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1. Introduction 

 With the introduction of the Shortage Function (Luenberger, 1992, 1995) or Directional 

Distance Functions (Chambers, Chung, and Färe, 1996) into economics, we have a new tool at 

our disposal for characterizing technology (or consumer preferences). These distance functions 

satisfy translation, a property that follows from their definition, and which corresponds to the 

more familiar homogeneity conditions that are characteristic of Shephard’s distance functions. 

Both types of functions accommodate multiple inputs and outputs, which has proven useful in 

the performance measurement literature. 

 An appealing feature of the distance functions is the fact that they have well-known 

economic dual representations. For example, the revenue function is a Shephard (1970) type 

output distance function in price space. Here we derive the companion directional output 

distance function in price space. We then propose to compare these two price space distance 

functions in terms of their ability to represent technology in price space. Our approach is to 

parameterize these distance functions within the family of generalized quadratic functions and 

undertake a Monte Carlo experiment to assess their relative ability to describe the price space 

technology. Since both distance functions fully characterize the price space technology, we have 

two alternatives for its representation. The Monte Carlo experiment will provide guidance as to 

which distance function performs better empirically. 

 In a recent paper Färe, Martins-Filho, and Vardanyan (2010) use a similar research 

design to compare the performance of Shephard and Directional Distance Functions in output 

quantity space in a production context. Based on their Monte Carlo experiment they conclude 

that the directional distance function does a better job of modeling the technology within the 
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family of generalized quadratic functions in quantity space. Färe et al. (2009) study these 

functions in the consumer theory context and come to a similar conclusion. 

 We exploit the translation and homogeneity properties to help us choose appropriate 

functional forms for parameterizing our distance functions. We make use of functional equation 

solutions by Färe and Sung (1986) and Färe and Lundberg (2006) to identify the functional 

forms that satisfy the aforementioned properties as well as flexibility and linearity in parameters, 

i.e. they satisfy properties from economic theory as well as providing practical empirical 

properties. In contrast, in a recent study Feng and Serletis (2008) claim “… there is no a priori 

view as to which flexible functional forms are appropriate….” Based on the results of Färe and 

Sung (1986) and Färe and Lundberg (2006) we use a Monte Carlo study to compare which 

functional form is appropriate for estimating technologies in price space.  

 

2. Parameterizing Generalized Quadratic Functions 

 In this section we discuss the generalized quadratic function—a flexible functional 

form—and show how it may be parameterized using homogeneity and translation properties. In 

other words, the generalized quadratic function belongs to a class of functions that nest 

translation and homogeneity properties. Recall that the revenue function is homogeneous in 

output prices and that it is an output distance function in price space. The ‘new’ revenue function 

introduced in this paper as a directional output distance function in price space is shown below to 

satisfy the translation property. Homogeneity and translation are the properties we use to help us 

parameterize these functions. 

 Let ℜ→ℜℜ→ℜ :,: hF I and ℜ→ℜ:ς  with an inverse 1−ς . If iji aa ,  are real 

constants and +ℜ∈iq then 



 4 

 

( )( ) ( ) ( ) ( )
ℜ∈

++= ∑∑∑
= ==

−

iji

I

i

I

j
jiij

I

i
ii

aa

qhqhaqhaaqF

,

,
1 11

0
1ς

 

 

is called a generalized quadratic function (Chambers, 1988), a transformed quadratic function 

(Diewert, 2002) or is said to have a second-order Taylor’s series approximation interpretation 

(Färe and Sung, 1986). If Iiai ,...,1,0 ==  and Iiaij ,...,1,0 =≠  then it collapses to a so-called 

generalized quasi-quadratic function (Färe and Sung, 1986). 

 We say that ( )qF  is homogeneous of degree +1 if 

 

( ) ( ) ,0, >= λλλ qFqF  

 

and it satisfies the translation property if 

 

( ) ( ) ,, ℜ∈+=+ ααα qFgqF  

 

where ( ) 0,,...,1 ≠ℜ∈= gggg I
I  is the directional, or mapping, vector.1 

                                                 
1 In efficiency analysis this is the direction in which efficiency and productivity are measured 

(Chambers, Chung, and Färe, 1996). 

(1) 

(2) 

(3) 
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 Note that the generalized quadratic function (1) is linear in the parameters ia  and ija  and 

that it is quadratic in ( )⋅h . The first property is desirable from an econometric point of view and 

the second from an economic point of view. 

