),

M be the unique point of m on H (cf. 5.31), and

s = OB, t = OM, u = I [OA] I s, v = I [A1311 s

then s t tanh(u/k) and

(v/k) = cosh(u/e k) where

k is the constant in 5.52

[16, p. 48-49].

Proof; Case I. A is on

OY. Without loss of generality

we may suppose O-A-Y. By

5.1 LOAA' is acute and by

the 'vertical-angle" theorem and

3.20, there is a line n on the side of a opposite with

126

respect to OY so that n is perpendicular to AA' at some point



N and parallel to OY in the direction of AY. Let NN' I AY

with N' on n. Let H' = [N]. By 5.3.1, m meets H' at a

point P. Since m is parallel to OY in the direction of OY

(6. of hypothesis) and NN' I OY and NA I OX, from 3.5.11

("transitivity" of critical parallels) m is parallel to both sides of

right angle LA#NN'. If F and G are the feet of the perpendicu-

lars from 0 and N, respectively, to m, then OF NO,

by 3.24.

We now observe that on the opposite side of m from 0 and

N there are points 0" and N" of OF and NG respectively

with OF FO" and NO 7- ON". Thus by definition (4.5 and 4.8)

0" and N" are on H and H' respectively. But m is the

perpendicular bisector of 00" and of NN" so (using 5.25.1)

arc NN" 7 arc 00" and (by 5.25.3) arc OM arc NP. This gives

us OM = NP = t by hypothesis 8. and by 5.50, LNAY 7- LOAB by
,

the "vertical-angle" theorem. From the facts that NW' AY and

OX I AA', we see by definition that LNAY and LOAB are the

angles of parallelism for segments AN and AO which requires

AN AO (3.9) so I [AN I s = U.

We now have arc NP and arc BM as concentric arcs with
-4
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NB in the direction of the pencil associated with H and H'. Also

we have N-A-B. Thus the distance between these arcs is u+v

(from our work above) and by 5.52



Case II. Suppose A-0-Y.

Now on X's side of a with

respect to line OY, there is a

line n perpendicular to AA'

at N and there is a point N'

of n so that NN I OY (by

3.20). Let 1-1' = [1\1.]. Then

since m E there is a unique

point P of H' on m

(5.3.1). Just as in Case 1,

arc OM arc NP and AN OA. Thus

t+s (u-v) ik (u-v) ik
= e or t+s = te

Now adding (i) and (ii) we get 2t = t( (u-v) /k+ e ( -u-v) /k) so thate

vik etak+e-u/k
e -

2
- cosh(u/k)

Subtracting (i) from (ii) gives us

- e
-u /k

s - t v/k
2
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t-s = e(u+v) ik or t-s = te( -u-v) ik

NP and we get



Thus by (iii) we have

s = t tanh(u/k).

From our construction we see t is constant so s is a function of

u. This completes the argument.

Our next step is to extend the notion of oricycles to orispheres.

When that is done we shall return to the main argument of the proof of

the completeness axiom as a theorem in the Poincar4 model.

It is interesting to note that Shirokov has gotten the above

results from a different base in just 15 pages having provided proof

of each step. He uses Hilbert's axioms but does not consider the

Archimedian and completeness axioms however. Doing so requires

substantial additional effort. As has already been mentioned,

Shirokov's proofs given for the development of orispheres are sound

once the above "fill-in" has been done. We shall not copy the proofs

of his work on orispheres into this paper but rather give the results

and provide proof only when necessary to develop a result not

previously done or not in the spirit of Hilbert's axiomatic treatment.

Lobachevski defined orispheres in terms of the revolving of an

oricycle about any line of the defining pencil [9, p. 33]. Shirokov

defines them in a manner analogous to that which he gives for

oricycles. Before stating his definition he develops some results

relating to the notion of parallelism for lines in space and the notion
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of parallel as extended to planes. His first lemma is, when translated

into our notation:

5.54 LEMMA. Let a and b be parallel lines in plane

parallel in the direction of r. If a and are distinct inter-

secting planes containing a and b respectively, then their line o

intersection c is parallel to both a and b in the direction of

I)) [16, p. 50; cf. also 9, p. 22-23].

The next result is Lobachevski's proposition 25 which he proves

in a manner which fits our criterion and which includes 5.54 as a part

of the argument.

5.55 THEOREM. Two lines which are parallel to a third line in

the same direction are parallel to each other in this same direction

[16, p. 51; 9, p. 22-23].

A standard result of absolute geometry is [10, p. 180, Theorem

17]: given any point P not on a given plane a there is a unique

line p on P that meets a, say at A, and is perpendicular to every

line of a incident on A. (In this case we say p is perpendicular

to a at A.) Also if we have two lines p and q perpendicular

to a then p and q are coplanar [10, p. 179, Theorem 12].

Thus the plane determined by any line 11 not in and the line

from any point P of so that p is perpendicular to a at A



131

is the plane containing all lines q from a point Q of and

perpendicular to a.

These results allow us to talk accurately about the perpendicular

projection of i onto a as is done by Shirokov. The only time this

projection is not a line is in case is already perpendicular to

[16, p. 51].

Shirokov states that in general, "...under this projection we

obtain the line AB' in the plane a - i.e. the projection of the line

AB. Since they lie in the same plane, the lines AB and A'B can

either 1) intersect, ... 2) diverge, ... or 3) be parallel. " This gives:

5.56 DEFINITION. If lines AB and A'B' are as above,

and 1) these lines intersect, we say that AB and a intersect,

2) these lines are divergent (i.e., hyperparallel) we say that AB

and a are divergent, and 3) these lines are parallel in the direction

of -4r, we say that AB and a are parallel in the direction of r

[16, p. 52].

The results of 5.55 immediately give the

5.57 THEOREM. If a line is parallel to some line lying in

plane a, then it is parallel to plane a[16, p. 52].

Shirokov's next definition is:
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5.58 DEFINITION. Two planes are said to be parallel if it is

possible to construct a third plane which is perpendicular to both of

them and which intersects them in parallel lines [16, p. 53].

He justifies the validity of this definition by proving--though not

stating the theorem as a specific theorem in his work--the absolute

geometry result that for any two distinct planes it is always possible

to construct a plane perpendicular to both given planes [16, p. 52-53].

This leads to a theorem, "...of great significance for the con-

struction of Lobachevskian geometry... "[16, p. 54].

5.59 THEOREM. Through a line AA parallel to the plane

a, there is exactly one plane parallel to a; all other planes con-

taining AA' intersect a [16, p. 54].

Shirokov then defines pencils in space, corresponding points

relative to these pencils, and orispheres.

5.60 DEFINITION. The set of all lines and planes in space

which

are incident on a given point C is called a pencil of inter-

secting lines and planes with center C;

are perpendicular to a given plane a is called a pencil of

divergent lines and planes with carrier plane a;

are parallel to a given line I in a given direction is
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called a pencil of parallel lines and planes in the direction

of 7 [16, p. 54-55].

He then observes:

All these three types of pencils possess certain common
properties. Thus through every point of space [excluding
the center in the case of an intersecting pencil of lines
and planes] there passes one and only one line of the
pencil; two points of the space which do not lie on the same
line of the pencil determine a unique plane of the pencil;
lines of the pencil belonging to planes of the pencil form a
pencil [of lines] of the corresponding type; two lines of the
pencil determine a plane of the pencil; if two planes which
pass through two lines of the pencil intersect, then their
line of intersection belongs to the pencil; two lines of the
pencil determine a pencil, as well as do three independent
planes of the pencil, and so on [16, p. 55].

Next comes a definition and theorem analogous to 4.5 and 4.7;

5.61 DEFINITION. Two points are said to correspond relative

to the given pencil of lines and planes if they are situated symmetri-

cally with respect to some line belonging to this pencil [16, p. 55].

5.62 THEOREM. The relation correspond--denoted as A*B--

means that A and B correspond with respect to a given pencil of

lines and planes. It is an equivalence relation.

Proof: The reflexive and symmetric properties are proved exactly as

in 4.7. Shirokov gives a proof of transitivity [16, p. 55-56].

The resulting equivalence classes are given special names.
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5.63 DEFINITION. Let E be a pencil of lines and planes in

space and let E[A] be the equivalence class of points corresponding

to point A with respect to E. Then

if E is an intersecting pencil and A is not the center C

of E, E[A] is called a sphere with center C and radius

AC,

if E is a divergent pencil, E[A] is called an equidistant

surface, and

if E is a parallel pencil in the direction of 1, E[A] is

called a limiting surface or orisphere in the direction of Ti

[16, p, 57-58].

Note: From now on we will always use E to mean a parallel pencil

of lines and planes.

5.64 DEFINITION. If E is a parallel pencil in the direction

of r then the lines of E are called its axes and the planes of E

are called the diametral planes of the orisphere E[A] [16, p. 58].

Shirokov then proves (as does Lobachevski)

5.65 THEOREM. If a non-diametral plane has a point in com-

mon with an oricycle, then it either intersects this surface in a circle

or is tangent to it at one point [16, p. 58-59; 9 p. 35]. (Note: Com-

pare with the corresponding results for lines and oricycles in 5.1



See also [12] .)

Then comes the basic theorem necessary to get us back into the

results proved by Lobachevski. In fact he gives essentially

theorem from another development.

5.66 THEOREM. Let Z[A] be any orisphere. With the fol-

lowing realizations of the undefined terms, the axioms of Euclidean

plane geometry are theorems, i.e., Euclidean plane geometry holds

on Z[A]:

P is a point if P E E[A1,

= t[P] is a line if t[p] is an oricycle determined by a

diametral plane of and Z[A],

= t[P] is incident on point Q iff Q E 1 ,

point Q is between points P and R iff P, Q, and

R are distinct points of and P*Q*R,

segment AB = arc AB is congruent to segment

CD = arc CD iff arc AB arc CD.

By ray AB we will mean all the points P of the oricycle

t[A] containing B so that P is on B's side of A

in the sense of 5.28. We then define angle as

oLABC = {B} v BA BC oLABC is congruent to

oLATB IC' iff the dihedral angles determined by the

diametral planes defined by A, B and B, C or by A', B'
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and B', C' respectively are congruent in the sense of

absolute geometry [16, p. 58-61].

Note:. Let ()A ABC denote a triangle on an orisphere.

Shirokov proves all the plane Euclidean axioms of Hilbert

except the Archimedian and completeness axioms are theorems in

this model. However, we have done the latter in this paper as 5.27

and 5.30. It is in this argument that Theorem 5.59 is used--recall

5.59 is the theorem referred to by Shirokov as "...of great signifi-

cance... .
tt

Shirokov next develops the basic identities for Lobachevskian

geometry.

5.67 THEOREM. Let ABC be a right triangle with acute

angles LA and LB. Let a := LA and (3 = mLB. Further let

a = I[BC]Is, b = I[AC]Is, and c = 1[AB]15 where AB is the

hypotenuse. Let k be the constant described in 5.53. Then

1. cosh(c/k) = cosh(b/k)cosh(a/k),

tanh(b/k) = tanh(c/k)cos a,

tanh(a/k) tanh(c/k)cos

sinh(a/k) = sinh(c/k)sin a ,

sinh(b/k) sinh(c/k)sin p,

4-a. tanh(a /k) = sinh(b/k)ta.n a ,
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4-b. tanh(b/k) = sinh(a/k)tan 3,

5. cosh(c/k) = cot a cot 13,

cos a = cosh(a/k)sin p , and

cos cosh(b/k)sin a [16, P. 62-66].

Although the proof of this is given in Shirokov, it seems useful to

reproduce parts of this proof so the flavor of the argument can be

available here. The method revolves about two constructions as fol-

lows. These are illustrated in Figures (i) and (ii) below. Let AA'

be the perpendicular to the plane of LIABC and let BB' and CC'

be the lines incident on B and C so that BBTAA' and

--->.
CC ' I AA 1. Let E[A] = S be the orisphere determined by the pencil

E defined by these parallel lines. The three diametral planes

determined by AA', BB' and CC' intersect the orisphere S in

three oricycles which meet AA' at A, BB' at B1 and CC at

C1, thus defining a triangle o.6AB1C1 on the orisphere S.

Figure (i). Figure (ii).
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Since S is tangent to the plane of A, B and C at A, then the meas-

ure of 0LB1 AC1 is also a. and o,6AB1 C1 is a right triangle with

as right angle. Let AB, s3, BIC = and A C = s.
Let arc CB2 be concentric to arc C B

1

and C as shown.

In a completely symmetrical manner with BB" perpendicular

to the plane of eABC at B, AA" I BB" and CC" I BB" we get

()A BA' Cs with oLB of measure p and oLCil a right angle.
1 1

Point A and arc CA' are defined symmetrically to B2 and
2 2

arc CB2.

By 5.52, CB2/C1B1 = ed./k where d = I [CC 1] Is, giving

-d/k= CB2 e . Using t as in 5.53, and the results of 5.53,

-d/k= t tanh(a/k)e

Further, applying 5.53 directly,

= t tanh(b/k),

= t tanh(c/k).

d/kAgain drawing on 5.53 we get e cosh(b/k) so that

tanh(a /k)
s t

1 cosh(b/k).

From 5.66 we have that the Pythagorean theorem holds for oe AB C1

in the plane of BB'



2 2 2
giving

53
=

s1
+ s2 or

2 (a/k)tanh2(c /k) tanh
+ tanhz(b/k)

2cosh (b/k)

= sech2(b /k)tanh2 (a /k) + tanh2 (b /k)

= (1-tanh2 b/k)tanh2 (a /k) + tan.h2 (b

sinh2(a /k)cosh2(b/k)-sinh2(a /k)sinh2(b /k)+sinh2(b /k)coshz(a /k)

cosh2(a/k)cosh2(3 /k)

2 2 2 2 2sinh (a /k)[cosh (b /k)-sinh (b /k)]+sinh (b /k)cosh (a /k)

cosh(a /k)cosh2(b /k)

cosh2 (a /k) -1 + Binh2 (b /k)cosh2 ia /k)

cosh2 (a /k)cosh (b /k)

cosh2 (a /k)[1+sinh2(b/k)]-1

cosh2 (a ik)cosh2 (b /k)

cosh2 (a /k)cosh(b /10- 1

cosh2 (a /k)cosh2 (b /k)

SO

1
= 1 -

cosh(a /k)cosh2 (b/k)

Thus

1 2 2- cosh (a /k)cosh (b /k)1 -tanh(c /k)

cosh2(c /k) = cosh2 (a /k)cosh2 (b /k),

giving cosh(c /k) = cosh(a /k)cosh(b /k) as desired for "1.
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From the formula s2 = s3 cos a [see Figure (i)] we get

2. a.. tanh(b/k) = tanh(c/k) cos a.

Using symmetrical arguments for the configuration pictured in Figure

(ii) we get r2 = r3 cos p and

2. b. tanh(a/k) = tanh(c/k)cos P.

In a like manner, using the appropriate configuration and the

Euclidean results for oisAB1C1

remaining results are verified.

or °ABA1 C' as appropriate, the/

These same results are also proved by Norden [12. p. 169-174]

in a somewhat different manner.

