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ABSTRACT

The art of obtaining interface-specific information via optical mixing has been

continuously developed since the advent of the laser in the early sixties. For instance,

generating the second harmonic on crystals with inversion symmetry necessarily leads to

interface-specific signals by virtue of breaking that symmetry at an interface. In this

work, two techniques of interface-specific optical mixing are analyzed theoretically. The

first is an exact macroscopic treatment of general optical mixing in reflection geometry.

This model is an extension of Bloembergen's model which utilized a surface layer with

nonlinear and linear properties atop a semi-infinite bulk with only linear properties. This

model was extended by adding a bulk median with the nonlinear properties of the bulk

between the surface layer and semi-infinite bulk. This allows for the separate comparison

of the surface and bulk contributions to the total signal. Solutions to the model show an

overall dependence on the secant of the nonlinear 'reflection' angle in addition to the

angular dependencies introduced by the layered structure. Complicated phase-matching

dependencies appear in three factors to both the surface and bulk contributions. They

include the usual sinc behavior of the phase-mismatch parameter, dependencies on the

effective phase differences incurred in the boundary layers, and a dependence on
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(lc,2 k211 where kt and ks are the wavevectors for the mixed wave and effective source

wave caused by the induced polarization. A numerical analysis of these solutions shows

that for pure S-polarization optical mixing in reflection geometry, surface-specificity can

be enhanced using near-grazing incident angles. If the bulk and surface dispersions are

small but different, the surface signal can be isolated from the bulk signal. Signals from

either S or P-polarization in a CARS experiment can be selected by average changes in

angles of 0.1 degrees. In P-polarization cases, it is possible to separate signals by

observing the nonlinear 'reflection' at the nonlinear Brewster's angle of the bulk. Since

the nonlinear Brewster's angle is different for the two regions, there may be only a

surface contribution. A second technique using evanescent fields at a dielectric

waveguide interface is analyzed and discussed. Three-beam and four-beam CARS

experiments are compared. For non-phase matched conditions the coherence length is

small, typically several microns. These are compared with the case where phase-

matching is achieved. Despite the shorter interaction length, the phase-matched case

generally provides signals two to three times larger. Typically, there is an additional

enhancement of 10 to 103 if dispersions are included. This work shows that for reflection

geometry optical mixing the surface contribution can be enhanced relative to the bulk

without the experimental difficulty imposed by the use of waveguides.
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THEORETICAL ANALYSIS OF OPTICAL MIXING AT INTERFACES

1. INTRODUCTION

Can vibrational and electronic surface resonances involving optical transitions be

detected on any flat surface? This is the central question of this research. This research

was driven by the potential to further develop the tools of surface science. A goal of

surface science is to understand the physics and chemistry of the region only a few atomic

layers thick between a vacuum and deep within the structure of a solid. Often the physics

of interest involves characterizing the electronic or vibrational resonances of the

constituent species of that thin interstitial region called the 'surface'. To accomplish this

requires probes sensitive to this region. Separating the resonances of the 'surface' from

the resonance behaviour of the rest of the solid (i.e., the bulk) is rarely trivial. It is the aim

of this research to add to the continuing development of probing techniques that involve

interface specific optical mixing (ISOM).

Why should optical mixing (OM) be considered over techniques commonly utilized by

commercially available surface science units? There are many well-established techniques

that can be used to probe a surface. With optical mixing being the exception, virtually all

of these techniques involve electron-electron scattering (e.g., J REDS or AES), electron-

photon scattering, or photon-electron scattering (e.g., XPS or UPS). The apparatii are

highly specialized for each technique and require the subject surface be under ultra -high

vacuum conditions. The greater flexibility of optical mixing in the visible region allows the

probing of more states of a system with a single apparatus. It also allows for the

simultaneous probing of the energy and symmetry of resonant transitions. The long mean

free path of light allows the technique to be used from vacuum to atmospheric conditions.

By virtue of long path length, ISOM can even be done at an interface between two media

deep inside a (transparent) sample. Unfortunately, because of the long penetration depth,
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there is no apparent preference to interface-generated over bulk-generated optical signals.

Thus, nonlinear optical processes are not inherently interface-specific. However, by

choosing the geometries of the applied fields, the generated fields can have enhanced

contributions from the surface over that of the bulk. Commonly used optical mixing

techniques such as second harmonic generation (SHG) and sum parametric mixing (SPM)

utilize geometries that embellish the ratio of the surface to the bulk contribution. Much of

the work presented here involves exploring various other ways to manipulate the applied

fields in order to obtain favourable ISOM conditions. Here, two specific methods of

achieving ISOM are developed.

Chapter 2 takes the approach of manipulating the applied fields to achieve an

interference condition everywhere except the surface region; hence optical mixing occurs

only in the surface region. This is done in the confines of a planar waveguide. This

document refers to ISOM in a waveguide geometry as waveguide ISOM (WISOM). The

research performed here extends the information available in the literature by creating a

data base of useful WISOM parameters and conditions. This is done for specific OM

processes in a waveguide. Phase-matching is considered in the waveguide geometry as a

way to increase the surface signal. Phase-matching inside a waveguide has never been

reported in the contemporary literature. Of the several conclusions drawn, one is that to

experimentally scan through the optical surface resonances several waveguides would be

required. This would mean changing waveguides during the experiment, which is

undesirable. Another conclusion is that use of phase-matching in a waveguide increases

the overall signal level and yields a better signal-to-noise ratio. Increasing the signal levels

via phase-matching, however, does not come without expense. The experimental

difficulty is considerably increased. Due to the difficulty of WISOM experiments, a

second approach was considered.

In Chapter 3, reflection geometry ISOM (RISOM) is considered. Manipulation of the

applied fields to maximize the surface-to-bulk signal ratio is done by selecting the angles
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and polarizations of the incident waves. The angular dependence of optical mixing and

phase-matching conditions are analyzed as a way to predict enhanced surface-specificity.

Advantages of the RISOM technique include a straightforward experimental geometry,

typically large signals, and no apparent limitations on the type of subject surface. Results

show that there exists a nonlinear Brewster's angle analogous to the familiar linear

Brewster's angle. A wave reflecting off a surface near Brewster's angle has no 12-

polarization component. This condition holds for both the linear and nonlinear Brewster's

angles. It is shown that for dispersive media, the nonlinear Brewster's angles are different

for surface and bulk. It is predicted that the use of this angular separation provides one

enhancement of the surface-to-bulk signal ratio. Furthermore, enhancements can be made

by utilizing the different angular dependencies of optical mixing in the surface and bulk

signals. Chapter 3 is considered the most unique and important part of this research. It

comprises the larger portion of this document. In order to predict RISOM experiments,

an entire treatment of optical mixing at a surface that includes both surface and bulk

contributions is developed. The model developed in this chapter is an exact macroscopic

treatment of optical mixing at an interface and is hitherto undocumented in the literature.

An extensive analysis is done in an attempt to understand the angular and polarization

dependencies of the bulk and surface generated waves. This complete macroscopic

formulation should be considered a starting point for both new experiments and future

theoretical research.

This introductory chapter provides perspective into optical mixing in general and

ISOM specifically. First an overview of this research is outlined. This research developed

as it progressed; as each question was investigated, new questions arose which changed

the path of the programme. After the overview outlining the directions this research

eventually took, a brief history and review of established surface science probes is

presented. With these perspectives, a more detailed outline of each aspect of this research

is presented.
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1.1 How This Research Developed

The original goal of this research was to experimentally probe the electronic states of

simple molecules on a surface. The question was: what can be learned about the

mechanisms that cause a simple (two atom) molecule to 'stick' to a surface by studying

how the electronic states of the molecule change? It was proposed that this research be

coupled to the research of others who might characterize the vibrational states of such

molecules. Four-wave ISOM performed in dielectric waveguides (four-wave WISOM)

would provide the surface-specificity needed to observe less than a monolayer of the

subject molecules on a surface. This technique has been used to characterize vibrational

states of 02- [1], ethylene [2], phenol and pyridine [3], and may other species on zinc

oxide waveguide surfaces. After an initial theoretical analysis of this technique for

electronic states, the experiment appeared to have little promise due to low signal levels,

hard-to-build and cumbersome-to-use waveguides, and the necessity of having to change

waveguides during the course of the experiment. At the time, the prevailing literature

mainly considered combinations of waveguide modes using three beams to achieve the

interference condition necessary for surface-specificity. Furthermore, no researcher had

reported phase-matching in the waveguide as a way to increase signal levels. An extensive

theoretical investigation ascertained if using four-beam waveguide modes and possibly

phase-matching would make WISOM a viable technique for the study of electronic

resonances. At the conclusion of this investigation it was realized that there are four-beam

waveguide modes that provide broader tuning ranges while allowing for phase-matching.

Unfortunately, these four-beam waveguide modes increase the experimental difficulty.

For instance, performing surface CARS in a waveguide (WSCARS), requires two

couplers and three beams, one beam carrying two waves with degenerate wavevectors.

Using four-beam modes, the degeneracy is broken and four couplers are needed to couple

four different waves to the waveguide. It is experimentally troublesome to separate one
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beam to create two non-degenerate waves, to get the timing of these beams correct, and

to have them overlap in the waveguide. Moreover, it is very difficult to construct four

different couplers on a single waveguide. Using prism couplers, it is hard enough to get

two couplers on a waveguide, let alone four. Attempts were made to integrate grating

couplers into waveguides with limited success. Again the problem of constructing four

such integrated couplers proved too laborious. Suggestions on the use of diffractive

optics to construct ring grating couplers were made. Experimentation showed this

approach may be valuable, but would require much more research to be realizable.

The theoretical analysis of utilizing waveguides for electronic and vibrational

resonance ISOM provided one lamentable conclusion: WISOM is experimentally

challenging. A new question was considered: is there a more experimentally

straightforward technique? The idea of using a simple reflection geometry ISOM

(RISOM) was considered. However, an extensive literature search revealed no RISOM

documented techniques utilizing general three- or four-wave optical mixing. There is a

wealth of literature on use of second harmonic generation (SHG) on the surfaces of

materials to achieve ISOM. Realizing that, just as in the linear case, the reflection of a

nonlinear signal from an interface has angular dependencies, a new question was posed:

would it be possible to utilize these dependencies to achieve RISOM? To answer this

question, a model was needed that could predict the relative strengths of the signals

generated from surface and bulk. Without a model in the literature to predict RISOM, a

new model was constructed. This model is an extensive modification of an existing model

originally developed by Bloembergen to describe optical mixing at dielectric surface. The

Bloembergen model, however, does not include contributions from the bulk of the

dielectric. With this new model, optical mixing from both the surface and bulk regions of

a medium could be compared. This exact macroscopic model, which correctly handles

possible deviations from perfect phase-matching, was used to suggest combinations of

reflection geometries that would lead to RISOM experiments. After completing these two
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theoretical analyses, it was apparent that the scope of the work shifted from

experimentally investigating out electronic states of simple molecules on a surface to

making fundamental contributions to the use of ISOM as a surface science probe.

1.2 Review of Optical Mixing and Definition of Optical Mixing Terms

Optical mixing has been used as a form of spectroscopy since shortly after the advent

of the laser in the early sixties. Soon after frequency doubling, tripling, and optical

frequency mixing processes were first observed ([4], [5], [6], [7], [8]), the use of these

processes for obtaining interface-specific information has developed. For instance, second

harmonic generation (SHG) on crystals with inversion symmetry necessarily leads to

interface-specific signals under the dipole approximation. This is by virtue of the breaking

of that symmetry at an interface. This powerful ISOM technique has been reviewed in a

recent paper by Corn and Higgins [9]. Despite the successes of surface-specific SHG,

there is a limit to its application: only centro-symmetric surfaces or surfaces of materials

with insignificant quadrupole moments can be studied. Much of the motivation of this

research was to investigate ways which would allow the study of a less limited class of flat

surfaces. Moreover, additional information about optical surface resonances can be found

using general three-wave mixing (TWM), four-wave mixing (FWM), or higher order

processes n-wave mixing (nWM). Note that SHG is a second order process, which is a

special case of TWM. These other processes are important in the search for ISOM

experiments that will yield more information about surface resonances than SHG alone.

As can be seen in the previous paragraph, there are a number of acronyms common in

nonlinear optics. It is warranted to remind the reader before proceeding too deeply into

the morass of acronyms the most common of these. In this document, there are general

and specific nonlinear processes. For instance, three-wave mixing (TWM) and four-wave

mixing (FWM) are general OM processes commonly referred to. These general processes

governed by the second and third order nonlinear susceptibilities, respectively. Thus,
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there must be three waves at oh, oh, and o involved in TWM. In FWM, there are four

waves at oh, oh, (03, and (04. Even n-wave mixing (nWM) can be defined as that process

that is governed by the (n-1)-th order nonlinear susceptibility. Note that no relationship

has been imposed on the incident beams carrying these waves. There may be a single

incident beam carrying all n-1 waves, there may be several beams, or there may be n-1

incident beams each carrying one of the waves that are mixed to give the n-th wave in a

given nWM process.

Specific cases to TWM are SHG, sum frequency generation (SFG), and difference

frequency generation (DFG). An example of a TWM experiment is given in

Figure 1.1. Here SFG is shown in medium with a linear (first order) and a second order

susceptibility. Two waves enter the material and a third wave is generated. The generated

wave has frequency oh and is related to the incident waves at oh and oh by (03 = w1 + oh,

where oh oh. If w, = (1)2, the process is SHG (the two incoming waves have degenerate

wavevectors and are contained in a single beam). When the generated wave has

frequency oh = uh or = w2 oh, the process is known as DFG.

(01,k1

CI) 2 (1),x (2)

= E, + E2

(03 =01+0)2

(03,13

Figure 1.1: A typical TWM experiment
using two incident beams
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There are many possible special cases of FWM; many do not have names. There is

only one acronym used in this document that involves a specific case of FWM. This is

CARS (coherent anti-Stokes Raman spectroscopy). Since CARS refers to vibrational

resonances, and it is possible that electronic resonances are meant, the term CARS-like

FWM is used. Throughout this document CARS and CARS-like FWM are used

interchangeably; CARS-like FWM is always understood. CARS-like FWM experiments

are done in a material having a non-zero third order susceptibility and are typified by (04 =

oh (02 + (03, where (01= (03. The geometry of a such an experiment is shown in

Figure 1.2.

c°3)C-3 x(1),x (3)

(04 =()1 W2 +(.03

Figure 1.2: A typical FWM experiment
utilizing three incident beams.

For any OM process, the difference in phase (the phase-mismatch) between the induced

source polarization and the generated traveling wave must be considered. This is a

particularly important concept as will be seen later. Thus, it is reviewed at this juncture.

The wave generated in an OM process can be thought of as originating from an oscillating

source polarization induced by the action of the incident waves on the nonlinear medium.

The induced polarization can be considered the tensor product of the nonlinear (electric)

susceptibility and the incident (electric) fields. For example, for FWM, the (third order)
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polarization is given by

)5 (" (6)4 ) = X ") (6) 4 ;6)1 96)2 / 6)3 )E(6) 1 )E(6) 2 )E(6) 3 )e4114+4+k.3>i-t°411*

It is recognized that the source polarization has a phase (iii + ic2 + E.3) F. Note that it is

assumed that the medium through which each wave travels has dispersion. The indices of

refraction appear explicitly in the source polarization phase. For instance for wave 1, the

index of refraction is n1 = n(6) 1). Thus, the induced nonlinear polarization is more

precisely written as

1 5 ( 3 ) (6 4 ) = X (3) (6) 4 ; 6) 11 6) 2 , 6)3 )E(6) 1 )E(°) 2) go) 3)e((14 (C°1 )+12 (t°2 )+IC3 () 3 )) 1.--°411

For FWM, ou = col + 0)2 + (03, but if the medium has dispersion, in general,

El + E2 + ii,3 # Et. This is true of mixing processes in single-beam, that is collinear wave,

geometries. The generated wave can be can also be thought of as having a phase,

E4 (0) 4) - F . The field of the generated wave can be represented by:

E(F, 0 = go)4 )e4i. (w4)-Fol

Using the oscillating polarization as a source term in Maxwell's equations yields a

generated wave that depends on the phase difference:

E(w4) - eiRki (0)0+4 (co 2 )+4 (0)3 )-k4 (04 )).F1.

The phase of the source polarization is generally not equal to the phase of the

generated wave due to dispersion. Only if the directions of the wavevectors k1 through k3
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are properly adjusted can there be no phase difference, that is no phase-mismatch. Zero

phase-mismatch occurs when the generated wave oscillates with the same phase as the

polarization induced by the incident waves. The reader is reminded that when there is no

phase-mismatch (when phase-matched), the generated signal becomes very large.

There are two particular cases of phase-matching: collinear and non-collinear. If there

is no dispersion, phase-matching is collinear. That is, phase-matching is done with all

waves collinear. In this situation, it is seen that 1E11 + 1E21 + 1E3 I = 1k41 since all the indices of

refraction are equal. The phases of the polarization and generated wave are equal when all

the waves travel in the same direction. This is illustrated in the k-space diagram in Figure

1.3 (a). In the case of a non-zero dispersion, non-collinear phase-matching is used. The

finite dispersion requires that phase-matching be done by adjusting the directions of the

incident waves as is indicated in Figure 1.3 (b).

kz

(a) kr

kz

(b)

Figure 1.3: Two k-space diagrams showing
(a) collinear phase-matched THG and (b)
non-collinear phase-matched THG.

kr

It is always possible to introduce an intentional phase-mismatch in an otherwise phase-

matched OM process. This is done by adjusting the direction of the wavevectors away

from the phase-matched directions. As will be seen throughout this document,
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introducing an intentional phase-mismatch can be utilized to reduce the OM contribution

from an unwanted region of a 'surface'. This allows for enhanced surface-to-bulk signal

ratios when performing ISOM experiments.

1.3 Interface-Specific Optical Mixing (ISOM)

As the electronics and related industries move to utilization of nano-structure devices,

surface science is fmding an ever increasing role in the commonplace. A goal of surface

science is to develop a fundamental understanding of the physics and chemistry at specific

interfaces. This is done by probing the surface states at the interface. Characterizing a

surface may mean mapping out the states of the surface in order to describe the surface

physics. Using surface probes, the surface scientist may track changes in surface states as

external changes are made to the surface. Surface chemistry may be studied as well as

surface dynamics with surface-specific probes.

What is a surface and how are they studied? Surface scientists are armed with a

battery of techniques to probe surfaces, but to understand these techniques, a portrait of a

surface must be painted. A surface may be described in many ways depending on one's

perspective. Even if limited to the "perfect crystal surface", there are a myriad of ways to

view the interface between a vacuum (or atmosphere) and a bulk crystal. We tend to have

a naive idealisation of an interface; the experimenter's "perfect crystal surface" actually

includes an interstitial region comprised several of atomic layers. Within this interstitial

region there may be a relaxation of the unit cell parameters. As a result, the response to

external electric and magnetic fields (probes) is different than that of the bulk crystal.

Physical defects (e.g. dislocations and steps) occur in this region; the "perfect crystal

surface" can only be spoken of in a theoretical sense. Impurity concentrations may

increase as one moves further from the native crystal to the other side of the interface.

Such impurities may be caged in the lattice, while others may be substituted for native

atoms in the lattice. Above this region, having been scavenged from the atmosphere by
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the crystal's dangling bonds, molecular and atomic species reside; these too effect the

response to externally applied electric and magnetic fields used as surface probes.

This surface region is to be contrasted with the rest of the solid. The structure deep

inside a solid crystal is considered periodic on a large scale (thousands of lattice constants

in dimension). Generally, the physical interaction of an applied field within a crystal is

determined by the identity, concentration, and geometrical arrangement (symmetry) of the

chemical species comprising the matter. When a surface is present, there are additional

interactions due to the rather different morphology of the surface versus the bulk. The

aim of surface-specific experiments is to separate the interactions due to the presence of a

very large number of atoms comprising the bulk crystal from the surface interactions.

Consider that the surface density of surface atoms is typically 1015/cm2. From Avogadro's

number, the volume density of the bulk atoms is 1023/cm2. In a typical experiment, the

probed volume is 10-3cm3 accomplished by means of a beam focused to a 100 x 100

micron spot penetrating 1 micron (about one wavelength of light) deep. In this case, the

number of surface atoms is of the order of 1011. This is to be compared to VNA = 1015

atoms sampled in the bulk. Thus, a small surface-derived signal rides atop an enormous

bulk background signal. Hence, great effort must be placed into surface probing

techniques in order to extract the surface information.

Many surface science probes detect electrons ejected or scattered from surfaces. By

virtue of the short mean free path of electrons through a solid, electrons ejected from a

solid almost certainly originate from the surface region. In scattering experiments, the

small penetration depth of electrons into the surface guarantees that the states they probe

be surface-related. In these ways, techniques such as x-ray photoelectron spectroscopy

(XPS), ultraviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy

(AES), electron energy-loss spectroscopy (EELS), and low-energy electron diffraction

spectroscopy (LEEDS) are interface-specific. Because these techniques rely on scattered

particles, they are limited to high and ultra-high vacuum environments. The mean free
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path of an electron in air is only millimeters. This is a great disadvantage as few real world

surfaces exist in UHV conditions. In realistic environments, such as atmospheric

conditions, these probes are unsuitable; ex situ studies must be performed. Such studies

must be done with some circumspect. Between measurements of the sample, the surface

experiences transfers in and out of vacuum chambers and perhaps other

undesirable or unavoidable changes. Another disadvantage with these scattering

techniques is that alone, they can only give limited state information. Several of these

techniques may be required to map out surface states of at an interface. For instance, XPS

and UPS are only sensitive to the states of the core and valence electrons, whereas

LEEDS can only be used to detect the symmetry of surface states.

Why should surface scientists be interested in ISOM? ISOM offers greater flexibility

as it allows the probing of more states of a system using a single apparatus. The long

mean free path of light allows ISOM-based techniques to be used in virtually any

environment from atmospheric to vacuum conditions. The long path length also permits

ISOM to be done at an interface between two media deep inside an optically transparent

sample. Unfortunately, there is no preference to interface-specific signals over bulk-

generated optical signals due to the long mean free path of light.

Nonlinear optical processes can be made surface-specific by particular choices of

symmetry or geometry. The classic example of ISOM is SHG. Under the dipole

approximation, SHG is forbidden in a crystal with inversion symmetry. Thus, a centro-

symmetric crystal will only produce a SHG signal at an interface, where this symmetry is

broken. It should be noted that SHG is sensitive to both to symmetry and the frequencies

of electronic resonances of a surface. (See for example: [10], [11], [12], [13], [14], [15],

[16], [17], [18], [19], [20], [21].) A general solid is not centro-symmetric. Thus, there is

no apparent reason for an optical mixing experiment to be interface-specific. There are

two possible approaches to obtaining ISOM. One is to engineer the incident fields such

that the generated field is non-zero everywhere but in the surface region. This approach is
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utilized in WISOM. The other is to rely on the geometries and polarizations of the applied

fields and angular dependencies of the generated fields in an attempt to enhance the

surface over the bulk contribution to the total signal. This is embodied in RISOM. An

intense theoretical analysis of these two approaches to ISOM is the major subject of this

research.

1.4 ISOM Using Planar Waveguides ( WISOM)

For vibrational resonances, waveguide surface CARS (WSCARS) has been proven to

yield favourable ISOM conditions. WSCARS (i.e., CARS-like WISOM) can provide the

surface-specificity needed to observe less than a monolayer of the subject molecules on a

surface. With the desire to study not the vibrational states of such molecules but the

electronic resonances, an initial theoretical analysis of this technique was done for

electronic states. The initial analysis showed that any WISOM experiment would be

ineffective for four reasons: low signal levels, having to deal with cumbersome

waveguides, including the difficulty of constructing waveguides, and necessity of having to

change waveguides during the course of the experiment. Construction of a waveguide

requires precise control of both the index of refraction and the thickness of the guiding

thin film. Typically, many attempts of fabricating a waveguide with specific parameters

must be made before a satisfactory one is produced. Thus, during a given experiment,

different waveguides with varied thicknesses and film indices must be exchanged as the

field frequencies are scanned. To complicate matters, a single waveguide is effective over

only limited tuning ranges. In a way, Chapter 2 explores how to best choose a waveguide

for a given experiment. Before this work was begun, the prevailing literature considered

only three-beam combinations of waveguide modes to achieve the interference condition

necessary for surface-specificity. Furthermore, there was no documentation on the use of

phase-matching in a waveguide as a way to increase signal levels. Phase-matching and

enhanced interference conditions made possible by four-beam mode combinations allow

the fullest exploitation of a given waveguide for a WISOM experiment.
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From this initial investigation, different questions became important. Is there a way to

maximize the surface-to-bulk signal for a WSCARS experiment over what is commonly

done? Can the resonances of an adsorbate at a surface be separated from the resonances

of the bulk crystal? A crude illustration of this is given in Figure 1.4. An absorbate

adheres to a surface and has vibrational and electronic resonances. The crystal itself has

inherent vibrational and electronic states. Because there are many fewer adsorbate species

than atoms in the crystal, the task of separating out the affects of the adsorbate resonances

over the large background of crystal resonances is daunting.

Adsorbate
Surface Vibrational and
Electronic States

Surface

Bulk Crystal Vibrational
Bulk Crystal and Electronic States

Figure 1.4: An adsorbate 'bound' to a
crystal surface.

An extensive theoretical investigation was launched to map out all experimentally

relevant parameter space in order to ascertain if using four-beam waveguide modes and

possibly phase-matching would make WISOM a more accessible technique. The usual

approach of solving for the generated field was adopted: First, the (range of) frequencies

of the incident waves are picked. Then a mode combination is chosen; one with the

potential of satisfying the interference condition leading to surface-specificity. Performing

WSCARS in the three-beam way requires two couplers and three beams, one beam

carrying two waves with degenerate wavevectors. This means two of the waves are
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coupled into the same waveguide mode. In order to meet the interference condition, the

product of the (field profiles for each of the) modes must be even. Using the three-beam

mode combinations, mode combinations [0,0,0,1], [0,1,0,0], [1,0,1,1], and [1,1,1,0] lead

to an interference condition. Here the mode combinations are labeled as: [mode of wave

with k1, mode of wave with k2, mode of wave with k3, mode of wave with k4]. Note that

the mode of the first and third waves are always equal for these three-beam mode

combinations. Second, the guiding film thickness and index of refraction are adjusted to

maximize the interference condition. Often, the interference condition is poorly met and

the mode combination is discarded as non-viable. Once maximized, it is seen that the

interference condition is maximum for specific waveguides with certain mode

combinations. Furthermore, the range of frequencies (i.e., the tuning range) over which

the interference condition is favourable is found to be rather limited for any given mode

combination and waveguide. Also, the phase-mismatch of the mode combinations is large

if k3 = k1. Hence, the signals are small. This is especially so if the film has dispersion.

This inquiry gave a new direction to the analysis: can phase-matching be done in the

waveguide as a means of increasing the signal levels? In order to achieve phase-matching,

the degeneracy of k1 and k3 must be broken. This is done by separating the beam carrying

the waves with k1 and k3 into two beams. Hence the FWM process is done with a total of

four beams. With these beams separated, there is no reason to have them in the same

mode. In fact, placing them in different modes is advantageous from the standpoint of

maximizing the interference condition. Hence, four-beam mode combinations are

considered. To understand the experimental difference between the three-beam and four-

beam mode combinations, consider Figure 1.5 and Figure 1.6. Figure 1.5 shows a

WSCARS experiment using three-beam mode combinations where wave 1 and wave 3 are

carried by the same beam. The experiment requires two couplers and three beams as is

shown. Using four-beam modes, four couplers are needed to couple four different waves

to the waveguide. Such a coupling scheme is illustrated in Figure 1.6. Here grating

couplers are utilized instead of prism couplers. Clearly, experiments utilizing four-beam
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mode combinations are more cumbersome. Despite the experimental complexities, it was

thought that improvements in WISOM could be had by employing the four-beam

combinations while phase-matching inside the waveguide.

Figure 1.5: A three-beam WSCARS
coupling scheme.

Figure 1.6: A four coupler scheme using
integrated grating couplers for four-beam
mode combinations.

From the theoretical analysis several conclusions are drawn. Most importantly, the use

of four-beam mode combinations allows for both favourable interference conditions and

phase-matching in waveguides. Improvements over the surface-to-bulk signal ratio can be

as large as a factor of 100, and are typically larger than 10. The overall signal levels,

because of the phase-matching, can be increased by factors ranging from 10 to 10,000.

Furthermore, the tuning range (the range over which a single waveguide exhibits

favourable interference conditions for a given mode combination) is increased for some
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conditions. Despite this improvement, to experimentally scan through the available

surface resonances, several waveguides would still be required. This would mean

changing waveguides during the experiment, which is undesirable. Despite the additional

difficulty, four-beam mode combination experiments seem to be advantageous.

Calculations show that typically to achieve phase-matching, the angle between each beam

needs to be approximately 90 degrees regardless of the mode combination. To offset this

difficulty, sections are included on waveguide coupling using gratings. Fabrication

techniques for integrated grating couplers are discussed. Techniques for building grating

structures are suggested based on theoretical inquiry. These include constructing ring

gratings by masking diffraction from circular apertures and diffractive optics generated by

computer comprised by a superposition of Jo functions.

The fmal conclusion that is reached is that WISOM is an experimentally difficult

technique. Furthermore, there are limitations on the kind of surfaces that can be studied.

Only dielectric surfaces for which thin films can be grown on dielectric substrates can be

scrutinized. These thin film surfaces must have relatively high indices of refraction capable

of supporting guided modes. Finally, the reproducibility of growing these film surfaces

should be good, since a battery of waveguides must be constructed in order to scan

through the resonances of the surface.

1.5 ISOM Using Reflection Geometry (RISOM)

With the limited success of WISOM, the old question seemed still relevant: Can the

surface-to-bulk signal ratio be maximized in ISOM experiments? Since there is a small

surface signal riding atop a large bulk signal (which is considered noise in a surface

resonance experiment), how can the typically poor signal-to-noise ratio be maximized?

Chapter 2 takes the approach of using ISOM in waveguide geometry to maximize the

surface-to-bulk signal ratio. The research reported in Chapter 2 extends the information

available on WISOM, but leaves the question with a limited and unsatisfactory answer.
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Attempting to ask a more specific question, a new query was posed: Can simple

reflection geometry be employed in an optical mixing process and still be used to detect a

surface component to a signal that is composed mostly of bulk contributions? A reflective

geometry experiment is straightforward and phase-matching is easy to achieve; signals are

typically large and there are no apparent limitations on the type of surface that can be

studied. A typical experiment is shown in Figure 1.7. Specifically, it shows a three-wave

mixing process in reflection geometry. Contrasted with the waveguide geometry, in this

geometry, experiments are relatively easy. There is no need for coupling into a guiding

structure. However, in the waveguide geometry, there is an engineered interference

condition; the reflection geometry has no apparent interference condition. It is the

interference condition in WISOM that prevents signals from being generated everywhere

but the surface monolayer and gives superb surface-to-bulk signal ratios.

Figure 1.7: Diagram of a typical TWM
experiment in reflection geometry.

What conditions yield favourable signal-to-noise ratios in RISOM experiments? In a

linear process, the reflection off a semi-infinite medium obeys the (linear) law of reflection.

The angular and polarization dependencies are described by the familiar (linear) Fresnel

equations. By analogy, when the process is nonlinear, reflections obey nonlinear Fresnel

equations that describe their angular and polarization dependencies. Since the surface and

bulk are very different as discussed in Section 1.3, the nonlinear Fresnel equations for the

surface and bulk are dissimilar. This means the angular and, perhaps, polarization

behaviour is different for the two regions. On this basis, it is possible to separate the
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surface and bulk signals in a nonlinear optical process that employs reflection geometry.

How then, can RISOM experiments be theoretically predicted?

An exhaustive literature search revealed no theoretical models that can simultaneously

predict the surface and bulk contributions of an OM process in reflective geometry.

Undoubtedly the best approach to creating such a model is a microscopic dipole sheet

model. Such a model has been used to calculate the microscopic local fields inside a semi-

infinite dipole structure where all the dipoles were identical [22]. It proved very

successful, but involved. Rather than do this time-consuming and arduous calculation, a

less precise but much simpler macroscopic model was adopted. In a series of papers,

Bloembergen and co-workers determined the theoretical equations that govern optical

mixing (particularly SHG) in reflection geometry [23], [24], [25]. This macroscopic

approach assumed optical mixing occurred within a thin slab, or surface region, of

nonlinear material. Below the surface layer is a semi-infinite bulk with only linear

properties. The linear properties of the bulk are chosen to be different than the surface

slab. The interface between the surface and bulk provides a mechanism for the generated

light to reflect and return to the vacuum. The surface-to-bulk index ratio appears in the

nonlinear Fresnel equations as a scaling factor in the amplitude of the generated field as

measured in the vacuum.

A new, macroscopic model was constructed to predict the first favourable RISOM

conditions. An exact microscopic model was considered too fatiguing for first-time

predictions. The new model was constructed by extensive modification of Bloembergen's

macroscopic model. His model, however, does not include OM contributions from the

bulk which must also have nonlinear properties. Beginning with Bloembergen's model, an

additional layer is added between the surface slab and the bulk. This layer is referred to as

the bulk median. This layer is given nonlinear properties different from that of the surface.

The bulk median's linear index of refraction also differs from the semi-infinite bulk. This

new interface establishes a mechanism for the light generated in the bulk (median) to be
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reflected back into the surface layer and into the vacuum. This bulk-bulk median interface

provides the same reflective boundary as the bulk-surface interface does in the

Bloembergen model, hence the new RISOM model simultaneously predicts both nonlinear

surface and bulk signals. The ratio of the indices of refraction between bulk median and

bulk become scaling parameters in the nonlinear Fresnel coefficients. A similar argument

is made for the thickness of the bulk median and surface layers. Since the layers are

introduced arbitrarily, the thickness is an arbitrary scaling parameter that appears primarily

in the phase of the field originating from the two layers. With light re-entering the vacuum

generated from both the surface and the bulk (median), a comparison of the ratio of

amplitudes can be made. The field amplitudes are derived as they are in the Bloembergen

model: all the incident, reflected, and transmitted fields are defined in the various layers

and the boundary conditions are satisfied at the interfaces between layers. Analytical

expressions for the bulk and surface generated field amplitudes are then found. These

expressions contain the incident field amplitudes, frequencies, directions, and polarizations

as well as the reflected waves' directions and polarizations. The actual derivation of these

expressions is detailed in Appendix B. The result is a more precise model for interface-

specific optical mixing.

The model is then used to predict ISOM conditions for specific processes such as

CARS-like FWM, SHG, and TWM. The major portion of Chapter 3 is devoted to

mapping out the parameter space of OM in reflection geometry. Specifically, the model is

used to find conditions that yield enhanced surface-to-bulk signal ratios, that is, favourable

RISOM conditions. First only collinear phase-matched geometries are considered.

Collinear phase-matching is appropriate for dispersionless materials as well as harmonic

generation. Both polarization states, S and P, are explored. In general, it is found that

improvement in the surface-to-bulk signal ratio is possible for S-polarization when the

reflection angle is large; for P-waves, enhancement is done by making use of the nonlinear

Brewster's angle -- the nonlinear analogue to the linear Brewster's angle. Non-collinear

phase-matching is then considered; it is appropriate when the linear dispersion of materials



22

is important. The angular dependencies for the two polarization states for SHG (where

dispersion is very important, but phase-matching is automatic) and CARS-like FWM

(where dispersion is less important, but phase-matching is crucial) are specifically

considered. It is found that the conditions for enhanced signal-to-noise ratio for collinear

and non-collinear phase-matching are identical. Enhancement is generally better, however,

when the surface and bulk dispersions are dissimilar. In addition, it is shown that there is

an angular separation of bulk and surface signals due to dispersion.

Before it concludes, Chapter 3 discusses how to use the results of this theoretical

analysis to guide microscopic calculations. Also discussions are included on how to

experimentally search for resonant RISOM signals. The results of this chapter can be

seen as guide to be used by other researchers in doing microscopic calculations and

experiments using RISOM to study surfaces.
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2. INTERFACE-SPECIFIC OPTICAL MIXING EMPLOYING GUIDED
WAVE GEOMETRY

2.1 Introduction

As discussed in Chapter 1, in optical mixing processes typically the surface signal

arises from a region only a few layers of molecules thick. The number of surface-residing

molecules that interact with the optical fields (generating mixed fields) is relatively small.

This is to be compared with those bulk-residing molecules that ordinarily contribute to the

mixed fields. Hence, the bulk contribution to the total signal is usually much greater than

the surface contribution. By some contrivance of the geometry of the incident waves, the

mixed (i.e., generated) waves are to be created such that the surface-to-bulk signal ratio is

enhanced. With this condition, the surface region can be investigated for frequency

response, symmetry information, and perhaps time-wise transitory behaviour. This, in

turn, aids the researcher in determining the stoichiometry, 'binding' mechanisms, possible

migration times, and even (chemical) reaction properties of the surface region. Recall that

the third order susceptibility is responsible for four-wave mixing (FWM). Since the third

order susceptibility contains more information about the symmetry of the surface residing

species (than the second order susceptibility), FWM is traditionally chosen as the tool to

study surface stoichiometry. Laboratory experiments utilizing FWM are not trivial; the

probability of generated mixed light is low. Higher order mixing processes are even more

illusive and are not commonly employed. When each of the waves in a FWM process are

nearly equal in frequency, dispersion plays a minor role. Dispersion-related phase-

mismatch can, therefor, be a minimal effect. CARS-like FWM is the process that best

satisfies the criterion that all the waves be of nearly the same frequency. Hence, this

chapter will focus on designing ISOM experiments utilizing CARS-like FWM.
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How can a surface be studied using CARS-like FWM if the surface-to-bulk signal ratio

is minuscule? The only way to improve this ratio for any given surface is to inhibit the

mixing process in the bulk region and hope that the surface signal will be attenuated to a

lesser degree. One way to do this is to take advantage of any dissimilarities in the angular

dependence of FWM in the bulk and surface regions. Another approach is to manipulate

the phase-mismatch, and hence the generated (output) intensity, such that it is large in the

bulk, but small in the surface region. These approaches are investigated in Chapter 3.

Each of these approaches rely on differences of the optical mixing properties of the bulk

and surface. Yet another approach attempts to engineer a structure in which the mixing

process is zero in the bulk due to an interference condition among the applied waves. A

non-symmetric planar waveguide can be used to establish just such an interference

condition.

This chapter takes the approach of manipulating the applied fields to achieve an

interference condition everywhere except the surface region. Thus, fields are only

generated in the surface region; this enhances the surface-to-bulk signal ratio. This is done

in the confines of an asymmetric planar waveguide. This work refers to ISOM in

waveguide geometry as waveguide ISOM (WISOM). The goal of this chapter is to

investigate the experimentally relevant parameter space of WISOM. Phase-matching is

considered in the waveguide geometry as a way to increase the surface signal. The ad hoc

searching for phase-matching conditions experimentally is not practical. Hence the goal of

exploring the entire parameter space. No definitive body of information or 'data base'

currently exists on waveguide parameters for WISOM experiments; this work partially

remedies that deficiency.

This chapter begins with an overview of CARS-like FWM processes, the details of

asymmetric waveguide structures, and the aspects of WISOM experiments. This is done

in Section 2.2. The next section, Section 2.3, is devoted to reviewing the work of

previous experimental researches in WISOM and gives some justification as to the
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direction taken by this research. Section 2.4 is devoted to the theoretical development of

WISOM. In this section, the expressions used to quantify the degree of surface-specificity

are derived. These quantifiers include the 'direct ratio' and the 'cross ratio'. The next

section of this chapter reports the results of the numerical calculations that were used to

evaluate the direct and cross ratios. This section begins with a discussion of what

parameters are experimentally relevant and the range of values used in the calculations. It

then continues with a detailed description of the numerical analysis of WISOM parameter

space. Although all the results cannot be shown in this document, the most relevant data

are shown. All the data and the software used generated the data, however, are

reproduced on the CD-ROM enclosed at the end of this document. After some initial

conclusions are drawn, Section 2.6 continues the discussion of WISOM by considering

phase-matching of Gaussian beams in a waveguide. Since phase-matching in a waveguide

is advantageous and multiple couplers are required, Section 2.7 considers approaches to

fabricating integrated waveguide couplers. Couplers such as achromatic prisms, linear and

ring gratings, and photorefractive-based couplers are reviewed.

2.2 Overview of CARS-Like FWM and WISOM Experiments

In FWM, four waves with frequencies oh, (.1.)2, oh, and au are involved. Often, the

wavevectors are used to describe the process. The wavevectors describing this process

are labeled k1, k2, k3, and k4. CARS-like FWM experiments are done in a material

having a non-zero third order susceptibility and are typified by au = oh - oh + oh, where

oh = oh; in terms of the wavevectors, E4 = El- E2 + ii. The geometry of a such an

experiment is shown in Figure 2.1. Note that it is convenient to have both waves carried

in the same beam by using collinear wavevectors El and iii. This makes the experimental

apparatus less complicated.

There is no reason to limit these discussions to a particular FWM process. A general

convention can be made to include all processes. The convention adopted is that all
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Figure 2.1: A typical FWM experiment.

annihilated waves have positive wavevectors and frequencies, and all stimulated waves

have negative wavevectors and frequencies. Furthermore, an electric field with negative

frequency argument is the complex conjugate of the field: kco) = t* (()). Hence, the

observed generated wave's frequency for all FWM processes could be written as -Olt = COI

+ (02 + (03. If the medium has dispersion, the wavevectors of the 'incident' waves are

frequency dependent. The induced polarization is written as

1 5 ( 3 ) ( ° ) 4 ) = X (3) (°) 4 ; C12°) 22°)3 )E(°)1)E(C° 2 )ga)3)e4(171+4+173).?--(°411*

The generated wave is characterized by

EC ,t) E(o)4 )eiRkl (a) )E2 0)2)+4 0)3)+4 0)4#F-0)4t] (2.2)

(2.1)

Clearly the phase of the source polarization is generally not equal to the phase of the

generated wave. That is, the phase-mismatch, measured by the size of
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(k + ic2 + k,3 +k,).F, is not generally zero. When the media have dispersion, the phase-

mismatch can only be zero if the directions of the wavevectors k1, ic2, and k3, are

appropriately adjusted. Each wavevector is described by its spherical coordinates:

k (i = 1,4). As will be discussed, there will only be specific polar angles,

allowed in a waveguide; these correspond to the allowed waveguide modes. Thus, only

the azimuthal angles, (pi, allow the experimenter to freely adjust the wavevectors, k1, £2,

and Er.,3, to achieve phase-matching. Due to the physical difficulties, phase-matching in a

waveguide has been unattainable by experimentalists. The reader is reminded that when

there is no phase-mismatch, the generated signal becomes very large. As the phase-

mismatch increases, this signal is attenuated rapidly.

