Chris B. Ledoux for the degree of Master of Science in Forest Engineering presented on \qquad Title: SIMULATION OF A HELICOPTER YARDING SYSTEM IN OLD GROWTH FOREST STANDS

Signature redacted for privacy.
Abstract approved:
Dean Edward Aulerich

Helicopter yarding systems have become a popular tool in removing timber from steep slopes, sensitive soils, limited access areas, and environmentally sensitive stands. Little is known about the system's dynamics. This study is part of a research project to explore "advanced" logging systems as to their economic efficiency and environmental applications.

The objectives of my study were:
1 To identify and isolate variables that significantly influence helicopter yarding efficiency.

2 To develop a simulation model that will simulate the response of the helicopter yarding operations to changes in these variables.

I observed a medium lift (Boeing-Vertol 107 Model II) helicopter operation larding from old growth stands under varying conditions. The helicopter yarding cycle was broken down into four cycle elements and four delay elements. I used the method of continuous timing to observe these elements and obtain values for the variables that influence these elements.

Multiple linear regression analysis was used to analyze the effect of these variables on time required to complete each cycle element. Regression equations were developed for two cycle elements; outhaul and inhaul. Other cycle elements and delay elements were analyzed employing frequency distributions. A paired t-test was used to establish the reliability of the regression equations to predict element times.

A FORTRAN simulation model was used to simulate the yarding system. The model can be used to estimate efficiency, production rates, and delay times for a wide range of yarding situations.

I experimented with the finished model and, based on those results, made suggestions for system improvements.

Simulation Of A Helicopter Yarding System In Old Growth Forest Stands

by

Chris B. Ledoux

A THESIS
submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of Master of Science

June 1975
acy. Signature redacted for privacy.
Associate Professor of Forest Engineering
in charge of major
Signature redacted for privacy.
Read of Deportment of Forest Engineering

Dean of Graduate School

Date thesis is presented

Typed by Shirley Monroe for Chris B. Ledoux

TABLE OF CONTENTS

Chapter Page
I. Introduction 1
II. Objectives 4.
III. Procedures 5
Area and Unit Layout 5
Yarding System and Description 5
Crew Size and Location 9
Timing Method 9
Elements of the Yarding Cycle 9
Outhaul 9
Hook 10
Inhaul 10
Unhook 10
Vertical-In 10
Vertical-Out 10
Delays 11
Abort 11
Choker Hook Up 11
Choker Delivery 14
Rehook 14
Refueling 14
Field Measurements 15
Board foot volume per turn (BFVOL) 15
Board foot volume per log (BFVOL/NLOGS) 15
Chordslope (CHORDSLP) 15
Slope yarding distance (SYDIST) 16
Length of tagline (TAGLINE) 16
Logs per turn (NLOGS) 16
IV. Data Analysis 17
Regression Analysis 17
Outhaul 17
Hook 18
Inhaul 19
Unhook 20
Test of the Equations 21
Frequency Distributions 27
V. Simulation Model 34
Flowchart of Simulation Model 38
Simulation Results 41
VI. Summary and Conclusions 47
Footnotes 49a
VII. Bibliography 50
VIII. Appendix A. Camelsback Timber Sale (Unit Map) 55
IX. Appendix B. Observed Positioning of Ship 57
X. Appendix C. FORTRAN Simulation Program Listing 61

LIST OF FIGURES

Figure		Page
1.	Yarding Configuration	8
2.	Delays Affecting Cycle Elements	13
3.	Comparison of Slope Yarding Distance (SYDIST) by Chordslope (CHORDSLP), Length of Tagline (TAGLINE)= 100 Feet vs. Slope Yarding Distance (SYDIST) by Chordslope (CHORDSLP), Length of Tagline (TAGWINE)= 300 Feet	
4.	Frequency Distribution of Hook Times, Minutes	29
5.	Frequency Distribution of Abort Times, Minutes	29
6.	Frequency Distribution of Unhook Times, Minutes	29
7.	Frequency Distribution of Rehook Times, Minutes	29
8.	Frequency Distribution of Volumes per 3 Log Turns, 100 fbm (Feet Board Measure)	30
9.	Frequency Distribution of Volumes per 5 Log Turns, 100 fbm	30
10.	Frequency Distribution of Volumes per 4 Log Turns, 100 fbm	30
11.	Frequency Distribution of Volumes per 6 Log Turns, 100 fbm	30
12.	Frequency Distribution of Turns Between Refuel Times, Minutes	31
13.	Frequency Distribution of Volumes per 1 Log Turns, 100 fbm	31
14.	Frequency Distribution of Logs per Turn	31
15.	Frequency Distribution of Volumes per 2 Log Turns, 100 fbm	31

16. Frequency Distribution of Choker Hook Up 32
Times, Minutes
17. Frequency Distribution of Number of Chokers 32
Between Deliveries
18. Frequency Distribution of Choker Delivery 32
Times, Minutes
19. Frequency Distribution of Refueling Times, 32 Minutes
20. Conversion of Discrete Function to Continuous 33 Function (Volumes per 4 Log Turns, 100 fbm)

ACKNOWLEDGMENT

A research assistantship granted by the Pacific Northwest Forest and Range Experiment Station, Forest Service, U. S. Department of Agriculture enabled me to conduct this research. I wish to express my gratitude for this support. Analysis of the field data was facilitated by grants from the Oregon State University Computer Center. Dean Aulerich, my major professor, was extremely helpful in reviewing the manuscript. He assisted me in establishing proper procedure and flow for the manuscript. A special note of appreciation is extended to Dennis Dykstra who worked with me on the project from the start. Dykstra's knowledge and experience, along with constant encouragement, were invaluable in data collection, analysis, and construction of the simulation model. Henry Froehlich reviewed the manuscript and made valuable suggestions. Roger Petersen played an important role in the statistical analysis. The logging crews of Columbia-Construction Helicopters, Inc., Portland, Oregon were helpful in supplying field measurements during the study. Clara Homyer, Judy Peters, and Shirley Monroe took much care and patience in typing the manuscript.

Thank you everybody.

LIST OF TABLES

Table Page

1. Comparison of Daily Statistics 6
2. Position of Recorded Variables 16
3. Paired t-test Statistics 25
4. Simulated One Day's Detailed Element 42 Statistics
5. Simulated Mean (Daily) Total Turn Times 43 Delays Omitted
6. Simulated Mean (Daily) Total Turn Times 45 Delays Included
7. Comparison of Simulated Daily Total Turn 46 Times (Delays Included vs. Delays Omitted)

Simulation Of A Helicopter Yarding System
In Old Growth Forest Stands

I. INTRODUCTION

The helicopter is one of the most versatile forms of timber transport. With its unlimited maneuvering ability and its independence of roads, it has access to all forested lands; including the most rugged slopes and terrain. The helicopter's independence of roads and terrain types, fused with its ability to transport timber aerially has made helicopter logging an important new forestry tool available to the resource manager.

The removal of logs from timbered areas by means of helicopters was considered as early as the late 1950's and early l960's (Forest Industries, 1971). Walbridge (1960) considered the possibility of timber transport by means of helicopter in the Tennessee Valley area only to conclude that helicopters were economically out of the question at that time. Two years later, O'Leary (1962), in cooperation with the Forest Service, investigated the feasibility of helicopter logging in the Pacific Northwest and Alaska. O'Leary found that helicopter manufacturers were expressing interest in this new approach to logging. Other countries were not sitting idle; in 1964, Samset in Norway was also studying the feasibility of logging with a Bell 204-B. Samset (1964) concluded that the operation would have to be well organized to fully justify the use of such an expensive machine.

It was not until the Plumas National Forest (Region V) advertised a sale in their Lights Creek area to be logged by skyline that helicopter logging came into commercial existence. After careful evaluation, it became evident that it would be more feasible to log the sale by helicopter because of the extremely steep terrain and highly erosive soils. The sale was logged employing a Sikorsky S6l-A helicopter owned by Columbia-Construction Helicopters of Portland, Oregon, in agreement with Erickson Lumber Company of Marysville, California (Ellis, 1971). This operation is believed to have pioneered commercial helicopter logging. Since that time, much interest has been generated in favor of using this "infinitely mobile" yarder to remove severed timber from the stump to the landing.

The Forest Service has taken a strong interest in this new tool. The following figures illustrate the fact that helicopter logging is playing a role in timber management. Region VI offered 100 million board feet on it's National Forests to be yarded by helicopter in 1971. Casey (1972) claims, in his discussions with Forest Service personnel, that the Pacific Northwest Region included some 200 million additional board feet to be offered for helicopter sales in 1972 and 1973.

Helicopter logging has progressed at such a rapid rate that little is known of the efficiency, environmental impact, and economical application of helicopter logging.

Timber harvesting operations have been challenged by increasing demands for wood products (Ellis, 1971) along with increasing demands from environmental interests (American Pulpwood Association, 1972). This has forced the logging industry to seek alternatives to conventional systems (Binkley, 1971) and attempt to improve on existing logging systems.

In reply to the abovementioned challenge, the Pacific Northwest Forest and Range Experiment Station, USDA Forest Service, and Oregon State University's Department of Forest Engineering have initiated a cooperative research project to explore "advanced" logging systems (e.g., balloons, suspended skylines, and helicopters) (Dykstra, 1973). This project has so far provided an understanding of some of the factors that influence yarding efficiency along with a comparative analysis of production rates and costs.

Other than the above study, little has been done in attempting to quantify variables and their relationships as they affect helicopter yarding systems. The research described in this paper was conducted for the purpose of quantifying variables and their relationships as they affect helicopter yarding efficiency.

II. OBJECTIVES

My study takes a portion of Dykstra's data (the helicopter portion) and further analyzes it, employing regression techniques and simulation principles to:

1) Identify and isolate variables that significantly influence helicopter yarding efficiency.
2) Develop a simulation model that will simulate the response of the helicopter yarding operation to changes in these variables.

To achieve these objectives, I used the method of continuous timing to observe a helicopter clear-cut yarding openation. I evaluated the yarding system with multiple regression analysis and constructed a computer model in FORTRAN to simulate the helicopter yarding system.
III. PROCEDURES

Area and Unit Layout

Data was gathered during the period of July 30, 1973, through August 16, 1973. The total period of observation was eleven days (see Table 1 for a detailed listing of individual daily statistics).

A Boeirg-Vertol 107 Model II helicopter was observed duning the cloove period. A total of 934 observations (complete turns) were recorded. The vehicle was the property of Columbia-Construction Helicopters based in Portland, Oregon. The operation took place on the Camelsback Timber sale set aside by the Mt. Hood National Forest. The sale was located in Township 6 South, Range 5 East, Section 14, Willamette Meridian. A map of the unit and the observed flight paths can be found in Appendix A.

Yarding System and Description

The Boeing-Vertol is classified as a medium-lift helicopter with the following characteristics: ${ }^{1}$

Engines General Electric CT58-110-2 gas turbine (2)
Take off power (TOP). 1,250 shaft hp (each engine)
Maximum continuous
powef (MCP) 1,050 shaft hp (each engine)
Rated rotorspeed 265 rpm
Maximum forward air-
speed at MCP 148 knots (170 mph) at sea level
Average cruise speed 134 knots (154 mph) at sea level Fuel consumption $180 \mathrm{gal} / \mathrm{hr}$ (JP-4 aircraft turbine fuel)
$l_{\text {Boeing, }} 1967$.

Table 1. Comparison of Observed Daily Statistics

Date of Observation	Total Turns	$\begin{aligned} & \text { Outhaul* } \\ & \text { (min.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Hook } \\ & (\min .) \end{aligned}$	$\begin{aligned} & \text { Inhaul* } \\ & (\min .) \end{aligned}$	$\begin{aligned} & \text { Unhook } \\ & \text { (min.) } \end{aligned}$	Tagline Length (feet)	Sydist (feet)	Chord Slope \qquad	Nlogs	$\begin{aligned} & \text { Bfvol/Nlog } \\ & (\mathrm{fbm} / \mathrm{log}) \\ & \hline \end{aligned}$
July 30, 1973	27	1.48	. 78	1.35	. 029	150	4567	8.3	1.74	396.55
July 31, 1973	59	1.33	. 61	1.17	. 010	150	4641	7.3	2.20	313.20
August 1, 1973	97	1.33	. 63	1.13	. 026	200	4209	7.6	1.56	440.33
August 2, 1973	99	1.42	. 56	1.23	. 019	200	4218	5.1	1.71	401.86
August 3, 1973	51	1.36	. 57	1.15	. 031	200	4439	4.9	2.27	403.43
August 7, 1973	25	. 52	. 45	. 34	. 060	150	507	47.9	2.00	346.00
August 8, 1973	75	1.50	. 79	1.27	. 008	150	433	13.9	2.50	275.33
August 9, 1973	93	1.35	. 62	1.18	. 025	150	4189	15.8	2.38	289.06
August 14, 1973	117	. 93	. 58	. 82	. 035	175	1890	50.3	1.64	451.95
August 15, 1973	125	. 71	. 65	. 70	. 027	150	1740	48.7	1.72	400.46
August 16, 1973	166	. 80	. 58	. 80	. 037	150	1470	11.0	1.79	384.95
Averages	85	1.11	. 62	. 97	. 029	166	3061	21.0	1.90	449.70

*Both outhaul and inhaul times include acceleration and deceleration.

```
Forward rate of climb
    at (MCP) . . . . . . . . . l,700 ft/min at sea level
Vertical rate of climb
    at (TOP) . . . . . . . . . l,240 ft/min at sea level
Fuselage length . . . . . . . 44' 7''
Fuselage width . . . . . . . . 7 7 3'I
Length overall
    (includes rotors). . . . . 83' 4 "
Height . . . . . . . . . . . . 16' 10"
Rotor diameter . . . . . . . . 50' 0"'
Wheel base . . . . . . . . . . 24' ll'
```

This model helicopter has a net load lift capacity calculated
as follows: ${ }^{2}$
Maximum gross lifting
capacity ${ }^{3}$. $22,000 \mathrm{lbs}$.
Less:
Weight of vehicle
(empty) 9, 530 lbs.
30 minutes' (Average)
fuel supply
(90 gal@6.2
lbs/gal) 550 lbs.
Pilot and co-pilot
@ 200 lbs 400 lbs.
Tagline, Hook Assembly
and chokers $\frac{250 \text { lbs. }}{1 \mathrm{l}, 270 \mathrm{lbs} .}$

Typical helicopter yarding activities include a helicopter lifting off from the landing, then flying to a hook-up point. The hooker inserts the choker eyes into the electrically controlled hook (Figure 1). The hooker retreats to a safe position and gives the pilot the signal to lift the load. The load is lifted clear of the ground and flown to the landing and the logs are released by the pilot with an electrical mechanism.

[^0]

Figure 1. Yarding Configuration
*Diagram courtesy of Dennis Dykstra (1974).

Crew Size and Location

A two-man crew gathered the data. To facilitate the data collection, one man was positioned at the landing and the other man was positioned near the hooker. This enabled the two men to fully observe and record all phases of the yarding system.