The next result is called uLobachevski's fundamental formula

[the function fl(x)J" by Shirokov [16, p. 69]. It is developed by

Borsuk [2, p. 331-334], Norden [12, p. 176-177], Shirokov [16, p. 69-

71], and Lobachevski [9, p. 39-41], each using a quite different

method of justification but clearly all inspired by Lobachevski's

insights.

Shirokov's approach is to consider the closed right triangle

AA'ACCI with right angle, LACC'. He lets B be any point of

CC' and considers ABC with acute angles LA and LB so

that mLA = a, mLB p, I[AC]Is = b, 1[BC]l8 = a, and



I [AB] I = c. From absolute

geometry we know AB > BC as

AB is the side opposite the

greatest angle LC. Thus, know-

ing cos a cosh(a/k)sin p from

5.67, urn cos a = urn cosh(a/k)sin p < 1. This requires
a-00 a-1-00

lim sin p = 0 or lim p = o so that lirri (a) = Il(b). From
a- 00 a-00 a 00

2.a of 5.67 we have cos a = tanh(b/k)/tanh(c/k), so

urn cos a = cos II(b) = lirn tanh(b/k)/tanh(c/k)
a 00 a 00

= lim tanh(b/k)/tanh(c/k)
c

= tanh b/k.

In other terms, tanh b/k = cos II(b). But

II(b) 1-cos II(b)tan
2 NI l+cos II(b)

NI 1 -tanh(b /k)
1 +tanh(b/k)

eb/k+e-b/k-eb/k+e-b/k
eb /k+e -b/k+eb -b /k

e-b/k
eb/k

= (e-b/k)2 = e-b/k
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This is "Lobachevski's fundamental formula":

11(b)
= e-biktan

2

Shirokov does nothing more toward the examination of the con-

stant k. However, we now consider it further and justify our

earlier comment that the canonical segment would best be assigned

the number, ln(t41 +1).

-1If b = (Tr/4), "Lobachevski's fundamental formula" gives

US:

Tr I 1-cos Tr/4tan
8 l+cos Tr/4

Nr2 -
Nr2 +1

= (Nrz -1 2

=42 -1 = e-blk

Simple algebra gives e13/k = JZ +1 so that bik = in(TT +1). The

choice of b = in(Nr2 +1) requires k 1. This is the best choice to

simplify computation and to simplify all of the results for the rela-

tionships in 5.67. Recall that the segment class associated with

111-111 I )2 A

assigned Tr/2 to the class of right angles, so the segment class

associated with 11-1(Tr/4) is the canonical class. Thus we have

justified the following:

is the canonical class of segments (3.25), We have
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5.68 DEFINITION. The number associated with the canonical

segment class is ln(\ri +1) l(n /4).

Immediately this gives

5.69 THEOREM. tan 11(x) e-x for all x.
2



1. sin II(x±y) -

VI. THE CONCLUDING ARGUMENT

From 2.13 we can conclude that for any angle LABC,

I [LABC)1A = - I [LABC]1A where [LABC1 is the class deter-

mined by the supplement of LABC. This follows directly from 2.13,

the definition of supplements, and the assignment of 1r/2 to the

class of right angles. Thus we may conclude from the definition of II

(3.22.1) that, for all x, II(-x) = Tr - II(x). This immediately gives:

6.1 LEMMA.

sin II( -x) = sin II(x), and

cos II(-x) = -cos II(x) [9, p. 19-21; 2, p. 334].

By using the results of 5.69, i.e.,
II(x)equivalently cot 2 ex we can compute the following results:

6.2 THEOREM. For any two real numbers x and y,

sin 11(x) sin II(y)
± cos I1(x) cos n(y)

cos 11(x) ± cos II(y)2. cos 11(x±y) - 1 ± cos II(x) cos II(y)

II(x) -xtan
2

and

Proof: "1." sin II(x) = sin(2Arccot ex) by 5.69

= 2 sin(Arccot ex) cos (Arccot ex)

= 2[ex/(l+e2x)1/2][1/(1+e2x)1/2)

= 2ex/(1+e2x)

or
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9, p. 42; 2, p. 334-335].



Thus

(i)

Now

sin 11(x+y)
2ex+y/(1+e2x+2y)

4e x+Y

2+ 2e2x e2y

4ex+y
2x 2y 2x 2y2x 2y 2x 2y

e e +e +e +1+e e -e -e +1

4e'+y

(e2x+1)(e 2x2y+1)+(e -1)(e -1)

2ex2eY
2 2y(ex +1)(e +1)
2x 2y

e -1 e -1
1+ 2x 2y

e +1 e +1

cos 11(x) cos(2 Arccot ex)

= cos2(Arccot ex) - sin

1 e2x
- 7i+e2x 1+e-x

1 -e
2x

1+e2x

and hence

sin II(x) sin II(y)sin 11(x+y) 1+ cos II(x) cox II(y)

sin II(x) sin II(y)By 6. 1 we get sin(x±y) - i± cos 11(x) cos II(y)

Arccot ex)
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Similarly

, 2 1-e2xeZy
cos n(x+Y) - 2

1+e2xe2y

2x 2y Zx 2y 2x 2y 2x 2y
1-e +e -e e +1+e -e -e e

2x
2

2y 2x 2y 2x 2y
1+e +e +e e +1-e -e +e e

(1-e2x)(1+e2Y) + (1+e 2x)(1-e2Y)
2(1+e2 )(1+e2y) + (1-e5(1-e2))

2x
(1-e2x)(1+e2y) (1+e )(1-e2y

)

(1+e2x)(1+e2Y) (1+e2x )(1+e2y )

(1-e2x)(1-e2y)
1+ -2x 2y

(1+e )(1+e )

This, together with 6. 1, gives

cos n(x) ± cox n(y)cos II(x±y) = 1 ± cos n(x) cos fl(y)

6.3 LEMMA. Let ABC be a right triangle with LC the

right angle, mLA = a, mLB =

1[BC]is=a, Then

1. 11( c+11-1(p)) + a = n(b), and

p, 1[AB]l = C, PIO = b,

2. II(b) + a =11(c-11-1(13)) [9, p. 39-41; 2, p. 335-336].
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and

Proof: "1. " In the plane of AABC, let Bt be a point of CB

so that C-B-B'; let D be a point of AB so that A-B-D and



--> , -->
AA'IBB'. But CB' is equivalent to BB' (3.5.3) so

and "1. " is proved.

"2. " In the plane of A ABC,

let D be a point of BA and
-1

I [BD11 d = (P); opposite

B's side of AC let AA' be the

ray such that rnLCAAI = 1I(b),

and let DD' be perpendicular

AB at D with DD' on

C's side of AB .

Then AA'l BC, by defini-

tion of LCAA' and by 3.5.3,
--> -->

and BCI DDT , by choice of

CBIIAAI
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I [BD] I s II-1(13); on the B'

side of AB let AA' be the ray
-so that mLBAA' = II(c+II1 (13)); and

finally let DD' be the line

perpendicular to AB at D

with DD' on the B' side of

AB.,

By the definition of LBAA',

AA'IDD' and by the definition of segment BD and by vertical

angles DD' I BB' . By "transitivity" of critical parallels (3.5.11),



D; so, by 3. 5. 1 1 , "transitivity" of parallels, AA' I DD' (provided
--->

AA' DD' in which case we are trivially done since 11(0) = Tr/2

by definition and AA' 1 AB).

If A-D-B we are done immediately.

If D-A-B, then

- (11(b)+a) = n(n-1(p)--c)

= 11(d-c)

= Tr - 11(c-d), by 3.22. 1,

= Tr - II(c-n-l(p)).

Thus

-1
II(b) + a = 11(c-F1 (3))

as claimed.

6.4 THEOREM. Let LABC be a right triangle with Lc

a right angle, mLA = a, mLB = p , I [AB] I s = C, [Aci I s = b,

and I [Bc]l s = . Then

sin 11(c) = sin 11(a) sin 11(b), and

cos 11(b) = cos 11(c) cos a [9, p. 42 ff.; 2, p. 339].

Proof: From 6.3, letting d = l(p), we have

11(b) = 11(c+d) + a,
and

11(b) = 11(c-d) - a.

This gives us
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(iv)

(v)

cos 11(b) = cos II(c+d) cos a - sin II(c+d) sin a,

cos II(b) = cos II c-d) cos a + sin II(c-d) sin a.

Using 6.2 and the fact that d =

cos 11(c) + cos 3 cos II(c) - cos 13cos II(c+d) - cos n(c-d) - 1+ cos 11(c) cos p 1- cos n(c) cos p

2 cos 13(1-cos211(0
2

1- cos2mocos p

22 sin II(c)cos 13

1- cos2 II(c)cos2 13

sin II(c+d) + sin II-d) sin 11(c) sin p sin II(c) sin 2- 1+ cos 11(c) cos p 1- cos n(c) cos

2 sin 11(c) sin p

-1
(13), we get

21- cos 11(c)cos

Now subtracting (ii) from (i) and substituting the results of (iii)

and (iv) into the resulting equation, we get

2 sin n(c) sin p 2 sin2I1(c) cos
2 2

psin a -
2

cos CL .

1- cos II(c) cos p 1- cos 11(c)cos p

This immediately gives
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(v') sin p sin a = sin 11(c) cos 13 cos a,



or, equivalently

(v") sin I1(c) = tan a tan 3.

Again, from 6.3 we have

11(b) - a = 11(c+d),

and

11(b) + a = 11(c-d).

-1As above, we use 6, 2 and the definition of d = (13) to get

sin 11(c) sin psin II(b) cos a - cos 11(b) sin a - 1+cos 11(c) cos p

sin II(c) sin (3sin I1(b) cos a + cos I1(b) sin a - 1 -cos I1(c) cos (3

Adding (vi) and (vii) gives us

2 sin 11(b) cos a. - sin II(c) sin p sin II(c) sin 13
1+ cos II(c) cos (3 1- cos II(c) cos

2 sin 11(c) sin 13
2 21- cos II(c) cos p

2 tan a tan 13 sin (3
2 2 21-(1-tan atan 13)cosi3

2 tan a tan p sin p
2a( 1-.cos + sin2a sincos

sin a= 2 - cos a .cos p

from " above,

2cos a
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(vi)

and



Thus we have

sin 11(b) = sin a/cos p

By a symmetrical argument we get

sin 11(a) = sin 13/cos a.

We can now use (v"), (viii), and (ix) to conclude

sin 11(c) = sin 11(a) sin 11(b) .

Using (x), together with (v"), (viii), and we see that

211(b) = 1 - sin2a/cos2cos 13

= [cos2P-sinza]/cos2p

= [cos 13-sina(cos2P+sin2P)1/coszp
2 2 2

= [coszP(1-sin2a)+sin asin P]/cos
2 2 2

= [cos2a cos 2p+ sin a sin M /cos

= cos 2a + [sin2a sin2M/cos213

2 2sin a sin P 2= [1+
2

2

cos a
cos a cos 13

= [1+sin211(a)sin211(b)]cosZa

= [1+sin211(c)]cos2a

= cos211(c) cos2a .
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Now b and c are both positive and 0 < a < Tr/2 so we conclude



from (xi) that

and we are done.

6.4. 1 COROLLARY. Let LABC be a triangle with

I [ABU s = c, [ACji s = b, and I [BC]ls = a. Then LC is a right

angle iff sin 11(c) = sin II(b) sin fl(a).

Proof: The "only if" is just 6.4. Let CD be the 1 ray on A's

cos 11(b) = cos 11(c) cos a,

side of BC in the plane determined

be A, B and C. Let A' be the

point of CD so that I [CA 1] I s = b.

Then in AA'BC we have

sin 11(a) sin 11(b) = sin 111[A'B Us.

Hence A'B AB and ABC A'BC

right angle as claimed.

The next lemma is very useful later.

6.5 LEMMA. Let A, B, C, and D be points of plane a.

If 0 ABCD is the quadrilateral so that LA, LB, LC are all right

angles with l[AB]fs = x, 1[BC]l5 = y, and 1[CD]j5 = z, then

cos 11(x) = sin II(y) cos 11(z) [2, p. 138].
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Proof: Let I [BD] I s = u, mLABD = a, and mLCBD = f3. Clearly

by S.S.S. and Lc is a



a + p = Tr/2. In LABD we apply

6.4, part 2, to get

cos a = cos 11(x)/cos fl(u).

In ICBD we similarly get

cos p = cos Il(y)/cos n(u)

But we know p = IT/2 - a so, from (ii), we get

sin a = cos 11(y)/cos 11(u).

Now from (i) and (iii) we have

2 2 cos2II(x)+cos2I1(y)1 = cos a + sin a -
cos211(u)

i.e., we have

cos2I1(u) = cos211(x) + cos211(y) .

If we apply 6.4, part 1 to BCD, we get

2sin n(u) = sin 211(y) sin 11(z).

From (v) we conclude that

1 - sin211(u) = cos2II(x) + 1 - sin2II(y) .

Combining (vi) and (vii) we have

2
(viii) sin211(y) sin 11(z) = sin21-1(y) - cos 11(x).
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Equation(viii) is equivalent to

2
(ix) sin21-1(y) cos2II(z) cos II(x)

Since x > 0, y > 0, and z > 0, we conclude from (ix) that

cos II(x) sin II(y) cos II(z) .

In Chapter I we described how we could use "I I " to assign

numbers to the points on any line (1.16). This assignment allows us

to define a coordinate system for Lobachevskian space in the usual

way.

Then

OX, OY, and OZ are called the X-, Y- and Z-axes

respectively,

(x, y, z) is called the coordinate triple or the coordinates

of point P iff x, y, and z are the numbers associated

with the feet of the perpendicular from P to the X-, Y-,
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6.6 DEFINITION. Let

1. a be any plane,

2. OX be any line of a

3. OY be the line of a perpendicular to OX at

and

0,

4. OZ be the line perpendicular to a at 0,

5. zero be the real number associated with 0 on each line.



and Z-axes respectively, and

3. the plane determined by the W1- and W2-axes (where

W E {X, Y, Z} and W2 E {X, Y, Z} - {W1}) is called the

W1W2-plane or the W2W1-plane. These are each called

coordinate planes.

Since there is a unique line incident on P and perpendicular to

each axis, every point has a unique coordinate triple associated with

it. However, unlike Euclidean geometry, every ordered triple of

reals is not the coordinate triple of some point. To see that this is

so, consider the following example in the XY-plane.

Let OB be the bisector of LX0Y where, without loss of

generality, OX and OY are chosen as positive rays. It is

impossible to have (x0' y0' 0) name any point in the XY-plane if

xo > ln(N/7 +1) and yo >10\17- +1). This is true since the perpen-

diculars in the XY-plane from the

points associated with ln(4-2 +1)

are parallel to OB in the direc-

tion of OB and are on opposite

sides of OB. This follows from

-1our arbitrary assignment II (71-14) = ln(Nr2 +1).

We shall now show that (a, b, c) can be the coordinates of a
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2 2point P iff cos 11(a) + cos2Il(b) + cos TI( ) < 1. To do this we first
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establish some useful lemmas. In the subsequent work we shall

assume some planes, lines, and directions have been taken in space

to give us a coordinate system in the sense of definition 6.6 above.