As an example, consider standard CARS-like FWM. Waves of frequency (Ai and ob

are annihilated, the wave at oh is stimulated, and the wave with frequency w is generated

and subsequently observed. Thus, the sum of all the wavevectors in the process is Ecl +

( k2) + k3 ( k4) and the frequency of the generated wave is au = col + ( -on) + off. The

source polarization would be expressed as

13(3) (°)4 X (3) (CD 4 ;°)11(1)2 9°)3 AW1)E*(°32)ga)3)e1(11-112-43).7-°)4ti

The generated wave would, in this case, be characterized by

(2.3)

f(F, t) g(04 )ei[(ii 401)-4 (0)2)E3(0)3)--E4(0)4)).F-0)4t]. (2.4)

A diagram of an asymmetric waveguide typically used for WISOM is pictured in

Figure 2.2. The waveguide is constructed of a thin high-index film atop a low-index

substrate. Archetypal films have indices between 1.6 and 2.3 and thicknesses, h, ranging
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from 400 to 1000 nm. The substrates are usually 7059 glass or fused silica, which has a

lower index of refraction of 1.47. The surface is the interstitial layer is the transition

region between the vacuum and the high-index film. This interstitial region contains

unique components that makes it different from the film layer. Its thickness is typically on

the order of an atomic or molecular diameter, approximately 5 nm or so. Clearly, the

surface (or cover) region has different optical properties (both linear and nonlinear) than

the film of the substrate. In fact, when molecules are adsorbed to a surface, as is

illustrated in Figure 2.3, a whole new set of (nonlinear) optical resonances are added to

those of the bulk (i.e., the film and substrate). Often, the resonances of the cover layer of

adsorbed species do not significantly overlap the resonances of the waveguiding film.

However, the number of species that interact in the nonlinear mixing process for the cover

layer is much smaller than those residing in the film. The third order susceptibility of the

cover may be larger than the film by a factor of 10 or 10,000; this is because the mixing

process accesses a resonance of the cover. Even though the cover has a much larger

susceptibly than the film, the film could still contribute more to the total signal due to the

much larger number of species that interact with the optical fields. The substrate is usually

ignored in this analysis since the evanescent fields do not reach very fax into this region.

However, it should not be overlooked that the substrate may have its own resonances that

the experimenter may have to contend with.

It should be pointed out that the interface between the film and the substrate is likely

to have a morphology similar to the film-vacuum interface. A small interstitial region

between theses two layers may also have unique optical properties. This is something the

experimenter wishes to avoid, but it should not be ignored.

Quietly neglected is the fact that the film, since it is to support guided modes, must be

an optically transparent dielectric. The restrictions are even more harsh: Not only must

the film (i.e., the surface under study) have a high index, it must be a material which can

be sputtered, spun-coated, dip-coated, evapourated, or otherwise affixed to the substrate.
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The film must be robust enough to survive handling, repeated vacuum cyclings, perhaps

thermal cyclings, and the absorbate molecules. Photoactive and photoreactive materials

are usually avoided [28]. These restrictions put severe limits on the types of surfaces that

can be studied.

Figure 2.2: Structure of a planar waveguide.

Vacuum or Standard Atmosphere
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Figure 2.3: A cover layer of adsorbates
`bound' to the crystalline thin film of a planar
waveguide.
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One impetus for beginning this mapping of waveguide parameters for favourable

WISOM conditions was the development of a sputtering technique for laying silicon-

oxynitride films, SiO,NyHz [29]. Using this technique, robust films can be grown on a

silicon dioxide substrate. What is unique about this method is that the index of refraction

can be selected within the range 1.6 to 2.05 by varying the amount of nitrogen and

hydrogen.

A WISOM experiment is illustrated in Figure 2.4. Surface-specificity has been

achieved using this planar waveguide geometry [1]. Such a guiding structure consists of

the film region of thickness h, third order nonlinear susceptibility, xi, and linear index of

The film is grown atop the substrate having nonlinear susceptibility, x,, and linear index tis.

Residing above the film is the cover or surface region with nonlinear susceptibility xc and

linear index rt.,. The waves are coupled into the structure using high-index TiO2 or SrTiO3

prisms. The applied waves are shown entering the left prism in Figure 2.4. The photons

with k1 and k3 (shown here non-degenerate in wavevector) are annihilated in a CARS-like

process; k2 is used to stimulate the emission of photons at o.)2. A wave, with wavevector

1c4 is emitted and decoupled from the film by prism on the right. Imagine that the waves

shown in Figure 2.4 are propagating in different azimuthal directions. (See, for example,

Figure 2.7 or Figure 2.8.) At the location at which the three applied waves cross, the field

strengths may be large enough to create the fourth wave. If the susceptibilities (film,

cover, and substrate) of this 'interaction region' are large, the intensity of fourth wave will

be significant. As stated earlier, if the waves are tuned to a resonance of the surface, the

ratio of the cover-to-film susceptibilities may be 100. Since the interaction region extends

a distance about one vacuum wavelength into the cover region via the evanescent field, all

surface species are sampled. Even though the fields may have a large amplitude, the

generated fourth wave may not be particularly strong. As a precursor to future discussion,

it might be mentioned that in order to achieve a strong signal, the induced nonlinear

polarization, (2.1), must be large and the phase-mismatch small The induced polarization

is large if the susceptibility is large and the product of the applied fields (from waves 1
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though 3) is sizable. Also, the strength of the mixed wave depends on the size of

interaction region; the larger in interaction region, the larger the number of individual

species sampled. If the magnitude of the generated (fourth) wave is large, the waves

arising from the film part of the interaction region may also be large. Despite the careful

minimizing of the fields in the film region, the interaction region in the film (see Figure

2.4) can be significant. The film part of the interaction region (where waves 1, 2, and 3

cross in the film) may be anywhere from 103 to 105 times larger the cover portion of the

interaction zone. Without arduous attempts to minimize the fields in the film region, the

cover-to-film signal ratio, and hence the surface-specificity, can be very poor.

Figure 2.4: Diagram of FWM in a
waveguide.

As alluded to, the scheme used to improve the surface-to-film signal ratio is to create a

destructive interference condition within the film region. This destructive interference is

not fortuitous; it must be carefully engineered. Guided waves have discrete wavevector

modes; these modes can be even or odd, not unlike resonance modes on a string. That is,

the solution to the electric field distribution for one guided wave is either an even or odd
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function with respect to x, the direction parallel to the normal This is shown in Figure 2.5

where the amplitude of the fields of two even modes (having slightly differing frequencies)

and one odd mode are shown in a waveguide structure. The origin of the coordinate

system is placed in the center of the film layer as is indicated in Figure 2.4. Note that this

plot is oriented differently than Figure 2.4. In Figure 2.4, the x-direction vertical, in

Figure 2.5 the x-direction is horizontal, but the x-direction still represents the direction

parallel to the normal of the planar structure. The heavy vertical lines in Figure 2.5

indicate the boundaries of the film region: the right side is the film-cover interface and the

left is the film-substrate interface.

Figure 2.5: The electric field amplitudes of
three guided waves versus depth in an
asymmetric waveguide.

Recall that the intensity of the fourth wave of the CARS-like process is dependent on

the amplitude of the induced nonlinear polarization. The polarization, in turn, is

dependent on the product of the fields 1 through 3. Since the induced (fourth) field comes

from the entire interaction region, the strength of the observed wave is integrated over the

interaction region. The integral is a three-dimensional integral over x-, y-, and z-
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directions. Clearly, if the product of the three applied fields is antisymmetric with respect

to the center of the film, the integral over the film is zero. Hence the mixed wave

amplitude from the film is zero. The product of the three field amplitude profiles along the

x-direction shown in Figure 2.5 is shown in Figure 2.6. Here between the two heavy

vertical lines, indicating the film region, the integral over this function is (approximately)

zero; it is roughly asymmetric about the symmetric limits -h/2 to h/2. Thus, if two of the

waves are coupled to even modes and the third to an odd mode, the product of the fields

in the x-direction is an asymmetric function (about the center of the film layer), the integral

over this film vanishes, and the strength of the mixed wave is zero in the film. Note that

there are many other combinations of even and odd modes which will (approximately)

yield no mixed signal originating from the film. In fact there are 18 such combinations

which have this potential (assuming all waves are non-degenerate in wavevector). In the

example given above (shown in Figure 2.5), the integral over the cover region is clearly

not zero. This can be seen be examination of the product of the field amplitudes (Figure

2.6) in the cover region (to the right of the heavy right-hand vertical line); their product is

not odd. Thus, there is (approximately) no contribution from the film; the observed mixed

wave is generated predominately from the surface region. It might be noted that, from

examination of the substrate portion of Figure 2.6, the contribution from the substrate

-750 500 50' 750

Figure 2.6: The product of electric field
amplitudes of three guided waves versus
depth in an asymmetric waveguide.
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region should not be neglected. Also, it might be pointed out that the integrals in the

directions in the plane of the waveguide (y- and z-directions) cannot be zero for a

generated wave of finite intensity. Furthermore, the reader is reminded that the phase-

mismatch depends of the directions of these applied waves. Hence, the mixed wave may

be very weak due to large mismatches even with the favour of all other factors.

The size of the interaction region effects the strength of the mixed wave. The larger

the interaction region, the larger the strength. The interaction region depends only on the

volume of overlap of the waves. Plane waves are typically used [2] to develop a model

for the waveguide, however true laboratory experiments use finite beams. Actual

experiments use beams that are Gaussian in intensity profile; these are focused into the

interaction region. A Gaussian beam experiment is illustrated in Figure 2.7. Here two

Gaussian beams (one containing both sources for waves 1 and 3) are focused where they

cross. In the region of overlap (i.e., the interaction region) waves of the mixed frequency

add together to form a mixed beam. When the beams are not angularly separated by large

amounts, the overlap is large as in Figure 2.7. Experimentally, in this collinear beam case,

the generated limited by the coherence length of the (pulsed) lasers used. However if the

beams are separated by large angles, as in Figure 2.8, the interaction region is smaller.

Apparently a larger overlap is desired, or is it? If the case shown in Figure 2.7 causes

there to be large phase-mismatches, the generated beam will suffer losses in intensity. One

question this research wishes to address is, which case is more favourable? Is a large

interaction region with a large mismatch better than the case shown in Figure 2.8, where

the process is phase-matched, but the interaction region is small'? The reader should be

reminded that since only discrete waves are allowed in the waveguide in the vertical

direction, the three-dimensional Gaussian nature of a beam coupled to a waveguide is lost.

Focused Gaussian profiles remain in the plane of the waveguide; integrations over these

dimensions should reflect that. The integration in the waveguide's normal direction is not

over a product of three Gaussian profiles. Rather it is the field profile determined by the

guided modes in Figure 2.5.
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Interaction

Region

Figure 2.7: Focused nearly collinear
Gaussian beams crossing in a nonlinear
medium resulting in a large interaction
region.

k1= )13

Figure 2.8: Focused Gaussian beams
crossing at large angles yielding a small
interaction region.

One fmal subject important to WISOM experiments is the coupling scheme.

Commonly, high-index prism couplers are used ([2], [3], and [30]). A SrTiO3 or a TiO2

prism is pressed against the waveguide such that good optical contact is maintained. Such

a scheme is pictured in the left side of

Figure 2.9. This shows one prism coupler coupling
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three beams (two are degenerate) to an asymmetric waveguide. A second coupler

decouples the beam generated in the waveguide. Note that the beams originally coupled

into the waveguide are decoupled together with the generated beam. The right side of

Figure 2.9 shows two grating couplers used in place of prisms. Grating couplers have

been used to couple to planar waveguides in many other applications. Fabrication of

linear grating couplers have been reviewed by several researchers [32], [33], [34]. They

all are created by standard holographic lithography and etching of the waveguide. This

work later discusses fabrication of grating couplers and suggests new grating

configurations (other than linear gratings) in an attempt to make phase-matching in a

waveguide more attainable. The mode combinations using a single beam containing

degenerate frequencies (0/ and (03 will be referred to as three-beam mode combinations.

In the following discussion, the mode combinations are labeled using the convention: [vi,

v2, v3, v4], where v1 is the mode that wave k1 is coupled to, etc. The three-beam mode

combinations are one in which v1 = v3. Mode combinations [0,1,0,1] and [1,1,1,2], for

example, are all three-beam mode combinations which may lead to favourable surface-to-

bulk signal ratios. This is clear since even functions of the field profile (in the x-direction)

are associated with even modes and vice-versa. Separating the beam carrying 03/ and (03

into two beams leads to `four-beam mode combinations'. For example, four-beam mode

combinations are [1,1,0,1], [2,2,0,1], and [2,2,1,1].

Figure 2.9: Two possible planar waveguide
coupling schemes.
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2.3 Previous Experimental WISOM Work

Four-wave (CARS-like) ISOM performed in dielectric waveguides has been used to

provide the surface-specificity sensitive enough to observe fractions of a monolayer of

molecules on a surface. CARS was first seen in a waveguide made from a polystyrene

film [26]. Surface-specificity was first reported in a TiO2 waveguide on a Nb2O5 substrate

[27]. Since then, the WISOM technique has been used to characterize vibrational states of

Oi" [1], ethylene [2], and phenol and pyridine [3] on zinc oxide waveguide surfaces. Each

of these studies used WSCARS utilizing the interference condition as reviewed in the

previous section. This section recalls the important highlights and conclusions of previous

experimental WISOM work.

The CARS spectrum of Oi was investigated on a ZnO surface using a waveguide

constructed of a ZnO film sputtered on a silica substrate [1], [31]. The film, with index

2.00, was made by RF sputtering to a thickness of 600 ± 30 nm. Waves were coupled by

means of SrTiO3 prisms. Two beams, one beam carrying degenerate frequencies 0.)/ and

(03, and one beam carrying o were coupled into the waveguide. The beams were focused

into the sample via a 300 mm lens. The waveguide was placed in a vacuum chamber and

was baked out. As 02 was added to the system, frequency scans were taken. With

intense beams, a spectrum identified as Oi was revealed. The surface-to-film signal ratio

was reported to be 1:4. Adsorption of ethylene [2] was studied on ZnO surfaces using the

same technique and experimental details as the 0"2- experiments. A third series of

experiments used CARS-WISOM to observe and phenol and pyridine [3] adsorbed on

ZnO surfaces. With the mode combination used ([1,1,1,2]), the waveguide was shown to

provide surface-specificity over a 100 cm' tuning range. In all three of these experiments,

phase-matching was not achievable due to geometrical limitations. Typical angular

separation between input beams was 3 to 5 degrees. It was reported that the contribution
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in the film was sensitive to the separation angle, indicating that phase-mismatch is

important. This report lends justification for the concept that phase-matching in the cover

region may enhance the surface-specific signal.

The reader may notice that only a few of the 18 possible guiding modes were used in

the experimental work reviewed above. This is partially due to geometrical limitations of

the experimental set ups. That is, these experiments all use three-beam mode

combinations. Using four-beam mode combinations increases the probability of obtaining

surface-specificity. A second realization these experiments provide is that these mode

combinations are only surface-specific over a limited frequency range. The original

research goal of this work was to experimentally probe the electronic states of simple

molecules on a surface by means of CARS-like WISOM. The availability of silicon-

oxynitride films on fused silica substrates opened exciting possibilities. These waveguides

can be fabricated with film indices from 1.6 to 2.1. After an ephemeral theoretical analysis

of the WISOM technique for electronic states, the experiment appeared to have little

promise due to low signal levels. The reported experimental prevailing literature

considered only three-beam combinations of waveguide modes to achieve the interference

condition necessary for surface-specificity. Furthermore, no researcher has reported

phase-matching in the waveguide as a way to increase signal levels. Hence, an extensive

investigation was launched to map out all experimentally relevant WISOM parameter

space. The motivation being to ascertain if using four-beam waveguide modes and

possibly phase-matching could make WISOM a viable technique.

2.4 Theoretical Development of WISOM

This theoretical development is aimed at deriving ratios that can be used to quantify

the degree of surface-specificity in a WISOM experiment. As it happens, the surface-to-

bulk intensity ratio is not the best ratio to investigate due to its divergence when the bulk

signal goes to zero. The numerical difficulties in dealing with such divergences can be
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avoided by choosing ratios that do not diverge as the parameter space of the waveguiding

structure is investigated. In order to map out the parameter space for FWM, the observed

field, assumed to have wavevector k4, must be solved for. The general development done

here expresses the field of this observed (plane) wave in terms of the parameters of the

incident plane waves, the linear indices, and nonlinear susceptibilities of the cover, film,

and substrate. Only transverse electric (TE) modes are considered here.

There is an unfortunate confusion in coordinates used to describe the directions of the

wavevectors and fields. For reasons which are apparent in the focused Gaussian beam

analysis of WISOM, it is best to describe the plane waves comprising the Fourier

decomposition of the beams in a coordinate system with the z-axis oriented along the

direction of the center of the beam. For every beam, there is a separate coordinate system.

The waveguide has its own coordinate system which is shown in Figure 2.4. The z-axis is

taken to be along the direction of the first beam, the beam that carries col. To best

describe the incident and observed plane waves (and beams), the waveguide coordinate

system is used. Since the z-axis is along the propagation direction of the first beam, the

usual spherical angles cannot be used to describe the directions of the waves outside the

waveguide (before they are coupled or after the are decoupled from the waveguide).

Outside the waveguide each wave i (i = 1,...,4) is described by its field Ei and wavevector

A. The direction of Ei is defined by Ei = [Ikil, ad, where the angle 15i, is the angle from

the x-axis to the wavevector (the akin to the polar angle) and the angle at from the z-axis

to the wavevector (an azimuthal angle). This arrangement is pictured in

Figure 2.10.

To quickly refer to the frequencies and angular parameters of the waves, the following

convention is adopted: All the frequencies for mode combination [v1, v2, v3, v4] are

represented by Rol, oh, oh, old, the set of 'polar' angles by ['51052053, *a], and the

`azimuthal' direction angles by [al =- 0, a2, a3, a4]. This defines the frequency and

directions of the wave before being coupled into the waveguide.
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Figure 2.10: Diagram showing the direction
angles outside the waveguide structure.

2.4.1 The Wave Equation for Waveguides

To find the contributions to the mixed waves from the cover, film, and substrate, the

induced polarizations in each region must be found. This requires that each of the applied

fields be known (recall (2.1)). The fields are found by considering Maxwell's equations

and applying the boundary conditions at each interface. Usually only plane waves are

considered in this solution. The effects of Gaussian beams will be found by making linear

superpositions of the plane wave solution; this occurs in Section 2.6. The discussion

presented here is detailed in Appendix A. It begins with Maxwell's equations for

dielectrics in absence of sources (using Gaussian units) which are:
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Vxf.-lath, Vxii=1-arb,

In general, all the fields are complex and are functions of space (x, y, z) and time. The

wave equation is derived in the usual way [74]. Making only the assumptions that the

index of refraction is time-independent (i.e., ignoring the nonlinear index of refraction,

such that a n = 0) and that the waveguide is constructed from dielectric materials, a wave

equation for a waveguide can be derived. Since the wave equation for the magnetic field

may be easier to solve than is electric field counterpart, both the electric field and magnetic

field versions of the wave equation for an inhomogeneous dielectric waveguide, that is,

which a continuous variation in n, are derived in Appendix A. The results are:

and

v2E " a2E
C2

2(t n + 2(Vn V)E+ 20n x x n2 (E. n)V ( -12-n)
n2

2n4a = 27[(V x (V x

(2.5)

(2.6)
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Considering the assumptions made, the wave equations for a waveguide, (2.5) and (2.6),

are perfectly general for dielectric waveguides. This includes graded-index and

asymmetric waveguides. There are various approaches to solving the above wave

equations. Traditionally, solutions to these inhomogeneous differential equations are

solved by adding a particular solution to the solution to the homogenous wave equation.

An unorthodox, but effective, approach treats the modes as quantized solutions to the

Hamiltonian appropriate to this wave equation and engages perturbation theory. Although

the experimental waveguides available [29] for WISOM experiments are all step index

waveguides, it is important to review the possibility of inhomogeneous waveguide

solutions to the wave equation. The possibility of constructing controlled graded-index

waveguides amplifies this import. Furthermore, possible inhomogeneities in the (x-z)

plane of the waveguide caused by surface roughness or uneven thicknesses may impose

the need for considering such inhomogeneities. Finally, much of the work in

inhomogeneous waveguides is applicable to inhomogeneous fields. In particular,

inhomogeneous fields caused by coupling Gaussian beams to a homogenous waveguide.

Thus, a brief summary of these solutions is presented in the next section.

2.4.2 Review of Solutions to the Wave Equation for Inhomogeneous Waveguides

Traditionally, descriptions of beam propagation in inhomogeneous multimode graded-

index waveguides are constructed by employing the scalar Helmholtz wave equation for a

monochromatic component of the beam field. (See, for example, [35, 38, 39, 40].) The

Helmholtz equation for the general case cannot be solved exactly, and different methods

of approximation must be employed for its solution. It might be noted, however that for

homogeneous waveguides with focused Gaussian input fields, the solutions can be found

by numerical methods. This is the approach the research presented here eventually takes.

The multimode graded-index waveguides can usually be characterized by two small

parameters: alL « 1 and 1/(k a) << 1, where L represents the longitudinal scale of any
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inhomogeneity, k is the magnitude of the wavevector, and where a is the transverse size of

the waveguide. Notice that the parameter a represents the effective thickness of the

waveguide including the thickness of the film and the penetration lengths of the evanescent

fields into the cover and substrate regions. These two small parameters (a and L) make it

possible to employ different methods of approximation, which combine peculiarities of

both the method of small perturbations and the method of short wavelength asymptotes

known from diffraction theory (see, for example, [41, 42]). Theoretical investigations of

multimode graded-index waveguides based on geometrical optics use approximate

methods of solving the wave equation (see, for example, [43] and references cited there).

In this method, the beam is represented as superposition of homogeneous plane waves.

The phase of each wave in the superposition is characterized by an optical path length

evaluated from the Eikonal equation. The amplitude of each wave in the superposition

may be calculated from a system of transport equations. A major advantage of the method

of geometrical optics is the simple picture it provides for the characterization of beam

propagation. This theoretical method offers an accuracy which is quite sufficient for most

practical applications and is adopted by this researcher. The main disadvantage of this

approach is the difficulty met in taking into account typical wave effects, such as the

behaviour of wave fields in the regions where beams come to a focus and also in

waveguides with gain or losses. Numerical methods can be employed to deal with these

difficulties. Different modifications of this method have been developed to overcome

these problems. Maslov's canonical operator method [44, 45, 46], which is a

generalization of the WKB method of quantum theory, is a common modification of the

geometrical optics method. The methods of evanescent waves [47] and of complex rays

[48, 49] were developed for the description of the fields in regions of caustics, shadows,

or in absorbing media. Other methods of constructing solutions to the wave equation

make use of localized Gaussian beams [50, 51]. Here local inhomogenities in the index or

the field (as in the case of a focused beam) is represented by an integral over flat-field (i.e.,

unfocused) Gaussian beams. Another powerful approach developed for characterizing

mainly longitudinally inhomogeneous waveguides is the method of cross sections [52, 53,
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36]. It employs an expansion of the field in the inhomogeneous waveguide in terms of

modes of a (longitudinally homogenous) uniform waveguide whose refractive index profile

coincides with an index profile of the inhomogeneous waveguide at the given cross

section. This method is developed by Borovikov [54, 55]. It has also been proposed by

Popov [56] to expand the field in an inhomogeneous waveguide over some other model

functions representing generalizations of the modes of a uniform waveguide.

Unfortunately, employing numerical methods like the finite difference or Fourier transform

beam propagation method [57] for solving Helmholtz's equation is very time consuming

and does not permit analyzing wave propagation in detail. The latter goal can be achieved

solely with the help of exact or approximate analytical techniques. Among the diverse

methods for obtaining approximate solutions of the Helmholtz wave equation deserving

particular attention is one that relies on obtaining solutions to a parabolic (paraxial)

differential equation; a proposal going back to Leontovich and Fock [58]. Many

researchers have contributed to the development of this method: [37, 59, 60]. The

parabolic equation method is applied in order to treat obstinate problems occurring in the

theories of diffraction of the propagation of laser beams in waveguides and in laser

components [35, 39, 40, 41, 62, 63]. Different approximate methods based on the

perturbation theory for a field component (or its logarithm) have been developed in the

framework of the paraxial approximation using the parabolic equation [62]. The most

important aspect of the parabolic wave equation, however, is that it has a similar form to

the Schrodinger equation [35]. Because of this formal resemblance, the well established

quantum-theoretical methods may be used in order to obtain analytical solutions. This is

excellently reviewed by Krivoshlykov [62]. Krivoshlykov devoted his book to the

theoretical investigation of transverse and longitudinally inhomogeneous multimode

graded-index waveguides. The guiding properties of a graded-index waveguide are

brought about by the transverse variation of its refractive index. In the analysis, the

assumption was made that all waveguide inhomogeneities have characteristic lengths

which are small compared with the scale of wavelength. Krivoshlykov discusses the

propagation of coherent or partially coherent beams through longitudinally
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inhomogeneous active or passive multimode graded-index waveguides. This is done

utilizing the formalism of quantum theory. Particularly informative examples include the

detailed behaviour of modes in waveguides and the control of beam properties in different

waveguide structures. Analytical solutions to the parabolic wave equation are derived and

the effects of the inhomogenities (in refractive index) are treated in standard perturbation

theory. Another important feature of the quantum-theoretical approach is the employment

of the coherent state representation and its generalizations for the description of beam

propagation. In particular, standard coherent states correspond to Gaussian beams with

plane wavefronts. The disadvantage to this method is that it is difficult to interpret the

results in a simple physical manner.

2.4.3 Plane Wave Solutions to the Step Index Waveguide

In this work the approach is taken that the Helmholtz equation can be divided into

three equations, one for each region of the asymmetric step index waveguide. Planewave

solutions are sought for each region and matched at the boundaries between regions.

Focused Gaussian beam solutions are considered utilizing a linear superposition of plane

wave solutions.

Given the planar geometry, the polarization basis consists of transverse electric (TE),

that is the electric field in the plane of the waveguide, and transverse magnetic (TM), the

magnetic field is in the plane of the waveguide (along the y-axis).

The experimenter measures the mode angles, '0, and crossing angles, a. Define a

primed coordinate system that is rotated about the y'-altis an angle -.15 and then about the

x'-axis by an angle -a from the unprimed system in

Figure 2.10. The electric field in the waveguide coordinate (the unprimed) system

= + Ey + Ez
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can be represented in the plane wave (the primed) coordinate system by use of

transformation angles such that

E = Ex, cos* i+ Ex, sin* sina y + Ex, situ, cosa 2+

Ey, cosa y Ey, sin a

In terms of the TE polarization in the unprimed frame, the fields are described by

ETE = E. cosa 9 Ey, sin a 2 (2.7)

and in terms of the TM polarization by

kTm = Ei, cos* + E x, sin* sina y +Ex, sin* cosa 2. (2.8)

With expressions (2.7) and (2.8) and the solutions to the wave equations, any combination

of waves (and Gaussian beams) can be described. Referring to

Figure 2.10, the wavevector in the unprimed frame is

with

k = kz, sin* x + kz, cost sina Ice cos* cosa 2, (2.9)

1E1= k = nko nci = kz-

Here ko is related to the vacuum wavelength, 2,, by ko = 270.0. This analysis allows for a

relation between the fields strength of the waves (or beams) outside and inside the

waveguide to be derived.
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An example of an asymmetric step index waveguide is shown in Figure 2.4. There, the

index of refraction changes along the perpendicular, or x-direction, in a discontinuous

way. Recall that the coordinate system of the waveguide places the origin in the center of

the waveguide. If the film thickness is h, then the cover begins at h/2 and the substrate-

film interface is found at -h/2. Thus, the index dependence on x could be written as:

n = n(x)

n for x > h
2

nf for I xl< h
2

ns for x < --h
2

(2.10)

where n, is the index of the cover, of is the of the film, and ns is the index of the substrate.

Similarly, the nonlinear susceptibility can be expressed in a step-wise fashion as

0 for x > h+ one monolayer

x for
2 2

< x 5.h + one monolayer

x f for lxl<
2

x s for x < --h .
2

(2.11)

Solutions to the Helmholtz equation for the three regions are then found. (The solution

for the vacuum region is well known.) Boundary conditions are applied to match the

solutions in the usual way. Solutions are found by assuming the initial condition that

infinite plane waves with a given polarization are impinging at the film-cover boundary of

the waveguide. In this situation the electric field at the cover-film boundary has the form

f(x,y,z,t)= Ey,j, er(i i-4") (2.12)



where

li i = konf z sine.
(2.13)
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In a ray picture, the angle 0 is the angle the rays (in the film layer) reflect off the surface-

film boundary. The experimenter measures an incident angle 15 outside the waveguide as

discussed in (2.9). For TE modes, the electric field amplitudes in three regions of the

waveguide (including their phases) are found to be

1 for x>h12
tc,(x-hi2)eii3v ze-iou (i. e. in the

(n f2 /1,)
monolayer)

; = cos(Kfx 0, )e-it3vze-icol for lx1<h/2 (2.14)

1

h1,2) 2 e+1C,(h12+x)
eifivz e -Jou for x<h12,(4 n.)

with the following definitions: 13 is an effective wavevector for the plane wave traveling

in the film. It is defined as

f knf sinev. (2.15)

This effective wavevector is mode dependent as is indicated by (2.18). The mode

dependent parameters Nv, Ov, Kc, Kf, K, are defined as



Nv = 13v I k, (2.16)

h h
Ov -=-Kf -0, =-Kf +Os, (2.17)

vat =Kfh-Oc -Os, (2.18)

K2 a k2712 r32 for the cover, (2.19)

K 2f _en,. pnv2 for the film, and (2.20)

IC! = k2n2 -13v2 for the substrate. (2.21)

The additional mode dependent parameters which were used in defining the above

parameters are

and

tan-1 K,
Kf

0c tan _1
( Kc ).
Kf

(2.22)

(2.23)

To find the allowed modes, that is the angles Ov (ori), as measured outside the

waveguide), a transcendental equation must be solved:

tanaKft h -vir)= [K , +Ks
' K2

K '
-K Kc sl (2.24)

49
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These final expressions (2.14) through (2.24) describe the field amplitude and phase of

a guided wave of frequency co in the three regions of the asymmetric waveguide. A

diagram of the field strength versus the transverse direction (i.e., the x-direction) is shown

Figure 2.5 for three guided modes. In Figure 2.5, two of the waves are in the same (odd)

mode, but have differing frequencies, the other wave is in an even mode (v = 2) and is

approximately symmetric about the origin (the center of the waveguide). Looking at

(2.14), in the film there is a traveling wave with an effective wavevector that depends on

the discrete mode the wave is guided in. In the cover and substrate regions, there is an

exponentially decaying evanescent field. The depth to which these fields penetrate the

region also is mode dependent. Expression (2.14) describes a guided wave of a single

frequency. To accommodate four-wave mixing experiments in a waveguide, four guided

waves are required. The next section discusses the four wave mixing process in a

waveguide, determines the generated intensity, and derives the ratios used to quantify the

surface (cover) specificity.

2.4.4 The Intensity, Phase-Mismatch, and Quantitative Analysis Tools for WISOM

Four wave mixing in asymmetric waveguides can be surface-specific if the induced

polarization due to the incident waves is (nearly) zero in the film and non-zero in the cover

region. In this treatment, the contribution to the field from the cover and film (including

substrate) regions are found separately. To quantify the surface-specificity, two ratios are

introduced which are sensitive to the cover-to-film signal ratio. Since the cover-to-film

field amplitude ratio diverges as the film contribution goes to zero, it is not convenient as

a quantifier of surface-specificity. Moreover, this ratio does not show effects of

differences in phase of the cover and film contributions. A more useful set of interpretive

tools are needed, hence two peculiar ratios are introduced. One is sensitive to the

amplitude of the cover contribution to the overall signal, while the other is sensitive to

both the amplitude and phase of the cover contribution in relation to the entire
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contribution. Notice that the entire contribution includes the contributions from the cover,

film, and substrate regions. It is also important to know the phase-mismatch between the

induced polarization and the generated (mixed) wave. Only infinite plane waves are

considered in this initial treatment. In determining the intensity of the generated signal, it

is realized that there are four separate waves in the FWM process. After coupling into the

waveguide from the vacuum these incident waves (or before decoupling these exiting

waves from the waveguide) have wavevectors

\°)1 f 032 03 \C°4k1=-. nkcoli, k2 E nk(02)-, ii,3 E nkc03), and k4 =n(w4) . (2.25)

Recall that stimulated or observed waves have negative frequency by the convention used

here. In a CARS-like process, the first three of these waves mix and produce the fourth.

Inside the waveguide, they mix over a region called the interaction region. The phase-

mismatch parameter between the polarization and the generated fourth wave is, in general,

given by

with

4(x,y,z) F (2.26)

Aii = (lc; +1c3)+ E4, (2.27)

where E4 is the wavevector of the observed wave. The convention used is that positive

wavevectors (and frequencies) indicate annihilation, negative wavevectors (and

frequencies) indicate creation of photons in the OM process. It is understood that since

I4 is observed, this wavevector is negative as is 1E2 for a CARS-like process. The phase-

mismatch parameter for the possible guided mode combination v = [v1, v2, v3, v4] in the



asymmetric waveguide is

where

'3 = AE, 11,

64, . i = ko(F)sinevi cosaki +

k2n(i--)sine2 cosak,, +

k3n(P)sinev3 cosa k +

ko(F)sins 3,4 cosa k4

(2.28)

(2.29)
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and t is the interaction length. The interaction length represents the characteristic length

over which the three incident waves overlap. Of course, for plane waves t is infinite, but

plane waves are not used in practice. Thus, £ is approximated by some experimentally

reasonable value. Recall the angles a are the angles in the plane of the waveguide that

each wave propagates at. The famous result [65] for the intensity of the fourth wave

generated in a FWM process appears as

in E4

all space
all time

F.; r, sin cb
X (3) : El .2 El -4, (44 "Y aZ (2.30)

Since pulses are used to obtain large fields, the time integration is doneover one pulse.

However, in practice the time integration could be replaced by a time average over one

period. Simplification of (2.30) can be made by replacing the electric fields with the form

Ex (x) = fi(x)E
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which are the solutions to the Helmholtz equation for a step index waveguide given in

(2.14). The subscripts i represent the wave index (i = 1,...,4). The intensity of the mixed

wave under this substitution becomes

27C )2 (0) 4
4

/(0) 4 = (--k4 /col 4,2 /0,3

f g 4 X (3) :g lg 2E 3f1 (4/2 (X)f3 (X) £(x) sinc (1)(x) dx
00

2
(2.31)

where/col ,/c02, and /03 are the maximum amplitudes of the incident waves at co/ ,o)2, and

(03, respectively. The interaction length t must be experimentally estimated. Alternatively,

the interaction length can be replaced by the maximum interaction length determined by

the coherence length 4. This is the length for which 4) = Ir (see (2.28)). Since the waves

are considered infinite plane waves, the integral represents an intensity per unit area.

Hence, the integration is performed only over the dimension transverse to the waveguide.

The integral can be separated into to two parts: the integral over the cover region and the

integral over the film and substrate regions. It is typical in an experiment to adjust the

frequencies of the input waves to incur a resonance in the cover medium and not the film.

Hence, the nonlinear susceptibility for the cover is commonly 10 to 10,000 times larger

than the film nonlinear susceptibility. This is reflected in the assumed form for the

susceptibility:

x")(x)=
h12<x<h12+monolayer

1 elsewhere.

Thus, (2.31) can be rewritten as

(2.32)



I(34) =

27t
2

(1.2./
/col 402 1.0)3

k4
C

x

h/2

fe 4 (s3):e le 2i 311 (X)f2 (X)./3 (x) £(x)

r+hI2

4 X ):e 2e 31.1 (X)f2 (X)f3 (X) t(x)
-h/2

+Pc'e4 X c3):eli 2e 3f1(X)f2 (x)f3 (x) £(x)
+h/2

sinc0(x) dx

sinc0(x) dx

sinc cto(x) dx

(2.33)

2
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The first term inside the absolute square in (2.33) represents the contribution to the total

intensity from the evanescent fields that penetrate and mix in the substrate region. The

second term describes the contribution from the film layer. The last term represents the

contribution to the intensity generated by the fields mixing in the cover region. Clearly,

because the integrals are evaluated and then the absolute square is taken, the contributions

from each region of the waveguide are inseparable. Simply taking the ratio of the cover-

to-filni field amplitudes is not a good quantifier of surface-specificity compared to what is

experimentally measured. The interpretative tools that best describe surface-specificity are

the direct ratio (DR) and the cross ratio (CR). The DR is an indicator of the surface-

specificity; it is closely related to the surface-to-bulk intensity ratio. However, the CR is a

better indicator of the signal-to-noise ratio. The DR is the ratio of the cover contribution

to the intensity versus the total intensity less the cross terms. The CR is the ratio of the

cross terms of the absolute square versus the total intensity less the cross terms. To better

understand these definitions, consider that the first two terms in (2.33) are the



`background' portion, EB, of the generated (fourth) field and the last term is the cover-

specific anecdotal field, EA:

EA = fi4 .x(c3):e,a. 2E 3 (X)/2 (4/3 (X) i(x) sine (1)(x) dx

and

+h/2

EBafh/2

e4. X?) :Eli 2E 3A(X)f2(X)A(X) t(X) sine (110(x) COX

+h/2

+Se4 *XT le 2e 31; (x)f2 (x)f3 (x) t(X) sinc41)(x) dx
-h/2

(2.34)

(2.35)

Using these definitions, the total intensity is proportional to

/(co 4 ) lEA + E B12 IL I

2
+ IEBI2 + 4Es +EA4. (2.36)

The DR can be easily defined as

DR= lEA12

lEA12 + IEB 12

Finally, the CR can be seen to be

EA EB + E E":8
CR = B EA EB

(2.37)

(2.38)
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The DR is a better interpretive tool than the cover-to-film field amplitude ratio since

the DR never diverges. Also, notice that the denominator of the DR does not include the

cross terms that the total intensity does (compare this denominator with (2.36)). If the

fields from the surface and film are anti-parallel and of the same magnitude, the total

intensity is zero. Again, the DR does not diverge even under these conditions. Hence, the

direct ratio is an appropriate tool to use when the phases of the surface and film fields are

approximately equal. The DR was chosen so that it is bounded between zero and one.

Clearly, a value of one indicates excellent surface specificity. The DR is, however, not

sensitive to the phases of the fields. Thus, the cross ratio is used when the phases of the

fields are important. The CR examines only the cross terms in the total intensity. For

fields that are purely real, the CR measures the degree to which the cover-generated field

adds or subtracts from the field generated from the bulk. The CR is not bounded as the

DR is. A large positive value indicates parallel fields where the magnitude of the surface is

much greater than the bulk. Conditions yielding a large negative CR indicate the surface

field is of opposite sign and is much larger than the bulk-generated field; thus the total

intensity is less than the bulk signal solely. For effective WISOM it is required that the

surface resonance signal overpower the bulk resonance signal. To obtain favourable DRs

and CRs, the indices of refraction of film and substrate, thickness of film, and mode

combinations must be adjusted to yield the interference condition in the film.

Furthermore, the field frequencies must be tuned, especially over those frequencies that

yield cover resonances.

2.5 Introduction to the Numerical Analysis of WISOM

An extensive computational investigation was launched to map out all experimentally

relevant parameter space in order to locate situations that yield favourable WISOM

conditions. This numerical analysis is, in part, to be used as a data base for other

researches. No such data base has been made available in the literature. The analysis
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encompasses a large range of experimentally important waveguide parameters. As

explained in the introduction to this chapter, only three-beam mode combinations have

been investigated by previous researchers. Recall that these combinations are those in

which the first and third waves are degenerate, that is, when E1 = Ec3 and the waves are

collinear in the same guided mode. One goal of the analysis is to investigate the four-

beam mode combinations where the degeneracy in the first and third waves is broken. It

was anticipated that the use of four-beam mode combinations would allow for phase-

matching inside the waveguide; a circumstance never reported in the literature. With the

potential improvements in surface-specificity gained by these situations, WISOM might be

a more attractive technique.

The analysis takes the approach of first picking the index of the film and its thickness.

The range of waveguide parameters are chosen within the confines of what are realizable

in actual waveguides. The substrate index is fixed; it is considered to be that of fused

silica. Likewise, the cover index remains fixed throughout the analysis. The nonlinear

susceptibilities are also considered fixed, however the susceptibilities of the cover is

considered much larger than the film or substrate susceptibilities. With assumed

waveguide index profiles, dimensions, and the FWM frequencies; numerical solutions are

found for the generated electric field via (2.14) through (2.24). The numerical solutions

are found by a Mathematica (V. 2.2) notebook as described in Appendix A. The

azimuthal angles for phase-matching are found when the condition is allowed. Finally,

from these fields, the direct ratio and cross ratio are tabulated. For each set of physical

waveguide parameters, the frequency and mode combinations are varied. The result is a

series of shaded plots indicating waveguide thickness on one axis, index of the films on

another, and the shading representing the values of the DR or CR. These plots were

generated by Spyglass Transform (V. 3.0) from ASCII text files supplied by the

Mathematica notebook cars] .ma under the wscars directory. This raw data generated

directly from this Mathematica notebook can be accessed in the form of text files

rawm0aal and rawmObal, enclosed in the CD-ROM in the attachments section of this
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document. These are the unmodified files in comma delimited ASCII format. These files

were modified by removing all spaces and saved as carsm0a.xl and carsmOb.xl under that

same format. Using Excel (V3.0) macro carsOml .xlm, these files are converted to Excel

files, separated by mode combination and files suitable for import into Spyglass Transform

are created. Detailed documentation is enclosed in this Excel macro file. The file naming

conventions for the mode combination data are given in the notebook carsl .ma where

they are generated. Furthermore, the raw data files are concatenated by three

Mathematica notebooks carsanal.ma, carsanal2.ma, and carsanal3 ma. This software

sorts the results in various ways for easy access. An entire summary of the results of the

calculations can be found in the Microsoft Excel files cars0a.xls, cars0b.xls, and

carsOc.xls. Text versions (delimited by tabs) are also available on the enclosed CD-ROM.

