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TRANSIENT HEAT AND MASS TRANSFER IN SOILS IN THE
VICINITY OF HEATED, POROUS PIPES

I. INTRODUCTION

General Background

Due to the increasing demand for electrical energy, it has been

estimated that the generating capacity of the United States will have to

double every ten years. Since most of this increase in generating

capacity will be from thermal plants, and since the efficiency of such

plants is limited (33 to 40%), the amount of heat rejected to the

environment will increase greatly. The environmental impact of this

rejected heat has been of increasing concern. Introduction of warm

condenser cooling water to rivers has already been limited. Use of

the ocean as a sink for the rejected heat has been considered, but

licensing procedures require extensive study of the effect and dispersal

of this heat. Another method of rejecting the "waste heat" is through

the use of a cooling tower. While all of these methods provide an

efficient means of dispersing the waste heat, none offers any bene-

ficial use of the waste heat itself.

Many beneficial uses of the waste heat have been suggested.

Among these are warming of lakes for recreational purposes, warm-

ing of ponds for commercial rearing of fish or algae, industrial,

commercial and residential heating, and heating for agricultural
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purposes, etc. Among the agricultural uses are irrigation and

heating of the crop environment. This heating and irrigation can be

accomplished in greenhouses or in open fields. Heating of the sur-

rounding air has been reported to increase crop yields by fifty per-

cent, while heating the soil may result in another fifty percent

increase (1). These increases are due to the enhanced growing con-

ditions and to the prolonged growing period possible with warmer crop

surroundings.

Heating and irrigation of the soil were proposed to be

accomplished by means of a system of parallel porous pipes buried at

uniform spacing and depth (1). Subsurface heating and irrigation is

more expensive than surface heating and irrigation because of the cost

of installing the subsurface piping system. However, subsurface

irrigation and heating is more beneficial for several reasons. First

is the fact that surface heating would result in little warming of the

soil, while most of the heat would be lost to the atmosphere. Surface

irrigation with warm water would result in high evaporation rates and,

consequentially, large water losses. Subsurface heating and irriga-

tion result in much smaller water loss and much greater heating of

the so il.

Since the use of a soil warming and irrigation system would be

on an economic basis, it would be desired to optimize the benefit of

the system. Since a major part of the cost of a soil warming and
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irrigation system is the cost of installation, it is desirable to find an

optimum pipe spacing and depth before the system is installed.

Heat Transfer in Soils--Background

In order to optimize the pipe spacing and depth, one must find

the effects of the subsurface system of pipes. One method of evalua-

ting the effects of a soil warming and irrigation system is to find the

temperature and moisture content distributions in the vicinity of the

pipes by analytical means. A classic example of past attempts to find

the temperature distribution due to buried cables is found in many

heat transfer texts. In the solution of this example it is assumed that

the thermal conductivity is constant, that the soil surface is at con-

stant temperature, that the soil is a semi-infinite solid, and that

convection in the soil is negligible (2, for an example). The tempera-

ture due to a source in an infinite solid at position y = -h is

T = C
27X

ln((x2+(h+y)2 )1 /2)
,

while the temperature due to a heat sink at position y = +h is

T = C + a-- ln((x2
+(h-y) 2)1/2)

.
2TrX

The temperature due to the presence of a source and sink located at

-h and +h respectively is the sum of these two temperatures and is
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T = T + In [x
2

+(h-Y)
2

]s 4TrX x +(h+y) 2

where Ts is the temperature at position y = 0. This superposition

is referred to as the method of images. The temperature at x = 0

and y = -h+R is the temperature of the surface of a pipe of radius

R. It is denoted by To and is T
o

- T
s

= ln(2h/R -1). The heat
2Trk

flux, q, may be eliminated and the temperature written as

lnT -Ts x2+(h+y)
2

T -T 2 ln(2h/R-1)
o s

This equation describes the temperature distribution of a semi-

infinite solid whose surface is maintained at T and contains a pipe

at a position of x = 0 and y = -h, where the pipe surface tem-

perature is maintained at To. The solution is valid for steady-state

and for constant thermal conductivity only.

Kendricks and Havens (3) have utilized this approach and super-

position to obtain temperature distributions for a large number of

cables buried at a uniform spacing and depth. Kendricks and Havens

expressed the temperature as

T-T 0.5 E In [(nS+x)
2 +(h-y)2]

s n=-N (nS+x)z+(h+y)2
T -T

o s
N

(nS) 2 +(2h-R)2.1'
ln(2h/R-1) + In

2 2
n=1 (nS) +R
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where S is the pipe spacing and h is the pipe depth. While this

equation may given an indication of the heating effect of a system of

buried cables, it is felt that it has serious shortcomings. Among

these shortcomings are the assumption of constant thermal conduc-

tivity, neglecting convection in the soil, the assumption of steady-

state, and the lack of a method for specifying the surface temperature.

In order to adequately assess the effects of a soil warming and

irrigation system, it was felt that combined heat and mass transfer in

soils must be analyzed, and that heat and mass transfer at the soil

surface must be considered. In order to analyze the irrigation effects

and to specify the convective heat transfer and evaporation in the soil,

equations governing the mass fluxes had to be developed.

The Mass Flux Equations--Background

In order to determine mass flux, a model governing flow in the

particular media was developed. For many fluids the Newtonian

model suffices. The Newtonian model assumes the shear stress to be

proportional to the fluid shear rates. Other models, such as the

Powell-Eyring or the power law, express fluid stress as non-linear

functions of shear rate. The model for the shear stress is substituted

into the momentum equation and a partial differential equation with

velocity as the dependent variable is obtained. The fluid flux may then

be found for a given set of boundary conditions,
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In contrast to fluid flow, mass flux in porous media is

expressed in terms of the gradients of temperature and moisture con-

tent, or is expressed in terms of the gradient of the total potential of

the liquid in the porous media. This treatment is necessary because

the structure of porous media is normally too complex to describe

mathematically. To apply such complex boundary conditions to the

momentum equation would be extremely difficult, if not impossible.

Instead, a semi-empirical approach is used, where the constant of

proportionality is found experimentally. When the gradient of potential

is used, the constant is referred to as the hydraulic conductivity.

In the field of liquid transfer in porous media, much work has

been done for isothermal, saturated soils. For these conditions the

governing equation is simply the Laplace equation with the potential the

dependent variable. For unsaturated media, the hydraulic conductivity

is a function of moisture content. The continuity equation therefore

becomes an implicit equation with moisture content as the dependent

variable. Non-isothermal conditions are more difficult because the

continuity equation for liquid transfer is then coupled to the energy

equation.

Since the transfer of vapor through the soil is a diffusion process

in the soil pores, vapor flux has been modeled by the diffusion equa-

tion modified to include the presence of the porous media and the

liquid moisture. Since the vapor density is dependent on temperature
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and moisture content, the vapor, liquid and heat transfer equations

are all coupled.

One approach to mass transfer in porous media, based on

classical liquid and vapor flux relationships, has been developed by

Philip and de Vries (4). This approach utilizes Darcy's law for

liquid flux, which is

of = -pwkv4).

A diffusion equation was used for vapor flux and is

q = -Dvp .
v vo

In order to express the flux in terms of gradients of moisture content

and temperature, Philip and de Vries transformed the equations to the

form,

where

and

--41 = DTivT - D
Ai

ve pwk i ,

D
1

= p k( ) ,
T w aT e

D = p k( )
O. w a0 T

These equations for the liquid and vapor fluxes were then combined

and substituted into the continuity equation for total moisture trans-

port. Subsequently, de Vries (5) utilized the equations for liquid and
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vapor fluxes and separate continuity equations for the liquid and vapor

phases to develop equations for evaporation rate and liquid moisture

content. He then developed an energy equation utilizing the flux

equations. Local thermodynamic equilibrium was then assumed to

obtain an expression for vapor density in terms of the potential and

temperature. The equations so developed formed a set of equations

from which temperature and moisture content could be obtained. The

equations were then simplified by de Vries to correspond to a steady-

state, one-dimensional case in which the gradients of temperature

and moisture content were expressed as functions of the diffusion

coefficients and the heat and mass fluxes.

Fritton et al. (6), using measured diffusion coefficients, com-

pared the results of the simplified equations of Philip and de Vries

to experimental results for soil exposed to several surface conditions.

To obtain agreement between experimental and theoretical results the

authors divided the measured water diffusivity by factors of 35 and 10.

The authors attributed this discrepancy to hysteresis in the water

tension curve and to the temperature dependence of the hydraulic

conductivity.

A second approach to heat and mass transfer in soils has been

developed from the theory of the thermodynamics of irreversible

processes. Cary and Taylor (7, 8) developed equations using this

approach for the flux of heat and moisture in saturated and
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unsaturated soils, and have experimentally found the phenomenological

coefficients for various soils. Cary (9) extended these experiments

and equations to liquid, vapor and heat transfer in soils. The flux

equations were not, however, applied to continuity or energy equa-

tions.