6.7 LEMMA. If I is any line and P is any point then

there is a unique plane X. incident on P and perpendicular to

Proof: By 0.12, there exists a unique line p incident on P and

perpendicular to / at Q. The lines p and intersect at Q

and thus, by 0.11, determine a plane a.

By 0.19, there is a unique line

incident on Q and perpendicular to

a. By 0.17, the plane X deter-

mined by m and p is perpendicu-

lar to /, since / is perpendicular to both m and p at their

point of intersection. Any other plane i. perpendicular to and

containing P, say at point Q' of I, must have PQI1

through P. Thus Q' = Q (since perpendiculars from P to

are unique). Hence p.= X and we are done.

6.8 LEMMA. If

/ and m are lines of plane a,

/ and m are perpendicular at 0,

n is the perpendicular to a at 0,



then

p is any point, and

X and la are the unique planes containing P and

perpendicular to Q and m, say at L and M,

respectively,

the line p containing P and perpendicular to a, say

Q, is the line of intersection of X and II, and

p and n are coplanar.

Proof: "1. " X meets the plane of and m in a line Q.

Let LNI be perpendicular to LQ' at L in K. Then, by 0.17,

LN' is perpendicular at L to the plane determined by A and m

(LNI is perpendicular to i since X. is perpendicular to as

well as perpendicular to LQ' ) Thus

LN' and PQ are perpendicular

to the same plane and are coplanar.

This means PQ is in K. By a

symmetrical argument, PQ is

in 11, and hence PQ is the

line of intersection.

"2. " From our hypothesis

and PQ are both perpendicular

to the plane of and m so, by

0.17 they are coplanar.
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It is interesting to observe that while LQ1 PQ and

MQ1 PQ, in general, LQ is not perpendicular to MQ. In fact,

they will be perpendicular only when Q is on i or m. In the

figure above we have sketched the points at and M' with the

perpendiculars at all vertices marked. In general all three of the

angles at P are acute.

6.8.1 COROLLARY. If P is any point in space, and P' is

the foot of the perpendicular to the XY-plane [or XZ- and YZ-plane,

respectively] and P has coordinates (x, y, z), then P' has

coordinates (x, y, 0) [or (x, 0, z) and (0, y, z) respectively].

Proof: By 6.8, P' is a point of the planes perpendicular to the X-

and Y-axes at the points of these axes associated with x and y

respectively. But this requires the lines from P' perpendicular to

the X-, Y-, and Z-axes to have feet associated with x, y, and 0

respectively. Thus by Definition 6. 6, P' has coordinates (x, y, 0).

The remaining two cases follow immediately by symmetry.

6. 9 THEOREM. P is a point with coordinates (a, b, c) iff

cos2 I1(a) + cos211(b) + cos211(c) < 1.

Proof: "only if": If P has coordinates (0, 0, 0) we are done, trivi-

ally. Let us suppose P has coordinates (a, b, c) (0, 0, 0).

Then let p = I [OP]l s. Let A, B, and C be the points of the X-,



Y-, and Z-axes associated with a, b, c respectively and by

Definition 1. 16 conclude 1[0A]l5 lal, 1[013]I5 = 1b1 and

1 [0C]l s 1 c 1 . Let Q, R, and S be the feet of the perpendiculars

through P to the XY - , X Z - , YZ -planes respectively.

Case 1. P is not in

any coordinate plane: Let

By 6.8 and 6.5 we have

1. cos II(s) = cos

Z. cos II(r) = cos

3. cos II(v) = cos

r,

u,

11(1b1)/sinn(lal)

11(1c1)/sinn(la1)

fl (r)/sin )

cos 11(IchisinIl(laj)
sin[Arccos(cos 101 )/sin ll(1

cos )isin II(1 al)

1-cos2 II(Ia1)-cos2II(1b1)/sinII(Ial)

cos MI c()

N/ 1-cos2 Il(a)-cos2II( )

since

cos 11(x)= cos2II(1 x1),

from 1. and 2. ,
1 ))1'

159



sin 11(g) = sin 11(lal) sin II(s) by 6.4 and 6.8

= sin II( a 1 -cos211(a)- cos2I1(b) /sin II( I al )

(cf. computation of 3.)

= J 1-cos2n(a)-co5zri(b)

H(p) --- sin 11(g) sin 11(v) by 6.4 and 6.8

cos 11(c[)= sin 11(g) sin Arcsin(

Nr--4 1-cos211(a)-cos211(b) 1-cos2II(a)-cos2 II(b)-cos211(c)

sin

1-cos211(a)-cos211(b)

J 1-cos11(a)-cos211(b)

= j 1-cos211(a)-cos2 II(b)-cos2I1(c)

Now since II(p) E (0,70, sin 11(p) >0 we have

cos211(a) + cos211(b) + cos211(c) < 1.

Case Z. P is in a coordinate plane: By symmetry we may

suppose P = Q. Then by Step 4 above we are done if Q A.

Case 3. If P = A we are trivially done.

By symmetry we have completed this half of the proof.

nifu: Suppose ( a, b, c) is an ordered triple so that

cos211(a) + cosz11(b) + cos21-1(c) < 1.

Case 1. Suppose a, b, c are all non-zero. Let A be the

point on the positive X-axis associated with al. Let A' be
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1. e = mLAOR = Arccos

On OR there is a point Q so that

2. cos II(q) = cos211( )+cosri( )

with q = I 10Q] I s

Let F be the foot of the perpen-

dicular from Q to the X-axis. Let

f = I [OF] Is. If a > 0, cos II(a) >0

and thus LAOR is acute so

cos 0 cos II(q) = cos I1(f) by 6.4, i.e. ,

cos 11(a)

cos ZII(a)+cos 211 (b)

cos II(a) cos2I1(a)+cos2(b) = cos II(a) = cos 11(f)
cos2II(a)+cos2II(b)

so F is A and thus Q has first coordinate a. If a < 0,

cos II(a) < 0 and LA'OR is acute, so cos(rr-0) = -cos 0 and

as above -cos II(a) = cos I1(f) so F = A'. Thus Q has first

coordinate a.
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associated with - I a I on the X-axis.

In the XY-plane there is a ray

OR, R being on the side of the XY-

plane determined by the X-axis and

containing the positive part of the B'

Y-axis, so that
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Now let B be the point on the positive Y axis which is the

foot of the perpendicular from Q to the Y-axis. Then if 0 < 7/2,

mLBOQ = Tr/2 - 0 and

3. cos(ir/2-0)cos II(q) = sin 0 cos H(q)

cos II( I bi) 2cos Il(a)+cosII(b)
NI cos211(a)+cos211(b)

cos II(1131) = cos II(1[013]Is)

since I cos 11(b)I = cos II(Ibl). Let Q be the point of OQ so

that Q-O-Q' and OQ 5- OQ'. Let B' be the point of the Y-axis

so that B-O-B' and OB 7- OBI. Then by vertical angles,

LBOQ LB'OQ' and by S. A.S. , BOQ B 'Oc21. Thus by 3.,

if b > 0, Q has coordinate b. If b < 0 Q' has coordinate

For e > Tr /2, we use a symmetrical argument with appropriate

changes of signs.

** We thus know that there is a point Q in the XY-plane with

coordinates (a, b, 0) when a, b and c are as given.

Now let OS be the perpendicular to the XY-plane, and let P

be the point of OS so P is in the same half plane (of the plane

containing the Z axis and OQ) determined by OQ as is the

positive part of the Z-axis, with P selected so that



cos II( I c I ),cos II(p) -
2

( which we know exists
1-cos (q)

by our hypothesis and our key assumption).

Let G be the foot of the perpendicular from

P to the Z-axis. Then by 6.5

cos 11(1[00 s) = sin II(q) cos fl(p)

= 1-cos cos II(IcI)
NR:-cos211(q)

= cos II(I c I ).

If c > 0, P has coordinates (a, b, c) using 6. 8. If c < 0 let

P' be symmetrical to P with respect to OQ. Then by 6. 8,

P' has coordinates (a, b, c).

Case 2. By symmetry we need only consider when c 0.

In that case the point Q described in =:":' above satisfies the condi-

tions required.

Case 3. If two coordinates are zero the proof is immediate by

our key assumption. Thus we have completed the proof.

6.9. 1 COROLLARY. Let P be any point and let (a, b, c) be

the coordinates of P. Let p = I [OP] I s. Then

sin II(p) = 1-cos211( )-cosII(b)-cosz11(c) , and

Proof: Suppose P 0 since p = 0 gives trivial proof.
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cos II(p) = cos211(a)+cosII(b)+cos 11(c) .
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In Case 1 of the "only if" part of the argument in 6. 9, Equa-

tion 5. gives sin Il(p) Ni 1 -cos211(a)-cos211(b)-cos2I1(c) .

Since p >0 cos II(p) 1-sin2II(p)

Ni cos2Il(a)+cos2 Il(b)+cos2 II(c)

It is becoming quite tiresome to use the notation cos Il(a),

cos II(x), etc. In the subsequent development a much more frequent

use of cos 011 is necessary. For this reason we introduce a short-

hand notation for the values of this very important function.

NOTATION: If x is any real number "x" will be used to denote

cos II(x).

At times we will not use this shorthand if it seems necessary to

place greater stress on the use of cos o ri than the shorthand seems

to provide.

It is of extreme importance to avoid any carelessness in the

reading of this shorthand. The results of 6.9. 1-2, for exa,mple,

appear remarkably Euclidean when written in this shorthand, i.e. , if

I [0P] I s = p,2. = iq/a2+b2+c2 where (a, b, c) is the coordinate triple

for P.

It is only when we keep in mind that, for example, p is the

cosine of the number assigned to the angle of parallelism associated

with the segment class [OP], that the above formula comes to us



with appropriate meaning.

6.10 LEMMA. Let 0 and P be distinct points of line

Choose the ass igment of reals to so that 0 is associated with

0 and P is associated with a positive number. Let A be any

point not on L. Finally let B be the foot of the perpendicular to

through A and let b be associated with B. Then if

0 = rriLAOP and I[AO]l5 = r, cos 0 = b/r.

giving us cos 0 b/r, as desired.

165

6. 10. 1 COROLLARY. Let A, B, 0, P, Q, 1 , r , b , and 0 be as

above. If A' is any point so that A-0-A', B' is the foot of the

perpendicular to through A', I [0B1] I = b', and I [0A1] I s

then cos 0 =

Proof: Case 1. Suppose B is a

point of OP. Then in triangle AA0B

we have, by 6.4, cos 0 Ib/r.

Case 2. Suppose B = 0. Then

b = 0 and 0 = -ff/2 and 0 = cos Tr/2 = cos Tr/2/r.

Case 3. Suppose B-O-P. Then LAOB is supplementary to

LAOP and by Definition 2.13, mLAOB = Tr - 9 and, by 6.4,

cos (Tr-0) = cos 11(1131)/r. But cos (1r-0) = -cos 0 and b < 0 so

n(b) = n (cf. 3.22.1). Thus cos II( I bl ) = -cos n(b) =



Proof: Let co = mLA'OP. By 6.10,

cos cp b'/r'. However,

cos rp = cos(rr-0) = -cos 0 so we are

done.

6.10.2 COROLLARY. Let

Then

Proof: (1) if 0 1r/2 co = ±(Tr/2-0

By 6.10 b = r cos(±[Tr/2-0])

= r cos(rr/2-0)

= r sin 0 .

If 0 = Tr/2

= r sin Tr/2

A be a point of the XY-plane different from the origin,

A have coordinates (a, b, 0),

OX and OY be the positive X-axis and Y-axis, respec-

tively,

mLAOX = 0, mLAOY = p, and

I [AO] I s = r.

if A is on Y's side of OX, b = r sin 0, and

if A is on the opposite side of OX from Y, b = -r sin 0.
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(2) Let B be the foot of the perpendicular

to the Y-axis from A. Then by 6.4,

where

b = -1[013]Is by definition. If 9 = 1r/2, b = -r sin Tr/2._ _

6. 11 DEFINITION. Let A, 0, and P be collinear with A

and 0 distinct and with (a, b, c), (0, 0, 0) and (x, y, z) their

respective coordinates. Then

1 if P is on O. or P = 0
crka, b, c), (x, y, z)] =(

-1 if P-O-A

6.12 LEMMA. If is the line incident on the points

and A where 0 has coordinates (0, 0, 0) and A has coordi-

nates (a, b, c) so a2+b+c > 0, and if P is any point of 12 ,

say with coordinates (x, y, z), then as vectors (x, y., z) = t(_, c)

t=
2 2 2

cr[(a, b, c),(x, y, z)]
a +b +c

b = -r sin 0, since

Proof: Suppose A is not on a negative axis. Let a, f3, and
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cos I1 I [01]l r cos(ir - 9)

-r cos (9).

Now = Tr / 2 + 0 so

cos III [OB]ls +r sin 0 .

Since B is on the negative Y-axis,



be mLAOX, mLAOY, and mLAOZ

for any points X, Y, Z on the positive

rays of the X-, Y-, and Z-axes

respectively. Let P be any other

point of OA. Finally let I [OA] I s = r

and let [01)]1 s = s where the

coordinates of A and P are (a, b, c)

Case 1. If P is on OA, by 6.10 we have

cos a = a/r = xis,

cos p = b/r = x/s,

cos y = c /r =

i. e., (x, y., z) = t(a, b, c) where t = s /r.

Case 2. If P = 0, x = = z = O.

Case 3. If P-0-A, by 6.11. 1 we have (as above)

(x, z) = -t(a, b, c) where t = s /r. Now, by 6. 9. 1,

Jx2, 2, , 2,, 2, c2.
Ty. '`/

This together with 1. , Z., and 3. and the definition of Cr

completes the proof for A not on a negative axis. Suppose A

is on the negative X-axis. Then (a, b, c) = (a, 0, 0), / is the

X-axis and thus (x, y, z) = (x, 0, 0). Thus we see

(x, 0, 0) = (x2/a2)(a, 0, 0)a[(a, 0, 0) , (x, 0, 0)] and by symmetry of argu-

ment we are done.
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and (x, y, z) respectively.
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We now consider necessary and sufficient conditions for given

coordinates to name a point on a given line through the origin 0.

6.13 LEMMA. Let 0, P, and A be points with coordinates

(0,0,0), (x, y, z), and (a, b, c) respectively. P is a point of line

OA iff (in vector notation) there is a real number t so that

2 2 2 -1 /2
ti < (a +b +c )

Proof: "only if": If P is on OA, this is just Lemma 6.12 and

we are done.

(x, y, z) = t(a, b, c) with

On OA there is a point Q so that

cos 11(q) = 4x2+y2+z2. Let Q have coordinates (x', y', zi). Then

by 6.12 we have (x',1', z') = c) where (by using 6.9. 1)

tf = (S.4a2+1D2-4-c2)0-[(a,b,c),(x/, yl, 1)}.

Thus cos 11(w) -= ± cos 11(w') for (w, w') (x, x'), (y, y') or (z, z')

respectively. Examining the construction of the argument for 6.12

we see that either P has the same coordinates as Q or P has

the same coordinates as the point Q' of OA so that Q-O-Q'

with OQ OQ'. Since the planes perpendicular to the X-, Y-, and

Z-axes which determine the points Q and Q' are unique, P = Q

or P Q' and we are done.