 The interactions between (1) and (2) or between (1) and (3) yield functional equations. 

What we seek are the solutions to these functional equations, which will provide the ‘functional 

form’ that globally satisfies the conditions (1) and (2) or (1) and (3). As it turns out, there are 

only two solutions for each pair of conditions, which provide the basis for our choice of 

parameterization. Beginning with (1) and (2), or our generalized form in combination with 

homogeneity, one can obtain the following solutions (see Färe and Sung, 1986): 
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also known as the translog function (Christensen et al., 1971), and 
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which is the quadratic mean of order r function (Denny, 1974, Diewert, 1976).2 

                                                 
2 See also Diewert (1971), who introduced the generalized Leontief function 
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 The functional equations (1) and (3), or the combination of the generalized quadratic 

function and the translation property, also yield two solutions (Färe and Lundberg, 2006). 

Assuming ( )1,...,1=g , we have: 
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the quadratic function,3 and 
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 Note that several additional constraints must be imposed on the coefficients of functions 

given by (4), (5), and (6) in order to satisfy homogeneity or translation. For example, 

homogeneity of the translog function in (4) and translation of the quadratic function in (6)—the 

two functional forms that will play key roles in our study—is established via 1=∑i ia  and 

0== ∑∑ j iji ij aa . Homogeneity of the quadratic mean of order r function in (5) requires 

                                                 
3 See also Diewert and Wales (1988), who introduced the normalized quadratic function, given 

by ( ) .
2

1

1 1

1 ∑
∑ ∑

∑
=

= =

=

+= I

i ii

I

i

I

j jiijI

i
ii

qb

qqa
qaqF  

4 In a private conversation Professor Diewert names it “Quadratic exponential mean of order s,” 

here λ . Kolm (1976) and Diewert and Wales (1993) called it exponential mean or order s, here 

λ . 

(6) 

(7) 
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00 =a . Finally, translation of the function given by (7) is satisfied without imposing any 

additional constraints on its coefficients. 

 

3. Generalized Quadratic Revenue Functions 

 Let Nx +ℜ∈  denote inputs and My +ℜ∈  outputs; we model technology here by its output 

sets 

( ) { } .,: NxyproducecanxyxP +ℜ∈=  

 

 We assume that the output sets satisfy the usual axioms including free disposability of 

inputs and outputs, non-emptiness, and compactness for Nx +ℜ∈ .5  

 Let Mp +ℜ∈  be an output price vector, with the corresponding revenue function defined as 

 

( ) ( ){ } .,:max, NxxPypypxR +ℜ∈∈=  

 

This function is homogeneous of degree +1 in output prices: 

 

( ) ( ) .0,,, >= λλλ pxRpxR  

 

If R is a given revenue value then the associated output set in price space is 

 

( ) ( ){ }.,:, RpxRpRx ≤=℘  

                                                 
5 See Färe and Primont (1995) for details. 

(8) 

(9) 

(10) 

(11) 
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These price output sets are closed, convex, and monotonic (see Shephard, 1970). We note that 

the revenue function is an output distance function in price space, i.e.: 
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The second equality follows from the definition of the output set in price space and the 

third from the homogeneity of the revenue function in output prices. Next, let 

( ) M
Mggg +ℜ∈= ,...,1 , 0≠g , be a directional vector, then the directional revenue function is 

defined as  
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(12) 

(13) 
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which shows the relationship between the directional revenue function and the revenue function 

( )pxR , , or, equivalently, the price output distance function ( )RpxD ,, . 

 The price output distance function and the directional revenue function are illustrated in 

Figure 1. Both panels are of the same output price technology, ( )Rx,℘ , and evaluate the 

observed output price pair at A. The Shephard price output distance function, which takes values 

in the interval ( ]1,0 , projects A to the frontier of technology along a ray from the origin, i.e., for 

observation A ( ) AARpxD ′= 00,, . The directional revenue function for observation A is 

illustrated in the bottom panel; here the problem is to maximize ( ) gpp β+21 ,  with respect to β, 

where g is the directional vector which we add to A. We then scale along the segment A, Ag +  

until we reach the frontier at ( ) ( )ggRpxpp ;,,, 21 ∆+ . If we assumed ( )21 , ppg =  then the 

directional vector would lie on the ray from the origin, and the directional revenue function 

would be equal to ( ) 1
,,

1
−

RpxD
. 

