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This thesis presents a method for determining the

kinematic geometry of arthropod legs. A kinematic

description makes possible the analysis of arthropod leg

motion, as a prelude to investigating how various arthropod

species are able to negotiate diverse terrains. Such

knowledge will aid in design of legged vehicles.

The focus is on three areas: leg modeling, leg measure-

ment for model-parameter determination, and effects of

model-parameter accuracy. Three characteristics are

considered important to arthropod leg modeling. The model

must show proportionality to differences in leg geometry,

physically resemble the leg being modeled and be adaptable



to various joint types found in arthropods. In successfully

addressing all these concerns, the model presented in this

work is an improvement over other available models.

Measuring the small arthropod leg requires specialized

equipment design and measurement technique. A microscope

mounted over a positioner which measures three translations

and two rotations makes it possible to determine position,

orientation and range-of-motion of each successive joint.

Model parameters are calculated from these measurements.

Measurement errors in positioning equipment are

quantified. A technique for representing these measurement

errors as errors in the position and orientation of each

joint axis is presented. Joint axis errors are superposed

to form an error volume surrounding the foot position.

Foot-position error can be used to evaluate accuracy of leg-

model parameters computed from the measurement method.

This technique was used to measure the right middle leg

of a darkling beetle and proved to be an effective tool for

quantifying kinematic parameters of a small articulated

biological mechanism. Such methods may also prove useful

for measuring small engineering mechanisms.
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KINEMATICS OF ARTHROPOD LEGS: MODELING AND MEASUREMENT

1. INTRODUCTION

This research into the kinematics of arthropod legs was

born out of current interest in legged vehicles. Legged

vehicles or walking machines have the potential advantage

over wheeled or tracked vehicles of being able to travel in

difficult terrains. Their capabilities in climbing steep

inclines, maneuvering around obstacles or traversing narrow

beams could be useful in environments hazardous to humans

such as areas where toxic chemical or radioactive material

are present. Other suggested uses are for maintenance of

space stations or underwater structures.

Walking machines presently built are only able to move

on smooth, nearly horizontal surfaces with few obstacles. A

review of these machines was given by Song and Waldron

(1989). They note three areas which are crucial to

development of a practical walking machine: "control of

legged vehicles, gait study and actuation, and leg design."

Leg design is becoming more sophisticated but it's

complexity is still limited by current control technology so

movement in difficult terrains is not yet possible. As

control capabilities advance and allow greater control

sophistication, mobility of legged vehicles will increase.

In preparation for control advances, studies of various leg

characteristics necessary for specific movements or motion
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of a walking machine is timely.

Design ideas for man-made locomotion, whether it be

aerial or terrestrial, have often come from nature.

Arthropods, having the ability to travel in extremely

diverse environments, provide an excellent opportunity to

investigate successful leg design. These animals have an

external skeletal structure and relatively simple joints

which allow a practical study of their leg geometries and

movements.

Several biologists over the years have researched the

walking characteristics of arthropods. Most of their

attention has been focused on gaits or on muscle and neural

control (Fichter, Fichter and Albright, 1987). Until now,

no attempt has been made to describe the entire arthropod

leg as a force-transmitting mechanism. Without knowledge of

the kinematic structure of the leg, it is difficult to

investigate why arthropod legs perform so well under such

varied environmental conditions.

Presented in this thesis is a method for quantifying

the kinematic geometry of arthropod legs. Attention is

given first to development of a mathematical model which

provides both a kinematic and physical description of the

leg. This is followed by presentation of the method and

instrumentation used to determine model parameters. Errors

in the measuring equipment pertinent to accurate model-

parameter determination are then discussed and quantified.
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Finally, measurement errors are represented as dimensional

errors in each joint axis of the leg and translated to foot

position errors, allowing evaluation of the effect of

measurement errors on predicted foot position.

Work in this thesis closely relates to research in

robot calibration and positioning accuracy. The objective

of robot calibration is to measure and model true character-

istics of a robot arm in order to improve its positioning

accuracy. Errors in positioning generally arise from three

sources: dimensional errors, variations between the actual

and modeled dimensional relationships of successive joint

axes; dynamic errors, deviations due to elastic deflections

of links; and joint servo errors, errors in positioning the

joints of an arm.

Of the three error sources, robot calibration is used

to reduce dimensional errors through measurement of the arm.

This has required researchers to develop kinematic models

whose parameters are measurable. Since many calibration

procedures use numerical techniques to determine model

parameters from arm measurements, changes in model

parameters must be continuous or change proportionately with

slight changes in robot geometry. Several models have been

developed which successfully address this problem but often

bear no resemblance to the physical appearance of the arm

being described. For arthropod legs, it is not only

necessary for parameters of a kinematic model to be
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measurable but the model must also provide a way to compare

legs of different arthropod species or different legs on the

same animal. Hence, two important characteristics of

arthropod leg models are proportionality and physical

resemblance.

A third characteristic not commonly addressed in robot

modeling but potentially important to arthropod modeling is

adaptability to varying joint types. Most robot links are

connected by revolute or prismatic joints and so models have

been limited to these two types. Although the predominate

joint in arthropods is a revolute, many two and three

degree-of-freedom joints do exist. The model described in

chapter two of this thesis was developed to address all

three of the above concerns.

The accuracy of model parameters relies on the

measuring method used in determining them. Measurement for

robot calibration, purposes has been approached in two ways.

The most common is to measure the hand or wrist of a robot

in several different positions then numerically determine

model parameters which would allow these positions. A more

recent approach is to measure the position and orientation

of each joint axis individually starting with the joint near

the base, fixing its position then measuring the next joint.

This technique results in a description of successive joint

axis geometries from which many models can be determined

analytically. This technique also allows individual
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examination of joint motion and leaves flexibility in choice

of joint models. The leg measurement method described in

chapter three is based on the idea of individual joint

measurement. Design of the equipment and techniques used

required special consideration of the small size of

arthropod legs.

The values of the model parameters determined from

measurement of a leg are only as good as the apparatus used

for measuring. In chapter four, examination and calibration

of the apparatus is discussed. Errors which affect the

model were quantified so they could be later used to

evaluate accuracy of model parameters.

An important difference between robot arms and

arthropod legs is in the ability to remotely control a

robot. This allows researchers to test their calibration

methods directly. Not having this advantage with arthropod

legs, accuracy of the model-parameter values were evaluated

using knowledge of the measurement device accuracy. In

chapter five, measurement errors of a joint axis are

represented as dimensional errors in position and

orientation of link model coordinate frames. These errors

are then translated to foot position error. Since

dimensional errors are defined by a range of values, foot

position error is described as an error volume surrounding

the foot. It is this volume that can be used to evaluate

the effect of errors in model parameters.
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Methods presented in this thesis make it possible to

describe the kinematic geometry of arthropod legs and

therefore provide opportunities for various other studies.

For instance, leg movements can be simulated to investigate

options various arthropods have for mobility. Geometrical

differences between legs of an individual specimen can be

evaluated in terms of their functional use. It is

anticipated that these and other studies will reveal con-

cepts usable in leg designs of future walking machines.

Results herein are not limited to the study of

arthropods. A natural extension of the leg measurement

technique is to use it for describing small mechanical

mechanisms. The error analysis method of chapter 5 offers a

way to investigate the effects dimensional errors have on

positioning precision of mechanical manipulators. All such

investigations begin with the development of an appropriate

model which is the subject of the next chapter.
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2. LEG MODELING

2.1. Overview

Arthropod legs consist of 4 to 8 segments and are

usually connected by hinge or revolute joints (Fichter and

Fichter, 1988). Each joint is typically made up of two ball

and socket joints with a single axis of rotation running

through their centers. Manton (1973, 1977) described these

as pivot joints. Although joints with more degrees of

freedom exist, they do not occur often in arthropods because

they require more controlling musculature (Manton, 1958).

To analyze position, motion and force capabilities of

these legs, a model must be developed that will mathe-

matically describe their kinematic structure. This model

needs to accurately represent the motion in each joint and

the geometric relationship between successive joint axes.

Models of this nature have been used extensively in

analysis of mechanical mechanisms. Their mathematical form

is typically a series of transformation matrices, one matrix

for each mechanical link. Individual matrices define

rotations and translations that transform a joint-axis

coordinate frame to its succeeding joint-axis frame. Models

from which these transformations are formulated vary but all

give a direct relationship between displacement in the

joints and position of the mechanism.

Control or prediction of position and motion of a
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mechanism is a common use of a kinematic model, although

using models for such purposes is difficult to do

accurately. The issue of accurate modeling has received

much attention in robotics. For robot mechanisms, errors

generally arise from three sources: dimensional errors,

which are variations between the actual and modeled

dimensional relationships; dynamic errors, which are

deviations due to elastic deflections of links; and joint

servo errors, defined as errors in positioning the joints of

an arm. These errors can be reduced by various calibration

and compensation techniques which improve model accuracy.

Of the model improvement techniques, those directed

toward increasing dimensional accuracy are the most useful

at this stage in the modeling of arthropod legs for the

following reasons. Compensation for joint servo errors is

useful for control of mechanical mechanisms but has little

significance for a biological mechanism for which automatic

control is not an issue. Elastic deformations certainly

occur in anatomical legs, but until leg geometry can be

accurately described, these deflections are of secondary

importance.

Improving dimensional accuracy of a robot kinematic

model is ordinarily accomplished by a procedure called robot

calibration. Robot calibration closely relates to leg

modeling in this case because the objective of each is to

obtain an accurate kinematic description of a mechanism
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through measurement. The calibration techniques proposed by

researchers involve a variety of kinematic models. From a

knowledge of the mechanical models used, a model appropriate

for analyzing arthropod legs was developed. Described in

this chapter are the criteria for modeling arthropod legs,

prior work done in robot modeling for calibration and the

resulting arthropod leg model.

2.2 Model Criteria

The leg model will be used in motion studies and as a

comparative tool for a wide variety of arthropods. Each leg

studied is likely to produce different motions and display

different features. Reasons for these differences may be

evaluated in terms of variations in leg model parameters.

For instance, if a physical feature of a leg is important

for a particular motion, then it is important that the model

reflect that feature so the feature can be compared to those

in other legs. Therefore, in order to make clear

comparisons, kinematic parameters must resemble physical

characteristics of the leg. These characteristics are

segment length and relative orientations of a leg segment's

joint axes. It should be noted that the physical

resemblance criterion in kinematic models is not necessary

to describe motion of a mechanism. This criterion is only

important in providing a clear physical description.

Additionally, if kinematic parameters are to be used as
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a comparison tool then small differences in leg geometry

should be proportionately reflected in the model parameters.

Without proportionality, small differences in the physical

features of a leg could cause large changes in model

parameters and comparisons would be difficult to make.

A final consideration is the adaptability of a leg

model to a variety of arthropod leg joints. Although

revolute joints are most common in arthropods, some appear

to have more degrees-of-freedom (DOF) such as the two and

three DOF joints sometimes found at leg extremes (Fichter

and Fichter, 1988). For this reason the arthropod leg model

should have the flexibility to model other joint types.

In summary, the model representing an arthropod leg

should have three characteristics:

1. It should resemble the physical properties of the

leg.

2. Its parameters should change proportionately to

changes in leg geometry.

3. It should be adaptable to other less common joint

types likely to exist in some arthropods.

Criteria important to calibrating mechanical mechanisms

are similar in some respects to those mentioned above. For

that reason, a review of robot calibration and modeling

follows.
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2.3. Model Review

Most models used in robot calibration are based on one

introduced by Denavit and Hartenberg (1955). In general,

six model parameters are required to describe the

orientation and position relationships between successive

coordinate frames. However, two coordinate frame

constraints used in the Denavit-Hartenberg model (D-H model)

reduce this number to four (Figure 2.1). The first

constraint positions the origin of frame i at the

intersection of joint axis i+1 and the common perpendicular

between joint axes i and i+1. The second constraint

requires that coordinate xi be parallel to the common

perpendicular, ai. The four parameters of the D-H model are

joint displacement 9i, joint-offset di, link-length ai and

link -twist a;. The transformation from frame i-1 to frame i

for the D-H model is as follows.

1. rotate about z by ei so x is parallel to the

succeeding common perpendicular.

2. translate along z by di to the intersection of joint

axis i and the common perpendicular.

3. translate along x by ai to the intersection of joint

axis i+1 and the common perpendicular.

4. rotate about x by ai so z is coincident with joint

axis i+1.

The two constraints of the D-H model described above

create calibration difficulties when consecutive joint axes
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joint i

Figure 2.1. Denavit-Hartenberg four-parameter model.
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are nearly parallel. Under these conditions the kinematic

parameters of the model do not vary proportionately with

variations in joint axis alignment. When consecutive joints

are parallel, the common perpendicular has an infinite

number of possible positions. If joint axis i+1, originally

parallel to joint axis i, is rotated slightly about

coordinate yi, the values of three of the four parameters

change radically (Figure 2.2). The joint-offset di becomes

extremely large, the link-length becomes zero and the

orientation of xi shifts 900. Since many of the robot

calibration procedures rely on numerical determination of

parameters, convergence problems occur when parameter values

do not change proportionately with small changes in link

geometry.

This problem has prompted many researchers to modify

the D-H model to avoid proportionality problems and make

robot calibration possible. Hayati (1983), and Judd and

Knasinski (1987) presented an alternative for finding the

geometric errors in the nominal D-H model of a robot. When

consecutive joint axes were parallel or nearly parallel they

added a final rotation about y to avoid proportionality

difficulties (Figure 2.3). Their model was formulated as

follows.

1. The intersection of joint axis i+1 with the xyi.i

plane is the origin of the ith coordinate system.

Frame i-1 is then moved to frame i.



joint 1-1

I

di

Zi .1
rotation about If;

joint i

joint 1+1'

i

ai=o

,

joint 1+1

14

Figure 2.2. Parallel and nearly parallel joint axes in D-H
model.
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joint i

zi-1

al

joint i +1

/

Figure 2.3. Four-parameter model used by Hayati, and
Judd and Knasinski.
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2. rotate about z by ei so x passes through joint

axis i+1.

3. translate along x by ai to origin of frame i.

4. rotate about x by a1 so zi lies in the plane xz.

5. rotate about y by fli so z is coincident with zi.

For revolute joints their modified model eliminated the

need for a joint-offset and so still required only four

parameters. Judd and Knasinski suggest that with this

modified model "...direct physical interpretation can be

attached to the parameters found." This is only true for

robot arms whose joints are nearly parallel. Hayati points

out that this model breaks down when consecutive joint axes

are perpendicular or nearly perpendicular. In the

perpendicular configuration the origin of frame i can not be

determined because joint axis 1+1 does not intersect the

xyi.1 plane.

Hsu and Everett (1985), and Veitschegger and Wu (1987)

use a model similar to the one described above but retain

the offset of the D-H model which solves the problem

addressed by Hayati. Using the offset parameter they are

able to translate frame i-1 along z so the origin of frame i

lies in plane They then used their model for all axis

configurations.