6. 14 LEMMA. If A and P are distinct points of the

XY-plane with coordinates (a, b, 0) and (p, q, 0), respectively,

with



and if I [AP] I = m, then sin II(rn) = (41 - a2-b

[2, p. 349].

Proof: Let D and E be the feet of the perpendiculars to the

Y-axis containing A and P respectively. Let F and G

the feet of the perpendiculars, s and t, to the X-axis containing

A and P respectively. Finally, let Q be the foot of the

21-2 -3. )/(1-ap..-b9)
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i[o lls IPI, and I [0E]lskL Let l[AQ]1 1[PQ]I5

[AF] I s f, [GQ] I s = g, and I [GP] I = k.

Suppose A and P are each not on the X-axis or Y-axis and

F G. Then consider quadrilaterals O ADOF, DAQGF, and

PEOG. We apply Lemma 6.5 to get

cos II(f) = cos n( Ibi)/ sin II( I a I ),

cos II(k) = cos 11(q)/sin 11(lp
I I

cos II(g) = sin II( I a- p I ) cos II(f), and

cos II( I a-pl ) = sin II(g) cos II(c).

Now letting sgn be the signum func-

tion and using 6. 1, Equations (i) and

(ii) can be rewritten as

(ii) cos II(f) = sgn(b) cos II(b)/sinII(a)

(HI) cos II(k) = sgn(q) cos II(q)/sin II(p)

perpendicular to line containing A (cf. figures below).

By definition we know that i[onis lal, 1[0Dlls = Ibl,



Thus we have

171

Examination of (i), (ii), (iii), (iv), (if), and (ii') will assure us

that these equations are all true when either of A or P is on the

Y-axis.

Now, if sgn(b) sgn(q) = 1 or 0, d = I k-gi . However, if

sgn(b) sgn(q) = -1, d = k+g. Thus by 6. 2, we have

sin 11(k) sin 11(g)
sin 11(d) = 1 -sgn(b) sgn(q) cos 11(k) cos 11(g)

If P Q, in Cs APQ we apply 6.4 to get

sin 11(m) = sin 11(d) sin 11(c).

If P = Q, then d = 0, sin I1(d) = = c and Equation (vi) still

holds.

Now using (v) and (vi), we get

sin 11(k) sin 11(g) sin 11(c)
sin 11(m) = 1 -sgn(b) sgn(q) cos 11(k) cos 11(g)

From , we get

sin211(k) =1 - cos211(k)

,
1 - cos2 11(q)/[1 -cos2 11(p)j

1 -cos2 11(p)-cos211(o)

1-cos211(p)



sin211(k) = (1-R2_2.2)/(1-2.2).

Using (i1), , and (iv), we get

22 , 2 2 2
sin 11(g) sin 11(c) = sin II(g) - sin I1(g) cos II(c)

= sin21I(g) - cos211(a-p), by (iv),

= sin211(a-p) - cos211(g)

= sin211(a-p)[1-cos211(f)], by (iii),

sin 11(a) sin
2

I1(p) [1_ cosn I1(b),
,

[1-cos II(a) cos 11(p)]2 sin2I1(a)

by 6.2 and (ii),22 2
sin 11(a) sin211(p)[sin 11(a)-cos 11(b)]

[1-cos II(a) cos II(b)j2sin211(a)

[I-cos2 11(p)][1-cos211(a)-cos2 11(b)j

[1-cos 1I(a) cos 11(b)]2

sin211(g) sin211(c) = (1-2)(1-a2- )/(1-

Thus, in the expression of sin II(

computed, by (viii) and (ix), to be

(x) [(1-22-a2)/(1-2.2)][(1-2)( -

= (1-222)(1 -a2-b2)/(1-a b)2._

For the denominator we see that
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the square of the numerator is

22-b )/(1-a b)2



= 1 -

(xii) sin II

1 - sgn(b) sgn(q) cos I1(k) cos II(g)

cos II(q)
sin II(p)

cos I-1(b)
sin 11(a-p) sin 11(a)

cos II(b) cos II(q) sin 11(a) sin II(p)
sin 11(a) s in 11(p) 1-cos 11(a) cos 11(P)

1- cos 11(a) cos II(p) - cos II(b) cos 11(g)
1- cos II(a) cos II(p)

i.e.

1 - sgn(b) sgn(q) cos I1(k) cos I1(g) R-b a)/( 1-a R)

Since , from (vii), (x), and (xi), we have

sin II(m) = [11 - PJ1 -2.2-2.2/( 1-a b)]/[(1-a R-b /(1-a b)]

221 ,E2 2a 1( 1-a 2.-b a),

as desired.

Now suppose F G 0. Then A = Q and we have

k+f if sgn(b) sgn(q) -1
m =

lk-fl if sgn(b) sgn(q) = 1 or 0.

Thus, by 6. 1 and 6.2 we have

By Lemma 6.5 we have

sin II(k) sin II(f)
1 -sgn(b) sgn(q) cos II(k) cos n(f)

(xiii) cos II(f) = sgn(b) cos II(b)/sin II(a), and

by (i'), (ii'), and (iii),

by 6. 2,
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cos 11(k) = sgn(q) cos 11(q)/sin H(p),

so that

. 2 [ 1 -cos211(k)11- 1 - co sZn(filsin II( [1_ cos 11(b) cos 11(q) 12
sin II(a) sin II(p)

[sin211(a)-cos211(b)lisin.211(p)-cos211(q)]

[sin 11(a) sin 11(p) - cos 11(b) cos 11(q)]2

But a = p , so from (xv) we have

i.e., since m > 0,

sin 11(m)-

{1_ 2...b2D 2-a21

[1 -a2-b ai2

[1,2,1)2D-22-2]

sin 11(m) = 1 -a2-b2 I./ 1 -2,2 -9.2 /( 1 -a 2-b .

Suppose A and P are on the X-axis. We consider three

cases.

Case 1. A or P is the origin: m = max{I a 1 1)1} since

one of a or p = 0. By symmetry, let us suppose a 0.

If a V ,
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sin MI a = sin II(a), by 6. 1,

= -a2

= 41- 2 -2,2_21(1-a 2-b

since b = p = O.

Case 2 0-A-P or O-P-A: m = Ia-pl so

sin II(m) = sin II(a-p), by 6. 1,

= 41-a2 41-22/(1-a 2), by 6.2

= 1-a'-b2 41-22 -a2 /( 1 -a 2.-b a), since

Case 3. A-0-P: m la) + IPI SO

sin II(m) = 41-az NI 1-2.2 / (1-a 2) by 6. 2 and because a and

p differ in signs.

Thus, just as in Case 2 above we are done since b 0.

Finally, if A and P are both on the Y-axis, we use an

argument symmetrical to that for the case of both A and P on the

X-axis to complete the last step of the proof.

6. 15 THEOREM. If A and P are distinct points with

coordinates (a, b, c) and (p, q, r) and if I [AP] I s t, then

22 222
sin II(t) = NI 1 2 -a/(1-a r).

Proofs Let D and E be the feet of perpendiculars to the Z-axis

containing A and P respectively. Let F and G be the feet

of the perpendiculars, 0- and T, to the XY-plane containing A
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1[0G]l

Suppose A and P

Then by 6.9. 1

(i) sin II(u) = N./ -

are not both in XY-plane and F G.

and

2(iii) sin 11(w) = -b NI 1-p.2_21(1-a p-b a
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and P respectively. Let Q be the foot of the perpendicular to

the line T containing the point A.

We know, by 6. 8. 1, that F and G have coordinates

(a, b, 0) and (p, q, 0) respectively. Let I [AC)} s h, [PO = d,

I [AF] s f, I [GQ] I s = g and [GP] I s = k. We know that

1[0D]is = I cl and 1{0El15 ri. We let I [OF] Is and



Examination of quadrilaterals OADOF, OPEOG, and

0 AQGF, gives,

cos 11(f) = cos n( I ) /sin 11(u)

= sgn(c) c/NI 1 -a2-b2 , by 6.5 and (1),

cos II(k) = cos II(Irl)/sin II(v)

= sgn(r) r /N/1-2.2-9.2 , by 6.5 and (ii), and

cos 11(g) = sin II(w) cos II(f) by 6.5

= sgn(c) 1-2,2-9_21(1-a 2-13 a) by 6.14 and (iv).

Finally we get

cos II(w) = sin II(g) cos II(h) by 6.5.

Examination of (iv), (v), (vi), and (vii) will show that these all

hold when either of A or P is on the Z-axis.

If P Q, in right triangle .6APQ, we have

sin 11(t) = sin II(h) sin II(d).

We see that (viii) is also true if P = Q.

Now just as in the proof of 6.14

if sgn(c) sgn(r) = 0 or 1, d = I k-g while

if sgn(c) sgn(r) = , d = k + g.

Thus
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(ix) sin II(d) -

and Equation (viii) becomes

sin 11(t) - sin 11(h) sin 11(k) sin 11(g)

Consideration of the numerator of (x) squared gives us

sin.211(h) sin2 11(k) sin2cl(g)

= (1-cos211(h)) sin2I1(k) sin2I1(g)

= [1-cos211(w)/sin211(g)] sin 11(k) sin 11(g)from (iv)

= [sin211(g)-cos211(w)] sin211(k)

= [sin211(w)-cos21-1(g)li 1 -cos211(k)]

[(1-

2-b2)(1-2-a2) c2(1-p.2-a2)22 d
by 6. 14, (v) and ,

2 222
= (1-a-b2-c )( -2 -a -r )/(1 -a 2.-b a) .

Considering the denominator of (x), we get

1 - sgn(c) sgn(r) cos II(k) cos II(g)

= 1 -[r 41-R2 -12j[c(N/1-2.2-2)/( 1-a 2-b a)] from (ii), ,

= 1 - r c/( 1-a. R-b 9.)

= (1-a .2.-b a-r c)/(1-a.E-b a).

sinIlik) sin 11(g)
-sgn(c) sgn(r) cos 11(k) cos 11(g)

1-sgn(c) sgn(r) cos 11(k) cos 11(g)

( 1-a .2.-b (1-a R-b a)2 '-2. a

178



combining (x), (xi), and (xii), we have

-a2-b2-c2 1-22 -2-r2 /(1 -a R-b
sin II(t) - (1-a R-b a-r c)/(1-a R-bs)

=1 --a2-b2-c R-b a-r c)

as claimed.

Now suppose F = G 0.

Then m is determined to be

k-l-f if sgn(c) sgn(r) = -1

1k-fl if sgn(c) sgn(r) = 1 or 0.

Thus by 6.1 and 6.2 we have

(xiii) sin n(m) - sin II(k) sin II(f)
1-sgn(c) sgn(r)k f .

By Lemma 6.5 and 6.9. 1 we have

f= sgn(c) c/N/ 1 -a2-b , and

k = sgn(r) r 1-2 .

Thus (xiii) and the fact that F = G allows us to write

2
(1-12 )( 1-k2 )

sin II(m) -
-c r /( 1-aZ-b2)]2_

(1-a2-b2-c2)(1-R ) /(1-a2- 2 2

(1-a R-b a-c )2/(1-a2 -b2)2

F:---G
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since m> 0 we have

I- 2 Z 2 222
NI -la -c v1-2 -s -r

sin II(
1-aE-bs-cr

as claimed.

If A and P are on the Z-axis, then the result follows just

as the case for A and P on the X-axis in 6.14 so we shall leave

out the details here. If A and P are on the XY plane we apply

6.14 directly. Thus we are done.

6. 15. 1 COROLLARY. Let P be any point different from the

origin. Let P and I have coordinates (p, q, r) and (i, j, k).

Then I is the midpoint of segment OP ill (i, k, ) t(E, a, r)

where t = (1.+Nh-R2_a2-r2)-1.

Proof: By 6.13, I is on OP iff k) = t(E,a, r) for some

appropriate choice of t. I is the midpoint of OP ill

01 = IP,

Let I =(i,j,k), P = (B,, r). We now see that (i) is true iff

= I 41- P /(1 -I by 6. 9. 1 and 6.15.

This equation is valid iff
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41-P. P = 1 - P P. Now 1. P.= tP. P for some and

holds iff t = (1,41-P. P)/P. P

or equivalently t (1 P)
1 as claimed.

6.16 LEMMA. If

1.1 is any line of the XY-plane,

2.1 does not contain the origin 0,

3.A is the foot of the perpendicular from 0 to 1,

A has coordinates (a, b, 0), and

P is a point with coordinates (x, y, 0),

then P is a point o

Proof: "only if". Let

1. I [0Alls 1{C) ils 'Pt

. X and Y be on the positive X- and Y-axes respectively,

X' be on the X-axis so that X'-0-X,

0 = mLAOX, 0' - rriZAOXI, = rnZAOP, = inZPDX, and

rnZPDX'.

iff ax = az +
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Case 1: OP is interior to

LA.OX: A and P are on the same

side of the X-axis so (p1 = 0 - (P.

By 6.10 and 6.10.2:

a = r cos 0 ,

b = ±r sine,_ _

x = k cos(0-9),

x = ±p sin(0-co),

where the signs used for r and

E. are always the same in (ii) and

(iv). By 6.4 we conclude,

(v) 2. = r /cos cp

Using (iii), (iv), and (v), we get

x = r(cos 9+sin e tan (p) = a ± b tan (P,
T.1 .4.

y = ±r(sin 0-cos 0 tan 9) = b a tan c 0 .

Thus

± tan p= (x-a)/b provided b 0 Or

(yin') * tan cp = (b-y)/a provided a 0.

Since one of a or b is different from zero, first suppose b 0.

Then using (vii) and (viii)

2b yb= + a x.
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Case 3: OX is interior to

LAOP: In this case cp' = cp 0. As

above we get, by 6. 4, 6. 10, 6. 10.2

with A and P on opposite sides

of the X-axis,

(1) a = r cos 0,

b = ±r sin 8,

x = cos (9-0),

= ±2 sin (9-8),

where the signs for r and 2. in (ii) and (iv) are always chosen

opposite.

The desired result then follows just as in Case 1.

Case 4: OX' is interior to LAOP: cp" = - 8'. Again A

and P are on opposite sides of the X-axis and the computation is
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By a symmetrical use of (vi) and (viii') with a 0, we also get the

same result.
-4

Case 2: OA is interior to

LPDX: In this case cp' = 0 +9.

The proof is just as for Case 1

with the appropriate changes in sign for (iii), (iv), (vi), and (vii),

with the condition that the signs for r and E used in (ii) and (iv)

always be chosen the same.



just as in Case 3 with 0 replaced by

0' and 91 replaced by 9" The

selection of signs is the same as in

Case 3.

Case 5: A is on the X-axis:

Proof is immediate from Cases 3

and 4 with 0 and 0' set equal to zero respectively.

Case 6: A = P: Proof is trivial.

"if". Suppose P has coordinates (x, y, 0) and a x + b = a2+

If P = A, P is on 1, as desired. If P A, let I[AP]Is = q.

Then by Theorem 6.15

XI

,,,411PENIF

sin ii(q) / 2 2 2
NI -a -b N/1-x -y.2 )/(1-a x-b x).