Timing Method

The method of continuous timing was used in which the stop watches are started at the beginning of the timing period and run continuously until the timing period ends (this usually involved the entire day). The cumulative time corresponding to the event occurrence was recorded upon beginning of that event. Individual times for each element were later calculated by subtraction. Times were recorded to the nearest $1 / 10$ minute.

Elements of The Yarding Cycle

The cycle elements are defined as follows:
OUTHAUL - Time required to move the helicopter from the landing to the hook-up point. Outhaul time was recorded as beginning when the logs from the previous turn were released from the hook at the landing and ending when the hooker first had contact with the hook or when the hook was in position for the hooker to grasp. Outhaul time would include any maneuvering of the vehicle involved in delivering the hook to the hooker.

- Time required for the hooker to insert the eyes of the chokers into the hook mechanism. Hook time would also include any time required for the hooker to move to a safe position before the turn was lifted. Hook time was recorded as beginning when the hooker had contact with the hook for the first time or when the hook was in position to be grasped, and ending when the logs left the ground for the inhaul.

INHAUL- Time required to transport the load of logs from the hookup point to the landing. Inhaul time was recorded as beginning when the logs left the ground for the first time and ending when the logs touched the ground for the first time at the landing.

UNHOOK- Time required to unhook the logs at the landing. Unhook time was recorded as beginning when the first log touched the ground and ending when the choker eyes were released from the hook.

Although the elements vertical-in and vertical-out did not exist in this study, they would become two more elements to consider when yarding from a partial cut and could be defined as follows:

VERTICAL-IN - Time required to lower the hook through the existing canopy to the hooker.

VERTICAL-OUT- Time required to lift the load of $\log (s)$ from the hook-up point through the existing canopy before proceeding toward the landing.

DELAYS

The above series of elements assumes normal yarding; that is--that no delays occur to interrupt or terminate the cycle. Figure 2 shows a brief description of each factor or delay that may occur during or prior to the respective cycle element.

For example, the hook might hang up as the load is lifted out during the vertical-out element, resulting in a time loss. Or, as the loaded helicopter proceeds toward the landing, the pilot may have to wait for the loader operator to remove logs from the releasing point.

The following delays were the only delays with sufficient observations for meaningful analysis.

ABORT - An abort delay occurred whenever the hooker's choice ($\log (s)$ hooked) for that turn was beyond the lifting capacity of the ship. The pilot would then wait until the hooker was in a safe position before aborting (releasing the turn) and proceeding to hook another turn. Abort durations observed ranged from . 1 minutes to 4.0 minutes.

CHOKER
HOOK UP - A choker hook up delay occurred whenever the ship interrupted its flight momentarily to hover over the chasers 3 a while they hooked bundled chokers for return to the rigging crew. As chokers arrived and accumulated at the landing, they were wrapped and bundled (20 to 30 per bundle) for return to the choker setters.

Figure 2. Delays affecting cycle elements

Choker hook up delay durations observed ranged from
.l minutes to 1.2 minutes.

CHOKER
DELIVERY - Each occurrence of a choker hook up event would automatically trigger a choker delivery delay. After hooking the bundjed chokers, the ship would enter the outhaul event. Upon arrival at the hook-up point, the pilot would proceed to deliver the bundled chokers to the rigging crew (which at times was situated a good distance from the hooker). The chokers were delivered and a member of the rigging crew would hook a turn or the ship would return to the hooker for a turn. Choker delivery durations observed ranged from . 1 minutes to 2.0 minutes.

REHOOK - A rehook delay occurred whenever the turn (two logs or more) was beyond the lifting capacity of the ship. However, I chose at the time of data collection to define a rehook delay as occurring only if the turn (two logs or more) could not be lifted by the ship. At this point, the pilot would not abort the load; he would simply lower the turn allowing the hooker to release one or more logs. Rehook durations observed ranged from . 4 minutes to 3.0 minutes.

REFUELING- This delay involved the aircraft landing and taking on enough fuel for the next cycle. Refueling event occurrence observed ranged from 13 turns to 43 turns.

The two delays listed on the left side of the flowchart (Figure 2) could occur at any element execution and would usually result
in a termination of the cycle until the problem was located and taken care of. The majority of the listed factors and delays would result in a time loss of a similar sort.

Field Measurements

To understand the efficiency of this system, I chose element time or the time required to complete each event as the dependent variable. The independent variables measured are listed below.

Board Foot
Volume (BFVOL) - Gross board foot volume per turn, including any unmerchantable material. The small end diameter and length of each log were supplied by Columbia Construction landing crews and the values were later approximated by Knouf's Rule ${ }^{4}$.

Board Foot Volume per Log
(BFVOL/NLOGS) - Gross board foot volume per log.
Chordslope
(CHORDSLP) - Slope (\%) of a line segment connecting the landing and the hook-up point. CHORDSLP is equal to the difference in elevation between the two points divided by the horizontal distance between the two points multiplied by one hundred to convert to percent. This value was recorded as a positive value when yarding downhill and a negative value when yarding uphill.

[^1]```
Slope Yarding
Distance (SYDIST) - Yarding distance recorded along the slope, in
 feet. The hook-up point was recorded for each
 turn on a contour map (contour interval of 80
 feet). The horizontal distance to the landing
 was measured from the map and slope distance
 was calculated using the difference in eleva-
 tion between the two points.
Tagline Length
(TAGLINE) - Length of tagline in feet.
Number of Logs
(NLOGS) - Number of logs yarded for each turn.
The crewman at the designated point recorded the items listed
in Table 2.
```

Table 2. Position of Recorded Variables

| Cycle Time | $\begin{aligned} & : \text { Where Recorded } \\ & : \text { Landing }: \quad \text { Rigging } \end{aligned}$ |
| :---: | :---: |
| Outhaul start time | X |
| Outhaul end time | X |
| Hook start time | X |
| Hook end time | X |
| Inhaul start time | X |
| Inhaul end time | $x$ |
| Unhook start time | X |
| Unhook end time | X |
| Abort time | x |
| Rehook time | X |
| Choker hook-up time | X |
| Choker delivery time | X |
| Refuel time | $\mathrm{X} \times \cdots \times 1$ |
| Pieces per turn | X |
| Volume measurements | X |
| Length of tagline | X |

## IV. DATA ANALYSIS

Regression Analysis

The yarding system was analyzed with regression techniques and simulation principles. Use of these two techniques in combination enabled a more complete look at the interaction of significant variables.

Since the opportunity of selecting a second sample did not exist, I chose to randomly dichotomize the original 934 observations in order to create two samples from the same population. Sample I contained 456 observations, while Sample II contained 478 observations. The respective equations listed below were constructed utilizing the observations in Sample II. Sample I was used to test the equations.

Outhaul $=.52873$

- . 00059546 (TAGLINE):
+.00022581 (SYDIST) $\% * * * *$
Each variable that was expected to influence outhaul time was introduced into the equations, first alone and then in the presence of other variables. Slope yarding distance (SYDIST) and the

```
Levels of significance
 * = . 20
 *** = .05
 *****: = .0l
```

length of the tagline (TAGLINE) explained 54 percent of the variation in outhaul times. Slope yarding distance (SYDIST) increased outhaul times as the ship traveled further from the landing. This variable behaves as one would expect and confirms findings by Wood (1962). The effect of a longer tagline is to decrease outhaul time. One possible explanation may be that a shorter tagline would result in a considerable propeller down-wash (compacted air traveling at high speeds pushed down by the rotor blades) making it difficult to place the hook in a position to be grasped by the hooker. This compacted air traveling at high speeds would also restrict the hooker in movement. Further study may be directed at this problem.

| Hook | $=.57396$ |  |
| ---: | :--- | ---: | :--- |
|  | $+.041716($ NLOGS $) * \% \%$ | $R^{2}=.015$ |
| $S^{2}$ | $=.132$ |  |

-. . 000070954 (BFVOL) *
Hook time underwent similar treatment in entering alone, and in combination, factors that could possibly influence hook time. Number of logs (NLOGS) and Board foot volume (BFVOL) combined proved to be significant. The above combination, although significant in nature, explained only little over one percent of the variation in hook times. Since the coefficient of determination was only .015, I, therefore, chose not to use a regression equation for hook time. The amount of variation observed in hooking times was not significant as shown in Table l. Sariset (1964) also found that very little variation in hooking time existed in his study. An explanation might be that since the hooker is properly selecting the pre-marked turn
to be hooked (or giving some thought as to what is to be hooked), the variation in hooking times may be reduced.

Inhaul $=.74904$
$+.00015991 \quad($ SYDIST $) \% \% \% \% \% \quad R^{2}=.617$

- $.0037517 \quad($ CHORDSLP $) *: \% \% \% \quad S^{2}=.041$
$+.019075 \quad($ NLOGS $): 3: \%$
- . 0014931 (TAGLINE) $: \% * * *:$
$+.000072418 \quad($ BFVOL $/$ NLOGS $) *: \%:$
A look at the respective coefficients indicates that inhaul time is dependent upon Slope yarding distance (SYDIST), Chordslope (CHORDSLP), Number of logs (NLOGS), Tagline length (TAGLINE), and Board foot volume (BFVOL/NLOGS). Sixty-one percent of the variation in inhaul time was explained by the above combination of factors. The further the vehicle traveled from the landing, the longer it took to transport the load to the landing as would be expected.

Increase in Chordslope (CHORDSLP) seemed to reduce inhaul time. The relationship of Chordslope (CHORDSLP) to inhaul time should be viewed cautiously. A very steep Chordslope (CHORDSLP) would serve to increase inhaul time (Dykstra, 1974). Therefore, the behavior of Chordslope (CHORDSLP) should be analyzed further. Increasing tagline length aided in reducing inhaul time. The effect of the length of tagline (TAGLINE) may possibly be explained by the fact that upon approaching the landing, the pilot would have to lower the ship considerably further with a short
tagline as compared to a longer tagline, A longer tagline would also mean that since he did not have to lower the ship the additional distance, the vehicle would not have to again rise that distance to enter the flight path before returning for another turn. The effect of Number of logs (NLOGS) and the Board foot volume per log (BFVOL/NLOGS) was less pronounced than the variables Slope yarding distance (SYDIST), Tagline length (TAGLINE), Chordslope (CHORDSLP); as shown by their respective coefficients. Increasing both Number of logs (NLOGS) and Board foot volume per log (BFVOL/NLOGS) increased inhaul times, as would be expected. Since Number of logs (NLOGS) and Board foot volume per $\log (B F V O L / N L O G S)$ contributed such a small amount to the inhaul time, I chose to omit them in further analysis.

At this point, it would be meaningful to again review Table 1. Notice that on any given day, the vehicle took less time to transport the load as compared to the time required to move the empty vehicle to the hook-up point. This may seem the exact opposite of what one would expect, since the ship is traveling the same distance both ways. But a further look at the definitions of the cycle elements will clarify this point. Inhaul time requires little, if any, positioning of the ship, while outhaul time includes not only the time required to travel that distance, but also the time required in delivering the hook to the hooker. See Appendix B.

Unhook time was subject to such small variation (Table l), that no attempt was made to construct a model to predict unhook times. Any variation in unhook times could be explained by the
fact that when a greater than one log turn came into the landing, the pilot would, at times, lower the logs until all log ends touched the ground surface before activating the release mechanism located in the pilot's cabin. Again a look at Table 1 will show that unhook time for all practical purposes was zero.

To further dramatize the effects of the significant variables, I chose to hold Number of Logs (NLOGS) and Board foot Volume per Log (BFVOL/NLOGS) constant varying Chordslope (CHORDSLP) and Tagline Length (TAGLINE) to produce Figure 3. This illustrates the fact that the longer the tagline, the more efficient the yarding process. Increasing Chordslope (CHORDSLP) also serves to decrease yarding times. The effect of Slope yarding distance (SYDIST) is well pronounced in each treatment. For a brief comparison, look at the differences between using a 100 -foot tagline and a 300 -foot tagline at a given Chordslope (CHORDSLOPE) and a given Slope yarding distance (SYDIST) of 4500 feet. A 100 -foot tagline takes 3.6 minutes, while a 300-foot tagline, at the same distance, takes 3.1 minutes. This is a measurable time difference.

## Test of the Equations

Treating the 934 observations as two random samples from the same population, one half of the observations were used to construct the outhaul and inhaul equations. The remaining half of the describes the data) against the alternate hypothesis HA:

[^2]

SYDIST - FEET
Figure 3. Comparison of SYDIST by CHORDSLP, TAGLINE $=100$ Feet vs. SYDIST by CHORDSLP, TAGLINE $=300 \mathrm{Feet}$

Selecting one turn at a time from the remaining data and substituting the observed significant independent variables into the constructed models, a value was generated ( $\hat{\mathrm{Y}}$ - predicted value). Using ( $\hat{Y}$ ) the predicted value and (Y) the observed value, we can employ the Student's t-test (Peterson, 1973) to detect whether or not the mean difference is significant. Table 3 lists the chosen equations along with pertinent statistics. The hypothesis, HO: $\hat{Y}=Y$ (the model describes the data) was accepted in both cases at the . Ol level.

Table 3

```
Outhaul = .52873
 -.00059546 (TAGLINE)% 政 = . 545
 + .00022581 (SYDIST)*****
 s}\mp@subsup{s}{}{2}=.07
Paired t-test
 sample size 456
 observed mean 1.0866
 predicted mean 1.0912
 mean difference -.0046
 standard error of the difference .01236
 t- statistic -.03782
 t- table value at (.99) 2.5758
 accept HO: }\hat{Y}=
Inhaul = .74904
 +.00015991 (SYDIST)*%%%% (R = .617
 -.0037517 (CHORDSLP)****** S S = .041
 + .019075 (NLOGS) %%%
 -.0014931 (TAGLINE)******
 +.000072418 (BEVOL/NLOGS)***
Paired t-test
 sample size 322
 observed mean .91335
 predicted mean
 .91416
 mean difference -.000812
 standard error of the difference .011995
```