 From its definition, it follows that ( )gRpx ;,,∆  satisfies the translation property, i.e.6 

 

( ) ( ) .;,,;,, αα −∆=+∆ gRpxgRgpx  

 

 The following lemma establishes the relationship between the two revenue functions 

( )gRpx ;,,∆  and ( )pxR , . The proof is given in the appendix. 

 

LEMMA: ( ) ( ) .,0;,, RpxRgRpx =⇔=∆  

                                                 
6 For the case in which ( )1,...,1=g  (15) corresponds to (3). 

(15) 
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 Under the appropriate disposability assumptions, such as strong disposability of prices, 

both revenue functions completely characterize the price space technology ( )Rx,℘ .  Therefore, 

either one can be used to model this technology, although the directional revenue function has 

the distinct advantage of accommodating zeros as arguments. 

Using the above lemma we may write the directional revenue function as 

 

( )( ) .0;,,, =∆ gpxRpx  

 

If the revenue functions are differentiable we may derive the following marginal conditions from 

(16): 

Mm
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where (17) yields the supply function for outputs and (18) gives us the shadow prices of inputs. 

Note that the left hand side is based on the conventional revenue function whereas the right hand 

side depends on the directional revenue function. Hence, one may estimate ( )gRpx ;,,∆  and then 

derive the desirable properties of ( )pxR , . 

 To illustrate this derivation we provide a simple example of (16). Let technology be a 

simple production function 

(16) 

(17) 

(18) 
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( ) ., xppxR =  
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The supply function associated with (21) equals 

 

.xpR =∂∂  

From (22) we have 

1−=∂∆∂ p  

and 

(19) 

(20) 

(21) 
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,1 xR =∂∆∂  

so that 

.pRx
R
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∂∂==
∂∆∂
∂∆∂

−  

 

 In addition to the derivation of the supply function for outputs and the shadow prices of 

inputs, the directional revenue function can be used to answer a number of other relevant 

questions about the price space technology. For example, it can be used in the context of the 

Luenberger indicator (Chambers, 1996, 2002), defined with respect to directional distance 

functions, in order to measure changes in productivity in price space. 

In our Monte Carlo experiment, the conventional revenue function is parameterized using 

the translog functional form due to its homogeneity. We parameterize the directional revenue 

function as a quadratic, consistent with the translation property of the directional revenue 

function. We choose translog and quadratic over the other possible solutions because these 

functional forms have both first and second order terms. 

 

4. The Monte Carlo Experiments 

To assess the approximation properties of the quadratic and translog function we adhere 

to the tradition of Wales (1977), Guilkey and Lovell (1980) and Guilkey et al. (1983), who used 

Monte Carlo experiments to study the performance of several parameterizations of the cost 

function, notably translog.7 We follow the setup of the experiment outlined in Färe, Martins-

                                                 
7 The other approach, introduced by Caves and Christensen (1980) and extended by Barnett and 

Lee (1985), is more analytical in nature. It is based on the comparisons of regions of the true 

(25) 

(26) 
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Filho, and Vardanyan (2010), and our Monte Carlo experiments focus on two classes of the true 

price space technologies. We assume three so-called polynomial-of-order-four technologies (P1, 

P2, P3), which give us our ‘translation’ quadratic technology, and three translog-of-order-four 

technologies (L1, L2, L3), which satisfy homogeneity. We assume that two inputs are used to 

generate two output prices and use the normalization 1=R  for all simulated observations in our 

samples. This normalization will aid in the visual assessment of the quality of approximation, as 

the price output set is specified for a given level of revenue and input utilization.  

Beginning with the polynomial-of-order-four technologies (P), we have 

 

( ){ }),(:,)1,( 1221 pxfpppx PP ==℘ , 

 

where 1.0
21

4
14

3
13

2
121101 ),( xxpppppxf PPPPPP +++++= βββββ  defines the frontier of the price 

output set8, the parameter vector ( )PPP
40 ,, βββ =  models the degree of its concavity, and 

2
+ℜ∈x . The three assumed scenarios cover a wide range of possibilities and at the same time 

allow for a relatively simple interpretation of the simulation results. The parameters are chosen 

in the following way: 

 

                                                                                                                                                             
technology that can be approximated by various functional forms without violations of regularity 

conditions. 

