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AN EXTENSICN OF WIDDER'S THEOREM
INTRODUCT ION

In 1944 D.V. Widder proved that any positive

solution u of the heat equation Voo ™ W in a

strip S: {0 < t ¢ T} is representable in the form

of a Stieltjes integral

u(x,t) = f k(x-y,t) da(y),

2
P
where k(x,t) = (47rt)'1/2 e-z-‘E , and where a is
a nondecreasing function.
The argument depends essentially on the maximum
principle, or equivalently, on the fact that k(x,t)
is positive. It seems therefore reasonable to expect
that a similar theorem would hold for more general
parabolic equations, since their solutions also satisfy
the maximum principle. The theorem presented here is
more directly analogous to a simplified version of
Widder's theorem due to P. Ungar (See F. John [5]).

The equation considered is Lu = U, +ou - u = 0,

where ¢ = c(x,t) is bounded and uniformly Hélder

continuous. The result is that if u is a positive



solution of Lu =0 in to <tgT, and is continuous

in to <tgT, then

u(x,t) = j I'(x,%; tnto) U({.to)di,

where I’ is the fundamental solution of Lu = 0 with

singularity at (E.to).



PART I

REDUCTION OF a(x.t)uxx + b(x,t)ux + c(x,t)u = uy
TO u, + c(x,t)u = uy

Consider the partial differential equation

+ b(x,t)ux + c(x,t)u = Uis

1) a(x,t)uxx

where M 2 a(x,t) 2 a5 > 0, and a(x,t)ec'.

X dx
tet ©=t €= o e
1 ¥/
. —_— - -3/2
EX =/alx, Cxx ]/2[3(’(!1;)] ay

a
£ e pd R
X a(x,t) XX va

X
& W a(x.t)£‘2 =1 g, = -jol/2 ag a'a/zdx

W = # MLy

£ 2 + u.k

uxx € u({ X XX

Substituting these into (1), we obtain
- 2
u, + u(Et a(uuzx + u((xx) + bu(‘x + cu

u =1u

. e t “:(a(xx + BE, » Et) + cu.



Let at

- + bEx - Et = ble
(1),

ER b'uz + Cu.

Thus we obtain for

2) U_ = Uy

Let u = fv.
We wish to determine f
term in (2).

the u

3
u=fv

= fv, + vf

4 L4
fv

" 1

+ 2f£v

u + vf:

44 44 g g

u v f + vf
T T T

(2)

v +vE = fv
T T

Thus becomes

+ 2f v

Ve + vf

tg

From this we may determine f.

Set 2f§ + b'f =0

f{‘c = -1/2b!

4
log £ = -1/2 | brde
0

z
-2 [ brax
f=e 0

EE
ytf = VEEf + VE(2f£ + b'f) + v(ef + b'f

so that we can eliminate

+ b'v, + b'vf_ + cfv.

3 g
+f -f‘t).

g (24



After determining f in this manner, (2) reduces to

3) Vo = Vep * c'(g,x)v,

f f
where c'=c+b'—§+—-§-5--—gi.

We now demonstrate the cne-to-one character of the
above mappings. We wish to show first that the mapping

(x,t) » (£,x) is one-to-one. Assume (xl.tl) -+ (Cl.rl)
and (x2,t2) * ({2,12). We must show that if (El,xl)

= (Ez.vz). then (xl.tl) = (x2,t2). Thus, we assume

jxl ds fo ds
o VESET g VAT

But Ty = Ty implies already that tl = t2.

X
1
So we have IO \/ETETTIT f = s, 2 or

—Gds
fl Fraty - o

We now have three cases to consider.
Case I. Xp = Xgpe But in this case, we have already

exactly what we wanted to show.



Case 1II. xl > Xy Then

1 _ds  lgg 1
. fxz V3Ts, 8T 2 Jx2 W T RX%) 2 0
which implies that Xy = Xoe
Case III. Xn > Xqe Then
ds

e
f/mfm

X
2
ds _ 1
2 jxl ® = flxmx) 2 0
which again implies that X) = Xpe

To see that the mapping u -+ fv is one-to-one,

we need only note that v % gives the reverse trans-

formation, since f 1is never zero.
Thus it is sufficient to consider solutions of
(3). We drop, now, the c¢' notation and write finally

4) Wy =G # clx,t)u.