```
t- statistic
 -.06765
 t- table value at (.99) 2.5758
accept HO: \hat{Y}=Y
```


## Frequency Distributions

Outhaul and inhaul were the only element functions for which I was able to construct an equation successfully. The remaining element functions and observed delays were either not statistically significant or did not occur often enough to allow correlation between factors forcing occurrences and frequency of occurrence. With this in mind, I chose to use the frequency distributions of those elements and delays in further analyses. The respective frequency distributions are found on pages 29 through page 32.

The method of recording the data resulted in discrete distributions. Since the distributions in a discrete form serve only to represent the conditions observed, I chose to construct continuous empirical distributions as follows (Gordon, 1969):

$$
A_{i}=\frac{X_{i+1}-X_{i}}{Y_{i+1}}
$$

$$
\text { Where, } \begin{aligned}
X_{i}= & x \text { axis, time } \\
Y_{i}= & y \text { axis, frequency } \\
A_{i}= & \text { slope of } X \text { with } \\
& \text { respect to } Y .
\end{aligned}
$$

A mixed congruential random number generator was employed to generate a random variate to be used along with the above calculated slope in the following function:
$X_{j}=X_{i}+A_{i}\left(R_{j}-Y_{i}\right) \quad$ Where, $X_{j}=$ desired time computed

$$
\begin{aligned}
A_{i}= & \text { slope of } X \text { with re- } \\
& \text { spect to } Y \\
R_{j}= & \text { random number } \\
Y_{i}= & \begin{array}{l}
\text { cumulative frequency } \\
\\
\\
\\
\\
\text { value for that desired }
\end{array}
\end{aligned}
$$

For example, selecting the respective random number and selecting the discrete frequency distribution, we convert the distribution of volumes per 4 log turns (100 BF) from a discrete distribution to a continuous distribution as illustrated in Figure 22, This conversion took place in the FORTRAN program for the respective distribution.






Figure 8. DISTRIBUTION OF VOLUMES PER
3 LOG TURNS, 100 BF


Figure 9. DISTRIBUTION OF VOLUMES PER
5 LOG TURNS, 100 BF



Figure 11. DISTRIBUTION OF VOLUMES PER
6 LOG TURNS, 100 BF


Figure 12. DISTRIBUTION OF TURNS BETWEEN
REFUEL TIMES, MINUTES



Figure 14. DISTRIBUTION OF LOGS PER TURN







Figure 20. Conversion of Discrete Function to Continuous Function (volumes per 4
$\log$ turns, 100 BF )

## V. SIMULA'TION MODEL

I was interested not only in the effect of the observed relationships of variables on the yarding system, but also the effects of the unobserved relationships. It was my desire to go beyond the Universe of Observation ${ }^{5}$. One of the better methods that allows the above is to construct a model that will duplicate as nearly as possible the real situation and then change variables within the model to predict and observe behavior (Levin and Kirkpatrick, l97l). Simulation is a tool that allows me to accomplish this.

Simulation can be used to study response patterns of a given system under a variety of treatments. This technique, along with the use of computers, allows evaluation of many alternative actions in a short time horizon.

The computer simulation model consists of flowing through the changes in the events as they are executed. Delays, hook, and unhook are introduced through probability functions while the elements outhaul and inhaul are estimated by the regression equations. Flowchart of Simulation Model

The flowchart on pages $38-40$ shows the flow of the simulation model. Flowchart symbols are defined according to their functions as they appear in the FORTRAN program as follows:

A - Assign tagline length, slope yarding distance, and Chord slope values for each simulated run.

[^3]B - Check if chokers need to be hooked up for delivery to the rigging crew. A random number is generated and this value is used in subroutine (XTURNS1) to determine the number of turns that can be yarded (NXTURNS) before chokers need to be sent to the rigging crew. If this value, NXTURNS, is greater than or equal to the present number of yarded turns, the chokers will be hooked up and sent to the rigging crew. NXTURNS will change each time the choker bundles are sent out.

C - Compute the time required for the choker hook-up event. This is done by randomly selecting a time value from a continuous empirical distribution of observed choker hook-up times.

D - Compute outhaul time (TIME 8) determined in part by a given slope yarding distance and a given tagline length. The regression equation for outhaul is used.

E - Check if chokers need to be delivered to the rigging crew. This check insures that if the chokers were hooked for transport to the rigging crew, then they must be delivered to the rigging crew; otherwise proceed toward the hook-up point.

F - Compute the time required to deliver the choker bundles to the rigging crew. This is accomplished by randomly selecting a time value from a continuous empirical distribution of observed choker delivery times.

G - Compute the hook time required to hook each turn. This is done by randomly selecting a time value from a continuous empirical distribution of observed hooking times.

H - Check if the load can be lifted. The number of logs hooked per turn is again a random selection. It will, therefore, be a random selection of volume for that turn based on the number of randomly selected logs hooked. Assuming a log density of $7.33 \mathrm{lbs} / \mathrm{bd} \mathrm{ft}$, a check will be made to insure that the vehicle can lift the load. Otherwise, the pilot will be forced to abort the load and proceed to hook another turn and again check the lifting process.

I - If the ship aborts the load, it becomes necessary to compute a time (delay) loss. This is done by randomly selecting a time value from the continuous distribution of observed abort times.

J - The rehook time is computed at this point (randomly).
K - Compute inhaul time by means of the inhaul regression equation.

L - Compute unhook time by randomly selecting a time value from the continuous distribution of observed unhook times.

M - Compute total turn time for each turn by summing the above times.
$N$ - Write out a summary of the cycle element times for the turn just executed.

0 - Check whether the ship requires refueling. If the vehicle requires refueling, it will proceed toward the landing. The vehicle will return for another turn if it does not require refueling.

P - Compute refuel time. This is done by randomly selecting a time value from a continuous empirical distribution of observed refueling times.

Q - Write out the following statistics for a day's yarding:
1 mean total turn time
2 standard deviation
3 maximum total turn time
4 minimum total turn time
R - Check to insure that 4 cycles have been yarded. If 4 cycles have not been completed, the ship will continue to yard until 4 cycles are completed then stop. A cycle includes the number of turns yarded between refueling events.

A detailed listing of the entire FORTRAN program and its execucution flow can be found in Appendix $C$.




Simulation Results

I simulated yarding from a clear-cut unit consisting primarily of old growth timber. I assumed no interruptions to the yarding system other than aborts, choker hookup, choker delivery, rehook, and refuel during a given cycle. Other assumptions are as follows:

1 That a day consists of four cycles ${ }^{5 a}$ (a cycle consists of 13-43 turns generated randomly).

2 That the ship will always yard for the duration of a given day.

Table 4 lists one day's production rates and element times. The detailed event by event statistics for any given day give a meaningful evaluation of production rates, delays, and element times. It becomes obvious at a glance that to evaluate each day on a turn by turn basis would be both expensive and tedious.

In an attempt to summarize relationship behavior as it influenced total turns time under varying conditions, I chose to construct a table of simulated daily times (Table 5) under the following varying conditions:

1 TAGLINE (Tagline Length) varies from 100 feet to 350 feet in increments of 50 feet.

2 SYDIST (Slope Yarding Distance) varies from 500 feet to 5000 feet in increments of 500 feet.

3 CHORDSLP (Chordslope) = 10 percent (\%).

Table 4. Simulated One Day's Detailed Element Statistics



For each treatment (days time), the mean turn time, the standard deviation, maximum and minimum values were computed and listed vertically in placement of occurrences on the table. For example, for a tagline length of 100 feet, a SYDIST (Slope yarding distance) of 2500 feet, and a CHORDSLP (Chordslope) of 10 percent, a MEAN daily total turn time of 2.69 minutes with a STANDARD DEVIATION of .46 minutes was realized. The MAXIMUM value of total turn time was 4.94 minutes with a MINIMUM value of 2.16 minutes. The previous statistics allow a good estimate of the vehicle's efficiency on a given day under given conditions.

The same set of conditions as above was simulated once again introducing the observed delays. Table 6 lists the helicopter's efficiency statistics as affected by the introduction of delays. Table 7 lists a comparison of simulated turn times (delays included and delays omitted).

Although the percent delay time obsenved in Table 7 seems a small percentage, it is important to remember that this small percentage is a percentage of the mean total turn time. Viewed in this light, delay time becomes an important factor.


## COMPARISON OF. SIMULATED DAILY TOTAL TURN TIMES

SLOPE YARDING DISTANCE (Feet)


## CHORDSLOPE $=10 \%$

Table 7. Comparison of total turn times, delays included and delays omitted (simulated times).

## VI. SUMMARY AND CONCLUSIONS

I analyzed the yarding system of a Boeing-Vertol 107 Model II helicopter. Operations were observed under a wide range of conditions. Using data that was gathered during the summer of 1973 , I employed regression techniques and simulation principles. The yarding system was broken down into the following components:

Outhaul Time
Hook Time
Inhaul Time
Unhook Time
The delays for which enough data was gathered were defined as:

Abort Time
Rehook Time
Choker Hook-up Time
Choker Delivery Time
Regression equations were derived to estimate productive times for the cycle elements, outhaul and inhaul. For the other elements and delays, frequency distributions were used as estimates of probability density functions. A paired t-test of the equations established their ability to predict the element times. The equations, along with the frequency distributions, were used to simulate total time for this yarding system.

The entire analysis is based on a single helicopter yarding system. To further test the data, other studies should be conducted both in old growth and second growth stands to better understand the variables and their relationships as they affect the yarding system. Further studies should include other variables. Weight per turn is a variable that should be considered in much detail. Individual pilot performance, along with individual hooker performance, should also be considered. Finally, a detailed study of the delay types and their occurrence would be very meaningful in further analyzing this yarding system.

The computer simulation model was developed in FORTRAN. This model can be used to study daily event-by-event behavior or a daily day-by-day behavior to a given treatment (set of yarding conditions). I constructed a table of simulated total turn time on a given day for each of 60 different days. This table included all delays. A delayfree simulated table was also constructed to study the effects of the yarding delays. This comparison led to the following recommendations of system modifications that might be implemented and tested.

1) A smaller model helicopter might be used to deliver the chokers to the rigging crew instead of the larger yarding vehicle. This should result in a time savings. This smaller vehicle might also be used to yard smaller materials.
2) The hooker might, to a large degree, reduce the rehook delay by insuring that the choker eye(s) are properly placed inside
the hook mechanism before giving the signal to lift off.
3) The abort delay might be eliminated by properly estimating log weights to insure more uniform loads. This might be accomplished by sampling log weights in the units to be yarded and expressing this weight value to some measurable form such as DBH and length. The faller(s) could then tag or mark the logs in some form that would enable the hooker to select a proper turn.

Construction of similar simulated tables would be of great importance to an operator. The operator could (given the independent variables characteristic of a unit to be logged) simulate similar tables to predict production rates, efficiency and delay times.

The model would also prove valuable to the forest manager in planning unit layouts. Managers could evaluate given units utilizing the model as an aid in appraising timber sales for yarding costs, delay allowances, and production rates.

If aerial logging is to become fully competitive with other logging systems, much work remains to be done in isolating factors and delays that result in time loss during the yarding cycle. Removal of second-growth timber by helicopter requires a detailed look. If helicopter logging is to be used as an efficient forestry tool, the forester's knowledge of the influencing factors is one requirement.

## Footnotes

3 a
Chaser - the individual responsible for removing the chokers from the logs as they arrive at the landing, also responsible for bundling the chokers.

5a Cycle - A cycle consists of the yarding time involved between refueling events.
VII. BIBLIOGRAPHY

Ahnstrom, A. N. 1968. The complete book of helicopters, Cleveland, The World Publishing Company, 175 p.

American Pulpwood Association. 1972. Helicopter logging with the S64E Skycrane. Technical Release. New York, N. Y., 17 p.

Aulerich, Dean Edward. 197l. Simulation of some interactions in the industrial forest operating system: Unpublished Ph.D. thesis, University of Idaho, 80 p .

Bell Helicopter Company. 1973. Variation in heli-logging production and cost against vehicle size for timber harvest of small diameter growth. Fort Worth, Texas: Marketing Department, 28 p.
. 1974. Single and heli-logging cost comparisons for timber harvest to 48 -inch diameter. Fort Worth, Texas, 40 p.

Binkley, Virgil Wayne. 1961. Vertical logging with helicopters: unpublished Master of Forestry thesis, University of Washington, 45 p .
. 1971. Helicopter logging with the S64E. Report of sale, Siskiyou National Forest, Portland, U.S.D.A. Forest Service Region VI, 23 p.
. 1971. Helicopter logging in California.
Paper presented at Intermountain Logging Conference, Spokane, Washington, 3 p.
$\qquad$ - 1973a. Research objectives and developments on the concept of vertical logging with helicopters. Report to the Auburn Forestry Forum, Auburn. University, Auburn, Alabama, 26 p.
. 1973b. Helicopter logging. A special
report on an exploratory trial with a Sikorsky S58 helicopter near Alouette Lake, British Columbia, Canada, Portland, U.S.D.A. For. Serv., Pacific Northwest Forest and Range Experiment Station, 17 p .

Bjornsen, R. L. and Mustian, A.P. 1972. Helicopter logging slash a new challenge to forest manager. U.S.D.A. Forest Service Region VI, 44 p.

Boeing-Vertol Company. 1967. Boeing-Vertol 107 Flight Manual. Philadelphia, various paging.

Briggs, Richard D. 1974. Copter logging preserves landscape. Forest Industries. P. 40-4l. Vol. 101, No. 13.

Bryan, Richard W. 1974. Eastern cedar show teams helicopter with feller-buncher for production. Forest Industries, P. 42-43. Vol. 101, No. 5.

Burke, Doyle. 1973. Helicopter logging: advantages and disadvantages must be weighed. Journal of Forestry, P. 574-576. Vol. 71, No. 9.

Campbell, T. S. 1972. A report on the Greyback Helicopter Sale, Siskiyou National Forest Portland, U.S.D.A. Forest Service. Region VI, Division of Timber Management, 14 p .

Casey, Bruce Lee. 1972. Commercial helicopter logging in the Pacific Northwest in the seventies - a new forestry tool. Master of Forestry paper, Corvallis, Oregon State University, 62 p .

Draper, N. R. and Smith, H. 1966. Applied regression analysis. New York, John Wiley $\varepsilon$ Sons, 407 p.

Downs, Robert L. 1973. Helicopter handles selective cut logs in tall timber. Forest Industries, p. 50-51. Vol. 100, No. 10.

Dykstra, Dennis P. 1973. Advanced logging systems yarding time studies. Corvallis, Oregon State University. Unpublished study plan on file at the U.S.D.A. Forest Service Pac. Northwest Forest $\mathcal{E}$ Range Exp. Sta., 23 p.
. 1974. Production rates and costs for cable, balloon, and helicopter yarding systems in old growth Douglas fir. Corvallis, Oregon State University School of Forestry Research Bulletin, 100 p.

Ellis, Terry C. 1971. A preliminary report on helicopter logging. Quincy, California, U.S.D.A. Forest Service, Greenville Ranger District, Plumas National Forest, 35 p.

Emshoff, James R. and Sisson, Roger L. 1970. Design and use of computer simulation models. New York, The Macmillan Company, 302 p.

Federal Aviation Administration. 1972. U.S.D.T. density altitude. Washington, D. C., 2 unnumbered leaves (C FAA AC73-2420).

Forest Industries. 1974. More 'copter and skyline rigs seen for years ahead. Victoria, British Columbia, p, 91. Vol. 101, No. 8.

Gordon, Geoffrey. 1969. System Simulation. Englewood Cliffs, Prentice Hall, Inc., N. J., 303 p.

Lantz, Richard L. 1971. Guidelines for stream protection in logging operations. Portland, Oregon State Game Commission Report, various paging.

Levin, Richard I. and Kirkpatrick, Charles A. 1971. Quantitative approaches to management, 2nd ed., McGraw-Hill, Inc., 457 p.

Martin, Jeff A. 1973. Computer simulation as a low-cost approach to logging system balance. Forest Industries, p. 52-54. Vol. 100, No. 9.