Two more files contain abbreviated results sorted as to emphasize the effects of mode

combination (file carsmd.xls) and the phase-matching information (file carspb.xls).

Spyglass Transform accepts text files (created by macro carsOml .xlm) which are sorted

into directories by mode combination under the wscars\carsOmfi directory and, via the

Spyglass macros create DR animations and create_CR_animations, are converted into

false colour (or gray scale) plots. All Spyglass macros have been exported to ASCII files

and are available under directory wscars\spyglas_ on the CD-ROM. For each mode

combination, a series of such plots were generated as a function of frequency of the

applied waves. The exact details of the ranges of the parameters used, the key to

interpreting the shaded plots, and a review of useful patterns in the results are discussed in

the next sections.

2.5.1 Common CARS-Like WISOM Parameters

Planar waveguides used for WISOM work are limited by the availability of appropriate

media. As far as the numerical analysis is concerned, the limitations placed on waveguides

are those placed on the index of the film layer such that they can be physically constructed.

This restricts the range of indices of the film from 1.60 to 2.10. In the numerical
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calculations, steps in the film index of 0.05 were used. Thus, the film index, n1, starts at

1.60 and is increased in steps of 0.05. The index of the film, in turn, places limits on the

thickness, since there is a minimum thickness for a waveguide to support a single mode.

Modal separation can be achieved by using waveguides with very different mode coupling

angles. As the number of supported modes for a given waveguide increases, the mode

coupling angle separation (between successive mode coupling angles) decreases. Since

modal separation is useful for the experimenter, the number of supported modes is kept

low. This enhances modal separation. No more than six or seven supported modes per

waveguide are desirable. All variables told, the thickness range of the film that is

experimentally useful is 600 to 950 nm. Hence, numerical calculations begin with film

thicknesses of 600 nm and increase in steps of 50 nm. The cover index and (the fused

silica) substrate indices were taken as the vacuum and 1.47, respectively. The cover

index, when studying a sub-monolayer on the film surface is expected to be nearly that of

the vacuum. The frequencies for the applied waves, those described by k,, k2, and k3, are

chosen with values appropriate for CARS (vibrational resonances), however the software

developed is flexible enough to deal with electronic resonances. The frequencies are

selected with = X3 = 560 nm. The second wave, described by k2, is picked by means of

the difference in wavenumbers between the second and first waves. The energy gap

between intermediate states is operative variable. Hence, the difference frequency, A, is

defined by A = wl - oh. The equivalent range of the difference frequency (also called the

tuning parameter) is from 1000 to 3000 wavenumbers (roughly 580 to 670 nm) in steps of

200 cm-1. All possible mode combinations of these four waves that might lead to an

interface-specific signal were considered. The mode convention is [vl, v2, v3, va] for

guided waves [k,, k2, k3, kat The set of 'polar' angles determined by the mode

combination are referred to by [151, 152, 153, 134]; they are numerically calculated via (2.24).

The goal of these calculations is to identify experimentally compatible parameters for

CARS-like four-wave mixing inside a waveguide such that surface sensitivity is

maximized. In addition, the values of the 'azimuthal' direction angles for each mode

combination, [al 0, a2, a3, ad, which give phase-matching are found (when phase-
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matching is possible). These angle are found by minimizing the phase-mismatch

parameter, cl), using expressions (2.28) and (2.29). The experiment is (mechanically)

simplified if all angles a are between -10 and 10 degrees or -170 and 170 degrees. Thus,

situations where the frequencies and mode combinations yield phase-matching for small

azimuthal angles are particularly sought. To compare with the phase-matched case, the

large-overlap experiment' is analyzed (for three-beam mode combinations only). The

large-overlap experiment is done by using degenerate wavevectors k1 and k3 and making

the angular separation between k2 and k1 three degrees or less. Although the large-overlap

experiment has a large phase-mismatch, the interaction region is large. One aim of these

calculations was to determine if the phase-matched situations with their small overlap or

the large-overlap experiment yield better cover-to-film signal ratio.

The values of x(3) for the various regions of substrate, film, and vacuum were taken as

unity, except over the cover region 0.5 nm above the film. This simulates the effect of a

one monolayer thick absorbate on the surface of the film that is in resonance with the

mixing process. Here X(3) = 100 for the monolayer. Hence, in (2.11) Zr = x., = 1; whereas

= 100. This value for the resonance susceptibility of the cover region was chosen to be

consistent with experimental results [65]. No attempt was made to examine possible

contributions to an interstitial region between the substrate and film regions.

2.5.2 How to Interpret the Numerical Results

For each waveguide (i.e., choice of thickness and film index) and mode combination

the direct and cross ratios are calculated via (2.34) through (2.38). The other parameters

were considered fixed; they are given in the preceding section. The numerical results are

presented in a series of files as described in the beginning of Section 2.5. Before

describing the graphical representations of these data, a closer examination of the DR and

CR is in order. The DR is the easier-to-interpret indicator of the surface-specificity; it is

closely related to the surface-to-total intensity ratio. However, the CR is a better indicator
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of the signal-to-noise ratio. The WISOM experimenter usually couples beams to a single

waveguide and scans the frequency of one beam looking for a surface resonance by

examining the total generated intensity. The top portion of Figure 2.11 shows a

representation of such an experiment. Plotted is the total generated field versus the

frequency of the scanned beam. Six surfaces resonances are indicated. In this example

they are superimposed on a bulk field of +5 units. For resonances A through C the surface

and bulk fields are parallel, whereas in resonances D through F the fields are anti-parallel.

Notice that the surface-generated field in resonance B is of the same magnitude as the bulk

generated field so that the total field is twice that of the 'background' field. In resonance

E, the magnitudes of the two fields are equal, but are anti-parallel giving a zero total field.

At the bottom of Figure 2.11, the total field versus increasing surface resonant fields is

plotted. The locations where the total field equals the total field of the hypothetical

resonances as discussed above are labeled to provide connection with the experimental

situation. The total field plot in Figure 2.11 can be compared with the DR shown along

the bottom of Figure 2.12 for this situation. Note that when the surface and bulk fields are

of the same magnitude, regardless of their direction, the DR is 0.5. If the experimenter

encounters a resonance at these points they might appear in the total signal as resonances

B or E as shown along the top of the figure. When the surface field overpowers the bulk

field by orders of magnitude, the DR approaches one. Representing situations where the

total intensity is zero, as in hypothetical resonance E, is more challenging. There are no

graphical presentations which provide a quick and meaningful interpretation of this

circumstance. To ascertain this condition and quantify if the total signal will be larger or

smaller when a surface resonance is encountered the CR may be examined. Figure 2.13

shows the CR for the situation in Figure 2.11 where it is plotted against an increasing

surface field. When the surface field is of the same magnitude as the bulk, the CR is +2

when they are parallel (resonance B) and -2 when they are anti-parallel (resonance E).

Whenever the CR is -2, the total intensity is zero, however the individual fields from the

surface and bulk may be large. Working near this point is advantageous to the
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Figure 2.11: Plots of the total field versus
frequency for resonances A-F and the total
intensity versus surface field.
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Figure 2.12: Plots of the total field versus
frequency for resonances A-F and the DR
versus surface field.
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Figure 2.13: Plots of the total field versus
frequency for resonances A-F and the CR
versus surface field.

experimenter as the signal-to-noise ratio is large. This is different from the case where

both fields are very small and the CR is zero. Finally, it is noted that the larger the

magnitude of the CR, the better the surface-specificity.

Graphical representations of the DR and CR versus the waveguide parameters were

produced for quick comparisons. A series of plots for each mode combination is

provided; each plot in the series represents a different difference frequency, A. These

plots are meant to be used as guides to designing waveguides yielding good surface-

specificity under a certain mode combination and frequency regime. These are three

dimensional plots of film index versus film thickness; the third dimension, the direct or

cross ratio, is shown in gray scale. The key to the gray scale is shown along the bottom of

each plot. The scale key is marked in the example plot, Figure 2.14. This example clearly

labels the film index (along the horizontal) and the film thickness along the vertical axis.
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The information bar indicates the ratio type (either direct ratio or cross ratio), the

hierarchical data format (hdf) file name used by Spyglass to generate the plot, and the

mode combination number. The file name has encoded in it the ratio type (D for DR and

C for CR), the difference frequency, A, which is indicated after the index `bg'. For

instance, the difference frequency for Figure 2.14 is 1800 cm-1. Each mode combination is

given a number, the definitions for the mode number can be found the Mathematica

notebook carsl .ma. The mode combination for the plot shown in Figure 2.14 is mode

number 01, that is, [v1, v2, v3, va] = [0,0,0,1]. Also indicated in Figure 2.14 are three

areas of the plot. One area has a low DR; this is an unfavourable ratio. Waveguides and

mode combinations yielding good surface-specificity allow for the cancellation of

generated signals in the film, leaving the signal only from the surface. When the DR is

exactly one, the interference condition is complete. In this case, the observed signal

comes only from the cover. If the DR is zero, there is no contribution from the cover

region. The region marked as 'unfavourably low', has a DR of less than 0.2. When the

cover contribution to the field is half of the total contribution, the DR is 0.25 (i.e., 0.5

squared). When the field contribution from the cover comprises 75% of the total field, the

DR is 0.56 (i.e., 0.75 squared). The region labeled 'moderately favourable DR' on Figure

2.14 indicates DRs that represent conditions when the cover contribution is about 75% of

the total field. The region of the plot marked 'favourable DR' has a surface-to-total field

contribution ratio of greater that 95%, that is the DR is 0.9 or larger. Figure 2.14

indicates that a waveguide with a film index of 1.8 and a thickness of 550 to 600 nm will

have a very favourable cover-to-film signal ratio for the [0,0,0,1] mode with a difference

frequency equivalent to 1800 Another waveguide with an index of 1.75 and

thickness 650 nm using the same mode and difference frequency will also produce surface-

specific results. Note that a plot of the cover-to-film ratio would actually be harder to

interpret since this ratio approaches infinity when the cover contribution approaches

100%. The simple bounds of the DR is ample justification to use it as the interpretive tool

over the cover-to-film ratio.
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An example of a cross ratio plot is shown in Figure 2.15. The information bar
indicates these results are for a waveguide experiment using A = 1400 cm4 and mode

combination 13, which is the combination [1,1,1,2]. In the plot, represented by white
regions, are situations where the magnitude of the CR is less than one. See the region

labeled Tow CR' in Figure 2.15. These are regions for which the cover-to-bulk field ratio

is under 0.5. Regions where cover-to-bulk field ratio is greater than 0.5 are seen as darker
regions, darker gray indicating the greater ratio. Roughly half of the gray regions in

Figure 2.15 indicate that the phase ofthe film contribution to the field, relative to the

cover phase, is zero. Since the total signal is larger than the bulk signal alone, this

condition has been labeled as the 'Favourable CR, Larger Total Field' region in Figure

2.15. In the colour renditions of the CR plots enclosed on the CD-ROM, these regions

are tagged in red. When the relative phase is 180 degrees, the total field is less than the

bulk alone. This situation has been indicated in Figure 2.15 as a region of 'Favourable
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CR, Smaller Total Fie ld'; it is represented in blue on the colour plots. In many cases

including this example, a clear white line separates regions of zero and 180 degree phase

difference. Normally, the CR is large (greater than 20) when the DR is near one. Hence,

the DR can be used almost as the sole tool in studying WISOM experiments. When

designing an experiment, the DR can be used to optimize the conditions, but then the CR

should be checked to verify it is large. Furthermore, the experimenter can predict whether

the signal will increase or decrease when a surface resonance is encountered by examining

the CR.

Careful examination of the examples of Figure 2.14 and Figure 2.15 reveals some

unusual shapes which are artifacts of the graphical analysis. Scalloped edges in both the

DR and CR plots are caused by interpolation errors. Rectangular regions of black in the

CR plots occur when the CR exceeds the limits of the plot. Likewise rectangular regions

in the DR appearing either black or white occur for the same reason.

Log of Cross Ratio C_bg1400_4 node Number 13
Information Bar

Film
Thickness

(rim)

950

900

850

800

750

700

650

600

Favourable CR

'Law CR 1
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Grey Scale Key
-60 -40 -20 0 20 40 60

Indicates Ratio Type cross Ratio

ref k &7100401a,,

1.8 1.9

Fit Index of

2.0 2.1

Figure 2.15: An annotated example plot of
the cross ratio.
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2.5.3 Results of the Numerical Analysis

Although all mode combinations that have the potential to yield favourable WISOM

conditions were analyzed, only six will be discussed here. These are the six combinations

that give the best DR, CR, tuning range, and phase-matching options out of the full

eighteen possible combinations. Out of the possible eighteen mode combinations, eight

were found to be devoid of the interference condition; these include mode combinations:

[1,0,0,1]opm, [0,1,0,1]mmas [2,1,0,1]mN06, [0,2,0,1]mr, [1,2,0,1]ms,

[2,2,1,1]Mon6, and [2,1,2,1]1,ms. The software uses a code, or mode combination number

(MN), to designate each mode combination. In the notation above, the mode combination

designations appear in the square brackets. The corresponding mode combination number

used in the Mathematica notebooks appears as a subscript. Rather than use the four digit

mode designation, the mode number is used by the software to identity mode combination

and the data files associated with that mode combination. Other combinations less

impressive than the six best combinations include: [2,0,1,1]mNii, [1,1,1,0]MN12,

[2,1,1,1]14, [1,2,1,1]15. These mode combinations are not reviewed here. The results

are available on the enclosed CD-ROM. Each mode combination has its own sub-

directory in the wscars directory. The raw data is available in text and as a Microsoft

Excel (V. 3.0) file; the DR and CR are available both as hdf files and in bitmap (BMP)

form each according to difference frequency index. For example, mode combination

[1,1,1,0]Mo12, is located in the sub-directory cars0m12. The raw data is contained in a

single file available in both formats. The plots are identified by a frequency index. For

instance, for MN12 and difference frequency 1000 cnil (frequency index 02) have the

identifiers d0m1202 for the DR and c0m1202.

The DR and CR plots for the six mode combinations reported are shown in Figure

2.16 through Figure 2.48. Note that each figure has the DR and the CR combined on each

figure. These six promising mode combinations are: [2,2,0,1bom, [1,0,1,1bvio,

[1,1,1,2]Mm3, [2,0,2,1] mm 7, and [1,1,0,1] mN05. Note that two of these
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combinations are four-beam mode combinations. The next several paragraphs discuss

each mode combination in further detail.

The DRs and CRs for mode combination [2,2,0,1] is shown in Figure 2.16 through

Figure 2.21. Each figure contains the results for the difference frequency, A, 400 cm-1

larger than the previous figure. Figure 2.16 shows the results for the difference frequency

1000 cm-1. For film indices above 1.85, the DR and CR are large (between 0.999 and

one) and are relatively insensitive to the difference frequency. This is especially true of

film thicknesses between 750 and 850 nm. Hence, mode combination [2,2,0,1] has an

amazingly large tuning range, that is, the range over the difference frequency for which

interference condition is quite favourable. For instance, a waveguide with index 1.95 and

thickness 850 nm has a DR of 0.9999 (four nines) or greater and a CR of more than 30 in

magnitude. A clear demarcation can be seen between waveguide parameters that give

parallel or anti-parallel surface and bulk fields. To the left of this white boundary the

surface and bulk fields add constructively. There are very remarkable cover-to-film field

ratios for certain frequencies with specific waveguides and using the [2,2,0,1] mode

combination. For a waveguide with a film index of 1.95 and thickness 850 nm, using a

difference frequency of 1000 cm-1, for example, the DR is seven nines and the CR is 3.9 x

103. Other waveguides give similarly effective interference conditions for a number of

difference frequencies: for A = 1200 cm-1, an index of 1.9 and thickness 800 nm gives a

DR of `six nines and a CR of -2.3 x 103; for A = 1800 cnil, an index of 1.9 and thickness

700 nm gives a DR of eight nines and a CR of -4.1 x 103; and for A = 2800 cm-1, an index

of 2.1 and thickness 600 nm gives a DR of five nines and a CR of 969. Notice, that for

any frequency, a waveguide with nominal thickness of 800 nm and index 1.95 has a DR

above 0.99 and a CR of at least 40. However, for this mode combination almost any

waveguide with indices smaller than 1.7 is ineffective for WISOM experiments. As will be

reviewed in the following section, this mode combination also offers many opportunities

to phase-match the FWM process. Moreover, many of these phase-matching conditions

have larger interaction regions. That is, the overlap is large since the crossing angles for
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which phase-matching occurs are small. As will be seen later, most phase-matching

conditions require that the azimuthal (i.e., crossing) angles be 90 degrees apart (the beams

cross perpendicularly). This makes for small interaction regions.

Mode combination [1,0,1,1] holds promise for WISOM experiments for smaller

difference frequencies. Figure 2.22 through Figure 2.27 show the DRs and CRs for

difference frequencies from 800 cm4 to 1800 cm-1 in 200 cm-1 steps. Unfortunately, the

interference condition is rather sensitive to frequency. A waveguide with film index 1.85

and thickness 750 nm has a DR of five nines and a CR of 652 for A = 800 cm-1. The same

waveguide at A = 1000 cm-1 has a DR of 0.957 and a CR of -9.3. For the set of

frequencies chosen, and difference frequency A = 1200 cm-1, there are two possible

waveguides that give remarkable surface-specificity. These are waveguides with indices of

1.70. For the chosen input frequencies, such a waveguide with film thickness 700 nm can

have a DR of ten nines and a CR of +9.3 x 103. Another similar waveguide having

thickness 600 nm can have a DR of nine nines and a CR of -3.3 x 103. This same

waveguide has a DR of larger than 0.95 and a respectable CR of -8.6 at A = 1400 cm-1.

For larger difference frequencies, those above 1800 cm1, the effectiveness of this mode

combination for WISOM work is lost. Again, the left side of the CR plots show that the

surface and bulk fields are parallel, however for A greater than 1400 cm4 all waveguide

parameters give only anti-parallel fields. This mode combination also allows for many

phase-matching options that have larger interaction regions.

Figure 2.28 through Figure 2.33 show results for mode combination [1,1,1,2]. This is

considered a favourite of the three-beam mode combinations used by experimental

researchers [27], [26], [30], [31]. These plots start with the results for A = 1000 cm-1 and

increasingly larger difference frequencies in 400 cnil steps. This mode combination is far

more sensitive to the difference frequency than the combinations previously discussed.

For instance, a waveguide with a film index of 1.9 and thickness of 600 nm at A = 1800

cm-1 has a DR of 0.997 and a CR of +36. However, at A = 1400 cm-1 or 2200 cm-1, this
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waveguide has a much smaller DR (0.86 and 0.94, respectively) and CR (+5 and -8,

respectively). For A = 1400 cm', a better waveguide to use would be one with thickness

800 nm and index 1.85; this gives a DR of five nines and a CR of 829. Likewise, if the

experimenter wishes to tune to difference frequency of A = 2200 cm', a different

waveguide should be used than that used at either A = 1400 cm-1 or A = 1800 cm'. The

best waveguide for this higher frequency is one with a film index of 1.75 and thickness 750

nm; it yields a DR of five nines and a CR of -269. Hence, in using this mode combination,

the experimenter would be required to change waveguides while tuning over this 800 cm-1

range. This is certainly undesirable since many other factors between waveguides may be

different other than the film index and thickness. Such factors include the surface

roughness and the mode coupling efficiency.

Next in the series of mode combinations discussed here is the combination [0,0,0,1].

This combination is another of the three-beam mode combinations commonly used by

experimentalists. Although it does not provide as great a surface-specificity, it is an easy

combination of modes to couple into. The efficiency of coupling is related to the mode;

lower numbered modes are coupled into with greater efficiency. Therefore, this mode

combination is quite attractive. Surface-specificity is sacrificed for signal strength. From

Figure 2.34 through Figure 2.39, it can be seen that the combination is very sensitive to

the difference frequency. The plots show the difference frequency from A = 800 cm-1 to

A = 1800 cm' in 200 cm-1 steps. In that range of difference frequencies, there isno single

waveguide that would yield good WISOM conditions. Again, the experimenter would be

required to change out waveguides during any tuning experiment. For instance, at A =

800 cm' surface-specificity will be best using a waveguide that has an index of 2.05 and

thickness of 750 nm (the DR is two nines and the CR is -25). When tuning up to A =

1000 cm', the best waveguide would be one with an index of 2.05 and an thickness of 650

nm. This is the best that this mode combination is capable of. This is because small

number modes like modes 0 and 1 have small amplitudes at the surface. This waveguide

and frequency gives a DR and a CR of 0.979 and +13.5, respectively. Above A= 1800
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cm', the mode combination looses its ability to provide good surface-specificity

irregardless of the choice of waveguides.

The fifth mode combination reviewed here is [2,0,2,1]. A single waveguide of index

2.1 and thickness 600 urn gives reasonable surface-specificity over a modest tuning range

of 1800 cm'. This is shown in Figure 2.40 though Figure 2.45 where the DRs and CRs

are shown from 800 cm' to 1800 cm-1 in steps of 200 cm-1. At A = 800 cm-1, the DR is

0.948 and the CR is -8.5. As the difference frequency climbs, the specificity drops slowly;

at A = 1400 cm-1, the DR and CR are 0.885 and -5.5, respectively. As can be seen from

these figures, this waveguide is the best for this mode combination for any tuning value.

No matter what the waveguide parameters, this mode combination produces anti-parallel

surface and bulk fields. It is interesting to note that for the lower difference frequencies,

the cover-to-film field ratio is rather insensitive to the waveguide parameters.

Consequently for these values of A, almost any waveguide gives reasonable results. This

mode combination is also very sensitive to the azimuthal angles in regards to phase-

matching with respect to changes in the frequency. As will be seen in the next section, if

the cover and film have different dispersions, this sensitivity can be of great advantage in

increasing the surface-specificity.

Mode combination [1,1,0,1] is not noteworthy for its large cover-to-total signal ratios.

This mode combination produces only parallel fields. As seen from Figure 2.46 through

Figure 2.48, the best waveguides have large indices and thin films. For instance, a

waveguide using this mode has a DR of 0.936 and a CR of +7.6 for A = 800 cm-1 when it

has a thickness of 600 nm and an index of 2.1. Increasing the frequency to A = 1400 cm-1,

this waveguide yield a DR of 0.91 and CR of +6.2. What is exceptional about this mode is

the probability that phase-matching can be achieved with small azimuthal angles. The

experimenter, if favoured with a large dispersion of the film with respect to the cover, may

find that WISOM can be achieved with lower DRs and CRs while utilizing this unique

phase-matching condition.
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Figure 2.16: The DR and CR for mode
combination [2,2,0,1] at A = 1000 cm'.
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Figure 2.19: The DR and CR for mode
combination [2,2,0,1] at A = 2200 cm'.
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Figure 2.21: The DR and CR for mode
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Figure 2.22: The DR and CR for mode
combination [1,0,1,1] at A = 800 cm'.
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Figure 2.23: The DR and CR for mode
combination [1,0,1,1] at A = 1000 cm'.
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Figure 2.24: The DR and CR for mode
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Figure 2.26: The DR and CR for mode
combination [1,0,1,1] at A = 1600 cm'.
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Figure 2.27: The DR and CR for mode
combination [1,0,1,1] at A = 1800 cnil.
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Figure 2.28: The DR and CR for mode
combination [1,1,1,2] at A = 1000 cm'.
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Figure 2.29: The DR and CR for mode
combination [1,1,1,2] at A = 1400 cm'.
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Figure 2.30: The DR and CR for mode
combination [1,1,1,2] at A = 1800 cm'.
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Figure 2.31: The DR and CR for mode
combination [1,1,1,2] at A = 2200 cm-i.
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Figure 2.32: The DR and CR for mode
combination [1,1,1,2] at A = 2600 cm-I.
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Figure 2.33: The DR and CR for mode
combination [1,1,1,2] at A = 3000 cm-1.
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Figure 2.34: The DR and CR for mode
combination [0,0,0,1] at A = 800 cnil.
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Figure 2.35: The DR and CR for mode
combination [0,0,0,1] at A = 1000 cm-1.
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Figure 2.36: The DR and CR for mode
combination [0,0,0,1] at A = 1200 =4.
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Figure 2.37: The DR and CR for mode
combination [0,0,0,1] at A = 1400 cm-1.
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Figure 2.38: The DR and CR for mode
combination [0,0,0,1] at A = 1600 =4.
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Figure 2.39: The DR and CR for mode
combination [0,0,0,1] at A = 1800 cm-1.
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Figure 2.40: The DR and CR for mode
combination [2,0,2,1] at A = 800 =4.
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Figure 2.41: The DR and CR for mode
combination [2,0,2,1] at A = 1000 cm-1.
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Figure 2.42: The DR and CR for mode
combination [2,0,2,1] at A = 1200 cm-1.
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Figure 2.43: The DR and CR for mode
combination [2,0,2,1] at A = 1400 cm'.
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Figure 2.44: The DR and CR for mode
combination [2,0,2,1] at A = 1600 cm'.
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Figure 2.45: The DR and CR for mode
combination [2,0,2,1] at A = 1800 cm4.
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Figure 2.46: The DR and CR for mode
combination [1,1,0,1] at A = 800 cm4 .
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Figure 2.47: The DR and CR for mode
combination [1,1,0,1] at A = 1000 cm-1.
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Figure 2.48: The DR and CR for mode
combination [1,1,0,1] at A = 1200 cm'.
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2.6 Phase-Matching Gaussian Beams in a Waveguide

So far in the analysis of these waveguides, phase-mismatches have been ignored. Recall

that the polar angles are determined by the mode combination. Clearly, in order to phase-

match the OM process, the azimuthal angles must be chosen. It is likely that phase-

matching will not occur when the waves are collinear. Occasionally, as was found from

the previous set of calculations, that there is no choice of azimuthal angles that will phase-

match the process inside the waveguide. More often, the waves must be nearly

perpendicular in order to achieve a zero phase-mismatch. In fact, in over 70% of the

choices of waveguides, mode combinations, and difference frequencies; phase-matching

occurs when the azimuthal angles are approximately right angles from one another. In 2%

of the cases, no phase-matching was possible. In the remaining cases, the azimuthal angles

were smaller. Furthermore, in about 18% of the choices, the azimuthal angles were such

that the applied waves were under 3 degrees in separation when the mismatch was zero.

Experiments where the angular separation of the waves is smallare mechanically

simplified. Moreover, when the azimuthal angles are small, the interaction volume is

large. Hence, these conditions were particularly sought. The exact azimuthal angles for

every waveguide, mode combination, and difference frequency are given in the files on the

CD-ROM discussed earlier.

In this section, a realistic experiment is considered where three focused Gaussian

profile beams are coupled into a waveguide and mix with the proper phase-mismatch

according to the coupling (polar) and separation (azimuthal) angles. To find the intensity

of the output beam, a volume integral must be done for each wavevector in each beam.

Results show that Gaussian applied beams mixed together to form an expanding Gaussian

output beam as expected. First, representations of a Gaussian beam and the integration
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yielding the proper intensity are discussed. This is followed by an analysis of the intensity

as the azimuthal angles are varied from no angular separation to the separation for which

there is no phase-mismatch. Realizing a smaller angular separation gives a larger

interaction volume, the question to be answered is: What is the larger competing factor to

the overall cover intensity, the interaction volume or the phase-mismatch?

2.6.1 Deriving the Phase-Mismatch of WISOM Using Focused Gaussian Beams

To best simulate a laboratory experiment, focused Gaussian beams were considered

instead of plane waves in the calculations for the phase-mismatch of WISOM experiments.

Typically, the source waves for WISOM experiments are lasers with Gaussian profiles.

Furthermore, these waves are focused with 0.3 to 1.0 meter focal length lenses prior to

coupling to the waveguide (see Figure 2.7 and Figure 2.8). This increases the field

amplitude at the point of crossing (the interaction region). For CARS-like processes, the

intensity of the generated wave is dependent on the square of the integral over the product

of the three applied field amplitudes (see Equation (2.28) through (2.30)). Hence, it is

advantageous to increase the applied field amplitude density by focusing the beams.

Focusing also localizes the interaction region to be a smaller region of the waveguide.

This allows the experimenter to avoid imperfections in the waveguide; if an imperfection is

found, the applied fields can be crossed in another, more desirable, location.

In the previous calculations, an effective interaction length, £, was defined and, since

plane waves were used, the integral over the interaction region is done only over the x-

direction (i.e., the direction transverse to the waveguide plane). Using non-plane waves to

deliver the applied fields to the interaction region, the integral over all three dimensions

must be taken. Thus, the phase-mismatch parameter, (1), must be redefined as



where

= ARO- F, (2.39)

Arc(r) E Tco(F)sinOvi cosa (F)

Fc2n(r)sine,2 cosak2(F)+

ii3n(f)sin0,3 cosa (i9+

E4n(F)sine,,4 coca, (7)

(2.40)
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Recall the definition for n(F) given in (2.10). The radial distance, r, is best measured from

the waveguide coordinate system; it was chosen with some foresight to be the center of

the interaction region, that is, where the center of all the beams cross. The azimuthal

angles refer to angles of the wavevectors along the profile of each beam. Since the beams

are focused, these angles depend on how far from the center of the beam (and the center

of the interaction region) the field is being evaluated. Thus, the phase-mismatch

parameter is a complicated, nested function of the location from the center of the

interaction region. Using non-plane waves also complicates the expression for the

amplitude of each applied field. Each beam is dependent not only on the direction

transverse to the waveguide plane (i.e., the x-direction), but also the directions in the plane

of the waveguide as well. Hence, the electric field for each wave may be represented as

Ex(F)= fi(x) (y) (z)E = )Eye

where the functional dependence in the x-direction is determined by the guided mode

solution. The dependence of the field amplitude for each wave in the plane of the



waveguide is determined by the focused Gaussian nature of the beam once it has been

coupled into the waveguide. With each of these modifications to the simple plane-wave

theory given earlier, the integrated intensity (i.e., the energy) of the generated wave is

U( 4) = (27t ) (°34CO /(014)24h
C

x feedr E4 x(3):ele2g31101/2 (OA eiAi.r.

2
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(2.41)

where /col , Icoz , and J(3 are the maximum amplitudes of the incident waves at 0j ,w2, and

co3, respectively. If the angular and intensity profiles of each applied beam is known, then

this integral can be performed. Next, attention is turned to obtaining expressions for these

profiles.

A focused Gaussian beam can be both experimentally and mathematicallyproduced by

taking a collimated beam with a Gaussian profile and passing it througha lens. The

resulting beam has a wavevector profile and an intensity profile which is given by the

Fresnel Diffraction Integral. A Gaussian beam of transverse intensity profile, traveling

along a z-axis is specified by

Ebefore = koe-(xix.)2 e-(Y/Y0)2
lens

(2.42)

Experimentally, this is the field profile before the collimated laser beam is focused with a
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lens. This wave will eventually be coupled into the waveguide. The x-direction profile of

this beam will be projected onto the field amplitude allowed by the mode being coupled

into. Hence, the field amplitude profile in the x-direction is unimportant. As shown by

Wlodarczyk and Seshadri [66], a non-plane wave excitation of a grating waveguide

coupler does not precisely produce the field profile as expected by the plane wave

solutions to the waveguide for an asymmetric waveguide. Moreover, there is a slight

focusing effect of a (non-plane wave) beam in the plane of the waveguide when coupled

with a grating coupler. It may be noted that no information can be found in the literature

concerning the field profile inside a planar waveguide due to a Gaussian beam excitation

of a prism coupler. In this analysis, however, slight effects imparted by the coupling of the

beam to the waveguide will be ignored. Hence, the Gaussian nature of the beam need only

be expressed for the y-direction:

EbefOre (y) = foe (Y/Y° )2

lens
(2.43)

The introduction of a field of a traveling wave through a lens produces a radial (with

respect to the beam axis) dependence in the phase of the beam [67]. Hence, the field

directly behind the lens appears as

_ilki

cPer(Y)= E before ()')e
2f

lens lens

(2.44)

where f is the focal length of the lens. Propagation of the beam along the z-axis is

described by the Fresnel Diffraction Integral. Assuming the beam is focused by passing
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the center of the beam through the center of the lens, the profile of the beam along the z-

axis is described by

iktht

gy,z,E)=1
k le 2z rdy

1
E.after (y 1)e 2z e Iklz

2niz lens

Thus, the functions, fi, appearing in (2.41) must be

(2.45)

fi(F)= fi(x) I El (y, z, E01. (2.46)

The absolute value in (2.46) suggests that the phase of the field be included with the

function fi. With expressions for the profiles of each applied field, (2.46), and a way to

calculate the intensity of the generated beam which properly includes the phase-mismatch

of crossed, focused Gaussian beams, (2.41); comparisons of large interaction volume

experiments versus phase-matched experiments can be made.

2.6.2 Results of Phase-Mismatch of WISOM Using Focused Gaussian Beams

Analysis of the generated intensity of collinear beam phase-mismatched conditions

where the interaction length is large versus the case where phase-matching is achieved was

made. This was accomplished by assuming a 1 mm diameter Gaussian beam (i.e., a 1 mm

diameter at 1/e the maximum amplitude), a 1 meter focusing lens, and the results of the

previous section. The direction of the wavevector was found for each point in the

interaction volume by matrix methods of paraxial optics. A Mathematica notebook,

cars2.ma, contains the code used to make these calculations. This notebook is located on

the enclosed CD-ROM in the wscarslazimuthl directory. The nested integrations

contained in (2.41) were done numerically in this notebook.
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Although numerical calculations were done for many modes, difference frequencies,

and waveguides (as enclosed on the CD-ROM), there are two particularly interesting

cases. The first case is where the azimuthal angles for zero mismatch are all small, giving

a naturally large interaction volume for phase-matched conditions. More commonly, the

azimuthal angles are such that the beams are nearly perpendicular to each other making

the interaction volume small when the mismatch is zero. This is the second case. To

show the variance of intensity versus phase-mismatch, plots were constructed of intensity

versus azimuthal angles; the dependence of the azimuthal angles are labeled 'fraction

complete'. In the calculation for each plot, the azimuthal angles yielding zero phase-

mismatch for the given waveguide, mode combination, and difference frequency were first

determined. To generate the plots shown in Figure 2.49 through Figure 2.52, the

azimuthal angles are varied from collinear, i.e., [al 0, az = 0, a3 = 0, a4 = 180 degrees],

to the angles yielding zero phase-mismatch in a smooth way. That is, with a1= 0, angles

a2 and a3 are gradually changed simultaneously from zero to the phase-matched value by

fractions. This way the phase-mismatch also changes gradually. For example, suppose

the azimuthal angles that yield zero mismatch are [al E 0, a2 = 20, a3 = 50, a4]. The

point at the far left of one of these intensity versus angle plots is [al E 0, a2 = 0, a3 = 0,

a4 = 180 degrees], that is a 'fraction complete' of zero. This is the collinear-beam

geometry. The far right represents 100% complete, that is [al 0, a2 = 20, a3 = 50,

a4]. Half way into the plot, at a fraction complete of 0.5, the angles are [al 0, a2 = 10,

a3 = 25, a4]. The output angle, as is found by minimizing the phase-mismatch once each

of the input angles have been chosen.

An example of the case is where the azimuthal angles for zero mismatch are all small is

shown in Figure 2.49 and Figure 2.50. Here there is a large interaction volume for phase-

matched conditions. Figure 2.49 shows the variations in intensity due to phase-mismatch

of a waveguide with a 1.85 index and 800 nm thickness using mode combination [2,2,0,1]
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at a difference frequency of 1200 wavenumbers. With this difference frequency and the

choice of col = 033 = 560 nm, the wavelength of the beam at (02 is 639 nm, making the

output beam of wavelength 409 nm. This choice of WISOM parameters gives the phase-

matching azimuthal angles of [oci :.---- 0, a2 = -L44, a3 = 44.9, as = 219.11 degrees. This

calculation is reflected in the text file cars6m80.xl on the enclosed CD-ROM. In this plot,

it is clear that when the applied beams are collinear, the phase-mismatch is large and the

generated CARS-like signal is low in intensity (as shown on the left-hand side of Figure

2.49). This is relative to the large intensity obtained when theprocess is phase-matched as

shown on the right-hand side of the plot. For this example, the ratio of intensities between

using the phase-matched angles versus collinear beams is 2.97. Clearly, when the phase-

matching azimuthal angles are small, it is advantageous to phase-match the OMprocess

rather than to maximize the interaction volume by using collinear beams. It is noteworthy

to point out the sinc-like behaviour of the intensity on phase-mismatch (i.e., azimuthal

angle 'fraction complete'). To better show this dependence, the plot shown in Figure 2.49

has been amplified in Figure 2.50. Figure 2.50 clearly shows a sinc-like behaviour; this is

modulated by a high-frequency cos2-like dependence on the phase-mismatch. Due to

aliasing in the calculations, this cos2-like behaviour is not well reproduced. This is despite

the step size of 1/500; a step size which gives a calculational time of less than 18 hours.

When the WISOM process is phase-matched with a nearly collinear azimuthal angles, the

large interaction volume is appreciable. It is not surprising that, intensity-wise, in this

situation it is most effective to phase-match the WISOM experiment rather than try of

maximize the interaction volume by making the beams collinear. Each calculation is

normalized so that all calculations can be directly compared. The normalization is done by

assuming the phase-matched situation is that in which all beams are collinear, the intensity

of this case is found, and used as the normalization factor.
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Figure 2.49: A plot of the normalized
intensity versus azimuthal angles for a 1.85
index, 800 nm thick waveguide with mode
combination [2,2,0,1] at A = 1200 cm'.
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Figure 2.50: An expanded plot of the
normalized intensity versus azimuthal angles
for a 1.85 index, 800 nm thick waveguide
with mode combination [2,2,0,1] at A =
1200 cnil.
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It is more common that the azimuthal angles giving a mismatch of zero are nearly right

angles; this makes the interaction volume small compared to the collinear application of

the input beams. Despite the shorter interaction length, the phase-matched case generally

provides signals two to three times larger. A typical example is shown in Figure 2.51.

Here a plot of intensity versus phase-mismatch (or 'fraction complete') for a 1.85 index

waveguide with an 800 nm thickness using mode combination [2,2,0,1] with a difference

frequency of 2000 wavenumbers is shown. This makes the wavelengths of the beams 560,

631, 560, and 504 nm for co/ though (.04, respectively. The phase-matching azimuthal

angle for this set of WISOM parameters is [al = 0, a2 = -90.0, a3 = 80.6, a.4 = 191.8]

degrees. Text file cars6k80.xl contains the results of this calculation. The cost -like

behaviour of the intensity on phase-mismatch is very apparent; it makes the interpretation

of the overall phase-match dependence difficult. Hence, a windowed average of the plot

in Figure 2.51 was taken in order to de-emphasize this behaviour. The averaging window,

which is moved across the plot, was taken to have a width ten times the highest frequency

in Figure 2.51; that is, 0.15 'fraction complete'. Figure 2.52 shows this averaged plot.

The effects of a large interaction volume on the intensity are seen on the left-hand side of

the plot. When the beams are collinear, the mixed signal intensity is large. As the angles

are increased away from collinearity, the signal drops. On the far right-hand side, the

intensity is greater when the process is phase-matched. This is despite the decreased

interaction volume. When only plane waves are considered, a sine dependence on the

phase-mismatch is predicted. A sinc-like dependence is vaguely apparent near the phase-

matched side of the plot. The intensity ratio of the phase-matched, small interaction

region condition (at 1.00 'fraction complete'), versus the collinear case (at 0.00 'fraction

complete') is 2.8. Apparently, phase-matching gives a larger overall intensity, smaller

interaction volume notwithstanding.
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Figure 2.51: A plot of the normalized
intensity versus azimuthal angles for a 1.85
index, 800 urn thick waveguide with mode
combination [2,2,0,1] at A = 2000 cnil.
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Figure 2.52: An averaged plot of the
normalized intensity versus azimuthal angles
for a 1.85 index, 800 urn thick waveguide
with mode combination [2,2,0,1] at A =
2000 cm-1.
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Despite the shorter interaction length, the phase-matched case generally provides

signals one to three times larger than the collinear beam case. It was assumed that any

dispersion in the cover and in the film layers were identical. As argued in Chapter 1,

phase-matching may be possible in the surface region while the bulk (i.e., film) region is

left with a significant phase-mismatch. This occurs when the dispersions of the two layers

are different. Calculations (see cars2a.ma) show that for a dispersion of one part in le

for the surface and twice that for the film, typically, there is an additional enhancement in

the surface-to-film ratio of 103 to 104. This is a stunning and potentially useful result.

2.7 Couplers for Four-Beam Mode Combinations

The theoretical analysis shows that four-beam mode combinations allow for phase-

matching, and at the same time, provide broader tuning ranges. These analyses show that

there several advantages in using these four-beam mode combinations. Unfortunately,

using four-beam mode combinations increases the experimental difficulty. Since the

waves are all non-degenerate in wavevector, the three beams must be coupled into the

waveguide. The generated waves, those comprising the fourth beam, must also be

coupled out of the waveguide and prepared for detection. Calculations show that to

achieve phase-matching, the azimuthal angle between each beam typically needs to be

approximately 90 degrees. To take advantage of phase-matching in four-beam mode

combinations, four couplers are needed to couple four beams to the waveguide. It should

be noted that it is very difficult to construct four different couplers on a single waveguide.