The equations of Philip and de Vries and those of Cary and

Taylor are expressed as functions of the gradient of moisture content

and temperature, are very complex and are not readily solved.

Furthermore, it is felt that the discrepancies between theory and

experiment mentioned by Fritton may have been caused by inappropri-

ate attempts to simplify the one-dimensional equations of Philip and

de Vries. (Fritton assumed constant temperature in his calculations. )

Present Investigation

The main objective of this investigation was to develop a

numerical method for the solution of the transient equations governing

combined heat and mass transfer in soils. The mass fluxes were

expressed in terms of the gradient of potential for liquid flux and in

terms of the gradient of density for vapor flux. The data for suction

potential and for hydraulic conductivity used in this investigation were

measured values for a particular sandy soil and varied with moisture

content. An experiment was modeled by the computer program to

verify its validity.
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The purpose of the development of the computer program was to

model a subsurface heating and irrigation system in order to be able

to optimize the spacing and depth of the pipes comprising the system.

Temperature and moisture content distributions are presented for

several pipe spacings and depths. Some possible optimization

criteria are also calculated and presented.

Although the equations governing heat and mass transfer in soils

were developed for the general case, the scope of this investigation

was limited to the case of two-dimensional heat and mass transfer by

neglecting axial gradients. Axial temperature gradients could be

made small by large flow rates in the heating pipe. Axial moisture

content gradients are expected to be small because the system would

be designed to provide uniform irrigation rates along the length of the

pipe. A system that did not irrigate uniformly along the pipe would

cause high and low moisture content in the soil and would therefore be

undesirable. Although there would be many difficulties in developing

a piping mechanism that could carry large flow rates while allowing a

reasonably constant water loss along its length, such a system was

assumed feasible. It was then thought that neglecting the axial heat

and mass transfer would induce little error because the axial tem-

perature and moisture content gradients were expected to be small.

Another simplification has been to neglect the absorption of

moisture by plant roots. The inclusion of this factor would present no
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great difficulty in the development of the computer program.

However, the development of a model for rate of absorbtion of

moisture as a function of position in the soil or the measurement of

the absorbtion rates was beyond the scope of this investigation. The

effect of foliage above the surface was also neglected. The effect of

both these simplifications is to increase the moisture loss at the

surface instead of distributing the loss over the root zone.
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II. EQUATIONS AND SOLUTION METHOD

Development of Equations

Liquid flux in porous media can be expressed using Darcy's

law (10) as

NOM

q = -p kv4) , (1)

where pw is the density of water, q.12 is the liquid flux, k is

the hydraulic conductivity of the soil, and 4 is the total potential

of the liquid in the soil. The total potential, 4, is the sum of the

gravitational and suction potentials, z and 4 respectively. The

suction potential is a function of the surface tension of water, the

moisture content of the soil, and the size and shape distribution of the

soil particles. The hydraulic conductivity of the soil is similarly

dependent on the viscosity of water, the moisture content of the soil

and the size and shape distribution of the soil particles. The poten-

tial is therefore a measured property of a particular soil and is

dependent on moisture content and temperature. The hydraulic con-

ductivity is also a measured property and is dependent on moisture

content and temperature. The temperature dependence of hydraulic

conductivity has been neglected as being less important the the

dependence of moisture content. Although inclusion of the temperature
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dependence of hydraulic conductivity was desired, the empirical

formula used for hydraulic conductivity did not provide for tempera-

ture dependence.

Vapor flux has been treated as a diffusion process. The diffu-

sion relationship is

where

qv = -Dvp ,vo

pvo

(2)

is the vapor density in the soil pore, and D is the

vapor diffusivity. Hanks (11) expressed vapor flux for constant

temperature as

Da M apv
qx = -a(S-0)

RT P-Pv ax

which for an ideal gas is equivalent to

qx
aPvo

-a(S-0)Da (3)

where S is the soil porosity, cm 3 /cm3,
0 is the soil moisture

content, cm3 /cm3,
Da is the diffusivity of vapor in air, and a

is the tortuosity. Due to the low vapor pressures considered (P sat
was less than 0.065 atm. ), the term, P/(P-Pv), was neglected.

Hanks set a equal to 0.66 and calculated the ratio of measured to

calculated flow rates for dry soils. His ratios were consistently
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higher than unity. Hanks' calculations for the results of other authors

yielded ratios for moist soils as high as 11.0. Due to the lack of

data for the particular soil modeled and to the uncertainty in the

results of the formula, the tortuosity, a, was assumed in this

investigation to be unity. According to Hanks the vapor diffusivity

in air is

TDa = 0.239 ( )
2.3

P

Po

281

where Po is the standard atmospheris pressure. For P = P,
o

comparison of Equations 2 and 3 yields

and

D = 0.239(S-0)(T/281)2.3

The continuity equations for the vapor and liquid phases are

ap

at
vE = + vqv ,

(4)

(5)

-E = -57 + vcii2 , (6)

where E is the evaporation rate, g/cm3-sec. The vapor density is

equal to the product of the density in a pore and the pore fraction.

Therefore,

pv. = (S-0)pv0 .



Similarly the liquid density is

P we

Substitution of the above two equations into Equations 5 and 6 yields

after expansion

and

ae ap
voE = -pvo at + (s-e) at + v qv ,

ae
-E Pw at +

(7)

(8)

15

Since p vo
p , the first term on the right side of Equation 7 was

neglected. After substitution for the fluxes, Equations 7 and 8 are

rewritten as

ap
voE = (5-0) - vDvp (9)at vo

ae-E = pw pwv kv4) (10)

The energy equation was written as

vxvT = a (p U +p U +p U +4))at 11 .v soil

+ v (q/h12 +qvhv)

where T is the temperature, X is the thermal conductivity, U

is the internal energy, and h is the enthalpy. Since the potential,
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(I), is small for the range of moisture content considered, it was

neglected. Expanding Equation 11, substituting Equations 9 and 10 and

the relations, hfg = hv hf, and U = h P/p, results in

au auv au .

+ p + hfg
I

E + q vhvXvT = p + pv ati at soil at

apv
+ q vh P /p

v v vv at
apf

- P /p at
(12)

The last two terms on the right side of Equation 12 represent

mechanical work and were neglected because of their small magnitude.

Substitution for h and U in terms of the specific heats and sub-

stitution for the liquid density yields

VXVT = (p c 0+p soil vc +pvcv ) at
aT

w v.e soil

+ ql vT + q c VT + hfgE
v

pv

(13)

After substitution for the fluxes, the terms, p
v

c
v

and
_ _ v

c Dvp VT are neglected because p c << p c . Equation 13
pv vo v v

v
w v/

then becomes

aTvxvT = (p c 0+P cw v.e v atsoil

+ hfgE - p c kV4) VT
1312

(14)
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In order to determine vapor density as a function of moisture

content and temperature, local thermodynamic equilibrium is

assumed. The Gibbs' free energy of the vapor is

G
v

= G
o

+ RT ln(P
v

/Psat) ,

where Go is the Gibbs' free energy of pure water at the tempera-

ture of the soil and Psat is the saturated vapor pressure at the

same temperature. The Gibbs' free energy of the liquid in the soil is

G/ =Go +fig.

Since the two phases are in equilibrium, Gv = Gf , and

or

RT ln(P
v /Peat) = Lpg,

Pv
= eLpgiRT .

Psat

Assuming the vapor to be an ideal gas, P = p RT. Since the tem-

perature at a point is the same for the liquid and vapor phases,

Pip = constant, and

p = p eqig
/RT

vo sat (15)
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Non-Dimensional Equations

In order to non-dimensionalize Equations 9, 10, 14, and 15, the

following dimensionless variables were defined.

= DAt/Az

El = EA tipw

hfg = hfg ic A T

= kAt/Az

R'=RAT/gAz

T'=T/AT

2

P Pvo /13w

= p c /p csoil soil soil

P sat = Pv /pw
_ sat

= vAz

X' = XAt/p c AZ2w

= Lti/Az , (16)

where Az, At and AT are arbitrary increments of length, time

and temperature, respectively.

Substitution into Equations 9 and 10 and multiplication by

At /pw yields

aE' = (S-0) P - 50D'513,at (17)



and

ae-E' = - 6104+i) .at

Substituting into Equation 15 and multipliying by

yields

Pt /p c ATw of

= (0+13c ) +h' E' - k'(-64,1+ O JT'soil 8-1- fg

Equation 16 becomes

eilil/RITI
sat

Finite Difference Equations

19

(18)

(19)

(20)

Due to the non-linear nature of Equations 17, 18, 19 and 20,

and the fact that they are coupled, no attempt was made to obtain a

closed form solution. Instead, a numerical method was employed.

This method consisted of approximating the temperature and moisture

content distributions by discrete values at a set of grid points. The

differential equations were then approximated by finite difference

equations utilizing the discrete values.

