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Afl EXTENSION OF WIDDER'S THEOREM 

INT RO DUCT ION 

In 1944 D.V. Widder proved that any positive 

solution u of the heat equation u in a 

strip S: [o < t T} is representable in the form 

of a Stieltjes integral 

u(x,t) = 
j 

k(x-y,t) dci(y), 

f) 

X 

where k(x,t) (4.t)'2 e , and where a is 

a nondecreasing function. 

The argument depends essentially on the maxitnuir 

principle, or equivalently, on the fact that k(x,t) 

is positive. It seems therefore reasonable to expect 

that a similar theorem would hold for more general 

parabolic equations, since their solutions also satisfy 

the maximum principle. The theorem presented here is 

more directly analogous to a simplified version of 

Widder's theorem due to P. Ungar (See F. John 15]). 

The equation considered is Lu u, + cu - u O, 

where c = c(x,t) is bounded and uniformly Hölder 

continuous. The result is that if u is a posLtìve 
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solution of Lu = O in t0 < t T, and is continuous 

in t0tT, then 

u(x,t) = $r(x,; t,t0) u(,t0)d, 

where r is the fundamental solution of Lu = O with 

singularity at (,t0). 
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PART I 

REDUCTION OF a(x,t)u + b(x,t)u + c(x,t)u = u. 

TO + c(x,t)u = u. 

Consider the oartial differential equation 

1) a(x,t)u + b(x,t)u + c(x,t)u = u, 

where M a(x,t) a > O, and a(x,t)'. 

Let 't = t, r - 

i 

x Fa(x,t) 

- a(x,t) 

... a(x,t)2 = i 

u =u +u 
t 'r rt 

u =ur 
X rx 

Va(x,t) 

= _L/2[a(x,t)]_3/2ax 

a 
X 

a -1/2 
XX 

u =u +u 
xx rx rxx 

= at 
a"2dx 

Substituting these into (i), we obtain 

u + ur = a(urrx2 + urrxx) + bu + Cu 

u = u + u (a + b - ) + Cu. 
r xx x t 

't 



4 

Let + 
- 

b'. 

Thus we obtain for (1), 

2) u = u + b'u + Cu. 

Let u = fv. 

We wish to determine f so that we can eliminate 

the u term in (2). 

u = fv 

u fv + vf 

u = fv + 2fv + vf 

u = y f + vf 

Thus (2) becomes 

vf+vf fv +2f y +vf +b'v +b'vf +cfv. 

vf = vf + v(2f + b'f) + v(cf + b'f + f -f). 

From this we may determine f. 

Set 2f + b'f = O 

= -1/2b' 

log f = -1/2 
J 

b'd 
O 

-1/2 
J 

b'd 

f=e O 



After determining f in this manner, (2) reduces to 

y = v + c'(,r)v, 

f f 

where c' c + b' + 

We now demonstrate the 

above mappings. We wish to 

(x,t) (,ç) is one-to-on4 

and (x21t2) 2'r2 We 

= 2'2' then (x1,t1) 

f 
'r 

one-to-one character of the 

show first that the maç.ping 

?. Assume (x1,t1) 
- 

must show that if (r1,1) 

(x9,t2). Thus, we assume 

rX1 ds ds 

J0 as,t1) = J0 V(s,t2) 

But 
- = 'r2 

inplies already that t1 t2. 

x1 ds x 

Sowe have I _____ 2 
ds 

o 
Va(s,t1) so 

Va(s,t7J 
or 

ds 
_______ = 0. 

J v'a[s,t1) 
X2 

We now have three cases to consider. 

Case I. x1 = x2. But in this case, we have already 

exactly what we wanted to show. 
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Case II. X1 > x2. Then 

X X 
. i ds . i 

O Jx2 /a(s,t1) 4 

which implies that x1 

Case III. x2 > x1. Then 

ds 
> o, 

X2. 

X X 
i ds 2 ________ 

O 
= Jx2 Va(s,t1) JX1 'a(s,t) 

Xr, 
r ' ds 
JXl -g- = (X7xl) o, 

which again implies that x1 = X2. 