Naylor, Thomas H., Balinfy, Joseph L., Burdick, Donald S., and Chu, Kong. 1966. Computer simulation techniques. New York, John Wiley and Sons, Inc., 352 p.

O'Leary, John E. 1962. State of the art: report on the potential of helicopters for logging. Vorvallis, Oregon State University. Unpublished report on file at the U.S.D.A. Forest Service, Pacific Northwest Forest and Range Experiment Station, 49 p .
the feasibility of yarding logs in water and swamp.
Corvallis, Oregon State University, unpublished report on
file at the U.S.D.A. Pacific Northwest Forest and Range
Experiment Station, 6 p .
of yarding logs by helicopter. Corvallis, Oregon State University, unpublished report on file at U.S.D.A. Pacific Northwest Forest and Range Experiment Station, 26 p.

Oregon State Department of Forestry. 1971. Helicopter logging a fascinating innovation in Oregon forests: The Forest Log, p. 4-5.

Oswald, Dieter. 1971. Norwegian experiences with helicopter transport of timber: Forest Research (Norway), Economic Commission for Europe Food and Agriculture Organization, International Labour Organization, 13 p., Log/Symp. 5/36.

Pease, David A. 1971. Helicopter yarding is costly but trial operations expand. Forest Industries, p. 34-37. Vol. 98, No. 10.

Petersen, Roger G. 1973. Exercises in Statistical Inference. O.S.U. Book Stores, Inc., Corvallis, Oregon, 258 p .

Ruth, Robert H. 1960. It's time to look at yarding problems on steep slopes. Portland, U.S.D.A. Forest Service Pacific Northwest Forest and Range Experiment Station Res. Note 1853, 4 p.

Sabol, Emil M. 1973. A brief history of helicopter logging. Portland, U.S.D.A. Forest Service Region VI, Division of Timber Management, 3 p .

Samset, Ivar. 1964. Tómer Transport Med Bell 204-B Helikopter i fjellterrent (Timber Transport With A Bell 204-B Helicopter in the mountainous regions of Norway). Vollebekk, Norway, Norwegian Forest Research Institute, NR. 69, Bind XIX. p. 255-281.

Schlapfer, T. A. 1972. Helicopter logging memorandum to forest supervisors, Portland, U.S.D.A. Forest Service Region VI, 2 p.

Sinner, Hans-Ulrich. 1973. Simulating skyline yarding in thinning young forests. Corvallis, Oregon State University unpublished Master of Science Thesis, 80 p.

Stevens, P. M. 1972. Helicopter technical summary - Falcon Report. San Bernardino, The Aerospace Corporation, 31 p.

Turner, David 0. 1971. Timber sale report and appraisal Sky Hook sale. Portland, U.S.D.A. Forest Service, Mt. Hood National Forest, Hood River District, 17 p.

Vindgorou, G. K. and Kalutski, K. K. 1971. The use of helicopters for timber transportation in mountainous forests. Krasnodor, USSR. Report to Economic Commission for Europe Food and Agriculture Organization, International Labour Organization, 2 p., Log/Symp. 5/12/Add. 1.

Walbridge, Thomas Alexander, Jr. 1960. The design of harvesting systems and machines for use in pulpwood stands of the Tennessee Valley as dictated by intensive forest management. East Lansing, University of Michigan, unpublished Ph. D. dissertation, 279 p.

White, Vern. 1974. Whirleys swarm to biggest 'copter sale yet. Western Timber Industry, p. 6., Vol. 22, No. 6.

Wood, A. D. 1962. The potential use of helicopters for the transportation of logs. Ottawa, Canada, Aeronautical Report to Wood Transportation Conference, Montreal, Canada, 34 p. N.R.C. No. 7211.

APPENDIX A
CAMELSBACK TIMBER SALE (UNIT MAP)

$\oplus$
$\bigcirc$

CONTOUR INTERVAL: 80 FEET

[^4]APPENDIX B
OBSERVED POSITIONING OF THE HELICOPTER

## OBSERVED POSITIONING OF THE HELICOPTER

Diagram 1 shows a flowchart of the ship traveling a hypothetical flight path. At point number 3 the ship is being positioned directly over the hook up point. The ship approaches the hook up point in the indicated direction and then proceeds to hover over the desired point (number 3 through 6) until the turn has been hooked and the hooker has moved to a safe position. The ship yet remains to be turned around facing the landing before the turn is lifted in proceeding toward the landing (number 7). Much the same series of events occur at the landing. The ship arrives at the landing (number 8) and proceeds to unhook. It is not until the turn has been released that the ship begins to reposition itself before returning to the hook up point.

Although I have no quantitative data to support the flow indicated in Diagram 2, it appears that this ship could begin to reposition itself as it approached the hook up point and the landing as shown by the flowchart ${ }^{6}$. The positioning before arriving at the landing or hook ul would serve two purposes. It might serve to reduce total turn time, increasing production and aid in reducing fuel consumption. I believe this is an area that needs more attention. Again, I have no quantitive proof of this situation and recommend that this be investigated further in another study.

[^5]Diagram 1. OBSERVED POSITIONING FLOWCHART


Diagram 2. POSSIBLE IMPROVEMENT IN
FLIGHT PATTERN FLOWCHART


## APPENDIX C

FORTRAN SIMULATION PROGRAM LISTING


| C. |  | variats from -rancem and returns a value fcr the | OOOE 3 |
| :---: | :---: | :---: | :---: |
| C... |  | VOLUME UF THAT TURN. THE CDF litterec is for the | 00064 |
| C... |  |  | OOOES |
| C.. |  |  | coote |
| C.. | (9) | Subroutine guthaul - ccmpltes an outhaul tine | 00067 |
| C.. |  | frch a fegitesica eolatich lidilzing tagline | coote |
| C... |  | length ano slope yarcing cistance. | 00069 |
| C.. |  |  | 00070 |
| C... | (10) | Sueroutine inhaul - computes an inhaul time | 00071 |
| C... |  | frch a kegrlssiga eqlation utilizing slcfe | C0012 |
| C. |  | Yaroing oistance, Choroslofe, numgef of logs | 00073 |
| C... |  | fer tlfi,tagling lincti,and volume pef log. | 00.074 |
| C... |  |  | 00075 |
| C... | (11) | slercutine chokce - enters the comidnlous | $0007 E$ |
| C.. |  | Cumblative density flicticn for the curation cf | 00077 |
| C. . |  | Choker hceklp celays hith a laiformly oistrialtec | 00078 |
| C. . |  | RANOOH VARIATE FKOM RANOCM. AnO | 00079 |
| C... |  | fetlfins a value for the clration cf each cheker | 00080 |
| C... |  | hockuf delay. | 00081 |
| C... |  |  | 000 ec |
| C... | (12) | Sugrauting hookz - enters the continlous | 00083 |
| C... |  | cumulative density flacticn fef the clration | COOO4 |
| C. . |  | OF hUCK times hith f LAIformly distigiouteo | 00085 |
| C... |  | ranocm vahiate frcm tranccm ano geturns a value | 00086 |
| C... |  | fGG the clrgitica cf that houking event. | 00087 |
| C... |  |  | 00088 |
| C... | (13) | slbfoltine chokiz - enters the continlous | 00089 |
| C... |  | Clmulativg oensity functicn for the curation cf | 00090 |
| C.. |  | ChCKer celivepy times hitr a lnifgrmir cistaielied | cooct |
| C. |  | RANOCM UARIATE FROM GANDCM añ fetlens a value | 00052 |
| C... |  | foik the duration cf that chokef delivery celay. | coos: |
| C... |  |  | 00094 |
| C... | (14) | slefoutiae stats - complies the mean, variance, | $000 ¢ 5$ |
| C... |  | Stanoarc oeviaticn, ccefficient of vafiaticn, | $000 \div 6$ |
| C... |  | maximum ano minimum values fok an array. | couct |
| C... |  |  | OOCse |
| C... | (15) | surroutine xtufasi - chtefs a continlous | 0COOg |
| C... |  | clmllative censity flacticn fir tre nlmaer | 00100 |
| C... |  | cf turis that mlst ae rarced eefore a choker | 00101 |
| C... |  | hCOKUF EVEAT OCCLFS. A UAFFCRMLY OISTRIELTED | 00102 |
| C... |  | ganogm variate frum recnjcm is useo to oetermine | 00103 |
| C... |  | the valle cf the chokef hgokuf delay. | C01C4 |
| C... |  |  | 00105 |
| C... | (16) | Slbroutine xturnsz - enters the ccntinuous | 00106 |
| C... |  | Clmulative density flncticn fcr the clration cf | 00107 |
| C... |  | refugling lvents mitr a unifchmly oistributed | 001 C |
| C... |  | RANDUM VAKIATE FRCM -Fandem and fettrns a value | 00109 |
| C... |  | that hill determine the ffeglency of alfueling | col10 |
| C... |  | EVENTS. | 00111 |
| C... |  |  | 00112 |
| C... | table | Of nomenclature | 00113 |
| C... |  |  | C0114 |
| C... | variable | S Art offineo as they occur. | 00115 |
| C... |  |  | 00116 |
| C... | (1) | tlen - number of turas yafoed | 00117 |
| C... |  |  | 00118 |
| C... | (2) | mturas - CGuntef fer filling arrays - no. of | 0011 c |
| C... |  | tlRNS Yardeo per cycle | 00120 |
| C... |  |  | 00121 |
| C... | (3) | NCYC - COUNTER FOR TERMINATION OF ONE UAYS RUN | 00122 |
| C. . . |  | - no. cf cycles execliec | C0123 |
| C... |  |  | 00124 |
| C... | (4) | talogs - accumulatior fer total logs yarceo | 00125 |


| C.... | (5) | txuolume - accurulatcr fof total vollme yaroeo |
| :---: | :---: | :---: |
| C... |  |  |
| C... | (6) | NTURNS - CCUnter for chiker hcok up ano |
| C.O |  | delivery - ac. cf tlrids rafceo eetheen |
| C... |  | times cf cheker hook up for delivery |
| C... |  |  |
| C... | (7) | NADO - COUNTER FCR FILLING ARRAYS |
| C... |  | - no. of tlrns ybrcec fer cay |
| C... |  |  |
| C... | (8) | NSYOIST - CCUATEF FCA AESTEC CC LCOF |
| C... |  | --ho. Of Yafoing distances executeo |
| C... |  |  |
| C... | (9) | NTAG - CCUATER FCR CC lccf |
| C... |  | - NO. df tagline executions |
| C... |  |  |
| C... | (10) | ABORTS3 - ARRAY CONTAINING ARORT- CELAY TIMES |
| C... |  |  |
| C... | (11) | Rehook - array conitaining rehook- oelay times |
| C... |  |  |
| C... | (12) | refuel 3 - array containing refuel -oleay times |
| C... |  |  |
| C... | (13) | NXTURIS - NO. OF tURNS getween choker hook up anc oelluters inc. cf tugas that must be yakoeo |
| C... |  |  |
| C... |  | QETHEEN CHUKER HOOKUF ANO ChOKER CELIVERY EVEATSI. |
| C... |  |  |
| C... | (14) | xturns 3 - no. of tufns eftheen refuel events |
| C... |  |  |
| C... | (15) | hookup - array containiag, choker hooklp times |
| C... |  |  |
| C... | (16) | olthauli - array containing olthall times |
| C... |  |  |
| C... | (17) | delivegy - argay contaiding choker oelivefy tires |
| C... |  |  |
| C... | (18) | hook - afrliy containing hook times |
| C... |  |  |
| C... | (19) | logs 3 - afray coataiaing logs yarceoitugn |
| C... |  |  |
| C... | (20) | vClume - array ccataiaing vclume yafceoiturn |
| C... |  | IAHALLI - ARRAY CGRTAIAING InHAUL TINES |
| C... | (21) |  |
| C... |  | unhockz - afray cotitaining untcok tires |
| C... | (22) |  |
| C... |  |  |
| C... | (23) | timer - choker hock lf tire |
| C... |  |  |
| C... | (24) | timez - cuthaul time |
| C... |  |  |
| C... | (25) | timez - choker celivegy time |
| C... |  |  |
| C... | (26) | times - hCOK time |
| C... |  |  |
| C... | (27) | timeg - agort time |
| C... |  |  |
| C... | (28) | timet - rehcok time |
| C... |  |  |
| C... | (29) | timëa - inhaul tire |
| C... |  |  |
| C... | (30) | Tireg - Lnhook time |
| c... |  |  |
| C... | (31) | time 10 - refuel time |
| c... |  |  |
| ... | (32) | timeil - rime keguirec to hook up chekers fer |

00126 00127
COIze
00129
$001: 0$
00131
0013 c
00133
00134
C0135
00136
00137
00138
0013 s
00140
00141
00142
C0142
00144
00145
00146
00147
00148
00145
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
QOIEO
$001 E 1$
$001 \in 2$
001 E 3
00184
00165
001 EE
00167
00168
00169
c 0170
00171
00172
00173
00174
00175
$0017 \epsilon$
00177
00178
00179
00180
00181
00182
00123
00184
00185
00126
00147
0018 c

|  | delivery cufing féfueling fincless | 0018 |
| :---: | :---: | :---: |
| C... |  | CO1c0 |
| C... | (33) Ttimél - total chokef hicok up time | 00191 |
| C... |  | 00192 |
| C... | (34) TIIHEZ - TOTAL OUTHALL TIPE | 00193 |
| C... |  | 00154 |
| C... | (35) Ttimez - total chokef delivery tire | 00195 |
| C... |  | 00156 |
| C... | (36) TIIME4 - total hook time | 00167 |
| C... |  | c01c8 |
| c... | (37) TTINEG - TOTAL ABCRT TIME | 0015 |
| C... |  | 00200 |
| C... ${ }^{\text {c }}$ | (3a) titmet - total fehcok time | COCC 1 |
| C... |  | CO2C2 |
| C... | (39) TIIME8 - TOTAL INHAUL time | 00203 |
| C... |  | 00204 |
| C... | (40) Ttipeg - total unhook time | OOCOE |
| C... |  | 00206 |
| C... | (41) Ttircio - tctal fefuel tire | 00207 |
| C... |  | 00208 |
| C... | (42) TIIHEII - tctal time fecuireo to mook up chekers | 00205 |
| C... | DURING fefleline frocess | 00210 |
| C... |  | 00211 |
| C... | (43) MEAN3 - ARRAY CONATAINING DAILY-TOTAL MEANS | 00212 |
| C... | FER TREATMENT | 00213 |
| C... |  | 00214 |
| C... | (44) STCEV3 - Afray ccataining daily-tctal stanoarc | 00215 |
| C... | OEVIATICNS | 00216 |
| C... |  | C0217 |
| C... | (45) XHIGH22 - ARRAY CONTAIAINE CAILY-TOTAL MAXIMUM | 00218 |
| C... | values fer treatrent | 00219 |
| C... |  | 00250 |
| C.. | (46) XLOW22 - ARRAY CCNTAINING OAILY-TOTAL MINIMUM | 00221 |
| C... | values fer tfeatment | 00 çác |
| C... |  | 00223 |
| C... | (47) XCELL - ARRAY Containing turn times | 00224 |
| C... |  | 00225 |
| C... | (48) TTIME - TOTAL TURN TIMES | 00226 |
| C... |  | $00 ¢ 27$ |
| C... | THE PROGRAM WILL SIMULATE CNE DAYBS Yaroing fer each cf | 00228 |
| C... | Sixtr rreatments. a cetailec listing of individall event | $00<29$ |
| C... | STATISIICS FQR EACH TREATMENT AFE PRIATED ALCAG | Q0230 |
| C... | HITH THE STATISTICS FOR EACH TKEATMENT ITOTAL | 00231 |
| C... | TIMESI Ch A CAILY RASIS.**NCTICE**- This frccuces a | 00232 |
| C... | massive amcunt of gutput añ is expensive, cne can | 00233 |
| C... | eliminate the cetaileg event or event statistics ano | 00234 |
| C... | choose to anaylize rhe daily totals as treatrents, | 00235 |
| C... | this results in less cutfut anc less expense. | 00¢se |
| C... |  | 00237 |
| C... | APPENOIX HAS A SUMMAAY CF gCth cetailed cays | 00238 |
| C... | SIATISTICS ALONG WITH A COMPI.ETE SUMMARY OF SIXTY DAILY | 00239 |
| C... | treatments chean, standard ofviation, maximum and minimum | 00240 |
| C... | values for any given daily theatmenti. | 00241 |
| C... |  | 00242 |
| C... |  | 00643 |
|  | RLAL LCGS,LOGSI, LOGS3, INHAUL1 | 00244 |
| C... |  | 00245 |
| C... | OIMENSION ALL ARRAYS AHD THEIR SISTER ARRAYS THAT | 00246 |
| C... | CCintain aescissa values grimes charesfonctine to | 00247 |
| C... | EACO CLMULATIVE OLRSITY FUNCTICH VALUE. OTHER | $00<48$ |
| ... | arrays contain detaileo elemeht and cycle tires and | 00245 |
| ... | frujuctions gates which are tater usec in ccrfuting | $00<50$ |
| . . . | SIATISTICS FCR EACHEVENT. | $00<51$ |


| C... |  | 00252 |
| :---: | :---: | :---: |
|  | OIMENSION CHCKO(9), CHOKO1(9), HCCK (26), HOOK1 (2E) | 00253 |
|  | 1, HCOKLF (4E), CLTHAUL1 (45), OELIVEAY(45), HOCK3(45), | 00254 |
|  | 1LUGS3(45), VOLU A ( $3(45)$, AECFI $3(45)$, FEHCCK3(45), | 00655 |
|  | 1 IHHAUL $1(45)$, Un, HLOK3(45), REFUEL3(45), LCGS(E), | 00 cse |
|  | 1LOGSi(t), CHOKI(11), CHOKI1(11), AEOET(18), AECRT1(18), | 00657 |
|  | 1REHOOK (8), REHOOK1(8), UNHCOK(10), UNHOOK1(10), | 00258 |
|  | 1REFUEL (16), REFULLI(16), IR(11), If(11), IC(11), | 00 人¢9 |
|  | 1 VOLUME (6, 102), VCLUM-1(6,102), Féfuela 16$)$, | 002 O |
|  | 1KEFUELE (10), CrCKIL(20), CHOKIE(20), | Cozel |
|  | 1 XCELL (150), XMEA13 ${ }^{\text {(10), STOEV3(10), XHIGH22(10), XLON22(10), }}$ | 00262 |
|  | ISYOIST(10), TAGLIAE(E) | 00283 |
|  |  | $002 E 4$ |
| C... | data statercats afe usec to initialize cumulative | 002 Es |
| C... | OENSITY FLNCTIONS FCR EMFIRICAL OISTRIQUTIONS. | $002 \in 6$ |
| C... | GBSCISSA VALles are alsc enterec corgesfonding to each | 00 <t? |
| c... | COF VALUE IN A SISTER AFRAY. | 002 ¢ |
| C... |  | OOCEC |
|  | DATA(ICHOKO(I), $\mathrm{I}=1,9)=.0191, .0575, .2000, .4190, .7142, .8666$ | 00270 |
|  | 1,.9333,.9c04,1.0) | $00<71$ |
|  | OATA( $\mathrm{CHOKU1}(\mathrm{I}), \mathrm{I}=1,9)=0 ., .1, .2, .3, .4, .5, .6, .8,1.21$ | 00272 |
|  | OATAI(r00k(1), $\mathrm{I}=1,26)=.0032, .0417, .1605, .3461, .5302, .667 \mathrm{c}$ | C0<73 |
|  | 1,.7774,.887E,.9175,.9357,.9571,.9E14,.9588,.9763,.9817,.9 | 00274 |
|  | 1928,., ¢648,.9892,.9902,.4912,.9924,.9935,.9945,.9967,.c988 | $00<75$ |
|  | 1,1.0) | 00276 |
|  | DATA( (rook $1(1), 1=1,26)=.1, .2, .3, .4, .5, .6, .7, .9,1,0,1$. | 00277 |
|  | 11,1.2,1.4,1. $5,1.6,1.7,1.8,1.5,2,0,2.2,2.3,2.4,2.5,2.9,3.0$ | $00<78$ |
|  | $1,3.2,3.5)$ | 00279 |
|  |  | 00280 |
|  | OגIA ( (LOGSi( $), I=1,6)=1.0,2.0,3.0,4.0,5.0,6.0)$ | 00 cei |
|  | DATA (CHOKI(I), $I=1,11)=0381, .1332, .2952, .4571, .5714, .771$ | $00<8$ ? |
|  | 14,.8457,.9429,.9809,.9904,1.01 | $00<83$ |
|  | OAIA(1CHOKII(I), I= 1, 11)-0.,.1,.2,.3,.4,.5,.6,.7,.8,1.2 | 00284 |
|  | $1,2,01$, | 00 ¢¢5 |
|  | UATA((ABORT (I), $I=1,18)=.0465, .0591, .0931, .13 ¢ 6, .1861$, | 0028 E |
|  | 1.3256,.4419,.5116,.6511,.8134,.8367,.8600,.8833,.9036, | 00287 |
|  | 1.9299,.9532,.9765,1.0) | 0028 a |
|  | OATA(CACORT1(I), $1=1,19)=0 ., 1, .2, .5, .6, .7, .8,1.0,1.1,1.2$, | $00<89$ |
|  | 11.5,1.E,1.7,1.5,2.3,2.7,3.0,4.0) | $00<50$ |
|  | OATA( (FSHOJK(I), I= 1, 8) = . $1667, .2500, .3333, .4166, .6666, .833$ | $00<91$ |
|  | $16, .9166,1.01$ | 00252 |
|  | OATA( (EEHCOK1(I), I= 1, 8) =.4, E, . $7, .8,1.0,1,3,1,6,3.0)$ | 00293 |
|  | DATA((LNHCOK(1), I-1,10) =.616¢,.9454,.9786,.9882,..¢935,.9¢ | $00<84$ |
|  | 140,.9957,.9970,.9989,1.0) | 00255 |
|  | DATA ( (LNHCCK1(I), $I=1,10)=0 ., .1, \ldots, \ldots 3, .4, .5, \ldots, .7,1.2,1.5)$ | 002ce |
|  | OArA(14cFUEL (I), $I=1,16)=.3345, .1379, .3104, \ldots 348, .4138, .44$ | 00297 |
|  |  | 00258 |
|  | 11.01 | 002c9 |
|  | DATA( $F$ EFLELI(I), $\mathrm{I}=1,16)=3.4,3.7,4.0,4,3,4.6,4.9,5.2,5.5$, | 003 Co |
|  | 16.4,5.7,7.3,7.0,3.5,9.4,12.7,13.6) |  |
|  | CATA( (JCLLF=(NLCGS, I), $1=1,17)$, NLCGS $=1,6$ | $00 \geq 62$ |
|  | 1) =.0154,.C310,.CE55,.123G, 2131, .2487,.5425, | 00303 |
|  | 1.2467,.8052,.0417,.9704,.9557,1.0,1.0,1.0,1.0, | 00304 |
|  | 11.0,.0203,0035,.1667,.2406,.3415,.4756,.5935,.7277, | 00305 |
|  | 1.9212,.8462,.9512,.9034,.9716,.9838,.9673,.9919, | 0030 E |
|  | 11.0,0185,.6333,.2222,.3704,.4723,.6112,.6760, | 00307 |
|  | 1.4149,.8490,.90/5,.9200,.9634,1.0,1.0,1.0,1.0,1.0,.0309 | 00308 |
|  | 1, $3182, .454$, . 5., 55,.63E+,.7273,.6182,.9091, ¢495, | 0030 c |
|  |  | 00310 |
|  | $11.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0$, | cozil |
|  | $11.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0$, | 00312 |
|  | 11.0,1. $0,1,0,1 . C, 1.0)$ | C0313 |
|  |  | 00314 |