A rectangular coordinate system was chosen with z the

vertical and y the horizontal coordinates. In order to express the

equations in finite difference form, the coordinates, z and y,

were expressed as



z = (m-1)Az

y = (n-1)Ay

In order to develop the finite difference equations, the spacial

derivatives were written using a central difference scheme whereby

or

aT
[T 1 -T ] /oz,

2
az - m+- , n n

1..3

1 -0 IPAy.ay m, n+-z- m,

For the time derivatives a backward difference scheme was used

whereby

aT
T

-Tat 1T+1, y, z m, n m, n

J.

where T denotes the temperature at the time, -r+1, and where

all spacial derivatives were written at the incremented time, T+1.

Using the above approach, Equation 17 is expressed in finite differ-

ence form as

Em, n = (S-em, n)(pm, n-pm, n) D
n(3m+1, n- Pm, n)

+ 1

2 *
(P

*

n(Pm, n -Pm-1, n) - r Dm, n+-z m, n+1 Pm, n )

*+ r Dm, 1(Pm, n Pm, n-1)

20

(21a)



where all quantities are dimensionless, r = Az/Ay and the prime

superscript has been deleted. After solving for O, the finitem, n

difference form of Equation 18 is

0 0 E +k (
`P

+ 1 )m,n m,n m,n m+z,n m+1,n m, n

2
k 1 (LP (Lpm--2-, n m, n n+1)

+ r km, rrq m, n+1 `Pm, n)

2
r km, (LPm, n `Pm, n-1)

21

(22a)

Due to the dependence of hydraulic conductivity, k, and suction

potential, on the moisture content, 0, Equation 22 was found

to be unstable. It was necessary, therefore, to utilize an iterative

scheme to obtain a value of O which would satisfy Equation 22.m, n

The scheme used is as follows: given an estimate of moisture con-

tent, 0, calculate a predicted value, 0 , with Equation 22; the

next estimate, Oe, is then

ee + F 6 ;
p

iterate until Oe reaches a constant value. The values of F used

were found to depend on moisture content and were valid for the given

choice of A z and At only. Expressing Equation 19 in finite

difference form and solving for T yieldsm,n



Tm, n ) + hfg Em,
n

= [Tm, n(em, +Pcn soil

+ km, n(Pm+1, n-`Pm-1, n+2)(Tm+1, n-Tm-1,n)/4

2 * *
+ r k ) /4m, n+1 Lijm, n-1 )(Tm,

n+1 -Tm, n-1

+ X 1m+f,nT +m+1,n Xm--2,n T m-1,n

2 * 2,
+ r km, n+l-Tm,n+1 + r Xm, Tm, n-11

22

(23a)

I .1. 2
1+ r X i]/ O +Pc + + + rm, n soil n Xm-f , n

Xm, m,

Boundary Conditions

In order to solve the partial differential equations describing

heat and mass transfer in soils, appropriate boundary conditions

must be specified. For the present investigation several types of

boundary conditions were used. The vertical boundaries were treated

by specifying insulated boundaries making use of symmetry. Sym-

metry arises from the assumption that a great many pipes are buried

at uniform spacing and depth. Since the conditions on either side of

the pipe are identical, there exists a vertical line of symmetry

passing through the centerline of the pipe. Another line of symmetry

is parallel to the first and lies midway between the pipes. Since no

flux passes through these lines of symmetry, they are equivalent to
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insulated boundaries. Inclusion of the insulated boundaries or lines

of symmetry in the finite difference equations was accomplished by

creating a set of false nodes lying outside the boundary. Assuming

the boundary to be at the grid index m, the temperature and

moisture contents at the false nodes at positions, m+1, are set

equal to the temperatures and moisture contents at position, m-1.

The gradients perpendicular to the boundary are then zero because

central difference approximations were used for the spacial deriva-

tives and because the gradient at the boundary is therefore approxi-

mated by the difference in two identical values. Since the insulated

boundaries or symmetrical boundaries are represented by the

gradients being zero perpendicular to the boundary, the false node

completely satisfies the boundary condition and no additional deriva-

tion is needed.

Two horizontal boundary conditions must be specified. One

must either specify the fluxes at the boundary or specify the tempera-

ture and moisture content at the boundary. An insulated lower

boundary was presumed for the test case and constant temperature

and moisture content were specified for the simulation of the soil

warming and irrigation system. The assumed constant temperature

boundary condition was 10 C at a depth of 1350 cm. Although this

assumption seems somewhat arbitrary, the temperature corresponds

to measured temperatures (12). Furthermore, it was thought that the
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assumption of constant temperature would be of minimal effect because

of the great depth at which it was assumed.

The third boundary condition for the moisture content was one

of saturation at a depth of 200 cm. It was chosen to represent a

typical water table level. No effort was made to verify the constant

moisture content boundary condition through use of the computer

program because it was felt that factors such as nearby lakes or

rivers and underlying rock strata would be of major importance in

determining the water table level. It was therefore felt that for

accurate modeling of soil warming and irrigation systems, the water

table level should be measured for the location of interest.

The fourth boundary condition specified was at the surface of

the soil. Since the temperature and moisture content could not be

assumed constant at the surface, the fluxes were specified in terms

of the surface temperature, the surface moisture content, the

atmospheric conditions, and the surface film coefficients. The fluxes

so specified were

qv = h
D

((3s Ts /Too -pop)

cif -mrain
4

=%eat o- ET + h(T
s -T

00
) Eqsolar - Eqatm ,

where the subscript, 00, denotes atmospheric conditions and the



subscript, s, denotes the surface condition, and qatm denotes
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the atmospheric radiation. The radiative heat fluxes were determined

from empirical formulas which were functions of the amount of cloud

cover, atmospheric temperature and relative humidity. The vapor

convective film coefficient was determined by modifying an empirical

formula for evaporation rate from a lake. The heat transfer film

coefficient was found by the analogy between heat and vapor transfer.

The empirical formulas for the radiative fluxes and the film coeffi-

cients are presented in Appendix I.

Equations 21, 22, and 23 were modified to include the boundary

conditions at the soil surface. Using a node height of Az/2 and

placing the node point on the surface resulted in the following modi-

fied equations for the surface.

.:: *
Em, n = (S-Om, n)( Pm, n-13m, n) + 211D(Rm, -Poo)

* * * 2+ 2D * * *
1 im-f, n(pm, n Pm-1, n) r Dm, n+-2(Rm, n+1 Pm, n)

2+ r Dm, n-i ( Rm, n pm, n-1)

0 = 0 E + 2m 2k i (LP -11i +1)m, n m, n m, n rain m--i, n m, n m-1, n

2
k

* *
1 (4J

,
1(4)

*
+ r

m, n+-E m, n+1-4'rn ) r2
k, nm, n--z m, n-4m, n-1)

(21b)

(22b)
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n +1 -4'm, n-1)(Tm, n+1 Trn, n-1)/4
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The previous difference equations, having been written using a

backward difference scheme for time derivatives, are implicit in form

and must be solved by iterative methods. In this investigation, the

steady-state term of the evaporation rate was first calculated from

Equations 20 and 21. The temperatures and transient term of the

evaporation rate were then calculated. The moisture contents were

then obtained from Equations 22. The entire process was then repeated

until the temperature and moisture content arrays converged within a

specified amount of error. Calculation was then initiated for the next

time step. The computer program so developed is listed in Appendix

III with sample input data.
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III. RESULTS

Test Case

The computer program was run for the case of an insulated box

of soil open to the atmosphere at the top to verify the computational

method and check the validity of the equations used. The box was

assumed to be filled with a sandy soil and exposed to the atmosphere

at the surface. A warm, porous pipe was placed on one wall at a

depth of 32 cm. The particular configuration chosen represented an

experiment conducted by Sepaskhah (13). Selected results of the

experiment appear in Figures I and 2 as underlined values. In order

to agree with the experiment, the pipe temperature was chosen to be

29 C, the moisture content of the soil adjacent to the pipe was

0.27 cm3/cm 3, and the atmospheric conditions were 22.7 C and 70%

relative humidity. For the test case radiation at the surface was

neglected due to the small temperature difference between the soil

surface and the surroundings. The node size for the test case was

4.0 cm by 4.0 cm. The computer program was run until the tem-

peratures and moisture contents converged to the steady-state values.

The results of this case are presented as isotherms and lines of con-

stant moisture content on Figures 1 and 2, respectively. An additional

check was obtained by calculating the temperatures for the same
3 3configuration for constant moisture content of 0.27 cm /cm . The
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results of these calculations are presented in Figure 3. Since the

assumption of constant moisture content would minimize convection

and evaporation effects in the soil, this case approximates one of pure

conduction with convection at the soil surface. Using Laplace's

equation for conduction, an analytical solution was obtained (see

Appendix II) and the results are presented in Figure 4. The differ-

ences between Figures 3 and 4 are explained by the fact that the heat

transfer corresponding to evaporation at the surface has been

neglected in obtaining the results of Figure 4. With this exception,

the computer results are in good agreement with the exact results.