To see that the mapping u - 1v !s one-to-one, 

we need only note that y = gives the reverse trans- 

formation, since f is never zero. 

Thus it is sufficient to consider solutions of 

(3). We drop, now, the c' notation and write fna11y 

4) u = + c(x,t)u. 
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PART II 

FORMULATION OF THE PROBLEM AND 
PRELIMINARY THEOREMS 

Let L + c(x,t) - 
at 

ax 

We seek conditions for positive solutions to the 

initial value problem 

3) Lu=O 

u(x,t0) = 

Both Dressel (see [.1] and 12]) and Feller (see 13]) 

have proven the existence of a fundamental solution 

r(x,E; t,t0) to Lu = O, i.e. a solution which satisfies 

the following conditions: 

i) L(r(x,; t,t0)) O for t > to, 

ii) um 
J 

r(x,r; t,t0) ()d = 

t-*tO 

provided ç is continuous and bounded in (-,, "). 

Before proceeding any further, we shall need two 

preliminary results, the second of which is to be found 

in Feller (see [2]). 



Theorem 1. = k(x-y,t-t3) 

where k(x,t) (4t)_1'2 e 

This theorem may be established by direct compu- 

tation. 

Theorem 2. r(x,; t,) r(,y; ",t0)d = r(x,y; t,t0) 

where F is the fundamental solution of Lu = O. 

We shall use Dressel's representation of F in 

order to be able to estimate it properly. In order to 

do so, however, and in order to be able to apply 

Dressel's theorems, we must at this point make the 

following assumptions on c(x,t): 

i) c(x,tfl M 

ii) c(x,t) satisfies a Hölder condition of order, 

y, O < y 1, of the type lc(x1,t1)-c(x3,t0)I 

y y 
N[jx-x0 + 1t1-t01 j, where N is a 

constant. 

We write (x,; t, t0) in the form 



6) I'(x,r; t,t0) = k(x-,t-t0) 

rt 
+ J 

1 k(x.-s,t-w) f(s,v; ,t0)dsdv. 
t0 

We now apply the operator L to (6). Since 

L(r) = O by hypothesis, we obtain, upon applying 

Dressel's theorems 1 and 2, the following integral 

equation for f. 

7) f(x,t; ,t0) = c(xt) k(x-,t-t0) 

t 

+ c(x,t) $ J k(x-s,t-r) f(s,.r; ,t0)dsd. 
t0-co 

Thus If(x,t; ,t0)I Mk(x-,t-t0) 

t 
+ M $ $ k(x-s,t-)If(s,.t; ,t0)Idsd. 

Iterating and applying theorem 1, we obtain the series 

(t-t0)2 (t-t0) 
M'1k + If I 

Mk + M2(t-t0)k 
+ 2! 

M k + ... + 

(t-t0)2 
2 (t-t0)' 

n = Mk[l + (t-t0) M 
+ 2! 

M + ... 
+ 

M + 

M(t-t 
= Mk(x-1t-t0)e O 
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Thus we have the following estimate for F: 

F(x,; t,t0)I < k(x-,t-t0) 

t 
+ M $ $ k(x-s,t-t) k(s-,r-t0)e dsd 

to - 

M(t-t ) t 

k(x-,t-t0) + Me 
O 

$. 
k(x-,t-t0)d1 

M(t-t 
= k(x-,t-t0)[l + M(t-t0)e 

0 

Now write 

8) F(x,,t,t0) = k(x-,t-t0) + R(x,; t,t0), 

M(t-t 
where lFt(x,; t,t0)I Me 

O 
(t-t0) k(x-,t-t0). 

We are now in a position to prove the following 

theorem. 
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Theorem 3. If I(x)I Ke , where K and a are 

constants, and if ç is integrable on every finite 

interval, then 

9) u(x,t) 
= 
$r'x,; t,t0) 9()d 
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is a solution to Lu = O in S: [O < t T) provided 

c(x,t) satisfies the above conditions. Furthermore, 

is continuous at x0, then 

10) 11m u(x,t) p(x0) 
(x,t)-'(x0,t0) 

Proof. Under the same conditions as in this theorem, 

we know from the corresponding theorem on the heat 

equation (see e.g. F. John 15] or G. Hellwig 16]) that 

t, 

ii) 11m 
J 
k(x-,t-t0)cp()dr 

(x,t)-(x0,t0) - 

Furthermore, by the estimate that we derived for 

R(x,; t,t0), we have 

um f (x,; t,t0)()d = 0. 