Another approach is to determine errors in the nominal

D-H model parameters. Ibarra and Perreira (1986) used the

difference between the measured pose and the predicted pose
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of a robot to determine D-H error parameters. Vaishnav and

Magrab (1987) suggested determining 9 errors for each

coordinate frame on a joint axis. These errors identified

the skewness of a frame's coordinate axes and the distances

between them assuming they do not intersect. The model of

Mooring and Tang (1984) involves a "displacement matrix"

transformation from the nominal joint axis to the actual.

Their calibration procedure involved determining the

elements of this matrix which reflected the misalignment of

a joint axis.

Whitney, Lozinski and Rouke (1984) avoided the

proportionality problem by not adhering to the D-H model.

Consecutive coordinate frames were related to one another by

six parameters, three orthogonal translations and three

Euler angles. They define the coordinate systems attached

to each joint axis as having the y coordinate along the axis

and the x coordinate along the arm.

Sheth and Uicker (1971) modified the D-H model for

reasons other than calibration. However, their model is

worth mentioning here because its attributes have been used

by other researchers for robot calibration purposes. They

noted the D-H model was limited to use with lower pairs and

had restrictive link notation because it relied on the

geometry of the previous link. Two corrective actions were

taken. First, three parameters were added to a modified D-H

notation so the geometric description or "shape" of the
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rigid link did not depend on that of the previous link

(Figure 2.4). The common perpendicular was still used but

the location of the coordinate frame's origin and the

orientation of its x axis became arbitrary. Second, they

separated notation into two parts, one consisting of

constant parameters and the other representing variables of

the joint or "pair".

Constant parameters were used to form a "shape matrix",

T, defining link geometry independent of adjacent links;

variable parameters, describing joint motion, appeared in a

separate "pair matrix", I. Formulation of their shape

matrix using link H of Figure 2.4 was as follows.

1. translate frame uvwj along wj by cjk to the

intersection of axis wi and the common perpendicular of

axes wj and zk.

2. rotate about w by YA so u is parallel to the common

perpendicular.

3. translate along u by aJk to the intersection of axis

zk and the common perpendicular.

4. rotate about u by aik so w is parallel to axis zk.

5. rotate about w by Pik so u is parallel to axis xk.

6. translate along w by bik to the origin of frame xyzk.

Since the T matrix defined two arbitrarily oriented

coordinate systems, it could be used to formulate pair

matrices. Sheth and Uicker demonstrated this formulation

with the six common lower pairs: revolute, prismatic,
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Figure 2.4. Sheth and Uicker six parameter Shape model and
single Pair model (Sheth and Uicker's Fig.2).
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cylindrical, screw, spherical and planar. They used a gear

pair to exemplify higher pairs.

Stone (1987) used a "signature" model (referred to

herein as the S-model) for robot calibration which closely

resembled Sheth and Uicker's shape matrix model with one

exception. The first fixed rotation parameter of the shape

matrix model becomes a joint variable in the S-model. The

S-model has similar proportionality characteristics to those

of the D-H model because it also uses the common

perpendicular of two consecutive joint axes. Stone avoided

calibration difficulties of this by measuring the position

and orientation of each joint frame individually with

respect to a world coordinate system. These data were then

used to develop a transformation matrix for each link.

Since the S-model, like the Sheth and Uicker model, defined

two arbitrarily oriented coordinate systems, its parameters

could be extracted from the measured link matrices. Hemami

(1989), in a review of Stone's book, saw the strength of the

S-model in its ability to arbitrarily select the position of

a joint frame. This allowed the origin to be selected on

the link so its coordinates could be measured directly.

The model which Chen and Chao (1986) used for robot

calibration resembled the Sheth and Uicker model in that

they used separate transformation matrices for the fixed

(shape) and variable (pair) model parameters. One

transformation characterized the nominal design of the robot
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and the errors between the nominal and actual robot. The

other characterized the joint rotation. The separate pair

matrix and shape matrix was also used by Broderick and Cipra

(1988). In their calibration technique they developed a

shape matrix for each of n links of a manipulator using n+1

measurements of the end-effector. Their shape matrix was

not made of specific parameters such as that of Sheth and

Uicker but simply provided a geometric relationship between

consecutive joint coordinate frames.

With so many different models used for robot

calibration some researchers have developed model evaluation

criteria. Everett, Driels and Mooring (1987) argue that

models using lower kinematic pairs (e.g. revolute or

prismatic joints) should possess three properties:

completeness, equivalence and proportionality. For

completeness "...the model must contain a sufficient number

of parameters to completely specify the motion of the robot

under study." Also "...the model must contain a sufficient

number of independent coefficients to express any possible

variation in the kinematic structure of the robot."

Equivalence was described as "...the ability to establish a

relationship between the functional form of the model and

that of any other acceptable model." The concept of

proportionality has been discussed above.

Ziegert and Datseris (1988) looked at several

considerations in kinematic modeling for robot calibration.
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They observed that "...there is no advantage to systems

which determine a unique frame location..." to describe the

location of the end effector. They also pointed out that

geometric parameters for any kinematic model can be

determined if the global location of the joint axes are

known. This leads to their conclusion that the calibration

should involve the global determination of the joint axes.

This review does not cover all existing models used for

robot calibration but does cover the major concerns for

correcting dimensional errors. In developing a model

appropriate for arthropod legs, recognition should be given

to three differences that exist between legs and mechanical

manipulators. First, nominal design parameters of

manipulators are known prior to their calibration while

nothing is known of the kinematic geometry of arthropod

legs. This excludes using a model in which error parameters

are determined. Second, the joint axes of most mechanical

manipulators are nearly parallel or perpendicular to one

another while the joint axes of arthropod legs are typically

skew. When joint axes of a mechanism are skew, the

descriptive parameters of many of the models mentioned above

would bear little physical resemblance to the actual

mechanism. Third, the joints of manipulators have been

restricted to revolute and prismatic but this is not the

case for arthropods. Although revolute joints are

predominate, other lower and possibly higher pairs should be
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anticipated in arthropods. With these considerations and

the previous leg model criteria in mind, the following leg

model was developed.

2.4. A-Model

The arthropod leg model, herein called the A-model,

uses four fixed parameters and from one to a possible six

variable parameters depending on the degrees-of-freedom in

the joint. Using four fixed parameters instead of five is

compatible with the measuring technique as seen in the next

chapter. To allow the necessary flexibility for modeling

various joint types, fixed and variable parameters are

separated into two transformation matrices for each segment

as done by Sheth and Uicker. Shape matrix S uses the four

fixed parameters to describe the leg segment shape. Motion

between leg segments is described in pair matrix I. For a

leg of n segments, the matrix

A = B Bi '42'82' in-l*Bn-1 (2.1)

describes the foot position with respect to a coordinate

system fixed in the arthropod body. Matrix B is the

transformation relating the body coordinate frame to the

first joint coordinate frame of the leg. The formulation of

B, I and S are best explained by example using an arthropod

specimen.
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Initial studies were performed on the darkling beetle,

Eleodes obscura sulcipennis (Tenebrionidae) (Figure 2.5).

It was chosen for its availability, durability, leg

visibility, relatively large size and its flight inability.

This beetle is commonly found in semiarid and desert areas

of the U.S. and has a body length of about 30 mm. Each of

its six legs have five segments which are connected by pivot

joints as described at the beginning of this chapter. The

individual ball and sockets of these joints are herein

referred to as articulations. Three of the beetle's four

pivot joints provide most of its leg motion. The joint

connecting trochanter and femur was observed to allow little

to no motion between the two leg segments so was initially

assumed to be immobile thus the coxa-trochanter joint will

be referred to as the coxa-femur joint. The tarsus (or

foot) is, in a robotic sense, an end effector and does not

contribute to the beetle's overall leg movement. Hence the

leg of a darkling beetle can be regarded as an RRR

manipulator.

As with the Sheth and Uicker model, a joint in the A-

model is defined as a relationship between two coordinate

frames, each fixed to one of two adjoining leg segments as

shown in Figure 2.6. The joint i is defined by a trans-

formation from coordinate frame uvwi, fixed to segment i-1,

to coordinate frame xyzi, fixed to segment i. Example

transformation matrices for three joint types are described



trochanter

Figure 2.5. Ventral view of a darkling beetle showing the body coordinate
system, segment names and joint axes of the left middle leg.
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z1-1

Figure 2.6. Joint frames of A-model fixed in their
respective leg segments.
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later. When joint i variables are zero, the two coordinate

frames coincide. These are the basic conditions for all

types of pairs. The revolute pair is described below first

since it is the predominant arthropod joint and provides the

simplest illustration of the A-model.

The origins of frames uvw1 and xyzi are coincident and

positioned on the joint axis half way between the joint's

articulations. Axis w1 and axis z1 both lie along joint i

axis. The distance between the origins of frames xyz1 and

uvwi+i is the length of the leg .segment i.

Positioning a joint-frame origin mid way between joint

articulations is reasonable only when both articulations can

be found without dissection of the arthropod. Some of the

joints have only one visible articulation such as the coxa-

femur joint on the darkling beetle. In this case the origin

should be placed on the joint axis on the surface of the

cuticle of the visible articulation. The origin is

positioned here to retain as close a relationship to the

physical joint as practical.

Matrix Si is the homogeneous transformation from frame

xyz1 to frame uvw1 .0 and is formulated using four parameters

as follows (Figure 2.7). To move frame xyz1 to frame uvwi,i:

1. rotate about y by r1 so x contains the origin of

frame uvwi.o.

2. translate along x by s1 to origin of frame uvwi.o.
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W Z
1

ti

joint axis i

joint axis

1+1

Figure 2.7. Four fixed parameters of shape matrix S and
variable parameter of revolute pair matrix f.
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3. rotate about x by Ai so z is in plane containing x

and wi+1.

4. rotate about y by ni so z lies along wi+1.

This is mathematically expressed by

Si = Rot(y,rd Trans(s1,0,0) Rot(x,Ad Rot(y,nd (2.2)

Expanding this equation yields

cricfli - sricAisfli STiSI.Li crisfli + sr icAicfli S.1 CT.
1

spti sfli citi -spicfli 0

Si =
-sr icfli - cricAiscli crismi -sr isfli + cricbticfli -S.1 ST.

1

0 0 0 1

(2.3)

There are two special conditions for this matrix.

First, if z1 passes through the origin of frame uvw1.0 then

the orientation of xi is arbitrary. How it is chosen is

described in the measurement procedure of the next chapter.

Second, if w1+1 passes through the origin of frame xyz1 then

Ai is arbitrarily set to zero.

The coordinate frame fixed to the arthropod body serves

as the base frame and does not follow the orientation

criteria above. Origin of body frame, b, is at the midpoint

of the line segment connecting proximal articulations of the
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second pair of legs (marked r2 and 12 in Figure 2.5). The xb

axis lies along this line segment, positive toward the right

of the animal. The yb axis intersects the line connecting

proximal articulations of the third pair of legs (marked r 3

and 13), positive toward the head. The zb axis completes a

right hand coordinate system with its positive direction

upward when the beetle stands. Rotating body frame about zb

by 80 orients it with frame xyz0 (Figure 2.8). Since 90 is a

fixed parameter it is included in the transformation matrix

B which, from body frame to frame uvw1, is expressed by

B = Rot(z,80) Rot(y,r0) Trans(s0,0,0) Rot(x,g0) Rot(y,flo)

(2.4)

Pair matrix fi is the transformation from frame uvw1 to

frame xyzi. For the case of a revolute pair, the motion is

described by a counter-clockwise rotation of Oi about wifrom

ui to xi. This motion is mathematically expressed by

ccpi spI 0 0

scpi ccpi 0 0

ti (4);) = (2.5)

0 0 1 0

0 0 0 1
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Figure 2.8. Five parameters of B matrix.



32

A prismatic pair, with its displacement along wi from

frame uvwi to xyzi termed di, is expressed by

1

o

0

1

0

0

0

0

ti (di) = (2.6)

o 0 1 di

o 0 0 1

A more complex pair such as a spherical pair can be

represented by a combination of three revolute pairs with

orthogonal rotation axes (Figure 2.9). Again following the

example of Sheth and Uicker, the relationship between the

axes of each revolute pair has a shape. Using the

parameters of the shape matrix and a revolute pair R with z

axis rotation, the symbolic D-H notation of the spherical

pair is written

R(01)

ni i '

R (0i ' )
i it

ni, n

R(Oi")

(2.7)

where the two columns of parameters are representations of

matrix 2.3 and R is a rotation matrix similar to 2.5. So
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It

Figure 2.9. Spherical pair.
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the axes are orthogonal and all intersect at one point, A is

90° and the parameters r, s and fl are zero in both columns.

The spherical pair matrix can then be expressed by expanding

equation 2.7.

(0; (Pi cfii" ) =

cctgicoilcO"+scpscp"

scpiccpi'ccki"-ccpiscpi"

sepi'orpi"

-cepccpi iscilti"+scpiccpi"

- scpiccpi iscpi"-cOiccpi"

- scpi

0 0

ccpiscpi 0

scpisrpi 0

-ccpi 0

0 1

(2.8)

These examples show the A-model's ability to adapt to

various joint types. The model also meets the requirements

of physical resemblance by the nature of its description.

All parameters are defined with rotations and translations

taking place directly on the physical leg or linkage. In

contrast, the D-H model uses the common perpendicular so the

segment (physical link) length can't be determined from the

D-H parameters for a mechanism of general geometry such as
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an arthropod leg.

The shape matrix meets criteria of proportionality in

all parameters with two exceptions. This is when axis zi

passes through or is close to passing through the origin of

frame uvwi.i and when axis wi.0 passes through or is close to

passing through the origin of frame xyz1. When zi passes

through origin i+1, the direction of xi is defined

arbitrarily (see section on computing A-model parameters,

3.3). When zi is close to this intersection, Ai can have a

value of -180° to 180° depending on the geometry of segment

i. When wi+1 passes through origin of frame xyzi, p. zero

and when it is close to intersecting, again gi can have a

value of -180° to 180° depending on the geometry of segment

i. The exception to proportionality does not cause a

problem in determining direction of xi or identifying

parameter Ai because parameter computation is done

analytically, as is seen in the next chapter. Parameter Ai

does, however, loose physical significance in these joint

axis configurations and hence in these situations its value

is not considered important in describing a leg's physical

characteristics. This condition is signaled by parameters

ri and ni when either of their values are equal or close to

90°.