The agreement between the calculated and experimental results of

Figures 1 and 2 are deemed good enough to assume the computational

approach and the differential equations valid.

The Soil Warming System

The soil warming system was simulated with the computer

program for a large number of warm, porous pipes buried at uniform

spacing and depth. Because the subsurface heating and irrigation

system was proposed for open fields, each spacing and depth was run

for two weather conditions. Weather conditions for January and

August were chosen because of their extremity. In order to exemplify

an approach for the optimization of the pipe spacing and depth, the

weather conditions, soil properties, crop root zones, and power plant
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condenser discharge temperatures have been chosen to represent one

particular location. The location and power plant condenser discharge

temperatures were chosen to be representative of Portland, Oregon

and the Trojan nuclear power plant. The weather data was averaged

over a ten year period to obtain typical data for each day in January

and August.

In order to differentiate between the effects of the pipes and the

atmospheric conditions, an initial temperature and moisture content

distribution was calculated for the two months. The initial distribu-

tions were calculated using average weather conditions for each

month. Using these average weather conditions, the computer pro-

gram was run until the temperatures and moisture contents approached

steady values. No attempt was made to reach steady-state because a

great many iterations would be required. The initial temperatures

and moisture contents are presented in Table 1.

Pipe spacings of 140, 280, and 560 cm were selected. For the

140 and 280 cm pipe spacings, the node width was chosen to be

10.0 cm. For the 560 cm pipe spacing a node width of 20 cm was

used. The node heights were 10.0 cm for the upper 200 cm and 50 cm

below 200 cm. The time step employed was one day. A new daily

weather condition was used for each time step and 31 time steps were

used to simulate one month of operation of the heating and irrigation

system.
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Table 1. Initial temperature and moisture content distributions.

January August January August
Depth T* 0** T 0 Depth

0 4.2 .25 20.4 .15 250 14.7 16.9
10 4.9 .25 20.2 .18 300 14.9 16.6
20 5.5 .26 20.1 .20 350 15.1 16.2
30 6.1 .26 20.0 .21 400 15.3 15.9
40 6.7 .27 19.9 .21 450 15.4 15.6
50 7.3 .28 19.8 .24 500 15.4 15.3
60 7.9 .29 19.7 . 26 550 15.3 15.1
70 8.4 .30 19.5 .28 600 15.3 14.9
80 9.0 .31 19.4 .30 650 15.2 14.7
90 9.5 .32 19.3 31 700 15.0 14.5

100 10.0 .33 19.1 .33 750 14.9 14.3
110 10.5 .35 19.0 .34 800 14.7 14.1
120 11.0 .36 18.8 .36 850 14.5 13.9
130 11.5 .37 18.7 .37 900 14.3 13.7
140 11.9 .38 18.5 .38 950 14.1 13.5
150 12.4 .39 18.3 .39 1000 14.0 13.2
160 12.8 .40 18.1 .40 1050 13.8 13.0
170 13.2 41 17.9 .41 1100 13.6 12.8
180 13.6 .42 17.6 .42 1150 13.4 12.5
190 13.9 .43 17.4 .43 1200 13.1 12.3
200 14.3 . 44 17.1 . 44 1250 12.8 12.0

1300 12.3 11.6
1350 11.5 11.0

*T denotes temperatures - °C.
**9 denotes moisture content cm3/cm3. Below 200 cm

.45 cm3 /cm3.

The pipe temperature was chosen to represent condenser cooling

water outlet temperatures with an allowance for heat loss. The pipe

temperatures were 29 C for January and 41 C for August. The soil

properties used were those of a sandy soil common in the Portland

area. Since the system is intended to serve as a means of irrigation,

the moisture content of the soil adjacent to the pipe was assumed to be
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constant at 0.44 cm3/cm 3, which is slightly lower than the saturation

moisture content of 0.45 cm3/cm 3.

Using the nodal sizes, time step, weather conditions, soil

properties and initial distributions mentioned above, the computer

program was run representing 31 days of operation of the soil warm-

ing system for the months of January and August. Temperature and

moisture content distributions were obtained for the three pipe spac-

ings mentioned above and for pipe depths of 50 and 100 cm. The

temperature and moisture content distributions after 31 days of

operation as obtained from the computer program are presented in

Figures 5 through 24.

Figure 25 presents the results of the equation of Kendricks and

Havens for a pipe spacing of 280 cm and a pipe depth of 100 cm. The

pipe temperature was 41 C and the soil surface temperature was

19.7 C. The pipe radius was assumed to be 1.0 cm. The pipe spac-

ing, depth and temperature were the same as for Figure 9, while the

soil surface temperature was approximately the same. While the

temperatures for Figure 9 were not for steady-state, the effect of

assuming constant thermal conductivity and neglecting convective

effects in the analysis of Kendricks and Havens can be seen by com-

paring the location of the 34 C isotherm. The location of an isotherm

is closer to the pipe during the transient period than during the steady-

state period for transient analyses. The fact that the 34 C isotherm
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is farther from the pipe in Figure 9 (the analysis of the present

investigation) than in Figure 25 (the analysis of Kendricks and Havens)

is due to the error induced by assumption of constant thermal con-

ductivity and of neglecting the convective effects in the analysis of

Kendricks and Havens. The analysis of Kendricks and Havens has

the additional disadvantage that the surface temperature of the soil

must be specified. For the analysis of the present investigation, the

soil surface temperature was less than 20 C in August, while the

atmospheric temperature was about 31 C. The soil surface tempera-

ture may then be 10 C less than the atmospheric temperature. Since

the analysis of Kendricks and Havens provides no means for obtaining

the soil surface temperature, errors of the order of 10 C would be

expected.

In the previous cases only parallel flow through the pipes was

considered. An alternative arrangement would be to circulate the

water in opposite directions in alternating pipes. To demonstrate the

capability of the computer program to model the case of counterflow

through alternating pipes, the computer program was run for the case

of alternating pipes at 41 C and 31 C. The weather data and initial

temperatures and moisture contents were those previously used for

the month of August. The moisture content of the soil adjacent to the

pipes was 0.44 cm3/cm3. The pipe depth was 100 cm and the node

heights and time step were the same as for the previous cases. For
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this case calculations were carried out for 50 time steps. The

temperature and moisture content distributions are presented in

Figures 26 and 27.

Optimization Criteria

Two factors influencing plant growth are temperature and

moisture content. Low temperatures may retard plant growth, while

plant growth increases as the temperature increases until the wilting

temperature is reached. The percent of the root zone in excess of

24 C was chosen as a possible optimization parameter because 24 C

was the lower of the optimum soil temperatures (14). Another

optimization parameter calculated was the average increase in tem-

perature in the root zone above the initial temperature. This criteria

is suggested because it is representative of the heating effect of the

soil warming and irrigation system. A third optimization criteria

which was calculated was the average increase in moisture content in

the root zone above the initial moisture content distribution. These

three optimization criteria were calculated for the final temperature

and moisture content distributions obtained from the use of the

computer program for root zones of 100 cm and 200 cm depth. The

three criteria are presented in Table 2.
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Table 2. Suggested optimization criteria.

Root Zone Pipe Depth (cm) Pipe Depth (cm) Pipe Depth (cm)
Depth Spacing 50 100 50 100 50 100

cm cm Percent of Soil
Above 24°C

Ave. Temp.
Increase (°C)

Ave. Moisture
Increase

( cm3 /cm3)
January

200 140 1.08 2.19 5.12 6.06 .0634 .0473
280 0.57 0.86 2.44 2.83 .0386 .0264
560 0.42 0.77 1.44 1.76 . 0254 . 0163

100 140 2.16 1.50 7.99 6.16 . 104 .0673
280 1.14 0.58 4.22 3.05 .0654 .0385
560 0.84 0.46 2.42 1.91 .0423 .0237

August

200 140 65.6 77.0 7. 12 8.50 . 0846 .0638
280 20.7 28.2 2.31 3.76 . 0569 .0397
560 14.5 16.4 1.99 1.65 . 0337 . 0211

100 140 83.2 72.2 9.04 7.65 . 144 .0997
280 36.8 28.2 4.15 3.69 . 101 .0640
560 10.0 16.3 2.62 1.60 . 0601 . 0346
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IV. CONCLUSIONS AND RECOMMENDATIONS

While the results presented in Table 2 do not alone provide an

optimum spacing and depth for the pipes, several generalizations can

be made. The 50 cm pipe depth provides better irrigation than the

100 cm pipe depth. This is due to the effect of gravity on the flow of

water and to the drying of the upper region of the soil through

evaporation at the surface. From the standpoint of irrigation then,

the pipe spacing should be small and the pipe depth should be as

shallow as possible. Cultivation requirements demand a depth of at

least 32,0 cm.

A pipe depth of 50 cm appears to produce greater heating

effects for crops with a root zone of 100 cm depth than the 100 cm

pipe depth. Furthermore, for a root zone depth of 200 cm, the heat-

ing effects are not greatly diminished by the shallower pipe depth.