(x,t)-(x0,t0) - 

This proves (10). To prove (9), we note that 

Lu = L jr(x,; t,t0)()d = 
JL1'x,; t,t0)()d = 0, 

provided, of course, that the operations of integration 

and differentiation may be interchanged. But this is 

a standard argument similar to that for the heat equa- 

tion (again see [5] or [o]). This proves the theoren. 
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For the work to follow, we shall have need of two 

preliminary results. 

Lemma 1. If c(x,t)J < M in the equation Lu = C, 

we may assume without loss of generality that 

c(x,t) < 0. 

Proof. Consider Lu = O with cl < M. Set 

u eMtv. Then u> 
= eMtv and u = MeMtv + eMtvt. 

Thus Lu = O becomes 

Mt Mt Mt 
e y +ce v=Me v-F Mt 

e Vt. 

12) + LM - c(x,t)]v Vt. 

c'(x,t) = M - c(x,t) < 0. 

Thus we have to consider 

13) + c'(x,t)v Vt 

where -2M c'(x,t) < O. 

Lemma 2. F(x,r; t,t0) > O. 

Proof. i'(x,; t,t0) = k(x-r,,t-t0) 

+5 k(x-s,t-')f(s,T; ,t0)dsd. 
t0- 

We now proceed as before, but this time we estimate 

f from below. 
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(t-t0)2 
-M5k 

(t-t0)4 
f(x,t; ,t ) > -Mk -M k 

2! 4! 0= 

= -Mk []. + M2 
(t-t0)2 M4(t-t0)4 

2! + 4! 

= -Mk cosh M(t-t0), 

where of course k = k(x-t-t0). 

14) F(x,; t,t0) k(x-,t-t0) 

t 
co 

-i$ $ k(x-s,t-.g)k(s-,,-t0)cosh M('r-t0)dsd'rI to-co 

= k(x-,t-t0) -IM J k(x-t-t) cosh M(.1-t0)d'vI 

= k(x-,t-t0) [i - sinh M(t-t0fl. 

Now for t sufficiently close to t0, sinh 

M(t-t0) < . So at least for d small strip we know 

that F is positive. Say F(x,; t,t0) O if 

< B, since we know that such a B exists. 

By theorem 2 
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F(x, ; t,t0) = $i(x,y; t,)F(y,; ,t0)dy, 

wher F(x,y; t,,) O if O t-et 3 and 

F(y, 
; ¶,t0) O if O t-t0 B. 

This implies that O < t-t0 23. 

Give any T: 9 < T 23, choose r-t0 = and 

iT 

Now pply theorem 2, 

r' = irr' > O. 

.' F x,; t,t0) O if p < t-t0 23. 

By c ntinuing this process, we see finally that for any 

t ) 
o, 

r' o. 

Recall now that F(x,; t,t0) = k(x-,t-t0) 

+ R(c,.; t,t0), where ¡R(x,; t,t0)j 

$(t-t0) 
Me k(x-,t-t0). 

Lemm 3. There exists a such that 1/2k 

F < /2k for O < t-t0 
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Proof. Choose so small that Mte < 1/2. 

Then r < k + Mrek < (1 + 1/2)k 

and 1'k-Mtek(l-1/2)k. 

Lemma 4. Let T be given. Then there exists an 

n such that 

(V2)k L' < (3/2)k for O < t-t0 < T. 

Proof. A) Let < t-t0 2. 

Then F(x,; t,t0) 

= $r(x,y; t0 + ¶,t0)r(y,; t,t0 + )dy 

(3/2)2 

= (3/2)2k(x-,t-t0) 

and 1'(x,; t,t0) (V2)2k(x-,t-t0). 

B) Complete by induction until n'r > T. 