As a result of meeting the leg modeling criteria, the

A-model has a mathematical limitation. It is relatively

difficult to manipulate its transformation matrix. This is
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seen in the inverse kinematic solution in Appendix B. The

problem lies in the shape matrix where three rotations and

one translation are used to complete the transform from a

link frame to the succeeding one. This causes expressions

for rotation elements of the matrix to be long in comparison

to those of the D-H model where only one fixed parameter is

a rotation. However, the measurement procedure used in this

study allows other models, such as the D-H, to be determined

(Fichter, Albright and Fichter, 1988) . For revolute or

prismatic joints, the D-H model could be used for its

manipulation advantages and the A-model for its comparison

advantages. The procedure for measuring and computing A-

model parameters is the subject of the next chapter.
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3. Determining A-model Parameters

3.1. Overview

The apparatus and procedure used for determining the A-

model parameters and joint range-of-motion of arthropod legs

is the subject of this chapter. The equipment described

below was used by Fichter, Albright and Fichter (1988) to

determine S and D-H model parameters of these legs. Their

measurement and parameter evaluation approach, which closely

resembles the approach used by Stone, is adapted here to

characteristics unique to the A-model. The procedure used

in this research differs from most of those cited in the

previous chapter in one important way. Instead of making

several measurements of the free end of a manipulator then

determining its kinematic parameters numerically, individual

measurements of each joint are made from which the model

parameters are determined analytically.

For an arthropod leg with hinge type joints, the

kinematic geometry between successive joint frames is

described by the A-model using five parameters, four fixed

and one variable. Expressing this geometry as a

transformation from frame xyzi to frame xyzio with matrix

we have

itri+1 = Si 11+1 (3.1)
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where S and I are defined by matrix transformations 2.3 and

2.5 respectively. Using the parameter determination

approach of Fichter, Albright and Fichter (1988), the values

of matrix would be determined by measuring the position

and orientation of both frames xyzi and xyzi.1 with respect

to a common reference frame and then relating the frames to

each other through this common frame. From the calculated

*4.1 matrix, the parameters of shape matrix Si and pair

matrix fi,1 would then be extracted. However, the individual

measurement of these joint frames pose a difficulty for the

A-model. A constraint which dictates the origin of frame

xyzi.,1 lie in the xzi-plane requires a priori knowledge of

the relationship between the two frames before the

orientation of frame xyzi can be measured. This problem is

overcome by introducing a third joint-axis coordinate frame

used solely for measurement purposes. As shown in Figure

3.1, the orientation of the frame xyzi', herein termed joint

frame i', is defined by parameters Oi' and ei relative to

frames uvwi and xyzi respectively. Joint displacement Oi is

related to these parameters by

01 = Oi' ei (3.2)

Orientation of xi' is arbitrary and is defined during the

measurement of joint axis i. What follows is a description

of the equipment and procedure used in measuring each joint
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Figure 3.1. Joint frame xyzi' relative to frames uvwi and
xyzi. Position of proximal and distal joint articulations
shown along joint axis.
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frame i' with respect to a reference frame and the

mathematical manipulations used for extracting the A-model

parameters from these measurements.

3.2. Apparatus and Procedure

The measuring apparatus (Figure 3.2) consists of a

dissecting microscope rigidly mounted above a positioning

device. The positioner provides translational movement

along three linear orthogonal slides and rotational movement

about the axes of two orthogonal turntables. This allows

determination of orientation of a leg segment's joint axis

and position of a point on that axis relative to a reference

frame.

Four coordinate frames of the positioner are defined

for the purposes of measuring joint frame i'. The global

reference frame, frame g, is parallel to the three linear

slides of the positioner (Figure 3.3). Its origin coincides

with the intersection of the two turntable axes when the

readings from all three slides are zero. Microscope frame m

is fixed in frame g with its zm-axis, also the optical axis,

parallel to zg. Axes xm and ym lie in the microscope focal

plane with xm parallel to x9. The origin of frame m is

marked in the focal plane by a cross-hair reticle in the

microscope.

The positioner frame p, also parallel to the three

slides, translates relative to frame g. Its origin is fixed
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turntable 1

stage

turntable 2

4 1

Figure 3.2. Dissecting microscope and 5-axis positioner.
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alignment point

Yi

Figure 3.3. Positioner coordinate frames used in defining
the transformation of each joint frame.
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to the intersection of the turntable axes. The axis of

turntable 2 is the zs-axis of the stage frame s. When the

a-angle of the turntable 2 is set to zero and the fl-angle of

turntable 1 adjusted so zs is aligned with zp, frame s is

coincident to frame p. These are the turntable positions

from which all orientation measurements are to be

referenced. From this reference orientation, the frames of

s, p and m can be positioned coincident to each other by

adjusting the linear slides so the origins of frames s and p

coincide with the cross-hair. This marks the position of

frame m's origin, x y Zr, relative to frame g.

The subject to be measured is secured to an aluminum

plate mounted to the stage as seen in Figure 3.2. With the

turntables in their reference orientation, the proximal

articulation positions of the left and right mesocoxae and

metacoxae are determined to establish the body coordinate

frame as described in section 2.4 of chapter 2. Joint

measurements begin with body/coxa joint and progress outward

to the tarsus. After all measurements of an individual

joint are complete, the joint is immobilized (glued) before

proceeding to measure the next one.

Measurements are taken by adjusting the turntables

until joint axis i is aligned with the optical axis then

adjusting the slides so the point lying where joint axis i

pierces the cuticle nearest the proximal articulation

(Figure 3.1) is at the cross-hair. The actual position of
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the origin of joint frame i' is at point pi (i.e. joint

position i) lying mid way between the proximal and distal

articulations. The distance between the articulations is

obtained by a 90° rotation of turntable 1 aligning the joint

axis parallel to x',. From this position, the distance

between the proximal and distal articulations, defined as

ai, can be measured in the direction of slide x. For joints

having only one visible articulation, the origin of joint

frame i' is considered coincident to a point lying on the

joint axis and the visible articulation (see A-model

description in chapter 2.4). Distance ai is considered zero

for these joints.

Aligning the joint axis of rotation with the optical

axis of the microscope is an iterative process. Alignment

is confirmed if a point on the far end of the leg segment

remains in the focal plane when the segment is rotated.

This point, termed alignment point, can be a distinguishing

mark or small contrasting object (e.g. bit of wax) attached

to the far end of the leg segment. Once alignment is

achieved, slide and turntable positions xi, yi, zi, $ and ai

are recorded. These measurements establish the position and

orientation of zi1. To determine joint range-of-motion, the

locations of the alignment point are measured when the leg

segment is positioned at its extreme clockwise and counter-

clockwise positions. These correspond to positions xu, yu,

zu and ym, zm respectively. Finally, the joint is
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glued and the fixed position of the alignment point xFi,

zFi is measured. The projection of this fixed position onto

the xym-plane defines the orientation of xi (Figure 3.3).

The joint frame i' on joint axis i is to be described

in reference to the stage frame s. The required trans-

formation from reference frame s to joint frame i' is the

product of four transformations.

sTi = sTp 9Tm (3.3)

These measured joint coordinate frames are manipulated

into A-model parameters as described below.

3.3. Computing A-model Parameters

Found in this section are the derivation of

transformation matrix *41' defining frame i+1' relative to

i' in terms of measured parameters, the formulation of

matrix in terms of A-model parameters, and the method

for extracting A-model parameters from *41'.

Each coordinate transformation in equation 3.3 above is

derived as follows. The transformation from microscope

coordinate frame m to joint frame i' is a rotation about the

zm-axis.

= Rot(z,40 (3.4)
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6Fi = atan2 (yFi - yo xFi - x0 (3.5)

The function atan2 computes the arctangent in one of four

quadrants from -180° to 180° by examining the signs of the

numerator and denominator, y and x. The transformation from

global frame g to microscope frame m is a fixed translation

as described in section 3.2 and is written here as

9Tm = Trans(xr, Yr, Zr) (3.6)

From recorded positions of the origin of joint frame i', the

transformation from global frame g to positioner frame p is

a translation.

gTp = Trans(xi, zi-i-ai/2) (3.7)

Measurement parameter a; is the distance along the joint

axis between proximal and distal joint articulations. The

transformation of 3.7 is inverted to obtain the required

one.

PT9 = Trans( -x;, -yo -(zi+ai/2)) (3.8)
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From recorded angles, transformation from positioner frame p

to stage frame s is:

P94 = Rot(y, po Rot(z, c) (3.9)

This transformation is also inverted to obtain the required

one.

sTp = Rot(z, -o) Rot(y, -fli) (3.10)

Equations 3.4, 3.6, 3.8 and 3.10 are substituted into

equation 3.3 to give the transformation from reference frame

s to joint frame i .

The transformation is determined from two

successive joint frame matrix transformations relative to

the reference frame.

, sTi , -1 sTi+i , (3.11)

The transformation matrix

nx ox cx

ny oy cy

is

px

py

written as

itri+i =
nz oz cz pz

(3.12)

0 0 0 1
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where the individual elements are known. As seen in Figure

3.4, the transformation 1U 1' can also be defined in terms

of the new parameters 81 and cpi,i' and fixed A-model

parameters r1, sf, Ai and ni. The transformation matrix is

defined as

illi.0' = Rot(z, 90 Rot(y, r1) Trans(si, 0, 0)

Rot(x, AO Rot(y, no Rot(z, cpsi.o') (3.13)

By equating matrix transformations 3.12 and 3.13 the

values of the unknown parameters can be determined. The

solution, described by Paul [1981], is accomplished by a

sequential premultiplication of individual transforms to

isolate each parameter. Premultiplying equation 3.13 by

Rot-1(z, 80 and expanding yields equation 3.14.
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Figure 3.4. Four fixed parameters of A-model and two
additional parameters used to transform frame xyzi' to frame
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(3.14)



An expression for 81 is obtained by equating the (2,4)

elements in equation 3.14 arriving at

-px sine1 + py cos91 = 0

from which two solutions are obtained

esi = atan2 (py, px) and
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(3.15)

81 = atan2 (-py, -px). (3.16)

The solutions of

zero, joint-axis

i+1 (i.e. joint

zero. Hence,

81 = 0

3.16 differ by 180°. If both px and py are

i passes through the origin of joint frame

position i+1) and 81 is arbitrarily set to

when px = py = 0. Parameter si is found from equating

elements (1,4), (2,4) and (3,4) to get

cose1 px

px

+ sine1 py =

+ cos81 py = 0

pz = -sinr1 si.

COST
i

S-

(3.17)



Squaring equations 3.18 - 3.20 then adding yields

S-2 = px2 + py 2 + pz2.
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(3.21)

Parameter si is always a positive solution.

Parameter Ti is found from equations 3.18 and 3.20.

Its unique solution is

ri = atan2 (-pz, cos8, px + sinei py) (3.22)

The A-model specifies that -90° 5 ri 5 90° and so equation

3.16 is chosen to satisfy this constraint. If px, py and pz

are zero then r1 is zero.

Premultiplying equation 3.14 by Trans-1(si, 0, 0)Rot-1(y,

results in

COST; cos8i

-sine

cost; sine;

cose1

-sinri

0

-si

0
lu1+1,

sinri cosei sinri sine COST1 - 0

0 0 0 1

ell e12 e13 0

e21 e22 e23 0
(3.23)

e31 e32 e33 0

0 0 0 1
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The last three parameters can all be extracted from

matrix equation 3.23 and expressed in unique solutions.

Equating elements (2,3) and (3,3) then dividing results in

the solution

Ai = atan2 (se; cx - cei cy, sr1 (cei cx + sei cy) + cri cz)

(3.24)

where s and c represent the sine and cosine respectively.

If joint axis i+1 passes through joint i (cni = 0) then

equation 3.24 becomes indeterminate and gi = 0.

Parameter ni is found by equating elements (2,3) and

(3,3) then multiply these equations by -singi and cosp1

respectively. Dividing the result of their sums into the

equation obtained from equating element (1,3) yields

ni = atan2 [(cri(ce, cx + sei cy) - sr; CZ)

,(SAi(Sei CX Cei cy) + cAi(sri(cei cx + sei cy) + CTi CZ)) ]

(3.25)

Finally, equate elements (1,1) and (1,2) then divide to

obtain the solution

= atan2 (cri(cAi nx + set ny) - STi nz, -sei nx + cei ny)

(3.26)
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The joint range-of-motion is found from the position

measurements of the alignment point when the leg segment was

at its extremes. These are expressed by

and

du = atan2 (yu - yi, x1 - xi) (3.27)

= atan2 - - xi) (3.28)

where du and represent the extreme clockwise and

counter-clockwise positions of joint frame i relative to

frame m. Expressing the fixed joint displacement from

equation 3.2 as

OFi = (Pi ei

and referring to equation 3.5, the low and high joint

displacements are

OU = ON + (6Li 6N)

and

Om = ON + (6M 6N)

(3.29)

(3.30)

(3.31)

When i is zero, Oi', du, 6m and 6Fi are also zero.

This completes the derivation of A-model parameters

from measured parameters. The results of extracting the

parameters from the measurements made on a right middle leg
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of a darkling beetle are found in Table 3.1. Since the

actual parameter values for the leg of this animal are not

known, the errors can not be assessed directly. An estimate

of their accuracy, however, can be obtained from knowledge

of measuring errors inherent in the positioner. These

errors and how they are reflected in foot position accuracy

is the subject of the next two chapters.

TABLE 3.1

A-model parameters for the right middle leg of a darkling
beetle.

range-of- segment
Leg motion length

Segment (Ou to 00) r.
1

s. ni

(deg) (deg) (mm) (deg) (deg)

body -3.4 -29.3 2.59 -173.9 -61.5
coxa -65.1 to 50.0 -19.7 1.68 112.7 25.1
femur -109.3 to 0.7 -12.7 8.53 -6.2 3.2
tibia 30.8 to 170.8 -0.2 7.48 -0.0 0.2

Because the measurement procedure is used to determine

the transform between successive joint frames, described by

matrix a number of different models can be determined

from this relationship. This has advantages when one model

is best suited for characterizing physical aspects and

another best suited for analytical analysis. This is the

case with the A-model and the D-H model.
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4. POSITIONER MEASUREMENT ACCURACY AND CONSTRUCTION

4.1. Overview

The positioner's measurement accuracy and construction

is important for reliable determination of kinematic

parameters. Measurement accuracy is categorized into two

types, position and orientation. Errors in these two

measurement types are functions of the measurement procedure

and positioner inaccuracies, but to different extents. In

position measurement, the procedure is relatively straight

forward and errors lie mainly with the equipment. These

errors are quantified by measuring known distances and

evaluating the differences between actual and measured

quantities. Errors in position measurement are the same for

each joint. Orientation-measurement errors, however, differ

from joint to joint. This is due to the procedure involved

in aligning a joint axis. Errors in orientation measure-

ments are quantified by investigating the relationship

between the procedural and equipment errors.

Once leg measurements have been made, they are

manipulated into model parameters according to the

configuration of the positioner's axes. Because transform-

ations used in the previous chapter were formulated assuming

orthogonal positioner axes, any deviation from this

assumption will introduce errors in the determination of

model parameters.
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Discussed in this chapter are the errors in determining

position and orientation of a joint axis, and the positioner

construction discrepancies requiring a correction to

transformation matrices.

4.2. Errors in Position Measurement

In evaluating the errors of joint-axis position

measurement, it is assumed the joint position, as described

in chapter 2, can be precisely seen through the microscope

and that all errors lie with positioner equipment. The

position measurement procedure involves aligning a point at

the reticle cross-hairs and within the focal plane by

adjusting slides x, y and z. There are two aspects of

position measurement to consider when evaluating its errors.