Since the cost of installation of the subsurface soil warming and

irrigation system increases greatly with the depth of the pipes, it is

recommended that the pipes be placed at a depth of 32.0 cm. It

should also be noticed from Figure 26 that the temperature continues

to increase for longer periods of operation. It is therefore conceiv-

able that a pipe depth of 32.0 cm would adequately heat the entire

root zone for a continuously operated system. As expected, the heat-

ing effects increase with decreasing pipe spacing.
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Since the heating and irrigation effects increase with

decreasing pipe spacing and the cost of the system is proportional to

the reciprocal of the pipe spacing, an economic optimization must be

performed to find the best pipe spacing. In order to perform such an

optimization, one must be able to quantitatively specify the increase

in crop yield due to the increased moisture content and temperature

produced by the particular spacing. While such an optimization may

not be possible, it is felt that an agronomist would find the results of

the computer program of great use in selecting a pipe spacing.

While the results of this investigation are thought to be more

accurate than other methods available, several improvements are sug-

gested. Comparison of Figures 26 and 27 with the other cases indi-

cates that the temperatures will increase above those calculated for 31

days of operation. It is therefore suggested that any attempt at opti-

mization be based on results calculated for longer periods of operation.

It is also felt that further improvements could be obtained by modeling

the effects of the plant roots and foliage.

Since the partial differential equations used in this investigation

are not thought solvable by exact methods, it is felt that little is to be

gained by further efforts to simplify their solution. Experimental work

could be similar to that of Reference 13 or could be direct experimen-

tal verification of Equations 1 and 2. Such experimental work could

resolve the discrepancies reported by Fritton et al.
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APPENDIX I

Empirical Relationships for Solar and Atmospheric Radiation
and for the Convective Film Coefficients

The vapor transfer film coefficient was approximated by the

Meyer Equation (15, p. 128). It is expressed as

qevap = 349)(l o +W/10.0)(Psat-Pa) ,

where W is the wind speed, mph. , Pa is the vapor pressure of

the atmosphere, C/ is a constant, and qevap is the evaporation

rate, lb/day-ft 2. The suggested value of C/ ranges from 10.0 to

corresponds to the vapor pres-15.0 and was taken to be 10.0. Psat

sure at the surface of the lake and was replaced by the vapor pressure

at the soil surface. By assuming that the water vapor behaves as an

ideal gas, P = p RT and Equation (I. 1) may be rewritten as

or
cl

3.49(1.0+W/10.0)(p RT -p RT )evap s s a a

= 3.49 RTa(1.0+W/10.0)(p sTs/Ta-pa)clevap

The surface vapor flux was expressed as

qv = hp(psTs /Ta -pa)

and therefore

(I. 2)



hD- 3.49 RTa(1.0+W/10.0)
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(13)

Since both the vapor and heat are conserved properties (16,

p. 315-331), the heat transfer film coefficient is written by analogy

between heat and vapor transfer as

h = hD pair pairc (a /D)2/3 , (I. 4)

where a is the thermal diffusivity and D is the diffusivity of the

water vapor in air. Although the presence of plants above the soil

surface could cause considerable thickening of the boundary layers

and, hence, lower film coefficients, it was felt that Equations (I. 3)

and (I. 4) would give acceptable results.

The solar radiation reaching the soil surface has been

expressed (17) as

grad = (1. 0-0. 0006 C 3
)qo , (I. 5)

where q
o

is the solar radiation reaching the surface on a cloudless

day and C is the cloud cover expressed in tenths of the sky covered

by clouds.

The atmospheric radiation has been written (15, p. 11) as

qatm = crTa
4 (CB+ O. 223 47 ), (I. 6)



68

where Cr is the Stephan-Boltzman constant and CB is Brunt's

coefficient, which was taken to be 0. 66 as an average value (15,

p. 12, Figure 3).
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APPENDIX II

Closed Form Solution for Test Case

In order to check the results of the computer program, the

conduction equation was solved for the following boundary conditions:

ax at x= 0,

aT =0 at y = 0
ay

X = h(T-Too) at y = 48 cmay

x
aT = q(y) at x = 40 cm
ax

T = To at x = 40 cm and y= 12 cm

The conduction equation for constant thermal conductivity is
2

V T = 0, which for T - Too F(x) G(y) becomes

F"G + FG" = 0

The solutions for F(x) and G(y) are

(II. 6)

oF(x)= A. c sh(y.x) + B. sinh(yix) (II. 7)

G(y) = Ci cos(yiy) + Di sin(yiy) (II. 8)

Application of B.C. 1 yields B. = 0, and B.C. 2 yields Di = 0. Use



of B. C.3 leads to

where

and
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Tan((i) = a/13 (II. 9)

a = 48h/X ,

13. = 48-y, .

In order to apply B. C. 4, q(y) is chosen to represent an

insulated side with an unspecified heat flux at one node. The term,

q(y) is then

q= 0 when y < 10 cm, y > 14 cm

q = q0 when 10 < y < 14 cm.

Use of B. C. 4, and Equation (II. 10) leads to the following expression

for E. = A,C.,
1, 1 1

E. XPi sinh(5(3i/6)[213i+sin(Zpid

196qo[sin(7(3i/24) sin(5(3i/24)1

Use of B. C. 5 yields

T

00

i=1

oE.c s((3i/4) cosh(5P./6)

Elimination of qo from Equations (11.11) and (II. 12) yields



oo
T

T(x, y) = -p

where

oo

P =

1=1

cos((3i y/48) [sin(7(3i/24)-sin(5(3i/24)]

iP.s nh(5(3i/6)[ 213,+sin(2(.)]

cos(13i/4)[sin(7(3i/24)-sin(5(3i/24)]
p. tanh(5(3. /6){213.+sin(2(3.)]

cosh(Pi 74g)
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APPENDIX III

Computer Program Listing and
Data Input Explanation
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PROGRAM GREEN
CIMENSIUN T(45120),IHETA(45,2C).TC(45,20),THO(4.:923)1

1EVAP(45,2(A)
COMMON DELTAZ,CELTATIDELZ2pTEMP
OATA (EVAP=9C0(0.C))1(THETA=iCC(0.45))
S=0.45
OLLTAZ=10.0
READ(60,9c0) DELTAT,TMAX

C FTS,FTH,FF,FS1 ARE NCRPALLY 1.0, F;R ETEACYSTATE
C SET hIGHER TO ACCELERATE CONVERGiNCE
C FTH+FTS ARE THETA FUDGE FACTORS

READ(6019E0) FTS
READ(60,990) FTH
READ(60,990)FF
READ(60,990)FS1
READ (60,990) R2,RZ2C

C R2= DELTAZ/DELTAY SQUARED AND SHOUL) BE SET Less THIN
C 1.0 FOR CONVERGENCE
C RZ20 =THE SQUARE OF DELTAZ/DELTAZ I\ THE SATURATED Ff.CIDN

WRITE(61,590) DELTATpOELTAZIR2 ,

READ(601990) TEMP
C TEMF= AN ARBITRARY DIFFERENCE IN TEMPERATURE ANL WAt LSEO
C .TO NONDIMENSIONALIZE

READ(60091) MFIFElpMFIPE,MIMAXp(MAXIMBCLND
C MPIPE= THE LEFT PIPE LOCATION
C MPIFEI IS THE RIGHT PIPE LOCATICN
C MMAX IS THE NUMBER OF GRID LEVELS IN THE 2 OIRECTICti
C NMAX IS THE NUMBER OF GRID LEVELS IN THE. Y CIRECTIC!
C MBUUND IS THE LEVEL BELCW WHICH THE GRCUNC IS SATURATED
C NC THETA CALCULATIONS ARE MADE aEL3w MBOUND

READ(60,991) ISTART
C ISTAKT IS ZERO WHEN THE STEP IS AF?LIEC AT THE PIFt
C IL, WHEN THE IkRIGATICN STARTS

BCSOIL=0.335
CELZ2=DELTAZ4DELTAZ
CALL FSII(PSI,TE,TH1)
CALL BETAA(BLTApTE)
CALL LAMDA(DLArpTE)
HFG=2453.0/401668/TEMF
R=8.3143/1.6/0.8*TENF/DELTAZ411.0"3
TIME=C.0
CO 2 M=ipMMAX

2 READ(21,990) (T(MpN)0=1,NMAX)
C THESE TEMPERATURES ARE NONDINENSICNALIZ-C ANC =T /TEMP

00 1 M=MBCUND,MMAX
1 READ(21,990) (THETA(MpN),N=10MAX)

C EPS IS THE SOIL EMMIEIVITY
EPS=C.4
IF(ISTART.EC.0) THETA(MPIPE1pNMIX)=E.44
IF(ISTART.EC.0) T(MFIPElpNlmAX)=150396
IF(ISTART.E0.0) T(MFIPEp1)=47.523
IF(ISTART.EC.0) THETA(MPIPEp1)=1.44
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C THESE ARE THE FIFE CCNCITICNS
SIG=TEmP*43*OELTAT/CELTAZ*5.e7/4.18e/1 .C*412
mmm=mmAx-1