8 During the initial stages of our research we experimented with a number of additional cases 

involving other shapes of the true price output set boundaries. The outcomes of these 

experiments are very similar to the results that we describe in this section.  

(27) 
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Polynomial-of-Order-Four Technologies 
 Model P1 Model P2 Model P3 
P
0β  10.70 10.10 9.60 
P

1β  -0.91 -0.72 -0.54 
P
2β  0.50×10-5 0.50×10-4 0.10×10-2 
P

3β  0.10×10-4 0.10×10-3 0.10×10-2 
P
4β  -0.45×10-3 -0.12×10-2 -0.24×10-2 

 

Note that this setup can be extended to a more general case involving more than two production 

inputs and/or a varying revenue. However, given the goals of the experiment, this generalization 

is not necessary, since the above setup already includes such possibilities through our choice of 

the parameter vector Pβ . Panel (A) of Figure 2 illustrates the plots of the price output set 

frontiers for the valid range of the first output price and 121 == xx . Model P1 has the ‘flattest’ 

price output frontier, and Model P3 has the most curvature. 

The prices p1 are generated by drawing the samples of various sizes (K) from a gamma 

distribution with the density given by ( ) 11
11 )()( 1

−−− Γ= λθλ θλpeppf , where )(⋅Γ  is the gamma 

function, with 2),( +ℜ∈θλ . Simulations are performed using sample sizes of 50, 100, and 500 

observations. 

Our class of polynomial technologies is further divided into two subclasses, type-A and 

type-B models, which differ by the values of the parameter vector ),( θλ that we assume for the 

experiment. Specifically, type-A specifications have )5.0,5(),( =θλ , whereas type-B models 

assume )25.0,18(),( =θλ .9 In both subclasses the production inputs are randomly drawn from 

                                                 
9 The type-A parameters yield data with relatively low values of p1 and relatively high values of 

p2, whereas type-B parameters yield relatively more “balanced” prices.  
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the standard uniform distribution. The prices p2 for the polynomial technologies are then 

generated as ( ) εν +−= 12 , pxfp P , where ( )1,0~ Nν  captures the price-space counterpart of 

‘technical inefficiency’ and ( )1,0~ Nε  introduces specification errors. 

Turning next to the specification of the translog price technologies (L), we have 

 

( ) ( ) ( ){ }1221 ,ln:,)1,( pxfpppx LL ==℘ , 

 

where ( ) ( ) ( )[ ] ( )[ ] ( )[ ] 1.0
21

4
14

3
13

2
121101 lnlnlnln, xxpppppxf LLLLLL +++++= βββββ , and the 

parameter vector ( )LLL
40 ,, βββ =  is chosen in the following way:10 

 

Translog-of-Order-Four Technologies 
 Model L1 Model L2 Model L3 
L
0β  2.000 1.845 1.690 
L

1β  -3.500 -3.400 -3.300 
L
2β  3.900 4.000 4.100 
L

3β  -1.500 -1.475 -1.415 
L
4β  -0.140 -0.220 -0.330 

 

As in the case of the polynomial-of-order-four technologies, our goal will be to assess 

how well the quadratic and translog functional forms approximate this class of true technologies. 

                                                 
10 Both Lβ  and Pβ  are assumed to be the same as in Färe, Martins-Filho, and Vardanyan 

(2010). Note further that in order to facilitate the comparison between the two classes of true 

models we assumed that prices are given in logs but the inputs are expressed in quantities in the 

case of the translog-of-order-four technologies. 

(28) 
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Panel (B) of Figure 2 illustrates the plots of the corresponding boundaries for the translog case. 

We draw the samples of the same three sizes as before from the uniform distribution as 

( ) ( )4.1,7.0~ln 1 Up  to ensure that all of the true price output set frontiers have non-decreasing 

price-space counterparts of the marginal rate of transformation at each value of p1. As in the case 

of the polynomial technologies, the three choices allow us to keep the experiment both 

reasonably general as well as easily interpretable. Finally, the price-space counterpart of 

‘technical inefficiency’ and the conventional disturbance term are introduced in a similar way as 

before, i.e. ( ) ( ){ }( )εν +−= 12 ,explnln pxfp L . 