By hypothesis

sin fl(q) -= (Ni1-a2-b2 N//1-x2-y,2)/(l- -b )

= -x2-z2 / -a.2-b2 = sin 11(p) /sin I1(r),

so sin 11(p) = sin 11(q) sin I1(r). Thus by 6,4.1 AOPA is a right

triangle with right angle at A so P is on 1 and we are done.

It is well to note that the choice of signs described in Cases

1-4 is not a free choice. The pairing of signs is forced from the
--) ----)

juxtaposition of the rays OA, OP, OX and OX' and the results of
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6.10.2. Lemmas 6.13 and 6.16 together with the following corollary
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essentially give equations for all lines through the origin and lines in

any coordinate plane.

6. 16. 1 COROLLARY. If I is any line of the W1 W2-plane

not containing the origin 0, in which W1 E {X, Y, Z1,

W2 E {X, Y, Z} {W1}, A is the foot of the perpendiculars from 0

to I, and A has coordinates (a, b, c), and P coordinates

2 2 2
(x, y, z), the P 'son I iff ax+by+cz=a +b +c

Proof:

If W1W2-plane is the XY-plane,and z are zero by

definition and 6. 16 gives the result immediately.

If
W1 W2

-plane is the XZ-plane, b and y are zero and

by an argument symmetrical to that for 6. 16 we are done.

If W1W2-plane is YZ-plane, we get the result just as in 2.

The following results provide us with equations relating the

components of the coordinates of certain collinear points.

6.17 LEMMA. If A and P are distinct points of the

XY -plane with coordinates (a, b, 0) and (p, q, 0) respectively,

then U is a point of the line AP with coordinates (x, y, 0), iff

(g-b)x + (a-p)x = a - 2, b.

Proof: Let (c, d, 0) be the coordinate triple associated with the
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foot of the perpendicular to AP and containing the origin. Suppose

AP is not a line through the origin. Then one of c or d is

different from zero. By 6. 16 we have

(i) ca+db=c2.+da

or equivalently

c(a-p.) =

Let us suppose d 0. Then p a forces q = b in Equa-

tion (ii) and thus P = P'. This contradicts the hypothesis. Thus

when d 0, p 1 a and we get,

c = -(b-g)

Using 6.16 and dividing by d, we get U is on AP iff

( id)x + y (cz id) + d.

Substituting (iii) into (iv) and multiplying the result by (a-p)

gives us,

(g-b)x + (a-a)y. = (a-a)c + (a-R)d.

Since (a, b, 0) also satisfies the hypothesis of 6. 16, in particular,

(v) becomes

(a-b)a + (a-2)b = (g-a)c + (a-R)d,

or equivalently

- b (n.-&. (a-2)d.



Substituting (vii) into (v) we get the desired equation.

(viii) (q..-b)x + (a-p)y = a a -

If c 0, we get the same result by symmetry.

Now suppose AP contains the origin, Since A and P

are distinct, either a2+b2 0 or p2 +q2 0. Suppose the former.

Then by 6.13 we immediately get

al(x + )/(aa+b

and

(x) y = bNi(x2+12)/(a2+b2), ill U is on A .

Suppose that a 0. Then from (ix) and (x) we have,

y.= b xia or ay-bx= 0

If P is also not the origin, by a symmetrical argument, we get

Either (xi) or (xii) applied to the specific coordinates (a, b, 0) and

(p, q, 0) will give,

(xiii) a p. b = 0.

Thus from (xi), (xii), and (xiii

(xv) (g.-b)x + (a-p.)y = a - b a as desired.

This is also valid when not both A and P are different from the
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origin, and we are done.

6. 17. 1 COROLLARY. If P and P' are distinct points of

the XZ-plane [YZ -plane] with coordinates (p, 0, q) and (p', 0, q')

[(0, p, q) and (0, p', ci')] respectively, then U is any point of line

PP' with coordinates (x, 0, y) [(0, x, y)], if and only if

(a' -a)x P. a I

Proof: Immediate by symmetry from 6. 17.

6. 18 THEOREM. If A and P are distinct points with

coordinates (a, b, c) and (p, q, r), respectively, then U is any

(x, iz) = (p.,a r) + t(a b-a,

188

t = (w-s) Rd- s) where (w, d, s) E {(x, a, p), (y, c1), (z, c, r)} and

d-s 0.

Proof; Let A', P', U'; A", P", U", and Am, U" be the

"feet" of the perpendiculars to the XY-, XZ- and yz axes, respec-

tively, and containing A, P, and U respectively. From 0. 18,

0. 20, and 6.8. 1 we see that these points

have coordinates as follows:

A' P' U'--(a, b, 0), --(p, q, 0), --(x, y, ),

A" --(a, 0, c), P" --(p, 0, ), U" --(x, 0, ),

A'"--(0, b, c), P"--(0,q, r), U"--(0, y, z).

point of line AP with coordinates (x, y, ), iff



Applying 6.17 and 6.17.1, we get the results that U', U" and U"

are as described iff

(a-b)x + (a-E)y = a a -

(r-c)x + (a-_2)z = a r - E c,

and

(r-c)y + (b-a)z = b r - a c,

which in turn give, respectively,

(a-b)x + (a-p)y. = (a-b)E + (a-E)a ,

(r-c)x + (a-2.)z = ( -c)E + (a-E)r, ,

(r-c)y + (b-a)z (r-c)a + (b-a)r .

Now if each of the differences a-p, b-q, c-r 1 0 we get

(x-R)/(a-R) = (i-s.)/(b-a) = (z-r)/(c-r) = t

or

(x, y, z) =(2..a, r) + t(a-E, c-r) .

If exactly one of the differences is zero, say a-p = 0, we have for

example (p, b, c), (p, q, r), (p, y, z) are the coordinates of A, P,

and U respectively and examination of Equation (i), (ii), and (iii)

will give (-a)/(b-a) = (z-r)/(c-r) = t and Equation (v) holds iff U

is a point of AP.

Since A and P are distinct, not all the differences can be

zero. Hence t is always defined. Our above argument (by sym-

metry) always assures us that t exists and has the same values for
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given points A and P, thus removing any possible ambiguity in

defining t as the given quotient and we are done.

6.18.1 COROLLARY. Let A, P, U be points with coordi-

nates (a, b, c), (p, q, r) and (x, y, z) respectively, then A-U-P

iff (x, y, z ) = r ) + t(a-R, b-a, c-r) with 0 < t < 1.

Proof: If A-U-P, then A, U, and P are collinear and by 6. 18,

(x, z) (R, a, r) + t(a-R, b-a, c-r) where t = (w-s)/(d-s) where

(w, d, s) E {(x, a, p), (y, b, q), (z, c, r)} and d-s 0.

Since A and P are distinct, one of a-p, b-q, c-r is

non-zero. Suppose a-p 0. Then the planes a, P, and y,

perpendicular to the X-axis at A', U', and P' and containing the

points A, U, and P, respectively, contain the points A, U, and

P of line AP with A-U-P. Hence by Appendix A-2

The points A', U', and P' have coordinates (a, 0, 0), (x, 0, 0) and

(p, 0, 0). Now x is between and p from the definition of the

assignment of numbers to the coordinate axes. Thus a < x < p or

a > x > p. Thus a-p < x-p < 0 or a-p > x-p > 0 i. e . , either

0 < -1(x-p) < (-1)(a-p) or 0 < (x-p) < a-p. Hence 0 < )1-12 = t < 1.

By symmetry we are done.

Let (x, z) (2,a, r) + t(a-R, b-a, c-r) with 0 < t < 1.

Since A and P are distinct, one of -P, b-q, c-r is not

zero. Suppose a p. Then by 6.18 and direct computation
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t = (x-R)/(a-g) and U is a point of AP. By an argument

analogous to that above we get A-U -P. By symmetry of argument

we are done.

6. 18.2 COROLLARY. Let A, A', A" be points with coordi-

nates (a, b, c), (a', c'), (a", c"), respectively, on line

which has an equation (x, y, z) =(p,a, r) + t(u-R, w-r). Then

A-A' -A" iff the values k, k', k" of t associated with A, A', A"

have the property that k < k' < k" or k" < k' < k.

Proof: From 6. 18, 1 we know A-Ai-A" iff

(al, c') = (a, b, c)(1-j) + (a", b", c")j, where 0 < j < 1,

(a', b', c') = (a", , c")(1-i) + (a, b, c)i, where 0 < i <

From our hypothesis and (i) and (ii), we have

(a', c') = [(22 y r)(1-k) (u, v, w)k}(1-j)

+ [(2, a, r)(1-k")+(u., v, w)krij

and

(a', c') = [(2., a r)(1-k")+(u, v, w)k1(1-i)

+ [(p., r)(1-k)+(u, v, w)Idi .

From (iii) and (iv),

(v) (a', b', c') = (2., r) + [k+j(k"-k)](u-R, w-r)
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= + [k"+i(k-k")](u-2, v -a, w-r)

Thus from the hypothesis

k + j(k"-k), for 0 < j < 1,

= k" + (k-k") for 0 < i < 1.

If k" >k, (vii) gives k < le while (viii) gives le < k".

If k > k", (vii) gives k >k' while (viii) gives k' > k".

This completes the proof.

6.19 LEMMA. If a is a plane, so that

A is the foot of the perpendicular to a containing the

origin,

A has coordinates (a, b, c) 4 (0,0,0), and

U is any point with coordinates (x, y, z),

then U is a point of a iff a x +bx+ c z = a2 +b2 +c2

Proof: If 0, A, and U are noncollinear, with [A] s = r

i[OU]i = s, and I [AU] I
S

= u, then

sin I1(r) = -a2-122-c2, by 6.9.1,

sin 11(s) \11-x2-2-z2, by 6.9. 1,

sin n(u) -b2
1j,

-x2_ 222
_ '\1 /( 1 -a 2i-12 1),

Then we know d OUA is a right triangle with right angle at

A iff sin II(s) = sin 11(r) sin 11(t), (cf. 6.4. 1). But

by 6.15.
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iff

2 2 2 / 222j 2i-X -22-z= [(1-a -b -c )1\11-x -z ]/(1-a x-b y-c z)

12- 2-c2-a = 1-_ x -cz,

iff

ax +by+ c z=a2+b2+c2, as claimed.

By the definition of perpendicularity for a line and a plane and the

uniqueness of perpendiculars to a line at a point A, we conclude

U, as given, is on a iff ax+by+cz=a2 +b2 +c2

By 6. 12, 0, A, and U are collinear iff (x, y, z) = t(a, b, c)

where t = (4x2+2+z2 /NiaZ+b +c2) [(a, b, c),(x, y, z)] .

2ax+by+cz=(a2+b2+c2) 2 +b +c2 iff t= 1.

t = [cos fl( s) /cos 11(r)kka, b, c), (x, y, z)] = 1 iff s r
To have ofla, b, c), (x, y, z)] = 1 under these circumstances we

necessarily have (a, b, c) = (x, y, z). Thus U =A (cf. 6. 9. 1, 6. 11,

2 2 2
6. 12). Thus the equation ax +b y+ cz = a + b + c is trivially

true when the above conditions are given for U and A.

6. 19.1 COROLLARY. The perpendicular bisecting plane of the

segment OP (where 0 is the origin and P has coordinates

(p, q, r) (0, 0, 0) ) is the plane a which has an equation of the form
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ax+by+cz + b + c where (a,b,c) (2.,,r)(1+41-p-q-r2)-12 2 2

Proof: Direct from 6. 19 and Corollary 6- 15. 1.



Before stating the next theorem we make some relevant observa-

tions. If 1 > a2 + b2 + c2 > d2 and k = di(a2+b2+c2), then both

b, c) and (a k, b k, c k) determine points of Lobachevskian

geometry. The former triple determines the point A whose

coordinates are (a, b, c). This follows from 6. 9 since A has

coordinates (a, b, c) iff a2 + b2 + c2 < 1. The latter triple also

determines a point. Clearly

(ak)2 + (bk)2 + (ck)2 =
2

(a +b2 +2c )d2 /(2a + +c2)2

= d2 /(a2+b2+c2) < 1 .

Thus we know Iaki < 1, I bk I < 1, and I ck I < 1.

-1Let a = cos (ak), = cos-1(bk), y = cos-1(ck). By the

definition of the Lobachevskian function II, there are unique num-

-1= fl().

and c' = ck and, by 6. 9,_

(ak, bk, ck) determines the point A' of Lobachevskian geometry

whose coordinates are (a', b', c').

Furthermore the point A' is on the line OA. This follows

because
N12+ +c2

I k I =
2

- (a2+
a2+b2+c a2+b2+c2

+c2)-1 /2
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bers a', b', and c' so that

a' = H-1(a), b = -1(p),

Then by definition, = ak, 12' = 12k,



and hence by 6.13, A' is on OA as claimed.

These results allow us to state the following theorem.

6.20 THEOREM. Let A be a point, different from the

origin, with coordinates (a, b, c). Let d be any number such that

a2 +b 2 +c 2 2> d.

Let

$ = {X:X is a point with coordinates (x,y, z) so that

ax+by+cz=d}.

Then P is a point of $ iff P is a point of the plane a which

is perpendicular to the line OA at the point A' whose coordinates

are (a', b c 1) where a' = ak, b' = bk, c = ck with

k = d/(a2 +b2 +c2 ).

Proof: As was observed above, the point A' is certainly deter-

mined under the stated hypotheses of this theorem.

"if": Suppose A' is not the origin. Then by 6.19, P with

coordinates (x, y, z) is on a iff

alx + b'y + clz = a b'2 +

i. e., (a x+b y+c z)k = (a2+b2+c2)k2,

or a x + b y. + c z = (a2+b2+c2)d /(a2 +b2 +c2 ) = d
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Thus P is in *.



-1ak-by-cz
2! 222-c N 1-x -x -z

Equation (ii) is true iff 1-a x - by- cz =1 or, equivalently,

ax+by+cz=d= 0.
If P is on OA then P = 0 and trivially

ax+by+cz=d= 0._

Thus P is in $, so this half of the theorem is proved.

only if": Under the same conditions for (a, b, c) and d as given

in the hypothesis, consider the Euclidean analytic geometry equation

(iii) ax+btli+c=d.

In Euclidean analytic geometry, (iii) describes the set of all points of

the Euclidean plane normal to the line with equation
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Now suppose A' is the origin. Then k = 0 and d = 0 by

necessity. Suppose P, 0 = A', and A are non-collinear. Then

let r = I [OA] I s, s = [OP] I and h = I [APil s- By the definition of

perpendicularity for lines and planes AAOP is a right triangle with

right angle at 0. Thus by 6.4.1

we must have

(i) sin Il(h) = sin Il(r) sin II(s).

Using 6. 9 . 1 and 6. 15 Equation (i)

becomes

/ 22 2 j 222NI 1-a -b -c 1-x -y -z
= Nil -a2-



(iv) (x, L1J, = t(a, b, c)

where the parameter t has domain the set of all real numbers.

The line described by (iv) meets the plane described by (iii)

in the Euclidean point (ak, bk, ck) where k = d/(a2+132-1-c2)

This all in Euclidean geometry of course.