10 CALL wEATHR(TImE,H,H0,T8,68,0RAO,RAIN)
C wEATHR CALCULATES THE ATMOSPHERIC C3N0'ITIONS
C IT ALSO CALCULATES FILM CCEFFICIENT3

CO 43C M=2,mmAX
CO 43u N=1,NmAx

430 To(M,N)=T(m,N)
00 431 M=1,mMAX
CO 431 N=1,NMAX

431 THO(M,N)=THETA(mIN)
C TO ANO THO ARE THE TEMPERATURES ANC RATER CONTENTS
C AT THE LAST TIME STEF
201 00 10( M=m8CLNC,Mmm

00 100 N =1,NMAX
C THIS LOOP CALCULATES THE GEL.C*CEL(RhG)
C WHICH IS THE EVAPGRATICN RATE WITHCO THE TRANSIoJ TERN

Ti=T(m,N)
TH1=THETA(M,N)
T2=T(m+1,N)
TH2 =THETA (M +1, N)
T3=T(m-1,N)
TH3=THETA(M-1,N)
T4=T(MINf1)
Th4=THETA(MIN+1)
IF(N.E0.1) CO TO 35
T5=T(M,N1)
TH5=THETA(M,N1)
IF(NeNE0NMAX) GO TO 40
IF(M.E00MFIPE1) GO TO 100
14=T5
TH4=TH5
GO TO 40

35 IF(M.EQ.MPIPF) GO TC 100
T5=T4
TH5=TH4

40 CONTINUE
TE=T1
CALL PSII(PSI,TE,TH1)
CALL BETAA(BETA,TE)
51=BETA*EXP(FSI/TE/R)
TE=T2
CALL BETAA(BETAITE)
CALL PSII(PSIITE,TH2)
52=5ETA.EXP(PSI/TE/A)
TE =T3
CALL BETAA(BETA,TE)
CALL PSII(PSI,TEITH3)
E3=BETA*EXF(PSI/TE/R)
TE=T4
CALL BETAA(BETA,TE)
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CALL FSII(FSI,TE,Th4)
84=BETA*EXF(PST/TE/R)
TE=T5
CALL BETAA(BLTA,TE)
CALL FSII(FSI,TE,Th5)
85=3ETA*EXF(PSI/TE/R)
TT=(TH2+TH1)/2.0
Ti=(T2+71)/2.0
CO=CIFFUS(1E,TT)*(82,B1)
TT=CTH3+TH1)/2.0.
TE=(T3 +T1)12.0
CO=0D+DIFFUS(TE,TT)4(8361)
TL=(T4fT1)/2.0
TT=(TH4+TH1)/2.0
00=0D+CIFFUS(TEITT)4(84-81)4R2
TL=CT5*T1)/2.0
TT=(TH5+TH1)/2.0
00=00+OIFFUS(TE,TT)*(8581)

100 EVAP(MIN)=00
M=MMAX

C EVAFOkATIUN AT ThE SURFACE
CO 110 N=1,NMAX
T1=T(M,N)
TH1=THETA(M,N)
T3=T(M10)
Th3=THETA(M10)
T4=T(M,N41)
TH4=THETA(M,N+1)
IF(N.EO.1) GO TO 135
T5=T(M,N1)
TI-15=THETA(M,1 1)

IF(N.NE.NMAX) GO TO 140
T4=T5
Th4=TH5
GO TO 140

135 T5=T4
Th5=Th4

140 CUNTINUE
TL T1
CALL PSII(FSIITL,TH1)
CALL BETAA(8ETA,TE)
21=BETA*EXP(FSI/TE/R)
11=73
CALL 8ETAA(BETA,TE)
CALL FSII(FSI,TE,TH3)
83=BETA*EXP(FSI/TE/R)
TE=T4
CALL 8ETAA(8ETA,TE)
CALL FSII(FSI,TE,Th4)
84=BETA;EXP(PSI/TE/R)
TE=T5
CALL BETAA(EETA,TE)
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CALL PSII(PSI,TE,TH5)
85=BETA*EXP(FSI/TL/P)
TT=(TH3+Th1)/2.0
TL=(T34.T1)/2.0
DD=DIFFUS(TEITT)4(3381)42.0
TL=(T4fT1)/2.0
TT=(TH44-Th1)/2.0
CO=OIFFUS(TE,TT)*(8481)4R2
TE=(1.54-11)/2.0
TT=(TH5tTH1)/2.0
CO=00+DIFFUS(TEITT)4(8581)+2.CH04(38-t1.71/T8)

110 EVAP(M,N)=...00
UIF=0.0
KKK=0
RZ2=RZ20

C THIS LOOP CALCULATES The TEMPERATLiES
0U 210 11=20"
DO 210 N=1,KMAX
IF(M.GE.M80UN0) RZ2=1.0
TH1=THO(M,N)
TE=TO(M,N)
CALL PSII(PSI,TE,Thl)
CALL BETAA(BETA,TE)
E1=8ETA*EXP(PSI/TE/R)
71:1.4E+1.0
CALL BETAA(BITAITE)
CALL PSII(PSIOE,TH1)
BS=BETA*EXP(PSI/TL/R)
BS=BS.131
T1=T(M,N)
TH1=THETA(MIN)
T2=T(M+1,N)
TH2=THETA(M+11N)
T3=T(M1,N)

C IF(M.LQ.2) 73=12
C USE FCR INSULATE[ BOUNDARY

Th3=THETA(1,N)
T4=T(MINt1)
Th4=ThETA(M9N+1)
IF(N.EG.1) GO TC 23E
T5=T(M0-1)
TH5=THETA(M,N1)
IF(N.NC.NMAX) CO TO 240
IF(H.E001FIPE1) GO 7C 210
T4=T5
Th4=TH5
GO TO 240

235 IF(M.E.Q.HFIPE) GO TO 210
T5=14
Th5=TH4

240 CONTINUE
Tt=(TH2+TH1)/2.0
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CALL LAMOA(OLAM,TE)
CIV=DLAM*RZ2
0=ULAM*T2*RZ2
TE=(TH3+TH1)/2.0
CALL LAMOA(OLAMITE)
C=C+ULAM*T34RZ2
DIV=DIV*DLAM*RZ2
TE=(TH4+TH1)/2.0
CALL LAMOA(OLAM,TE)
OIV=OIV+OLAM*R2
0=D+OLAM*T4*R2
TE=(TH5+TH1)/2.0
CALL LAMOA(OLAM,TL)
C=C+DLAM*T54R2
DIV=OIV+OLAM*R2
11=T2
CALL PSII(PSI,TE,TH2)
TT=T3
CALL FSII(PST,TT,TH3)
OU=.(TETT)4(FSIFST.2.C)4R22
TE=T4
TT=T5
CALL PSII(PSI,TEITH4)
CALL PSII(PST,PT,TH5)
CO=004.(TE.qT)*(FSI4ST)*R2
0=0+00*CAY(TH1)/4.0
T(MIN)=O+TO(M,N)*(TH1 tECSOIL+(S..TH1)*ES*HFG)

1 ..EVAP(M,N)*HFG
CIV=01V+TH1+6CSCILfeS4(STI-1)*FrIG
T(1104)=T(PIN) /CIV
T(MIN)=T(M,N)*FS14.T1*(1.0.FS1)
CIV=T1
T1=T(MIN)
CALL BETAA(8ETAIT1)
CALL PSII(PSI,T1,TH1)
ES=SETA*EXP(FSI/T1/P)
EVAP(MIN)=E0AP(M,N)+(STH1).(13S31)

210 OlF=OIF+AeS(T(M,N)/CIV1.0)
M=MMAX

C THIS LCOP CALCLLATES THE TEMPERATLiES AT THE SURFACL
00 220 N=1,NMAX
T1=T(M,N)
TE=TO(MIN)
TH1=THO(M,N)
CALL PSII(P5I,TE,TH1)
CALL 6ETAA(BETA,TE)
81=BETA*EXP(PSI/TL/R)
TE=TE+1,0
CALL BETAA(BETAITE)
CALL PSII(PSIITEITH1)
BS=BETA*EXP(PSI/TE/R)
6S-7-8581
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Th1=THETA(M,N)
T3=T(M19N)
TH3=THETA(M19N)
T4=T(M9N+1)
TH4=THETA(M014.1)
IF(N.E0.1) GO TO 255
T5=T(M,N...1)
TH5=THETA(M,N1)
IF(N.NE.NM.AX) GO TO 2E0
14=T5
TH4=TH5
GO TO 260