We are now in a position to prove that the 

representation given in theorem 3 is unique. Also 

from this point on, we shall set, simply as a matter of 

convenience, t0 = 0. 
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Consider the function 

e Ax 
/l - 4A't e1 - 4A't 

Observe that 

for O<t<]J4A' 

A'x2 
v(x,O) = Le and v(x,O) v(x,t). 

00 2 
We consider also v* = cSrix,y; t,O)e'Y dy 

Now for appropriate n, n > T, 

Lkx_y,teAIY2dy = (2)v, O < t T. 

v* > (i/2)v. 

Theorem 4. Let u be continuous for O t T 

and ail x, 

Lu O, O < t T, 

lui iie' o t T, 

u(x,O) = O, 

then u(x,t) O in O t T. 



17 

Proof. Let c > O, A' > A be given. Let 

1/2 
log 

a (Al_A ) 

A' a2 
Then ¡u(+ a,t)I pe'2 

Let D be the rectangle with corners (-a,O), (a,O), 

(a,1/4A'), (-a,1/4A'). 

Then on x=+a, 

Aa2 A'a2 u(x,+ a)I j.e e y 2v*. 

Furthermore Iu(x,O) < 2nv, since u(x,O) = O. 

by the maxiiium both 

2v*±uO in D. 

Letting a -, implies 2v ± u O for O t L/4A'. 

Now letting e -. O, we obtain + u O for O t 

1/4A', that Is u = O for O t < 1/4A'. 

Letting A' -' A, we have u = O for O t < ]/4A 

and by continuity u = O for O t 1/4A. 

By induction this result can be extended to 

O t T and this proves the theorem. 
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PART III 

EXTENSION OF WIDDER' S THEOREM 

Theorem 5. If Lu = O and u(x,t) is continuous 

for O t T, and u(x,t) O, with -M c(x,t) 

O, and where c satisfies a uniform Holder condi- 

tion of order y, then 

u(x,t) = f°r(x,7; t,O)u()d 

where u(x,O) = q,(x). Thus u(x,t) is uniquely 

determined by x). 

Proof. We first show that 

is) u(x,t) r(x,; t,O)()d. 

Let c > O, A > O be arbitrary. 

Further, let 

16) v(x,t) = t,O)p()d 

r(x,r; t,O) < k(x-,t)[1 + Mt eMt) 

where 
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ic(x,t)i M. 

v(x,t) :kx_t11 + Mt eMt]()d. 

For lxi > 2A, we have 

rA- 
17) v(x,t) 

e 
[i + Mt 

-A r4'?rt 

Now, since lxi > 2A, 4L > A, i.e. - 4t. < - A, 

or < lxi - A, 

we have 

- X2 
2A Tt1 Mt) 

J 
p()d 18) v(x,t) 

V4'?Yt -A 

where A > ]/2. 

Now i + MteMt 1+MTe!B. Then 

X2 
2AB 

e 
J 

19) v(x,t) 
V4Yt -A 
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2 
X 

2AB 
For fixed x,F(t) = e 

-A 

2 
is largest when x St. Thus 

S t 

20) v(x,t) 
2AB 

e 
16t 

_ 
-A 

/9 

21) v(x,t) ABx 
rA 

< ABx 

rA 

In t > O, 2AB + AB4 
J 

p(rjd = 
-A 

A 
r 

AJ ()d 
22) 0 v(x,t) < -A 

- 2AB ABc1 J 

< . 

2 
+ .A 

)d 
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Take any point (x0,t0) in O t T. L3t R 

be the rectangle with corners 

[± M(A,),O}, [+ M(A,c),t.0}. 

The function u - y + is positive along th lower and 

vertical sides of the rectanìgle. it is positive along 

the vertical sides since there u , 
O and O ( y L, 

and positive along the lower side, since there 

u(x,O) p(x) while v(x,O) - (i.e. sone cuantity 

less th3n ç(x)). Thus we have u(x,t) - v(x,t) + L > O 

along the lower and vertical sides of the rectangle R. 