Hence, four separate couplers are required as shown in Figure 2.53.

Figure 2.53: A WSCARS coupling scheme
for four-beam mode combinations.
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Using prism couplers, it is hard enough to get two functional couplers on a waveguide, let

alone four. Thus, some efforts were made to improve couplers and the construction of

couplers on planar waveguides for the purpose of WISOM experiments utilizing the four-

beam mode combinations. This section discusses several attempts to improve the ability

to couple separate beams into the asymmetric waveguides. First, achromatic waveguide

couplers are discussed. This modified prism coupler simplifies the use of prism couplers

by eliminating the need to re-adjust the (polar) angle as the frequency of the beam is

changed. This approach, however, cannot solve the problem of the variability of the

coupling efficiency inherent in prism couplers. The other approach, considered at some

length, is the use of integrated grating couplers as shown in Figure 2.57. Attempts were

made to integrate grating couplers into waveguides with limited success. Experiments

with constructing, reproducibly, these integrated couplers are discussed. Fabrication

techniques for line gratings are covered. Again, the problem of constructing four such

integrated couplers proved challenging. One proposed solution is to integrate a nonlinear

medium into the substrate material and induce a phase grating which could be used to

couple the WISOM beams into the waveguide. This solution is briefly discussed.

Suggestions on the use of diffractive optics to construct ring grating couplers were

explicitly investigated. Analytical and numerical predictions concerning the use of

diffractive optics completes this section.

2.7.1 Achromatic Prism Couplers

To improve the usefulness of prism couplers, achromatic couplers can be considered.

One problem of any coupler is the constant readjustments that must be made in the

coupling (i.e., polar) angle as the frequency of the waves are changed. An achromatic

coupler minimizes these adjustments, thereby simplifying the WISOM experiment. Such

couplers were proposed by Spaulding and Morris [68]. One such coupler, a hybrid prism-

grating coupler is shown in Figure 2.54. The prism-grating coupler, made from Schott
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SF1 glass, when placed on a waveguide of a Corning 7059 film ona Pyrex substrate was

shown to provide achromatic operation over a 33 nm tuning range centered around 605

nm. Over this range the coupling angle tolerance was ±0.005 degrees. The compensating

grating spacing was 352 min when the prism angle was 62 degrees. Over a broad tuning

range, the sensitivity to coupling angle is reduced. This is shown in Figure 2.55 where the

error in (polar) coupling angle is plotted over a range of 570 to 640 nm; the hybrid

coupler can be compared with the traditional prism coupler. Figure 2.56 compares the

coupling efficiency of a prism coupler with this hybrid prism-grating structure. Using their

theoretical expressions, such a coupler build from SrTiO3 prism of angle 30 degrees would

give a tuning range of 314 nm for a waveguide as has been considered in the previous

sections. Use of achromatic couplers does not, however, solve the problems of the

variability of coupling efficiency. This the prism coupler's downfall; prism couplers must

be pressed onto the film of the waveguide such that the bottom face of the prism is within

a wavelength of the film. Irregularities in the flatness or index of either the waveguide or

prism cause the coupling efficiency to vary over the bottom face of the prism. In practice,

the experimenter clamps the prism to the waveguide and searches for 'magic locations'

along the prism face where the coupling efficiency is favourable. Frequently, no 'magic

locations' are found and prism must be removed and re-applied to the waveguide. This

may have the undesirable effect of damaging the waveguide.

Waveguide

Figure 2.54: Spaulding and Morris's prism-
grating coupler.
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Figure 2.55: Angular sensitivity to tuning for
Spaulding and Morris's prism-grating
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Figure 2.56: Coupling efficiency of
Spaulding and Morris's prism-grating
coupler.

2.7.2 Integrated Grating Couplers

Another approach to coupling and decoupling four separate beams into a waveguide

is the use of integrated grating couplers as shown in Figure 2.57. Such grating couplers
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have been extensively investigated and are well characterized. (See, for example, [66] and

[70].) For purposes of CARS-WISOM work, four such grating couplers per waveguide

must be fabricated, and ideally, have spacings of 450 to 500 nm. Clearly, fabrication

techniques must provide good reproducibility in order to construct thismany gratings per

waveguide. Typically, gratings they are constructed on the film material. However, there

are the advantages of resilience to damage and dirt when constructing the gratings on the

substrate before the film is applied. This was the direction taken in this research.

Oh

Figure 2.57: A four coupler scheme for
planar waveguides using integrated grating
couplers.

Experimental attempts were made to integrate line grating couplers into waveguides

with limited success. Experiments with constructing reproducible gratings on substrates

were performed. Fabrication techniques for line gratings were followed according to

previously outlined methods [69], [70], [71]. The process involves spin-coating a UV-

sensitive photoresist (Shipley Microposit S1400-31) to a thickness of 800 to 1200 nm on a

microscope slide substrate. Preparations to spinning included a complete cleaning of the

substrate in acetone, methanol, followed by de-ionized water. Samples were heated to

200 Celsius for 1 hour. The substrate was then transferred to a small clean environment

equipped with a sub-micron air filter. This 'clean box' was constructed to house the
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spinner and to provide dust-free work surfaces and sample storage. Several drops of

hexamethyldisilazane (HMDS) were applied to the substrate after it was affixed to the

spinner and was spun dry. This prepares the surface of the substrate allowing the

photoresist to better adhere. The HMDS sample was then baked at 200 Celsius for 1

hour. Photoresist, diluted 2:1 with filtered xylene was spun onto the substrate. The

diluted photoresist was filtered through a 0.5 micron filter prior to spinning. Spinning

parameters were adjusted to give photoresist thicknesses of 800 to 1200 nm. The resist

was allowed to dry overnight in the light-tight clean box. Exposure of a cosine-squared

intensity pattern was accomplished using a Lloyd's Mirror Interferometer (LMI) as

described in [69]. A UV argon-ion laser (356 nm) was spatially filtered using a 40X

microscope objective and a 15 micron pinhole. The beam was collimated to a 7 mm

diameter using a 25 mm fused silica lens. This beam was applied to the LMI. Exposures

of 10 to 15 seconds with an integrated beam power of 45 mW were applied to the

photoresist. The exposed photoresist was placed in a holder-dish and surrounded by

developer. Developing was done using Shipley Microposit Developer diluted 3:1 with DI

water. A monitoring system [72] was used to guide the development process. This

system consisted of a He-Ne laser with an expanded diameter beam of roughly 10 mm.

The intensity of the diffracted beam is monitored and development is stopped by flushing

with DI water when developing is optimal. Gratings spacings of various sizes were

produced. Developed grating spacings (in the photoresist) were measured to be 477 to

2785 nm using LMI angles (as measured from the normal of the substrate) of 3 to 15

degrees. Once the procedure had been established, gratings in the photoresist were found

to be very reproducible in both spacing and diffraction efficiency. Four substrates

containing 24 gratings each were produced. All gratings were shown to have identical

spacings and efficiency. Out of the 96 total gratings developed on 6 substrates, only two

were considered unusable. The next step was to etch the gratings into the substrate using

the photoresist as a mask. This was done using 10% HF. The same holder-dish and

monitoring system was used during the etching process. Commonly, the photoresistwas

found to peel away from the substrate before the etching was complete. The success rate
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for producing gratings in this manner was very poor; only one in twenty gratings were

etched into the substrate, and those gratings have less than a 1% diffraction efficiency into

the first order. Later, it was suggested that the sample be periodically removed from the

dish, rinsed with DI water, and reinserted into the etching acid. During the 1-1F. etching

process, a chemical bather forms on the exposed glass surface preventing effective etching

from occurring. Periodic washing removes this bather. Without removing this bather, the

HF eventually dissolves the photoresist and destroys the grating. Other methods of

etching could also be employed including ion milling.

The problem of constructing four such integrated couplers per waveguide proved to

be too challenging. One disadvantage to grating couplers is that, once constructed, they

cannot be moved. The placement of the gratings on the waveguides must be determined

in advance. As seen in Section 2.6.2, the 'crossing angle' for minimum phase-mismatch

changes for a giving mode combination as the difference frequency is tuned. Either the

experimenter must take into account the effects of intensity due to mismatches or adjust

the azimuthal angles such that zero mismatch is achieved. In the latter case, the beams

may not be incident on the grating perpendicular with respect to the lines in the grating

coupler. (In the case of a prism coupler, the beams may not be perpendicular to the angle

in the plane of the waveguide). Not diffracting off the grating at a 90 degree angle effects

the coupling efficiency and potentially misshapes the beam profile [66]. Moreover, as the

crossing angle is changed, the interaction region is moved along the waveguide; this may

be undesirable. Hence, in a following section, ring grating couplers are considered.

2.7.3 Integrated Nonlinear Grating Couplers

Before considering ring gratings, the possibility of inducing gratings in a

photorefractive medium embedded in the waveguide is considered. Instead of

constructing a fixed grating in the substrate, a photorefractive material such as lithium

niobate or barium titanate would be grown onto the film of the waveguide. A sinusoidal
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grating would be induced by applying two interfering beamsas shown in Figure 2.58. The

interfering 'pump' beams induce a spatial dependence in the index of refraction of the

photorefractive coupler. This grating formation is described in [73]. The index

modulation is then used as an adjustable, active diffraction grating. The WISOM beams

would then be coupled into the waveguide using these active gratings. Although the

efficiency of these gratings is typically not expected to be exceptional, the ability to alter

the orientation and spacing of the gratings would be an attractive advantage.

031

Figure 2.58: A four coupler scheme using
induced grating couplers in embedded
nonlinear regions.

2.7.4 Ring Gratings

Since the azimuthal angles for minimum phase-matching are very different for different

mode combinations and difference frequencies, another alternative was sought to couple

the applied beams to the waveguides. It is suggested that ring gratingsbe constructed in

place of linear gratings for coupling into the waveguides. This section outlines this

suggestion. Although no gratings of this type have been demonstrated, this section details

their proposed construction methods.

Ring gratings could be constructed on the substrate ofa waveguide prior to applying
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the film or fabricated into the film after application. The ring grating would surround the

interaction region with an clear diameter of 3 mm as shown in Figure 2.59. The grating

spacing, that is the spacing between rings, could be constant or could be slowly chirped to

increase the tuning range. In either case, the grating spacing is optimal for CARS-

WISOM when the spacing is in the range 450 to 500 nm. Fabricating these structures

could be done using the same methods for making linear gratings as described in Section

2.7.2. The interference pattern used to expose the ring grating structure (in the

photoresist) may be created in two different ways. First, is the use of the diffraction of a

circular aperture. The diffraction pattern of a circular aperture is a Jo function; far from

the center of the pattern, the spacing of the fringes is constant. Note that if a spacing

chirp is desired, the center of the pattern may be used since the fringe spacing is chirped;

the Jo maxima are further apart (in radius) near the center of the pattern. The second

method involves the use of diffractive optics to generate the ring structure directly.

(03

Grating Coupler

Figure 2.59: A ring grating waveguide
coupler.

Creating the ring grating exposure pattern via a circular aperture would involve

masking a Jo diffraction pattern. The apparatus for generating the pattern is shown in

Figure 2.60. As with exposing a linear grating, a collimated spatially filtered UV laser is
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used a source of plane waves. A circular aperture forms the Jo diffraction pattern. An

auxiliary expanding lens may be used to expand the pattern and an opaque disk is used to

mask off the center portion of the Jo diffraction pattern leaving only the ring grating

intensity pattern. This pattern is represented in intensity cross-section in Figure 2.60.

This pattern is used to expose the photoresist spun onto the substrate.

Substrate
with
Photoresist

Figure 2.60: Creating a ring grating exposure
pattern using a circular aperture.

Using a 356 nm source, the circular aperture should be 19 mm which would be placed

5 mm from the photoresist. Masking the center 3 mm of the resulting Jo diffraction

pattern at the photoresist will produce the clear aperture, while leaving a 468 nm ring

grating. This grating spacing varies only 2% over 5000 rulings. The exposure time, based

on the results and exposure intensities in Section 2.7.2, is many hours. A longer exposure

is required since most of the light is in the first few orders of the diffraction pattern which

are blocked to create the clear aperture. The energy per fringe in the fringe pattern used

in the fabrication of linear gratings (using the Lloyd's mirror interferometer) can be

calculated. Likewise, the energy per fringe using the blocked Jo diffraction pattern method

for creating ring gratings can be calculated. Hence,
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a direct comparison can be made between the exposure times of the linear gratings and

ring gratings using the blocked Jo fabrication method. The exposure per fringe for the

linear gratings using the 350 mW UV source over a 10 second exposure is 74 mJ. Using

the same source, the power illuminating one fringe of the ring grating, on average, is 580

11.W. Thus, the same 74 mJ exposure per fringe of the ring grating would require over 13

hours using this fabrication method. These calculations are outlined in the file

IwscarsIgratinglring4.ma.

Such a long exposure time is a great disadvantage since vibrations of a few nanometers

over that time scale are likely; these vibrations would destroy the exposed image, and

hence, the grating pattern. Another alternative is the construction of a diffractive optic to

create the ring pattern directly. The advantage to a diffractive optic is that nearly all the

intensity from the source is directed into a pre-determined pattern; exposure times

comparable with linear gratings would be possible. Essentially, a diffractive optic is an

intensity mask that is placed in front of a (Gaussian profile) laser beam. It is carefully

designed as to produce the requested pattern. The intensity profile of the diffractive optic

used to create the intended pattern can be obtained using the results ofFourier optics.

Recall the Fresnel Integral,

keil2
2z

(xo-x1)2+(h-Y02]E(X0 , y ) = Idx, dyi E(xpyi)e
27CiZ

(2.47)

Knowing the field everywhere in the plane x1- yi perpendicular to the optical axis, the

Fresnel Integral calculates the field at a point (xo, Yo) in a plane down the optical axis.
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Coherent, monochromatic light is assumed. In the limit where the two planes are far apart

compared with the wavelength of light, that is the Fraunhofer limit, the Fresnel Integral

becomes a Fourier transform:

-i[kikz . I 2ke
feedxi dy E (x1, y1)e 22E(xo,y 0) =

27cize
2z (2.48)

When the fields are cylindrically symmetric, the Fresnel Integral in the Fraunhofer limit

becomes a Hankel transform of zero order. It takes the form of

keik2 k

E(r0 )= e 2z dri E (ri)rij tiro
iz

(2.49)

Apparently, a diffractive optic can be designed by obtained by taking the inverse Hankel

transform of the desired pattern. In this case, the desired concentric circular pattern was

chosen with no intensity inside a radius of 1.5 mm and a square-wave function for radii

exceeding 1.5 mm. The equivalent periodicity for the square wave function was chosen as

450 nm. After 5000 fringes (or rings) the square wave function was terminated. Thus,

the pattern would have 5000 concentric ring fringes with the first fringe having a radius of

1.5 mm; all the light would exist in this pattern and no where else. The Mathematica

notebook IwscarsIgratinglring4b.ma was written to find the diffractive optic that would

create this pattern. The intensity profile for the diffractive optic that creates this ring

pattern is shown in Figure 2.61. This figure shows the relative transparency ofa

transmission mask across its center; the pattern is circularly symmetric about the vertical

axis shown in the plot. Construction of this profile into a usable transmission mask could

be done using shaded computer images transferred to a film recorder and subsequently
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reduced photographically. This method is used in creating diffractive optics, however,

optics of this scale and accuracy are not often fabricated.

Relative

Intensity

-30 -20 -10 I r 10 20 30
Distance Across
Pattern (microns)

Figure 2.61: Intensity profile of a diffractive
optic for creating a ring grating exposure
pattern.

These suggestions for coupling into planar waveguides are very much academic.

Further research and experimentation into the fabrication of alternative grating couplers

such as ring gratings and integrated nonlinear grating couplers is needed. Unanswered

questions include: what are the required exposures, what are the efficiencies, how robust,

and with what precision can these grating patterns be constructed.

2.8 Conclusions

Surface-specific experiments can be done in a planar waveguide utilizing an engineered

interference condition. This technique is referred to in this research as WISOM. To

gauge the surface-specificity of a WISOM process, a theoretical development for planar

asymmetric step index waveguides using plane waves was introduced. This theoretical

treatment yielded expressions for the field amplitude and phase ofan induced guided wave

in terms of the incident plane waves parameters, the linear indices, and nonlinear

susceptibilities of the cover, film, and substrate. Interpretative tools were introduced to

quantify the surface-specificity. The theoretical treatment was then used to perform
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numerical calculations which were used to predict favourable WISOM conditions using

experimentally realistic parameters. The numerical analysis comprises a data base which

may be used by future researchers. Six mode combinations were found to be noteworthy,

two of which have not been mentioned in the literature. Some had exceptional surface-

specificity, some were found to have large tuning ranges, and one had small phase-

matching angles. Both three-beam and four-beam mode combinations were analyzed.

Phase-matching inside a waveguide had never been investigated before. It was found

that the ability to phase-match in the waveguide is not uncommon. However, phase-

matching often comes at the expense of a large interaction volume. An experimentally

appropriate theoretical development was constructed to evaluate whether a large

interaction volume or a phase-matched process is most desirable. The development

introduced an expression for the integrated intensity ofan OM process in a waveguide. A

numerical analysis ensued. It provided the conclusion that, in defiance of the shorter

interaction length, phase-matched geometries generally provide signals two to three times

larger than collinear beam geometries. It was found that there are benefits to employing

phase-matching and utilizing the four-beam mode combinations; however, coupling four

beams to a waveguide is fraught with problems. Efforts were made to improve coupler

design and construction for asymmetric planar waveguides. Coupling schemes considered

include: achromatic prism couplers, integrated line grating couplers, coupling gratings

induced in an integrated photorefractive material, and ring gratings couplers produced by

masked circular diffraction patterns or diffractive optics.

The final conclusions are that WISOM is fraught with experimental difficulties and

provides limited surface-specificity. Clearly, WISOM can only be achieved on the

surfaces of thin dielectric films that can be reproducibility grown on dielectric substrates.

These thin films must have relatively high indices of refraction capable of supporting

guided modes. If prism couplers are to be employed, these films must be quite robust.

Scanning through the resonances of the surface using the WISOM technique may require a
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series of waveguides due to the narrow tuning ranges of some waveguides and mode

combinations. Breaking the beam degeneracy of traditional experiments and using four-

beam mode combinations or phase-matching is a way of increasing signal levels. When

there is a disparity in dispersion between the film and the surface, non-degenerate

experiments can be very effective in providing surface-specificity. Unfortunately, these

non-degenerate experiments produce the added aggravation of having to couple many

beams to the waveguide. Despite the disadvantages and complexities of the WISOM

technique, it can be a valuable surface-specific characterization technique. However, as

Chapter 1 hints, there may be more straightforward techniques that provide surface-

specificity.
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3. REFLECTION GEOMETRY INTERFACE-SPECIFIC OPTICAL
MIXING (RISOM)

3.1 Introduction

Can vibrational and electronic surface resonances be detected on any flat surface?

This has been the central question of this research. Perhaps a more specific statement of

this question is: How can the surface-to-bulk signal ratio be maximized in ISOM

experiments? Since there is a small surface signal riding atop a large bulk signal, how can

the typically poor signal-to-noise ratio be maximized? Chapter 2 took the approach of

previous researchers: using FWM in waveguide geometry to maximize the surface-to-bulk
signal ratio. One conclusion was that to experimentally scan through surface resonances,

several waveguides would be required since a single waveguide can provide favourable

conditions only over a limited range of frequencies. A second conclusion from Chapter 2

is that use of phase-matching in a waveguide can be advantageous, but the configuration

of the incident fields is far more complex than the traditional collinear beams experiment.

Finally, Chapter 2 concludes that WISOM limits the study of surfaces of dielectric

materials to those for which favourable waveguides can be constructed. This is a serious

restriction considering the number of dielectric materials for which good films can be

grown of the right thickness and indices of refraction. There are many more surfaces of

interest than this limited set.

Chapter 2 answered the original question for a very limited case. Borrowing from the

wisdom of Talmudic philosophy, it must be suggested that the right question is not being

asked. Attempting to ask a more specific question, a new query was posed: Can simple

reflection geometry be employed in an optical mixing process and still be used to detect a

surface component to a signal that is composed mostly of bulk contributions? A reflective

geometry experiment is straightforward and phase-matching is easy to achieve; signals are
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typically large and there are no apparent limitations on the type of surface that can be
studied. A typical three-wave mixing process in reflection geometry experiment is shown

in Figure 3.1. The inset provides a microscopic perspective. There, a surface region (the

lightly shaded region) and a semi-infinite bulk (the unshaded region) are shown. The two

applied fields with wavevectors k1 and k2 mix together in the 'interaction region' (the
heavily shaded region) and generate the field at k3. Note that the interaction region

includes volumes in both the surface and bulk regions. Thus, in general, light is generated
from both regions.

Intaaaion
_Region

Figure 3.1: Diagram of a typical TWM
experiment in reflection geometry.

Contrasted with the waveguide geometry, there is no built-in interference condition in

RISOM. Another difference is that there are no restrictions, other than the surface being

flat on the scale of one wavelength, placed on RISOM geometry. Since RISOM does not

require a particular structure, there is no limitation on the types of surfaces that can be
studied. In reflective geometry, where experiments are very tractable, there is complete

freedom in choosing the applied field wavevectors and polarizations. Not unlike

reflections in the linear case, nonlinear optical processes in reflection geometry have

angular and polarization dependencies. Based on these dependencies, engineering of the

applied fields is the path to favourable surface-to-bulk signal ratios in RISOM.

Exactly why should there be friendly signal-to-noise ratios in RISOM experiments?

To elucidate, consider a semi-infinite medium comprised of layers of dipoles free to
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oscillate. This is pictured in Figure 3.2. In this framework, the top layer the surface

layer (the gray layer in Figure 3.2) -- might have different dipoles (in strength and

orientation) than the rest of the 'bulk'. Experiments indicate this is so, as excellently

reviewed by Corn and Higgins [9]. Now suppose the dipoles are forced to oscillate by

applying incident harmonic fields. The process is linear when the dipoles oscillate with the

same frequency as the applied fields, that is, a linear reflection occurs. The angular and

polarization dependencies are described by the familiar (linear) Fresnel equations. By

analogy, when the process is nonlinear, the dipoles oscillate with (in general) a different

frequency than the applied fields. Since the strength and orientation of the dipoles with

relation to the applied and generated (reflected) fields is important, there are nonlinear

Fresnel equations that describe the angularand polarization dependencies; these will be

different from the linear Fresnel equations. Also, since the dipoles are different at the

surface, there will be different nonlinear Fresnel equations for the surface and bulk. This

means the angular and, perhaps polarization, behaviour is different for the two regions.

Based on this simple argument, it seems that there might be a way to separate the surface

and bulk signals in a nonlinear optical process that employs reflection geometry.

Vacuum

Figure 3.2: A semi- infinite medium
comprised of layers of dipoles.
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The simple dipole sheet model used above is undoubtedly the most appropriate

approach to developing RISOM theory that predicts the angular and polarization

dependencies of bulk and surface signals. Such a model has been used to calculate the

microscopic local fields inside a semi-infinite dipole structure where all the dipoles were

identical [22]. It proved very successful, but involved. Rather than do this time-

consuming and arduous calculation, a less precise but much simpler macroscopic model

was adopted. In a series of papers, Bloembergen and co-workers determined the

theoretical equations that govern optical mixing (particularly SHG) in reflection geometry

[23], [24], [25]. This macroscopic approach assumed optical mixing occurred within a

thin slab of nonlinearly active material. An interface between this layer and a semi infinite

bulk having only linear properties (but different than that of the surface slab) provides a

mechanism for the generated light to reflect and return to the vacuum. This structure is

pictured in Figure 3.3. Note that without this internal boundary, the generated light could

never return to the vacuum. This is a consequence of assuming that the new fields are

generated by a macroscopic nonlinear polarization induced in the surface layer. What

does it mean that the linear indices of bulk and surface are different? From the (linear)

Fresnel coefficients, the reflection from this interface is stronger as the difference gets

larger. Thus, the surface-to-bulk index ratio is a scaling factor in the amplitude of the

generated field as measured in the vacuum.
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Figure 3.3: Optical mixing in a thin slab of
nonlinearly active material.

What justification is there for using a macroscopic model for a process that has

microscopic origins? It is indisputable that the motive of nonlinear processes (optical

mixing) is microscopic. Analysis by Ju [22] of sheet dipole model (with identical dipoles)

shows the classic linear Fresnel coefficients and Bloembergen's macroscopic nonlinear thin

slab model (both derived from a macroscopic approach) to yield results that are not exact,

but exhibit the main attributes of a true microscopic model. His work suggests that use of

a macroscopic model can furnish, to good approximation, linear and nonlinear reflection

coefficients. Use of a macroscopic model in this work will be used to guide future work;

at some juncture, the microscopic calculations must be done. Embarking on the

microscopic calculation without prior direction would be an inefficient use of resources.

Since the goal of RISOM is to achieve favourable surface-to-bulk signal ratios, any

successful model must be able to describe signals generated from a surface region and the

bulk. With such a model, the surface-to-bulk signal ratio can be constructed and the

parameter space explored for RISOM conditions. Macroscopic models investigated to
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date, including the Bloembergen model, describe signals that originate from a thin surface

slab; no contributions from the bulk are included. Recalling the Bloembergen model

structure, there were no nonlinear properties included for the semi-infinite bulk. It is
insufficient to simply include nonlinear properties for the bulk. Just as the light generated
from the thin surface slab needs an interface to reflect off in order to return to the vacuum
(recall Figure 3.3), so does the light generated from the bulk. Hence, the following
structure, as shown in Figure 3.4, was adopted.

Incident Waves

Vacuum

seetioaksixte
...*.` 64-;..

" "+;

Reflected
Generated Wave
from Surface

Reflected
Generated Wave
from Bulk Median

Bulk 'an Layer

Linear and Nowlittear Properties

Semi - Infinite Bulk

Linear and Non-linear Properties

Reflection from
Bulk Median-Bulk Boundry

Figure 3.4: A structure that gives reflected
optical mixing signals for surface and bulk
regions.
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Extending Bloembergen's model, an additional layer is added between the surface slab

and the bulk. This is referred to as the bulk median. This layer has the nonlinear

properties of the bulk which are, in general, different from the surface. The linear index of
refraction of the bulk median, however, is made different than the semi- infinite bulk. This

new interface establishes a mechanism for the lightgenerated in the bulk (median) to be

reflected back into the surface layer and on into the vacuum. This bulk-bulk median

interface provides the same reflective boundary as the bulk-surface slab interface does in

the Bloembergen model. When consideringa model describing ISOM surface science

experiments, there is a physical reason why the surface and bulk regions may have

different linear properties: the surface is comprised of a monolayer of atomic or molecular

adsorbates sitting atop a bulk crystalline material. It is an ad hoc feature in this structure

that the bulk and bulk median have different (linear) indices of refraction. No convincing

physical argument exists as to why this should be so, however without this condition, at
least in a macroscopic model, the light generated in the bulk can never be detected in the

vacuum. Since this is an artificial difference, there is some question as to what the bulk-

to-bulk median index ratio is. The reflection from this boundary behaves as a linear

reflection. Thus, this index ratio only affects the reflected amplitude of the field generated

in the bulk (median). The bulk-to-bulk median index ratio must be seen as a scaling

parameter for the bulk-generated amplitude; all the angular and polarization features (for

the generated waves) are unaffected by this ratio. A similar argument must be made for

the thickness of the bulk median layer. Since the layer is introduced arbitrarily, the

thickness is an arbitrary scaling parameter that appears primarily in the phase of the field

originating from the bulk median layer. Now with light re-entering the vacuum generated

from both the surface and the bulk (median), a comparison of the ratio of amplitudes can

be made. The field amplitudes are found as they are in the Bloembergen model: all the

incident, reflected, and transmitted fields are defined in the various layers and the

boundary conditions are satisfied at the interfaces between layers. This operation leads to
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analytical expressions for the bulk and surface generated field amplitudes. These

expressions contain the incident field amplitudes, frequencies, directions, and polarizations
as well as the reflected waves' directions and polarizations. The main body of this chapter

explores the parameter space of these variables in a search for favourable surface-to-bulk
signal ratios. This information can then be used by other researchers as a guide in doing
microscopic calculations or experiments using RISOM to study surfaces.

This chapter begins with a short discussion comparing results of Ju's microscopic
model with macroscopic ones. This section attempts to lend credibility to the results of

macroscopic models used to describe microscopic processes. The chapter proceeds by

describing macroscopic models that have been developed in the literature, particularly the
model adopted and extended here; the Bloembergen model. Once the reader has been
familiarized with the Bloembergen model, a discussion ensues modifying this model to

include contributions from the bulk. This section develops the structure and arguments

used to derive the equations for RISOM; the actual derivation of these expressions is done
in a following section and is detailed in Appendix B. As it happens, it is easy not to

assume the particular optical mixing process and derive the reflection coefficients for

surface and bulk for general optical mixing. This is done by defining a generalized

effective source wavevector and source index of refraction which are due to the induced

polarization. Once the equations for general mixing are found, a simple substitution can
be made to predict RISOM for specific processes such as CARS-like FWM, SHG, and

SFG. The remainder of this chapter is devoted to mapping out the parameter space of the
model's predictions, specifically where RISOM is likely. First only collinear phase-
matched geometries are considered. Collinear phase-matching is appropriate for

dispersionless materials and harmonic generation. Both polarization states, S and P, are

explored. In general, it is found that improvement in the surface-to-bulk signal ratio is

possible for S-polarization when the reflection angle is large; for P-waves, enhancement is
done by making use of the nonlinear Brewster's angle -- the nonlinear analogue to the

linear Brewster's angle. Secondly, where the linear dispersion ofmaterials is important,
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non-collinear phase-matching, is considered. Here the angular dependencies for the two

polarization states for SHG (where dispersion is very important, but phase-matching is

automatic) and CARS-like FWM (where dispersion is less important, but phase-matching

is critical) are specifically considered. It is found that the results for enhancing the signal-

to-noise ratio for collinear phase-matching are the same for the non-collinear case,

however, enhancement is generally better if the surface and bulk dispersions are dissimilar.

In addition, it is shown that there is an angular separation of bulk and surface signals due

to dispersion; if the index of refraction is different in the surface and bulk for a given

frequency, the optical process in the surface may be phase-matched, whereas the bulkmay

not be. Hence, waves generated in the surface and bulk travel in (slightly) different

directions. Once the field geometries for RISOM are found, there is some discussion

about how to use these results to guide microscopic calculations and how to

experimentally search for resonant RISOM signals.

3.2 Microscopic Versus Macroscopic Treatments of Optical Mixing

An exact macroscopic treatment of general optical mixing at a dielectric interface

will be presented later in this chapter. However, nonlinear processes (optical mixing) are

best described by a microscopic model. The validity of using a macroscopic model has

been addressed by Ju [22]. His analysis of sheet dipole model shows the classic linear

Fresnel coefficients and Bloembergen's macroscopic nonlinear thin slab model yield results

that exhibit the main features of a microscopic treatment. He shows that, to good

approximation, a macroscopic model can furnish the linear and nonlinear reflection

coefficients.

Ju performs a microscopic calculation of the opticalresponse of a semi- infinite

medium in a discrete point-dipole model. The dipoles, free to oscillate, are arranged in

layers as pictured in Figure 3.2. The semi-infinite bulk is modeled as an infinite number of
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dipole sheets; each sheet having the same (microscopic) polarizability tensor. In this
framework, the surface SHG (SSHG) field is found by integrating the radiation field from

a continuous surface sheet of nonlinear dipoles. Below the surface sheet of dipoles is

positioned a semi-infinite series of (bulk) dipole sheets. Each individual induced
microscopic nonlinear dipole moment constituting the nonlinear dipole sheet inside the
medium is given by

/3(2) (2)
(2(.0; CO, CO): [Elocateikxx Itiocale'kla(z (3.1)

where p(2) is the (second order) nonlinear dipole moment, F = (x, y, z), y(2) is the (second

order) microscopic susceptibility of the sheet. The incident field is degenerate in
wavevector and is incident in the x-z plane.

ioca, is the local field at the location of an individual dipole. The local field is field
applied to a point-dipole due to the incident field augmented by the presence of a medium
(a semi infinite number of dipole sheets). Ju calculated this field numerically by first
considering the response of a medium to an external field via an induced (linear) dipole
moment. The medium is approximated by infinite sheets of point dipoles (see Figure 3.2)
each responding and adding to the local field at a particular site (e.g., a lattice site) inside
the medium. The induced dipole moment at a lattice site i with a (linear) dipole

polarizability, ldpote,i, is

(Fi,t) =7 TP pole,i Elocal (F It) Y

fe,2aieq l)-l7

(3.2)
Edipoki (r t)

ij
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where the local electric field is the superposition of the external field and the electric

dipole field from all lattice sites in the crystal except the site itself. The local field is solved

self-consistently. Once the local field due to the external field and the presence of the
medium is known, the nonlinear response to the medium can be calculated via (3.1).

The electric dipole field of the nonlinear dipole moment in a continuous medium of

refractive index n at frequency 20) is found realizing that [74]

ik2.-Ig-E.
dipole,20)(R ,F) = 12

v
x V xP(2)(F)e

n
1

lk Ft

Here the magnitude of the wavevector is

I1 2o)
1-i2to I = 7n

The observed field far away from the dipoles (at location I?) is integrated over all the

contributions to the field by each dipole. With N being the surface density foreach dipole
sheet, this integration appears as

Eofrserved(R)= N.1 tD- Edipae2.(ii,F)
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In summary, the surface local field (as calculated numerically using linear dipole

moments) and the surface nonlinear susceptibility tensor determine the nonlinear dipole

moments. The dipolar interaction between the linear dipole moments (at the fundamental

frequency in the medium) requires a self-consistent treatment in order to obtain the correct

medium response to the electric dipole fields of the nonlinear dipole moments (oscillating

at the harmonic frequency). Hence, mapping out the parameter space of polarizations and

incident angle combinations would be a time-consuming task, each point in this space

requiring a lengthy self-consistent calculation.

Ju's analysis produces the microscopic surface local field in the linear case. The

model shows that the macroscopic results, though approximate, exhibit the important

features of the microscopic field. For instance, Figure 3.5 shows the (real part of the

linear) surface local field for the reflection of P-waves scattering off the interface (at an

arbitrary angle of 45 degrees) between a vacuum and 100 dipole sheet layers (a distance

equivalent to one wavelength of light used in the computation). Note that surface effects

are evident. As shown by Ju, when these surface effects are averaged (over distance into

the layered structure) the macroscopic result is reproduced. The good approximation of

the macroscopic field to the microscopic field is illustrated in Figure 3.6. The ratio of the

(real part of the) microscopic reflected field amplitude to the (real part of the) incident

field amplitude is plotted as a function of angle. Here the dependence is shown about

Brewster's angle. The reflectivity of P-waves for two wavelengths are shown: the lower

curve represents a wavelength 10 times longer than the upper curve of wavelength

equivalent to 2eV. The index of refraction was 4.0 and the distance between layers was

0.25 nm. Note that the microscopic field has a minimum at Brewster's angle, but never

reaches zero. Also in Figure 3.6, the lowest curve represents the P-wave macroscopic

field.
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The macroscopic field is given by the familiar Fresnel reflection coefficient, hence the

curve is labeled `Fresnel result'. The Fresnel result predicts, incorrectly, that the field

goes to exactly zero at Brewster's angle. Despite this anomaly, the macroscopic field

behaviour closely follows the microscopic local field. This illustration is representative of

the many comparisons Ju's work makes between macroscopic and microscopic fields.
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Figure 3.5: A plot of the real part of the
microscopic field versus distance into a
layered dipole sheet structure.

.025

a

.4,

11.7

CC

76
angle of incidence

76.5

Figure 3.6: The reflectivity of a dielectric as
calculated using a layered dipole sheet
structure.
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The conclusion drawn from Ju's work is that the familiar results derived by

Maxwell's equations using macroscopic fields are consistent with, but approximate to, the

results using microscopic fields when scattering offa vacuum-dielectric interface. This

lends justification to using Maxwell's equations and the macroscopic fields to derive linear

and nonlinear scattering off dielectric interfaces. Thus macroscopic models can be used to

describe fundamentally microscopic processes (like ISOM), although the results they yield

are approximate. Ju shows that macroscopic treatments by Bloembergen [23] and Sipe

[75] yield very acceptable results for optical processes with ultimately microscopic origins;

this is a key point for this work. Drawing from Ju, the macroscopic treatment of

Bloembergen can be used to approximately describe RISOM.

3.3 Macroscopic Models Describing Nonlinear Processes at Surfaces

Before developing a model that predicts the features of surface and bulk nonlinear

reflections, it is informative to review the literature. There are only two macroscopic

models that are useful for the studies done here. These two treatments have some

conflicting predictions that are addressed. The direction taken by this research was to

choose one of these treatments and modify it to include contributions from the bulk as

well as the layer at the surface. After one treatment is shown to be more appropriate for

this work, a development for a RISOM model is introduced.

3.3.1 Previous Work

There are two popular macroscopic models reported in the literature relevant to the

work presented here. They are the treatments of Bloembergen done in the early sixties

[23] and Sipe [75] published in 1987. In the exact macroscopic RISOM model presented

here, the Bloembergen approach is used, hence a description of that approach is furnished.

Since the treatment of Sipe is very different and some of the results do not agree with

Bloembergen's, it is of interest to briefly review and contrast his approach.
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In the Bloembergen development, the interfacial region is divided into three parts: the

top (or cover) above, the semi-infinite bulk below, and the intermediate surface region. In

this model, the cover and bulk are given only linear susceptibilities, whereas the surface

layer is given both linear and nonlinear properties. There is an inhomogeneous term in the

optical wave equation caused by the nonlinear polarizability radiating a wave from the

surface. Using Maxwell's equations and the boundary conditions at the defined dielectric

perimeters, Bloembergen derives nonlinear reflection and transmission coefficients. With

these in hand, the treatment progresses by taking the limit as the depth of the surface

region become small compared with the wavelengths. This is accomplished by expanding

the coefficients to first order in da, where d is the surface layer thickness. The treatment

correctly predicts the linearly increasing generated field strength and the existence of a

nonlinear Brewster's angle. Also predicted is the Secant behaviour of the reflected field

magnitude on angle. According to this theory, the integral over the region of overlap of

the applied fields (commonly called the interaction region) is not necessary since the limit

over d is taken. Taking this limit before performing the integration leaves an expression

that neglects some of the phase-matching behaviour, specifically the Sinc behaviour of the

field strength on the phase-matching parameter. It is unimportant in Bloembergen's

analysis as phase-mismatched processes are never considered.

Mizrahi and Sipe [76] took a different phenomenological approach. They treated the

region that contributes to surface-generated SHG (SSHG) as an induced (continuous)

nonlinear polarization sheet sitting between the vacuum at z = 0+ and a linear medium at z

= 0- (Figure 3.7). The nonlinear polarization sheet is induced by the fundamental field in

the medium (z = 0-) with a surface nonlinear susceptibility tensor y (2) (26.);co,co). The

electromagnetic field generated by the induced dipole sheet, which is treatedas a

macroscopic source term, is obtained from a Green's-function formalism [75]. The

reflected SSHG has two contributions, the directly generated upward-propagating wave

and the downward-propagating wave reflected upward by the vacuum-medium interface at
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z = 0 (Figure 3.7). The transmitted SSHG is just the downward-propagating wave picking

up the (linear) Fresnel transmission coefficient at the interface. Their result in S-

polarization is identical to that of Bloembergen (see Equations (3.17) through (3.19)).

Their P-polarization results (using the definition (3.22)) for reflection and transmission,

respectively, are:

and

(n2 n2)(cose, sins +n2 sine, cosa)
ey,p=esP 2n, (cose,, +cose,)

(n2 n2)(coser sina sine, cosa)s

nt2 (cose + cos() I)

When compared to Bloembergen's results (refer to Equations (3.20) through (3.22)), the

contribution from z-component of nonlinear polarization (e.g., the term involving

esj,n, sine, cos a) differs by a factor of n2 , the index of refraction in the medium at the

frequency of the second harmonic. This discrepancy is the result of bringing the nonlinear

polarization source outside the linearly responding medium. Recall that the tangential

component of the electric field and the normal component of the displacement field

(b = n2E) are continuous across the interface. The model considered by Mizrahi and

Sipe is reasonable only when the nonlinearity arises mainly from molecules adsorbedon a

surface and the local field effects of the molecules can be neglected. This is justified if

surface coverage of adsorbed molecules is so low that the effective dielectric constant of

the adsorbing layer is very nearly one. Bloembergen's model does not have this

assumption, hence it was chosen as the starting place for a RISOM theory. The next

section discusses Bloembergen's model in detail in preparation for the development of the

RISOM theory developed here.
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Figure 3.7 A nonlinear polarization sheet at
z = Cr using in the Mizrahi-Sipe Model for P-
polarization.

3.3.2 Bloembergen's Model in Detail

Bloembergen and co-workers determined the theoretical equations that govern optical

mixing, particularly SHG, in reflection geometry [23], [24], [25]. In his first paper,

Bloembergen makes the assumption that 'mixed waves' (waves generated due to a

nonlinear susceptibility) emanate or 'reflect' from the interface. These waves are

produced by a source wave; it is created by a nonlinear polarization induced by all incident

fields. With this, he presents the solutions to Maxwell's equations in nonlinear dielectrics.