One is the accuracy in which a point can be aligned at the

origin of frame m (see Figure 3.3) and the other is the

accuracy of position-measurement readings relative to frame

g. Alignment and relative measurement accuracies differ for

each slide.

When aligning a point, interpolation between the 0.01

mm slide scale marks is possible to the nearest 0.005 mm.

The lash between a lead screw and slide is greater than

0.010 mm but is eliminated by always approaching the

alignment position using a clockwise rotation of the lead

screw. When aligning a point with the cross-hairs in the x

direction, misalignment can be detected within half a scale
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division and thus the alignment error of slide x is ±0.005

mm. The alignment error of slide y is somewhat greater due

to compliance in the positioner. Exact alignment error

could not be measured but it was observed when moving the

positioner to be between ±0.005 and ±0.010 mm. Positioner

compliance is discussed later.

Horizontal alignments using slides x and y are made

with greater accuracy than vertical alignments using slide

z. This is due to the apparent thickness of the microscope

focal plane. Apparent focal plane thickness was determined

experimentally by repeated alignment of a smooth horizontal

surface with the focal plane. Alignment was done in the z

direction by always approaching the focal plane from below

with a clockwise leadscrew rotation. Figure 4.1 shows the

deviation of 120 aligned positions from the average aligned

position. All but four points lie within a range of 0.04 mm

which is assumed to be the apparent focal plane thickness.

The distribution of alignment measurements appear random and

the actual surface is assumed to lie somewhere within this

range.

Errors in measuring distances involve not only

alignment errors but also errors in a point's position read

from positioner scales. Reasons for this are as follows. A

measured point (i.e. aligned at origin of frame m) is

related to frame p through frame g. From the translation

portion of equation 3.3, this relationship is written as
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PTm = P'rg g,, (4.1)

Coordinates of the measured point are contained in the last

column of the expanded transformation matrix. Using

equations 3.6 and 3.8, this becomes

1 0 0 -xi + xr

PT.
0 1 0 -Yi 4' Yr

(4.2)
0 0 1 - (zi+ai,/ 2) + zr

0 0 0 1

where xo (zi+af/2) are positioner readings of a point on

joint axis i aligned at the reticle cross-hairs. Positioner

readings xr, yr, zr locate the origin of frame p aligned at

the reticle cross-hairs. Errors in measuring the origin of

joint i and frame p depend on their location within frame g.

As slides are adjusted to align a point, compliance and

small deviations in the positioner cause shifting in the

stage to which a measured point is fixed. Because the stage

extends out from each of the slides, small slide deviations

causing rotational movement in other slides are magnified at

the point of measurement (i.e. reticle cross-hairs).

Compliance is defined as any movement between parts of

the positioner assembly other than movement in the

positioner's 5 axes needed for measurement. The most
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notable compliance occurs as a rotation about slide x. As

an aid in explaining how this occurs, a cross section of

slide x and its relationship to other slides is illustrated

in Figure 4.2. Moments placed about the axis of slide x

vary as adjustments are made to slide y, moving the center

of mass of slide z assembly in the y direction. When these

moments change, small movements are visible between the

dovetail slide and dovetail base surfaces of slide x. The

"Nylatron GS" pads between the surfaces, used to reduce

adjustment friction in direction of the screw, are compliant

enough to allow small rotations about the screw. A negative

moment (or negative rotation) about the slide x axis causes

a positive y shift of the point being aligned. Once the

point is aligned, the reading from slide y is less than that

had no shift occurred (Figure 4.3). Shift in y is expressed

as

Ys = Ye Yi (4.3)

where yc is the measurement assuming no compliance in the

positioner and yi is the actual measurement reflecting

positioner deviations. Shifts in x and z are expressed in a

similar manner.

Other causes of shifts are manufacturing errors.

Referring to slide x, there can be a departure from

straightness upward (z-direction) designated as bow error.
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A horizontal deviation from straightness (y-direction) is

termed run-out. Finally, there can be a twist in the x-

direction. The manufacturer's upper limits of these

deviations are; bow, 0.002" per foot; run-out, 0.001" per

foot; and twist, 1 milliradian per foot.

The individual shifting effects of positioner

compliance, bow, run-out and twist could not be measured

because equipment accurate enough to measure such small

deviations was not available. Instead, the shift attributed

to each slide was calibrated against slide position to

approximate the aggregate effect of these deviations. For

slide x, a one inch gage block (25.4 mm) accurate to

±0.00004 in. at 68°F was mounted to the stage with its

calibrated surface vertical and adjusted parallel to slide

y. Parallelism was confirmed when a cross-hair traverse

along the gage block edge did not deviate from that edge.

Once adjusted, the known gage block dimension was measured

by adjusting slide x so a cross-hair aligned with one side

then the other. The difference in the two alignment

positions and actual block length were then compared to

determine shift in the x direction. This measurement was

performed for several positions along slide x over a

distance of 70 mm measured at the extreme ends of the gage

block. This distance chosen as the anticipated range needed

for future arthropod leg measurements. Slide y was

calibrated using the same procedure.
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Because of the microscope's vertical alignment

inaccuracy, a dial gage accurate to 0.0001 inch was used to

calibrate slide z. A gage block of arbitrary dimension was

placed on the stage with its calibrated surface horizontal.

The surface was then positioned against the dial gage by

adjusting slide z. After recording this position, the

calibrated surface of the 1" gage block was placed on top of

that of the other block and its opposite surface was

positioned against the dial gage as above. The difference

between the two positions was compared to the known gage

block length to determine shift. Slide z had a more limited

range of motion than slides x and y so the gage block could

be measured at only one position.

The data obtained from calibrating the slides were fit

to curves expressing shift as a function of slide position.

These curves are as follows.

xs(x) = 0.219 - 6.26(10-3) x + 5.79(10-5) x2

- 1.73(10-7) x3 (4.4)

Ys (Y) = -0.131 + 3.28(10-3) y - 3.79(10-6) y2 (4.5)

The third and second order curve fits for slides x and

y represent the best fit of data collected. Slide x

included data from positions 127 mm to 173 mm and slide y

included data from positions 57 mm to 103 mm. Positions



66

were measured from the center of the gage block at its

extreme positions during calibration. A total of 5

positions were measured with 4 measurements at each

position. Since the greater percentage of errors in slide z

measurements were less than the apparent focal plane

thickness of the microscope, a calibration curve was not

realistic.

Calibration equations 4.4 - 4.5 were then used to

correct all x and y position measurements. Using a

subscript c to indicate a corrected measurement, corrections

for each direction are expressed as

Xci = Xi + Xs (Xi) (4.6)

Yci = Yi Ys(Yi) (4.7)

Xcr = Xr + Xs (Xr) (4.8)

Ycr = Yr + Ys (Yr) (4.9)

where xi, yi, x, and yr are actual (uncorrected) position

measurements read from each slide. Equations 4.6 - 4.9 are

essentially a rearrangement of equation 4.3 and approximate

a measurement assuming no positioner compliance slides.

Several gage block measurements were made with the

positioner then corrected using the above equations. The

statistical results of these corrected measurements were

used to define the error in the positioner's ability to make

relative measurements. Table 4.1 shows these results.
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The 95% confidence interval is the range in which 95%

of all errors fall and is the confidence level chosen for

this study. For a normal distribution, this interval is

equivalent to twice the standard deviation multiplied by

1.96.

TABLE 4.1.

Corrected position measurement accuracy estimate of 1.000"
(25.40 mm) gage block.
number of measurements.

Numbers in parenthesis indicate

distance (mm)

xc(80) Irc(77) z(60)

mean 25.400 25.400 25.406
mean error +0.000 -0.000 +0.006
standard dev. 0.0046 0.0082 *

error: maximum +0.012 +0.024 +0.045
minimum -0.011 -0.022 -0.020

95% confidence
interval 0.018 0.032 0.100

* Explained in text.

Graphically illustrating this data, Figure 4.4 show the

errors in slides x and y to approximate a normal distri-

bution which justifies use of standard deviation.

Distribution of errors in slide z, however, are nearly

random as shown in Figure 4.5. The 95% confidence interval

for this slide was calculated by eliminating 5% of data (3

points) at the extremes then multiplying the range between

remaining maximum and minimum data values by 2.

This completes the positioning error estimation.
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4.3. Errors in Orientation Measurement

In evaluating the errors of joint-axis orientation

measurements, it is assumed that all joints are perfect

revolutes having no compliance, even though preliminary

investigations indicate that this assumption is not correct.

Because of the lack of information about the true kinematics

of individual arthropod joints, the assumption of perfect

joints is considered reasonable for an initial error

analysis with the understanding that these errors are, at

least, partly due to joint imperfection.

Errors in measuring joint-axis orientation depend on

the procedure used to determine its alignment and the length

of the segment attached to the joint. As discussed in

chapter 3, orientation of joint axis zi is measured by

aligning it with the microscope optical axis, axis z. This

alignment is made by first picking a point on the far end of

the free leg segment i. The perpendicular distance from

this point (alignment point) to the joint axis is termed the

"effective alignment length". Axis zi is considered aligned

to z, when the alignment point remains in the focal plane

for all positions of segment i. Errors encountered in

measuring this alignment are attributed to the thickness of

the focal plane, zt; the effective alignment length of the

leg segment, L; and the range of motion of the leg segment,

R. From these three parameters, two cases of orientation

error are defined.



A case 1 error occurs when the alignment point

coincides with a focal extreme at the midpoint of the leg

segment's range of motion and coincides with the opposite

focal extreme at its motion limits (Figure 4.6). The

orientation angle error, ca, is expressed by

ca =
zt

L (1 - cos R/2)

71

(4.10)

A case 2 error occurs when the alignment point is

midway between the focal extremes at the midpoint of the leg

segment's range of motion and never crosses the focal

extremes through its full range of motion. When 12180°, the

alignment point coincides with the focal extremes 90° in

either direction of its midposition. Hence, the orientation

angle error, eb, is expressed by

eb =

zt

2 L sin R/2
for 0°R180°

zt

for 180°R<360°
2 L

(4.11)

These two cases represent the worst and best of a

continuum of extreme errors in measuring orientation of a

joint axis. The reason for distinguishing between the two
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73

is discussed in chapter 5.

To check if it was reasonable to define errors in this

manner, an experimental test was performed by mounting a

small hinge to the stage and setting its axis in an

arbitrary orientation. Using the alignment procedure

described above, the joint axis was repeatedly aligned

with the optical axis. Results of 17 axis alignments are

shown in table 4.2 below. If orientation error definitions

are reasonable, then the maximum experimental orientation

error should not exceed the error calculated in case 1 (i.e.

the worst case). Using a hinge equivalent alignment length

of 5.88 mm, an apparent focal thickness of 0.04 mm and the

average range-of-motion results, error for case 1 is

calculated as a = 0.43°. The results in table 4.2 show the

deviations in the axis to be within this error.

How position and orientation measurement errors are

reflected in model parameters and foot position is the

subject of chapter 5. For now, the discussion of positioner

characteristics is completed by an evaluation of its

construction.

4.4. Positioner Construction

The positioner was assembled from 3 linear slides with

lead screws and digital readouts and two turntables with

vernier scales (Velmex Corporation). Each linear slide has

a resolution of 0.01 mm and are stated by the manufacturer



Table 4.2

Orientation alignment precision estimate of a hinge with 5.88 mm effective alignment
length.

turntable range-of- axis unit direction joint-axis
measurements motion in frame s orient. error

B
(deg)

a
(deg)

R
(deg)

x y z
*

6

(deg)

mean 62.0 120.4 168.5 0.4473 0.7612 0.4696 0.23

standard dev. 0.09 0.27 0.44 0.0038 0.0018 0.0014 0.118

maximum 62.1 120.9 169.1 n/a n/a n/a 0.42

minimum 61.8 120.0 167.6 n/a n/a n/a 0.04

* Error is defined as the difference between individual and mean axis unit vectors.
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to be accurate to 0.10 mm/meter. The resolution of each

turntable is 0.1 degrees with no manufacturer's statement of

accuracy. Mounted rigidly above the positioner is a Wild

dissecting microscope with a high magnification of 156x.

The positioner was constructed on a 2 inch machined aluminum

base one axis at a time. Each axis was shimmed for proper

alignment with the microscope. Horizontal slides x and y

were adjusted parallel to the focal plane and vertical slide

z was adjusted by keeping a vertical line on a reticle

cross-hair. A similar alignment procedure was used for the

turntables.

Computation of A-model parameters as described in the

previous chapter is based on four assumptions about the

positioner's construction;

1. x, y and z slides are orthogonal,

2. turntable 1 rotation axis is parallel to y slide,

3. turntable 2 rotation axis is parallel to z slide at

stage reference orientation (i.e. plane xy, parallel to

plane xyp) ,

4. axes of turntables 1 and 2 intersect.

Given these assumptions, equation 3.3 accurately expresses

the transformation from stage reference frame s to joint

frame i'. This transformation, upon substitution of

equation 4.1 into 3.3, is

sTp = sTp PT, stir,. (4.12)
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where

rsTi = Rot(z,40 (3.4)

PTm = Trans (xr-xi ,yr-yi , zr- (zri-ai/2) ) (4.13)

sTp = Rot(z,-a0 Rot(y,-flO (3.10)

After the positioner construction was complete, various

precision experiments were performed to estimate the actual

position and orientation of all five axes. Discrepancies

between experimental results and the above assumptions

required certain corrections be made to z slide

measurements. The slide and turntable discrepancies are

discussed separately below.

4.4.1. Error in Slides

Angles between the three slides were measured against

known dimensions of an aluminum block, referred to as test

block. Two adjacent sides of the test block subtended an

angle of 89.989 degrees ± 0.006 degrees. The test block was

measured against a granite honed gage block with a right

angle accurate to 0.001" over a 6" length. Using the

microscope and a reticle cross-hair, differences could be

observed between the angle subtended by slides x and y and

the right angle of the test block. The test block was

mounted to turntable 2 and adjusted until one side aligned

with the x slide. Alignment was confirmed when a cross-hair

remained on the test block edge while traversing the x
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slide. A cross-hair was then aligned on the test block's

adjacent edge and a traverse was made in the y direction.

Differences in test-block edge and cross-hair positions in x

were recorded for a specific y traverse distance.

To measure the angle between slides y and z, the test

block was rotated 90° about the turntable 1 axis so the

calibrated surfaces of the test block were approximately

horizontal and vertical. The block's horizontal side was

aligned to slide y by measuring deflections during a

traverse using a 0.0001" resolution dial gage. Adjustments

were made to turntable 2 until a minimum change in dial gage

deflection was observed. A traverse was made of the

adjacent side and dial gage deflection changes were noted.