```
 1300.,400.,500.,606.,700.,800.,900.,1000.,1100.,1200., 00315
 11700.,C.,0.,0.,0.,200.,300.,400.,EOC.,EOO.,7CG., COIIE
 1800.,900.,1400.,1100.,1200.,1300.,1400.,1500,,16C0., 00317
 11700.,1000.,200.,300.,400.,500.,600,,700.,800,,900., 00318
 11000.,1100,,1200,,1300.,1400,,1500.,1500.,1500., 00319
```



```
 11800.,1900.,1900.,1900.,1900.,1900.,1900.,1900.,1900., 00321
 1200.,400.,500.,500.,500.,500.,500.,500.,500., 00322
 1500.,500.,500.,500.,500.,500.,500.,500.,500,,500., 00323
 1500.,5C0.,500.,500,,500.,500.,5C0.,5CC.,500., 00284
 1500.;500.,500.,50C0,500.,500.)
 DATA((IF(I),I=1,11)=&137E,12C745,E&G076,5000CO,833884,87E OO3ZE
00325
 1613,54EE12,777777,645213,EEEEEE,8&888) 00327
 OATA((IA(I),I=1,11)=2069,20G9, <09E,2085,4117,4117,4133,413 0032e
 13,2069,2069,2085)
00329
 OATA((IS(I),I=1,11)=1772721,E\in15877,1772721,EE15677. 00330
 OATA((IS(I),I=1,11)=1772721,E\in15877,1772721,EE15677, 00330
 117727<1,6615&77,1772721,EE15877,1772721,6E15877,
 11772721)
 00332
 OATA((CHCKI+(I),I=1,20)=.0196,.0588,.1372,.2<55,.3039, 00333
 1.4313,.5930,.6960,.7842,.8C36,.8332,.8721,.9116,.9319, 00334
 1.9506,.gEO4,.G7CE,.9200,.GECE,1,0) 00335
 OATA((CHOKIS(I),I=1,20)=2.0, コ.C,4.0,5,0,6.0,7.0,8.0,9.0, 0033E
110.0,11.0,12.0,13.0,14.0,1\epsilon.C,17.0,18.0,14.0,21.0,24,0, 00337
135.0)
 OATA((FEFUEL4(I),I=1,IE)=.IEEE
00338
 C0:30
 1,2333,.2EEE,.3333,.3606,.5332,.5066,.5999,.6332,. 00340
 17332,.7999,.8332,.8665,.9999,.9655,1.0) 00341
 0ATA((KËFLELE(I),I=1,16)=13.0,14.C,16.0, 00342
 117.0,18.0,20.0,21,0,22,0,23,0,24,C,25,0,26,0,34,0, 00343
 135.0,4C.0,43.0)
 OATAI(SYOIST(I),I=1,10)=500.,1000.,1500.,2000.,25000, 00345
 13000.,2500,,4000.,4500,,5000.)
 OATA((TAGLINE(I),I=1,6)=100.,150.,200.,250.,200.,350.)
C...
C...
C...
 TURN=0
 NTURNS=0
 TTIME1=0
 IIIME2=0 00354
 TIIME 3=0 00355
 IIME4=0 CO35E
 TIIMEG=0 0 0 557
 TTIME7=0 COI50
 TYIMES=0 OOSG9
 ITIHE9=0 OOJ&O
 ITIME10=0 003E1
 TIIHE11=0 00? O2
 TTIME=0 : 003E3
 IIME=0 00364
 HCYC=0
 TNLOGS=0 OOSEE
 NTURNS=0
 TXVOLUFE=O OOSEE
 NTURNS1=0
 NADO=0
 COJES
 TNLOGS=0 OOSEE
 00367
 TXVOLUFE=O OOSEE
 OO3ES
00370
C...
C..
C... INITIALIZE CHCRESLP TO 10 FEFCEIIT ANC HOLD THIS VALUE 00373
00.371
0037%
C... CONSTANT CLRING THE ENTIRE EXECUTION. THIS VARIABLE OO OTM
C... WAS CHCSEN TO EL HELO CCNSTANT CUE TO ITS SMALL CCNT- OO37S
C.. RIGUTICNTOTOTALTIME. OO37E
C...
 INITIALILE TIMES FOR EXECUTION
00347
0034
O
```



```
003%E
1.9506, OEOL,OG7CZ,*GEOO,.GECE,1,0)
00344
00345
0034E
```

```
00348 00349
CC3E6
 M. W. M
00373
00377
```

```
 CHOROSLP=10. 0037%
 MRITE(E,777)
 0037
 00375
 777 FORMAT(\not=1*)
 00380
 WRITE(E,44.4)
 WRITE(E,44.4)
 WRITE(E,44.4)
 00382
 C... WRITE FEACIAGS FOR CETAILEC CYClE ElErENT IIrES ANO
 00383
 C... PROOUCTION RATES.
C...
 444 FORMAT(447X,&SIMULATEO DAILY-TCTAL TIME-STATISTICS&)
 WRITE(E,445)
 445 FORMAT(63x, &SYOISTF)
 WRITE(E,44E)
 446 FORMAT (14x,113(z*7))
 WRITE(E,8&7)(SYCIST(I),I=1,1C)
 HRITE(E,447)
 447 FORMAT(14x,113(z*t))
C...
C... THIS NTAG- OO LOGP VARIES THE TAGLINE LENGTH FROM 100
 C... FEET TC 350 FEET IN INCFEMENTS CF 5O FEET.
00 308G NTAG=1,E
 00 088& N二,MDIST=1,10
 C...
C... THIS NSYCIST - DC LCOF VARIES THE SYCIST FROF 500
C... TO 5000 IN INCREMENIS OF 500 FEET. AFTER EACH TAGLINE
C... LEHGTH IS INEATED WITH SYOIST, IT HILL JUMF CLT OF
C... IHIS LCOP AND CONTINUE EXECUIION LNTIL ALL TAGLINES HAVE
C... EXPERIENCED THZ̈ SLME TREATMEAT.
C...
 DO 16 I= 1, < 5
 AUOKT3(1)=0
 REHOOK3(I)=0
 REFUEL3(I)=0
 16 CONTINLE
C...
 C... HRITE HEAOINGS FCK DETAILEO CYCLE ELEMENT TIMES
C... AND FRCOLCTICA RATES.
C...
 WRITE(5, &O1)TAGLINE (NTAG),SYCIST(ASYOIST),CHCFOSLF
 801 FORMAT(1H1,4 JX, ITAGLINE =2,F3.0,2X,ISYOIST = 2,F4.0,2X,
 1*CHORCSLP=&,F\hat{ONO}
 WRITE(5,800)
```