Hence, by Nirenberg's strong maximum princicle (see 

L. Nirenberg [7]), together with the following krìcwn 

result: namely, if Lu = O in a x < b, O < t C, 

and 11m mf u(x,t) O as (x,t)-s(x0,t0) wrìen = a 

or b, O ( t0 c, or t0 = 0, a < < b, then 

u(x,t) > O, x < b, O < t < c, we have 

23) U(x0t0) > v(x0,t0) - e. 

Since L was arbitrary 

24) u(x0,t0) v(x0,t0). 

A was also arbitrary, which proves (14). 

We now derive an estLmate of the form of theorem 

3 for u. 
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Lemma 5. If Lu = O in O < t ( T where 

-M < c(x,t) < O, u(x,t) O, 3nd u(x,O) O in 

- X < then u(x,t) vanishes identicdlly in the 

striI O t < T. 

t 

Proof: Set w(x,t) u(x,y)dy. Let 
0 

25) Du = + c(x,t)u 

26) Dw(x,t) $ Du(x,y)dy = j -a- u(x,y)dy u(x,t) 
o Oy 

27) w(x,t) = u(x,t) > O. 

Consequently, Lw O in O < t < T. It satisfies 

all the conditions of our lemma, but has the additional 

properties of being convex in x and non-decreasing in 

t. A sufficient condition for the convexity of w is 

2 

+ c(x,t)w 

3 X 

= - - c(x,t);N > O, 

since c(x,t) is negative and w is positive. 



Moreover, if w(x,t) vanishes identic 

true of u(x,t). Hence, without loss 

may assume that u(x,t) is cor.vex in 

in t. 

Let S be an arbitrary positive 

T, and set x = O, t = t0 < T - 5 in 

23 

ally, the same is 

of generality, we 

x and non-decreasing 

number less than 

(15). Then 

28) LO,; t0,O)u(,b) < , O < b < T. 

Since u(x,t) is non-negative and non-decreasing in 

t 

29) 1(x) max u(x,t) = u(x,b). 0tb 
By the convexity of f(x) we have since 

30) f(x) 1 
J 

f(y)dy, that 

-x2/t0 
2x 

31) 2xf(x)e O 
e 5 f(y)dy 

o 

2x 
r 

t(O,y; t0,O)f(y)dy < sa F(O,y; t0,O)f(y)dy 
- o 

= const < , 

where the last integral converges by inequality (28). 

Hence 
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32) f(x) 
const e't0, or 
2x 

33) f(x) = O(e, where is a constant. 

Similarly the relation (32) holds for x -+ -. This 

gives the desired estimate. All hypotheses of theorem 

4 are satisfied in the strip O t < so tht u(x,t) 

vanishes there. Since ?> was arbitrary our lernrn is 

proven. 

Now, set 

33a) (x,t) 
j 

r(x,; t,O)ç()d,. 

We must show that u E 

But by theorem 3, 

34) hrn ti(x,t) = u(x0,O) 
x-+ X0 

t_4 

and since u is continuous 

35) him u(x,t) u(x0,O). 
x-+ X0 

t-4 t0 

Therefore, by lemma 5, 

36) 
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APPENDIX 

We shall now di.scuss briefly a corresponding oroblern 

for the half plane, namely 

37) Lu=O 

u(x,O) 

u(O,t) O. 

By proceeding formally in the same manner as is 

done in the case of the heat ecuation (see G. Hellwig 

[6]), we arrive at 

38) u(x,t) = J' L(x,; t,O)-F(x,-; t,O)]ç()d 

as a solution to (37). We now proceed in much the 

same way as we did for the previous problem (5). We 

prove analogous theorems and lemmas: however, in this 

case we would also have to show that the representation 

in (38) yields u(O,t) O. Thus we may formulate for 

(37) the following theorem analogous to theorem 5. 

Theorem 6. If Lu O, and u(x,t) is continuous for 

O t T and u(x,t) O, where -M c(x,t) O 

and where c satisfies a uniform Holder condition of 

order y, then 

u(x,t) 
= 

[F(x,; t,O)-F(x,-; t,O)]()d 

where u(,O) rp() and u(O,t) O. Thus u(x,t) 

is uniquely determined by p(). 