These are the solutions to Maxwell's equations which satisfy the boundary conditions at a

plane interface between a linear and nonlinear medium. Generalizations to the well-

known laws of (linear) reflection and refraction give the direction of propagation of the

mixed waves generated in a thin region near the interface. He shows that these waves'

intensity and polarization conditions are described by generalized (nonlinear) Fresnel

coefficients.
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This macroscopic treatment begins with a statement concerning mixed waves

emanating from an interface. Bloembergen's development begins with a description of the

physics that governs the generation of (second) harmonic waves. This description is later

generalized to mixed waves, that is, all nonlinear processes. The induced polarization

oscillates at the mixing frequency. The oscillating polarization will, in turn, radiateenergy

in the form of a traveling wave of the same frequency. The nonlinear source term for

TWM is given by

P(2) (0)3) = x (2) (0)3;( 1) 0)2): Elei(ii*F-wit).t2e42') (3.3)

For general n-wave mixing, that is a process with n-1 incident waves that mix to produce

an n-th wave, the nonlinear source term is

p (n-1) (co

(n-1)
k0) n ;(.0 1,(t) ,0) 1. i(k-Fcoit) 62-Fco20.. )

1 /* le t2e E x-11_le

(3.4)

It is useful to define an effective wavevector for the source term, k3, as the vector sum of

the wavevectors for all incident waves such that

n-1

Es =-ErC
i=1

(3.5)

and an effective index of refraction associated with the source wave such that
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Then, using (3.5), expression (3.4) can be concisely written as
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p(n-1) (ni)
n) X (C° n;()1,0)2, ,03 n E En-w.t)-1 1 2.. n-1-

(3.6)

Note that the convention for Co is the sum of frequencies of annihilated photons. If there

are photons emitted in the process, the frequency of those photons are treated as if they

were negative. Hence, in a CARS process where 0.),/ and 0)3 are annihilated, but 0)2 (as

well as 0)4 is emitted, con = 0)4 = w, + (-0)2) + w3. Note that the convention also affects

the wavevectors of any emitted waves. (For the previous example, the wavevector for the

wave at all is k4 = kl E, +E3.)

The nonlinear source term arising from the induced polarizability was introduced by

Bloembergen and co-workers [77], who showed that the effective nonlinear source term

can readily be incourporated into Maxwell's equations for a nonlinear medium,

and

(3.7)

(3.8)
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understanding that

P = P(') + P(2) +P(3)++P(n)+ . (3.9)

Assuming that the permittivity, c, is a scalar and assuming a non-magnetic material such

that the permeability, µ, is unity, the waves at the generated frequency obey the wave
equation

*0 12
VXVX DV, t) n a I2 D(r, t) = 47C VXVX P(1., t). (3.10)

Consistent with dielectrics, it is assumed no currents are induced. Also, it is assumed that

the response of the system to the applied frequencies is small, hence atn= 0. Each of the

fields can be (represented as harmonic fields and) transformed from Ai', t) into b(F,co)

by defining the Fourier transforms

, ,D = )2 do) b(1-- co)e's
27t

P(F,t) = (2)2 fdo) P(r,co)e'

which reduce the wave equation to the Helmholtz equation with an inhomogeneous term:
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xn(P,o))+k2(con)r)(F,w)= 47t VxVx P(r,(0). (3.11)

A complete derivation of the nonlinear Helmholtz equation can be found in Appendix B.

It should be noted that this is the usual linear Helmholtz equation augmented by a

source term on the right-hand side of the equation. The general solution of (3.10) consists

of the homogeneous equation plus one particular solution of the inhomogenous equation.
A complete argument used to find a general solution is found in Appendix B. The general
solution to the inhomogeneous (induced) electric fields for the two polarizations, S and P
(see the discussion of Figure 3.9 and Figure 3.10 below), may be written

and

INHOMO,S (F. 90= Eses,s,eqs*Fco st)

(k.F-01
E INHOMO,P(r. lt)=E pes/ei

(3.12)

(3.13)

The induced field amplitudes for the two polarizations are defined by (refer to Appendix
B)

(
--47T

tS8s,S = 2 2ni

and

)

/
47C Es(is 4n) (1) n:Wl, 9(° n-1))E P63,11 = 2 2 -13/14)(°)4:°31'...'(°n-1)ni ns

(3.14)

(3.15)
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As shown in Appendix B, the total observed field in the vacuum due to an arbitrary

structure of nonlinear media is the sum of a homogeneous solution and the

inhomogeneous solutions to the wave equation:

E(F,t)=E 16,(F,t)+E A(=, t) (3.16)

In (3.16) the second term is given by (3.14) and (3.15), but the first term containing 6,

must be found by matching the boundary conditions of the layered structure.

Equations (3.12) through (3.15) represent the nonlinear source terms for n-mixing in a

nonlinear medium. With these general solutions, specific cases which include boundaries

between the vacuum and a nonlinear medium are solved. As will be seen, the nonlinear

Fresnel coefficients are found by considering this very geometry. It is pictured in Figure

3.8. The wavevectors (k k and k,), polarization vectors (Et, E and Es), and magnitudes

of the fields (6's and 6,), are determined from these boundary conditions. It turns out that

the nonlinear polarization radiates back into the vacuum in one particular direction.

Likewise, because of the linear index of refraction, the polarization radiates into a certain

direction into the bulk medium. The problem is analogous to the linear case of reflection

and refraction at a dielectric interface. The difference is that the role of the incident wave

has been replaced by the 'inhomogenous wave' with an amplitude proportional to the

nonlinear polarization, P. Note that the nonlinear Fresnel coefficients can be defined as

the ratio of the nonlinear reflected amplitude to the polarization. This solidifies the

analogue between the linear and nonlinearprocess; the linear Fresnel coefficients are

defined as the ratio of the reflected to incident field amplitudes.



131

Figure 3.8: Interface between the vacuum
and a nonlinear medium.

Considering the interface pictured in Figure 3.8, the tangential component of E and H
should be continuous everywhere on the boundary at all times (recall infinite harmonic

plane waves were assumed). This requires that the field components for each frequency
(all incident and generated) be separately continuous across the boundary. For perfect

phase-matching, satisfying this condition means that the y-components of the wavevectors

for the generated reflected field, k the transmitted field, kt, and the effective source

wavevector (recall (3.5)), k are all equal:

or

(k-r)y = (Et)y = (iis)y

licrisiner =Ilidsine, =Ircsi sines.

The reader may wish to refer to Figure 3.8 or Figure 3.9. Hence there are unique
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directions for the reflected and transmitted generated waves. It should be pointed out that
in general, the indices are not equal:

nr * nt * ns.

Bloembergen implicitly assumed that only perfect phase-matching cases were of
interest. When the process is not phase-matched, there is still a unique direction which is

found by minimizing the phase difference [78]. That is, the intensity is reduced by the

phase-mismatch as characterized by the difference in phase between the source and

transmitted waves, (I) = 0E- r) with Arc a it Es. Recall that k depends only on fixed

constants and the incident field parameters (which can be considered fixed for argument's
sake). The transmitted wavevector, k, depends on the frequency, the index of refraction
of the medium at that frequency (which are fixed) as well as the direction of the wave.

Hence, the only free parameter available to minimize the phase difference is the direction
of the transmitted wave. This is how a unique direction for this wave arises. Notice, from
(3.12) and (3.13) and the boundary conditions, nonlinear Fresnel coefficients can be

defined. Bloembergen derives these expressions and comments on general laws of

nonlinear reflection and refraction for a non-dispersive, phase-matched process.

The general laws of reflection andrefraction can be determined by considering a

simple vacuum-nonlinear medium interface (Figure 3.8). From this structure,

Bloembergen derives the nonlinear Fresnel coefficients for an isotropic medium.

Considering an isotropic medium is important for the work presented here. Essentially

this assumption means that the nonlinear susceptibility is taken to be a unit tensor. Later
this will be important for the comparison of surface and bulk contributions to the

generated signal without the need to consider the (possibly different) symmetry of surface

and bulk. This is a worst case scenario for RISOM. If, in real experiments, there are
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convenient symmetries that enhance the surface over the bulk signals, they would certainly
be used. For argument's sake, no symmetry assumptions will be made.

Bloembergen derives the fieldamplitudes for S-waves using continuity of the
tangential components of E and H across z = 0. Combining these boundary conditions
with the solution to the inhomogeneous problem (from (3.12) through (3.15) andresults
from Appendix B) yields the amplitudes of the reflected and transmitted fields. The
coordinate system is shown in Figure 3.9.

With reflected wavevectors (with directions described by angles 0 with respect to the
z- axis) and field amplitudes labeled with subscripts r, transmitted labeled with subscripts
t, and source waves labeled with s, the field amplitudes for S-wave are given by

with

?it cog) cost s
n2 n2 1, s,S

nt cost), cost),

Eta = er,S es,S(ei(ks-kt)7 1)

47rPs

n2 n2t s

Here the capital subscript 'S' refers to perpendicularly (S) polarized waves.

(3.17)

(3.18)

(3.19)
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Figure 3.9: Generated waves at the boundary
of a nonlinear medium, polarized with the
electric field vector normal to the plane of
reflection.

Figure 3.10: Generated waves at the
boundary of a nonlinear medium, polarized
with the electric field vector in the plane of
reflection.
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The P-waves are those generated by the P-component of the induced polarization,

that is, the y and z-components in the coordinate system defined in Figure 3.10. It is

advantageous to describe the component of the nonlinear polarization in the plane of

reflection by its magnitude and angle a between its direction and the directionof

propagation of the source wave, described by E5. Again, the amplitudes are derived

considering the continuity of the tangential components of E and H (from (3.12) and

(3.13)) at z = 0. Thus the field amplitudes for P-waves are:

(re n2)sines sin2et sin(a+6, +es)
erx es'P n, sine,. sin(0, +es)sin(e, +0,)cos(e, Or)

et), =-8,x(ni2 ns2)

47EPp
L's,P 2 2nt ns

(nr2 sine,

ni2 sine,

sina sines cosec
esin(et-Fes)

+cosa dot es)
ei(k-QF2

nt

+sina cos(e t es) _1)
(n 4)2

(3.20)

(3.21)

(3.22)

Note that in the case of S-polarization, there is no advantage to considering
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ks P/cn) # 0 since the dipole sheet radiation strength changes only with the cosine of the
polar angle 9. This is why no angle a is considered for the S-polarization case (Figure
3.9). In contrast, for P-polarization, ks 11.n) # 0 is important to consider. When the
nonlinear dipole moments are aligned in the P-plane, it is possible that the applied fields
are in the same direction as the dipole moments. By analogy with the linear case, this
angle is called the nonlinear Brewster's angle (NLBA). The NLBA is found by examining
the last factor in the numerator of (3.20). Note that 9, = it - a - As is the angle for

reflected wave and when a = 0 (when PP) is parallel to Es), this factor in causes the
amplitude to vanish. The physical interpretation of the NLBA is that the nonlinear

polarization cannot radiate in the direction it oscillates. In Appendix B, there is a more
detailed discussion as to the physical meaning of the NLBA.

Equations (3.17), (3.18), (3.20), and (3.21) give the generated wave field amplitudes
when fields are applied to an interface between a linear and a semi-infinite nonlinear
material. Bloembergen was interested in obtaining expressions for these amplitudes when
the nonlinear material is a thin slab rather than a semi-infinite dielectric. He proposed the
structure shown in Figure 3.3. It consists of a thin slab of material with both linear and
nonlinear properties atop a semi-infmite bulk with only linearproperties. In this approach,
Bloembergen assumed optical mixing occurred within the thin slab ofnonlinearly active
material.

The layered structure with its coordinate system is defined in Figure 3.11. At the
cover-surface layer interface, z = 0, and at the surface-bulk interface z = -d2. Thus, the
surface layer thickness is d2. Each region is has a unique linear index of refraction

indicated by ni for the cover, n2 for the surface, and n3 for the bulk region. The fields are
defined in each region by considering the S and P polarizations (see Figure 3.9 and Figure
3.10) and by the wavevectors. The fields have amplitudes e and are defined with zero
phase at the top of each interface. Hence, after propagating through a layer of thickness
d, they will acquire a phase factor eir'di
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Recall that the wavevectors in each region are dependent on the linear frequency-

dependent indices of refraction. The wavevectors are defined in Figure 3.12. (This may
be compared with Figure 3.3.) The field in each region propagates with an associated

wavevector is given identifying subscripts. The wavevectors and fields are identified
with the same subscripts. These subscripts are defined by one letter describing the

frequency of the wave, followed by a second letter identifying the wave (I = incident, r =
reflected, t = generated, s = source, u = transmitted), and a number indicating the layer.

The layer numbers are: cover layer (vacuum) = 1, thin surface slab = 2, semi-infinite bulk
= 3.

For the n-1 incident waves, the number indicates the layer in which the wave is
located, as shown at the far left of Figure 3.12. For instance, the applied wave '1' with
frequency coi, reflected from the bulk-surface interface and traveling in the surface layer,

has associated subscripts '1,r2'. If the process being considered was SFG, there would be

two incident waves with associated subscripts '1,11' and '2,11'. The reflection of these
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Figure 3.12: Defining the wavevectors for
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waves in the cover layer are labeled '1,r1' and '2 ,r1', whereas the transmitted waves have
labels for the surface layer are '142' and 2,t2', and so forth. Explicitly, kit is the
wavevector of the i-th incident wave with frequency mi. It defines one of the n-1 waves
incident from the cover heading to the slab interface. eiji is the amplitude of the field of
this wave. 17. is the wavevector of the i-th wave reflected from the interfaces below.

This wave returns to the cover (vacuum); ei.ri is the amplitude of this wave. rci12 is the
wavevector of the i-th wave transmitted through the surface layer down towards the semi-
infinite bulk; ei,,2 is its field amplitude. Ici.r2 is the wavevector of the i-th wave which
reflects from the surface-bulk interface and travels up towards the cover, ei".2 is the
electric field amplitude of this wave. E=,.3 is the wavevector of the i-th wave that is
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transmitted into the semi-infinite bulk. ei,u3 is the amplitude of the field of this wave.

Each wavevector is described by spherical coordinates, rcx = ), with A equal to
any of the subscripts defined for the wavevectors and amplitudes above.

For the generated waves, the layer identification number indicates the layer number
the wave is generated in. (In Bloembergen's derivation the only layer that waves are
generated in is layer 2 -- the surface layer.) For example, the generated wave parameters
(which has frequency index n) propagating into the semi- infinite bulk has subscripts 'n,u2'.

Specifically, kn,,l isi the wavevector of the wave generated from the surface region. It is
the wave reflected from the interfaces below and now propagates in the vacuum. En,r1

the field amplitude of this wave. iinaa is the wavevector of the wave generated in surface
region. ea. is the amplitude of the field of this downwards-traveling wave. The
generated wave described by -.,12 isi reflected from the surface-bulk interface. This wave.

reflected from the surface-bulk interface, propagates in the surface slab; it has En,r2b as its

wavevector, 8n,i2b is its amplitude. in,2 is the wavevector of the 'source' wave. It is the

effective wavevector as defined in equation (3.5). The amplitude of this wave, 6n4, is
given by equations (3.12) through (3.15). Finally, the wave transmitted down into the
semi-infinite bulk is given the wavevector En,u2 and amplitude en4,2. Again, each

wavevector is described by spherical coordinates: k, = Qkxl,9x,cpx ), with A. equal to any
of the subscripts defined for the wavevectors and amplitudes above.

Notice that only one reflection off of each interface is included. When the reflection
angle is large (near grazing) this model is suspect as the slab will act as a leaky waveguide
with many reflections at each interface before the light 'escapes' from the confines of the
slab. This model is also limited to 'weak coupling' theory. That is the incident waves are
not attenuated by the generation of a new, inhomogeneous, wave.

Upon imposing the boundary conditions on the fields, realizing the assumptions made,
four equations for each polarization arise. Bloembergen' solutions to this set of equations
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for generated S- and P-polarization reflected field amplitudes from the surface slab, e,,,
(dropping the n subscript) are:

e,Srl 6s2,SUS-1

(
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Several observations that can be made from (3.23) through (3.26). For instance, when
there is no longer any discontinuity between the surface and bulk layers (when na = ma),

the reflection vanishes. Also, the surface-to-bulk index ratio is only scaling factor in the

amplitude of the generated field as measured in the vacuum. Also, but not readily

apparent from (3.23) through (3.25), is the famous sec OH behaviour often quoted in the

literature. It can be seen by realizing that the denominators ((3.25) and (3.26)) of both
(3.23) and (3.24) contain a cos 0a. Thus, it is expected that the surface reflected wave
should increase in intensity as the angle increases to near grazing angles.

For P-waves, note the occurrence of the NLBA for perfect phase-matching (rct2
= iscs2)-

For perfect phase-matching 0,2 = Oa = (It - a)12 and when the source wave and

polarization are parallel (a = 0), the first term in (3.24) and the term involving cos 052

cos (1) a immediately vanish. The remaining term vanishes only when the limit of perfect

phase-matching is taken -- the denominator tends toward infinity more rapidly than the

numerator. Under these conditions there is no reflected wave.

Bloembergen takes equations (3.23) through (3.26), expands them in kd2, and

approximates them to first order in kd2 (the thickness is much smaller than the

wavelength). He shows that the reflected and transmitted intensities are equal and that
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they are proportional to the square of the thickness of the layer. This is consistent with

observed behaviour.

3.3.3 Results and Limitations of Bloembergen's Model

Exact macroscopic treatments by Bloembergen of general optical mixing at a dielectric

interface yields many accurate results. However, the integral over the region of overlap of

the applied fields (commonly called the interaction region) is not necessary since the limit

of small d is taken. Taking this limit before performing the integration leaves an

expression that neglects some of the phase-matching behaviour, specifically the Sinc

behaviour of the field strength on the phase-matching parameter. It is unimportant in

Bloembergen's analysis as phase-mismatched processes are never considered.

Furthermore, Bloembergen's result neglects terms that are second order in the phase-

mismatch. Although it only effects the transmitted wave amplitudes (and unimportant for

discussions regarding the reflected waves), it should be pointed out that the results for

Bloembergen's transmitted waves ([23], equations (6.8) and (6.18)) neglect a term of the

form

. n 1coseri
1

ra cosea
(na cos9/2 sin 0,2 ns2 cos0s2 sin0,2)

n

which clearly vanishes for perfect phase-matching (k2 = ks2); it is also the only one that is

second order in the phase-mismatch. When the phase-mismatch is large, this term cannot

be neglected.

From the perspective of RISOM, the largest limitation to current macroscopic

treatments of OM at in interface (either Bloembergen's or Sipe's) is that they only predict

the surface-generated waves. There is no information concerning the bulk-generated

waves. There is no apparent reason that the surface-generated signal should dominate
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over the bulk signal. Yet, the search for favourable RISOM conditions relies on

maximizing the surface-to-bulk signal ratio, hence it is critical that information about both
the bulk and surface signals be available.

3.4 Developing a Macroscopic Model for RISOM Prediction

The structure, shown in Figure 3.4, was adopted in order to develop a RISOM model.

It is carefully pictured with its coordinate system in Figure 3.13 below.

z

z = d2

z = -(d2 + d3)
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NON-LINEAR
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LINEAR AND
NON-LINEAR
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n4=1.56 BULK
LINEAR
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Figure 3.13: A four layer structure for
developing a RISOM model.

The new model breaks the interfacial region into four distinct regions: a cover, a
surface region, a bulk median, and the semi-infinite bulk. The additional layer is an

extension to Bloembergen's model, and is added between the surface slab and the bulk.

This is referred to as the bulk median. This layer has the nonlinear properties of the bulk
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which are, in general, different from the surface. The linear index of refraction of the bulk
median, however, is made different than the semi- infinite bulk. This new interface

establishes a mechanism for the light generated in the bulk (median) to be reflected back
into the surface layer and on into the cover (e.g., vacuum). This bulk-bulk median
interface provides the same reflective boundary as the bulk-surface slab interface does in
the Bloembergen model.

When describing surface-specific experiments on real surfaces (including ISOM
experiments), there are physical reasons why the surface and bulk regions should have
different linear and nonlinear properties. A surface includes an interstitial region
comprised typically one or two atomic layers between the bulk and the cover. Within this
interstitial region there are several influences that may cause the linearand nonlinear

properties of this region to be distinct from the bulk crystal. Relaxation of the unit cell

parameters may occur throughout this region as the bulk stoichiometry re-organizes to fit
the stoichiometry of the cover (the cover is usually considered to be a vacuum, however

the possibility of it being another linear dielectric is left open). Impurities are likely to be
found in higher concentrations in the surface region; they are left there during sample
preparation and handling. Because of these idiosyncrasies between the surface and bulk
stoichiometry, the surface region is expected to have a rather different electric and
magnetic (linear and nonlinear) properties than the bulk. It can be expected that the linear
index of the bulk changes gradually over several atomic layers below the surface. The

bulk median simulates this gradation.

The addition of an interface consisting of different linear indices of refraction between
the bulk and bulk median plays the same role as Bloembergen's interface between the

surface and bulk. This new interface provides a mechanism by which the light generated
in the bulk median can return to the vacuum. Now the surface-to-bulkamplitude ratio for
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the waves generated in both regions can be analyzed for different parameters. Similar to

Bloembergen's surface layer, that the bulk-to-bulk median index ratio and the thickness of
the bulk median layer are considered a scaling parameters to the bulk-generated amplitude.

3.4.1 Deriving the Behaviour of the Generated Fields

The same method to derive the generated fields for the surface and bulk median layers

as was used in the Bloembergen model. Reviewing equation (3.15), the reflected

nonlinear fields are found knowing the inhomogeneous source wave solutions (equations

(3.13) and (3.14)) and the boundary conditions of the layered structure of the model. A

compete derivation of the reflected nonlinear fields are given in Appendix B. A

conceptual diagram of this structure is shown in Figure 3.4. A working diagram of the

layered structure with its coordinate system is defined in Figure 3.13. The boundary

conditions for each boundary indicated in Figure 3.13 are used to obtain the expressions

for the fields generated in the surface and bulk median layers. Note that Figure 3.13 is
divided into three sections left to right. This is done to emphasize that there are three

independent sets of fields found in all parts of the structure (vertically): the applied fields,

the fields generated in the surface region, and the fields generated in the bulk median

region. Indicated between the layers are the wavevectors for the defined fields; each field

is defined with zero relative phase at the upper surface for each layer. Only one reflection

from the bottom layer of each layer is included; multiple reflections are ignored. Matching
the fields at the boundaries of the regions of the new structure yields expressions for the

reflected generated electric fields (entering the cover region) from the surface and bulk
median layers.

At the cover-surface layer interface, z = 0, at the surface-bulk median interface z = -d2,
and at the semi-infinite bulk-bulk median interface z = -(d2 + d3). Thus, the surface layer

thickness is d2; the thickness of the bulk median layer is d3, which appears in the
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Figure 3.14: Defining the interface regions
and the wavevectors of the fields.

expression for the reflected waves generated in this layer as a scaling parameter. Since the
layer thickness are small compared with the wavelength of light, any linearly-related phase
differences between layers are minimal. Each region is has a unique linear index of
refraction indicated by ni for the cover, n2 for the surface, n3 for the bulk median region,

and n4 for the bulk region. Recall that the ratio of the (linear) indices of refraction of the
bulk median and bulk, n3 IN, is another scaling parameter, it appears in the expression for
the amplitude of reflected waves generated in the bulk (median).
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The fields in each region propagate with associated wavevectors which are given

identifying subscripts. The wavevectors and field amplitudes, 8, are identified with the

same subscripts. These subscripts are defined by one letter describing the frequency of the
wave, (a comma,) a second letter identifying the wave, followed by a number indicating

the layer number in which the wave originated. (Le., 8n,r1 and its associated wavevector

n,r1 appears at the top center portion of Figure 3.13.). The paragraphs below identify

each field and their subscripts.

For the n-1 incident waves, the first number is the frequency index of the wave. Since
there are n-1 incident waves, this first index runs from i = n-1. A comma separates the

frequency index from the layer indices. The next index refers to the direction of
propagation of the incident wave, t (transmitted wave) for a downwards propagating

wave, r (reflected) for an upwards propagating wave. The last index is the layer index;

the layer index for the incident waves represents the layer the wave is located in as shown
at the far left of Figure 3.14. For instance, the applied wave '3' with frequency (03,

reflected from the bulk median-surface interface, has associated subscripts '3,r2'. If the

process being considered was SFG, there would be two incident waves with associated

subscripts '1,11' and '2,11'. The reflection of these waves in the cover layer are labeled

'1,r1' and '2,r1', whereas the transmitted waves have labels for the surface layer '1,t2',

'2,t2', and so forth. The wave transmitted into the bulk is given a 'V index, for instance
the wave with frequency (o3 transmitted into the bulk has index '3,v4'. Explicitly, kt.l1 is
the wavevector of the i-th incident wave with frequency oh. It defines one of the n-1

waves incident from the cover heading to the slab interface. Sul is the amplitude of the

field of this wave. ki,rl is the wavevector of the i-th wave reflected from the interfaces

below. This wave returns to the cover (vacuum); eixlis the amplitude of the field of this
wave. ki2 is the wavevector of the i-th wave transmitted through the surface layer down

towards the semi- infinite bulk; ei,a is its field amplitude. rci,r2 is the wavevector of the i-
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th wave which reflects from the surface-bulk interface and travels up towards the cover;
ei,r2 is the electric field amplitude of this wave. kt,t3 is the wavevector of the i-th wave
that is transmitted into the bulk-median. ei,t3 is the amplitude of the field of this wave.
The wave reflected from the bulk-bulk median interface has wavevector rci,r3 and
amplitude eir3. FC1,,,4 is the wavevector of the i-th wave that is transmitted into the semi-
infinite bulk; it has amplitude ei,v4. Each wavevector is described by spherical
coordinates, fix = (1k11,02,,,cp ), with X equal to any of the subscripts defined for the
wavevectors and amplitudes above.

The generated waves have their own unique indices. As before, the generated waves,
have frequency 60,8. The layer identification number indicates the layer number the wave is
generated in. In Bloembergen's derivation the only layer that waves are generated in was
layer 2, the surface layer. Now waves are generated in the bulk median, layer 3, too. For
example, the surface-generated wave parameters (which has frequency index n)
propagating into the semi-infinite bulk has subscripts 'n,v2', whereas the bulk median-
generated wave propagating into the semi-infinite bulk has subscripts 'n,v3'.

The waves generated in the surface region, as indicated in the center portion of Figure
3.14, are defined with the following indices to distinguish them. The wavevector of the
wave generated in the surface layer, reflected into the vacuum (cover) from the interfaces
below, is icn,rl It has an amplitude 8n,rl ki,r2, is the wavevector of the wave generated in

surface region. It is the result of the nonlinear reflection (i.e. the 'transmitted wave') from
the cover-surface interface. 6,aa is the amplitude of the field of this downwards-traveling

wave. The generated wave is (linearly) reflected from the surface-bulk median interface.
This reflected wave, propagating in the surface layer, has rc,ab as its wavevector, en,t2b is
its amplitude. kz,s2 is the wavevector of the 'source' wave in the surface layer. It is the
effective wavevector as defined in equation (3.5). The amplitude of this wave, end2, is
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given by equations (3.12) through (3.16). When the wave generated in the surface enters

the bulk median, it propagates downwards. This wave has wavevector -n,u2a and field

amplitude 8,4,2.. Some of this field is (linearly) reflected from the bulk-bulk median

interface and propagates upwards through the bulk median. This reflected wave has

TC,,,,2b as its wavevector, en,u2b is its amplitude. Finally, the wave transmitted down into

the semi-infinite bulk is given the wavevector En,v2 and amplitude en,v2. Again, each

wavevector is described by spherical coordinates: = K1,0), ), with equal to any

of the subscripts defined for the wavevectors and amplitudes above.

The waves generated in the bulk median region are defined in the right-hand side of

Figure 3.14. The wavevector of the wave generated in the bulk median layer is ina3.. It is

the result of the nonlinear reflection from the surface-bulk median interface. 8,4,3. is the

amplitude of the field of this downwards-traveling wave. The generated wave described

by in,t34 is (linearly) reflected from the bulk-bulk median interface. This reflected wave,

propagating in the bulk median layer, has in,t3b as its wavevector and has amplitude en.i3b .

kn,53 is the wavevector of the 'source wave in the surface layer. It is the effective

wavevector for the bulk median layer as defined in equation (3.5). The amplitude of this

wave, en,s3, is given by equations (3.12) through (3.16) as before with the surface layer.

As the wave that is reflected off the bulk-bulk median interface travels upwards (towards

the cover), in encounters the surface layer. The upwards-propagating part of this bulk

median-generated wave inside the surface layer has wavevector En,r3a with an amplitude

A portion of this wave is reflected off the surface-cover interface and propagates

back through the surface layer, downwards. This wave has wavevector E0.3b and field

amplitude en,r3b . The bulk median-generated wave that makes its to the cover region is

referred to by it wavevector kn,u3 and amplitude 6,40 . The wave transmitted down into

the semi-infinite bulk is given the wavevector En.,3 and amplitude ev,3.
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Notice that only one reflection off of each interface is included. When the reflection

angle is large (near grazing) this model is suspect as each layer will act as a leaky

waveguide with many reflections at each interface before the light 'escapes' from the

confines of the structure. This model is also limited to 'weak coupling' theory. That is the

incident waves are not attenuated by the generation of a new, inhomogeneous wave.

Solutions can be found separately for the surface-generated and bulk median-

generated signals as viewed in the cover region by imposing the boundary conditions on all

the fields oscillating at the generated frequency (see the center and right portions of Figure

3.14). For the surface-generated wave, there are six unknown fields created from the

inhomogeneous wave. Assuming a known induced nonlinear polarization (which in turn

depends on the wavevectors and polarizations for all incident waves, as well as the

nonlinear susceptibility of the surface medium, see (3.6)), solutions for all six fields,

including the field in the cover region, can be found. Since there are two polarizations for

waves in the cover region, there are two sets of solutions, one for S- and one for P-

polarizations. The bulk-generated wave has similar solutions, obtained in the same

manner. A complete derivation of these solutions is given in Appendix B. The approach

is to treat the six homogeneous field amplitudes as a vector, and the boundary conditions

at each interface as a 6x6 matrix. The product of the homogeneous boundary condition

matrix with the homogeneous field amplitude vector must yield a vector representing the

satisfaction of the boundary conditions for the inhomogeneous waves. Diagonalizing the

inhomogeneous boundary condition matrix yields the solutions for each of the six fields.

Realizing the assumptions made, four solutions for the reflected field amplitudes arise: two

for each polarization for both the surface- and bulk median-generated waves. The S-

polarization reflected field amplitudes generated from the surface, 8,1,5, and the bulk

(median), en,i3,s are (dropping the n subscript):
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The P-polarization reflected field amplitudes generated from the surface, en,if, and the

bulk (median), are (dropping the n subscript):
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In the expressions for the reflected fields, the following definitions were made:
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For P-polarizations, the additional definitions are

and

eD F. (cos0 kJ sins) (3.45)

eB a sine k, cosy 2(n? lis2 ) }( (3.46)
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The solutions presented here are quite general: they were found without exact

knowledge of the induced nonlinear polarization. Hence, the solutions obtained are

independent of the OM process (the order of the nonlinear polarization) and are general

with respect to the incident wave parameters. Bloembergen, in his model, approximated

the thickness of the surface region as small compared with the generated wavelength.

This approximation is not done here. Moreover, the exact phase-matching expression is

retained. The phase-mismatch information for the surface-generated wave is contained in

the argument 02 of the sinc 432; 02 is referred to as the surface wave phase-mismatch

parameter. In addition, combinations of 4)a 4s2 and Oa - Oa can be thought of as

constituents of the surface wave phase-mismatch factor to the generated field amplitude.

The surface wave phase-mismatch parameter represents difference between the generated

wavevector, ii,z,t2.3, and the effective 'source' wavevector, En,s2, as defined in (3.5).

Likewise, there is a bulk wave phase-mismatch parameter, 4)3, and a bulk wave phase

factor. This phase-mismatch information is paramount when comparing the phase-

matched surface signal with the (possibly) phase-mismatched bulk signal. The
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approximations made in the Bloembergen model concerning phase-matched conditions

(small phase-mismatch) are not appropriate for this model in which phase-mismatch may

be large.

A very useful form of the reflected surface and bulk field amplitudes (see Appendix B)

may be written as

erlo

and

eu3,cr

6BC,r10 es2sy = 8BC,r1,05

6BC,u3s3 6s3,a BC,u3,e

47rer
sec0,2 sinc (1)2 Cicb2

sec0,3 sinc 433 e-`4)3.

(3.47)

(3.48)

2 2nt2 ns2

47tPa

722 r/2t3 -s3

This is done by defining CBC,r1,a and eac,r1,0 as the factors found by matching the

boundary conditions of the layered structure in Figure 3.14. That is, 6BcLa and 6Bc4.1,0

are the contents (including the denominators) of the curly brackets in (3.27) through

(3.34). Here a indicates either the S or P polarization. Clearly, the surface and bulk

reflected fields have a sinusoidal and a sinc dependence on the phase-mismatch parameter.

In this form, the sec 0 dependence is readily apparent. Also, the (n2 4) -1 factor, which

constitutes an additional dependence on phase-mismatch, is clearly separated from the

boundary layer aspects of the reflected amplitudes. Using this form ofthe reflected field

amplitudes, the various dependencies can be investigated individually. However, for

perfect phase-matching the product 6Bc(n12 4)-1 as ns --> nt yields a finite result.

Hence, for phase-matched conditions this product must be treated as a whole.

Additionally, since Ps and Pp are taken to be equal, all the polarization dependence is

contained in the eBc.,.14 and 6B0.14, factors via CD and CB (see (3.45) and (3.46)).
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The next step in the prediction ofRISOM experiments is to assume a nonlinear

susceptibility and polarizations and wavevectors for the incident waves, calculate the
induced nonlinear polarization, from this explicitly calculate the field amplitudes from
(3.27) through (3.44), and compare the ratio to surface-generated to bulk median-

generated amplitudes (in the cover region). Repeated calculations are made so as to map

out the parameter space looking for favourable conditions for RISOM.

3.4.2 Summary and Discussion of the Macroscopic RISOM Model

There are two clear predictions made by the macroscopic model. First is the
enhancement of the surface over the bulk signal due to phase-mismatch. If dispersion of
the surface and bulk (median) are different, the phase-mismatchingparameter will be
different in the two layers. For a generated wave, the angle at which its phase-mismatch is
minimum will be the angle it will 'reflect' into the cover region at. Due to a difference in
dispersion of the surface and bulk median layers, the 'reflected' surface and bulk waves
will not be collinear. If the bulk median and surface have the same non-zero dispersion, it
is possible that even though the surface and bulk waves 'reflect' at the same angle, the

phase-mismatch of the surface is small, but the phase-mismatch for the bulk median is
large. Hence, the surface signal would be large compared to the bulk signal. The second

prediction involves the separation of the surface and bulk signals due to dissimilar NLBAs.

For P-waves, the NLBA for perfect phase-matching (ni2 = Fla) occurs at Oa = - a2)/2.

Similarly, for the bulk region 6, = a3)12. Any difference in dispersion leads to the
condition where the NLBA for the bulk is unequal to the NLBA for the surface. An
experiment designed for P-waves reflecting from the structure at the NLBA of the bulk
will yield a small, but non-zero, signal from the surface. This is possible since the NLBA
for the surface is not that the same angle as the experimental angle (the NLBA of the
bulk). The degree of enhancement, the sensitivity of angle, degree of dispersion, etc., for
these two predictions is, however, not easily obtained without extensive numerical

analysis. Furthermore, it is not trivial to locate other possible enhancements that are due
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to effects of the linear and nonlinear Fresnel coefficients. This ismore efficiently done by

numerical calculations using the RISOM field expressions. The object of the remainder of

this chapter is to quantify the enhancements.

This model predicts a sec OH behaviour on the amplitude of the generated waves.

Thus it is expected that the surface reflected wave should increase in intensity as the angle

increases to near grazing angles. The bulk-generated wave amplitudes are shown to have

a more complicated angular dependence due to the added Fresnel coefficients introduced

by the surface-bulk median interface. This angular dependence is less strong than sec Oth

as is seen in the numerical calculations to follow. From this observation, it is expected

that the surface reflected wave should increase in intensity as the angle increases to near

grazing angles more rapidly than the bulk-generated signal.

3.4.3 Prelude to Numerical Analysis of the RISOM expressions

The remainder of this chapter is devoted to mapping out the parameter space of the

model's predictions, specifically where ISOM is likely. The analysis is divided into two

parts: analysis of collinear phase-matched geometries and analysis of non-collinearphase-

matched geometries. Collinear phase-matching is appropriate for OM in dispersionless

materials and for harmonic generation. Non-collinear phase-matching is where the linear

dispersion of materials is important or where the incident wavevectors are not completely

degenerate (such as in SFG with waves of differing frequencies or non-degenerate SHG

with fundamental waves incident at different angles). Here the angular dependencies for

the two polarization states for SHG (where dispersion is very important, but phase-

matching is automatic) and CARS-like FWM (where dispersion is less important, but

phase-matching is critical) are specifically considered. Both polarization states, S and P,

for both types of geometries are explored. In general, it is found that improvement in the

surface-to-bulk signal ratio is possible for S-polarization when the reflection angle is large;

for P-waves, enhancement is done by making use of the nonlinear Brewster's angle. It is
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found that the results for enhancing the signal-to-noise ratio for collinear phase-matching

are the same for the non-collinear case. However, enhancement is generally better if the

surface and bulk dispersions are dissimilar. In addition, it is shown that there is an angular

separation of bulk and surface signals due to dispersion (for non-collinear phase-

matching). When the index of refraction is different in the surface and bulk for a given

frequency, the optical process in the surface may be phase-matched, whereas the bulk may

not be. Hence, waves generated in the surface and bulk travel in (slightly) different

directions. With this prelude to the numerical analysis, the development continues.

3.5 Introduction to the Numerical Analysis of the RISOM Expressions

The analysis of the RISOM expressions are particularly involved. Before any

calculations are presented, explanatory information is introduced concerning the

calculations and interpretive tools used in the analysis. It is also useful to be prepared as

to the direction that the analysis takes. As the analysis proceeds, more complexity is

added to the picture. These complexities build on each other making interpretations

increasingly more difficult. The logic in the analysis sections is to begin with the most

fundamental 'experiments' and to separately add each complexity to the overall picture.

This introduction section is devoted to outlining the analysismade of the RISOM

expressions.

The contributions of the surface and bulk regions to the electric fields were

numerically calculated for a variety of cases. These calculations are based on the layered

structure shown in Figure 3.13 and the RISOM expressions (3.27) through (3.46).

Particular attention was paid to conditions which might enhance the surface over the bulk

contribution. The analysis is divided into two parts: collinear geometry and non-collinear

geometry. In each case general and specific OM processes are considered for both
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polarizations and in media with and without dispersion. When appropriate, RISOM

experiments are suggested and discussed. The next paragraphs will briefly outline the

directions the analysis takes.

Calculations with collinear optical mixing are used to show the most fundamental

angular dependence for the bulk and surface contributions. These results hold for all

collinear mixing processes including degenerate n-th harmonic generation (nHG), and

collinear general TWM and FWM. Any optical mixing done in dispersionless media is

automatically phase-matched in collinear geometry. The first analysis of general collinear

optical mixing is done in dispersionless media for S-polarizations. A RISOM experiment

which shows reasonably good enrichment of the surface contribution to the total signal is

predicted for near- grazing angles of incidence. Also, it is shown that the phase of the

surface and bulk waves are always virtually constant. This is due to the coherence of the

nonlinear process.

The next part of the analysis considers S-wave nHG processes in media with

dispersion. General OM process are not covered in this analysis since the mismatch is

extremely large; experiments involving general OM processes are best considered in non-

collinear geometries. The inclusion of dispersion in collinear nHG processes will not

change the angular behaviour bulk and surface contributions, however it is shown that the

overall intensity drops because of a phase-mismatch between the induced polarization and

the generated wave. This is due to the dispersion between the fundamental and harmonic

waves. When the dispersions of the surface and bulk are different, the wave generated in

the medium with the smallest dispersion contributes more to the overall observed intensity.

When the dispersion is greater, so is the phase-mismatch, and the intensity generated in the

medium is smaller.

Analysis of P-waves is more complicated than that of S-polarization. P-waves may or

may not exhibit a nonlinear Brewster's angle (NLBA). The analysis of P-waves separates



161

these two possibilities. First P-polarization collinear nHG in dispersionless media when

there is no NLBA is scrutinized. It is discovered that much of the angular dependence of

the generated field amplitudes for P-polarization collinear nHG is the same as for S-

polarizations. A fair surface-to-bulk signal ratio can be obtained when performing

experiments at near-grazing angles of incidence. Much of the analysis (for P-waves)

carries over (from the S-wave analysis), however, the phase of the surface and bulk waves

can be different depending on the direction of the induced polarization and mixed wave.

Analysis continues with P-wave collinear nHG processes with a NLBA. In order to

analyze the NLBA, the generated frequency must be specified. Thus the analysis is done

for SHG. The frequency generated is chosen to be 532 nm. Initially the polarization

directions of the surface region and the bulk are considered equal. Again, both surface

and bulk media are considered dispersionless. The main conclusion is that, if the media

are dispersionless, there is no means to separate the bulk and surface signals in this

geometry.

Further analysis of the NLBA for P-waves in a collinear SHG process continues by

including dispersion in the surface and bulk median. If the dispersions of the bulk and

surface are different, the NLBAs will differ. Even with small dispersions, the disparity

between NLBAs can be experimentally observable. Unique bulk and surface NLBAs offer

another way to emphasize one signal over the other. For instance, it is shown that when

the bulk experiences a NLBA this signal is zero, but since the NLBA of the surface is

different, there is still a surface signal. This experiment offers excellent surface-to-bulk

signal ratios, but at the expense of the detectable signal intensity.

As foreshadowed in the analyses of collinear reflection geometry OM, non-collinear

geometries hold the key to successful RISOM experiments. From the series of collinear

calculations done on media with dispersion, it was seen that dispersion adds mismatch.

Different mismatches of the OM process in surface and bulk median media produce ways
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to separate the contributions from these layers. Another way to introduce phase-mismatch

is to slightly change the direction of one (or more) of the incident wavevectors from the

phase-matched case. This introduces a mismatch that is to the discretion of the

experimenter. There are two experimental designs for non-collinear geometries. In either

case, the incident frequency source is split into two waves which are incident on the

sample with slightly different angles of incidence. These two experimental situations can

be superimposed comprising a more general 'experiment'. The phase-mismatch can be

introduced either by selecting different polar angles, leaving the azimuthal angles similar,

or by the converse. The other reason for considering non-collinear geometries is thatfor

processes that are not degenerate in frequency done in media with dispersion, non-

collinear geometries are the only way to minimally phase-mismatch (and maximize the

mixed intensity). There are two main conclusions that will come of the analyses of non-

collinear geometries. First, when the media have no dispersion, the surface and bulk

waves are 'emitted' from the structure at the same angle. They can be separated in

intensity by phase-mismatching the mixing process in one layer more than the other. It is

found that there are restrictions on the parameter space which allows the experimenter to

separate these signals. The other conclusion is that with the inclusion of dispersion, the

bulk and surface waves are separated in angle.