```
 1 fOELIVERY#,5x, fHOOKx, 2X, FLCCS/TURNt, 2X, &VCL/TLRNA,
```



```
 1 FREFUE(#)
 4000 NTURNS 1=0
 CALL GANOCM(IR,IA,IC,U,IO)
C.... THE USER SHOULC CELETE THE FCLLCWING ETATEMENT IF H
C.... the user shoule celete the fcllching statement if he
C... DOES NCI hISH TC HAVE IHE &ANCCM NUMBERS LISTEO.
C...
WRITE(7,950U)U
 95CC FORTAI(EIE.G)
 CALL XTURISI(U,CHOKI&,CHOKIS,NXTUANS)
 IF(TLGA.LT.XILINS3)GO TC 300C
C...
C... generate a kancgm nlmeeg tc enter the tables.
C...
GOOO CALL FANCCH(IR,IA,IC,U,II)
TURN=0
C...
C... AGAIN one mAY WISH to dElete the followIHG StafEMENT
 00383
C...
 C...
 CO385
 00386
 coze7
 C0ze7
 COzeg
003c0
00391
C03c%
00393
CO354
00395
C0:CE
00397
C03¢8
00359
004C0
C... LEHGTH IS INEATED WITH SYOIST, IT WILL JUHF CLT OFF OHIS LCOP AND CONTINUE EXECUIION LNTIL ALL TAGIINES HAVE OOLC?
 00401
 00402
 00404
 004C5
 OO40E
 004C7
 REHOOK3(I)=0
00409
C0410
 00411
00412
CO413
00414
00415
```



```
00417
00418
00419
00420
```



```
00422
00422
00424
00424
00425
C0426
004<7
00428
0042%
00420
004\geq1
00432
C04:?
00434
CO425
00436
00427
0043e
004?%
```

| C... | If he coes not hish to list rgee fandem nlmbers. | C0441 |
| :---: | :---: | :---: |
| C... | WRITE (7,9500) | $\begin{aligned} & 00442 \\ & 00443 \end{aligned}$ |
| C... |  | 00444 |
| C... | upon execlidun cf this rcutine the | 00445 |
| C... | Hutaer hhich oftermines the frequency of refleling | 0044 E |
| C... | occurences inlll bi fitutined. this number hill change | 00447 |
| C... | everr time the helicoftef geflels. | 00448 |
| C... |  | 00449 |
|  | Call xtlrasz(u,kefuely,feflels, xtlans3) | 00450 |
| C... |  | 00451 |
| C... | THIS STATEMENT hILL WRITE OLT THE NLMEER OF TLRNS THAT | 00452 |
| C... | must be exicuteo eefore the ship has to senc | 00453 |
| C... | ChOkefs tc the kigging cfen ch fefuel resfectively. | 00454 |
| C... |  | 00455 |
| 3000 | WRITE(7,2000)n土tufns, xtefns | 00456 |
| 2000 | FORMAP (I3,F3.0) | 00457 |
| 500 | NTURNS = ATLAAS 1 | 0045 |
|  | NTURNS $1=$ NTUSNS $1+1$ | 00459 |
| C... |  | 004 EO |
| C... | this statement checks tc ste if miurnsi - the | 004 EI |
| C... | Number of tuñs rarced against | 004 Eरे |
| C... | the numgef of turts that can occur before the chokefs | 004 E3 |
| C... | are again reacy tc be sent tc the rigging creh | 004 E4 |
| C... | ( bundleo in 20 to 30 fef elaclei. | OOLES |
| C... |  | 004 E6 |
|  | IF (NTLENSI.GE.NXTURAS)GC TO 140 | 004 E7 |
| C... |  | 004 ¢ 8 |
| C... | If the chikegs mre reacy tc ee hocked then a chokers | 0046 C |
| C... | HOOK UF EVENT WILL OCCUR AND IT WILL TRANSFEF COMMAND | 00470 |
| C... | TO STATEMENT 150. | C0471 |
| C... |  | 00472 |
|  | 60 10 150 | 00473 |
| C... |  | 00474 |
| C... | generate a ranocm numaer. | 00475 |
| C... |  | 0047 E |
| 140 | call ranoomilir, IA, IC, U, 1) | 00477 |
| C... |  | 00478 |
| C... | this subroutine hill access the glmulative oensity | 00479 |
| C... | FUNCTICA CF CHCKER HCCKLF TIFES AAD WILL RETLFN A | 004 E0 |
| C... | value that hill be the duration of that | 00481 |
| C... | delay. | 00482 |
| C... |  | 00483 |
|  | CALL CHOKO2(U,TIME1, CHOKO, CHCKO1) | 00484 |
|  | TTIME $=$ TTIME $1+$ TIME HOOKUP (NTGRS $=$ TIME | 00485 |
| C... |  | 00487 |
| C... | this rclitine hill ccmpute the cutraul time recuireo for | 00488 |
| C... | the vehicle to travel the given distance sroist | 00489 |
| C... | ANO hith a given tagline leneth. | C04cc |
| C... |  | 00491 |
| 150 | CALL CLTHAUL (TAGLINE(NTAG), SYCIST(NEYCIST), TIREC) | 00452 |
|  | TTIMEZこITIME2+TIMEZ | C0493 |
|  | OUTHAULI (ATLRNS) = IIME2 | 00.444 |
| C... |  | 00455 |
| C... | This statement again checks tc sie ff chokers have geen | 00456 |
| C... | PICKEC UF AT ThG LANOING ARE TC EE TRANSPCRTEG TO | 00497 |
| c... | the RIgGikg crew. if they neeo ti ei delidereo a | 00458 |
| c... | TIME (TIME3) hill ee cirflite easeo ca the random | 0045 |
| C... | number sufplica in the pqevicls qandor numbea call. | 00500 |
| . . . |  | CO501 |
|  | IF (NTURNS1.gE.NXTURIS)GC TO 100 | 00502 |
|  | GO TO EOO | 00563 |


| C... |  | C0504 |
| :---: | :---: | :---: |
| C... | If the chokers in not flquire attention the ship hill | 00505 |
| C... | frcceec ichard the hciker enaeling him ic | cosce |
| C... | hook another turn. | 00507 |
| C... |  | 00508 |
| 100 | call randomilf, ia, ic, U, 2 ) | 00509 |
|  | CALL CHOKI2(L, IINE3, CHOKI, CHCKI1) | 00510 |
|  | TTIME 3 = TIME 3 + TIME3 | 00511 |
|  | OELIVEFG ( WTURNS) = TIME3 | 00512 |
| C... |  | 00513 |
| C... | generate another ralidom numgas, | 00514 |
| C... |  | 00515 |
| 600 | Call ranoomeifi,ia, ic, $\mathrm{U}, \mathrm{J}$ ) | 00516 |
| C... |  | 00517 |
| C... |  | 00518 |
|  | CALL HCOKZ (U,TIME4, HOOK, HOCK1) | 00519 |
| C... |  | 00520 |
| C... | the above routine computes a hcok time baseo cn | 00521 |
| C... | the agove randor number. | 00522 |
| C... |  | 00563 |
|  | TTIME4=TIIMĖ4+TIME4 | 00524 |
|  | HOOK3 (NTUENS) = TIME4 | 00525 |
| 700 | Continue | 10528 |
| C... |  | 30527 |
| C... | generate a fandom number. | 00528 |
| C... |  | 00525 |
|  | CALL RANDOM(IR,IA,IC, U,4) | 005?0 |
| C... |  | ccesi |
| C... | using the aeove random almbef cchfute the numeer cf | 005:2 |
| C... | logs to hcor that farticllaf tlrn. | 0053. |
| C... |  | 00534 |
|  | CALL LCGS2(L, MLCGS,LCGS,LCGS1) | 00535 |
|  | thlogs Thlogs ralogs | 00536 |
|  | LOGS3(ATUANS)=NLGES | 00517 |
| C... |  | cos? |
| C... | generate anotheg ratiom numbef. | 00539 |
| C... |  | 00540 |
|  | call random(if,ia,ic, U,5) |  |
| C... |  | cos42 |
| C... |  | 0054 ? |
|  | call valumez (u, nlogs, volume, volume i, xvolure) | 00544 |
| C... |  | C0545 |
| C... | enplotitg the above pandom membeq again select a | 00546 |
| C... | given wollme deiehminec in paft gy that rander | 00547 |
| C... | mumbek ano the lumger of logs mouk previously for | 00548 |
| C... | that turn. | COE4s |
| C... |  | 00550 |
|  | TXVOLUME $=$ TXVCLUME $\times$ XVOLUME | $00 \leq 51$ |
|  | VOLUME3(NTLGAS) = X VOLUME | 00552 |
| C... |  | 00553 |
| C... | this statement checes the vollme just comfutec | 00554 |
| C... | ano chacks if agallet a volute cf 1500 gokro feet | 00555 |
| C... | ( Roughly 8,000 founds beighi, to See if the ship | 00E5E |
| c... | cah lift this lcad, if it can nut lift the load it | cos5 |
| C... | IS FORCEO TO AEORT. | 00550 |
| C... |  | 00559 |
| C... | If an agofy occlas comtacl is tfansferfo to siaterent | OOEEO |
| C... | 60 whefe the cumputatiun cf the delay duratica is mage. | cose 1 |
| c... |  | 00562 |
|  | If (xvolumegegeisoo.) Go 1050 | C05E |
| C... |  | $005 E 4$ |
|  | goroto | OOSES |
| C... |  | 00566 |

```
 50 CALL FANCCM(IR,IA,IC,U,E)
 005E7
 CLLL ARORTZ(U,TIMEG,AJORT,ABCET1)
 AGORIS(ITLGNS)=TIMEE
 AGORTB(1TLAR,S)=TIMEE
 C...
C... GENERATE A ranocm number anc then proceeo to compute 00571
 C... A REHOCK TIME IF A FEHOOK OELAY IS TO DCCUR. 00573
 C... CALL RANOOM(IR,IA,IC,U,T)
 CALL FEHCCKZ (U,TIMET,REHCOK,FEHOQK1)
 REHOOK3(NTURNS) = TIME?
 C...
 C... AT THIS POINT THE HELICGPTER WAS FORCEO TO ABCRT THE 0057g
```