PART I1I

FORMULATION OF THE PROBLEM AND
PRELIMINARY THEOREMS

let L= EEQ + c(x,t) - g% .

X

We seek conditions for positive solutions to the
initial value problem
5) Lu=0

U(X-to) = ¢(x)

Both Dressel (see [1] and [2]) and Feller (see [3])
have proven the existence of a fundamental solution

%Xy t,to) to Lu =0, i.e. a solution which satisfies

the following conditions:
i) L(r(x,%; t.to)) =0 for t >t

ii) 1lim f r(x, %5 tity) o(%)dE = o(x),
toty e

provided ¢ is continuous and bounded in (-, =),
Before proceeding any further, we shall need two
preliminary results, the second of which is to be found

in Feller (see [3]).



o
Theorem 1. | k(x-%,t-v)k(E-y,m-tg)dE = k(x-y,t-t)
-0

2
X
where k(x,t) = (4’»’1’.)']'/2 e it
This theorem may be established by direct compu-
tation.

o0
Theorem 2. J T(x,&; tyt) T(E,y; x.to)dE = I'(x,Y; t,to)

where I is the fundamental solution of Lu = O.

We shall use Dressel's representation of I in
order to be able to estimate it properly. In order to
do so, however, and in order to be able to apply
Dressel's theorems, we must at this point make the
following assumptions on c¢(x,t):

i) le(x,t)| ¢ M
ii) e(x,t) satisfies a Holder condition of order,
y» 0< vy <1, of the type Ic(xl,tl)-c(xo,to)l
< N[ xy=x IY + |t,-t IY]. where N is a
S 1"%o0 1"%

constant.

We write TI'(x,%; t, to) in the form



6) I'(x,t; t,to) = k(x-c.t-to)

t o0
* Ito J_mk(x-s,t-x) f(s,v; E.to)dsdx.

We now apply the operator L to (6). Since
L(I") = 0 by hypothesis, we obtain, upon applying
Dressel's theorems 1 and 2, the following integral
equation for f.

7) f(x,t; Etg) = clx,t) k(x-E,t-t,)

t (=]
O -0

Thus [f(x,t; E,tg)| < Mk(x-g,t-tg)

t o
+ M Jt Iﬂk(x-s.t-x)lf(S.x; E.to)ldsdr-
0

Iterating and applying theorem 1, we obtain the series

2 n
(t-t,) (t-t,)

2 n
(t-t5)° (t-t,)

Mk[1 + (t-ty) M+ —s— M° + ... +—m-—u" + veel

M(t-t.)
Mk(x-E,t-tj)e 0%,
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Thus we have the following estimate for I':

lT(X.E; toto)l g k(x-E,t-to)

t M(z-t,)

) b -0

0

M(t-t.) rt
< k(x=t,t-t.) + Me 0 J k(x=-%,t-t,)dg
= 0 % 0
0
M(t-t

k(x-c.t-to)[l + M(t-to)e °)].

Now write

8) F(x.{.t,to) = k(x-z.t-to) + R(x,&; t,to),

M(t-to)

where [R(x,&; t,ty)| < Me (t-ty) k(x-E,t-tg).

We are now in a position to prove the following

theorem.

2
Theorem 3. If |g(x)| & Ke“®* , where K and a are
constants, and if ¢ 1is integrable on every finite

interval, then

9) ulx,t) = [ I(x,85 t,tg) glE)dr
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is a solution to Lu =0 in S: {0 <tg T} provided
c(x,t) satisfies the above conditions. Furthermore,

if ¢ is continuous at Xqs then

10) u(x,t) = g(xg)

lim
(xst)=*(xq, tg)
Proof. Under the same conditions as in this theorem,
we know from the corresponding theorem on the heat
equation (see e.g. F. John [5] or G. Hellwig [6]) that

-E,t- di = .

11)
Furthermore, by the estimate that we derived for
R(x,t; t.to), we have

1li yES By dg = 0.