Actual experiments do not use plane waves as the RISOM model assumes. The

incident light would be in the form of Gaussian beams. Furthermore, these beams would

be focused onto the sample as to maximize the induced polarization, and hence, mixed

signal. When appropriate, analyses of Gaussian beam experiments are performed. These

approximate Gaussian beam analyses give results representative of real laboratory

experiments. As in the collinear case, each possibility of mixing type (SHG, TWM, FWM)

is investigated separately. Each process is divided into analysis of polarization, dispersion,

and experimental design as described below.
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First in the series of non-collinear reflection OM analysis is an experiment that

introduces a mismatch via breaking the degeneracy in polar angles. To simplify analysis,

only SHG is considered; this provides an investigation of the most fundamental aspects of

RISOM in phase-mismatched non-collinear geometry. Analysis for S-wave and P-wave

(without a NLBA) non-collinear SHG is done simultaneously since the model predicts

both polarizations are similar for collinear geometry experiments. Numerical calculations

are used to investigate effects of two variables. These two variables are the (average)

polar angle of the incident waves and the difference in the polar angles of the waves (with

all azimuthal angles equal). Because dispersion is ignored, the bulk and surface waves

`reflect' off the surface at the same angle. The angular dependencies for the surface and

bulk are found to be different and complicated. This affects the surface-to-bulk ratio in an

non-trivial way. There is a way to separate the bulk and surface signals via phase-

mismatch. Certain sets of conditions give the surface signal a smaller sensitivity to

mismatch than bulk signal. As the mismatch is increased, the bulk intensity drops rapidly

leaving predominately surface contributions to the total signal. Estimates for a Gaussian

beam SHG experiment are made; they show that for certain parameters, the SHG beam

has a profile that is, in some places, enriched in surface contribution. The parameter space

yielding these RISOM conditions is scrutinized in detail. It is found that for any set of

indices and layer thicknesses, it is likely that there exists a set of incidence angles for

which intensity of the bulk wave is very sensitive to phase-mismatch. The surface signal is

only moderately sensitive to mismatching.

Using the azimuthal angles to achieve phase-mismatched non-collinear SHG was the

other possible RISOM experiment that can be performed. Dispersion in the media is,

initially, not included. Analysis is similar to the polar angle experiment, however there are

different conclusions. It is found that the bulk wave is rather insensitive to the azimuthally

associated phase-mismatch as compared to the dependence of the surface wave. Thus, for

small phase-mismatch the total signal mismatch dependence is dominated by the surface

dependence. Unfortunately, this leaves no way to attenuate the bulk signal over the
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surface wave. The converse is possible, however, providing a way to observe the isolated

bulk signal. From observations like this, bulk nonlinear susceptibility tensor elements may

be examined.

The analysis of the polar and azimuthal difference angle experiments are done for S-

and P-polarization (when no NLBA is present) in parallel. In the absence of dispersion the

NLBAs for the surface and bulk are equal and no segregation of the surface and bulk

contributions can be made. It will be discovered that separation is only possible when

there exists a phase-mismatch. The first experiment considered, in which a phase-

mismatch was introduced by breaking the polar angle degeneracy of the incidentwaves,

may be used to improve the surface-to-bulk signal ratio. If the NLBA happens to be near

the angle at which the bulk is most sensitive to mismatches, then the mismatch can be used

to eliminate the bulk signal over the surface contribution. This, unfortunately, comes at

the expense of the total signal strength.

After this lengthy examination of non-collinear SHG in dispersionless media, a general

discussion ensues concerning the influences of dispersion in these processes. The analysis

includes both polarization cases and lays the foundation for further discussion of TWM

and FWM processes. Essentially, the effects of dispersion in the collinear case is

superimposed on the intentionally introduced phase-mismatch of the non-collinear

geometry. It is shown that the inclusion of dispersion does not affect the angular

dependence of the harmonic waves; this includes the NLBAs. Also the waves 'reflect'

from the structure at the same angles. By the arguments presented in earlier analyses, it is

possible, using non-collinear geometry, to almost completely separate the surface and bulk

signals in intensity. When the indices of the surface and bulk are different via affects of

desperate dispersions, the phase-mismatch of the surface and bulk differ. If the surface

mismatch can be chosen to be small and the bulk large, the surface-to-bulk signal ratio

may be quite favourable. This is not a very exciting analysis, but it lays the groundwork

for discussions of higher order mixing.
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General non-collinear TWM in dispersionless media is the subject of the next section

of the analysis. It is argued that TWM is similar to SHG as previously examined. The

difference is that the process is minimally phase-mismatched (or has zero phase-mismatch)

when the incident waves are not collinear. An expression is quoted for the matching

angles. As with SHG, altering the directions of the incident waves from their minimally

phase-mismatched positions introduces an experimentally controlled phase-mismatch that

than be used to separate the surface and bulk contributions. This is possible when the bulk

wave is more sensitive to mismatch than the surface.

Fully breaking the degeneracy (direction and frequency) of TWM processes in the

presence of dispersion actually leads to a finite angular separation between the surface and

bulk waves. This argument is substantiated by considering that the generated waves

`reflect' at the angle for which the phase-mismatch is minimum (given the incident

wavevectors and differences in dispersion). Expressions for the bulk and surface

`reflection' angles are given. Specific examples of plane wave SFG processes and SFG

using Gaussian beams are investigated. The mixed Gaussian beam 'experiment' shows an

angular profile which has a bright spot (the surface signal) surrounded by a much larger

dim halo (the bulk signal). Use of phase-mismatching can improve the signal-to-bulk ratio

as discussed. If a NLBA exists, then at least for P-polarization, further enhancements in

the signal ratio can be made.

As with TWM, an analysis for general non-collinear FWM in media without dispersion

is performed. It is found that the addition of a third incident wave makes it easier to

introduce a phase-mismatch in the bulk and not the surface. Finally, nonlinear geometry

FWM in media with dispersion is discussed. Results are seen to be similar to the TWM

case with dispersion, however angular separation between the surface and bulk is more
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pronounced. Careful analyses using Gaussian beams are given; they show that the mixed

beam has an intensity profile. The surface and bulk contributions can be viewed more or

less individually

3.5.1 Definitions and Common Terms Used in the Analysis

Throughout this analysis there are certain terms and definitions that should be

introduced or reviewed. All interpretations originate from the field expressions, or

`RISOM expressions', equations (3.27) through (3.46). These field expressions represent

the bulk median-generated and surface-generated fields for S- and P-polarizations. The

field expressions are also referred to as the nonlinear reflection coefficients (NLRC). The

NLRCs are multiplied by constant amplitude, polarization, and phase factors to form the

complete electric field vector. (See (3.12) and (3.13).) The constant amplitude and

phases are neglected in the analysis; the NLRCs alone carry all the dependence needed to

predict RISOM conditions. Notice the NLRCs carry both a real part and an imaginary

part. Thus they contribute an angular and an index of refraction dependence on the

complete amplitude and phase of the generated waves. The complete surface and bulk

median field amplitudes are written aslEsiilface I and IEB,dk I, respectively. Note that the

signal-to-bulk signal ratio is

IE surface'

IE Bidkl

Note that this ratio becomes infinite as the bulk signal approaches zero. Thus, in

numerical calculations, this ratio is often avoided. The intensities of these waves are, of
1course, the complex squares of the field expressions, lEsurface I

2
and IEBuik 1

2
, and the total

signal intensity is lEstoface ±
I

E Bulk
12

. The phase of the waves generated in the surface and

bulk median layers are defined in the usual way:

tan 4) Es = IIII[Esurface] 1 Re[E surface]
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tan (1)Esidk = 11[E Bulk] / Re[E Bidd.
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The direction of each wave, incident or generated, is characterized by its wavevector. As

earlier stated each incident (applied) wave has wavevector described by its spherical

coordinates kj = [iicu 1,e ij,(pij]. For collinear geometries, all wavevectors have the same

polar and azimuthal angles.

3.5.2 Parameter Settings

Throughout most of the analysis of the RISOM expressions, calculations are done

with a consistent set of fixed parameters. These parameters include the indices of

refraction of the layers, ni, n2, n3, and n4; the thicknesses of the surface layer, d2; and the

thickness of the bulk median layer, d3. The index of refraction of the cover region is the

index of the vacuum, ni = 1.00. The index of the surface, bulk, and bulk median are seen

as scaling parameters. They are set to: surface index n2 = 1.50, bulk median indexn3 =

1.55, and bulk index n4 = 1.56. These media are considered dispersionless unless

otherwise stated. The thicknesses d2 and d3, the layer thicknesses, are considered small

compared to the wavelength of the light (typically 532 nm). The layer thicknesses are

both set at 5 nm. In each of these calculations the nonlinear susceptibility is considered a

scalar and constant. There are no preferred directions or frequency dependencies for the

induced polarization. This way only the influences of the NLRCsare investigated. The

symmetry of the media and their frequency dependencies are factored out of the NLRCs.

Normally complete fields are products of the frequency and symmetry independent NLRCs

and the nonlinear polarizabilities which carry these dependencies. These dependencies can

be included separately from the NLRCs if required.
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3.5.3 How to Interpret Analysis Plots

In Chapter 2, there were two ratios that were introduced as interpretive tools in the

evaluation of ISOM situations. These ratios were called the direct ratio (DR) which

appears as

2IESurface1

2

DR=
12 1

ESwfacel + IEBuk1I

and the cross ratio (CR) which was defined by

CR=
2

E E*Bulk Su + C. c

IEBulkl

The DR and CR are the same ratios used in the analysis in Chapter 2. The reader is

encouraged to review Section 2.5.2 which discusses how the DR and CR are to be

interpreted. While reviewing, the reader will recall Figure 2.11. It represents a plot of the

total combined surface and bulk intensity versus the surface field. The figure shows how

the total intensity changes for a fixed bulk field, but increasing surface field amplitude .

Figure 2.12 and Figure 2.13 show the DR and CR for the case of Figure 2.11. Although

in the analysis that follows both the surface and bulk fields vary as the experimental

parameters are changed, the DR and CR are interpreted in the same manner.

The DR is a better interpretive tool than the surface-to-bulk amplitude ratio since the

DR never diverges. The direct ratio is an appropriate tool to use when the phase of the

surface and bulk (complete) fields are approximately equal. Although the CR is not
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bounded, it can be used to investigate the relative phases of the surface and bulk waves.

When, for example, the surface and bulk fields are of the same magnitude the CR is +2 if
the phases are of the same sign, -2 if they are opposite in sign. Generally, when the phases
of waves are of opposite sign the CR is negative.

3.6 Analysis of RISOM in Collinear Geometry

Collinear geometry is appropriate for harmonic generation and general optical mixing
in dispersionless media. Since expressions (3.27) through (3.46) make no assumptions
about the induced polarization, it is not necessary to know the precise OM process

explicitly. Hence, second harmonic generation (SHG), third harmonic generation (THG),
(for any integer, n) n-th harmonic generation (nHG), and any mixing process in a

dispersionless material can be investigated. In Section 3.6.1 calculations with phase-

matched collinear mixing in the model structure with no dispersion is used to find the
angular dependence of the nonlinear reflection coefficients for the bulk and surface

contributions. Determination of S-wave NLRCs for collinear optical mixing in

dispersionless materials is done first in Section 3.6.1.1. In Section 3.6.1.2, dispersion is
added to the S-wave nHG picture. The analysis of P-waves is divided into two cases.

First P-polarization collinear nHG in dispersionless media when there is no NLBA is

scrutinized. Analysis continues with P-wave collinear nHG processes with a NLBA. In
order to analyze the NLBA, the generated frequency must be specified. Thus this analysis
is done for SHG generating 532 nm. The P-wave analyses are done in Section 3.6.1.3 for
media without dispersion, and with dispersion in Section 3.6.2.

3.6.1 Collinear General Optical Mixing

In studying collinear geometry first, the most fundamental angulardependence of the

nonlinear reflection coefficients is examined. This dependence includes the sec 9 and the
parts of 8BC that remain when nt = n,. From (3.47) and (3.48) it is clear that these
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dependencies are always present whether the process is phase-matched or not. Hence,
these dependencies will always be present even in the complicated experiments introduced
later.

3.6.1.1 S-polarization NLRC for Collinear Optical Mixing in Dispersionless Media

Figure 3.15 shows the angulardependence of the reflected field amplitude for the
generated surface wave. Since the reflected surface and bulk waves propagate collinearly,

all subscripts are dropped; all waves propagate at the same polar angle, 0, measured with
respect to the normal. The azimuthal angles, 9, are set to zero. Figure 3.16 shows the

reflected field amplitude for the generated bulk field, whereas Figure 3.17 shows the DR

versus incident angle, 9. Due to the sec 0 behaviour, the fields are stronger at high

angles. Moreover, the DR plot shows the enrichment of the surface contribution to the
total signal at near-grazing angles. This is due to the complicated influences of 6Bc,2 and
eBc,3 on 0 . Since the phases of the surface and bulk are uninteresting, the CR for this
experiment is not shown.
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Figure 3.15: A plot of the magnitude of the
surface contribution to generated electric
field for S-polarization collinear optical
mixing in dispersionless media.
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Figure 3.16: A plot of the magnitude of the
bulk contribution to generatedelectric field
for S-polarization collinearoptical mixing in
dispersionless media.
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Figure 3.17: A plot of the DR versus incident
angle for S-polarization collinear optical
mixing in dispersionless media.
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The overall angular dependence of the NLRCs can be understood by realizing that as
the effective interaction length increases as the applied fields approach grazing incidence.
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Viewing the plots, it is seen that the angular dependence is not strictly sec 8 . Evidently,
owing to linear refraction, 9 is smaller in the bulk median than in the surface layer, hence
the bulk field is smaller. One can see the complicated 9 dependence that originates from
the nonlinearly active layers (i.e., Sac).

The reader should be reminded that there is a question about the accuracy of the
model at high angles. Since the (linear) surface-to-vacuum reflection coefficient is large at
high angles, the single reflection approximation is suspect. At near-grazing angles, it is
likely that there may be many reflections before the generated light escapes into the cover
region; the whole structure might be construed as a leaky waveguide.

Very little was said about the phases, tan = Im[E] / Re[E], of the bulk- and surface-
generated S-waves for collinear optical mixing. As it happens, the phase difference, $,,f ice
-40b0, is small and nearly constant over all 9. Only if the dispersion is non-zero is there a
significant phase difference, although it is still nearly constant. Note that thin-film
interferences are not seen as d << X.

A potentially useful S-wave optical mixingRISOM experiment is predicted for grazing
angles of incidence. An experimental setup might appear like that shown in Figure 3.18.
Figure 3.18 shows a harmonic generation experiment, but the same configuration may be
used for any collinear OM experiment. Mixed waves are generated from the surface and
bulk of the sample and sent to a detector. If at normal angles of incidence the bulk and
surface signals are equal, at near- grazing angles the surface signal is somewhat enhanced.
According to Figure 3.17, the surface signal is enhanced over the bulk by a factor of
roughly 2 at 89 degrees. By observing the total mixed signal as a function of angle and
fitting it to the RISOM expressions, the bulk and surface contributions may be separately
deduced.
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Detector

Sample with surface
and bulk signals

Figure 3.18: An S-wave optical mixing
RISOM experiment performed at near-
grazing angles.

3.6.1.2 S-polarization NLRC for Collinear nHG in Media with Dispersion

So far the results presented for S-wave nHG are for perfect phase-matching (collinear
geometry) processes, and since dispersion is not considered, the bulk and surface
contributions to the observed intensity are maximum. The inclusion of dispersion will not
change the angular dependencies nor destroy the perfect phase-matching. However, if the
dispersions of the surface and bulk (median) are different, the waves generated in the
medium with the smallest dispersion will contribute more to the overall observed intensity.
Since the index of refraction of the incident fields is different from the index for the
generated wave, nt2 n2 is non-zero and so is cto (see (3.47) and (3.48)). The generated
intensity is, therefore, less than it would be for the dispersionless case. The angular
dependencies, which were all contained in the sec 0 and BC factors, remain virtually
unchanged. Suppose the surface has a smallerdispersion than the bulk linear index. Then
the bulk-generated wave will be smaller due to a larger phase-mismatch and smaller\
(n12 ri2)

-
than the surface-generated wave. It is not likely that in a real situation, there

would be any control over the dispersion of the bulk or surface. When doing experiments
on a real sample, a separate measurement of the dispersion of surface and bulk would have
to be made in order to determine to what extent the surface is coincidentally enhanced
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over bulk. Since the experimenter may not have any control over the dispersions,
separation of the contributions must be achieved by introducingadditional phase-mismatch
by use of non-collinear geometry.

3.6.1.3 P-polarization NLRC for Collinear nHG in Dispersion less Media

Analysis of P-waves is more complicated than that of S-polarization. In the case of P-
waves, the polarization is in the plane of incidence, hence there is a possible angle between
the effective source wavevector and the polarization vector. In the development of the
field amplitudes, this angle was labeled cr. (Refer to Figure 3.10 or Figure B.2 in
Appendix B.) It is more useful to consider the angle 13 ---.7r(05+a), which gives the
direction of the polarization with respect to the upwards-going vacuum-surface interface
normal. Again, Os is the polar angle of the effective source wavevector as measured inside
the medium. Recall in earlier discussions, there exists a NLBA for which the generated
field is zero. This occurs at reflection angle (as measured in the vacuum) such that Os =13

7t for either nonlinear layer. (The reader should be aware that the field at the NLBA is
never really zero; this is predicted in Ju's microscopic model.) Note that the value of the
NLBA depends on the polarization direction as given by 0 rather than strictly a ratio of the
linear indices of refraction as with the linear Brewster's angle. As a first trial, the
polarization directions of the surface region, given by 02, and the bulk, 03, are considered
equal. Note there can be no NLBA condition for the surface layer when 132 < it/2 + 0,2,
where °a is the critical angle at the vacuum-surface interface. For these values of f32 , the
source wavevector can never be parallel to the polarization vector even if the applied
fields are incident parallel to the surface. The same holds for the NLBA in the bulk
median and angle (33. Hence, there are four possible cases that can be investigated.

As illustrated in plots of the surface and bulk fields (Figure 3.19 and Figure 3.20)
when 02 = 105 degrees <7r/2 + Oa and (33 = 02 < ir/2 + Oa neither layer experiences a
NLBA condition. Note that the critical angles for the surface and bulk are 9a = 42
degrees and Oa = 75 degrees for the indices chosen. Another possibility is that a NLBA is
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present for the surface ((32 = 150 degrees > + 0c2), but not for the bulk median. This
case is illustrated in Figure 3.21 and Figure 3.22. Only if the index of the surface is less
than the index of the bulk median is this case relevant. Next, it is possible that 132 = f33 is
large enough that both layers have a NLBA. Without dispersion, the NLBAs of the two
layers are the same as shown in Figure 3.23 for the surface field and Figure 3.24 for the
bulk. Here 132 and 133 are 170 degrees such that 33 =132 > 7c/2 + e > 7r/2 + 0a. None of
the cases shown here are useful for RISOM experiments. For instance, the DR in the case
when both layers have a NLBA (Figure 3.25) indicates that the surface signal cannot be
more than twice the bulk signal if at normal incidence they are equal. This is no better
than the case for the grazing incidence experiment for S-waves. Despite these
discouraging results, some credence comes to these calculations in that the S-wave and P-
wave values are equal at 0 = 0. The sec 0 dependence is again apparent in the field
amplitudes at high angles. Also, although not shown here is the expected phase change at
the location of the NLBA.
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Figure 3.19: The P-wave surface amplitude
versus incident angle for collinear nHG in
dispersionless media (3 = 105 degrees).
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Figure 3.20: The P-wave bulk amplitude
versus incident angle for collinear nHG in
dispersionless media (0 = 105 degrees).
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Figure 3.21: The P-wave surface amplitude
versus incident angle for collinear nHG in
dispersionless media 03 = 150 degrees).
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Figure 3.22: The P-wave bulk amplitude
versus incident angle for collinear nHG in
dispersionless media 03 = 150 degrees).
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Figure 3.23: The P-wave surface amplitude
versus incident angle for collinear nHG in
dispersionless media (I3 = 170 degrees).
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Figure 3.24: The P-wave bulk amplitude
versus incident angle for collinear nHG in
dispersionless media ((3 = 170 degrees).
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Figure 3.25: A plot of the DR versus incident
angle for P-polarization collinear optical
mixing in dispersionless media = 170
degrees).
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The final possibility the experimenter may encounter occurs when the linear index of
the surface is larger than the bulk. This is possible on a TiO2 bulk crystal where Ti203

comprises a surface layer. If [33 > it/2 + Oa and one is lucky enough to have no NLBA in
the surface, the bulk signal would disappear at its NLBA leaving only the surface signal.

3.6.2 P-Wave Collinear Geometry SHG With Dispersion: Further Analysis of the NLBA

With the inclusion of dispersion a phase-mismatch ensues. From the discussion on the
NLRCs for S-polarization with dispersion, it is expected that the overall intensity is

strongly diminished by the (e 4)-1 factor. In addition, as (positive) dispersion is
included the NLBA decreases. This is evident by realizing that n, sin Os = nt sin 0t, where
ns depends on n(w) (see (3.5)) and n, = n(2w) for SHG. If the dispersion of the bulk and
surface are different the NLBAs will differ. This offers anotherway to emphasize the
surface contribution.

In order to study the effects ofdispersion on the angular dependence of collinear
optical harmonic generation, a small frequency dependence for the linear indices of
refraction was introduced. The dispersion was chosen to be very small, 0.001 for the

surface and 0.002 for the bulk. Hence, the index for the surface at the fundamental (532
nm) was 1.500, but 1.501 for the second harmonic. The bulk index was 1.55 for the
fundamental and 1.552 for the second harmonic. Typical dispersions are 5 to 10 times
larger than this for dielectric solids. To emphasize the sensitivity of the dispersion to the
NLBA, it was decided to use these small dispersions.

The surface signal as a function of incident angle for collinear SHG for 0= 150
degrees is shown in Figure 3.26. The bulk signal's angular dependence is plotted in Figure
3.27. The difference between surface and bulk Brewster's angles is 7.3 degrees. Utilizing
this difference, separation of surface and bulk can be favourable as shown in the DR in



Figure 3.28. When the angle of incidence is chosen to coincide with the NLBA of the
bulk, 46 degrees, the surface signal is small, but finite. Also evident are the changes in
phase as evidenced by the CR in Figure 3.29.
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Figure 3.26: The P-wave surface
contribution for collinear SHG (13 = 150
degrees), with 0.001 dispersion.
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Figure 3.27: The P-wave bulk contribution
for collinear SHG = 150 degrees), with
0.002 dispersion.
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Since the bulk signal is usually much larger, the experimenter would apply collinear P-

waves to a sample and find an incident angle that extinguishes the majority of the
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generated waves. This will be the NLBA of the bulk. The remaining signal is generated in

the surface layer. Changing the nature of the surface should result in an obvious change in

the remaining signal from the surface. For instance, the surface resonance yielding a

strong SHG signal might fall off -resonance if the surface is altered by thermal desorbtion.

3.7 Analysis of RISOM in Non-Collinear Geometry

After a brief review of non-collinear geometry experiments, done in Section 3.7.1, an

experiment that introduces a mismatch via breaking the degeneracy in polar angles is

discussed. Initially, the analysis is simplified by considering only SHG in non-dispersive

media. This is presented in Section 3.7.1.1. In Section 3.7.1.2, an experiment which uses

the azimuthal angles to achieve phase-mismatched non-collinear SHG is examined. Then

non-collinear phase-mismatched SHG with a NLBA is investigated. Harmonic generation

in media with dispersion is briefly discussed. The remainder of the analysis investigates

non-collinear geometry of three-wave and four-wave mixing. Section 3.7.2 considers

TWM for media with dispersion. Finally, an analysis of FWM is done in Section 3.7.3 for

media with dispersion.

3.7.1 Non-Collinear Geometry SHG Without Dispersion

There is additional angular dependence of the nonlinear reflection coefficients arising

from phase-mismatched situations. This dependence occurs in the factor eBC. Dispersion,

a parameter the experimenter has little choice of, is one way mismatched conditions arise.

Another way to introduce phase-mismatch is to slightly change the direction of one (or

more) of the incident wavevectors from the phase-matched case. For harmonic generation

a mismatch is introduced by going to a non-collinear geometry. Notice (from (3.5)) the

vector sum of the incident wavevectors is the effective source wavevector, k3. The

generated wave has a wavevector magnitude k, = n(2w) (20))/c, where co is the

fundamental frequency and a direction such that kt ks = eic. is minimized. For SHG kt
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comes out exactly half-way in between the two incident waves. For instance: if eij = 44
degrees, 02j = 46 degrees, and (pia = 91,/ = 0 degrees; then 03,1=102j + 91,1112 = 45 degrees
and (p3,, = 0 degrees.

Observing the forms of eBC,2 and eBc,3, it can be deduced that when there is a phase-
mismatch the angular dependence on 0 are slightly different for the surface and the bulk
median This is only true because the linear indices of refraction are dissimilar. This
difference, as will be illustrated in the results to follow, comes from two terms in eBc,2
involving (sin 4 2 - sin 4) and (sin 0,3 sin 4) in esc,3. This difference is further
increased by dispersion, and exacerbated when the dispersion of surface and bulk are
different. It is noted that when dispersion is included, it is possible to mismatch the
surface-generated wave and greatly mismatch the bulk wave due to this difference. The
experimenter may thereby generate a weak surface signal and a minuscule bulk signal.
This is due to the enormous sensitivity of the (n,2 n.,211 factor to the phase-mismatch.

k21

03,r1 = 03,u3

kjj

k3,3

k34,3

Sample with small
surface and minute
bulk signals

Figure 3.30: A non-collinear SHG
experiment utilizing only the polar angles to
introduce phase-mismatch.

Non-collinear experiments for SHG might be designed as shown in Figure 3.30. Here
the incident frequency source is split into two waves, kij and k21, which are incident on
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the sample with slightly different (polar) angles of incidence, 01j and 02,,. The azimuthal
angles, 91,/ and 92,/, are zero. Let the difference between these incidence angles be 801,2 E

10ij - 0211. The second harmonic 'reflects' off the surface with wavevector, k3,,,, at angle

03,H. It is high in intensity because the phase-mismatch in the surface has been selected
(by choice of 01a and 021) to be small. The bulk signal necessarily 'reflects' at angle 03.0

= 034. Note the when there is dispersion, these angles may not be equal.

Another way to design non-collinear experiments for SHG is shown in a perspective

view in Figure 3.31. The sample is shown face up, tilted somewhat in this diagram to
show all the directions of the waves. Again, the incident frequency source is split into

twowaves, kJ and k21. These waves are incident on the sample with the same (polar)
angle of incidence, 01 j = 02j. However, the azimuthal angles, tpij and 92j, are slightly

different. (They are exaggerated in Figure 3.31.) Let the difference between these angles
be Stp1,2 :.--- kpi j - 92/1. The second harmonic 'reflects' off the surface with wavevector,
k3,,i, at angles 034 and 934 = (91,/ + (Q2j)/2. For reference, the definition 93,0 ---= 93)1 = 0

k3,d k3,0

Sample with small
surface and minute
bulk signals

Figure 3.31: A non-collinear SHG
experiment utilizing only the azimuthal
angles to introduce phase-mismatch.
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is made, thus 911 = -921. When the phase-mismatch in the surface is small (done by

choosing (p11 and (921), the surface-generated wave is high in intensity. The bulk signal
`reflects' at angles 03.3 = 03,1, and 9343 = 93,,j. As before, when there is dispersion, these
angles may not be equal.

3.7.1.1 Polar Angle Phase-Mismatched S-Polarization SHG Without Dispersion

The analysis of the RISOM expressions for non-collinear SHG begins with the K2
0, 412 = 0 experiment (See Figure 3.30). Numerical calculations involving the RISOM
expressions as a function of 801,2 were made for several values of the harmonic 'reflected'
angle, 034 = 03,u3. In the calculations that follow, the angle of 'reflection', 03/1, is
chosen. Values chosen are 15, 45, 60, and 89 degrees. Then the difference of the
incidence angles, 801,2, is scanned. From 03,1 =1021 + 01,11/2 and 801,2 =1611- 02/1, the
angles of incidence (with respect to the normal), 01J and 021, are found. The field
amplitudes and related ratios can then be calculated and plotted versus 801,2.

The surface contribution to the generated field is shown in Figure 3.32 for 93,,1 = 15
degrees as a function of 8012. As expected, the value of the contribution at the peak,
where 801,2 = 0, is the value shown in Figure 3.15 at 15 degrees. This is evidence of the
eBC,2 factor's 03,1 dependence and the sec 03,1 factor (referring to (3.47)). The

,--1
(r e2 n;2) dependence as an overall (801,2 )-2-like dependence. Recall that the field is
finite at 801,2 = 0, since the limit of 6Bc,2x (42 te2)-1 as ;2 nt2 is finite. Also evident
is the since behaviour on the surface field amplitude. Surface contributions to the
generated fields for the other choices of 03,r1 are shown in Figure 3.33 (034 = 45 degrees),
Figure 3.34 (03,y1 = 60 degrees), and Figure 3.35 (03,1,= 89 degrees). Note that in Figure
3.35 the sinc CD has been suppressed by plotting only the maxima of the oscillation

apparent in the other figures. The effect is to observe only the effect of 8Bc,2x
/ 2 2
knt2 ns2)

1

. Comparing these plots the eBC,2 dependence on 03,1 for mismatched

processes can be observed. As 03,1 increases the dependence on the phase-mismatch (i.e.,
801,2) becomes smaller. Hence, the plots appear broader with increasing 03
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Correspondingly, the bulk contributions to the generated fields show a similar dependence.
Plots of the bulk field amplitude for the choices of 93,,3 = 03,.1 are shown in Figure 3.36

(93,r1 = 15 degrees), Figure 3.37 (03,1 = 45 degrees), Figure 3.38 (03,1 = 60 degrees), and
Figure 3.39 (934,= 89 degrees). As before, the peak intensities are consistent with Figure
3.16. The 034 dependence on eBC,3 causes the bulk contribution to be less sensitive to
601,2 than the surface the bulk plots for larger 034 are broader. Again, this is due to
terms in the Lacs like (sin 4 2 sin Oa) and (sin (03.3 sin Oa).

An example of a successful RISOM experiment is shown in the last plot in this series.
Figure 3.40 shows a plot of the total signal intensity versus 8912 at 93,1 = 89 degrees.

Perhaps the most striking element of this experiment is the separation of the bulk and
surface signals via phase-mismatch. The combination of these two signals gives an
intensity profile in the shape of the Kaiser's Helmet; low dome-shaped sides with a sharp
spike at the center. The domed part represents only bulk signal; the bulk signal is much
less sensitive to mismatch, that is, less sensitive to changes in 801,2. The bulk signal at
larger difference angles 8912 is attenuated by 103 to 105 over its maximum signal. The
sharp spike represents the surface signal atop the bulk signal. The surface signal is
approximately fine times more sensitive to 8012 than the bulk signal at 891,2 at 03,1 = 89
degrees. Hence at 801,2 = 0.1 degrees, the surface-to-bulk ratio is 1.6 x 102, it is in favour
of the bulk signal. At 801,2 = 0, however, the surface-to-bulk ratio leaps up to 2.3. A
large 034 was chosen for the same reason as the first experiment -- at grazing angles of
incidence, the surface signal is roughly twice that of the bulk signal (if the bulk signal and
surface signal are equal at normal incidence).

Any actual experiment would not use plane waves as the model has assumed. The
incident light would be in the form of beams, Gaussian in nature. Furthermore, these
beams would be focused onto the sample as to maximize the inducedpolarization, and
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Figure 3.32: Plot of the surface contribution
of the field versus 8012. The process is non-
collinear SHG with 03 jj 1= 15 degrees, 412
= 0, no dispersion.
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Figure 3.33: Plot of the surface contribution
of the field versus Mu. The process is non-
collinear SHG with 034 = 45 degrees, 891.2
= 0, no dispersion.
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Figure 3.34: Plot of the surface contribution
of the field versus 81312. The process is non-
collinear SHG with 0334 = 60 degrees, 8912
= 0, no dispersion.
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Figure 3.35: Plot of the surface contribution
of the field versus Mu (sinc modulation
suppressed). The process is non-collinear
SHG with 034 = 89 degrees, 442 = 0, no
dispersion.
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Figure 3.36: Plot of the bulk contribution of
the field versus 8812. The process is non-
collinear SHG with 03j1= 15 degrees, Expu
= 0, no dispersion.
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Figure 3.37: Plot of the bulk contribution of
the field versus 501.2. The process is non-
collinear SHG with 934 = 45 degrees, 412
= 0, no dispersion.
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Figure 3.38: Plot of the bulk contribution of
the field versus 8013. The process is non-
collinear SHG with 03,1 = 60 degrees, Scu
= 0, no dispersion.
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Figure 3.39: Plot of the bulk contribution of
the field versus Ulu (sinc modulation
suppressed). The process is non-collinear
SHG with 03,3 = 89 degrees, 8q)12 = 0, no
dispersion.
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Figure 3.40: A plot of the ratio of total
intensity (x 6000) versus 6912 (sinc
modulation suppressed). The process is non-
collinear SHG with 93 ;j = 89 degrees, 5912
= 0, no dispersion.

hence, the harmonic signal. Decomposing the focused Gaussian beam into seven plane

waves, and repeating the calculation for each plane wave leads to a more experimentally

realistic prediction. Estimates were made for a single Gaussian beam that is focused to a

10 micron spot (the interaction region) using a 1 meter focal length lens. The beam

contains a continuum (approximated by seven waves) of incident waves that mix at the

interaction region which is partially in the surface and partially in the bulk region. Each

plane wave in the beam, except the central one, mix together with a non-zero mismatch.

The center of the beam is incident at 89 degrees. Due to the different sensitivities of

phase-mismatch, the SHG beam has an angular profile. The angular profile looks like a

broadened version of the Kaiser's Helmet, Figure 3.40. However, it is 18 times broader.

The intensity at the center of the SHG beam is due to both surface and bulk. The angular

width of this center portion (the beam is a cone) is about 0.02 degrees (full-width half-
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maximum or one-fifth of the full beam-width of 1 degree). The outer portion of the SHG

beam has a much lower intensity and is due primarily to light generated from the bulk

layer. The signal at the center portion of the beam yields a surface-to-bulk signal ratio of

(approximately) 4.

3.7.1.2 Azimuthal Angle Phase-Mismatched S-Polarization SHG Without Dispersion

Non-collinear SHG using the azimuthal angles, the experiment represented in Figure
3.31, is now investigated. Again, the incident frequency source is split into two waves, k1,,
and k21. However, now these waves are incident on the sample with the same angle of
incidence, 01/ = 921, but differing azimuthal angles, 91.1 and 921. The difference between

these angles was notated as 41,2 = kpij cQ21i. The second harmonic 'reflection' occurs at
angles 83,1 = 83,0 = 81) = 92) and 934 = (91,1 + 92j)/2. If the azimuthal angles 93,,3 = 93,d

are defined to be zero, then (pij = -92j. The (polar) angles of incidence, 81,, = 62,11 provide

the eBC overall dependence to the signal and bulk signals. The fields change with 412
due to both the Esc x (,e - ris2 )-I' factor and the sins O. From a RISOM perspective it is
unfortunate that, with respect to 8912, esca effects the surface and bulk median fields very
little.

It was found that the bulk and surface waves have essentially the same expv

dependence. Moreover, the 8912 dependence remains virtually constant for all 1334. As

an example, see Figure 3.41 and Figure 3.42. For 83,1 = 60 degrees the surface and bulk
signals are nearly identical. Plots for other 03,1 are not shown.

3.7.2 Non-Collinear GeometryTWM With Dispersion

For TWM processes in media with dispersion a non-collineargeometry must be used
in order to phase-match. When the surface and bulk have different dispersions there is a
finite angular separation between the surface and bulk waves. The generated waves
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Figure 3.41: A plot of the surface field
amplitude versus cpu. The process is non-
collinear SHG with 934 = 93"; = 60 degrees,
no dispersion.
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Figure 3.42: Plot of the bulk field amplitude
versus tpu. The process is non-collinear
SHG with 03,1 = 03,0 = 60 degrees, no
dispersion.
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`reflect' at the angle for which the phase-mismatch is minimum, given the incident

wavevectors and differences in dispersion. This is illustrated in the expression for the set

of surface reflection angles,

coi n2(0)1) coseui +0)2 n2(0)2) cos02ji
cos03).1=

(0)1+0)2) n2(0)1+0)2)

and

(3.49)

co 1 n2(01) sinew coscpui +0)2 n2(0)2) s1n024 cosq)24
cos93).1 = , (3.50))

(col cos93,,1 +0)2 cos030.1) n2(0)1 +0)2)

and the bulk reflected angles,

cose3,3 =
0)1 n3(a)1) cosei ji +0)2 n3(w2) cosezn

(°)1 +0)2) n3(0)1+°)2)

and

(3.51)

(01 n3(0)1) sine 1/1 coscpui +0)2 n3(0)2) sin024 cos92,1
cosq)30,3 = '' . (3.52)

(a)icos03,0 +0)2 cos030,3) n3(o)3)

The angular separation between surface and bulk waves for a SFG process was calculated

using plane waves. In this example a 500 nm wave is incident at el/ = 88.9 degrees and a

600 nm wave incident at 021 = 89.87 (801,2 = .97 degrees). The dispersion for the surface

is 0.001 and is 0.002 for the bulk. The surface is minimally phase-mismatched such that

the generated 'sum frequency' wave is emitted at 034 = 89.33 degrees, whereas the bulk

signal phase-matches at Ow = 89.68 degrees. When performing this SFG experiment, the

angular discrimination between surface and bulk waves is 103,/ - 03,01= .35 degrees.
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Calculations were made for two Gaussian beams, one at frequency 500nm and one at

600 nm. Each Gaussian beam was focused to a 10 micron spot (the interaction region)

using a 1 meter lens. As before, each Gaussian beam was decomposed into seven plane

waves. The center of the mixed beam 'reflects' at 89.55, degrees as in the previous

example with plane waves. The center of the incident beams were identical to those used

in that example (eij = 88.9 degrees and 02/ = 89.87). The mixed beam shows an angular

profile which has two distinct parts: a bright spot surrounded by a much larger dim halo.

The angular profile shows a bright spot that is off center from the center of the halo. This

angular profile is shown in Figure 3.43. The sharp spike represents the location of the

bright spot; intensity generated primarily from the surface. The halo is shown in the

profile as a wide, gently sloping peak that is located at 89.82 degrees. The 'zero' in

Figure 3.43 is actually located at 89.50 degrees. The entire angular width of the beam is

1.6 degrees. This experiment yields a surface-to-bulk signal ratio of 3.4, when observing

only the light from the bright spot
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Figure 3.43: A plot of the polar angular
intensity profile versus 'reflection' angle.
The process is Gaussian beam SFG with
dispersion.
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3.7.3 Non-Collinear Geometry FWM With Dispersion

As was seen in TWM in media with dispersion, the mixed bulk and surface waves have
a finite angular separation. FWM processes may require different azimuthal angles as well

as polar angles to properly phase-match. Hence, the angular discrimination for FWM is

larger. In general, the angular discrimination improves for higher order processes. It is
useful to calculate the angular separation between plane waves in this non-collinear

geometry. This will help to understand the experimental situation when Gaussian beams

are employed. Even for small dispersions (0.001 for the surface, 0.002 for the bulk), the

separation is experimentally noticeable. Consider a CARS-like four-wave mixing

experiment. In this example, wavelengths of 500 nm incident at Ehj = 88.90 degrees, 600

nm incident at 02j = 88.96 degrees, and 550 nm incident at Ow = 88.91 degrees are mixed.

The result are two waves at (04 = (01 -0)2 +0)3 (465 nm) 'reflecting' at angles 04,1 = 04,0.

All azimuthal angles were chosen to be zero. This choice of angles causes the surface-

generated wave to be phase-matched at 04,d = 89.74 degrees. In order to achieve phase-

matching in the bulk, the incident angles must be adjusted. The incident angles for phase-

matching in the bulk must be Or/ = 88.90 degrees, 02/ = 88.98 degrees, and 03j = 88.92
degrees if the azimuthal angles are zero. The bulk wave then is 'reflected' at 04,43 = 89.65

degrees.

A numerical analysis with three mixed Gaussian beams was performed. As before

each Gaussian beam was decomposed into seven plane waves and focused to a 10 micron

spot via a 1 meter lens. The center of the mixed beam 'reflects' at 89.7 degrees, but has a

larger-than-expected angular width. The centers of the incident beams have polar angles

identical to those used in the previous example (91,, = 88.90, 02,/ = 88.96, 03j = 88.91

degrees). The angular profile of the generated beam shows a bright spot that is off center

from the center of the halo. This angular profile is shown in Figure 3.44. The small dark
region to the left of center represents the location of the bright spot; predominately
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surface-generated light. The large halo shown in the profile is much broader than the

surface signal owing to the smaller sensitivity to mismatch. At the location in the beam

where the surface intensity peaks, this experiment yields a surface-to-bulk signal ratio of

21, when masking off the halo.
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Figure 3.44: A contour plot of the intensity
angular profile versus the polar and
azimuthal angles. The process is Gaussian
beam CARS-like FWM with dispersion.