```
 GO TO 700
 c..0% CONTINUE
GO CONTINUE
C... STATEMENT GO WILL EE EXECUTEC ANO THE SHIF WILL PROCEEO OOSET
C... toharo the lanoInc.
C...
C...
C... WE muST COmpute an INHALL tIME. INHALL tImE IS COMfUTEC
C... AS DEPENOENT GN THE NLOGS,SYCIST,CHORCSLP,TAGLINE,ANO
C... XVOLLME.
C...
 CALL IAHALL(NLCLS,SYOIST(NEYCIST), ChCfoSLF,TAGLINE(atag),X
 IVOLUME,T IMEO)
C...
 TtIMEB= TTIMES+TIMEE
 INHAULI(NTURNS)=TIMEO
 CALL FANOCM(IK,IA,IC,U,O)
 CALL UNHOGKZ(U,TIMEG,UNHCOK, LAHCOK1)
 ItIMEg=TTIMEg+tIMEG
 UNHOOK3(NTURNS) = IIMEG
 TURN=TLRN+1
C...
C... COMFUTE tOTAL TLRN tIME fCR EACH TURN.
C...
 TIME=TIME 1+TIMEZ +TIME3+TIME& +TIMEE +TIMET +TIME8
 1+TIMES
 TTIHE=TTIME T IME
 NADO=NADO+1
 XCELL(NACD)=TIME
C...
C... MRITE CUT ALl detailef element tines and froclcticn
C... RATES CN A PER TURN BASIS.
C...
 WRITE(E, 400)TURN,TIMEI,TIMEZ,TIME3,TIMEE4,
 1NLOGS, XVOLLME,TIMEG,TIMET,TIMEE,TIMEG,TIMEIO
C...
C... REINITIALIZE TIMES FGR FLRTHEf EXECLTION.
C...
 TIME: =0
 I IME J=0
 TIME10=0
 IIME7=0
 TIMEG=0
C...
C... This statement checks the nureefo cf turns yafceo
C... AGAINSI the numegr of tufns fecuifeo before the
00568
 005Eg
 00570
 00571
 00573
 00574
 00575
 AT THIS POINT THE HILICCPTIR WAS FORCED TO ABORT THE
 COHTROL TC STATEMENT YOQ WHICH IS OESCRIBED AEOVE. OOSEI
 00582
 00583
 60 CONTINUE 005E4
 005e7
 0054e
 005&S
 005co
 005c0
 005c1
 005c2
 CO5c?
 00594
 00555
 00596
 00597
 00558
 005%g
 OOECO
 COEOL
 00EO2
 00603
 00tc4
 00\in05
 00EOE
 COEC7
 00608
 OOECg
 OOE1O
 OOE:1
 CoEiz
00613
00613
DOE14
00G15
00G1E
00617
00G12
00619
00620
00621
00Eá
00EZ3
00EE4
00E25
OUEZE
00627
00Eza
00629
```

|  | Ship has to refuell if it has to refuel then the | 00630 |
| :---: | :---: | :---: |
| C... | Shif illl ficceec to reflel, calling the feffelz | COE31 |
| C... | suaroutine tu calculate timgio -refuel tire. if | 0063 ? |
| C... | the shif coes act refuel it hill chack to inslre | CoES3 |
| C... | that chukers do not heed oelivery to | 00634 |
| C... | RIGGING CFEh. If the chekers cc need celivefing it will | COESE |
| C... | PROCEEC TO CELIVER THEM, If AOT It WILL PRCCEEO | 0063 E |
| C... | TOWARD ANOTHEF TURN. | 00637 |
|  |  | 006:8 |
| C... | If (TURA. GE. XTURNS3ICO IC 80 | coe?s |
|  | IF (NTURINS1.GE.NXTURIIS)GC TO 4000 | COE40 $C 0641$ |
| C... | GO To eoo | $00 \in 42$ |
| 80 | CALL RANOCM(IF, IA, IC, U, G) | $00 \in 4$ ? |
|  | Call refuelz (U,Tircio,fifuel, Refueli) | $00 E 44$ <br> 00645 |
|  | GEFUEL3(NTURAS) = ITME10 |  |
|  | TTIMEIO TTIAE1O+TIMEIO | OOE47 |
| C... |  | 00648 |
| C... | Ihis statement checks tc see if chokefs afe eeing hcokeo | 0064 ¢ |
| C... | OURING thf refueling ofenatich. if they co neeo | 00650 |
| C... | TO BE HCOKEO AT THIS IIRE THE TIME ASSIGNEO Ta | 00651 |
| C... | this is zefo cut to the fact that it cio not fecuire | 00652 |
| C... | ADOITICNAL TIME. | $\begin{aligned} & 0065 ? \\ & c o t e ? ~ \end{aligned}$ |
| C... |  | 00654 |
|  | IF (NTURINS1.GE.NXTURNSIGO TC 90 | OCESE |
|  | WRITE (E, 1000) | DOESE |
| 1000 | - FORMAT(20x, 112(t**) | 00657 |
| C... |  | 00658 |
| C.... | AT THIS FCIt, Y THE TOTALS FCR That COMPLETEO CYCLE ARE | 00659 |
| C... | TO COMFUTE SOME SIMPLE STATISTICSTGCFEACh SERVE | oceeo |
| C... | OETAILEO EVEWT GNO FOR THE EATIFE CYCLE. | CoEE 1 |
| C... |  | ODEEZ cotez |
|  |  | COEEA |
|  | 1TXVOLURE, TTIMEG, TTIPET, TTIPEE, TIIPEs, ITIMEIO | COEEE |
| 900 |  | OOEEG |
|  |  | OCEE 7 |
| , 400 |  | OOGE |
|  |  | OOEE 9 |
|  | ChLL STATS CHCOKUF, HTURNS, TIIPE1, XMEAM1, VAF1, HIGHi, XLOK1 | C0670 |
|  | 1,SQ1, CVFCT1) | COb70 |
|  |  | 00672 |
|  | $1 \times$ LOW2, SC2,CVFCTC) | coti? |
|  | CALL STATSGOLIVERY, NTLRTSS, TTIME3, XMEAN3, VAR3, HIGT3, XLOH3 | 00674 |
|  | 1,SO3,CVFCT3) | 00675 |
|  | CALL STATE HOOKS, HTURNS, ITIME 4 , XMEAN4, VAR4, HIGH4, XL | 00676 |
|  | 10W4, SO4, CVFCT4) | 00E77 |
|  | CALL STA TSILOGS3, NTURISS, THLCGS, XMEANS, VARS, HIGH5, XLCH5, | 00E78 |
|  | 1SO5,CVPCTS) | OCETg |
|  | CALL STATS (VOLUME3, NTURNS, IXVCLLME, XMEAHII, VAF11, HIGH11, | OOEEO |
|  | 1XLOh11,SC11,CVFCT11) | outei |
|  | Call Siatscaegrs , NTURNS, taeckis, xmeang, varg,highe, | 00682 |
|  | 1 XLOWG, SOG, CVFCTE | 00683 |
|  | CALL STATSGEMCOK3, NTLENS, TTIMET, XMEANT, VART, HIGH7, | 00684 |
|  | $1 \times$ LOW7, sct cupcrol | $00 \in E 5$ |
|  | CALL SIATS (INHALLI, HTUKNS, ITIMEg, XMEANG, VARB, highe, | 00686 |
|  | IXLOWQ, SOE,CVF(TE) | cote 7 |
|  | CALL SIATSGAHOCK3, MTLRT,S, TTITEY, XMEANG,VARG,HIGHG, | $00 \mathrm{c}^{\text {a }}$ |
|  | $1 \times$ LOW习, 5 CO, CJPCTG) | 00eeg |
|  |  | 00 ¢go |
|  | IHIGH10, XLCH10, SU10, CUPCT10) | 00651 |
|  |  | ootcé |


|  | WRITE CUT THE STATISTICS FOR EAGH EVENT FCR EACH | 00693 |
| :---: | :---: | :---: |
| C... | CrCle. This hill figst hrite cut the inoivicall means | OOEC4 |
| C... | ano then the variancl, Maximur,minlmum, Stanoarc ugviation, | 00E 95 |
| C... | ANO LAET THE COEFFICIEPT CF VAEIATICN. | OOESE |
| C... |  | OOEC7 |
|  | WRITE (E, JOU, XMEAM1, XM-AN2, XREAAS, XMEAA4,XMEANS, | $006 ¢ 8$ |
|  | 1 XMEAN11, XMEANG, XHAAR7, XNEANE, XPEANG, XMEANIO | DOECS |
|  | WRITE(E, 11)VAK1, VAR?, VAL 3, VAF4, VARE, VAR11, VARB, VAR9, | 00700 |
|  |  | C07Ci |
|  | WRITE (5, 12)HIGHI, HIGH2, FIGH3,HIGH4, HIGHS, HIGHII, | 00702 |
|  | THIGH7, FIGHE, HIGH9, HIGH1O | 00703 |
|  | WRITE (E, 13)XLCH1, XLCH2, XLOW3, XLON4, XLCH5, XLOH11, XLOHT, | 00704 |
|  | $1 \times \mathrm{LOHG} \times$ XLCHE, XLOH 10 | CC7Cs |
|  | WRITE (5, 14) SQ1, SC2, S03, SC4, Sc5, SQ11, SCA, S09, SC10 | 0070 E |
|  | WRITE(E, 1S)CVPCT1, CVPCT2,CVFCT3,CVPCT4, CVFCTE,CVFCTi1, | 00707 |
|  | 1CVPCTA, CUFCTG,CUFCT10 | 00707 |
| 300 | FORMAT $5 \times, \ldots$ EANX, $10 \times, F 7.4,1 \times, F 7.4,1 \times, F 7.4,6 \mathrm{X}$, |  |
|  |  | $\begin{gathered} 00705 \\ 00710 \end{gathered}$ |
|  | 1.4) | 00711 |
| 11 | FORMAT(5X, AVARIANCEX, $\mathrm{OX}, F 7.4,1 \mathrm{X}, \mathrm{F7}, 4,1 \mathrm{X}, \mathrm{F7}, 4,6 \mathrm{E}$, | 00712 |
|  |  | C0713 |
| 12 |  | 00714 |
|  | 1F3.0, 2x,F7.0, 2x,F7.4,1x,F7.4, 3x,F7.4,9x,F7,4, Ex, F7,41 | 00715 |
|  | 3 FORMAT (5x, ILChx, 11x,F7.4, 1x,F7.4, 1x,F7.4,EX,F7.4, | 0071E |
|  |  | 00717 |
|  | FORMAT (5x, ISTAN. DEV.7,4X,F7.4, 1 X,F7.4, 1X,F7.4,6X,F7.4, | C0718 |
|  | $16 x, F 3,0,2 x, F 7.0,20 x, F 7,4,9 x, F 7,4,8 x, F 7,41)$ | C0719 |
| 15 |  | 00720 |
|  |  | $001 \overline{1}$ |
|  | GO T0 190 | 00721 |
| 90 | TIME:1=0 | 007ca |
| 190 | CONTINCE |  |
| C... |  | 007ct |
| C... | reinitialize the tire and otref values for flather | 00765 $0076 \%$ |
| C... | EXECUTION. | 00727 |
| C... |  | 00728 |
|  | NTURNS $1=0$ | 00729 |
|  | NTURAS=0 | 00789 |
|  | TtIMEI $=0$ | 00730 |
|  | TTIMEc $=0$ | 00731 |
|  | ITIME3=0 | $007: 2$ |
|  | TTIME4=0 | 0073 |
|  | TIIMEG=0 | 00734 |
|  | TTIME 7=0 | 00735 |
|  | TTIMEg=0 | 0073 E |
|  | TIME10=a | 00737 |
|  | TTME9 0 | 00728 |
|  | TIIME $10=0$ | 00739 |
|  | TTIME11=0 | 00740 |
|  | TNLOGS $=0$ | 00741 |
|  | TXVALUME $=0$ | 00742 |
|  | NCYC=NCYC+1 | 00743 |
| C. |  | 00744 |
| c... | This statement checks to inslre trat cnly fole cycles | 00745 |
| C... | are flchin per day. | 0074 E |
| C... |  | 00748 |
|  | IF ( $\mathrm{NCYC.GE.t)G0} \mathrm{TO} 7000$ | $\begin{aligned} & 00748 \\ & 00749 \end{aligned}$ |
| .... | THIS STATEMENT CHECKS | 00750 |
| . . ${ }^{\text {a }}$ | TURNS Yarcic afe not mcre inat en | 00751 |
| .... | TURNS THAT CAN EE YAROED | 00752 |
| ... | GVENT. | 00753 |
| ... |  | 00754 |
|  |  | 00755 |

```
 If(TLKN.G&.NTUNA.S3)GO TU 6000
C...
C...
C... THES SMAYEMENT HASSES THE GRFEY XCELL- WHICH CORITAIAS
```



```
C... JHE FWLVICUふLY rerilicNeC STAIISTICS.
C...
 7000 CALL SIATISIXCELL,NAGU,IIIHE,NHEANIZ,VARI2,XHIGH12,XLOH12,S
 1012,CVFCT12)
 NAOO=0.
 HCYC=0.
 TIIHE=C.
 XMEANS(NSYOISI)=XMEAN12
 STUEW3(NSYCIこl)=5012
 XHIGH2く(NSMUSこT)=XHIGH12
 XIHIGHLC(NSMULST)=XHIGH
C...
C... THIS STATEMENT TERMINATES IHE FIRST - NGAG - LOCP.
C...
 4808 CONTINLE
C...
C... THIS WEITES UUT IHE MEAN, SIANDEKE OE JIATIOR, MAXIFLY,
C... ANO MINIMUM VALUÉS FLO EACH CF SIXIY INLAIMENIS.
C...
 WKITE(E,8S0)TAGLIPH(T,TGG), (XMEAPJ(I),I=1,10),(STOEVZ(I),I=
 11,10),(xHIUHZこ(I),I-1,1(u),(xLCh_2(I),I=1,10)
 80女 FOK:aAl(1x,F,.U,G(4(1i)(tx,F7.2)/dx)))
 8B7 FORNAI(1x, IAULINE&,1U(Sx,FY,C))
C...
C... THIS TEMMINAILS THE NSYL゙IEI CO LOGP.
C...
 4089 CONTINLE
 WRITE (6,449)
 449 FOKMAT(58X, CHCFOCL1, 10:f)
C...
C... THE SUERCLIINES AKE LISJEC EELCh:
C...
 Stop
 END
C...
C...
C...
 SUQROUIINE AOURTZ(U,IIMLD,GECRT,AEOGTI)
C...
C... AGORT2 ENTEKS THE COHIIHUOUS CUNULATIVE OENSITY
C... FUNCIICN FEF IML CUNAIICA CF ABCGI ClLAYS WITA A
C... UNIFOKMLY CISTRIDUT: KANOCM VARIATE FKOM `RANOOM`
C... AHO KETUFNS A valle ruK IHE CLGAIILN OF AN AGORT
C... oElar.
C...
 DIMENSION AGORY (1), duCaf1(1)
 IF(U.GE.AELNT(1))CO 10 10
 IIME゙っ=0.
 RETU&N
 10 COHIIHUG
 0) 130 I=2,10
 IF(U.LI.AGCGTII))GO TO 140
130 CUHIINLE
14aj J=1-1
 A=(ABOHT1(I) -AECRY:(J))/IAECRY(I)-AUGRI(J))
 TIMEG=AEOFII(J)+(m*(U-AこGMT(I)))
 KETURN
 ENO
```

$007: 6$
cotjo
corta
$00: 59$
ouleo
cole 1
coles
007 E3
001 ©
coles
001et
007e7
00／Ee
0016 c
00110
00111
col12
0 リノ1」
cul74
culls
culre
QETl
CCITE
00179
$001=0$
00181
0014

COT：4
00\％：
Culet
Culef
$00 \%$ ed
0078：
C0700
C0751
$0019 ?$
C07：
いかない
0075
0019 c
coryc
0a7yo
CCTSG
00800
cocel
0020？
00002
J0日Cis
00 CO
00506
$\operatorname{cosec}$
008 Cl
00 HC
04 10
0 $1: 11$
00 E 1 ？
COH1？
0UC14
00 cis
$\operatorname{cosec}$
cos1）
Cuc10

| C. |  |  |
| :---: | :---: | :---: |
|  |  | 00818 |
| C... |  | 00820 |
|  | SUGROLIINE REHCOKZ(U, TIMET, REHCOK, REHCOK1) | 00821 |
| C... |  |  |
| C... | Rehookê entent the conithuous cumllative censity | $\cos 23$ $00824$ |
| C... | FUNCTICN FOR THE OUFATICN GF REHOCK GELAYS MITH | $00824$ $00825$ |
| $\begin{aligned} & c \ldots . \\ & c \ldots \\ & c \ldots \\ & c \ldots . \end{aligned}$ |  |  |
|  | TRANOCR ANC GEIURNS A VALLE FCG THE CLRATICA OF | $\begin{aligned} & 00826 \\ & 008 z 7 \end{aligned}$ |
|  | the rercck celay. | 008 28 |
|  |  | 00829 |
|  | OIMENSICN KEHCCK(1), REHCCK1(1) | COE30 |
|  |  | 00831 |
|  | RETURA ${ }^{4}$ | coesz |
| 10 | CONTINLE | 00833 |
|  | DO $130 \mathrm{I}=2,8$ | 00854 |
|  |  | 00835 |
| 130 | CONTIALE | 00ese |
| 110 | $J=I-1$ - | OOE? 7 |
|  | $A=($ REHCOK1 (I)-REHCCK1(J))/(REHCCK(I)-REHOCK | 00838 |
|  | TIMET REEMOCKI(J) + (A* (U-REHCOK (J)) | 00835 |
|  | RETURN | 00840 |
|  | ENO | 00041 |
| C... |  | 00842 |
| C. |  | 00043 |
| C... |  | 00844 |
|  | SUPROUTINE UNHOOK2(U, TIMEq, UNHOOK, UNHOOKI) | 00845 |
|  | SUQROUTINE UNHOOKZ(U, IM IMEq, UNHOOK, UNHOOKI) | 00846 |
| C... | UNHOUKZ EATERS The COntinuous clmllative oensity | 00847 |
| C... | FUNCIICN FOR THE DUKAIICA OF LARCCK | 00848 |
| C... | UNIFORHLY DISTIIIBUTED RANOCM UAFIIATE TRES WITH A | 0084s |
| C... | ANO RETUGNS A WLCUE FCR THE CURAIICN CF THAT | 00850 |
| C... | UNHOCKING EVENT. | 00851 |
| C... |  | 00852 |
|  | OIMENSION LNHOOK(1), UNHOOK1(1) | 00853 |
|  | If U.GE. UnHQOK(1))GO TO 10 (1) | 00854 |
|  | TIMEG=0. | 00855 |
|  | RETURN | C0056 |
| 10 | cuntinue | 00857 |
|  | $00100 \mathrm{I}=2,10$ | 00858 |
|  | IF (U.LT. UNHOOK (I)IGO TO 50 | 00859 |
| 100 | CORTIALE | 00860 |
| 50 | $J=I-1$ | 008 E 1 |
|  | $A=$ (UAHCOK1 (I) - - AHCO | 00862 |
|  |  | Coces |
|  | RETURA | 00864 |
|  | ENO | OO8ES |
| .. |  | 00866 |
| .... |  | 00et 7 |
| C... |  | 00868 |
|  | SUqROUTINE Rēfueláa, timeio, fefuel, fefueli) | 008E |
|  |  | 00870 |
| ... | refuelz enters the continuous cumllative | C0871 |
| ... | DENSITY FUNCTIUN FOR THE CURATIOA OF GEFUEL IS | 00872 |
| .. . | events hith a uniformly eistaieuteo randor vafiat | 00873 |
| ... | FROM TRANOUM ANO RETURAS A VALUE FCR IHE DUFATICN | 00874 |
| ... | of refleling evint. | 00975 |
| C... |  | c087e |
|  | OIMENSION REFUEL(1), REFLEL1(1) | 00977 |
|  | IF (U.CE. REFUEL(1))GC TO 10 | 00878 |
|  | TIME10=3.4 | 00879 |
|  | RETURA | coyec |
|  |  | Cosel |