25 1.5=T4
TH5=TH4

260 0=2.0EPS4ORAO.EPS4SIG*T14"4
TE=(TH3tTH1)/2.0
CALL LAMOA(OLAV,TE)
D=D+OLAM*2.0.13+2.0*H4T6
OIV=2.040LAM+2.04H+EFS4SIG*T14.43
11=(TH4+TH1)/2.0
CALL LAMDA(OLAP,TL)
0=0,-OLAM4T44R2
OIV=OIV+OLAM*R2
Ti=(TH5+TH1)/200
CALL LAMOA(CLAP,TL)
OIV=DIVfOLAM*R2
0=0+0LAM*T5*R2
TT:(TH1+TH3)/240C
CO=OAY(TT)
CALL PSII(PSI,T1,TH1)
CALL FSII(FST,T3,TH:!)
0=0+2.04004T3*(FSIFST+1.0)+2.0#'iAIN4T8
OIV=OIV4-2.04104(FSIFST+1,L)+2,74RAIN
TE=T4
TT =T5

CALL PSII(PSI,TE,TH4)
CALL PSII(PST,TT,TH5)
C=O+(TETT)*(PSIPST)4R24.CAY(THI)/4.2
T(MIN)=O+TO(H,N)*(TH1+ECSOIL+(STH1)4ES*140)
1 .EVAP(M,N)*HFG
DIV=OIV+TH1+6CSOILt0S+(STH1)*HFG
T(M,N)=T(M,N)/CIV
T(M,N)=T(M,N)*FF+T1*(1.0FF)
OIV=T1
T1=T(MIN)
CALL BETAA(?ETA,T1)
CALL PSII(PSI,T1,TH1)
ES=BETAEXP(FSI/T1/R)
EUAP(M,N)=EVAP(HIN)+(STH1)*(BSB1)

220 OIF=DIF+A8S(T(felN)/CIV1.0)
2J2 01F1=00.1

C THIS LOOP CALCULATES kATER CONTENTS
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C0 3C0 M=M8OLNC,HMM
00 300 N=1,NMAX
T1=T(M,N)
TT=THETA(M,N)
NOm=0
FSI= 0.OuC6

C FSI IS A FUDGE FACTOR ANC VARIES WITH THETA
C ITS VALUE MUST EE FGUNC BY TRIAL A.N10 ERROR FOR A
C PARTICULAR CGMOINATION CF DELTAT,CiLTAZ ETC
C THESE PARTICULAR VALUES ARE FCR EELTAT= 1.0 C4,Y
C AND DELTAZ=1C.0 CM

IF(TT.LI.0.44) FSI=001A05
IF(TT.LT09.42) FSI7-1..0C1
IF(TT.LT.L.41) FSI=C.A125
IF(TT.LI.0.4C) FSI=C.0021
IF(TT.LT.0.39) FEI=0.00225
IF(TT.LT.0.355)FSI=C.i,C55
IF(TT.LT.0.35) FSI=C.fiC7
IF(TT.LT.0.32) FSI=O0019
IFATT.LT.0.3C) FS1=0.013
IF(TT.LT.4..29) FSI=C.03
IF(TT.LT.G.25) FS1=i-J.0C
IF(TT.LT.C.2t) FSI=C408

C SINCE THETA VARIES GREATLY NEAR TiE PIPE WHEN
C THE IRRIGATICN STARTS, A St"ALL FUCGE FACTCP
C IS USED

IF(ISTART.GT.0) GO TC 598
KK=MPIFE1
IF(M.EQ.KK) FSI=C.U008
KK=MPIPE+1
IF (M.EQ. KK) FSI=0.00C8
IF(M.EQ.MFIFE) FSI=0.0C08

998 COO=TT
T2=T(M+19N)
TH2=THETA(M+1,N)
T3=T(M11N)
Th3=THETA(M100
T4=T(M,N+1)
TH4=THETA(M,N+1)
IF(N.EQ.1) GO TO 305
15=T(MIN1)
TH5=THETAIM,11
IF(1.NE.NMAX) GC TC 309
IF(M.EQ.MFIPEI) GO TO 3O0
T4=T5
TH4=TH5
GU TO 309

3U5 IF(M.EO.MFIFE) GC TC 3CC
T5=T4
TH5=TH4

3;9 CONTINUE
TH1=THO(M,N)EVAF(M,N)
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306 CONTINUE
CiV=TT
TL=(TT+TH2)/2.L
CALL PSII(PST,T29TH2)
CALL PSII(PSIIT1,TT)
00=CAY(TE)4(FST.PSI+1.0)
TE=(TH4+TT)/2.0
CALL PSII(FST,T41TH4)
00=0D+CAY(TE)4(FST...FSI)4R2
TE=(TT+TH3)/2.L
CALL PSII(FST,T3ITH3)
00=00tCAY(TE)4(FST4SI1.0)
TL=(TH5+TT)/2.0
CALL PSII(PST,T5,TH5)
00=DO+CAY(TE)*(EST.4SI)4R2
T7=(1.0FSI)4TT+(TH1fCD) I`FSI
CIV=AES((Th1 +CC)/CIV.1.0)
NUM=NUM+1
IF(NUM.GT.20) CO TO 3C0

C TkEN1YONE ITERATIONS HAXIMLN
IF(OIV.GT.O.00C01) GC TO 306

C THIS IS THE CONVERGENCE CRITERIA FCi EACH VALLE OF THETA
CIF1=0IF1+A8S(TT/COC1.3)

300 THETA(M,N)=(1.0FTH).THETA(M,N)fTTFTH
M=PMAX

C THIS LOOP CALCULATES WATER CONTENTS AT THE SURFACE
CO 310 N=1,NMAX
T1=T(M,N)
TH1=THETA(M,N)
NUM=0
FS=0.01

C FS IS SIMILAR TO FSI
1F(TH101.T.0.255) FS=0.09
IF(TH1.LT.00215) FS=0.035
IFATH1.LT.G.19C) FS=0.06
IF(TH1oLT.6.15J) FS=0.1
IF(TH1.LT.-0.13) FS=0.05
OGO=TH1
T3=1(1,N)
TH3=THETA(M1,N)
T4=T(M04.1)
TH4=THETA(MIN+1)
IF(N.E0.1) CC 7C 335
T5=T(MIN1)
TH5=ThETA(MgN1)
IF(N.NE.NMAX) CO TO 340
T4=T5
TH4=TH5
GO TO 340

335 1.5=T4

TH5=TH4
340 CONTINUE
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CALL PSII(FSI,T1ITH1)
TE=(TH4+TH1)/2.6
GALL FSII(PST,T4,TH4)
0O=.EVAP(M,N)+2.04RAIt+CAY(TE)"(PSTFSI)4124ThO(YIN)
TE=(Th1 +TH3)/e.0
CALL PSII(PSIIT3,TH3)
00=00+2.0*CAY(TE)4(FSTPSI.q.0)
TE=(TH5+TH1)/2.0
CALL PSII(PSTITE,TH5)
CO=0D+CAY(TE)41(FST...FSI)4R2
TH11=(1.iiFS)4Th1+0C4FS
00=ABS(D0 /TH11.0)
NUM=NUM+1
IF(NUM.E0.2C) CO TO 31C
IF(00.GT.0.0GU(1) GC TO 34l

C THIS IS THE CONVERGENCE CRITERIA FOi EACH VALUE: OF THLTA
CIF1=CIF1+ABS(TH1/CCC100)

310 THETA(M,N)=(1.0FTS)4CCO+FTS*TH1
C1F1=0IF1/NMAX/(MMAXMBOUNC)
01F=DIF/MMAX/NMAX
KKK = KKK +1

WkITE(61,99G) CIF,CIF1
C THE THETA ARRAY CCNVERGES MCRE iLDIsLY THAN THE
C TEMPERATURE ARRAY. IF THE TMFIRATLRES HAVE
C CONVERGED, KKK ALLOiS FOUR EXTP1 ITERATICNS FOR
C THETA BEFORE ITERATING AGAIN UN TEmFERATLRE

IF(KKK.E0.5) GC TO 201
IF(DIF0GT.3.(UL12) CC TO 2C1
IF(DIFloGT.6.0006) CC TO 2E2

C CIF + DIF1 ARE PERCENT CHANGE IN THE ARRAYS
C THEY ARE CALCULATED AS FRACTIONS 3F THE AESCLUTE
C VALUE OF THE VARIABLE
C SINCE TEMPERATURE IS ABSOLUTL(KELVIA) CIF SHOLLC
C BE SMALLER THAN DIF1

TIME=TIME+1
IF(TIME.LT.THAX) GO TO 1C
00 415 H=iptIMAx

415 WRITE(21,990) (T(M,N),N=1,NPAX)
CO 42C m=HBOUNOIHMAX

42J WRITE(21,990) (THETA(M,N),N=11N".AX)
993 FORNAT(3)(18E13.7)
991 FORMAT (5I2)

END

SUBROUTINE PSII(C,T,TE)
CIMLNSION TKT(2G),CKT(20), TK(2)),CK(2C)
COMMON UELTAZ,CELTAT,CELZ2,TEMF
DATA (KI=0)
IF(KI.EQ.1) GO TC 11
KI21
I=1