However, our observations preceding the statement of this

theorem assure us that, under the hypothesis of this theorem,

(ak,bk, ck) determines a Lobachevskian point A' with coordinates

(a', ') so that (a c') = (ak, bk, ck), A' is a point of OA

and A' A since k 1.

Now let P be any point of OA in $. Then

(x, z) = (a, b, c)j and (a2 +b2 +c2 )j = d i.e., j = di(a2 +b2 +c2 ) = k

and thus P 7- A'. Thus A' is the only point of OA in $ and

conversely.

Now let P be any point of $ different from A'. Further-

more, let: h = I [API's, r = I [AAI]is, s = I [A'Plis

By 6.15 and the definition of $, d, and k, we have

_a2_132__c2)(i_x2_i2_z2d1 /2 io_d)
sin 11(h)

2__ 2_ _ 2_ 2 _ 2. 2 2_ 2,-,1 /2
sin II(r) = [(1-__a 12_ c )(1-a k k -c k )1

[(i_x2_12_z2)(i_a2k2_b2k2_c2k2),1 /2
sin 11(s) = /(1-dk) ,
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since



But

1-d =1-ax-by-cz,
1-d = 1 -(a+b+c2)k ,

1-dk=1-(ax+b1+cz)k

1 - a2k2 - b2k2 - c2k2 = 1 - (a2 +b2 +c2 )k2

= 1 - dk .

Thus by substitution and direct computation we have

sin II(h) = sin II(r) sin II(s) .

Thus by 6.4.1 A'P is perpendicular to AIA at A' and thus

is in a and we are done.

The theorem above tells us a great deal about the "equations' of a

given plane a. It is not constructive in the sense that a method is

given for explicitly writing an equation of the plane determined by

three specific non-collinear points. Such an explicit constructive

formulation can be readily given if we make use of some Euclidean

results on the triples associated with the coordinates of the three

points given. One must carefully read the next few remarks to keep

fully in mind when the results are Euclidean on the triples (x,i,

etc. and when they are Lobachevskian results.

Let V = W = (u-i,v-j, w-k) be two vectors

determined by the coordinates of I, P, U. The vector A=VxW
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is in the direction of the Euclidean line normal to the Euclidean plane

determined by the Euclidean points (,j,.), (R, r), (u, v, w). In

particular,

717s.- = [t-ll.(w-k)-(r-k)(v-j), (r-k)(u-i)-(2-0(w-_),

= (a',b',c!) .

From analytical Euclidean geometry [cf. 11, p. 87 ff. we know that

the plane containing the given points has equation,

arx _+ b'y + c'z = d'

where the perpendicular distance from the plane to the origin is

I di N22+2 . Now each of ( i,j,k), a r), v, w) is interior

to the unit ball so necessarily a,2 + b'2 + c,2 > d'2.

Furthermore IAl2 = a'2 + b'2 + c'2 = square of "the area of the

parallelogram, two of whose adjacent sides are and W" [17,

p. 68]. Elementary computation assures us I A I <4 since each

of the points defining and are inside the unit ball. Thus,

letting (a, b, c) = ( 1,131,01/2 and d d'/2 gives us

2 2 2 21>a +b+c >d and (i) becomes_

(ii) ax + by + cz d.

Restriction of ,y, z) to values of (_, z) so that

2 2 2
+ zx < 1 gives us the following result from 6.20:

(i)
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6.20.1 COROLLARY. Let I, P, and U be any three non-

collinear points of Lobachevskian space with coordinates (i, j,k),

(p, q, r), (u, v, w), respectively. X, with coordinates (x, y, z), is

a point of the plane determined by I, P, U iff ax+bi+ c z =d

where (a, b, c) = 1/2(V x W) with T = r -k),

70. = (u-i, v-i, w-k) and where d= ai+b c k. Note that in_

particular d ( i w- i r r u w+ k_p v -k )1/2 .

We now recall a common relation which is generally used with-

out being explicitly written down. Since it is so well known we do not

assign it a specific number in our sequencing.

An equation f(x, y, z) = c is said to be equivalent to equation

g(x, y, ) = d iff their solution sets are the same. This is an equiva-

lence relation on the set of equations with three independent real

variables. This is a common relation and the verification that it is

an equivalence relation is both simple and obvious so it will not be

formally given here.

This relation allows us to extend the results of 6.20 to

6.20.2 COROLLARY. (x, z) is in the solution set of an

equation from the equivalence class of equations of three independent

real variables having the equation ax+ bi+c z= d with

1 > a2 + b2 + c2 > d2 as a representative iff the point P with_ _

coordinates (x, y, z) is a point of the plane a which is



201

perpendicular to OA at the point A whose coordinates are

(ak, bk, ck) with k = di(a2 +b2 +c2).

Proof: (a, b, c) names some point since a2 + b2 + c2 < 1 and the

remainder of the theorem is direct from 6.20.

At this time we pause for a moment in our development to con-

sider what we have developed so far. We have shown upon the basis of

our axioms and/or basic assumption that:

p is a point with coordinates (x, y, z) iff x2 +2 + z2 < 1

(6. 9).

If A and P are distinct points with coordinates (a, b, c)

and (p, q, r), and t = I [AP] I s, then

sin II(t) = \/(1-a2-b2-c2)(1-2.2 -a2-_r2)/(l-a b r)

thus essentially giving us a distance formula (6.15). (In fact

we can do exactly that using 5.69 and the natural log func-

tion.)

If A and P are distinct points, the points of line AP

have coordinates (x,y,z) satisfying the formulas

(x, iz) = (p, a, r) + t(a-p.,b-a, c-r) for appropriate values of

t (6.8) which, by 6.18.2, gives an analytic expression for

betweenness.

Finally we have been able to characterize the relation of

incidence between planes and three non-collinear points in
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terms of solution sets of certain classes of equation (6.20.2).

These theorems characterize various notions about points and

their interrelationship with lines, planes, and numbers. Their planar

counterparts have been considered by Beltrami [1, p. 284-342],

Klein [7, p. 573-625] and Borsuk [2, p. 334-345] in various degrees

of detail and upon various axiomatic bases. Beltrami and Klein did

the necessary work to allow us to describe what Borsuk calls the

"Beltrami coordinate system on [a] plane... "[2, p. 341-344].

Borsuk, using his own earlier work relating to projective planes,

considers analytic (Cartesian) geometry of the plane, C2, as a sub-

space of projective (analytic) two space, P2, and defines what he

calls Klein space, K2, to be the interior of the unit disk in C

He uses the points of K2 as the points for what he calls the

"Klein-Beltrami" model [2, p. 245 ff.]. In this model he develops a

measure using preservation of crossratio by projective transforma-

tions together with the properties of the subset of projective trans-

formations which leave K2 fixed. He develops an isometry

between K2
and a Lobachevskian plane with coordinatiza.tion so that

point P with coordinates (x, y) (by our coordinatization) has

Beltrami coordinates (x, i) [2, p. 341-344]. From this he shows

Lobachevskian geometry of a plane as described by his axioms is

categorical [2, p. 344-345]. However, our problem has been harder

in that Hilbert's axioms are much more primitive (as we have noted
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earlier) and also we are concerned with space Lobachevskian

geometry and the Poincare model which is in Euclidean space.

If we extend the notion of the Beltrami coordinate system to

assign P (with our coordinates (x, y, z)) the coordinates (x, z),

6.9 assures us we have an obvious map from Lobachevskian space

into the interior of the unit ball B3 in E3 R3. 6. 18 and 6.20.2

assure us that the lines and planes are mapped in an obvious way to the

intersection of lines and planes (in E3) with B3. It is neither our

desire nor of any real value to our development to further consider

this model except to explain the evolution of the map from

Lobachevskian space to the open unit ball B3 which we will describe

shortly.

As one examines the ways one might possibly construct an

isomorphism between Lobachevskian space and the Poincare model,

the results summarized above and a study of the so called Beltrami-

Klein model direct one to an examination of the plane Poincare model

and the Beltrarni-Klein model for ideas. Kutuzov discusses various

interpretations of Lobachevskian plane geometry [8, p. 560-570].

Kutuzov states:

If we construct a hemisphere the equator of which
coincides with the circumference of the Beltrami map
and orthogonally project this map upon the hemisphere,
and if we then stereographically project the hemisphere
from a pole S which lies on the equator onto a plane a
perpendicular to the diameter passing through the pole
of projection S, we obtain on the plane a Poincare's
...model of the geometry of Lobachevskii (sic) [8, p. 570].



(His accompanying figure makes clear what this translation

leaves somewhat unclear. His figure is shown at the right. ) This

leads to the consideration of the

three-space analog of this construc-

tion, i. e. , a projection of the unit

ball B3 into the lower

"hemisphere" of the "four sphere"

E4 = {(x,y,z,w): x2+y2+z2+(w- 1)2=11,

and s tereographic projection of this
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hemisphere from (0, 0, 0, 2) into the "hyperplane" with equation

w = 0. This maps B3 into the open ball with radius 2. Shrinking

by a factor of 1/2 gives a map from B3 B3.

We now describe analytically the construction of this pairing of

points so roughly outlined above.
3

Let (a, b, c, 0) be a point of the unit three-ball B viewed

as a manifold of E4. Let

E4 = {(x, y, z, w).: x2+y2+z2+(w-1)2 = 1 and w < 1}

Let T = (0, 0, 0, 2). Then the projection of (a, b, c, 0) onto E4

is the point (a, b, c, 1,41-a2-b2-c2) . Now the "line" through

(0, 0, 0, 2) and (a, b, c, d) of E has equation:

(x, y, z, w) = (0, 0, 0, 2) + t(a, b, c, d-2) where t E fR



i.e. (x, y, z, w) = ta, tb, tc, 2+t(d-2))

For any point on this line with fourth coordinate 0,

2 + t(d-2) = 0, i.e. , t = 2/(2-d) .

Thus

(x, y, z, 0) = (2a, 2b, 2c, 0)1/(2-d) .

Thus the stereographic image of (a, b, c, 14 -a2 -b2 -c2 ) is

(2a, 2b, 2c, 0)(1/(141-a2-b2-c2) ). Shrinking by 1/2 gives

(a, b, c, 0) (a, b, c, 0)[1/(1+41-a2- 2-c2) ]

This leads to the following definition:

6.21 DEFINITION. For each point P with coordinates

(p, q, r), we define

(p, q, r) = r)[1/(141-2.2 -r2)] .

6, 22 LEMMA. Let A and P be any points with coordi-

nates (a, b, c) and (p, q, r), respectively. Then

(a, b, c) = (p, q, r) iff (a, b, c) (p, q, r).

Proof: The "only if" part of the argument is obvious from the

Definition 6.21.

suppose (a, b, c) = (p, q, r). Then by 6.21

(a, b, c)k = (2, a, r)j where
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k 22 21+q1-a-

Suppose j < k. Then j ik < 1 and (a, b, c) = (E, a, r)j /k so

a < k, b < a, c < r . Thus if a = I{0-A]15 and P = I [01°11 s

then 11(a), TI (I3) E (0, Tr/2] and by 6.9.1,

1 1
and j

1+N/1-2 2 2-9, -r
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sin TI( ) = 1
22 >1-2.2-a2-r = sin n(13)

Hence

1 + sin n(p) < 1 + sin II(a)

1

l+s in 11(a) l+s in TI (a)
l+sin n(p) 1

1+sin 11 (13)

so 1 < j < 1 giving j = k and (a, b, c) = a, 11).

symmetry, if j > k, we have (a, b, c) = (E, a, r). Since

cos 011 is one -to -one, we are done.

6.23 THEOREM. P is a point of Lobachevskian geometry with

coordinates (x, y, z) iff
2
x + y + z < 1.

Proof: If P is a point with coordinates (x, y, z) and p = I [013]Is

then

and

l<



Then clearly

2 2 2 22
x + y + z = +z-)[ 1 i-ZN11-x -z + -2-z2 -222

= cos211(p) /[1+ sin I1(p)]2 by 6.9.1

1-sin 11(p) 1

1+sin 11(p)

since 0 < sin i1( p) < 1.

Now let (x, y, z) be as defined in 6.21, with -Tc2 + y + z < 1.

2
= (x, y, z)

= (x, y, z)

as claimed and by 6, 22 we are done.

v, w) = (x, y, z)2/(1+x2 +jr-2 +z-2has the property ti,a

2 21+x +y +z if

2 2 2 4(x f-2 2y1-z )
U v w ,< 1 .2 2 2 2[1+x +y +z

Furthermore each of u, v, w is less than one in absolute value.

Now let u, = v, -w. Using 6.9 let (x0, y0, z0) be the

unique point corresponding to , ao). Then x0- x, yo

and z = z since
0

(x0' y0' z0)

(u, v, w)[1/(141-u2-v2

2
= (x, y, z) 2 2 ir

(1+X +y +Z )+PH_

2-21+2(x +y +z )+(x +y +z -4(x +y +z )

2(1+x +y +z )

2 2x +y +z

1
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6. 23. 1 COROLLARY. Let P and U have coordinates

(p, q, r) and (u, v, w) respectively. Let I {PIT] = 5 and

= -177 = Then

(1--Pi;)(1--U4-U)sin Mb) -
(1-1--P-P)(1+-1.5.-U)-47;76

Proof; Referring to the computation used in 6.23 we know

(2,, a r) = 2(-p, CT, /(1+1-; Hence by symmetry and 6,15 we have

sin I1(5) =

[1+2..-P+(--P.-13)2-4-13---P 1/2 1+2-13.-U+(-U--U)2-4

(1+PP)(1+UU)

41-P

(1+P P)(1+U U)

(1--P-P)(1--U.-U)
- - -(1+P-P)(1+UU)-4P-U

as claimed.

Examination of the argument of 6.23 will assure us that for any

point P with coordinates (x, y, z), we have

(x, z) = (x, y, z)2 /(1-F-x--2+-y2+-z2). From Corollary 6.20.2 we thus have

6. 24 THEOREM. (x, y, z) is in the solution set of an equation

from the equivalence class of equations of three real variables having

the representative equation
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-2D(x +y +z +1) + Ax + By + Cz = 0 with A2 +B2 +C > 4D2

iff the point P with coordinates (x, y, ) is a point of the plane a

which is perpendicular to the line OQ at the point Q' whose

coordinates are

A
( - -

c
k) with k 4D /A222+B +C

2 2 2

Proof: Just let A = -2a, B = -2b, C = -2c, D = d in 6.20.2 and

use the observation preceding the statement of this theorem.

6.24.1 COROLLARY. If P is any point, different from the

origin 0, with coordinates (p, q, r), then the perpendicular

bisecting plane a of the segment OP has a representative equa-

tion of the form

(1/2)(p +q-2 +r-2 )(x-2 +y-2 +z-2 +1) - p x- q y- r z= O.

Proof: From 6.19.1 we know a has an equation of the form

ax+by+cz=a2+b2+c2, where

(a, b, c) =(,a, r)(1+Ni 1 -2R -a2 -r2 ). But, by Definition 6.21

(a, b, c) = 1/2(p, q, r) and the corollary follows directly from 6. 24.