```
 10 CONTIMLE
 00140I=2,15 00882
 IFIU.LT,REFUEL(I))GO TO 20
 140 CONfINLE
 20. J=I-1
 A=(REFLEL1(I)-K̃EFUELI(J))/(REFLEL(I)-REFUEL(J))
 TIME1O=REFLELI(J)+(A*(U-REFUEL(J)))
 TIME10=REFLELI(J)+(A*(U-REFUEL(J)))
 ENO
 C....
 subfoutine volumez(u,mlces,vcllme,vollmei, xvclume)
 C... VOLUMEZ EMTERS THE CCNTINLCUS CLMLLATIVE CENSITY
 C... SUQGOUTINE VOLUMEZ(U,MLCES,VCLLME,VCLLIME
 C... UNIFORMLY DISTAIGLTEO RANOCM VAFIATE FROM TRANOOMD
 C... ANO RGTUFGS A VALUE FCR THE VCLUME OF EACH TLEN
 C... baseo ch the cor value keturteec foum logse`.
 SUGFOUTINE VOLUREZ(U,MLCES,VCLLPE,
 SUGFOUTINE VOLLMEZ(U,MLCES,VCLLME
 SUGFOUTINE VOLLHEZ(U,MLCES,VCLLME
 RETURN
 CONTINLE
 00 100 I=を,102
 IF(U.LT.VCLEME(NLCGS,L))GC TC 110
 100 CONIIILE
 110 J=I-1
 A= (VOLUME1(NLGGS,I)-VGLUMEI(MLOGS,J))/(VOLUME (NLOGS,I)-
 IvOlume(nlces,j))
 XVOLLME=VCLLMEI(NLOGS,J)+(A*(U-VOLUME (NLOGS,j)))
 RETURN
 ENO
C...
C...
 SUBRUUTINE OUTHAUL(TAGLINE,SHOIST,TIMEZ)
 C... OUTHAUL COMFUTES GN UUTHAUL TIME FRCM A REGRESSION
C... EQuArica utilizing tagline length anc slofe yarging
C... DISTANCE.
C...
 TIME2=.52873-.000535*5*TAGLIAE*.00022581*SYOIST
 RETURA
 ENO
C...
C...
C...
 SugROUTINE INHAUL(HLDGS,SYOIST,ChCROSLP,TAGLINE,XVOLUME,TI
C...
C... IHHALL CCPFLTES AN IMHALL IIPE FRCM A fEGFESSION
C... EQUAIICN UTILIZING SLOFE YGRLING EISTANCE
C... ,CHORCSLOFE,AlMEER CF lOGS PER TlFN,TAGLINE
c... LENGTH,fac volume fer lug.
C...
 TIME,F.74904+.00015991*SYOIST-.COJ7517*CHCROSLPA 00%39
 1.019015*NLCES-.CO14931.TAGLINE+.00COC7C410+(XVCLUME
 1/fFLOAR(NLCOS))
 RETURA
 ENO 00G42
C...
 008E3
 00884
 008E5
 00886
 00&27
 00888
 00890
 ocesi
 cosce
 casc?
 00ec4
 008c5
 008ce
 008c7
 00ece
 008cg
 00900
 COcol
 00902
 0090:
 00904
 00c05
 cogce
 009C7
 0ccoz
 00¢0¢
 00510
 00c11
 00c12
 0051?
 00:14
 00¢15
 00%15
 00g16
 00c:17
 00512
 00y1c
 COc50
 00Gद1
 005%2
 00423
 COc24
 00925
 COçe
 00927
 00<<<
 00c<c%
 005:0
 1ME8)
00931
00c32
00933
00534
00935
C0%?E
0093%
00cミe
 COg40
00941
Coc42
C...
00943
COC44.
```

| C... |  | 00945 |
| :---: | :---: | :---: |
|  |  | coghe |
|  |  | 00947 |
| C... | Ranoom complies a peeuod rancom nlhgea emflcying | COG48 |
| C... | A mixel chigaunfit al rancur nureef generator to | 00949 |
| C... | be usee ifi the fespective subrcuitine. | 00950 |
| C... |  | 00951 |
|  | DIMENSION IR (1), IA(1), IC (1) | 0 CSE |
|  |  | 00953 |
|  | $u=I R(I) / 8388607.0$ | 00954 |
|  | RETURN | C0ess |
|  | ENO | 00956 |
| C... |  | COGE 7 |
| C... |  | 00958 |
| C... |  | OOCEC |
|  | Subrolt ine Chokozel timel, Cricko, ChCkci) | O0:EO |
| C... |  | ccae 1 |
| C... | Choxgr enters the chititivols clmulative dendsiry | 00962 |
| C... | FUnCtich fok the cufatich cf chuker hcokuf oelays | C09E? |
| C... | WITH A UNIFGRMLY CISTRIEUTEO RAMOCM VAhIate from | Cocer |
| C... | -ramoch anc returns a valle for jhe cukatica cf | 00965 |
| C... | each choref hgeruf celay. | 00 ¢EE |
| C... |  | occe 7 |
|  | DIMENSION CHOKO(1), CHOKO1(1) | 009er |
|  | If (U.ge.choko (1))go to 10 | 00969 |
|  | TIMEİ0. | 00970 |
|  | RETURA | 00971 |
| 10 | Contince | 00972 |
|  | $00100 \mathrm{I}=2,9$ | 00973 |
|  | if (U.Li.cricko (l))co to ild | 00974 |
| 100 | continue | 00575 |
| 110 | $\mathrm{J}=\mathrm{I}-1$ | 00976 |
|  | A= (CHCKO1(I)-CHCKC1(J))/(ChOKC(I)-CHCKO | 0 Cc 77 |
|  |  | 00578 |
|  | RETURA | 00479 |
|  | ENO | coceo |
| C... |  | 00981 |
| c... |  | 00982 |
| C... |  | 00983 |
|  | SUBROUTINE HOOK2(U, TIME4, HCOK, HCOK1) | 00984 |
|  |  | 0.0985 |
| C... | hookr enters a continuous curulative density function | C0¢8t |
| C... | FOR The Clation cf heck times hith a unifogmir | 00987 |
| C... | OISTRIEUTEO RANUOM VARIATE FGOM FAAIOCM ANO RETURNS | cocer |
| C... | a value fof the curaticn cf that tcoking event. | 00989 |
| C... | 保 | cocce |
|  | DIMENSION HOCK(1), HCOK1(1) | 00991 |
|  | IF (U.GE.HOOK(1))GO TO $10^{\circ}$ |  |
|  | T1ME4 ${ }^{\text {P }} 1$ | 00993 |
|  | RETUFN | 00994 |
| 10 | CONTINLE | $00 ¢ 5$ |
|  | $00130 \mathrm{I}=2,20$ | 00596 |
|  | IF (U.LT. HCCK (I))GC TO 140 | 00957 |
| 130 | COHIINEE | $00 ¢ ¢ 8$ |
| 140 | $\mathrm{J}=\mathrm{I}-1$ | $00 ¢ 50$ |
|  |  | c10co |
|  |  | 01001 |
|  | RETURN | ctcoz |
|  | ENO | 01003 |
| C.. |  | 01004 |
| c... |  | 01005 |
| C... |  | 01006 |
|  |  | 01067 |


|  | SUORCLIIAC LCES2(U, MLOGS,LCGS,LCGS1) | C1008 |
| :---: | :---: | :---: |
| C... |  | 01009 |
| C... | logsz fancomer selects a given tufn size | 01010 |
| C... | 11 thidcugh b logs/turm frgm a ciscrete clmulative | 01011 |
| C... | Dencitr feinction. | 01012 |
| C... |  | 01013 |
|  | Real lecos, lCGS 1 | 01614 |
|  | DIMENSION LOGS(1), LOGS1(1) | 01015 |
|  | $00150 \mathrm{I}=1,6$ | 01016 |
|  | IFU.LE.LCGS(I))GC TO 1E0 | c1017 |
| 150 | CONTINLE | 01018 |
| 160 | NLOGS=LOGS1(1) | 01019 |
|  | RETURN | 01020 |
|  | FND | C102 1 |
| C... |  | 01022 |
| C... |  | cicas |
| C... |  | 01024 |
|  | SUBRCUTINE CHCKIz(U,TIMEJ, ChCKI, Crokiti) | 01065 |
| C... |  | 01026 |
| C... | Chokie enters the chrifnlcls clrulative density | $010{ }^{\text {c }} 7$ |
| C... | Functich for the dumailot. Cf cheker delivery itmés | 01028 |
| C... | hith a unifcrmer gistrielitc fahiocm variate fficm | 01025 |
| C... | - randorn ano keturis a valle for the curation of | 01030 |
| C... | that choker celivery oclay. | 01631 |
| C... |  | 01032 |
|  | DIMENSION CHCKI(1), CHOKI1(1) | C103. |
|  | If (U.GE.CROKi(1))go to 10 | 91034 |
|  | TIME3=0. | 010 es |
|  | RETURN | 0103 E |
| 10 | CONTINLE | 01037 |
|  | $00110 \mathrm{I}=2,11$ | 01038 |
|  | IF(U.LT.CHCKI(I))GO To $1<0$ | 01039 |
| 110 | CONTINLe | 01040 |
| 120 | $J=I-1$ | 01041 |
|  | A= (CHOKII (I)-CHCKI1(J))/(CHOKI(I)-CHCKI(J)) | 01042 |
|  | TIME $3=$ CHCKII(J) $+(\mathrm{s}+(\mathrm{U}$-CHOKI(J) $)$ | 01043 |
|  | RETURA | 01044 |
|  | ENO | 01045 |
| C... |  | 01046 |
| C... |  | 01047 |
| C... |  | 01048 |
|  |  | 01049 |
| C... |  | 0165 |
| C... | Stais comfutes the mean, variance, standarc deviaticn, | 01051 01052 |
| C... | CoEfficient of vaniation, maximuy ano minimum values for | 01053 |
| C... | AN AFRAY. | C1054 |
| C... |  | 01055 |
|  | dimension argay (i) | 01056 |
|  | XVAR $=0$ | 01057 |
|  | HIGH=-.0E300 | 01058 |
|  | XLOW=, $E=308$ | 0105 c |
|  | XMEAN = TOTAL/A | 01060 |
|  | $0010 \mathrm{I}=1, \mathrm{~N}$ | $010 \in 1$ |
|  |  | 01062 |
|  | If (ARRAY(I).CE. $\times$ (Ch) XLCh=AFAAY(I) | 010 E 3 |
|  |  | 01004 |
| 10 | CONTIALE | 01065 |
|  | VAR = XVAR/FLOAT (N-1) | 01066 |
|  | SO=SCFT (VAK) | 01067 |
|  | IF (XMEAN.LE.J.) Go to 20 | 01068 |
|  | CVPCT $=$ SO/XMEAH* 100 | 01065 |
| 20 | RETURN | 01070 |


| ENO |  |  |
| :---: | :---: | :---: |
| C... |  | 01071 |
| C... |  | 01072 |
| C... |  | 01073 |
|  | SUEROUTINE XTURNSI(U,CHOKI 4 , CHOKIE, NXTURNS) | 01074 |
|  | SUOROUTINE XIURNSI(U,CHOKI 4 ,CHCKIE, NXTURNS) | 01075 |
| C... | Xturnsi entefs a contirlgls clmllative functicn fer | 01076 |
| C... | THE NUPGER OF TURNS THAT MUST EF YAROEO BEFORE A | 01077 |
| C... | CHOKER HCCKLF EVENT OCClES. A UNIFCRHLY CISTAIBUTEC | 01078 |
| C... | RANDOM VAFIATE FRCM TRANOUM- IS USEO TO OETEFMIAE THE | 01078 |
| C... | Value cf the choker hooklf ofloy. | 01080 |
| C... | Walue CF The CHOKER HOCKLF OELAY. | 01081 |
|  | DIMENSION CHOKIt (1), CHOKIS(1) | 01082 |
|  | $00112 \mathrm{I}=1,20$ (1) | 01083 |
|  | IF (U.LE.CHOKJ4 (I)) GO TO 200 | 01084 |
| 112 | CONTIALE | 01605 |
| 200 | NXTURNS = CHOKIS(I) | C108E |
|  | retura | 01687 |
|  | ENO | 0108 c |
| C... |  | 01089 |
| C... |  | $010 ¢ 0$ |
| C... |  | 01091 |
|  | SUBROUTINE XTURNS2(U,REFUEL4, REFUEL5, XTURNS 3) | $010 ¢ 8$ |
| C... | SUBROUTINE XTURNSZ(U,REFUEL4,REFUEL5, XTURNS3) | $010 ¢ 3$ |
| C... | Xturnsz eriters the continucus cumllative gensity | $010 \leq 4$ |
| c... | FUNCTIC: FOF THE FRECUENCY OF FEFLELING EVENTS WITH | 01055 |
| C... | A UNTFCRMLY OISTRIBUTED FAMOCM VARIATE FRCM | 010¢E |
| C... | -rancor anc returns the valle that hill determine | 01097 |
| C... | the ffecuency cf refueling events. hill determine | $010 ¢ 8$ |
| C... | - kefuzla events. | $010 ¢ 5$ |
|  | OIMENSION REFUEL4(1), REFLEL5(1) | 01100 |
|  | Da $150 \mathrm{I}=1,16$. | 01101 |
|  | IF(U.LE. KEFLEL4(I))GO TO 180 | 01102 |
| 150 | CONTINLE | 01103 |
| 180 | XTURAS3 F REFUEL5(I) | 01104 |
|  | RETURA | 01105 |
|  | ENO | c11ce |
| C... |  | 01107 |
| c... |  | 01108 |
|  |  | 01109 |


[^0]:    ${ }^{2}$ Casey (1972).
    ${ }^{3}$ At sea level, with atmospheric temperature of 590 F ., barometric pressure of 29.92 inches of mercury.

[^1]:    4As explained in Dilworth, J.R., Log Scaling and Timber Cruising, Rev. ed. Corvallis, Oregon State University Bookstore, 1962, p. 18.

[^2]:    $\wedge$
    $Y \neq Y$ (that the chosen model is inadequate).

[^3]:    ${ }^{5}$ Observed ranges of data.

[^4]:    * Map courtesy of Dennis Dykstra (1974).

[^5]:    ${ }^{6}$ (Ahnstrom, 1968) The wind has little effect on this vehicle (the Vertol has two horizontal rotors). This minimizes the wind effect while, for example, the S64E helicopter has one large main horizontal rotor and a small rear vertical rotor. This one vertical rotor would present positioning problems aue to wind resistance on this rotor.