An exact macroscopic treatment of general optical mixing at a dielectric interface was

presented. In this treatment, a model structure (Figure 3.13) was used to obtain general

expressions for the bulk and surface contributions to the generated signal. The model

structure divides the interfacial region into four distinct regions: a cover, a surface region,
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a bulk median, and the semi- infinite bulk. Using Maxwell's equations, the boundary

conditions, and the solution to the inhomogeneous optical wave equation, the generated

fields were derived. Using the field expressions for the 'reflected' mixed waves (the

RISOM expressions), predictions were made suggesting favourable conditions for RISOM

experiments. This was done by assuming a set of physically realistic parameters (indices

of refraction and thicknesses of regions, polarization directions, dispersions, etc.) and

analyzing the RISOM expressions under various configurations. The next several

paragraphs recapitulate these analyses.

The analyses of the RISOM expressions are especially involved. To best examine

general mixing processes such as TWM and FWM in media with dispersion, the various

pieces to the puzzle of predicting RISOM conditions were isolated and studied

individually. As the analysis proceeded, more pieces were added to form the mosaic that

describes general reflection geometry OM processes. During the examination of each part
of this collage of angular dependencies, layer indices, layer thicknesses, and mismatch;

particular attention was paid to conditions which might enhance the surface over the bulk

contribution. The numerical analyses of these expressions was first divided into two parts:

collinear and non-collinear geometries. Each part was examined for the affects of

polarization and degree of dispersion for general and specific OM processes. When

favourable conditions were found, actual RISOM experiments are suggested and

discussed. Furthermore, when such conditions were predicted, calculations for

experiments using Gaussian beams, and not simply plane waves, were performed.

For general collinear optical mixing, including degenerate (n-th) harmonic generation

(nHG) and TWM or FWM in dispersionless media, were performed first. These

calculations laid the groundwork for all subsequent calculations as they exhibit the most

basic angular dependencies for reflection geometry OM. For S-polarizations, reasonably

good enrichment of the surface contribution was predicted for near-grazing incidence.

The surface-to-bulk signal ratio for an angle of 89 degrees can be expected to be on the
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order of 2. Analysis of S-wave OM processes in media with dispersion showed that its

inclusion does not change the angular behaviour of the bulk and surface contributions.
The only effect is that the overall intensity is reduced because of the phase-mismatch. It
was shown that for P-polarization experiments in dispersionless media may or may not
exhibit a nonlinear Brewster's angle. An investigation of P-waves for each of these
possibilities was conducted. Scrutiny of P-polarization collinearprocesses in

dispersionless media where both the surface and bulk have a NLBA suggested that there
is no possibility of separating the bulk and surface signals. In this case the NLBA for each
wave will be equal. When the polarizations are not induced in the same direction,

however, the NLBAs are different. This provides a definitive way to separate the surface

or the bulk contributions from the total signal. Similarly, when dispersion is included, the
NLBAs also differ. Even with small dispersions, the disparity betweenNLBAs can be
experimentally observable. The difference between surface and bulk Brewster's angles is
typically 2 to 8 degrees. Utilizing this difference, separation of surface and bulk can be
quite favourable; the direct ratio can be 5 to 200, or larger.

Analyses of two non-collinearexperiments which intentionally introduce a phase-
mismatch were performed. Experimentally, phase-mismatches can be induced by slightly
changing the direction of one (or more) of the incident wavevectors from the phase-

matched case. The degree of mismatch is left to the discretion of the experimenter. The
two experimental designs involve either selecting different polar angles, leaving the
azimuthal angles similar, or the converse. When the media are dispersionless, the surface
and bulk waves are 'reflected' from the structure at the same angle. They may be

separated in intensity by utilizing a difference of the sensitivity in the phase-mismatch for
the two layers. The surface-to-bulk signal ratio can be 2 to 3. With the inclusion of
dispersion, the bulk and surface contributions may be separated by phase-matching in one
layer and not the other. This is possible only if the dispersions for the two layers are
different -- the larger the difference the better the separation.



200

It was shown that in dispersive media general non-collinear TWM processes acquire a

finite angular separation between the surface and bulk waves. Specific examples of plane

wave SFG processes and SFG using Gaussian beams were investigated. The mixed

Gaussian beam 'experiment' shows an angular profile which has a bright spot surrounded

by a much larger dim halo. The bright spot contains mostly surface-generated light. Its

width can be 0.2 degrees. The halo is comprised of predominately bulk signal; the halo is

on the order of 1.5 degrees in width. The surface-to-bulk ratio can be on the order of 4

for this experiment.

As with TWM, an analyses for general non-collinear FWM in media with dispersion

was performed. For plane waves, typical angular separations were 0.05 degrees between

the surface and bulk. A careful analysis using Gaussian beams was provided. Again, the

mixed Gaussian beam shows an angular profile which has a bright spot, the surface signal

(typically 0.01 degrees in width), surrounded by a much larger dim halo (the bulk signal)

which is on the order of 0.25 degrees in width. The surface-to-bulk ratio can be on the

order of 20 for this experiment.

In summary, reflective geometry experiments are straightforward, signals are typically

large, and there are no apparent limitations on the type of surface that can be studied.

Favourable surface-to-bulk ratios are achieved by making use of differences in the angular

and phase-mismatch dependencies of the surface and bulk waves. These dependencies

may allow the experimenter to isolate the surface signal in a RISOM geometry.
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4. CONCLUSIONS

This research was driven by the potential to further develop the tools of optical surface

science. The central question of this research has been: can vibrational and electronic

surface resonances involving optical transitions be detected on flat surfaces?

Chapter 2 took the approach of manipulating the applied fields in the confines of a

planar waveguide to achieve an interference condition. This interference condition is

engineered to exclude the generation of signals everywhere except the surface. The

research mapped out experimentally relevantparameter space for CARS-like WISOM

processes in a waveguide. Non-collinear geometry and phase-matching were considered

in the waveguide geometry as a way to increase the overall surface signal and surface-to-

bulk signal ratios. In Chapter 3, reflection geometry ISOM was considered. For RISOM

experiments, it was found that manipulation of the applied fields can maximize the surface-

to-bulk signal ratio. The angular dependence of optical mixing and phase-matching

conditions are analyzed as a way to predict enhanced surface-specificity. In order to

predict successful RISOM experiments, an entire treatment of optical mixing at a surface

that includes both surface and bulk contributions was developed.

4.1 Planar Waveguide Geometry Interface-Specific Optical Mixing (WISOM)

As means of observing surface resonances on flat surfaces, Chapter 2 considered

optical mixing in waveguide geometry. Using WISOM, the surface region's frequency

response, symmetry information, and perhaps (time-wise) transitory behaviour can be

investigated. These properties may be used to determine the stoichiometry, adhesion

mechanisms, migration times, and reaction properties of species comprising the 'surface'.
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A general theoretical treatment for WISOM began with the derivation of the fields in a

general planar waveguide. If the index profile of the waveguide is known, the fields can

be found by employing Maxwell's equations to find a wave equation. The wave equation

for an inhomogeneous, dielectric waveguide was derived in Appendix A. A short

discussion illuminates how the fields of a graded-index waveguide may be calculated. The

fields for an asymmetric, step index waveguide were found explicitly by considering the

Helmholtz equation. The Helmholtz equation was separated into three equations, one for

each region of the waveguide. Boundary conditions at each interface were used to derive

the field in the three regions. Initially, only plane waves were considered in this solution;

finite waves were later considered utilizing superpositions of the derived plane wave

solutions. In matching the boundary conditions, a transcendental equation was revealed

relating the wavevectors of the various regions. The solution of this transcendental

equation exposed the discrete modal nature of the waveguides. The resulting expressions

derived for the field amplitude and phase ofa guided wave relied only on the assumptions

that the indices of refraction are time-independent and that the waveguide is constructed

from dielectric materials. The last part of the theoretical discussion expressed the field of

the generated plane wave in terms of the parameters of the incident plane waves, the linear

indices, and non-linear susceptibilities of the cover, film, and substrate. Interpretative

tools that best quantify surface-specificity, the direct ratio (DR) and the cross ratio (CR),

were introduced. A Mathematica notebook was written to obtain numerical solutions

based on the theoretical development. Numerical solutions for the generated electric field

could be found given assumed waveguide index profiles, dimensions, and applied wave

frequencies.

Analysis of the relevant parameter space for CARS-like WISOM using infinite plane

waves began by assuming a film index and a thickness. The range of waveguide

parameters are dictated by what is realizable in experiments. Hence, the range of the

index of the film was restricted to 1.60 to 2.10. The thickness range of the film were

likewise confined to 600 to 950 nm. The substrate was assumed to be fused silica and its
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index was appropriately fixed at 1.47. The cover index also remained fixed throughout

the analysis; it was taken as that of the vacuum. The frequencies for the appliedwaves

were chosen with values appropriate for vibrational resonances. The first and third wave

frequencies were chosen to be consistent with 2 = 2.3 = 560 nm. The second wave was

picked by means of the difference in wavenumbers between the second and first waves.

The equivalent difference frequency ranged from 1000 to 3000 wavenumbers (roughly

580 to 670 nm) in steps of 200 cm'. All possible mode combinations of these fourwaves

were considered. The values of x(3) for the various regions of substrate, film, and vacuum

were taken as unity, except over the cover region 0.5 nm above the film. In keeping with

a cover region in resonance with the mixing process, X(3) was taken as 100 for the cover, a

rather conservative value considering the typical range is 10 to 100 times the non-resonant

value. It should be recalled that no attempt was made to examine possible contributions

to an interstitial region between the substrate and film regions. Over the tuning range, the

non-linear susceptibilities were considered fixed.

For each waveguide (i.e., choice of thickness and film index) and mode combination,

the direct and cross ratios were tabulated; three-dimensional plots were created for ease in

interpretation. A series of plots for each mode combination was generated. Each plot in a

series represents a unique difference frequency. Although all mode combinations that

have the potential to yield favourable WISOM conditions were analyzed, only six were

found to be remarkable. These are the six combinations having the largest DRs, CRs,

tuning ranges, and best phase-matching options out of the full eighteen possible

combinations. These promising mode combinations are: [2,2,0,1], [1,0,1,1], [1,1,1,2],

[0,0,0,1], [2,0,2,1], and [1,1,0,1]. Two of these combinations are four-beam geometry

combinations. Phase-matching can be achieved with small azimuthal angles when mode

combination [1,1,0,1] is employed.

Phase-matching inside a waveguide was found to enhance the overall signal levels of

WISOM processes. Moreover, it was discovered that if the dispersions of film andcover
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regions differ, the surface-specificity can be very strong. In order to phase-match the non-

linear process, the azimuthal angles must be chosen. From the previous set of surface-

specificity calculations for the various mode combination and waveguides, it was found

that the possibility of phase-matching in the waveguide is quite common. In over 70% of

the choices of waveguides, mode combinations, and difference frequencies, phase-

matching occurs when the azimuthal angles are approximately perpendicular from one

another. Furthermore, in about 18% of the choices, phase-matching occurs when the

azimuthal angles were under 3 degrees.

A theoretical development was constructed in order to evaluate phase-matching in the

waveguide, especially those of four-beam mode combinations. To best simulate

laboratory experiments, three focused Gaussian profile beams coupled into a waveguide

were considered. The development began by deriving a mathematical description of a

focused Gaussian beam. A numerical analysis of the generated signals for phase-

mismatched conditions where the interaction length is large versus the case where phase-

matching is achieved was made using the Gaussian beams development. Thesewere

accomplished by assuming 1 mm diameter Gaussian beams focused by 1 meter lenses.

The direction of the wavevectors for each beam was found for every point in the

interaction volume by matrix methods of paraxial optics. Numerical calculations were

done for many modes, difference frequencies, and waveguides. Two situations were

identified: the case where the azimuthal angles for zero mismatch are all small and the case

where azimuthal angles are essentially perpendicular. The variance of intensity versus

phase-mismatch was scrutinized for both situations. When the azimuthal angles for zero

mismatch are all small, there is a large interaction volume for phase-matched conditions.

It was shown that when the applied beams are collinear, the phase-mismatch is large and

the generated intensity is low. In the example given, the ratio of intensities between the

phase-matched angles versus collinear beams was 2.97. When the phase-matching

azimuthal angles are small, it is advantageous to phase-match the OM process rather than

to maximize the interaction volume by using collinear beams. Also seen in the example is
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the sinc-like dependence of the phase-mismatch on intensity. This dependence is

modulated by a high-frequency cost -like behaviour on the phase-mismatch. From the

analysis it was found that it is more common for WISOM processes to be phase-matched

when the beams are nearly perpendicular. This is the second situation: the interaction

volume for phase-matching is small compared to the collinear application of the input

beams. Despite the shorter interaction length, the phase-matched case generally provides

signals two to three times larger. For the example cited, the intensity ratio of the phase-

matched, small interaction region condition versus the collinear case was 2.8. Moreover,

when the dispersions of the two layers are different, even for a dispersion of one part in

10-3 for the surface and twice that for the film, there is an additional enhancement in the

surface-to-film ratio of 103 to 104.

It was concluded that there are benefits to employing phase-matching and utilizing the

four-beam mode combinations. To reap these benefits, however, four couplers are

required to couple the beams to the waveguide. Traditionally, researchers have used

prism couplers which are very cumbersome. Furthermore, it is difficult to secure two

functional couplers to a waveguide; securing four couplers seems impractical.

Consequently, efforts were made to improve coupler design and construction for

asymmetric planar waveguides.

Achromatic waveguide couplers were considered as an alternative. These are

modified prism couplers such as those proposed by Spaulding and Morris. Their use

simplifies coupling by making the coupling efficiency less sensitive to the frequency and

coupling angle of the beam. Unaddressed is the problem of the variability of coupling

efficiency inherent between one prism coupler and another.

Integrated grating couplers were investigated as possible solutions to the coupling

problem. For purposes of general CARS-WISOM work, four grating couplers per

waveguide must be fabricated. Simple calculations showed that the ideal grating spacing
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is between 450 and 500 nm. Experimental attempts with constructing reproducible

gratings on substrates were done. Fabrication techniques for line gratings were outlined.

The procedure involved spin-coating a UV-sensitive photoresist on a substrate. Exposure

of a cosine-squared intensity pattern was applied to the photoresist. Grating spacings (in

the photoresist) were produced ranging from 477 to 2785 nm. These gratings were found

to have very reproducible spacings and diffraction efficiencies. Furthermore, when

producing gratings in the photoresist, the success rate was very good. However, only one

in twenty gratings were successfully etched into the substrate.

One proposed solution to the coupling problem involved inducing gratings in a

photorefractive medium embedded in the waveguide. An active sinusoidal index grating

would be induced by applying two interfering probe beams. The WISOM beams would

then be coupled into the waveguide using these active gratings. The efficiency of these

gratings is typically not exceptional. The sacrifice of efficiency, however, for the

attractive ability to alter the orientation and spacing of the gratings may be acceptable.

It was suggested that ring gratings be constructed in place of linear gratings to coupe

to the waveguides. Since the phase-matching angles are very different for different mode

combinations and difference frequencies, this configurations seems natural. Although no

gratings of this type have been demonstrated, construction methods were proposed.

Fabricating these structures could be done using the same methods for making linear

gratings. However, the interference pattern used to expose the ring grating must be

created in different ways. Two methods for exposing the ring pattern were outlined. The

first suggested construction method for ring gratings involved masked diffraction from a

circular aperture. Using a 356 nm source, a circular aperture 19 mm in diameter placed 5

mm from the photoresist would produce a 468 nm ring grating. The center 3 mm of the

diffraction pattern would be masked off. The spacing would vary only 2% over 5000

rulings for this grating. A longer exposure is required since most of the light is in the first

few orders of the diffraction pattern which are blocked to create a clear aperture. The
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exposure time for the ring grating was calculated to be over 13 hours. Vibrations would

likely destroy the image in the photoresist as is was being exposed. Another alternative to

create the ring pattern directly utilizing a diffractive optic was conceived. It was shown

that a diffractive optic for a ring grating can be obtained by taking the inverse Hankel

transform of the desired pattern. A diffractive optic was numerically designed that would

produce a circular pattern with 5000 concentric ring fringes spaced by 450 nm with the

first fringe having a radius of 1.5 mm.

These proposed solutions to the problem of radiative coupling to planar waveguides

are incomplete, as no working structures have been produced. Continued research and

development into the fabrication of alternative grating couplers, such as ring gratings and

integrated non-linear grating couplers, is needed.

The WISOM geometry is fraught with experimental difficulties and provides limited

surface-specificity. A major limitation of WISOM is that only surfaces of thin dielectric

films can be studied. Scanning through the resonances of a surface using the WISOM

technique may require a series of waveguides due to the frequency sensitivity of the

interference condition. However, ways of increasing the signal levels and enhancing the

interference conditions were investigated. The experiments that produce these

enhancements were discovered to be experimentally involved. These limitations led to the

investigation of another ISOM geometry discussed in Chapter 3.

4.2 Reflection Geometry Interface-Specific Optical Mixing (RISOM)

Chapter 3 took a very different approach, suggesting that reflection geometry could be

employed in an optical mixing process to provide good surface-to-bulk signal ratios. The

advantages of a reflective geometry experiment is that it is straightforward and phase-

matching is easy to achieve. Signals are typically large and there are no apparent
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limitations on the type of surface that can be studied. The origin of favourable signal-to-

noise ratios in RISOM experiments is not directly obvious.

In the RISOM research disseminated here, a macroscopic model of OM at an interface

was used to obtain the non-linear Fresnel equations. Why a microscopic model was not

used is explained in the difficulty of calculation; microscopic model calculations are rather

involved. Since the parameters of RISOM were wholly unknown and many calculations

were expected, an abbreviated approach was sought. Hence, a well-established

macroscopic model was chosen and modified to predict surface-to-bulk signal ratios. In

developing this exact macroscopic model, careful attention was paid to phase-matching in

both the surface and bulk regions. This allows for the characterization of experimental

RISOM parameters when dispersion and intentionally introduced phase-mismatches are to

be considered. The next several paragraphs detail the Bloembergen model, the

macroscopic model developed to predict surface-to-bulk signal ratios, and the

justifications to use a macroscopic instead of a microscopic one.

Ju's microscopic calculation of the optical response lends justification to the use of a

macroscopic model in place of a microscopic one. He calculated the optical response of a

semi-infinite medium consisting of discrete point-dipoles. Certain surface effectsare

evident in Ju's analysis. However, he showed that when these surface effects are

averaged, the macroscopic result is reproduced. In reviewing calculations based on

microscopic models, it became clear that embarking on the microscopic calculations for

RISOM conditions without prior direction would be an inefficient use of resources. Using

a macroscopic model, most of the calculations to map out a RISOM parameter spacecan

be done analytically; predictions are much simpler to formulate.

An exact macroscopic treatment of general optical mixing at a dielectric interface

based on Bloembergen's example was developed. This model breaks the interfacial region

into four distinct regions: the vacuum, a surface region, a bulk median, and the semi-
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infinite bulk. The additional layer is a modification of Bloembergen's model; itwas added

between the surface slab and the bulk. This layer has the non-linear properties of the bulk

which are, in general, different from the surface. The linear index of refraction of the bulk

median and the semi-infinite bulk are dissimilar. An attempt was made to include phase-

mismatching by integrating the generated fields over the interaction region. From these

results, RISOM experiments were suggested in which the surface region may be phase-

matched, but phase-mismatched in the bulk. The solutions for the fields generated in each

region presented in Chapter 3 were quite general: they were found without exact

knowledge of the induced non-linear polarization. No assumptions concerning the

particular optical mixing process were necessary. Hence, the reflection coefficients for

surface and bulk were derived for general optical mixing. From the equations for general

mixing, a simple substitution can be made to predict RISOM for specific processes such as

CARS-like FWM, SHG, and TWM.

There are two clear predictions made by the macroscopic model. First, an

enhancement of the surface over the bulk signal due to phase-mismatch is expected if

dispersion of the surface and bulk (median) are different. The second prediction involves

the separation of the surface and bulk signals due to dissimilar NLBAs (forP-polarization

experiments). Any difference in dispersion leads to the condition where the NLBA for the

bulk is unequal to the NLBA for the surface.

The numerical analyses of the RISOM expressions examine mixing processes such as

TWM and FWM in media with dispersion. To understand the complexities of the RISOM

solutions, increasingly specific situations were individually studied. Particular attention

was paid to conditions which might enhance the surface over the bulk contribution. The

contributions of the surface and bulk regions to the electric fields were numerically

calculated for each of case of polarization, degree of dispersion, and geometry of the

waves (collinear or non-collinear). The analyses were first divided into two parts:

collinear and non-collinear geometries. Each geometry was examined under different
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conditions of polarization and degree of dispersion for general and specific OM processes.
When favourable conditions were found, RISOM experiments were suggested.

Furthermore, when such conditions were predicted, calculations for experiments using
focused Gaussian beams in place of plane waves were performed. These beams were
mathematically represented by a decomposition of seven plane waves focused to a 10
micron spot using a 1 meter lens. The next several paragraphs review these analyses.

Generally throughout the analysis, calculations were done with a consistent set of fixed
parameters. The index of refraction of the cover region is the index of the vacuum. The
index of the surface, bulk, and bulk median are seen as scaling parameters. They are set to:
1.50 for the surface index, 1.55 for the bulk median index, 1.56 for the bulk index. The
layer thicknesses of the surface and bulk median are both set to 5 nm, much smaller than
the wavelength of light.

A collinear S-wave RISOM experiment was predicted for near grazing angles of
incidence. For instance, the surface-to-bulk signal ratio for an angle of 89 degrees from
non-dispersive media can be expected to be on the order of 2. Analysis of S-wave nHG
processes in media with dispersion showed that the angular behaviour of the bulk and
surface contributions remained unchanged.

Examination of the RISOM expressions yielded that collinear optical mixing
performed in dispersionless media for P-polarizations may or may not exhibit a non-linear

Brewster's angle (NLBA). When a P-polarization collinear nHG process in dispersionless
media has a NLBA in both media, analysis of collinear SHG suggested that there is no
possibility of separating the bulk and surface signals. With small dispersions, however, the
surface and bulk NLBAs differ. Utilizing this difference, the surface-to-bulk signal ratio
can be from 5 to 200.
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Analyses of two experiments which intentionally introduced a phase-mismatch were

performed. Experimentally, phase-mismatches can be produced by using a non-collinear

geometry. Using the non-collinear geometry, the experimenter has control of the degree

of phase-mismatch. The two experimental designs involve either selecting different polar

angles, leaving the azimuthal angles similar, or the converse. Two main conclusions come

of these analyses. First, when the media are dispersionless, the surface and bulk waves

are 'reflected' from the structure at the same angle. They can be separated in intensity by

phase-mismatching the mixing process. The other conclusion is that, with the inclusion of

dispersion, the bulk and surface waves are separated in angle.

The first non-collinear reflection OM experiment introduces a mismatch by adjusting

only the polar angles of the incident waves. Analysis was simplified by considering only

SHG. The NLRCs for S-wave and P-wave (without a NLBA) non-collinear SHG were

found to be similar. The angular dependence was found to be complicated and was

different for the surface and bulk contributions. With azimuthal angles of the fundamental

waves equal, the polar angle dependence on the sensitivity of bulk and surface amplitudes

due to the difference in polar angles was investigated. The polar angle mismatch

dependence (or 'mismatch sensitivity') was mapped out. It was discovered that the

surface mismatch sensitivity increases simply with polar angle. However, the mismatch

for the bulk is very sensitive at a certain polar angle. An approximate expression for this

polar angle was derived. At this angle, when the difference between polar angles iszero,

the signal is predominately from the bulk. In contrast, when difference between polar

angles is a few milli-degrees, the bulk is highly attenuated; typical surface-to-bulk ratios

(using plane waves) are on the order of 2. Estimates for a Gaussian beam SHG

experiment shows that the SHG beam has a profile enriched in surface contribution due to

the different surface and bulk phase-mismatch sensitivities. The intensity at the center of

the SHG beam is a mixture of surface- and bulk-generated light. The angular width of this

center portion may be 0.02 degrees (full-width half-maximum) The outer portion of the

SHG beam has a much lower intensity, but is due primarily to surface-generated light.
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This RISOM experiment may yield a surface-to-bulk signal ratio of 10. If the NLBA

happens to be near the angle at which the bulk is most sensitive to mismatches, then the

NLBA can be used to further enhance the bulk signal over the surface contribution by an

additional factor of 10. Unfortunately, the total signal strength suffers. Finally, it was

argued that the mismatch is further increased when dispersion is included. When

dispersion is different, the separation of bulk and surface signals by phase-mismatch is

more pronounced.

The second 'experiment' introduces a mismatch by adjusting only the azimuthal angles

of the incident waves. Again, analysis was simplified by considering only SHG. The

NLRCs for non-collinear SHG were found to the similar for both S.- and P-waves (without

a NLBA). In dispersionless media, it was found that the bulk wave is rather insensitive to

the phase-mismatch as compared to the dependence of the surface wave. Unfortunately,

this leaves no way to attenuate the bulk signal over the surface wave. The reverse is

possible, however, providing a way to observe the isolated bulk signal. From observations

like this, bulk non-linear susceptibility tensor elements may be examined.

It was argued that general TWM in media with dispersion was similar to SHG, with

the difference that the process is phase-matched when the incident angles are not collinear.

As with SHG, altering the directions of the incident waves from their minimally phase-

mismatched positions introduces phase-mismatch that can be used to separate the surface

and bulk contributions. For P-polarization experiments, if a NLBA exists then further

enhancements in the signal ratio are possible. Specific examples of plane wave SFG

processes and SFG using Gaussian beams were investigated using incident frequencies of

500 and 600 nm. The SFG Gaussian beam 'experiment' showed that the generated beam

has an angular profile which has a bright spot surrounded by a much larger dim halo. The

halo, with a width on the order of 0.5 degrees, is comprised of predominately bulk signal.

The bright spot contains mostly surface-generated light. Its width is typically 0.01

degrees. The surface-to-bulk ratio can be on the order of 5 for this experiment. By
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increasing the mismatch sensitivity of the bulk, the halo can be broadened; this can

improve the signal-to-bulk ratio to 108.

An analysis for general non-collinear FWM in media without dispersion was

performed. Three incident waves of wavelengths 500, 550, and 600 nm were used. It

was found that the addition of the third incident wave made introducing phase-mismatch

sensitivity of the bulk without effecting the surface sensitivity more likely. Non-collinear

geometry FWM in media with dispersion was analyzed. For plane waves, typical angular

separations were 0.05 degrees between the surface and bulk. An analysis using focused

Gaussian beams showed the generated beam has an angular profile with a bright surface-

dominated spot (typically 0.01 degrees in width), in the field of a larger dim halo (the bulk

signal) which is on the order of 0.25 degrees in width. The surface-to-bulk ratio can be on

the order of 20 for this experiment. Increasing the mismatch sensitivity of the bulk can

improve the signal-to-bulk ratio and can be used to obtain a surface-to-bulk ratio of 10".

In summary, simple reflection geometry OM experiments can be employed that are

able to distinguish a surface component to a signal that is composed mostly of bulk

contributions. Reflective geometry experiments are straightforward, signals are typically

large, and there are no apparent limitations on the type of surface that can be studied.

This is to be contrasted with the waveguide geometry, where the incident and generated

waves must be coupled into a guiding structure. Utilizing the differences in the angular

phase-mismatch dependencies of the surface and bulk waves, favourable surface-to-bulk

ratios can be achieved. These dependencies were investigated in detail. It was found that

reasonable surface-to-bulk signals are possible and several experimental designs are

suggested. Future microscopic calculations are suggested in circumstances where the

macroscopic model is in question. Also, the parameter space was significantly narrowed

allowing future researchers employing microscopic models to investigate specific areas of

interest.
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APPENDIX A

This appendix is devoted to determining the solutions to the generated fields due to a

nonlinear source term in an asymmetric waveguide structure as described in Chapter 2.

This theoretical development is aimed at deriving ratios that can be used to quantify the

degree of surface-specificity in a WISOM experiment. The general development in this

appendix expresses the field of the observed wave in terms of the parameters of the

incident plane waves (frequency and (Erection), the linear indices and nonlinear

susceptibilities of the cover, film, and substrate regions. Only transverse electric (TE)

waveguide modes are considered here.

This appendix has several sections. First, the wave equation is derived for a general

waveguide of unknown index gradient. Although the possibility of a graded-index

waveguide is not discussed in this work explicitly, the results of this section should prove

useful for other researches. The following section is devoted obtaining solutions to the

wave equation in the case of an asymmetric step index waveguide. A third section deals

with the intensity, phase-mismatch, and quantitative tools used in the numerical analysis of

WISOM.

A.1 The Wave Equation and BoundaryConditions for Inhomogeneous Waveguides

There is an unfortunate confusion brought on by the need for multiple sets of

coordinate systems describing the directions of the wavevectors and fields. In the end, the

choice to define these systems makes the analysis of focused Gaussian beams in a

waveguide less difficult. Each beam inside a waveguide is given by its own coordinate

system. This makes the describing focused Gaussian beams (in terms of superpositions of
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plane waves) more straightforward. The z-axes are taken to be along the central

propagation direction of each beam. Calculations involving the culmination of all beams
requires a universal waveguide coordinate system. For instance, in determining the
nonlinear induced polarization, the waveguide coordinate system is used. The waveguide
coordinate system is shown in Figure 2.4. The first beam, the beam that carries col,

defines the z-axis of the waveguide system. The origin is placed in the center of the film
region of the waveguide. Note that each beam's coordinate system and the waveguide
system share a common origin. When phase-matching is considered, this common origin
will become the crossing center of the beams, that is, the center of the interaction volume.

Coordinate transformations between the waveguide (unprimed) system and each of the
(primed) beam systems must be obtained. To describe the directions of the waves outside
the waveguide, before they are coupled or after the are decoupled from the waveguide, a
new set of direction angles is defined. Outside the waveguide each wave i (i = 1,...,4) is
described by its field Et and wavevector ki. The direction of ki are defined by ki = [Ik11,

aj, where the angle 1, is the angle from the x-axis of the waveguide's coordinate system
to the wavevector (analogous to the polar angle of a spherical coordinate system). The
angle cei from the z-axis to the wavevector is analogous to an azimuthal angle. This

arrangement is pictured in Figure 2.10.

The frequencies and angular parameters of the waves are referred to using the

following convention: all the frequencies for mode combination [v1, v2, v3, va] are

represented by [(01, 0)2, (03, ma], the set of 'polar' angles by [151, '62, 153, 1)a], and the

`azimuthal' direction angles by [al 0, a2, a3,

To find the contributions to the mixing process from the cover, film, and substrate, the

induced polarizations in each region must be found. This requires that each of the applied
fields be known. The fields are found by considering Maxwell's equations and applying
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the boundary conditions at each interface. Here the i-th beam coordinate system is used.
Only plane waves are considered in this solution. Recall that in the absence ofsources,
Maxwell's equations are

x FI =
c c

0i=4/tp, V)3=0.

For a dielectric medium, the true charge density, p, is zero everywhere; the true charge
density does not include the polarization charge density. Likewise, the current density, J
is zero. Thus, Maxwell's equations in a dielectric medium using Gaussian units are:

itxt=-1-0,

V.b=o, V.B .O.

In general, all the fields are complex and are functions of space (x, y, z) and time.

Irregardless of the nature of the fields, the general boundary conditions at an interface can
be derived. Recall that the coordinate system has its z-direction parallel to the direction of
propagation in the waveguide. Consider a Gaussian volume across an interface as shown
in Figure A.1. The integral of Coulomb's law over that volume is

5c7 .15 dv = 50 dv =0.
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Interface

112 da2

ni d(ii

Figure A.1: A cylindrical Gaussian volume
straddling an interface.

Applying the divergence theorem, where ?is is the outward (i.e., upward) going surface
normal, the integral becomes

fdv da =0.
V S

With b1 the displacement field below the interface and b2 displacementfield above the
interface, the integral over the surface da = dal + da2 + da3 + da4 becomes

fv-b-dv=ffictii dal+f -112 (1422+ JA.i i3 da-3+f152 114 da4
V Si

S2 S3 54

If the 'height' of the Gaussian volume goes to zero (that is, Q --> 0), then /51- 11'3 -* 0 and
D2 > 0. Furthermore, if the area of the Gaussian volume is vanishingly small, D will



not vary over the surface. Thus,

V

bdv =bi.ki is dal + 412.1 da2 = (D1 + b2 ii2) A = 0
SI S2
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with A = the area of the surface and Si = S2. Combining the normal vectors AI = A and
112 = n, the above argument yields

(b2 b1). = .

(6.1)

This is the first boundary condition. By analogy, utilizing ci h. 0, the second boundary
condition is found to be

( /-31).ii=0.
(6.2)

The remaining two boundary conditions are found by considering the fields across a

boundary enclosed by a Stokesian loop. Such a loop is pictured in Figure A.2. The closed
contour is taken over C = C, +C2 +C3 +Ca. If£, the distance along the loop

perpendicular to the boundary, is vanishingly small, then contours C3 and C4 are negligible.

The integral around the loop is

dt.
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The integral over the entire curve, C = CI + C2, is

ft.d. fE,.cre,+f-E2-cit2.
c2.

Let the length of each part of this curve be w. When the electric field E is considered

small over the curve C, then it is apparent that

E = (I x w - k (I x w

When terms are combined the integral about the loop becomes

f di = (El -4) (I x ii) w. (6.3)

4',t C4Interface
C2

Figure A.2: A Stokesian loop straddling an
interface.



The curl of E,

i 7 xt = --lath,
c

when substituted into (6.3), yields

fCV xf).fida= af--lc7(atij)rida=fE.d2.
S S C

(6.4)

By Stoke's Theorem it is seen that reduces to

(AE2)-(ixii)w=-1-1(ath).11da.c
S

(6.4)

(6.5)
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fdris7 (a,h) is finite over the surface S formed by the contour and £ ---> 0, the integral in

goes to zero, leaving

or

(E, -4). (i x n) =0

[(E1 E2)-dx it= O. (6.6)



229

This is the statement that the tangential components of E are continuous. By analogy the

fourth boundary condition is derived:

RI-- 11 fi2). ii x ii = o. (6.7)

The wave equation is derived in the usual way by considering the curl of the curl of E:

VxVxf = --IV x (ath).
c (6.8)

Making no assumptions about the form of the permittivity, e, and permittivity, g, equation(6.8)
yields

V(V f) v2E = la i (V x h).
c

Recalling V./5 = 0 and ti =et, it is then realized that

0/5=V(e.E')= kVe+ef7E=0.

(6.9)

By rearranging this equation, an expression for the divergence of E can be found:

V t .(t Ve)e-1.



The first term in (6.9) can now be written as

V(V- E) =
(E VE) + (VE V)E + Ve x (V x E) + e(E Ve)VU-)

e

Recall that B .1.1H- . Since the curl of H is given by

El) 1 1
-17- xii=V-4 = a ,D = a t(eE),

1.1 c c

then, applying the relationship between B and H, it is clear that

V' xli+}.(V-1--Ixi3=Saqa E
c t 'ii,

(6.10)
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where ate = 0. Herein lies the first assumption, that the permittivities of the waveguide
materials, and hence their indices of refraction, are not time dependent (at least on the
scale of the oscillations of the wave). Thus, the curl of B becomes

-V-. xiii=-112-atE-4-V1+11
c

P,
(6.11)

Combining (6.10), (6.9), and (6.11); gives the most general form for the wave equation,
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v2E- ave. ptv-1-jx(vx.t)

(E- Ve) + (VE VIE + f(7£ X (V X E)+E(E Veyi(-1-)

and, by analogy, it can be shown that

2

V2b-
c2

a2B

= --4V mi3V2 + m.(B v)(v I.L[(V -11x (V x fi)]
Pt

11
2Pe) x x

n [(VE) x x 13].

In a dielectric medium p. is constant, therefor Vg.-1= 0. For a dielectric with a possible
index gradient, the wave equations are

,,2v2k_ a2kC2

2(E n + 2(Vn V)E + 2Vn x x E')+ n2 (E Vn)ij-)
n2

n2

(6.12)



and

2

V2L-zra ,§=.2i-I(Vn)x (V. x ,§)] (6.13)
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The wave equations for a waveguide, (6.12) and (6.13), are perfectly general for

dielectric waveguides. This includes graded-index and step index waveguides (i.e., planar
structures for which n = n(r)). Solutions to these inhomogeneous differential equations

can be solved by adding a particular solution to the solution of the homogenous wave
equation. Another approach, treating the modes as quantized solutions to the Hamiltonian
of the situation and engaging perturbation theory, is discussed in the main text.

Given the planar geometry, it is evident that two separate polarizations (of the electric
field) are possible. That is, transverse waves occupy the modes of these waveguides.
These polarizations are referred to as transverse electric (TE), when the electric field in

the plane of the waveguide. In the other polarization, transverse magnetic (TM), the

magnetic field is in the plane of the waveguide (along the y-axis). Separating the

components of Maxwell's equations, two sets of equations are found. For TE

polarizations (Ez= Ex= Hy= 0) the following expressions hold:

azEx=o, axEz=0, ayHx =0, ay1/2 =0, By =0, a ,By =0,

a zEy = Ca,Bx, and azHz-a zHz =-1-a ,Dy.

Therefore, the wave equations for TE polarizations reduce to

Ex = 0,



and

n2a2E +a2E +a2E " a2ExY Y Y Y C2 Y

EYa2n+Y Oinax+aynay
2

n2

E2 = 0,

Ey(aynp yH2
2

..F.
v.,

2

+a zna )Ey

2
1a!fix+a!Bx+a!B

x c
---== ,DB

x n2
+-0

z
Bxa xB2P2n2 =0,

a yBx =0,

By = 0,

2a2rB2 +a 2B2 +a!ts n2 a12Bz+-k-(a xB, -a ,Bx)a xn2 = 0,c n

a yB, = 0.
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For TM polarizations (; = H2 = Hx= 0), the components of Maxwell's equations appear
as:

a yEz =0, a yEx =0, Dy =0, a xHz = o, a zi- ix . o, a tpy .o,

a xEz -a zEz = I.,3 113y, a zily .--laiDx, and axHy =-1-a,Dz.



The wave equations for TM polarizations therefor become

and

n2
a!Ex+aE, ---::-2aEx =0,

c

a yEx =0,

E
Y

= 0 '

2

a!Ez+aEz n al2Ez = 0,
c

ayEz =0,

Bs = 0,

0 xByP yn2 =0,

2
2 1a2x.B +a2B +a2B 1.1-a B +n (0 B )(a n2)+OxBypxn2))=o,y zy zy c2ty 2 zy z
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Bz = 0,

0 zByPyn2 =0.

These expressions are general; the only assumption made is that the waveguides are

made of dielectric materials. In particular that is unity in all the media comprising the

waveguide. However, solutions for graded-index waveguides are not easy to come by.
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For step index waveguides, or 'simple waveguides', (6.12) and (6.13) become

homogeneous and solutions are straightforward to find. The next section discusses the

solutions to asymmetric step index waveguides.

A.2 Field Solutions for Asymmetric Step Index Dielectric Waveguides

The wave equations for a waveguide given in (6.12) and (6.13) were derived for

dielectric waveguides in a perfectly general way. This was done so as to include the

possibility of graded-index waveguides. However, the simplest waveguide is one without

index gradients, that is when C'n= 0 except at a boundary. This is the case solved here.

Solutions to the wave equation are found in the usual way for a general step index

waveguide. Here, a brief review is given with the emphasis placed on the asymmetric

nature of the waveguides. Define a primed coordinate system that is rotated about the y'-

axis an angle -15 and then about the x'-axis by an angle -a from the unprimed system in

Figure A.3.

z'

Figure A.3: One of the beam coordinate
systems and the (unprimed) waveguide
coordinate system.
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Consider a wave traveling in f-direction; any general polarization (direction of the

electric field) can be written as a linear combination of two polarizations in the and 9'-
directions:

f' = Ex, + Ey.9' .

The general polarization can also be written in terms of a superposition of TE and TM

polarizations by defining 4E = Ey,9' and E;li Ex,i'. Then, any general polarization

state can be represented as E' = EI;E. ETM. In the unprimed coordinate system, the field

can be represented as

or

E=Exi+Ey9+Ezi

= Ex, costs x + Ex, sin* sina 9 + Ex, sin* cosa 2+
Ey, cosa Ey, sina 1

In terms of the TE polarization in the unprimed frame, the fields are described by

ETE = Ey, cosa 9 Ey, sin a 2

and in terms of the TM polarization,

(6.14)

ETM = Ex, cosi5 I+ Ex, sin* sina y + Ex, sin* cosa 1. (6.15)
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With expressions (6.14) and (6.15) and the solutions to the wave equations, any

combination of waves (e.g., Gaussian beams) can be described. Note that the wavevector

in the unprimed frame is

with

= kz, sin* 1 +lc, cost, sin a Sr + kz, cost, cosa is, (6.16)

=nw.

Here k,, is related to the vacuum wavelength, by ko = 27r/X0. This framework allows for

a relation between the field strength of the waves (or beams) outsideand inside the

waveguide to be derived.

An example of an asymmetric waveguide is shown in Figure 2.4. There, the index of

refraction changes along the perpendicular, or x-direction, in a discontinuous way. Recall

that the coordinate system places the origin in the center of the waveguide. The origin of

this coordinate system becomes the center of the interaction volume when phase-matching

issues are examined. If the film thickness is h, then the cover begins at ha and the

substrate-film interface is found at -h/2. Thus, the index dependence on x could be written

as:

n = n(x)

n for x > h
2

n for Ix' < h

ns for x < --h
2

(6.17)
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where ric is the index of the cover, of is the index of the film, and n3 is the index of the
substrate. It is assumed that infinite plane waves with TE polarization are impinging at the
film-cover boundary of the waveguide. Suppose the electric field at the cover-film
boundary has the form

where

Ax,y,z,t)= Ey,js, e

E = konfz sine.

A mode-related wavevector for the film is defined as

13v ---=konf sine,

(6.18)

(6.19)

(6.20)

where 0 is the angle with which the waves are impinging on the surface as measured in the
film (as presented in (6.18) ). The angle i3 outside the waveguide can measured by the
experimenter as presented in (6.16). The electric field inside the waveguide can be
expressed as

E(x,y,z,t) = f (x)eil3vz
(6.21)

where f(x) is some function such that f(0) =1 in order to satisfy the initial condition that



the field satisfies (6.18). Applying this form of the electric field to the wave equation,
expression (6.12), gives the Helmholtz equation:

.2
a xf 13.'2 +1-C1)2f = 0.C

Defining an effective wavevector as

2

0) P
K2Ti-2 .,11__ 2 a 2

v ,
C2

the Helmholtz equation (6.22) becomes

a2xf+K2f......0.