From 0.20 we know that two distinct planes with a point in com-

mon have a line in common. If I is any line we may use axiom

I, 3, 8 to get, first, a point not on I, thus a plane a containing I,
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2 _
Di(x +y +z +1) + Aix + Biy + Ciz = 0

where

A2 +B 2 +C 2
> 4Dz and A'2 + B'2 2+ C' > 41)12.

The equations have at least one solution .
ABCD

) .rank (A' B' C' = 2

Proof: We only need to observe that condition 3, is necessary and

sufficient to assure the normal lines to the two planes are not perpen-

dicular to a common plane. This will assure us that the planes meet

in at most a line if they meet in a point. A direct application of 6. 24

completes the proof.
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and, second, a point not on a and thus a second plane p , dis-

tinct from a which also contains 1. We conclude that for any

two distinct intersecting planes we have a unique line and for any line

/ there exist distinct planes whose common line is /. This,

together with 6. 24, leads us to state:

6.25 THEOREM. U is a point of line /, with coordinates

(x, y, z), iff (x, y, z) is in the solution set of a representative pair

of equations from the equivalence class of pairs of equations having a

representative pair of the form

--2 ---2
+y-2 +z +1) + Ax + By + Cz = 0
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We now turn our attention to an analytic formulation for

betweenness in terms of the "over-bar" triples. Let A, P, U be

any points with coordinates (a, b, c), (p, q, r) and (x, y, z) respec-

tively. From 6. 18, we know U is on line AP iff

(x, y, z) = a, r)(1-t) + (a, b, c)t

with t = (w-s) /(d-s), where (w, d, s) E {(x, a, p), (y, b, q), (z, c, r)}

and d-s 4 O. From (i) we see that for t in an appropriate open

interval we have

x = p. + t(a-n.) = f(t),

= + t(p-a) = g(t),

z r + t(c-r) = h(t),

where f, g, and h are monotomic by 6. 18.2 and the proof of

6. 18. 1.

Thus, by Definition 6. 21,

x = F(t) = f(t)k(t),

y = G(t) = g(t)k(t),

z = H(t) = h(t)k(t),

where k(t) = 1/(1-41-f2(t)-g2(t)-h2(t). Clearly F, G, and H are

also monotornic and A-U-P iff ta < tu < t or ta > tu > tp

where tx is the parameter associated with point X of AP. We

have thus proved most of the following theorem.



6. 26 THEOREM. Let A, P, U have coordinates (a, b, c),

(p, q, r), and (x, y, z), and U be on line A?. Then there exist

monotomic functions x = F(t), y = G(t), z H(t) with t in an

open interval. If such a parametric formulation is given, A-U-P

iff t <t <t or t <t < t.
a u p p u a

Proof: It is sufficient to apply 6. 18.2 directly to complete the

argument.

6.27 LEMMA. Let P and U be distinct points different

from the origin 0 and not collinear with 0. Let them have

coordinates (p, q, r) and (u, v, w). Further, let P = r)

and U = (u, v, w). Then if 0= mLPOU, cos 0 = Po U /(4P P

Proof: Let U' be the foot of the perpendicular from P to OU

Let U = tU. (The existence of an appropriate t is assured by

6.13. )

Case 1. U' = 0: This means OP 10U and cos 0 = 0. In

right triangle AOPU we use the sine

formula of 6.4 and 6.15 to get

1 -P P 1 -u

1 -P U = 41-P.P 41-uu,

which, since P. Pand U are both_

between 0 and 1, is true iff P-U = 0.

Thus the theorem is true for LPOU a right angle.
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cos 0 =4UUNPP = UU/(JPPNIU-U).

Using the sine formula in 6.4 and 6.15
(1 -U U),4 1 -P P

we get 41-13- P 1-P U

so that 1-UU 1-P U or equivalently

UU = P.U. Thus the theorem. is proved for U' --- U.

Case 3. 0-U'-U: 0 < t < 1. By

6.18, using 6.4 and 6.15 again, we have

for triangle PUUI,

1-PPq 1-UU N11-PP41-UU(1-UIU')

Case Z. U' = U: By 6.4 we have

1 -P (1-P131)(1-UU')

giving us (1 -P Ut)(1 -U Ut) = (1 -P U)(1-UUt2 ). This is equivalent to

UUt2 - (PU+U-U)t + PU = 0. Thus

(PU+UU) ±NI(P U+U U)2-4(P U)(U U)

(P U+UU)± (P U-U U)

=1 or

2U

LLIL.

E-11But 0 < t < 1 so > 0 and

r\i13'. U1 NIUUtz
cos 0 -

NTT-3.T NIPAP

and we are done for 0-U'-U.

U1=--U
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t= 2UU

lr_.ul Hence

NI(P-u)a

NIPP



214

Case 4. 0-U-U': LPOU is acute and from absolute geometry

considerations, the perpendicular from U to OP will meet OP

at a point P'. Apply Case 3 to this symmetrical case.

Case 5. U'-0-U: By 6. 18.2 we

know t <0. In right triangle APUUI,
PU

we apply 6.4 and 6.15 to get t =
1J

just as we did in Case 3. Now

qU'
cos 0 = -cos yo = - N/P P

NiUU t (P U)2 IP111

NiPP NIPPN/UU N11-57PN/737-0

since UU >0. But t< 0 forces N/(PU)2 =

done.

6. 27.1 COROLLARY. Let P and U be distinct points dif-

ferent from the origin and not collinear with the origin 0. Let P

and U have coordinates (p, q, r) and (u, v, w) respectively and

let P = (p, q, r) and U (u, v, w). Then if 0 = mLPOU,

cos 0 = /(l-P:13 N7-1-J-i1-)

Proof: From 6.21 we know

-13 = Pk where k = (1-N1 -P P)

Furthermore

--U = U1 where / = (1+q 1 -U U) .

and we are



Now by 6. 27,

cos 8 = P.U/NPP Nr0T.T

= P. Uki 1(kiNIP-P U U

= P- /(N/FD:17) JU.0

since k, > 0, and the claim is proved.

In his thesis devoted to a proof that the congruence and

Archimedes axioms were theorems in the Poincare model, Eschrich

defined a transformation which he called "inversion. " This trans-

formation is an extension of the plane inversion maps common in the

study of the planar Poincare model [cf. 8, p. 347ff; 10, p. 348 ff.].

Eschrich's definition is;

6. 28 "DEF;NT.TICN: Given a 'plane'

D(x +y + +z2 +1) + Ax + By + Cz = 0, the inverse 1D1 with respect to

of the 'point' P = (p,q,r) is defined as

13, p. 1-21.

(p+sA,q+sB,r+sC) where -2(Ap+I3q+Cr)

A2+B2+C2
if D=

P' = -A /2D + t[p-+ A /2D], -B /2D + t[q+B /2D], -c /21) + ar+ C/2D])

[(A2+ B2+ C2) /4D2]-1
where t - if D 0

(p+A /2D) +(q+B /2D)2 (-r +C /2D)
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Our next lemma will prove that the points associated with P

and -1-3. are the same "distance apart" as the points associated with

P' and U'. Please note that the P, U, P, U, etc. which we see

used here are not points. They are triples which are associated with

the points of the geometry. The points are still undefined objects.

We have only associated a triple of one sort or another with the points

of the geometry.

6.29 LEMMA. Let P and U be distinct points. Let P'

and U' be the points associated with the PI and U which are

defined in 6.28. If o- = I [Pin I s and 61 = I [P 11-J IS
then

'

sin II(cr) = sin Il(o-').

Proof: Let P (p, q, r), U = (u, v, w), P' (p', q', r'),

= (u.,vf,w1).

Case 1. D = 0: We first observe that

2222
PC PI = P13 + 2 (Ap+Bq+Cr) + s (A +B +C )

i: :: ,.. . p. " 4 (Ap+Bq+Cr)2 a(Ap+B+Cr) 2

+ 4 -

A2+B2+C2 A2+B2+C2

from definition of s, 6,28

=

By symmetry we have U' UT = U U. Furthermore we have
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p+BTT, 2(A-u+Bv+Cw.) - - 2(A--c+C-r) -. - -
(Ap+Bq+Cr) - 2 2 2 (Au+Bv+Cw)

A2+B2+C2 A +B +C

+ 4 (Au+Bv+Cw)(Ap+Bq+Cr)
2 2 2A +B +C

Thus, by 6.23. 1, s in 1-1((r) = sin 11(cr'

Case 2

=

A2+B2+C2Let k =
2

4

D 4 0. From 6.28 we have

A - A B -B C

[- Ti5 +"P+ TT5)' - + "q+ + t(r+ TB)]

-1,

AZ 4_ -B2 4_

`

-CZ1

2D I 2D' 1.' 2D'

t = k/j.

A-A B-B C-CA2+B2+C2 - + t2 (j)
2D 2D 2D 2D 2D G

4D2

1 +
A2+B2+C2 A-A B-B C-

1 - 2t[(p+--)+(q+)+(r+--)]+tk
2 2D 2D 2D 2D 2D 2D

4D

k A - A B B C
1 + k - 2+-C-)] +2

j 2D 2D 2D 2D 2D r 2D j

k ,- A
'

2 ,- B1
-E`I2

- C 2 7 A A B B

r`13-1-+ 2D 2Dr+ 2D'1 2D`P 2D`q 2D'

2 C 174, C A2 B2 C2
2Dr' 2D' ++ + - 1]

4D 4D2' 4D2

1 - k/j(1--17)-P).
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j (1D+

and hence,

(i)



In a symmetrical way we get that

(ii) = 1 - k/1(1-17--U)

where
2

= (u+A/2D)2+(v+B /2D) +(w+C /2D) .

Thus (1--1:31--P1)(1--U'U1) k2/j/(1---P---P)(1-76-7[1).

This expression is the numerator in the formula for sin II(e)

given in 6.23.1.

Now let

H' -(A/2D)(p+A/2D) - (B /2D)(q+B /2D) - (C /2D)(7+C /2D)

= -(A/2D)(;.+A/2D) - (B /2D)(Tr-+B /2D) - (C /2D)(v,r+C /2D)

= (p+A/2D)(u+A/2D) + (q+B /2D)(v+B /2D) + (r+C /2D)(w+C /2D),

H = -1:' P - 1,

K = UU - 1.

We compute the denominator for the expression of sin II(o-') as

described in 6.23. 1 as follows:

(1+13'. -1; - T.J1

= (2+kli/j)(2+kK/1) - 413'. LT' from (i) and (ii) above

2 1,2

= 4 + 2 + 2 K + HK - 4 - 4k - 4 - 4 K' - 4 ,13-: L

= 2(k/j)(H-2HI) + 2(kii)(K-2K') + (k2/j/)(HK-4L') - 4k

= 2(k/j)(j+k) + 2(k/i)(/+k) + (k2/j.2)(HK-41.1) - 4k =
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(k2/j/)[(1+P-i3)(1+U-76)-4-13-76]

= sin Ma-)

as claimed, and we are done.

6,30 DEFINITION. Let points P and P' have coordinates

(p, q, r) and (p', q', r') respectively. Let P = (p, q, r) and

= (p',ql,r'). We define F(P, a) = P' iff P' is the point

associated with the triple 1:;' and -15' is the inverse of -1; with

respect to a as defined in 6.28. Denote the identity map by

F(P, 0). We will call F( a) a reflection map,
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= (k2/ji)(2j+2/+HK-4L')

= (k2 /j.1)(HK+2[(p+A/2D)2+(u.-FA/2d)2+(q+B /ZD)2+(v+B/2D)2+(r+C/2D)2

+(w+C /2D)2-2(p+A /2D)(u.+A /2D)

-2 (q+B /2D)(v+B /2D) -2(14C /2D)(Tv+C /2D)] )

(k2/j.e)(HK+2[(p-u)2 +(q-v)2
2

+(r-w) )

= (k2 /j/)1(P--P)(1-3U)+1--P--P-U---U+2P--P+21-1U-4P--U]

= (k2/j/)[(143-13)(1+U--U)-4P--U] .

Thus, by 6.23. 1 and these computations, we have

(k2 /j.f)(1-13-73)(1-TJ U)
sin Il(o-I) -

6.31 THEOREM. For any given plane a, the correspondence

F defined above is a bijection of Lobachevskian space onto itself
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which maps lines into lines, rays into rays, and congruent segments

into congruent segments.

Proof: F is a bijection by 6.22 and 6. 23. That it maps lines to

lines follows from 6.25 and Eschrich's Lemma 10 [3, p. 6] which

states that if )2 is the set of all (x, y, z) satisfying a pair of equa-

tions such as we have in 6.25, F(1 , ) is also such a set. That F

maps rays into rays follows from the definition of rays, 6. 26, and

Eschrich's Lemma 11 [3, p. 10]. That F maps congruent seg-

ments onto congruent segments follows from Eschrich's Lemma 11

and 6.29.

6.32 LEMMA. If p is any point, different from the origin

0, with coordinates (p, q, and a is the perpendicular bisecting

plane of the segment OP, then F(P, a) = 0.

Proof: By 6.24.1 a has a representative equation of the form

(1/2)(p +q-2 +r-2 )(x-2 +y-2 +z +1) -px-qy-r z = 0. Thus by Eschrich's

Lemma 8 [3, p. 4-5], we immediately have the result that

= (0, 0, 0) and thus by 6.22, 6.23, and 6.31, we have F(P, a) =

as claimed.

6.33 LEMMA. Let P and U be distinct points with

coordinates (p, q, r) and (u, v, w). If 0 is the origin and P,

U, and 0 are non-collinear, P (p, q, r), and U (u, v, w),



then the point Q corresponding to

-45 = 1 /2[(i; A/13;P) + bat Tr)]

is on the bisector of the angle LPOU.

Proof: From Euclidean geometric considerations we know Q as a

Euclidean point, is on the Euclidean segment joining the points on the

unit sphere corresponding to the unit vectors P P. and

UP\IU- U. As such, Q is a Euclidean point interior to the unit

sphere so VtQ,Q < 1 and thus, by 6. 23, there is a point Q of

Lobachevskian space corresponding to the triple Q.

Let D(x +y-2 +z2+1) + Ax + By + Cz = 0 be a representative of

the class of equations describing the plane a determined by P, U,

and 0 (6.24). Then D = 0 (6.20.1 and proof of 6. 24) and since

I; and U both satisfy this equation, then so does Q and Q is

a point of a (6.24).

Let

= rnLPOU,

= rriLPOQ,

= mLUOQ

From 6.27.1 we have
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cos 99 = -1:1-75/Ni(P.P)(C).Q)

IP- (-1;K+715L)1where K =
PP[(PK+UL)-(PK+UL) 24-f3-

1and L=
z.Ju.0

--PK +P1.11

PP(PPK2 +UUL2 +2P-ULK)

(4P;i" + ic;13/4u-u)2
[4[1 /- PTD(2+1 /2"---P-U /4 Th)]

(NI is, I; iii-u[
1 /2

,_
2P.PNPPN1UU+PU)/4(PP)(UU

1+-17),--U/(4P-P N/UU) 11/2
- [ 2

= cos (0/2), by 6.27.1.

In a symmetrical way we get cos 4, = cos 0/2. Since 0 < 0 < Tr

and Q is in the plane a, absolute geometry considerations force

OQ to be the bisector of LPOU and we are done.