The angle between the x and z slides was measured using

the same method as for the y and z angle except the test

block was mounted directly to turntable 1. Table 4.3 shows

the results of the slide orientation test. The 89.91 degree

angle between slides x and z affects the relative transla-

tion measurements found in the °Tm matrix. These measure-

ments are defined by Pxi, Pyi and Fizi and expressed as

PXf xcr Xci (4.14)

PYi = Ycr Yci (4.15)

Pzi - Zr - (zii-ad2) (4.16)

where xci, 176, xcr and ycr are defined by 4.6 - 4.9. When a



Table 4.3

Orthogonality test of slides x, y and z.

slides
(aligned/measured)

traverse in deviation from
positive direction block in direction
of measured slide of aligned slide subtended angle

(mm) (mm) (deg)

x/ y 25.00 0.00 ±0.03 90.00 ±0.07

y/z 30.00 0.00 ±0.02 90.00 ±0.05

z/x 25.00 -0.04 ±0.03 89.91 ±0.07
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point is brought into the focal plane along slide z, the

measured value of Plc; differs from the measurement that

would have been observed assuming slide z orthogonal to x

and is corrected by the following.

Px6 = Pxi + Pzi*cos(89.91°) (4.17)

Changes to Pzi are unwarranted since they are smaller than

can be detected by the positioner for the positioner's full

range of motion.

4.4.2. Error in Turntable-Axes

Last to be considered are the rotation axes. Axis

orientations and positions of turntables 1 and 2 were

measured by locating points which lie along the axes.

Reuleaux (1876), in his discussion of Phoronomics

(kinematics), showed how the "temporary center" of rotation

could be found from knowing locations of two points in a

plane before and after some arbitrary rotation about the

center. Each rotated point is connected by a line extending

from its initial to its final position. The two

perpendicular bisectors of these lines intersect at the

center of rotation as diagrammed in Figure 4.7. The errors

in locating the center point can be minimized by rotating

the two points through 180 degrees.

To locate points along turntable-1 axis, the above
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Figure 4.7. Bisection method for finding center of rotation.
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process was used with four points lying approximately in a

plane perpendicular to the axis. Six pairs of lines were

then used to estimate the location of the center of

rotation. The average was assumed to be the true value.

This method was used at various distances along the axis to

identify its orientation and position from yi = 22 mm to

104 mm.

Assuming an orthogonal construction of the positioner,

the axis of turntable 2 defines the z axis of stage frame s.

Its orientation in the x direction is dependent on the

position of turntable 1. When turntable 1 is at the

reference orientation, turntable-2 axis should be parallel

to slide z. The reference orientation is set by adjusting

the stage plane parallel to the focal plane, a procedure

that is accurate to ±0.03°. This was done by traversing the

3" stage in the x direction and adjusting turntable-1 until

the stage was in focus in every position along x. After

establishing the reference orientation, the axis of

turntable-2 was measured in the same manner as 1 from zi 74

4 mm to 65 mm. Knowing the positions and orientations of

both axes, their approximate common perpendicular was

calculated to be 0.16 ±0.02 mm in the positive x, direction

from axis-2 to axis-1 (Figure 4.8). Error of ±0.02 mm

reflects the maximum deviation in x direction data.

Orientation results of turntable axis measurements are

presented in Table 4.4. Values are given with respect to
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turntable 2 axis

turntable -1 axis

Figure 4.8. Turntable axes 1 and 2 shown with respect to

orthogonal frame s.
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orthogonal frame s in its reference orientation.

TABLE 4.4

Estimated orientation of turntable axes.

direction cosines in orthogonal frame s

turntable ux uy ux

* *
1 -0.0014 ±0.0005 1.0000 -0.0010 ±0.0005

2 0.0000 ±0.0005 0.0000 ±0.0005 1.0000

* Errors equal to the largest direction deviations in data.

To account for displacement and orientation

discrepancies between actual and assumed turntable axes, the

matrix sTp is redefined as follows.

sTp = (4.18)

where

PTs = Trans(dx,0,0) Rot(u,fli) Trans(-dx,0,0) Rot(z,ai)

(4.19)

Translation dx is the common perpendicular distance between

the turntable axes (0.16 ±0.02mm). Rotation matrix

Rot(u,p0 is a rotation about an axis whose direction is

defined by the vector u and whose transformation, as

presented by Paul (1981), is expressed by



UxUxVP i + CP i UxUyVP j - UzSP j

Rot(u,flO = uyuxvfli + uzsfli UyUyVPi + CP j

uzuxvfli - uysps UzUyVP i + UxSP i

0 0

uxuzvi3; + uysfli o

UyUzVPi - UxSP j 0

UzUzVfii + CP i o

0 1
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(4.20)

where v is the versine defined by vfli = 1 - cos Pi and s and

c are the sine and cosine. The values of ux, uy and uz are

direction cosines of turntable 1 as defined in Table 4.4.

Substituting 1 for uy and neglecting second order terms

UXUZI X

2u and u 2 equation 4.20 becomesZ

c/3; uxvPi uzsPi spi 0

uxvigi + uzsRi 1 uzv/3; - uxspi 0

Rot(u,P0 =
-spi uzvPi + uxsPi opi 0

0 0 0 1

(4.21)



The required inverse of equation 4.19 is written

sTp = Rot(z,-a0 Trans(dx,0,0) Rot(u,-/30 Trans(-dx,0,0)

Expanded, 4.25 becomes

sTp =

cpica; + (uxviiii

-cpisai + (uxvI3;

S/31

0

uzspi)sa;

uzs/3i)cai

(uxvi3; + uzsfii)cai + scri

-(uxvpi + uzspi) sai + ca;

(uzvpi - uxsPi)

0
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(4.25)

-silica; + (uzvf3; + uxsj3i)scri dx[vQicai - (uxv/3; uzsfii)sai]

spisai + (uzvPi + uxsPi)cai -dx[vPisai + (uxvPi uzsi3i)cad

cf3; -dx(sp0

0 1

(4.23)
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4.5. Summary of Transformation Matrix Corrections

As discussed in chapter 3, all joint axis measurements

must be transformed in reference to frame s in order to

compute A-model parameters. This transformation is

expressed in equation 3.3 as

sTi = sTp PTg gTm mTi (3.3)

Transformation matrix sTp as defined by equation 3.10

assumes that turntable axes intersect and align with

orthogonal positioner slides. Because this is not the case,

sTp is instead defined by transformation 4.25 above which

more accurately reflects orientations and positions of

actual turntable axes.

Transformation matrices P9N and 914, containing only

translations, are combined to form matrix Itn. Equation 3.3

is rewritten as

sTi. = sTp Pi; mTi. (4.12)

The translation elements of matrix PTm are corrected to

account for errors inherent in positioner slides and

construction. Formulation of this matrix is

PTm = Trans (Pxci , PIT;, PZ 1 ) (4.24)



where

Pxci = Px; + Pzi*cos(89.91°)

=Pxi xcr Xci

pYi
_

Ycr Yci

Pzi = Zr - (zi+ai/2)

and further where

Xci = Xi + Xs (Xi )

Yci = Yi + Ys(Yi)

Xcr = X. + Xs (xr)

Ycr = Yr + Ys (Yr)

and finally where

xs(x) = 0.219 - 6.26(10-3) x + 5.79(10-5) x2

- l.73 (10.7) x3

Ys(Y) = -0.131 + 3.28(10-3) y - 3.79(10'6) Y2
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(4.17)

(4.14)

(4.15)

(4.16)

(4.6)

(4.7)

(4.8)

(4.9)

(4.4)

(4.5)

Coordinates x and y in equations 4.4 and 4.5 are values read

directly from positioner slides.

There still remain position and orientation measurement

errors which can not be corrected for. Position errors are

those listed in table 4.1 and orientation errors are defined

by cases 1 and 2 in equations 4.10 and 4.11 respectively.

How these errors effect leg model parameters and foot

positioning is the subject of the next chapter.
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5. ERRORS IN THE KINEMATIC MODEL: EVALUATION APPROACH

5.1. Overview

Accuracy of measured A-model parameters are evaluated

by how well the measured model predicts true kinematics of

the leg. In an analogous situation, researchers evaluate

robot calibration methods by comparing predicted position of

their calibrated model to actual position of the robot for a

given set of joint displacements.

As an example, Judd and Knasinski (1987) evaluated

their robot calibration procedure by running experiments on

a Automatix Aid 900 robot. They positioned the robot with a

known set of joint angles and measured actual position of

the robot tool plate. The same joint angles were used in

their calibrated robot model to determine a predicted tool-

plate position which was then compared with its measured

position. The error between the two was a measure of their

calibration accuracy. Whitney, Lozinski and Rouke (1984)

used the approach of comparing actual to predicted positions

to test their calibration method on a Puma 560 robot. Also

using the Puma 560, Stone (1987) tested his signature

identification technique by measuring errors between actual

and predicted positions while controlling the robot in one,

two and three-dimensional grid touching tasks.

Obviously an arthropod leg's position can not be

controlled in the same way a robot arm can and hence the
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comparative technique used by the above mentioned

researchers can not be used to evaluate the accuracy of the

measured A-model. However, by quantifying errors which are

inherent in the leg measurement equipment and technique, as

was done in the previous chapter, measurement errors can be

translated into foot (tarsus) position errors. This is

accomplished by first determining A-model parameters which

reflect measurement errors then using these parameters to

determine foot position. Positions of the foot determined

from the A-model containing errors can then be compared to

those assuming no errors. Since error for each leg

measurement is described by a range of values, the above

approach results in an error volume defined about some

"actual" foot position. Actual is defined here as the

position obtained from a specified set of joint

displacements and the actual measured A-model parameter

values obtained from a leg. The error volume surrounding

the actual foot position can be used as an indicator of how

good a leg measurement is.

Several approaches were taken to determine the errors

in the A-model. One possibility is to calculate model-

parameter differentials in terms of measurement-parameter

differentials. This method (see Appendix A) was abandoned

because of the complexity of the equations, the dependency

some measurement parameters had on others and the difficulty

in interpreting results.
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Error analysis difficulties imposed by complex

equations and dependent measurements are avoided in the

following solution by representing the position and

orientation errors of each joint axis as "dimensional"

errors in the kinematic model of the leg. Wang and Roth

(1989) also defined dimensional errors in revolute joints in

terms of errors in position and orientation. Their concern,

however, is with quantifying these errors from knowledge of

possible error configurations and forces on the joint.

In this research it is the errors inherent in the

measurement device which define position and orientation

errors. These errors are used to formulate matrix 1Ei'

which is the transformation from the measured joint axis

coordinate frame xyzi to coordinate frame xyzi' representing

axis position and orientation errors (Figure 5.1). Matrix

1E1' is then used to define a matrix relating successive

joint error frames as follows.

111;4' = i+1Ei+11 (5. 1)

where itko is defined in chapter 3 as

= 8, iii+1 (3.1)

and relates frame xyzi to frame xyz1 +1. From matrix ilko' a

new set of A-model parameters are extracted which reflect



tzi

Yi

error joint i
joint i

1
Xi

segment i

X.
i
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Figure 5.1. Coordinate frame xyzi' representing dimensional
errors in a joint.
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errors in measurements of joints i and i+1.

Finally, error in foot position is found by determining

a set of joint angles from the inverse kinematics solution

of the nonerror A-model for a specified foot position and

then using these joint angles with the error A-model in a

forward kinematic solution. For each possible combination

of measurement errors, there is one foot position error.

All combinations result in a volume of error surrounding the

foot.

This error evaluation method is presented here in three

sections. First is a discussion of how measurement errors

are represented in their respective joint frames. Second, a

qualitative look is given at how errors effect A-model

parameters and foot position. Third, the measured right

middle leg of a darkling beetle is used to explain and

demonstrate the complete procedure for determining foot

position errors.

The method is presented assuming the errors in

measuring actual alignment of turntable axes 1 and 2 (see

chapter 4) have a negligible effect on parameter errors.

This assumption allows a clearer presentation of the error

evaluation approach. Implications of such an assumption are

discussed at the end of this chapter.

5.2. Representation of Measurement Errors

As in chapter 4, measurement errors are divided into
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two categories, those which occur in determining joint

position and those which occur in determining joint axis

orientation. How these errors appear at each joint axis is

the topic of this section.

Position measurements Pxci, Pyi and Pzi define the origin

of coordinate frame xyz1 with respect to frame p (see

equations 4.20, 4.18, 4.19). For each of the three

measurements there are a range of errors Ax, Ay and Az which

are assumed to be distributed equally about Pxi, Pyi and Pzi

respectively. No subscript is included on these errors

because they are assumed the same for each measured joint.

When joint i is aligned for measurement, its position is

coincident with the origin of microscope frame m. The range

of position-measurement errors lie within a rectangular

boundary, or "error box", about this origin as shown in

Figure 5.2.

Because errors Ax, Ay and Az have their directions

aligned with frame p and orientation of frames p and m are

the same, the error box is oriented so the coordinate axes

of frame m are normal to the box surfaces. Orientation of

frame xyz1 is determined by a rotation of swi-ei about zm and

thus orientation of the error box to this frame is also

known. Errors in determining swFei are too small to have a

significant effect on orientation of the error box and

resulting parameter errors and hence are ignored. The

length of each of the three box dimensions is defined by the
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ZP

Yp

Figure 5.2. Boundary of position measurement errors
represented by an error box about frame xyz1.
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error confidence interval (see Table 4.1).

When evaluating model parameters of leg segment i,

errors in measuring both joint axes i and i+1 must be

considered, as in equation 5.1. Because joint axes i and

1+1 are ordinarily skew to one another, their associated

error boxes will also have a skew relationship as depicted

in Figure 5.3.

The geometric representation of orientation errors is

based on their evaluation as discussed in chapter 4. From

cases 1 and 2, four joint axis orientation error extremes

are defined, two for each case. The two cases represent

maximum and minimum extremes in formation of an orientation

error boundary. Projections of these axis extremes onto the

xym-plane lie 90° apart. This is seen by examining the

difference between the two cases. The error axis in case 1

is directed toward or away from the mid position of the leg

segment. In case 2, the error axis is directed perpen-

dicular to the leg segment's mid position. Between the four

axes exist an infinite number of other axis orientation

errors which collectively generate a ruled surface. The

resulting shape of these errors on joint i is best described

by an elliptical cone or "error cone" whose vertex lies

within the error box of joint i and whose axis is zi.

As with the error box, geometry of an error cone on

joint i can be described with respect to frame xyzi. The

major axis, xe, of a section of the cone perpendicular to



zs,
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Figure 5.3. Error boxes i and i+1 with respect to frame s.
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its axis is defined by projecting the mid position of

segment i in case 1 onto the xy-plane (Figure 5.4).

Orientation of the ellipse with respect to frame i is

related through angle 6e which is expressed by

6e = (6u + 610)/2 - (6fl + ei) (5.2)

If the ellipse in Figure 5.4 is positioned along zi one unit

from the vertex, then half the major axis distance is equal

to the tangent of orientation error Ea and half the minor

axis distance is the tangent of eb. The location of any

point xi,y; on this ellipse relative to frame xyzi is then

described by

x; = cos6, tan (Ea) cos(r - Se) - sinde tan(eb) sin(r - de)

(5.3)

yi = sin6, tan (Ea) cos(r - 6e) + COS6, tan(eb) sin(r - de)

(5.4)

When a leg segment's range of motion is 360°, orientation

errors a and b are equal and the error cone becomes

circular.