To obtain the estimates of these true frontiers we rely on the stochastic frontier algorithm 

of Aigner et al. (1977) and Meeusen and van den Broeck (1977) and estimate the parameters of 

the translog price output distance function and the quadratic directional revenue function using 

maximum-likelihood. Consistent with a number of previous empirical studies of distance 

functions, we follow the practice established in the literature and rely on the homogeneity of the 

former and the translation of the latter in order to obtain suitable specifications that can be 

estimated econometrically.11 For example, expressed in logs, homogeneity of the price output 

distance function implies the following: 

 

( )( ) ( ) ( )( )1,,,lnln1,,,ln 2121 ppxDppxD += λλλ . 

 
                                                 
11 See, for example, Grosskopf et al. (1997) and Atkinson et al. (2003a, 2003b), who demonstrate 

how to obtain estimable specifications by incorporating the homogeneity property. Färe et al. 

(2005) and Koutsomanoli-Filippaki et al. (2009) are among the studies that show how the 

translation property can instead be used for the same purpose. 

(29) 
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Since the price output distance function takes values in the interval ( ]1,0 , we start by assuming 

that { } ( )[ ] 1
21 1,,,exp −= ppxDν  and then introduce the conventional error via 

{ } ( )[ ] { }εν exp1,,,exp 1
21

−= ppxD . Taking the logs of both sides of this expression and 

rearranging yields 

 

( )( ) εν −=− 1,,,ln 21 ppxD . 

 

Finally, inserting (30) into (29), assuming 21 p=λ , rearranging once again, and suppressing the 

normalized revenue for notational convenience produces 

 

( ) ( )( ) εν +−−=− 212 ,ln1ln ppxDp . 

 

We parameterize the function ( )( )21,ln ppxD  using the translog functional form and then apply 

the stochastic frontier algorithm of Aigner et al. (1977) in a straightforward fashion in order to 

estimate specification (31) using maximum-likelihood.12 The estimated coefficients 

corresponding to ( )( )21,ln ppxD  can then be used to identify all of the parameter estimates of 

the associated translog price output distance function, given by 

 

                                                 
12 The log-likelihood function corresponding to the composed error model in (31) has been used 

in a large number of studies and is therefore not reported here. It can be found in the influential 

paper of Aigner et al., as well as in a number of other manuscripts and books. 

(31) 

(30) 
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since ( )( ) ν−=21 ,,ln ppxD . 

Turning next our attention to the directional revenue function, which takes values in the 

interval [ )∞+;0 , we can assume that ( )gppx ;1,,, 21∆=ν . Adding the conventional error to the 

right-hand side of this expression and rearranging yields 

 

( ) εν −=∆ gppx ;1,,, 21 . 

 

As before, plugging (33) into (15), taking 2p−=α , suppressing the normalized revenue, 

and rearranging will produce the following estimable econometric specification when 

( )1,1=g :13 

( ) εν +−−∆= 0,, 212 ppxp . 

 

After the function ( )0,, 21 ppx −∆  has been parameterized using the quadratic functional form, 

equation (34) can be estimated using the same maximum-likelihood algorithm as before.14 By 

                                                 
13 Other econometric specifications can be obtained by assuming different directional vectors. 

For example, when ( )3,1=g  the corresponding econometric specification is given by 

( )( ) εν +−−∆= 0,3,3 212 ppxp . 

(32) 

(34) 

(33) 
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relying on the assumption ( )gppx ;,, 21∆=ν , we can proceed to recover the parameter estimates 

associated with the quadratic directional revenue function itself: 

 

( )
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Finally, we perform 500 replications for each specification and consider three directional 

vectors: ( )1,3=g , ( )1,1=g , and ( )3,1=g . Each of the vectors corresponds to a separate 

estimate of the price output set frontier, and their comparison should shed light on the possible 

sensitivity of results to the choice of the mapping regime in quadratic models. 

 In the next stage of the experiment we rely on the maximum-likelihood estimates of the 

parameters associated with (32) and (35) to obtain estimated price-space frontiers for each of our 

nine true models. We then compare the quality of the approximation provided by the translog 

and the quadratic parameterizations. We assume a fixed level of inputs for all observations, i.e. 

nnk xx = , then assume price-space technical efficiency and no specification error for every 

observation in the sample, i.e. 0);1,,( =∆ gpxk  and 1)1,,( =pxD k  for all Kk ,...,1= . We then 

use the actual quantities p1 to solve for the corresponding optimal values of the second price, or 

)ˆ,(2 γxp k
∗  and )ˆ,(2 δxp k

∗ . These price pairs place every observation on the estimated boundary of 

the price output set producing the empirical analogue of its plot. 