This proves (10). To prove (9), we note that

o0 0
Lu =L f F(x, &5 t,tglelE)de = f Ll(x, €5 tytyle(E)dE = 0O,
-0 -0

provided, of course, that the operations of integration
and differentiation may be interchanged. But this is
a standard argument similar to that for the heat equa-

tion (again see [5] or [6]). This proves the theorem.
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For the work to follow, we shall have need of two
preliminary results.
Lemma 1. If |c(x,t)] < M in the equation Lu =0,
we may assume without loss of generality that

c(x,t) < 0.

Proof. Consider Lu =0 with |c| < M. Set

oMt = oMt _ Mt Mt
u==e 'v. Then Uy e v and u, = Me " "v + e Vo
Thus Lu = O becomes
Mt Mt Mt Mt
e vxx + ce v=DM v +e vt.

12) Vi * (M - c(x,t)]v = Vye

c'(x,t) = M- c(x,t) < 0.
Thus we have to consider
13) Vi c'(x,t)v = A
where -2M < c¢'(x,t) < O.
Lemma 2. I'(x,%; t.to) > 0.

Proof. [I'(x,%; t.to) = k(x-{.t-to)

t m
+ J J k(x-S,t-T)f(S.T; E,t )deT-
0
to -00

We now proceed as before, but this time we estimate

f from below.



5 (t-to)2 . (t-tg)?

fx,t; E,to) -Mk ~M k_—ﬁT___"M k =—gm— =+

Hv

5 (t-t5)? . Mt (t-t,)?

-Mk cosh M(t-to).
where of course k = k(x-(,t-to).

14) Ix, &3 titg) 2 k(x-g,t-t4)

t o0
—‘J. f k(x-s,t-—;—)k(s-(,x-to)cosh M('z-to)dsdxl
to -0

t
= k(x-E,t-ty) -|M f k(x-%,t-t;) cosh M(z-tq)dt]
to

= k(x-(,t-to) {1 - sinh M(t-to)].

Now for t sufficiently close to tos sinh
M(t-to) < g. So at least for a small strip we know
that I" is positive. Say I'(x,&; t,to) 20 if
It-*ol < B, since we know that such a B exists.

By theorem 2

"Mk [1 + M 2! aj +0.o]

13
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F(on; toto) e I F(X.Yz th)P(Y|§; Toto)dYn

where TI'(x,y; t,x) 20 if 0 ¢ ter < 3 and
T(y,§; ©oty) 20 if 0 w-ty < B,
This|implies that O ¢ t-to < 28.

Givem any T: 8 < T £ 23, choose ¢-to = % and

t"‘tgg'o

Now apply theorem 2,

SO T(x, 5 tatg) 2 0 if B < -ty < 2B

By continuing this process, we see finally that for any
t > to. r 2 o.

Recall now that I'(x,&; t,to) = k(x-(,t-to)

-

R(x,t; t,to), where |R(x,E; t.to)l

Meu(t-to)k(x-i.t-to).

N

Lemma 3. There exists a ¢ such that 1/2k ¢

'S %2k for 0 < t-ty < 7.




Proof. Choose 1 so small that M»:eMT < V2.

Then I' < k + M;eM"k < (1 +1/2)k

and I' > k - Mge™k > (1 - 1/2)k.

Lemma 4. lLet T be given. Then there exists an

n such that

(1/2)"k < I' < (3/2)"k for 0 < t-ty < T.
Proof. A) Let « < t-t, < 21,

Then I'(x,%; t.to)

o0
f I'(x,y; tO + ’tsto)F(Yt£3 tvto * 1:)dY
-0

< (3/2)2 [ K(x=y,p)k(y=F, t-ty=z)dy

i

(3/2) %k (x-1, t-t,)
and I'(x,%; t.to) 2 (L/2)2k(x-t.t-to).

B) Complete by induction until n<t > T.
We are now in a position to prove that the

representation given in theorem 3 is unique. Also

15

from this point on, we shall set, simply as a matter of

convenience, to = 0.



Consider the function

vol
£ A'x
veEJT -3 *JT - Aat
Observe that

2
\'4 v _
j?;z - {%f =0 for 0< t < 1/4A' ,

VAN

v(x,0) = eeA'xz and v(x,0) < v(x,t).