This differential equation, equation (6.24), has solutions

f (x) = et`icx for K > 0

e±Kz for K < 0 .

(6.22)

(6.23)

(6.24)

(6.25)

Definitions of the electric field amplitude in each region of the waveguide can be made
such that

Ec E.---. E y(x > h 12) for the cover, (6.26)

E1 E yOxi < h 12) for the film, and (6.27)
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Es E Ey(x < h 1 2) for the substrate. (6.28)

Note that these amplitudes are written in terms of the amplitude of the impinging wave as

in (6.18). Similarly, effective wavevectors IQ, Kf, and Ks can be defined for these three

regions as

IC 2 = k2n! 13,2 for the cover, (6.29)

K2f s-.- k2 tq + 0,2 for the film, and (6.30)

K2 = k2ns2 13,2 for the substrate. (6.31)

The amplitudes of the fields in the three regions can then be written as

and

E, = ae-K '(x-h/2)
9

E 1 = f cos(Kfx-4)),

Es = be-K, (h/2-x)

(6.32)

(6.33)

(6.34)

Here, 4) is the phase of the wave in the film is yet undetermined. This phase is found by

considering the boundary conditions. Applying the boundary conditions leads to

KK, tan(K h 0) tan(K _h )
K L f 2 ) f 2f (6.35)



and

KS Mr- tan(Kf Li + 1:01 = tan(Kf ---
h +0'nen),KS

2 2
(6.36)

241

with m and m' integers. Definitions for the phases of the oscillating fields in the cover and
substrate can be made such that

and

0 :=_ tan-1(--LK ),
Kf (6.37)

Cc= tan-1(1-).
K (6.38)f

Thus, the added phases of the waves in (6.35) and (6.36) are determined as

cr = K f(h)± 4).s. +171'7E ,

and

(6.39)

(6.40)
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Since 4' = :1) , expressions (6.39) and (6.40) combine to give

KfhC. =(m+mllt avit . (6.41)

Recall that Kf depends on the effective wavevector . Equation (6.41) indicates that the
effective wavevectors 13, are discrete. Evidently, these discrete wavevectors describe the
allowed modes a waveguide. The 'new' propagation constant v is the mode identifier, it
runs over all positive integers.

The normalization constants a, b, and f in expressions (6.32), (6.33), and (6.34) can be
found in the usual way, by squaring the solutions to f(x). The results give the fmal form
for the electric field in the waveguide:

1

-Nv2) 2 -K,(x-h/2)eii3vzcimie for x> h/ 2
(1q- n!)

Ey = cos(K fx Ov)e-iI3vz for 1x1 < h / 2

1

(h/2+x) eipyz e-got for x < h / 2,(n, ns2)

with the following definitions

(6.42)



and

Nv 13v 1k,

r="Kf 2-0c =K1V-Os,

vir =KfhOc

knf sinev.

To find the allowed angles 0v, a transcendental equation must be solved:

+ Ks 1tan([ KKft hv1t)= [Kf CK K

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)
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These final expressions describe the field amplitude and phase of a guided wave of
frequency co for all three regions of the asymmetric step index waveguide. Looking at
(6.42), in the film there is a traveling wave with an effective wavevector that depends on a
discrete mode of the waveguide. In the cover and substrate regions, there is an
exponentially decaying evanescent field. The depth to which these fields penetrate the
region also is mode dependent. Expression (6.42) describes a guided wave of a single
frequency. To accommodate four-wave mixing experiments in a waveguide, four guided

waves are required. The next section discusses the four-wave mixing process in a
waveguide, determines the generated intensity, and derives the ratios used to quantify the
surface (i.e., cover) specificity.
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A.3 The Intensity, Phase-Mismatch, and Quantitative Tools for WISOM

Four-wave mixing in step index waveguides can be surface-specific if the induced
polarization due to the incident waves is (nearly) zero and non-zero in the cover region.
In this treatment, the intensity contribution from the cover and film (including substrate)
are found separately. To quantify the surface-specificity, two ratios are introduced which
are sensitive to the cover-to-film ratio. As stated in the main text, the cover-to-film ratio
diverges as the film contribution goes to zero. A more useful set of interpretive tools are
derived. One is sensitive to the amplitude of the cover contribution relative to the overall
signal, while the other is also sensitive to the phase of the cover contribution in relation to
the total contribution. It is also important to know the phase-mismatch between the
induced polarization and the generated (mixed) wave. Only infinite plane waves are
considered in this treatment.

Consider that the four waves of a FWM process have wavevectors in the film region
which can be defined as

n(ol) , k2 n(a)2)m2 , k3 n(o.)3) , and k4 n(w4)(04 (6.48)

Phase-mismatching is, in general, given by

413(x, y, z) IC- r (6.49)



with

Ak ==--, (ki +k; +E3)+14, (6.50)
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where FC4 is the wavevector of the observed photon. Again, the convention is that positive
wavevectors indicate annihilation, negative wavevectors indicate creation of photons the
OM process. It is understood that since k4 is observed, this wavevector is negative. The
phase-mismatch for the possible guided modes v is

where

c1)=0iiv 11'

Ai, 2 = kin(I)sinOvi cosak. +

k2n(F)sinec2 cosaki +

k3nMsin13,3 cosak +

k4n(r) sin e cos a k4

(6.51)

(6.52)

and e is the length over which the three incident waves overlap. Of course for plane
waves t is infinite, but plane wave are not used in practice. Thus, t is approximated by

some experimentally reasonable value. Recall the angles a are the angles in the plane of
the waveguide that each wave propagates at. The famous result for the intensity of the



fourth wave generated in a FWM process appears as

104 = faff E4 .x(3):k, E2 E3 slip dx dy dz dt
all space
all time

2

(6.53)

Replacing the electric fields with the form defined in (6.21), the intensity of the mixed

wave becomes

/(0..) 4 ) 7-
27T )2 i,.. 4(-- )4
k4 L C

43 43 431 "
x fi: 4 X (3) : e le 2e 3f1 (X)f2 (X)f3 (X) i(X) sinc 00(x) dx

-CO

2
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(6.54)

where/0)1,1.2, and 103 are the maximum amplitudes of the incident waves at co/ ,co2, and

(03, respectively. The estimated interaction length is 2. The integral can be separated into

to two parts: the integral over the cover region and the integral over the film and substrate

regions. Typically the nonlinear susceptibilities are different in this region. This is

indicated by this form for the susceptibility:

x (3) forx >h

xi) I <for I x h2

x,(3) forx < A.
2

(6.55)



Thus (6.54) can be rewritten as

/(D 4 ) =

22 4

k4

(1 (
C

Si 4i 40210)3

x

e4 X(s3)e1e2i3ii(x)/2(x)i3(x) £(x)

+ e4
-h/2

±Fe4
+h/2

sinc43(x) dx

x(;) :i1e.2£ 3f1 (X)f2 (X)f3 (X) £(x) sinc'(x) dx

sinc0(x) dx( (Xc 3) -E18263f1 Wx 2 (X)/3 (X) i(X)

(6.56)

2

Consider that the first two terms in (6.56) are the 'background' portion, EB, of the
generate field and the last term is the cover-specific anecdotal field, EA:

EA FS: F4 X(c3):g lE 2£ 3 fi (X)/2 (.7)/3 (X) t(X)
+h/2

and

-h/2
EB a fe4 xs(3):e le 2g3f1(X)f2 (X)f3 (X) £(x)

h/2
+J.+E4 X ;) : g 1E 2E 3f1 (X)f2 (X)f3 (X) i(X)

-h/2

sinc4:13(x) dx

sinc 43(x) dx

sinc (1)(x) dx .

(6.57)

(6.58)
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These definitions make the total intensity proportional to the square of the sum of the
background and anecdotal fields:

1(0) 4) lEA +EB12 =IEA12 +142 + E;EB + EA E; (6.59)

The direct ration (DR) and cross ratio (CR) can be defined as

and

DR lEA12
+IE BI2

CR= E*ABE +E E*AB
1EB12

(6.60)

(6.61)
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The denominator of the DR does not include the cross terms that the total intensity does.
If the fields from the surface and film are anti-parallel and of the same magnitude, the total
intensity is zero. Under these conditions, the DR remains finite. A DR value of one
indicates excellent surface specificity. The DR is insensitive to the phases of the fields. In
particular, when the bulk and cover generated fields are of the same magnitude but anti-
parallel, the DR is zero indicating a poor signal-to-noise ratio. This is clearly misleading.
Hence the CR is introduced to provide a measure of the sizes of the cross terms in the
intensity. A large positive value of the CR indicates parallel fields where the magnitude of
the surface is much greater than the bulk whereas a large negative CR indicates parallel

fields with the cover field much larger than the bulk-generated field.
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APPENDIX B

This appendix is devoted to determining the solutions for the generated fields due to a

nonlinear source term. Specifically, expressions for the fields 'reflected' from a layered

structure of nonlinear media as described in Chapter 3 are sought. There are three

essential steps in determining the generated nonlinear fields at a surface. First, the

amplitudes of these fields at a boundary between two media at least one of which is

nonlinear must be found. The treatment provided here was assembled from

Bloembergen's work. Since a portion of the method parallels the derivation of the linear

Fresnel equations, the amplitude coefficients are called nonlinear Fresnel coefficients.

Inside a nonlinear medium, the amplitude of the generated wave increases according to the

distance the wave traverses in the medium and the phase-mismatch between the induced

polarization and the generated wave. Determining this factor comprises the second step.

Since this macroscopic model requires three interfaces (the vacuum-surface, the surface-

bulk median, and the bulk median-bulk interfaces), the nonlinear Fresnel coefficients must

be expressed in terms of the interfacial the parameters. This final step is accomplished by

matching the boundary conditions at each interface.

B.1 Determining the Solutions to the Inhomogeneous Wave Equation

Bloembergen and co-workers determined the theoretical equations that govern optical

mixing, particularly SHG, in reflection geometry. Bloembergen makes the assumption that

`mixed waves' (waves generated due to a nonlinear susceptibility) emanate or 'reflect'

from the interface. These waves are produced by a source, or inhomogeneous wave; it is

created by a nonlinear polarization induced by all incident fields. With this assumption,

this inhomogeneous source wave is derived from the inhomogenous wave equation in a

nonlinear dielectric. Generalizations to the well-known laws of reflection and refraction



250

give the direction of propagation of the mixed waves. These laws are can be considered

generalized, nonlinear, Fresnel coefficients.

When fields i = I through i = n are applied to a medium, a nonlinear polarization is

induced via the susceptibility. The induced polarization oscillates at the mixing frequency.

The oscillating polarization will, in turn, radiate energy in the form of a traveling wave of

the same frequency. Consider Maxwell's equations in Gaussian units with the

displacement field

D = sE +41d5

where, in general,

linon-linear(Ff/t1= X(n)(G3n;°)1, Wrs-1)E(a)1)-1(a)n-1) es e
t'

The oscillating polarization which could be seen as a source wave. Note that this source

wave acts as if it were in a medium with effective index ?is defined as

I I

(7.1)

Suppose that the electric field created by this oscillating polarization is observed at

location (F, r). (Refer to Figure B.1.) Anticipating the use of Green's Theorem, the

displacement field at (F,t) can be written in terms of the displacement field at (Pc
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D(F,t)= f di: di G(F,t;1--' ,1)D(ir: ,1) (7.2)

The displacement field is used since there may be additional included polarization at (r, t);
its use simplifies bookkeeping. The Green's function must assume the form of a

spherically expanding wave beginning at (F.',/ such that

1 8(t' t IT
G(1: ,t;F' )=

p.,vIF 11 c I n(o o)
(7.3)

where Vµ a dyadic operator which resolves the components of the displacement field

when /3 _1 and ks are in different directions.

E(P',e) 7P'
P(r',e)

Figure B.1: A polarization and propagating
field at (F', t') and the displacement field
observed at (F, t).

Assumingg = 1, the media are not conductors, and ae =a to = 0, it follows that the wave

equation is a second order inhomogeneous differential equation as described by

VxVxE(F,0=--1L2a/3(F,0. (7.4)
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Here the expression B = gi-/- has been invoked. Using D = LE + 47tP, (7.4) becomes

0 x O x [b(f, t) 47t/5,_1inea, t)]. ,t). (7.5)
C

Equation (7.5) reduces to a Helmholtz-like equation with an inhomogeneous term:

b(f,t)+ 12)5(F, = 47CV P _li (F,t), (7.6)
C2

where the dyadic operator t has been identified as Vgy =VxVx 17 = V(V- 17 V217)

= Ev7 egev a ra a ro Vy A solution to (7.6) may by obtained by finding a general

solution to the homogeneous case and then adding to it a specific solution of the

inhomogeneous case. The homogeneous solutions are plane waves. The inhomogeneous

solution is found by considering

V G(Y=, ', t') + ,t;F' ,t1= 47t8(1-- 718 (t (7.7)

multiplying both sides through by dr: di G(F, t; r ,i )D(T: ), and integrating over dr'

and di . The result is a specific form for the Green's function (used to find the g-th

component of b(r) arising from the v-th component of b(F'))

G(F,F;;(0)= 8V-71 8 kI3

k
11

s

k

12; ,e

i[ii.(le-i°' ,[ (7.8)



and the solution to the inhomogeneous equation

47r 5/ FV,)a))\
ei(ko)F-t)

EINHOMO(F ,a) n r: _n2\ r ,a nn
lEs12

(7.9)
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The above expression is found by evaluating (7.2) with (7.8), realizing that D(F) = n2E(F)

+ 47r,P(F), but ii(F') = n2E(F') + 47tP(7'). The index of refraction ni is the true index of

the medium at F . Expression (7.9) is the one quoted by Bloembergen. One should note,

however, that the build up in amplitude of the propagating wave as it encounters

additional polarized media has been ignored. The final solution to the generated electric

field due to a nonlinear polarization is found by adding this particular solution (7.9) to the

homogeneous solution yielding:

-wt
Etotal = HOMO + EINHOMO TL'Te

) -col)
, (7.10)S8Se

where er must be determined by boundary conditions. The factor E ses can be simplified

by considering polarizations of the effective source wave.

As introduced in the main text, reflection geometry has two natural choices for the

polarization basis vectors. As in linear reflection, the electric field can be decomposed

into two directions, perpendicular (S) and parallel (P) to the plane of reflection. The plane

of reflection is defined by the plane containing both the reflected and transmitted rays.

Thus, the two polarizations can be decomposed:



and

i(iisfcost) lisfccy)
EINHOMO (F71) Skis,Se PGs,Pe

=LEINHOMOV e. S+[EINHOMO (f, O]PE P

The inhomogeneous fields with the two polarizations may be written

{ExHomo (F, t)L = es,sei(rc,.F-(0.,t)

[EINHOMO (F, 1.)]P
es,pe°5.7.'.(° St)

The induced fields are, therefore, defined by (refer to (7.9))

41r p(n) Es(Es13.4)(0)n:031,-..,(0,1))
Eses,s = 2 2 5 " nw 1, Mn-1) 2n, ns

ircsi

and

47C [5(n)/ (Es 15P1)(C13rt C°1,*,°)n-1))
= 2 2 z-P Pn:C131,,Wn-1/n, ns

ITC's'

2

(7.11)

(7.12)

(7.13)
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The susceptibility will be chosen to be scalar. This is done so that in the subsequent

analysis the medium-independent angular (0 and (1)) dependence and phase-matching

dependencies could be explored. In the case of S-polarization, there is no advantage to

considering ks. PP's) * 0. This is realized when considering a sheet of discrete radiating

dipoles. Suppose the oscillating dipole moments are lined up and are in the S-plane. The

dipole sheet radiation strength changes only with the cosine of the polar angle. There is

no additional physics to be investigated. Thus, there is no need to consider any other case

than Es 4,4) * 0. On the other hand, for P-polarization, Es Ppo # o is important to

consider. Returning to the oscillating dipole sheet interpretation, when the dipole

moments are in the P-plane, there can be no radiation in the direction of the induced

polarization. When the process is linear (the dipoles oscillate with the same frequency as

the applied fields), this conditionoccurs when the angle of reflection is Brewster's angle.

By analogy, when the process is nonlinear, this condition occurs at the nonlinear

Brewster's angle (NLBA). Thus, it is valuable to consider the angle (here called a) that

the source wavevector makes with the induced polarization. The induced polarization is

at an angle f3 with respect to the normal to the surface above. This situation is pictured in

Figure B.2.

n

NON-LINEAR
MEDIUM

Figure B.2: Angle definitions for the
nonlinear polarization, the source and
generated wavevectors, and generated
electric field.



With these cases in mind, the amplitudes, of the inhomogeneous waves for S and P are

and

115.4n) (°) tt:°) P '°)
s,es -47c

n2 n2t
(7.14)
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-
13n)(0:01 ,0 (e"n-n-0es -47 cos° sins + sine cosa 2 '

nt

(7.15)

where the angle a = it 8, is the angle between the polarization and the wavevector

I.e., Es Pif.n) o s a . The two terms in (7.15) are renderings of the vector

products described in the parentheses of (7.13). Notice that the expression for the

inhomogenous source amplitudes for S (7.14) and P (7.15) polarization are identical when

Os = 0 and polarization lies entirely in the plane of the surface (when = r.12, i.e., when a

= Os =

Note that in expressions (7.12) and (7.13), the local (Lorentz) field correction is not

included, contrary to Bloembergen's suggestion. The expressions for the reflected fields

including a bulk median are compared to Bloembergen's model (which does not include

such a layer). Comparisons are made only with Bloembergen's expressions that do not

contain the local field corrections.
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B.2 Explicitly Including the Phase-Mismatch Information Between Layers

The phase-mismatch information is paramount when comparing the phase-matched
surface signal with the (possibly) phase-mismatched bulk signal. The approximations
made in the Bloembergen model concerning phase-matched conditions are not appropriate
when the phase-mismatch is large. The phase-mismatch is measured by the phase-
mismatch parameter; it represents difference between the generated wavevector, , and
the effective 'source' wavevector, is. For instance, the argument (1:02 is referred to as the
surface wave phase-mismatch parameter. Similarly, the argument 42:03 is the bulk wave

phase-mismatch parameter. In simple situations, such as deep inside the bulk of a
nonlinear crystal, a phase-mismatch parameter appears in the generated wave's phase
factor as e-icb. As the wave progresses through the medium, it grows in intensity
depending on the (square) of this phase factor integrated over the path length; this is the
origin of the famous Sinc squared factor.

According to Bloembergen's theory, the integral over the region of overlap of the
applied fields (commonly called the interaction region) is not necessary since the limit over
d (the layer thickness) is taken. Taking this limit before performing the integration leaves
an expression that neglects much of the phase-matching behaviour, specifically the Sinc
behaviour of the field strength on the phase-mismatch parameter. It is unimportant in
Bloembergen's analysis as phase-mismatched processes are never considered. When the

phase-mismatch is large Bloembergen's expressions are inaccurate. If phase differences in
the bulk and surface waves are to be investigated, the integration over the interaction
volume (region) must be performed and must be an explicit part of the RISOM

expressions. Inclusion of the integration in the RISOM expression not only repairs
Bloembergen's result for the transmitted wave amplitudes (he neglects terms that are
second order in the phase-mismatch for these amplitudes), but introduces an avenue to
explore the phase-mismatch between surface and bulk waves.



Consider the strength of the total electric field in a nonlinear layer. At a particular

location, r, it is the sum of the generated, homogeneous field, EA., and the

inhomogeneous, source field E ses:

Etorai(f,t)= eTe,,rei(44-cot)
E-

.p-tx)
sese

Another way to write the total field is to consider the expression

Etotar(r, t) = Etoraletorale i(ET)

(7.16)

(7.17)
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The total field inside the nonlinear medium can be transformed into the form of a single

traveling wave, as in (7.17), by considering

Floral (F,t) = [-eT6r +EseseiRks-4).T lei(4-1-40t), (7.18)

where the amplitude and polarization, Etotaie,d, are given by the quantity in (7.18) inside

the large square brackets. As the (total) wave propagates through the medium, it

increases in field strength as r increases. The total field must begin with zero generated

field, and grow in intensity as the inhomogeneous field adds strength to the homogeneous

field. In a quantum mechanical sense, it refers to the stimulated emission of the field -- the

field experiences gain. If a coordinate system is chosen (see Figure B.3) such that the

wave propagates in the x-z-plane, r = [z / cos000].
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z - 0

Et

Figure B.3: Diagrammatic aid in determining
the phase-mismatch in a nonlinear layer.

At z = 0, the surface of the medium, there is no total generated field. To express the

coherent addition of the generated waves along the path r , the integral over the

inhomogeneous field must be taken. Thus, the strength of the total field a z-distance d

from the surface is the integral over the source wave from zero to (total distance) r = d I

cos Ot:

r

8tota/ (FM )= Idf" sesei(rs-4).7- a imt

0

With a change in variables of r' = r"- r / 2, the integral becomes

r/2

ei(4-k4f = dsincVcs -ET). Pr 21
r /2

and realizing that 1' = = reduces to
141

d i [(1- I ET) dsnc kr -COST 141 L COSU T].

(7.19)



The phase-mismatch parameter may be defined as

ill- i i 1- ) d
k 2 cos()T

The total generated field in a nonlinear layer of thickness d is

total(F ,t) = E. ses sec OT sinc cto e-i(1) el(47--col)

or ft,,,i(F,t).[ET8T+E ses (e T,c1)] e,

(7.20)

(7.21)
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where es(0 t,(1)) has been defined. From (7.21) the generated field grows in intensity

linearly with thickness as expected. It should be pointed out that when the phase-

mismatch goes to zero, the Sinc is equal to one, and the expression reduces to the result of

Bloembergen for small d.

B.3 Determining the Electric Fields in the Layered Structure

Success in separating or enhancing the surface- over the bulk-generated waves lies in

taking advantage of the geometry of the respective induced nonlinear polarizations. Recall

that the induced nonlinear polarization is dependent on the nonlinear susceptibility (of

surface or bulk regions) and the incident wave parameters. The incident wave parameters,

namely their wavevectors (directions and frequencies) and polarizations, depend explicitly

on the linear indices of refraction (and dispersions) of the media. In the model introduced

in the main text of Chapter 3, any successful 'experiment' will be one in which the ratio of

the surface-generated wave to the bulk median-generated wave amplitudes (as detected in

the cover region) is favourable. The layered structure (see Figure 3.14) models the
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structure of a surface, complete with bulk (including a nonlinear bulk median layer and a

semi-infinite linear bulk region), through which optical mixing occurs. In this structure

there are linear reflections governed by the linear Fresnel expressions and 'nonlinear

reflections' governed by the expressions (7.14) through (7.15) given above. These

expressions are also referred to as the nonlinear Fresnel expressions. Solutions can be
found separately for the surface-generated and bulk median-generated signals as viewed in
the cover region by imposing the boundary conditions on all the fields oscillating at the

generated frequency (refer to the center and right portions of Figure 3.14). For the
surface-generated wave, there are six unknown fields created from one known field. The

`known' field is the inhomogeneous wave which is dependent on the induced nonlinear

polarization. Assuming a known surface-induced nonlinear polarization, solutions for all

six fields, including the field in the cover region, can be found. Since there are two

polarizations for the wave in the cover region, there are two sets of solutions, one for S-

and one for P-polarization. The bulk-generated wave has similar solutions, obtained in the

same manner. This and the following sections are devoted to finding these solutions.

The approach is to treat the six homogeneous field amplitudes as a vector, and the

boundary conditions at each interface as a 6x6 matrix. The product of the homogeneous

boundary condition matrix with the homogeneous field amplitude vector must yield a

vector representing the satisfaction of the boundaryconditions for the inhomogeneous

waves. For instance, the homogeneous field amplitude vector for the surface region in S-

polarization is VHomasueaccs (see (7.22)). The homogeneous boundary condition matrix for
the surface region in S-polarization is MS ,s (see (7.24)). It is comprised of all the

possible boundary conditions for each field. For consistency, the boundary conditions

used in this matrix are

x EI and n x RI
2 at an interface z at
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which can be used for both polarization cases. The matrix product of VHOMOswface,s and

A Isurfaccs is the product of the inhomogeneous field boundary conditions vector

VINHomo,surface,s and the inhomogeneous field amplitude, e32,s, as defined by the nonlinear

Fresnel expression. Explicitly, for the example of the surfaceregion in S-polarization

wave, this matrix equation is M-surface,S .VHOMO,surface,S VPIHOMO,surface,Ses2,5 Similarly there

are matrix equations for the bulk S-polarization, surface P-polarization, and bulk P-

polarization waves. This section deals with the surface and bulk S-polarization waves; the

following section is concerned with the P-polarization waves. In each case, the

computation proceeds by explicitly calculating the elements of the homogeneous boundary

condition matrix and inhomogeneous field boundary conditions vector. With the

inhomogeneous field amplitude assumed known (it can be selected at a later time, when

the specific numerical analyses are done), the six unknown fields shown in Figure 3.14 can

be obtained. These six fields, being the elements of the homogeneous field amplitude

vector, are found by solving the matrix equation. Solutions to the matrix equation were

done by diagonalizing the inhomogeneous boundary condition matrix. This was done in

Mathematica (for Windows, V. 2.2). The Mathematica notebook containing the solutions

are reproduced in the enclosed CD-ROM; these notebooks are located in the NLB

(nonlinear bulk) directories under the s-wave or p-wave sub-directories and are named

nibl s.ma and nIbip.ma, respectively. The final results are reproduced in (7.43) through

(7.46) for S-waves and (7.58) through (7.61) for P-waves.

B.3.1 Determining the S-polarized Electric Fields in the Layered Structure

Let the homogeneous field amplitudes (those at the generated frequency) be given by

the vectors VHOMO,swface,S and VHOMO,bulk,S as indicated in Figure 3.14 and as described in

the main text. These vectors then appear as:



VHOMO,surface,S =(6r1,S

VHOMO,bulk,S eu3,S

et2,S

er3a,S

b,S eu2 ,S eu2b,S
\

civ2,5 ) (7.22)

er3b,S et2,S 8t3b,S 81,3,S) (7.23)
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(T is the transpose.) The equations that represent the satisfaction of the boundary

conditions for S-waves are formed by the product of VHomasurfixe,s (or VHOMO,bulk,S) with

the matrices Alsurface,s (or Mbwk,$). Since the permittivity, c, and permeability, µ, of the

bulk and surface are considered scalars, the matrices have the form:

mswface,S

M Indk,S =

x

x AIL

x z = d2

'Ix

nx &L.-4
x

r
x

X RM312.9

n x k3 Z=.-d2

?I X /4,31,__d2

x E
d3

X 11 u31,=_d3

x tn L
x L,

x 42.1,4
x 11,2.1z=_dz

x E/2 1,=_d3

Fix gg2.1z=-d,

x

x
x E,31_d2

x1-1,3.1,=_d2

nxE,3.(z--d,

x Firdz_d3

xEr2b

?IX ff t2.L

x Er2,1,.-d2

/1 x /424_4

it x 42,1,=_d,

1,=_,/,

rix E,a.L ri x rixE,2L
x14,2.L x 14,2.L3

x E.2.14 n x Erb iixE,2L4
;ix /4,2.1,__d2 rix /4,2blz_d2 n x ii,21z=_d2

x ?I x /1 x Es,214

x /4,2.14 x/4,2.1z_4 x 114_413

x ?ix A3L ri x E t3bL

nX.1-1 r3blz n X 17 1,3L n X 11 t3bL

ri x E,3bLa2 X Et3.1z_a2 ri x E,3.z_d2

nx/43b( x /431_4 x /43.14
ri x Ei3b x Etna x Er3.I._4

x 11,3.14 x /43.1,4 x /43.1,4

(7.24)

X E v3 z=:1

X f: v3L
n X Ey31r=_d2

n X fiv3Ld2

n X E,31,d3

n X 171,31,a3
is

(7.25)
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For continuity of tangential E and H (recall = 0 for S-polarization), these products

must be equal to a vector containing the inhomogeneous fields, VATHomo,s;

,T
VINHomas = nx Es2 x 17,21, ?Ix Es21 n X gs21,--d2 x

x 11,21-o s=-42 s

(7.26)

Here ta represents the electric field induced by the nonlinear polarization and similarly

for fis2.

In the expressions for the reflected fields, the following definitions will be made:

sin00 F-- n nu2d3cose .2,

ans2d2cos0 s2,

A
Sind v2

(1)
nv2 (d2 d3 )cose

sink E---(2--)nnad2cose ,2,

(7.27)

(7.28)

(7.29)

(7.30)

4)2
(I..

nilik-i42)
1-C.

kn,t2

d2
.15 -(En'a(

kik."2lEkn:221 2 cosd2e /2j ( )n52 Ircn,t21 2 COS° t2

(7.31)



(t) nsin u3 nod2cose ,

co
sin4)s3 ns3d3coses3,

sin v3 --(1) n ny3(d2 + d3)cose

sin4) s u) nad3cos8 ,

and
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(7.32)

(7.33)

(7.34)

(7.35)

n-1 En 13 d3 )( 7: r Ena3 d3= (Is,n,t3 xn .3)03 a --(En,t3 1 kt,13 ,-- n 1141

". lk n4312 COS° 13i=1 licn,t3 I 4 COSu g3

(7.36)

Realizing that Er1 = E rieriejiri.I for harmonic field Er' 00. ) and similarly for all the

other fields, the matrices can be written:

-1 1 1 0 0 0
+n,lcose ,a +Nacos° ,2 Nacos° a 0 0 0

0 e44 144 1 1 0
m swface.S =

0 Nacose a"' +Nacos() ae-44 +Nacos° ,a nacose 2 0
0 0 0 eli'a e-(0.2

1

0 0 0 Nacos() .2e4`2 +Nacos E )4144' +Nacos() 4

(7.37)



'NevusMb =

1
+nocos0,,3

0

0

0

0

1

n,3cos0,3e4"
1

+n,,cos0,3

0

0

1

+n,3cos0,3e-44'

1
n,3cos0,3

0

0

o

0

1

+n,3cos0,3
_ei+,,

n,3cos0e4"

o

0

1

n,3cos0,3
_end

i-n,3cos0,3e6.'s

a \

0

0

0

1

+n3cos0,3 ,,

and the inhomogeneous field vectors are found to be:

VD1HOMO.Swface.S = 1

0

nacos() ,2

0

(7.38)

n4cos0.,2e42 0 0

(7.39)

x7'
1 nacos°, nacos() ae"'" )

(7.40)

Thus, to solve for the reflected and transmitted fields, solutions to the matrix equations

Msupface,S VHOMO,surface,S = V1NHOMO,surface,Ses2,S

and

Mbullc,S VHOMO,bulk,S = VINHOMO,bulic,Ses3S

(7.41)

(7.42)

must be found. Solutions to these equations are found by diagonalizing the composite

matrices. The solutions for the S-polarization surface reflected field,eru , and bulk
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)T,



reflected field, eu3,s, are found on the following pages;

1erl,S -= Dr1,Ses2,S

with

Drys =

s2
nu2cose u2 COS u2 COS4) s2 - COS4) t2 )

nv2 cose ,2

n 2
+n22 cos2e u2sin4)u2 sin. s2 -I- COS() s2 sea t2sin4) t2

nt2

+n,2cose v2sin(1) v2(n.acos0 s2sin4) s2 nacos0 t2sincl) a)

a
+i nu2cose u2 cos4 2sin4),2

nv2 case v2

i nu2cos0 u2 cos4)u2sinC2

4 nacos° t2 .
X ns2 n-v2

COS() s2COSO v2 sec e t2
\., nt2

i nu2cos0 u2 sin 4) u2(COSO a COS t2 )

(X rtv2COS9 v2 ns2nv2
COS()s2 COS() v2 sec°

nt2

nu2cose u2cos4) u2(nr1cose ti cos0 a + nv2 cos° v2cos4 t2)

in v2COSO 12COSe v2"t n2 1

_ 2,,
''rl"u2 2

COSO ri C O S 0 u2 sec 0 12
\ n12

i nu2cos0 u2
+nu2cose u2sin4) u2 COS4) a

a COSO u2sin0t2

i nnnv2cose ri cose v2

u2

t \
nut cos() u2 sec° ,2 cos 4) u2sin012
nt2

c-cos (1) t2sin0 u2

(7.43)

(7.44)
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s3nt3
cos() ,3 sec 0 ,.3cos4)3 (cos:1)3 COs t3 )nr3 nv3cose ,3

t

6.3,s = Dukses3,s

with

D u3,s =

t3
+t
n

cose t3 sec 0 r3co.s4 ,3
nr3

nt3cos0 :3
nv3cose ,3 j

s3 '

nt3cose ,t3 sin 4),3

nv3cos0 v3 sinC3
nt3cos0 i3sin4) t3

nt 3 nv3
+ COSe s3COSO y3

nt3

X sea i3sin4),3\

"cos. t3 sin4) r3

n ---COS° 13 sin C3 sec° ,3 cos4) r3nr3

n.,n,3
i cos° .3 COS° v3 sece r3 sin (I) a

nr3

(7.45)

(7.46)

268



269

B.4 Determining the P-polarized Electric Fields in the Layered Structure

Let the homogeneous field amplitudes (those at the generated frequency) be given by

the vectors vHomasul-acej, and VHOMO,bulk,P as indicated in Figure 3.14. These vectors then

appear as:

vHOMO,surface,P er1,P

VHOMO,bulk,P = (eu3,P er3,P

b,P eu2a,p eu2b,P

er3b,P et2,P et3b,P

IT
ev2,P )

IT
ev3,P )

(7.47)

(7.48)

Recalling that for P-waves 71 B = 0. The equations that satisfy the boundary conditions

for P-waves are formed by the product of VHomo,swfwe,p (or VHomo.buikx) with the matrices

Ai...face" (or Mbdkp) These have the form:

Mswface,P =

Mbatk,P

nx -

x

n x golz._d2

11 x Hii3

flxE

x

fix Et2.1z,)

x Ti

fi x 42. Ld2

n x 171,2.1,d,

it x

x hit2a L-d,

?IX Er3.1z_0

11 X ri3alz

X E r3.1,=_dz

x 11,31_4

x Er3.1:13

X 11,3.1z....4

x E"bL
x R r3bL)

x

nxllrib

nxE r3bLd3

ñ x Fir3b Ld3

X Et3L
PI X ri t3L

n x E

x oaLa.
x Et3.1,,3

it x Rt3. lz__d3

ri x -gab

x Er2
blz=-61.2

n x bLd2
x

x
t21, lz=d3

x tab L

x 113b1:1
?I X Poblr__d2

X ri t3b Ld2

X EabLd3

ti X flabLd3

\
n X Ev21:1

x

fix2v2lr-d2

fix 17 ,214

fix L',21,=_,,

fix Hv2l
z

(7.49)

x v3L
11 x

x EALd2

rix v3L4
x E v3La,

x Hv3 Ld3

(7.50)
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These products must be equal to a vector containing the inhomogeneous fields, Vfiv Homas

This vector appears as

,TV INHOMO,P =( x Es2L0 x 11,21z.0 x Es21 x 17,21,4 n x E,21,13 x 171,21,d3)P

(7.51)

Here Est represents the electric field induced by the nonlinear polarization and similarly
for it2.

Realizing that tr1 = Erlerielirvi for harmonic field fri ((An) and similarly for all the
other fields, the matrices can be written:

msurface.P

M, =

cos@ a cos@ a cos@ a 0 0 0
n pl. na nr2 0 0 0

0 cose a e41 cos@ al-4a cos@ a cose ,a 0
0 _nr2e4a _nr2,-4,2

nia nia 0
0 0 0 cos 1 3 ae44 cos@ ,ae-44 cos@

nv206k2 nioe nv2
0 0 0 -*a

i \cosh .3 cos@ sae* cos@ ,se-4" 0 0 0
Pio n,3e4" nae-i." 0 0 0

0 cos6,3 cos0r3 cos03 cos0,3 0
0 n,3 nr3 na na 0
0 0 0 cos@ ae46 cosi i 1,se-4° cos@ ,,3
0 0 0 nt3e*,3 nne-461/4

nr3 i '

and the inhomogeneous field vectors are found to be:

VINHOMO.Ssofacef =( (43D eoes'a ese4' 0 0 )7

VINHOMO.bodt,p
en e8 6oei eBeielr

(7.52)

(7.53)

(7.54)

(7.55)



Thus, to solve for the reflected and transmitted fields, solutions to the matrix equations

Msurface,P 'VHOMO,surface,P = VINHOMO,surface,Pes2,P

and

M bulk,P V HOMO,bulk,P = VINHOMO,bu1k,Pes3,P

(7.56)

(7.57)

must be found. Solutions to these equations are found by diagonalizing the composite

matrices. The solutions are given on the next pages;

nu2cose .2costh u2

(en em)sinC2
cost) t2

(L'B2 8D2sinth s2jsinth t2
nt2

nos 20 u2Sir14 ,2 [EB2 (sin4s2 COS t2

eri,p = D;1x8,2" +n,i22sinth .2[8D2 (COS (I)s2 COS$r2)J

nu2COS8 u2COS4) u2 ReB2 8D2 D2 1(COS s2 COS i2 A

i COS 20 u2Sin0 ,2 [- 8 s inthB2- , s2 8D2 secOas1nep,21

+i nu2sm4) u2 8 sinthD2 T s2 L'B2
4-, COS() t 2

sino
2

nt2

with

(7.58)
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Drix =

tz.2cos0 ri (nacos() u2cossOu2 sec() t2sin4 t2 + nu2siru¢.2coato t2 )

nrInu2 cos() acos0 .2cos4).2sinC2
nt2

+nyicos20 u2sim0 .2 COS012

+i nu2cos8 .2 (nri + cos() r1)cos4 ).2cos4)12

2nrin.2
cos0 12sins0 n$t2

nt2

nt2cos9 1cos20 u2 sec° t2Sir4 u2sin. 2

4
r

------Lcoskoor3

+ 83 r t,
LCOSv t3

B

2

013 ) COS(20 t3 0(3 ) 2COS0t31

) COS(0 t3 (I) )]

eu3 Di-ap s3j, +11y- (8B3 e D3iCOS t3 ot3) cos(013 + 0,31

with

=

(eB3 6,931sin(0 13 013 sin(e t3 +Oa)]2
i
-2 ensLsin(e t3 013 ) sin(9 t3 013 243 sin4t31

(nu3 COSO t3 COSC.3 COSC3

n..2 (COSO t3 nt3)
cos° ,3 sin (114 ,.3 sin, 13

nr3

n13 COO u3 cos0,3 sinC3

nr3 cos0 .3 cos° a cos O3 sec0,3sin.,3)(COS° t3 na

(7.59)

(7.60)

(7.61)
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ern = cosa s2 sin a,

(2
2

42 = '2 ns2 sine s2 cosa,
nr22

43 = cosa s3 sin a, and

(2
2

8B3 = "13 2 s3 sine s3 cosa.
nt3

B.5 Connections to Bloembergen's Results

(7.62)
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It is important to note that if the bulk median layer is removed from this model

structure, it is reduced to Bloembergen's model. Hence, if this layer is removed from

these derivations, the expressions found here should reduce to those quoted by
Bloembergen. To explicitly remove the bulk median layer, the rows in VHomo,swface,s

which contain 8.2.$ and eiabs are eliminated. Also VHomabidic,s is set to zero (there is no
longer a bulk median layer for a generated signal to arise in). This argument was made
explicitly for S-polarizations, but can also be made for P-polarizations. The solutions to
the resulting matrix equations (both for S and P) indeed reproduce Bloembergen's work.
To make direct comparisons with Bloembergen's notation, the following subscripts
change: rl --> r, t2-3 m, s2--4 s, and v3-, t. Also the substitution, On ---> n.1c d cos 0,,,

must be made.

Likewise, looking at the solutions to the reflected (surface) field amplitude, eru,

Bloembergen's result is returned if n3 -> n4 -> n r43-4 0, n4-> nt and Oa -p n,lc d cos
O.-4 O.. These substitutions have the affect of removing the bulk median layer by letting
the index of refraction revert to that of the semi- infinite bulk and removing the phase-
(mis)matching information. Equivalently, setting d3 = d2 returns Bloembergen's
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expression for the reflected field. Each of these tests of removing the bulk median layer
and getting back Bloembergen's expressions lends credence to the expressions derived
here.

B.6 Summary of the Field Expressions for the Macroscopic RISOM Model

The solutions presented here are quite general. Bloembergen, in his model,
approximated the thickness of the surface region as small compared with the generated
wavelength. This approximation is not done here. Moreover, the exact phase-matching

expression is retained. The solutions to the field expressions for this macroscopic RISOM
model were found without exact knowledge of the induced nonlinear polarization. Hence,
the solutions obtained are independent of the OM process (the order of the nonlinear
polarization) and are general with respect to the incident wave parameters. Hence, the
reflection coefficients, (7.43) through (7.46) and (7.58) through (7.61), for surface and
bulk were derived for general optical mixing. This was done by defining a generalized
effective source wavevector and source index of refraction (7.1) which are due to the
incident fields (and linear properties of the media). From the equations for general mixing,
a simple substitution can be made to predict RISOM for specific processes such as CARS-
like FWM (four-wave mixing), SHG (second harmonic generation), and TWM (three-
wave mixing).

An important separation of the various dependencies on angle and phase-mismatch can
made. For instance, consider an S-wave generated in the surface layer. The amplitude of
this field observed in the vacuum has the form

6observed,S = erl,S = 6BC2,Ses,S(e t2,41)2)

(---47Cli51)sece
12 sinc e-i41= eec2,s n2 n2

s
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where 6BC2,S = 41,S / 8.125 (see (7 43)). This form clearly shows that all the polarization

dependence is in 8Bc25 (recalling ifs) is taken to be equal to 'Psi). The sec 0 a
dependence is in addition to the angular dependence in 8Bc25. The dependence of the

observed field strength on mismatch shows up in 6Bc25, is modified by sinc 02, but
11shows its strongest dependence on (nr2 ns2 .