 The following three benchmarks are then used to assess the quality of parametric 

approximations: 
                                                                                                                                                             
14 Note that the translog function cannot be used in this case due to the zero argument. 

(35) 
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(1) The average Euclidean distance between the true and simulated prices of the second 

output. 

(2) The average discrepancy between the true and estimated price-space counterparts of 

the relative shadow prices. 

(3) The mean Euclidean distance between the true and estimated price-space measures 

of the frontier curvature. This measure can be interpreted as the price-space 

counterpart of the Morishima elasticity of substitution [Morishima (1967)]. 

The first benchmark is obtained using the true and the simulated prices of the second 

output and is given by 
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where { }),(exp 1k
L

k pxfd −=  or ),( 1k
Q

k pxfd −=  corresponds to the second price in ‘true’ 

translog or ‘true’ polynomial models, respectively. 

 The second benchmark can be interpreted as the average discrepancy between the true 

and estimated price-space counterparts of the marginal rate of transformation. These quantities 

are computed for every observation and evaluated at the frontiers of the estimated price output 

sets. From duality theory, the relative shadow price can be defined as [Färe and Primont (1995); 

Färe and Grosskopf (2004)] 
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(37) 
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Hence, the average Euclidean distance between the true and estimated price-space 

representations of relative shadow prices evaluated at corresponding frontier points is equal to 
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where kρ  is the true shadow price for observation k. Note that 
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polynomial technologies and 
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−=ρ  for translog technologies. 

 Finally, our third benchmark assesses the relative error in the approximation of the price 

output set curvature. It is defined as ( ) ( )12lnln pp∂∂ ψ  and we have 
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As in the case of the second benchmark, frontier prices were used to obtain these quantities. 

Therefore, the mean Euclidean distance is equal to 
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where ke  is the true price-space elasticity of substitution for observation k. Also, note that 
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polynomial technologies, respectively. Note that the elasticity of substitution must be negative, 

reflecting the concavity of the price output set frontier. 

 Finally, our three benchmarks can be combined into an average measure of discrepancy, 

which will allow us to easily interpret the simulation results and shed light on the relative quality 

of approximation achieved by each of the parameterizations. 
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5. Results 

Tables 1 and 2 contain the summary of our simulation results. The average discrepancy 

reported in Table 1 was obtained by giving our three benchmarks equal weights.  Three quadratic 

directional revenue functions, based on directional vectors ( )1,3=g , ( )1,1=g , and ( )3,1=g , 

were estimated along with the translog price output distance function for each of the nine true 

price space technologies.  Since no curvature constraints were imposed during estimation, some 

simulations produced convex frontier estimates, contradicting the assumption of the concavity of 

the price output set frontier.15  The fraction of such unexpected estimates is reported in Table 2. 

First, the approximation quality corresponding to both parameterizations seems to 

deteriorate with an increase in the curvature of the associated true frontiers—a result that holds 

in all types of true models and for samples of any size.  For example, all of the mean benchmark 

discrepancies in column 6 of Table 1 (Model P3A) are greater than their respective counterparts 

in column 4 (Model P2A), which are in turn greater than the corresponding column 2 entries 

(Model P1A).   Comparing values in columns 7, 5, and 3, as well as columns 10, 9, and 8 points 

to the same conclusion in the case of type-B polynomial (similar range for p1 and p2) and true 

translog technologies, respectively.  These results are hardly surprising, since our true models are 

                                                 
15 Our decision not to impose any curvature constraints was motivated by several reasons.  

Gagné and Ouellette (1998) found disappointing deteriorations in the approximation properties 

of two of the three functional forms they considered, namely symmetric McFadden and 

symmetric generalized Barnett, caused by the imposition of curvature constraints.  As a result, 

they advise agains the global imposition of such conditions. In their survey of flexible functional 

forms, Barnett and Serletis (2008) remark that imposing curvature can render some functional 

forms less flexible. 
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polynomials of order four and the parameterizations used to approximate them are processes of 

order two.  Consequently, these second-order processes are not well-suited to approximate 

technologies whose price output set frontiers have pronounced curvature.16 

Second, an increase in curvature of true frontiers often results in a decrease in the 

percentage of estimates which possess the `wrong’ curvature as reported in Table 2.  For the 