A'2
We consider also v* = ef I'(x,y; t,0)e Y dy.

-0

Now for appropriate n, n¢ > T,

g2
v < e(32)" [ k(x-y,t)er Y dy = (3/2)%, 0

vE > (V/2) .
Theorem 4. Let u be continuous for 0 £ t

and all x,

lu=0, 0<t<T,

2

u(x,0) = 0,
then u(x,t) =0 in 0t < T.

A

A

t g T.

16
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Proof. lLet e > 0, A' > A be given. Let

/2
log £

a2 (zr=g) -

2 2
Then |u(+ a,t)| g ueAa < ceP'd,

Let D be the rectangle with corners (-a,0), (a,0),
(a,/4A'), (-a,l/4A').
Then on x = + a,
tu(x,+ a)| g peAaz < eeA'a2 < v g 2.

Furthermore [u(x,0) < 2"y*, since u(x,0) = O.
Therefore, by the maximum principle, both

2"v* +u 0 in D.

Letting a - » implies 2"v* + u» 0 for 0 ¢ t g V4A'.
Now letting & - O, we obtain +u 2> 0 for 0 t

< 1/4A', that is u =0 for 0 g t ¢ V/4A'.

Letting A' = A, we have u =0 for 0 ¢ t < V4A
and by continuity u =0 for 0 g t < V4A.

By induction this result can be extended to
0 t< T and this proves the theorem.
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PART III
EXTENSION OF WIDDER'S THEOREM

Theorem 5. If Lu =0 and u(x,t) is continuous

for 0 t<T, and u(x,t) 20, with -Mg c(x,t)

é 0, and where ¢ satisfies a uniform Holder condi-

tion of order vy, then

u(x,t) = fwr(x.l; t,0)0(%)dE

-c0
where u(x,0) = o(x). Thus u(x,t) is uniquely
determined by o(x).
Proof. We first show that

15) u(x,t)

v

[7 r(xes t,0)9(5)ar.

Let & > 0, A > 0 be arbitrary.
Further, let

16) v(x,t) = IAf(x.z; t,0)p(%)dE
-A

r(x,%5 £,0) < k(x-E,t)(1 + Mt eMt]

where



le(x,t)] g M.

vix,t) [ kix-g,)(1 + Mt eM*1o(r)az.

v
~e0

For |x| > 2A, we have

xi{-A 2

‘17) vix,t) < J: e_ (1 + Mt QMt]Q(E)d{o

113’7/{
Now, since |x| > 2A, Lgl > A, i.e. - lél < - A,

or Lgl < |x| - A,

we have

2
5 X
18) v(x,t) § —2A— o T6T[1 4 MMt f: o(€)dE

where A > 1/2,
Now 1 + Mte™ ¢ 1 + mre™ = B. Then

2

2 A
19) v(x,t) g 2AB_ Q.IET lA o(x)dg.

19



- x> A
2AB  Tet J

For fixed x,F(t) =
Vayt -A

o (g)dy
is largest when x2 = 8t. Thus

- Y2E A
20) v(x,t) ¢ 2B o I6F IA?(:)d{.

/éézgz -

A
In t>0, |x| >2a8 + aBe™} fA ¢(tr)dt = M(A,e),

A

d
22) 0 < v(x,t) < 5B£A vrlk

A
2AB + ABe "} I o(x)dg
-A

A
) eIA?(E)dc
A
2 + f o (x)dg
<A

<e.

20
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Take any point (xo.to) in 0<t<T. Let R

be the rectangle with corners

{'_"_ M(Atc)'o}t {_‘t M(Avc)oto}'

The function u - v + ¢ is positive along the lower and
vertical sides of the rectangle. It is positive along

the vertical sides since there u > 0 and O ; v £ &,

= =
and positive along the lower side, since there
u(x,0) = ¢(x), while v(x,0) = g(x) - (i.e. some quantity
less than ¢(x)). Thus we have u(x,t) - v(x,t) + e 20

along the lower and vertical sides of the rectangle R.
Hence, by Nirenberg's strong maximum principle (see
L. Nirenberg [7]), together with the following known

result: namely, if Lu=0 in a<x<b, 0<t<ec,
and lim inf u(x,t) 2 0 as (x,t)a(xo,to) when xy = a

or b, O

{| AN

to e or to =0, ag Xq < b, then
u(x,t) 20, a<x<b, 0<t<c, we have

Since € was arbitrazy

24) u(xo.to) > v(xo,to).