Finally, the angle between a generator of the error

cone and the measured joint axis, defined by angle 60 is

expressed by



Xp high joint range

If;

low joint range

i+ Hi V2
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Figure 5.4. Cross-section of error cone i parallel to xy,--
plane.



e-
1
= atan2 ((xi2 + y12)) , 1)
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(5.5)

As with the error boxes, error cones of both frames i

and i+1 influence parameters of segment i. Again, these two

cones are skew to one another as depicted in Figure 5.5.

To complete a representation of dimensional errors in

the kinematic model, the errors in determining the base

coordinate frame fixed to the body (i.e. frame b) must be

considered. As described in section 2.4 of chapter 2, frame

b is defined by the proximal articulation positions of the

middle and rear coxa segments. Errors in these positions

are bounded by error boxes as shown in Figure 5.6. For

purposes of explanation, it is assumed that x, y and z

dimensions of the error boxes are aligned with actual xb, yb

and zb axes of the body frame. Position errors of the frame

b origin are bounded by an error box of same size and

orientation as those at the articulations. The orientation

error boundary of zb-axis is defined by an error cone where

errors Ea and eb are expressed by

and

Ea = atan2(Az, Ly)

E b = atan2 (Az, Lx)

(5.6)

(5.7)

Length Ly is the distance from the line connecting mesocoxa

articulations to the line connecting metacoxa articulations

along yb. Length Lx is the distance between the mesocoxa



zs

Ys

1+1

Yi+1
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Figure 5.5. Error cones i and i+1 with respect to frame s.



left mesocoxa
articulation
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right mesocoxa
articulation

left metacoxa
articulation

right metacoxa
articulation

Figure 5.6. Body frame band error boxes around proximal
articulations of four rear coxa segments.
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articulations along xb. Orientation error angle ea is about

xb-axis and 612 is about yb-axis.

An additional orientation error occurring in the body

frame but not the joint frames is that of xb-axis. This

error is a rotation about zb and expressed by

x
= atan2(Ay, Lx) (5.8)

5.3. Qualitative Error Effect on A-model Parameters

With a knowledge of how measurement errors are

represented at each joint axis and the body frame, the

effect of the error boxes and error cones on A-model

parameters can be illustrated qualitatively as in this

section. The intention here is to give a physical

understanding of the effect of errors on A-model parameters.

Parameter Ti

Parameter ri is the rotation about yi required to align

coordinate axis xi with line p1 -p1+1 (see Figure 3.4). By

projecting images of error boxes i and i+1 into the xzi-

plane, the change in r1, Ari, can be illustrated. Figure

5.7 shows the position on the boxes for which error in Ti is

maximum. This error is dependent on size of the error

boxes, orientation with respect to each other and distance

between them (i.e. the segment length). As s1 decreases,

error in Ti increases. This is also seen in the
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Figure 5.7. Projections of error boxes i and i+1 onto xzi-
plane showing error in parameter ri.
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differential of Ti expressed by equation A.5 in Appendix A.

Only error cone i has an effect on Ti. The error is

shown by passing a plane through cone i parallel to a plane

containing xiand z1, as in Figure 5.8. Error in parameter

Ti is influenced by the error cone size and orientation with

respect to frame i. This influence is the same for all si.

Parameter si

Error in segment length si is influenced only by the

size of error boxes i and i+1 and their orientation to each

other (Figure 5.9). In general, greatest error occurs

between the closest or furthest two corners of error boxes i

and i+1. Since s1 is only a measure of distance between

joints i and i+1 in frame s, errors in si are not a result

of axis orientation errors (see equation A.6).

Parameter Ai

Parameter gi is revealed graphically by locating the

intersection of plane xzi and a plane perpendicular to line

pi-pi+i then projecting zi.0 on to the plane perpendicular to

line pi-pi,i. The error is illustrated by projecting the

outline of error cones i and i+1 onto this same plane

(Figure 5.10). As orientation of axes zi or zi.0 approaches

alignment with line pi-pi+1, the angle between the error

cone's projected boundary increases and hence possible error

in Ai increases. When either z axis is aligned with line
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Figure 5.8. Plane xzi passing through cone i showing error
in parameter ri.



Z .i+1
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Figure 5.9. Position measurement errors on error boxes i and
i+1 showing error in parameter length
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Figure 5.10. Projection of error cones i and i+1 onto plane
perpendicular to line pi-pi+i showing error in parameter Ai.
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pi-p1+1, parameter Ai has an arbitrary value and the possible

error in Ai is 2r.

Position error also influences errors in Ai.

Illustrating this error takes two projections. One

projection is of the z1 and z1 .0 axes on to a plane

perpendicular to line pi_pi+1 as above. The other is a

projection of these axes onto a plane perpendicular to a

line extending from two error positions in boxes i and 1+1

as in Figure 5.11. The difference between the subtended

angles of zi and zi.1 on the two projections is the error in

parameter Ai. As the segment length decreases the influence

position measurement errors have on Ai increases.

Parameter ni

Factors which influence error in parameter ni are

similar to those which influence parameter ri. Here errors

in fl; due to positioning errors are illustrated by

projecting error boxes i and i+1 onto a plane containing

zi,1 and point pi, (Figure 5.12). The ni error resulting from

orientation errors are shown by passing a plane through cone

i+1 parallel to a plane containing axis zi.0 and point pi, as

in Figure 5.13. The same factors that influence error in r1

also influence

Generally, measurement errors will affect model

parameters of the smallest leg segments the most. For the

beetle, the smallest segments are nearest the body. As can
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Figure 5.11. Joint axes of measured position and assumed
error position projected onto planes perpendicular to lines
pi-pi+i and pi'-pi.i' to show error in Ai .
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Figure 5.12. Error boxes projected onto plane containing
joint axis i+1 and joint i showing error in parameter Ili.
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Figure 5.13. Plane containing joint axis i+1 and point pi,
passing through cone i+1 showing error in parameter ni.



112

be seen in the next two sections, these errors have the

greatest impact on foot position errors.

5.4. Qualitative Error Effect on Foot Position

Here a graphical approach is taken to illustrate the

influence of position measurement errors on foot position

errors. This is demonstrated with a planar linkage of three

links drawn with respect to a base frame as in Figure 5.14.

All A-model parameters of a planar linkage are zero except

length s. Joint 1 is shown in one position and joint 2 in

three, a - c. A small rectangular box at joint 1 represents

the boundary of measurement error about the actual position

of joint 1. Measurement errors at joint 2 are assumed zero

to simplify the example. To find errors in foot position

due to the error box at joint 1, a line is drawn from the

origin of the base to each corner of the box. Each line

represents a different direction of u1 from which joint

variable 01 is measured. The error at each corner results

in a change in lengths so and s1. Using the four error

linkages at the box corners and two joint variables, the

error box at joint 1 can be translated to an error

surrounding the foot. Actual foot position F is expressed

by

F = B Si 2 B2 (0,0,0,1)T (5.9)



2 foot
position a

foot position c

foot position b

Figure 5.14. Graphic translation of joint position error box to error
surrounding foot position:
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where B, I and S are defined by equations 2.4, 2.5 and 2.3

respectively. Error in foot position is determined by

redefining the shape matrices to reflect dimensional errors

of the error box surrounding joint 1. These errors

influence the A-model parameters of matrices B and S1. The

model parameters containing dimensional errors are computed

from matrices °U1' and 1112' which are expressed by

and

0E0 I Oty1 1E1 ,
1

1TT -1 1TT 2,0
4j2 `'2 "2

(5.10)

(5.11)

where °U1 = B I. and 1U2 = S1 12. In this example matrices

E0' and 2
E2
' reflect zero error and are identity matrices.

Error matrix 1E1' reflects translational errors in joint 1

and in expanded form is expressed by

1 0 0 Ax

0 1 0 Ay
E = (5.14)

0 0 1 0

0 0 0 1

The computed model parameters containing error are used to

reformulate matrices B and Si which are then substituted

into equation 5.9 to find a new (erroneous) foot position.

Repeating the above procedure four times for each
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corner of the error box at joint 1, the error boundary

surrounding the actual foot can be drawn. With the

dimension of the box very small in comparison to the length

of the links, the error boundary approximates a

parallelogram. The shape of the parallelogram changes for

every foot position. As the foot moves around joint 2 from

position a to position b, the error boundary elongates and

becomes very thin. After passing the position where 02 =

0°, the error boundary reverses direction from a clockwise

count of 1-2-3-4 to 1-4-3-2, as shown at position b. The

error decreases in size as it approaches joint 1 at position

c. This change is expected because small deviations near

the base of a linkage are magnified as the free end extends

away from the base.

Effects of both error boxes and error cones on foot

position are now further examined quantitatively for the

measured leg of an arthropod specimen.

5.5 Quantifying Errors in Foot Position

Shape and size of the calculated foot position error

volume is dictated by sizes of the error boxes and error

cones at each joint axis, overall kinematic geometry of the

leg and position of the foot relative to the body reference

frame. Investigated in this section are position errors

surrounding the foot of the right middle leg of a darkling

beetle whose geometry is described by the A-model kinematic
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parameters in Table 3.1.

Error in foot position is found in a similar manner as

described in the example above. There are three basic steps

for defining this error. First, the joint angles are

determined for a specified foot position using an inverse

kinematic solution of the leg described by the A-model.

Second, each corner of an error box and discrete generators

of an error cone are used to formulate joint-axis error

matrices iEi' which are then used to calculate

matrices. From each itrw' matrix, a set of A-model

parameters are extracted, which essentially reflect specific

joint measurement errors of leg segment i. Third, each set

of parameters are used in a forward kinematic solution along

with the set of original joint angles to find total foot

position error. This is accomplished by superposing sets of

foot position errors resulting from each leg segment and

approximating the final error volume with a rectangular box

as depicted in Figure 5.15. Originating from the center of

the box (i.e. measured foot position) along xf, yf and zf to

the box boundaries are dimensions a, b and c respectively.

The orientation of frame xyzf is dependent on foot position

as is shown later.

Details of the first step, the inverse kinematic

solution, can be found in Appendix B. Assuming an inverse

solution is possible for a given foot position, the

remaining two steps are discussed below.



a
Zb
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Figure 5.15. Foot position error boundary approximated by
rectangular box.
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Errors in A-model Parameters

Error volume surrounding a specified foot position

reflects the total range of errors in measuring a leg's

kinematic geometry. Each point within the error volume is

defined by a set of A-model parameters and joint

displacements for a given foot position. These parameters

are extracted from the U matrices of each segment which have

been determined from specific errors in the measurement of

each joint axis. A specific error in the position and

orientation measurement of joint axis i is represented by

frame xyzi' relative to frame xyzi in transformation matrix

lEi'. To represent a point on the error boundary, rotation

and transformation portions of this matrix are formulated

from a single error cone axis (i.e. cone generator) and

error box corner. Orientation error of a generator on an

error cone is determined by a rotation of ei, as expressed

by equation 5.5, about an axis in the xyi-plane whose

direction is given by the unit vector ex + ey where

and

Y1
ex - (5.15)

(x12 yi2)1/2

xi

ey - (5.16)

(x12 Yi2)
1/2
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and where xi and y1 are described by (5.3) and (5.4)

respectively.

The position of an error box corner relative to frame

xyz1 is defined by Apx, Apy and Apz and determined from

Apx

Apy

Apz

1

cosOSH+90 sin(8H+ed 0 0 Ax/2

-sin (8H+ed cos(6Fi+ed 0 0 Ay/2

o 0 1 0 Az/2

o o 0 1 1

(5.17)

From 5.16 and 5.17, matrix 'E1', representing both position

and orientation errors, is formulated as

iE

ex2v61 .4-ce1. ex ey vei ey se1 Apx

ex ey vei eye VEi + cei -ex se-
1

Apy

-ey sei ex se. CE- Apz
1 1

0 0 0 1

(5.18)

where v, c and s are the versine, cosine and sine

respectively. This matrix is formulated in the same manner

as that of 4.23.

Using matrix lEi', A-model parameters and joint

displacements,' matrix can be determined from equation
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5.1. The A-model parameters of segment i extracted from

matrix 1111' reflect specific measurement errors of joint

axes i and i+1.

Error in foot position

Error in foot position is investigated by first looking

at the effects of position and orientation measurement

errors of individual joints. In the following example, the

error in position measurements of joints 1-3 are all

represented by an error box of the same size where Ax=0.02

mm, Ay=0.03 mm and Az=0.06 mm. Since orientation

measurement errors are partially dependent on the length and

range-of-motion of each leg segment, the error cones of

joint axes 1 - 3 differ. Table 5.1 shows the independent

parameters of each error cone and the resulting major and

minor orientation errors.

TABLE 5.1.

Measurement parameters contributing to error in joint axis
orientation for the darkling beetle right middle leg.

segment effective range-of- focal plane major minor
(joint alignment motion thickness error error
axis) length, L R zt E

a
E b

(mm) (deg) (mm) (deg) (deg)

coxa (1) 1.70 115 0.04 2.91 0.80

femur(2) 8.50 110 0.04 0.63 0.16

tibia(3) 7.50 140 0.04 0.46 0.16
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In order to look at the effects that position and

orientation measurement errors have on foot position error,

an arbitrary foot position relative to the body frame of x =

10, y = 0 and z = -6 was chosen. This position is roughly

the location of the beetle's right middle foot with the

respect to the body coordinate system when the beetle is

standing still.

The orthographic projections in Figure 5.16 depict the

error surrounding this foot position considering only

position measurement errors (i.e. error box) of the coxa

joint. Errors are shown with respect to the body coordinate

frame (Figure 2.5). The top view (xyb) is looking toward

the beetle's back with its head in the positive y direction.

The front view (xzb) is looking along the beetle from tail

to head. The side view (yzb) is looking from the foot

toward the beetle body along negative x.

When the error box is translated from the coxa to the

foot, it becomes skewed and approximately an order of

magnitude larger. At this particular position the box is

very narrow as seen in the front view. This suggests

dimensional errors have little effect on foot position

errors in a direction perpendicular to this shape. Graphs

in Figure 5.17 show the error surface surrounding the foot

due to errors in orientation measurements (i.e. error cone)
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of the coxa.

Effects of positioning and orientation measurement

errors of the femur are shown in Figures 5.18 and 5.19

respectively. Since the femur is relatively close to the

coxa, error in foot position due to the error box at the

femur is similar in size to the error effected by the coxa

error box. The error cone at the femur has a much reduced

effect on foot position error because its longer effective

alignment length allows a more precise joint axis

orientation measurement.

The foot position errors reflecting errors in the tibia

joint are an order of magnitude less than those of the coxa

so their contribution to the error is small as shown in

Figures 5.20 and 5.21.