6.34 LEMMA. Let P and U be distinct points so that

OP OU. If 0, P. and U are not collinear, then the plane a

having a representative equation of the form:

1/2
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is the plane determined by any point on the bisecting ray of LPOU

and the line perpendicular to the plane determined by 0, P, and U

0. Furthermore F(P, = U.

Proof: Let P and U have coordinates (p, q, r) and (u, v, w).

Let P (p, q, 7.) and U = v, w). By 6. 33,

= 1 /2(1) PJ-1"0 +13 /4i-j .5) is on the angle bisector of LPOU.

Since OP OU, we know, by 6. 9. 1, P. P = U. Then, by

elementary algebra, using Definition 6.21, JP. IE; = -j-J-7.1 Thus,

we have

= 1 /2(17)+1T)/477)

From 6.20.1, 6.20, 6.24 we see that the plane a determined by Q

and the line I perpendicular, at 0, to the plane of 0, P and

U is the plane having the representative equation above. OQ is the

perpendicular bisector of PU by S. A.S. and the cross-bar theorem,

and the line perpendicular to the plane determined by 0, P and U

at the midpoint of PU is, by 0.18, coplanar with I. Hence a is

the perpendicular bisecting plane of PU as claimed.
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To complete the proof, we observe that Eschrich's Theorem 11

[3, p. 10-11] proves that the set of all triples of the form

(x, y, z) + t(p, q, r)

is mapped by inversion into the set of all triples of the form

(x, y, z) = s(u, v, w) with the explicit pairing given by

= t(P-P/UU) (which in our case makes s = t) when an inversion

is "across" a "plane" whose equation is (in our case) in the above

form. Thus F(P, a) = U as claimed and the lemma is proved.

6.35 LEMMA. If OA, OB, and OC are distinct non-

equivalent rays, OA OB, and LAOC = LBOC, then line OC

is in the plane p determined by the bisector of LAOB and the

line OP perpendicular to the plane a determined by A, 0,

and B.

Proof: We first show that OC is

a line of the perpendicular bisector

plane p of AB. Let M be

the midpoint of AB and let

MN be the line perpendicular

to a at M. A AOMI. A BOM

by S. A.S. so OM 1 AB at M. Thus the plane p determined by

0 and MN is the perpendicular bisecting plane of AB. By 0.24,



Q is a point of the perpendicular bisecting plane of segment AB

iff AQ BQ. Hence 0 and C are both points of p since in

A AOC and A BOC we have congruence by S. A.S. By Axiom I, 6,

the line OC is in 13.

Let OP be perpendicular to a at 0. Then by O. 18,

is in p and, by I, 5, p is the plane determined by OP and

Thus the theorem is proved.

6.36 LEMMA. If P is a point of plane a, then F(P, a) =P.

Proof; Let P have coordinates (p, q, r). If D = 0, by 6. 28, we

get Ap + Bq + Cr = 0 so s = 0 and -13- = P. By 6.30 F(P, a) P

as desired.

If D 0, in 6. 28 we get the denominator of the parameter

t is

(p+A /2D)2 + (q+B/2D)2 + (r+C/2D)2
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2 2 2= p + q + r + 1 + (1 /D)(Ap+Bq+Cr) + (1 /D2)(A2+B2+

= (1/D2)(.A2+B2+C2) - 1,

since P is a point of a. Hence t = 1 and hence = P. Thus

F(P, a.) P by 6. 3 O.

6.37 LEMMA. Let 0 be the origin. If PO 71.- UO, P-O-U,

and a is the plane perpendicular to PU at 0, then F(P, ) = U.
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Proof: By 6.20 and 6.24 we see that a has an equation of the form
_px+qy +rz =0 where P has coordinates (p, q, r). P and U

are collinear with the origin so by 6.18, U tP for some number_

t. By 6. 9. 1 4-1571"= INFT-Tf= ti qP-P so Iti = 1. Since

U-O-P, 6. 18.2 tells us t = -1 since t = 1 corresponds to P,

t = 0 corresponds to 0.

Thus U = , and, in 6. 28, P' (p+sp, q+sq, r+sr), where

-2( -p = -2. Thus, PT = = U. Hence by 6.30

F(P, a) = U as claimed.

We now introduce some notation to make the statement of the

next theorem less cumbersome. If a is any plane denote F(P, a)

by F (P). This allows us to speak of the composition of two reflec-

tions.

6.38 LEMMA. If P is any point and a is any plane, then

(FaoFa)(P) = P.

Proof: If P is a point of a, we are done by 6.36. If P is

not in a, let P = (p, q, r) (where (p, q, r) are the coordinates

ofP) and by Eschrich's Lemma 6 [3, p. 3] and 6.29 if Q =

then Q' = P and by 6.30 we are done.

We now recapitulate those results which we have just proved

and which allow us to prove the next two very important results.
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6, 29 tells us every reflection map is congruence preserving for

segments.

6.30 provides us with an identity reflection map which we now denote

by I.

6.31 tells us reflection maps are line, ray, betweenness, preserving

maps.

6.32 tells us we can always send one end P of a segment to the

original 0 by using a as the perpendicular bisecting plane

(p. b. p. ) of OP.

6.34 tells us we can always send P to U when OP 74 OU, if

P U, by us ing a. as the p. b. p. of PU when P, 0, U are

non-collinear.

6.35 tells us that given distinct non-equivalent rays OA, OB, and

OC with LAOC LBOC, then OC is in the p. b. p. of 'AB.

6.36 tells us that points of the reflecting plane are fixed.

6.37 tells us that whenever P-O-U and PO OU, and a is

the p.b.p. of PU, then F(P, a) = U.

-6.38 tells us F1a = Fa

6.39 THEOREM. PU P'Ul, iff there are a finite number of

reflection maps F1, ...,Fn so that if F = F ....F1, F(P) = P'

and F(U) =



Proof: "only if":

Case 1. P = P' and U = U': Let F1 = I and we are done.

Case 2. P = 0:

Subcase 2.i.. P' 0: If U = U' use Case 1.

If U U' and U, 0, U' are collinear then

U-O-U'. Let y be the p. b. p. of PP'. Then by

6.36 and 6.37 we are done if F =F .

If U f U' and U, 0 and U° are non-collinear,

let y be the p. b. p. of UUI and let F1 = Fy and

we are done by 6.34 and 6.37 (since y contains 0).

Subcase 2. ii. P' 0: Let P be the pb.p. of OP' and

let F2 F By 6.32 this puts F (P°) = 0. Now
2 p 13

we are in the configuration of Subcase 2. i and we are

done.

Case 3. PO: Let a be the p.b.p. of PO. By 6. 32 we

have Fa(P) = 0, so let F1 = Fa and apply Case 2.

"if": Proof is immediate by 6. 29 and transitivity of congruence for

segments.

6.40 THEOREM. IPQR LPIQIRt iff there are a finite num-

ber of reflection maps Fr so that if F Fno...0 F ,

F(Q) = Q', F(QR) QIR°, and F(QP) = QIP'



Proof: "only if": With no loss of generality let QP (VP',

QR QtR'.

Case 1. QP = Q'P and QR = Q'R': Let F1 =I and we

are done.

Case 2. Q = 0:

Subcase Z. i.. Q' = 0 and P = P':

If R = R', let F1 I and we are done.

If R R' and RI is in the plane determined by

P, Q, and R, then let IS be the p. b. p. of RR'.

b. 1. If QR and QR' are opposite rays on RR',

QP is in .5 since /...PQR LP1C2IR' Let

F1 = F and by 6.37, 6.36 and 6.31 we are done.

b. Z. If QR and QR' are not opposite rays, R R'

implies R and R' are on opposite sides of

QP and by S. A. S. the point M of RR' on

QP is the midpoint of RR' and QP 1 RR'

M. Thus QP is in 8 and by 6.36, 6. 34 and

6. 31 F1 = F6 is an appropriate choice which

finishes the proof.

If R R' and R' is not in the plane determined by

P. Q and R, then let 6 be the pb.p. of RR'. By

6. 35 QP = OP is in the plane 6 and by 6.34, 6. 37,

and 6.31 F1 = FS is an appropriate choice which

229



230

finishes the proof.

Subcase Z. ii. Q' = 0 and P P': Let y be the p.b.p.

of PP'. Then let F1 = F and by 6.36, 6.37, and
y

6.31 or by 6.36, 6.34, and 6.31 (depending on whether

OP and OP' are opposite rays or not, respectively)

F1
(P) = P' and we are placed in the configuration of

Subcase 2.i and are done.

Subcase 2. iii. Q' 0: Let 13 be the p.b.p. of Q10. Then

let Fn = FP (for appropriate n) and by 6.34

Fn(Qs) = 0 and we are placed in the configuration of

either 2.i or 2. ii and are done using 6.38.

Case 3. Q 0: Let a be the p.b.p. of OQ. Set F1 = Fa

and by 6.32 F (Q) = 0 and we are in the configuration of Case 2,

and thus we are done.

nun: With no loss of generality we may let QP Q°13° and

QR Q'Rs. By 6.29 we know F(P) = P' and F(R) = R' so again

by 6. 29, PR 7: P'R' using transitivity of congruence of segments.

Thus by S. S. S. , Ls PQR IQ IR ' and thus LPQR LPIQIRs

as claimed.

6.41 THEOREM. The completeness axiom is a theorem in the

Poincare model.
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Proof: Our basic assumption has allowed us to prove the preceding

results. We have shown that there is a model of the geometry based

on the assumption in the following way:

By 6. 23 we know P is a point iff there exist coordinates

associated with the point, of the form (p, q, r) with p + q + r2 < 1.

By 6.24 we know that a is a plane iff there exists an equiva-

lence class of equations having a representative of the form

+y2 +z2 +1) + Ax + By + Cz = 0 with A2 + B2 -F C2 > 4D2 and X

a point of a iff (x, y, z) is in the solution set of a member of

this class of equations.

By 6.25 we know that i is a line iff there exists an equiva-

lence class of pairs of equations having a representative pair of the

form

D(x +y +z +1) + Ax + By + Cz 0,2

DI(x2 +y-2 +z--2 +1) + Aix + 13'y + C'z 0,

with

A2 + B2 + C2 > 4D2, A'2 + 13'2 + C'2 > 4D'2,

the pair of equations has at least one common solution,

ABCD
)rank (A' B' C' D' = 2,

and X is on I iff (x, y, z) is in the solution set of a representa-

tive pair from the class.

By 6. 26 we know that for A, P, X any collinear distinct
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points, there exists monotonic functions x = F(t), y = G(t), z = H(t),

with t in an open interval. For such a prametric formulation,

A-U-P iff t< t < t or t > t > t
A U P A U P.

By 6.39 and 6.30 PU P'U' iff there are a finite number of

inversions mapping P to P' and U to U'.

Finally, by 6.40 and 6.30 LPQR LP'QTRI iff there are a

finite number of inversions mapping Q to QP onto Qtpl,

and QR onto Q'R'.

Thus we have an isomorphism between the model constructed

from the geometry and the Poincare model. Clearly the construction

used is available in any model of Lobachevskian geometry so we have

a canonical isomorphism between all models, and the Poincare model

is isomorphic to any model of Lobachevskian geometry. Our basic

or key assumption does not lead to a contradiction so the completeness

axiom is a theorem in the Poincare model and we are done.

In summary, we recall our method. We have proved that our

key assumption (first discussed on pages 8 and 9 and further discussed

and described explicitly on pages 28 through 31) does not lead to a con-

tradiction. We have done this by showing that if the set of points on a

line is the set of real numbers with their ordinary field properties, the

axioms of Lobachevskian geometry force the meanings of the undefined

terms to be those of the Poincai4 model. Hence the completeness

axiom is a theorxn of the Poincare model and the Poincare model is a

model of Lobachevskian geometry based on Hilbert's axioms.
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A-I. THEOREM. The points of space not on a plane a. may

be separated into two classes, called the half spaces determined by

a so that I) any two points P. Q are in the same class iff PQ

contains no point of a whereas II) two points P. Q are in dif-

ference classes iff PQ contains a point of a (compare with

planar case in Hilbert, p. 9, Theorem 10, [:5 1).

Proof: I. By Axiom I, 8 there is a point

A not on a. Let P and Q be

any points of space not on a so that

PQ has no point of a.

Case 1: A, P, and Q are

collinear. Then by Axioms II, 1, 3

exactly one of A-P-Q, A-Q-P, Or

P-A-Q is true. If AP or AQ has a point
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the first two possibilities, we necessarily have A-B-P-Q or

A-B -Q-P respectively, since P -B -Q is impossible and A -B -P

and A-B-Q are necessary. Thus each of AP and AQ has a

point of a is either does. If P-A-Q, then clearly neither AP

nor AQ can meet a since PQ does not.

Case 2: Suppose A, P, Q are not collinear. Then consider

AAPQ. If AP contains a point B of a, then by, Axioms I, 4, 5,

B of then in
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the plane p determined by A, P, and Q, meets a in a line I

containing B, by 0. 20. The line I meets AQ, by Pasch's

axiom since PQ has no point of a. Clearly, by symmetry, if

AP has no point of a, AQ has no point of a.

II. Suppose PQ contains exactly one point B of a.

Case I. A, P, Q are collinear: As above we have exactly

one of A-P-Q, A-Q-P, P-A-Q. We are given P-B-Q so if either

of the first two occurs, AQ does not contain a point of a and

AP does. If P-A-Q, then either P-A-B-Q or P -B -A - Q

since A B. In any case exactly one of AP or AQ contains a

point of a.

Case 2. A, P. Q are non-collinear: Then as in Case 1-2

above, we consider the plane (3 determined by A, P, Q and in

APQ observe that the line 1, determined by a and p and

containing B of PQ, meets exactly one of AP or AQ by

Pasch's axiom and 0. 23.

We are now ready to define the relation r between the set of

points of space not on a and itself by A r B iff AB does not

meet a or B = A. "r" is an equivalence relation since i) A r A,

ii) A r B implies B r A, and iii) A r B and B r C implies

A r C. This latter is an immediate result of the argument above.

Let S = {P: A r P for some fixed point A not on a and P

any point not on a}
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Let S be the complement of S in the set of all points not on a.

Then g is not empty (by II, 2) and by the argument above S and

S partition the set of all points not on 0,

A-2. THEOREM. If a, @, and y are three distinct planes

all perpendicular to line I at A, B, and C respectively and if

line m meets each of a, P. and

y at A°, B', and C' respectively,

then A-B-C iff .

Proof: Since, by 0.21, any two

distinct planes perpendicular to the

same plane do not meet a, 13,

and y have no points in common.

If A-B-C, then, from the above,

A, B, A', B' are all on the same side of plane a as A and B,

by Theorem A-1 above, since AB, BB', AIA, all contain no points

of y. Thus we have or If we

are done. I3'-A'-C' is impossible since A and C are in opposite

half spaces determined by 13, A' and A are in the same half space

as are C' and C, and hence by A-1, A'C' contains a point of p

B' is the only possible such point and hence, A'-I3'-C'. Thus

A-B-C implies A'-B'-C' and by symmetry we are done.