3 READ(60,111) TKIMICKT(1),LAST
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CKT(I)=CKT(1)/.98C6E5+1C00.'3/0E-TAZ
I=I+1
IF(LAST.EO.C) GO TO 3
ITMAX=I1
I=1

4 READ(60,111) TK(I),CK(I),LAET
TK(I)=TK(I)+273.16
TK(I)=TK(I)/TENF
CK(1)=CK(I)/72.75

C 72.75 IS THE SURFACE TENSICN AT 20 CEGREES
I=I+1
IF(LAST.EC.0) GC TO 4
JHAX=I1
I=1
J=1
RLTURN

111 FORMAT(2F10.C,I2)
11 IF(TE.LT.TKT(I)) GO TO 15

I=I+1
IF(I.GT.ITHAX) GO TC 3GG
GO TO 11

15 IF(TE.GT.TKT(I)) GO TO 2C
I =I -1

IF(I.EQ.0) GC TO 30C
GO TO 15

20 C=CKT(I)+(CKT(I+1)CKT(I))4(TETKT(I))/(TO(I+1)
1 TKT(I))

8 IF(T.LT.TK(J)) GO TC 9

IF(J.GT.JMAX) GC TO 3CC
GU TO 8

9 IF(T.GT.Tg(J)) GO TC 30
J= J -1

IF(J.EO.0) GO TC 330
GO TO 9

30 CC=CK(J)+COK(J+1)CK(J))4(TTK(..0)/(Tg(J+1)TK(J))
C=C*CO
RETURN

300 WRITE(61,331)
301 FORMAT( SEARCH HAS EXCEEOEO FI,..11FS1$)

GO TO 3
ENO

FUNCTION CIFFUE(TT,THLT)
COMMON DELTAZ.CELTATOEL22
S=0.49
0=0.2394(TT/281.16)442.3
0=0*(STHET)
CIFFUS=0*OELTAT/DEL22
RETURN
ENO
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FUNCTION CAY(TF)
COMMON DELTAZ,EEETATICEEZ2
B=2.9
C=0.069/60.040EETAT/DEETAZ
TS=C.49
6=842.0+2.0
C4 Y=C*(TH/TS)"8
IF(TH.GE.TS) CAY=C
RETURN
ENO

SUBROUTINE EAMCA(CITE)
DIMENSION TKT(50),OKT(50)
COMMON OELTAZ,CELTAT,DEEZ2
OATA (KI=C)
IF(KI.EC).1) GO TO 11
I=1
KI=1

3 READ(60,111) TKT(I),CKT(I),LAST
CKT(I)=CKT(I)EELTAT/OEEZ2/1000.a
TKT(I)=TKT(I)41.69
I=I+1
IF(LAST.LC.C) GO TO 3
ITMAX=I1
1=1
RETURN

111 FORMAT(2F10.0912)
11 IF(TE.LT.TKT(I)) GO TO 15

I=I+1
IF(I.GT.ITMAX) GO TO 3C0
GO TO 11

15 IF(TE.GT.TKT(I)) GO TO 2U

IF(I.EQ.0) GO TO 300
GO TO 15

20 O=OKT(I)+(OKT(I+1)CKT(I))*(TEIKT(I))/(TKT(I+1)
1 - TKT(I))
RLTURN

300 WRITE(61,301)
301 FORMAT($ SEARCH HAS EXCELOEC FI....ELAMD4*)

GO TO 3
ENO

SUBROUTINE BETAA(C,TE)
GIMENSION TKT(5C),CKT(50)
COMMON DELTAZ,CELTAT,EFLZ29TEMF
DATA (KI=0)
IF(KI.EQ.1) GO TO 1C
KI=1
1=1

3 RLA0(609111) TKT(I),CKT(I),LAST
OKT(I)=1.C/CKT(I)
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TKT(I)=TKT(I)+273.1E
TKT(I)=TKI(I)/TEMF
I=I+1
IF(LAST.EC.0) GO TO 3
ITMAX=I.-1
I=1
RETURN

111 FOmMAT(2F10.0112)
10 IF(TE.LT.TKT(I)) GO TO 15

I=I+1
IF(I.(,T.ITMAX) GO TC 3C0
GU TO 10

15 IF(TE.GT.TKT(I)) GC TO 2C
I=I-1
IF(I.E0.0) GC TC 300
GO TO 15

20 C=OKT(I)+(CKT(I+1).-CKT(I))*(TLTKT(I))/(TKI(I+1)
1 TKT(I) )
RETURN

330 WRITE(611301)
FURIAT(x SEARCH HAS EXCELUEO FL.EEt.TA:)
GU TO 3
ZNO

SUekOUTINE WEATIIR(TIME,H,HC,TA9:81CFACgkAIts)
COMMON DELTAZ,DLLTAT,CELZ2ITEMP
DATA (KI=0)
IF(KI.EQ.1) GU TO 2
SIG=TEMP+43*DELTAT/CELTAZ*F..67/14.18E/10.C*412
RR=82.05/18.0.14.74TEMP
CPAIR=0.24

C4"4" R=PRESSURE.TEMF/GAS CONSTANT
R=28.96/82.054/TEMF
C2=0.18.508**2*TEMP/68.09.w/5.04OLLTAT/DELZ2
C1=0.72*(0.508)"2.*CELTAT/CELZ2
T0=273.16/TEMP
THETAA=0.J
S=0.49
KI=1
G=960.

101 FORMAT(5F5.2)
2 RIA0(209101) TAILE,CLLUDleAINIEi

DLOU0=(CLOU0/10.0)443
CRA0=2.04(1.C0.64.CLCLC)4OLLTAT/CLLTA2/TEMF/EC.
kAIN=RAIN*2.54/CELTAZ/24.0/2600.C4CELTAT
TA=TA-32.0
TA=TA.5.0/9.C+273.16
TA=TA/TEMF
RHCAIR=R/TA
ALPHA=014.C24.(TATO)
CALL BETAA(B89TA)
88=88*BB/100.0
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PA=RR4.33*TA

OkAO=ORAO+SIC*TA4444(j.664-0.222*SORT(FA))
0=UIFFUS(TAOHETAA)
0=0/S
H0=3.49*(1.04UE/16.C)*PR4TA
HO=H0/72)U.C*2.54/6204
HO=HO*OiLTAT/OELTAZ
H=HO*RHOAIR*CP/J1R*(ALFA/0)"3.6tE
REA-URN
ENO
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Typical Input Data

File 60

Records one through seven have a format of 3x, 2E13.7, records

eight and nine have format 512, and the remaining records have a

format of 2F10. 0,12. Record one contains the time step in seconds

and the number of time steps to be calculated for a particular execu-

tion of the computer program. Records two through five are factors

for accelerating convergence for steady-state solutions. Record six

contains the factors (deltaz/deltay) squared, and (deltaz/deltaz in the

saturated region) squared. Record seven contains the arbitrary tem-

perature increment used to non-dimensionalize the governing equa-

tions. Record eight contains, in order, the right-hand pipe depth, the

left-hand pipe depth, the number of nodes in the vertical direction,

the number of nodes in the horizontal direction, and the index of the

node below which the soil is assumed saturated. Record nine contains

an indicator as to whether the pipe operation is starting. The

indicator is blank or zero if operation is starting and any positive

number if operation is not starting.

Following record nine are data groups for the soil properties

and for the specific volume of water vapor. The last record of each

data group contains a positive number in columns 11 or 12. The first
3 3data group is for potential. Moisture content (cm /cm ) is the first
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variable and potential (bars) is the second variable. The data is

assumed to be obtained at a temperature of 20 C. The second data

file contains temperature (°C) and then surface tension (Dynes /cm).

The third data group contains temperature (°C) and specific volume

(cm3/g). The fourth and last data group contains moisture content

(grams of moisture/gram of dry soil) and thermal conductivity

(millicalories /cm- sec -C ).

A sample data deck is presented below.

86400.0
1.0
1.0
1.0
1.0
1.0
1.0

0135451525

31.0

0.04

0.0645 -15.0

0.461 -0.04977 99
0.0 75.6

50.0 67.91 99
2.0 179889.0

50.0 12032.0 99
0.0 0.6

0.236 4.15 99



88

File 20

The format is 5F5. 2 and there is one record for each time

step. For the card shown below, the ambient temperature is 38.93 F,

the average wind speed is 9.90 mph, the cloud cover is 8.39 tenths,

the precipitation is .2 inches/day, and the relative humidity is

81.90 per cent.

38.93 9.90 8.39 .2081.90

File 21

The format is 3x, 8E13. 7 and the data in this file is the initial

temperature and moisture content arrays. Each horizontal row of

nodes is listed consecutively beginning with the deepest row. The

temperature array is listed first and then the moisture content array.

After execution of the program, the final temperature and moisture

content arrays are written on the file after the initial arrays. For the

typical data shown in File 60, the temperature array would contain

90 lines of data. Two lines of data are needed for each node level

because the array size is 15 horizontally and the format allows 8

values per line. The moisture content array would contain 42 lines

of data because initial data for 21 node levels is needed.