In order to estimate total error surrounding the foot,

dimensional errors of the body frame and all joint frames

must be combined. This is accomplished by first superposing

foot position errors resulting from coxa frame dimensional

errors onto those resulting from body frame. Foot position

errors resulting from dimensional errors of each succeeding

joint are superposed onto those proceeding them till the

last joint is reached. Justification for using super-

position can be illustrated by combining foot position

errors of the coxa and femur. Figure 5.22 shows the

combined effect of coxa and femur error boxes only. The 64

empty squares represent 8 corners of the coxa error box
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multiplied by the 8 corners of the femur error box. By

selectively eliminating some of the squares, the original

error shapes contributed by each error box are revealed

(Figure 5.23). The middle box, shown with its corners

defined by the filled squares, results from the error box at

the coxa and is the shape seen in Figure 5.16. The two

other boxes surrounding two opposite corners of the center

box result from the error box at the femur and have a shape

similar to that seen in Figure 5.18. Since the difference

in position of these last two boxes is small, their

differences in size are insignificant. This suggests that

the total error can be determined by superposing all error

effects from each joint.

An analytical procedure of superposition is possible if

the error volumes about the foot resulting from errors in

each joint are well defined. This is not always the case

when combining the position and orientation errors of a

single joint frame. Figure 5.24 shows 64 error locations

resulting from the combined effects of 8 corners of the

femur error box and 8 generators of the femur error cone.

The problem lies in determining which of the 64 points

define the error boundary and how the boundary can then be

mathematically described. This is solved by approximating

the error boundary with a box similar to the one illustrated

in Figure 5.15. The advantages of such a box shape are that

its dimensions and orientation are easily defined.
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Using error boundary resulting from the femur joint

measurement errors, the approximation procedure involves

defining the smallest possible box which will contain all 64

error locations. This is accomplished by considering the 64

points to represent discrete points of unit mass defining an

inertial system. Principle axes of this inertial system

approximate the directions xf, yf and zf of the error

boundary in Figure 5.15. Using these directions, the box

dimensions a, b and c can be found.

The procedure for defining the error boundary is as

follows. First, the center of mass of the inertial system

with respect to the body coordinate frame is located by

vector ra, and is determined by

E r1
ran - (5.19)

n

Where ri is the position of each unit mass j with respect to

frame b (Figure 5.25) and n is the total number of unit mass

points. The difference between mass center and the actual

foot position is negligible. Each unit mass j, relative to

a frame translated from frame b to the mass center frame c,

is located by vector pi where

pi = ri - rem (5.20)
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center of mass

0

Figure 5.25. Inertial system consisting of unit mass points
shown relative to frames b and c.
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Vector pj is described by a column vector pj = (xj,Irj,zj,CW.

The inertial system is described by the inertial matrix A

with respect to frame c as

Ixx Iyx Izx

A = Ixy Iyy Izy (5.21)

Ixz Iyz I ZZ

where

Ixx = E (yj2 + zi2)

Iyy = E (zj2 + xj2)

Izz = E (xj2 + 17j2)

Ixy = Iyx = -E (xj Yj)

Iyz = Izy = -E (Yj zj)

Izx = Ixz = -E (zi xi)

Next, Eigen values and Eigen vectors are determined

from matrix A. The Eigen vector associated with the largest

Eigen value is direction xf in frame f. This is also the

direction of the smallest error boundary dimension, a.

Eigen vectors approximating directions yf and zf are

associated with the middle and smallest Eigen values

respectively.

To find the dimensions a, b and c of the error

boundary, each unit mass j is defined in terms of frame f.

The transformation from frame b to frame f (see Figure 5.15)
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is expressed by

xfx

Xfy

Yft

Yfy

Zfx

Zfy

F,

Fy
birf = (5.22)

xfz Yft Zfz Fz

0 0 0 1

where the first, second and third columns of the matrix are

unit directions of xf, yf and zf respectively. The fourth

column is the actual foot position. This transformation is

then used to determine qj, the position of each point j

relative to frame f.

qj
birf (5.23)

Performing this transformation for all 64 points of the coxa

joint errors results in points shown in Figure 5.26.

Dimensions a, b and c of the error volume surrounding the

actual foot position can be determined from the points qj

having the largest absolute values in directions xf, yf and

zf respectively. Expressing frame f coordinate directions

as unit vectors xf, yf, and zf, the error volume dimensions

are

a = [abs(clixf)]max

b = [abs(cliYf) ]max

c = (abS (qj Zf) )max

(5.24)

(5.25)

(5.26)



E

0

0.2

0.4

02

0.4
-0.6

0.4

0.2

0

-0.2

-0.4

-0.4 -0.2 0

x-axis of frame f (mm)

0 2 0 0 6

-0.6 -0.4 -0.2 0

x -axis of frame f (mm)

0 2 0 4 0 6

0.4

0.2

0

0.2

0.4
-0 6

B

s

-0.4 -0 2

y -axis of frame f (mm)

Figure 5.26. Error positions transformed to frame f.

0 2 04 0 6



138

This method results in a good approximation of

direction xf and dimension a. However, directions yf and zf

can still be improved to find a smaller box containing all

64 points. This is accomplished numerically by rotating all

64 points a small angle about x and then determining a new

box size as described above. If the new box is smaller than

the old, then another rotation is made in the same

direction. When the box size increases in one of these

rotations, then a rotation of half the magnitude of the

previous is made in the opposite direction. This bisection

procedure is continued until the change in rotation becomes

very small. Figure 5.27 shows the 64 points after having

been subjected to the bisection routine. In this case, the

approximated error volume surrounding the actual foot

position decreased from 0.00419 cu.mm. to 0.00388 cu. mm., a

reduction of 7.4 percent.

Once the smallest box containing all 64 points is

found, its 8 corners are transformed back to the body frame

as shown in figure 5.28. This method is used to generate an

error volume for the dimensional errors of each joint. It

is also used to define the error volume resulting from

errors in measuring the body frame. Because the body frame

has an additional dimensional error (i.e. rotation about zb)

not present in the joints, the method for determining the

resulting error volume for it differs.

For the body frame, 64 error points are generated as
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described above but at one of the extreme error orientations

of xb (see Ex in Figure 5.6). When the points are

transformed to frame f, their center of mass is quite

different from the actual foot position (Figure 5.29). At

the other extreme of xb, a mirror image of points in Figure

5.29 are generated through xz-plane. The largest absolute

values in directions xf, yf and zf in both extreme cases

produce the same size error volume about the actual foot

position (Figure 5.30). Error volumes resulting from the

coxa, femur and tibia joints are shown in Figures 5.31 -

5.33.

Having defined all error volumes for each frame (i.e.

body to tibia) about the actual foot position, one volume is

superposed onto the other. First, the error volume gener-

ated from dimensional errors in coxa frame are superposed

onto those from the body frame. The eight corners from both

volumes generate 64 points from which a new error volume box

is defined using the above procedure. Superposed onto this

volume is the error volume generated from femur frame

dimensional errors. Superposition is continued until the

last joint of the leg is reached. Error volume

approximation resulting from all dimensional errors is seen

in Figure 5.34.

When actual foot position changes, so does size and

orientation of the error volume surrounding it. Figures

5.35 - 5.40 show various foot positions, each moved from
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x=10, y=0, z=-6 to an extreme x, y or z direction. As the

foot moves away from the coxa joint, the error dimensions in

general increase. Also seen in each figure is a change in

the box orientation. These figures exemplify how the error

in predicted foot position can be characterized by its size

and orientation. An error characterization method such as

this may also be used to approximate the error in predicting

the position of mechanical mechanisms.

At the beginning of the chapter the assumption was made

that errors in measuring the actual alignment of turntable

axes 1 and 2 in chapter 4 have a negligible effect on

parameter errors. This is generally true where joint axis

orientation errors are concerned but is somewhat misleading

in terms of joint position errors. The assumption was used,

however, to simplify the explanation of the foot position

error approximation method. Now the implications of this

assumption and its probable effects on foot position error

are revealed.

The actual directions of the turntable axes were

determined within a maximum error of ±0.04° (±0.0005 of

their direction cosines). This error results in possible

orientation and position errors when transforming a measured

joint axis from frame p to frame s, dependent on the joint

axis orientation measurement fl and c. Assuming the worst

error case for turntable axes 1 and 2, the maximum error can

be written



max. error = arctan [ 2*(0.0005) 2 ]1/2

155

(5.27)

or max. error = 0.041°. This is four times less than the

minimum orientation error of the tibia which contributed

essentially no error in foot position. For this reason,

errors in the measurement of turntable axes 1 and 2 can be

ignored.

Transforming the joint axis from frame p to frame s

causes a dimensional error in joint frame position due to

the error in measurement of dx (the common perpendicular

between turntable axes 1 and 2). Since the uncertainty in

dx is ±0.02 mm, the size of the error changes box as much as

0.02 mm in a direction dependent on 13 and a (see column 4 of

4.26). To account for this error the error box at each

joint frame might be expanded in all directions by 0.02 mm.

Since position error is critical in the measurement of the

coxa and femur, as seen above, this can have a significant

effect on the resulting foot position error.
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6. DISCUSSION

Presented in this thesis is a method to identify the

kinematic geometry of arthropod legs. The method focuses on

leg modeling, leg measurement for model-parameter determina-

tion and model parameter accuracy.

Because the leg model is to be used in motion

simulation studies and as a comparative tool for a wide

variety of arthropods, it must have characteristics which

show proportionality to differences in leg geometry,

physically resemble the leg being modeled, and be adaptable

to the various joint types found in arthropods. In

successfully addressing these concerns, the A-model

developed in chapter 2 is an improvement over other

available models. As with all other models known to this

author, a condition does exist where proportionality breaks

down. When joint axis i+1 of leg segment i passes through

the joint i position then parameter gi is undefined and its

value is considered zero. As this condition is approached,

parameter Di approaches 90° and serves as a signal to the

proportionality problem where parameter mi is considered

unimportant in describing a leg's physical characteristics.

As a result of meeting the conditions of an appropriate

leg model, the A-model is more difficult to handle mathe-

matically than models containing fewer rotation parameters

such as the Denavit-Hartenberg model. This was evident in
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determining an analytic solution to the inverse kinematics

of a 3-link manipulator. The solution appears more clean

when using a mathematically simple model such as the one

developed by Denavit and Hartenberg (D-H model) but it does

not show physical resemblance to a manipulator of general

geometry. If mathematics do require the simplicity of the

D-H model then it can be extracted from the measurements

used to determine the A-model, as shown by Fichter, Albright

and Fichter (1988).

The measuring equipment and technique developed allows

the calculation of several types of models by determining

the position and orientation of each joint axis individually

with respect to a common reference frame. Since this

equipment is designed to measured small legs it may also

prove useful for small mechanical mechanisms.

No matter what mechanism is being measured, be it

biological or mechanical, all joint axis positions are

measured with the same accuracy. The measurement accuracy

of joint axis orientations, however, varies with effective

alignment length and joint range-of-motion. For very small

coxa segment, the maximum calculated orientation error was

2.9° while the longer femur axis error was only 0.64°. The

coxa error had a large influence on error when translated to

the foot while that of the femur was small in comparison.

In chapter 5, a method was developed for evaluating the

accuracy of parameters computed from measurement.
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Measurement errors were represented as dimensional errors in

position and orientation of each joint axis. The boundary

of these errors, the error box and error cone, were

translated to the foot resulting in a volume surrounding the

foot position. The size of the error is an indication of

the accuracy of the computed model parameters. For small

mechanical manipulators measured with this method, the foot

position errors can be used to characterize the positioning

accuracy of the mechanism. It can help locate regions and

directions where positioning accuracy is increased.

The method not only opens doors but also raises

interesting questions. Such as, what precipitates changes

in shape of the error surrounding the foot? This knowledge

could aid in the design of a mechanism to optimize its

positioning precision in a specific direction.

Another question is, how can foot position error be

used in motion planning? Foot placement of walking machines

can be critical when attempting to avoid obstacles or

traversing narrow beams. Foot locations where the error

surrounding it is great may not be acceptable options.

Finally, when modeling a small mechanism, parameters

from several different types of models can be determined

using the measuring technique and equipment developed for

arthropod legs. With this in mind, is any one model,

determined from measurements, more accurate than another for

analyzing position, motion or force transmission? The
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method used for analyzing foot position error might offer a

clue for answering this question.

To begin with, errors in measurement can be represented

as dimensional errors of a mechanism. These are errors in

the position of a joint (error box) and errors in the

orientation of a joint axis (error cone). A procedure for

translating these errors to the foot has been presented.

The procedure was demonstrated using the A-model of a beetle

leg. It resulted in a graphical view of the volume of error

surrounding a foot position.

The error volume around the foot is a result of

superposing the error contributions of each error box and

each error cone of the individual joints. An error box has

its center at the joint and four of its edges are aligned

with the joint axis. The error cone has its vertex at any

point within the error box and its center axis is parallel

to the joint axis. After translating an error box to the

foot, the box changes in size and shape depending on the

position of the foot. The error cone translated to the foot

is a surface bounded by a closed line roughly the shape of

an ellipse. Combining boxes and cones results in a volume.

Now consider what these errors may mean for a D-H

model. After a joint is aligned for measurement, its

measured coordinate positions and orientations are

determined all with respect to frame p. The measurement

parameters are used to transform the joint axis and its
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position into the reference frame s. The position and

orientation of the joint axis in this frame are dependent on

measurement parameters x, y, p and a but not on z.

Measurement parameter z determines only the location of the

joint. The D-H model disregards the position of the joint

and its parameters are dependent only on position and

orientation of joint axes. Having the ability to define a

line's position and orientation with just four parameters

(a,a,d,e) was the basic idea on which the D-H model was

developed. Since measurement z has no effect on joint axis

position and orientation, it could have any value and not

affect the parameter values of the D-H model.

As opposed to the error box used with the A-model, the

joint position errors of the D-H model may be represented

with just an "error square" eliminating the need to consider

errors in z measurement. The error squares and error cones

would not be represented on the D-H model itself but on the

S-model from which D-H model parameters are extracted (see

Fichter, Albright and Fichter, 1988). The position of the

joint frame's origin along the joint axis in the S-model is

arbitrary, again allowing any value of measurement-parameter

z. This could result in a more accurate method of analyzing

position errors of a leg mechanism, depending how joint

errors translate to the foot using the D-H model. If so,

then two models would be necessary to do an accurate study

of arthropod legs.
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APPENDIX A

DIFFERENTIAL APPROACH TO DETERMINING ERRORS

IN A-MODEL PARAMETERS

An approach taken to determine errors in A-model

parameters resulting from errors in measurements of a leg

was to calculate model-parameter differentials in terms of

measurement-parameter differentials. The model-parameter

differentials would then represent errors in the A-model

parameter errors. The four fixed parameters of the A-model

describing the shape of a leg segment, r, S, A, and n, are

extracted from the transformation matrix 'U11' as described

in the chapter 3 and expressed as

nx ox cx px

ny oy cy py
ill1+11 = (3.12)

nz oz cz pz

0 0 0 1

To simplify the problem at hand, the arbitrary parameter e

used to aid the extraction of model parameters will be

considered zero. The errors in determining 8 only influence

the joint range-of-motion results and do not effect the



165

determination of model parameters describing a leg segment's

shape. When A is zero, py in 4.1 also has a value of zero

and the A-model's four fixed parameters are related to only

five elements in this matrix; cx, cy,

elements are then expressed as

cz, px and pz. The

ri = atan2(-pz/px) (A.1)

si = px cos ri - pz sin ri or (px2

cy

pz2)112 (A.2)

Ai = atan2 (A.3)
cx sin r1 + cz cos ri

ni = atan2
cx cos r.