A was also arbitrary, which proves (14).
We now derive an estimate of the form of theorem

3 for u.
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Lemma 5. If Lu=0 in 0 < t < T where
-M < e(x,t) < 0, u(x,t) 2 0, and u(x,0) =0 in
-o» < x < oy then u(x,t) vanishes identically in the

strip 0€ t < T.

;
Proof: Set w(x,t) = f u(x,y)dy. Let
0

25) Du = 5—;‘1‘ + e(x,t)u = 3—%

t t
26) Dw(x,t) = jo Du(x,y)dy = fo & ulxy)dy = ulxt)

27) & w(x,t) = u(x,t) 2 0.
Consequently, Lw =0 in 0 < t < T. It satisfies

all the conditions of our lemma, but has the additional
properties of being convex in x and non-decreasing in

t. A sufficient condition for the convexity of w is

2
IX

*w + c(x,t)w =3¥
FX

2

" = —¥ - ¢(x,t)w 2 O,
DX

since c¢(x,t) is negative and w is positive.
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Moreover, if w(x,t) vanishes identically, the same is
true of wu(x,t). Hence, without loss of generality, we
may assume that wu{x,t) is convex in x and non-decreasing
in t.
Let & be an arbitrary positive number less than
T, and set x =0, t = ty <T-% in (15). Then

28) ,f (0,85 tg,0)u(%,3) < o 0< 3 < T.

et -
Since u(x,t) is non-negative and non-decreasing in

t

29) f(x) = max u(x,t) = u(x,s).
0<t<s

By the convexity of f(x) we have since

1 2x
30) f(x) £ =% jo £(y)dy, that

31) 2xf(x)e

'x%/to _x%/to 2x
<e IO £(y)dy

2x o
r ' r
a JO r(o,y; toto)f(Y)dY < JQ r(o,y; tooo)f(Y)dY

WA

const < o,
where the last integral converges by inequality (28).

Hence
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2
const x7tg .

32) f(x) =

A

x2)
33) f£(x) O(e‘3 , where B 1is a constant.

Similarly the relation (32) holds for x + -w. This
gives the desired estimate. All hypotheses of theorem

4 are satisfied in the strip 0 < t <& so that u(x,t)

vanishes there. Since & was arbitrary our lemma is

proven.
Now, set
: ©
33a) §(x,t) = | Tr(x,8; t,0)q(g)dg.

We must show that u E u.
But by theorem 3,

34) 1lim U(x,t) = u(xy,0)
X-’xo

t*to
and since u 1is continuous

35) 1lim u(x,t) = u(xo,O).
XX

t+t0

Therefore, by lemma 5,

36) u = u.
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APPENDIX

We shall now discuss briefly a corresponding problem
for the half plane, namely
37) Lu=0
u(x,0) = ¢(x)
u(0,t) = 0,
By proceeding formally in the same manner as is
done in the case of the heat equation (see G. Hellwig

[6]), we arrive at

38) U(X.t) = J.O [P(X.E; too)“r‘(xi‘(i t.O)]cp(()dE

as a solution to (37). We now proceed in much the
same way as we did for the previous problem (3). We
prove analogous theorems and lemmas: however, in this
case we would also have to show that the representation
in (38) yields u(0,t)= 0. Thus we may formulate for
(37) the following theorem analogous to theorem 5.
Theorem 6. If Lu =0, and u(x,t) is continuous for
0 tgT and u(x,t) 20, where -Mg c(x,t) <O
and where ¢ satisfies a uniform Holder condition of
order +y, then

oo
u(x,t) = J (C(x,&; t,0)-T(x,=&; t,0)]o(x)dg

-~
where u(f,0) = o(t) and u(O0,t) = 0. Thus u(x,t)
is uniquely determined by o(f).