1
- cz sin r.

-cy sin Ai + cos Ai (cx sin ri + cz cos ri)

(A.4)

Next is to determine the differential of each parameter

in terms of the known matrix elements and their

differentials reflecting measurement errors. Each differen-

tial is dependent not only on element changes but also on

the shape of the link defined by r, s, A, and 1. The

resulting parameter differentials can be expressed as

follows.

- dpx sin r1 - dpz cos ri
dri = (A.5)

Si 1

dsi = dpx cos ri - dpz sin r1 (A.6)
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dA1 = [dcx sin ri sin Ai + dcy cos /Ai + dcz COS Ti sin Ai

- sin Ai sin fli(dpx sin ri + dpz cos ri)/si ] /cos fli

(A.7)

dfli = dcx (cos ri cos Ili - sin ri cos Ai sin Ili)

+ dcy (sin Ai sin ni)

- dcz (sin ri cos Ili + cos ri cos Ai sin fli)

+ cos Ai (dpx sin ri + dpz cos ri)/si (A.8)

where the prefix d indicates the differential.

The elements px and pz locate the origin of frame i+1

with respect to frame i. The elements cx, cy and cz are the

direction cosines of the zol coordinate axis with respect to

frame i. These five elements are themselves functions of

ten measurement parameters; Pxi, Pyi, Pzi, ai, pi, Pxol, Pyol,

Pzol, aol and poi, plus the arbitrary angle 6n. The five

elements are related to the measurements as follows.

px = -Pxicon - PyisSfi

+ Px0.1(c6n(c/3icpoic(ao1 - ad + spispoi)

- s6ficPois(a1 +1 - a1) ] + Pyi+1 (c6ficpis(a1 +1 - ad

+ s6fic(a1
+1

- ai)]

+ PZi+i [C6fi (-CfiiSfti+iC (ai+i - ai) + spicpoi)

+ s6fispois (aoi -- cri) ] (A.9)
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pz = -Pzi - Pxio [sOicflioc (aio - al ) - cflisflio ]

PY1+1[SPiCai+1 ai) ]

+ PZio [ SPiSI3i0C(Crio - a1) + c/3icfli+1] (A.10)

CX = -c6fi(cflisflioc(aw - (JO - spicflio)

+ s6fis/3ios (ai+i - a; )

cy = s6fi(cPispioc(aio - (TO - spicflio)

(A.11)

+ c6fis/3ios(aio - a1) (A.12)

cz = sflisf3ioc(aio - ai) + c/3icpio (A.13)

where

cf31 = cosfli, sf3; = sinf3i, ccri = cosai, sal = Sinai, c8f; =

cos6fi, and sof; = sin6f;

To complete this error evaluation approach, the

differentials of A.9 to A.13 must be determined. However,

an analytical error analysis of this nature becomes

difficult to interpret when using the above expressions due

to their obvious complexity and to the dependence some

measurements have on others. For instance, the magnitude of

the error in ai is dependent on the value of fli when

aligning joint axis i. If P; =0° then ai can range in value

from 0° to 360° and not change the resulting alignment. If

fli=90° then fli and ai have a comparable effect on the



168

alignment the joint axis. In addition, because the origin

of a joint coordinate frame is measured with respect to the

positioner frame and the arthropod specimen is rigidly

attached the stage frame, the axis alignment errors in fli

and ai are reflected in the relative position measurements

Pzi. This dependency is dramatized in the case

where zi is parallel but not coincident to z,. Because ai

can have any value in this axis orientation, Pxi and Pyi also

have an infinite number of possible values. All would exist

on a circle lying on a plane perpendicular to the zi axis

whose center is zi and whose radius is equal to the

perpendicular distance between zi and zs.

The difficulties of this approach stem from trying to

analyze expressions which relate one joint frame to another.



169

APPENDIX B

ANALYTIC INVERSE KINEMATIC SOLUTION TO 3-LINK MANIPULATOR

DESCRIBED BY THE A-MODEL

The beetle leg is modeled as a spatial three-link

manipulator connected by revolute joints and has an analytic

inverse kinematic solution. Cimino and Pennock (1986)

presented an analytic solution to the first three joint

displacements of a six-revolute decoupled manipulator with a

general geometry. Using D-H parameters to describe the

manipulator, they formulated 3x3 dual transformation

matrices for use in expressing the orientation and position

of the wrist joint frame relative to a base frame. Each

dual transformation matrix A defines the backward

transformation from one frame on the linkage to its

preceding frame. A is written as A = A + A° where A

expresses the relative orientation of the frames and A°

their relative position. From these matrices, three

nonlinear equations in terms of the first three joint

displacements were determined. By eliminating the second

and third joint displacements and making various

substitutions, a fourth order polynomial as a function of

the first joint displacement was found. Knowing the

solution to joint displacement one, joint displacement 2

then 3 could be solved.
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For the three-link darkling beetle leg, only position

of the origin of frame uvw4 (i.e. the foot position) is

considered here in an inverse kinematic solution. Given the

foot position of a beetle leg, Yoon-Su Baek (unpublished),

O.S.U. Ph.D candidate, found an analytic inverse kinematic

solution to the three joint displacements. He obtained

three nonlinear equations as functions of the three joint

angles from 4x4 transformation matrices formulated by using

a D-H model of the leg. In the elimination of variables,

Baek's solution does not use the dual matrix concept of

Cimino and Pennock but still results in a 4th order

polynomial in terms of one joint displacement.

The D-H model contains two orientation parameters,

twist and joint variable, and two displacement parameters,

link length and link offset, which make it well suited to an

inverse kinematic solution formulated from 3x3 dual

transformation matrices. Since the A-model description does

not have this same feature, the following solution uses the

approach taken by Baek. It should be noted that the inverse

solution using D-H model parameters is less complex than the

following routine due to its simpler transformation matrix.

If D-H parameters are available, then it may be advisable to

use the D-H model solution. Due to the complexity of the A-

model, much of the equation reduction in following solution

was accomplished with aid of MACSYMA, a symbolic equation

solver software package.
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Coordinate frames are attached to each joint axis of

the beetle (see Figure 2.5) as described in chapter 2

section 4. The position of the foot at the origin of frame

4 is described relative to the base frame (i.e. body frame

of the beetle) by b14 and is expressed as

b."
c-4 = (B.1)

where 4P4 is the foot position relative to frame uvw4 and A

is the transformation matrix relating the frame uvw4 to the

body frame. Since position 4P4 is coincident to the origin

of frame uvw4 it is expressed as column matrix 4P4 =

[0,0,0,1]T. From equation 2.1, A is defined in terms of the

pair and shape matrices of each link as

A = B fi Si #2 82 43 83 (B.2)

where B is the transformation matrix defined by equation

(2.4).

Substituting equation (B.2) into (B.1) and pre-

multiplying both sides of the equation by B-1, the position

of the foot relative to frame uvw1, 1P4, is defined in terms

of the joint displacements 1, 2 and 3.

1P4 = #i Si 12 82 43 83 4P4 (B.3)



The pair matrix * and shape matrix S are defined by

transformations (2.5) and (2.3) respectively. Trans-

formation matrix 2.3 is rewritten here as

Si =

where

1
ax1 . bx1 cx1 px1

ay1 by1 cy1 0

az- bz1 cz1 pzi
1 1

0 0 0 1

ax1 = cricfli - sricAislii

ay; = sihisfli

az1 = -sricfli - cricilisfli

bx1 = STiSili

by1 = Ci.ii

bz1 = CriSili

CXi = crisfli + sricilicfli

cy1 = -sgicili

cz1 = -srisfli + cricihicili

px1 = cr1s1

pzi = -STiSi

172

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

and where i = 1, 2 and 3.

Position 1P4 is also expressed as a known quantity by

the column matrix 1P4
(lpx, 1py, 1pz .]H.

j and is determined

from the expression



1 B4 = B -
1 bp

4
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(B.16)

By substituting equations (2.5) and (B.4) into (B.3) and

then expanding, three nonlinear equations are obtained which

relate the three coordinates of 1P4 in terms of the three

joint displacements.

1Px = El cos 01 - E2 sin 01

1Py = El sin 01 + E2 cos 01

1Pz = E3

where

El = ax1 (Fl cos 02 - F2 sin 02)

+ bx1 (F1 sin 02 + F2 cos 02) + cx1 F3 + px1 (B.20)

E2 = ay, (Fl cos 02 - F2 sin 02)

+ by1 (Fl sin 02 + F2 cos 02) + cyl F3 (B.21)

E3 = az1 (F1 cos 02 - F2 sin 02)

+ bz1 (F1 sin 02 + F2 cos 02) + cz1 F3 + pz1 (B.22)

and where

Fl = axe px3 cos 03 + bx2 px3 sin 03 + cx2 pz3 + px2
(B.23)

F2 = aye px3 cos 03 + by2 px3 sin 03 + cy2 pz3
(B.24)

F3 = az2 px3 cos 03 + bz2 px3 sin 03 + cz2 pz3 + pz2
(B.25)



Joint displacement 1 is eliminated by squaring then

adding equations (B.17) - (B.19). After some manipulation

this yields:

Psqr = Kl + K2 sin 03 + K3 cos 03

where

Psqr 1px2
1p172

1pz2

and

Ki = Ni + M2 sin 02 + M3 cos 02

K2 = M4 + M5 sin 02 + M6 cos 02

K3 = M7 + M8 sin 02 + M9 cos 02

and where

M1 = S 2 + S22 + S32 - 2 s
1

sf21 sr
2

S2
1
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(B.26)

(B.27)

(B.28)

(B.29)

(B.30)
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M8 = -2 s1 cfl1 sg2 sf12 cY3 s3

M9 = -2 s1 cfli cY3 s3 ( -cY2 cf12 + sY2 cg2 sfl2)

The s and c followed by angles Y, g, and n are the sin and

cos of these angles respectively.

The z coordinate of the foot position with respect to

frame uvw1 is redefined as

'Pz = K4 + K5 sin 03 + K6 cos 03

where

K4 = Ri + R2 sin 02 + R3 cos 02

K5 = R4 + R5 sin 02 + R6 cos 02

K6 = R7 + R8 sin 02 + R9 cos 02

and where

Ri = cz1 (cz2 pz3 + pz2) + pz1

R2 = bz1 (cx2 pz3 + px2) - az1 cy2 pz3

R3 = azi (cx2 pz3 + px2) + bz1 cy2 pz3

R4 = cz1 bz2 px3

R5 = (bz1 bx2 - azi by2) px3

R6 = (bz1 by2 + az1 bx2) px3

(B. 31)

(B.32)

(B.33)

(B.34)
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R7 = cz1 az2 px3

R8 = (bz1 ax2 - az1 ay2) px3

R9 = (bz1 ay2 + az1 ax2) px3

Solving equations (B.26) and (B.31) simultaneously for sin

03 and cos 03 we find

sin 01 = (K6 Psqr - K6 Kl - K3 1Pz + K3 K4)/(K2 K6 - K3 K5)

(B.35)

cos 03 = (-K5 Psqr + K5 Ki + K2 1Pz - K2 K4)/(K2 K6 - K3 K5)

(B.36)

Equations (B.35) and (B.36) are now squared and added to

eliminate 03. Substituting (B.28) - (B.30) and (B.32) -

(B.34) into this sum with extensive rearrangement we get

N1 s2p2 + N2 c2cp2 + N3 scp2 c02 + N4 scp2 + N5 c02 + N6 = 0

(B.37)

where

N1 = Q12
-

Q42 -
Q72

N2 = Q22 - Q5 2 - Q8 2

N3 = 2 (Q1 Q2 - Q4 Q5 - Q7 Q8)

N4 = 2 (Ql Q3 - Q4 Q6 - Q7 Q9)

N5 = 2 (Q2 Q3 - Q5 Q6 - Q8 Q9)



N6 = Q3 2 - Q62 - Q9 2

and where

Ql = M4 R8 + M5 R7 - M7 R5 - M8 R4

Q2 = M4 R9 + M6 R7 - M7 R6 - M9 R4

Q3 = M5 R8 + M4 R7 - M8 R5 - M7 R4

Q4 = R8 Psqr - Ml R8 - M2 R7 + M7 R2 + M8 RI - 1Pz M8

Q5 = R9 Psqr - M1 R9 - M3 R7 + M7 R3 + M9 Ri - 1Pz M9

Q6 = R7 Psqr - M2 R8 - M1 R7 + M8 R2 + M7 RI - 1Pz M7

Q7 = -R5 Psqr + Ml R5 + M2 R4 - M4 R2 - M5 RI + 1Pz M5

Q8 = -R6 Psqr + M1 R6 + M3 R4 - M4 R3 - M6 R1 + 1Pz M6

Q9 = -R4 Psqr + M2 R5 + M1 R4 - M5 R2 - M4 Ri + 1Pz M4

Finally, substituting the half-angle relationships

2T 1 - T2

sin 02 = and cos 02 -
1 + T2 1 + T2

where T = tan 02/2, into equation (B.37), we get

T4 + Cl T3 + C2 T2 + C3 T + C4 = 0

where

Cl = 2 (N4 - N3)/(N6 - N5 + N2)

C2 = 2 (N6 - N2 + 2 N1)/(N6 - N5 + N2)

C3 = 2 (N4 + N3)/(N6 - N5 + N2)

C4 = (N6 + N5 + N2/(N6 - N5 + N2)
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(B.38)

(B.39)
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The quartic equation (B.39) has four possible solutions

which may all be real, complex or a combination of the two.

The real solutions of T are substituted back into (B.38)

from which 02 is determined by

02 = atan2 (sin 02, cos 02) (B.40)

The solutions of joint displacement 02 are used in equations

(B.28) - (B.30) and (B.32) - (B.34) which are then

substituted into (B.35) and (B.36). Joint displacement 03

is solved from

03 = atan2 (sin 03, cos 03) (B.41)

The solutions of 03 are substituted into equations (B.20) -

(B.25). Solving (B.17) and (B.18) for sin 01 and cos 01

then making the appropriate substitutions of (B.20) - (B.25)

into these equations, 01 is found from

01 = atan2 (sin 01, cos 00

A valid set of joint displacement solutions exists if

OL1 5 01 5 Owl, 01.2 5 02 5 0142 and 0L3 5. 03 5 0H3

(B.42)

(B.43)