quadratic revenue function this result holds in both types of true models, whereas for the translog 

price output distance function it holds in true translog models only.  For example, when K=100 

and ( )3,1=g  the proportion of the quadratic function-based estimates possessing wrong 

curvature falls from 52.3% to 16.4% and then to just 4% in Models P1B, P2B, and P3B, 

respectively.  For the translog function-based estimates in samples of 100, the fraction of 

estimates with wrong curvature drops from about 25% (Model L1, column 8) to 12% (Model L3, 

column 10) in the true translog models, but stays roughly unchanged and extremely high in the 

case of polynomial technologies.  This fall in the fraction of biased estimates when adding 

curvature is not unexpected, since adding curvature to the true frontier is likely to aid the 

estimation algorithm in obtaining a properly shaped estimate. 

The plots in Figures 3 and 4 provide visual evidence of the variation in curvature of 

frontier estimates for samples of 100 observations.  They also illustrate how the quadratic 

estimates of the true frontier perform compared to their translog counterparts.  These 

representative empirical analogues were recovered using the parameter estimates of the quadratic 

revenue function and the translog distance function.  Note that in the case of polynomial 

                                                 
16 This result is consistent with that of Guilkey et al. (1983), who found that when compared to 

the generalized Leontieff and the generalized Cobb-Douglas, the translog function “… provides 

a dependable approximation to reality provided that reality is not too complex.” 
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technologies, depicted in Figure 3, both parameterizations usually yield incorrectly shaped 

estimates in models with little curvature, such as Models P1A and P1B.  Adding more curvature 

seems to change the shape of the quadratic, but not the translog, estimates.  This pattern appears 

in the case of the true translog technologies as well, whose corresponding plots are in Figure 4, 

with both the quadratic and translog estimates becoming concave in true models with a 

significant amount of curvature.  In other words, while the shape of quadratic frontier estimates 

improves whenever more curvature is added to either type of true model, the translog 

parameterization seems to be doing a better job only when this true technology is translog, 

suggesting that the quadratic revenue function may be more flexible than the translog price 

output distance function. 

Third, regardless of the sample size or the directional vector, quadratic functions perform 

better when approximating type-A models rather than their corresponding type-B counterparts, 

see Table 1, columns 2-7.  Recall that the difference between these two subclasses is in the 

average size of price ratios, assumed to be closer to one in type-B models than in type-A models 

(low p1, high p2).  In contrast, translog parameterizations appear to favor the type-B subclass of 

true polynomial models.  This difference in the approximation quality appears to increase as 

more curvature is added to the true frontier.  These results seem to suggest that the price output 

distance function dominates the directional revenue function when approximating polynomial 

models characterized by similar prices, especially when the corresponding true frontier is 

expected to be relatively flat.  The directional revenue function performs better when the prices 

are relatively different, as well as when the true frontier has pronounced curvature. 

Fourth, improvements in the quality of approximation resulting from an increase in 

sample size are more common among quadratic than among translog estimates for true 
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polynomial models.   For true translog technologies, both quadratic and translog estimates 

improve with sample size.  Columns 2 through 7 of Table 1 indicate that in true polynomial 

models, the translog function’s performance can deteriorate with an increase in the number of 

observations, and a similar drop in the quality of approximation often takes place in quadratic 

specifications that assume ( )1,3=g .  This contrasts with the remaining two directions, where 

sample size related improvements become more pronounced as the directional vector is rotated 

northward from ( )1,1=g  to ( )3,1=g , suggesting that the approximation quality of the quadratic 

function may be susceptible to the choice of the underlying directional vector. 

The plots in Figure 5, which correspond to Model P3B and K=100, illustrate how the 

quadratic frontier’s fit gradually deteriorates as the mapping vector is rotated from a mostly 

northern direction of expansion, such as ( )3,1=g , toward a mostly eastern direction, like 

( )1,3=g .  Indeed, the frontier estimate corresponding to ( )1,3=g  appears to have the wrong 

curvature, whereas its counterpart in direction ( )3,1=g  produces a reasonably close fit.  

Recall that in order to introduce the price-space counterpart of ‘technical inefficiency’ 

and the disturbance term to our true models we chose to subtract the error components ν  and ε  

directly from the second price.  In the context of the quadratic revenue function this is equivalent 

to assuming a purely northern orthogonal directional vector, such as ( )1,0=g .  Consequently, 

we should expect the approximation quality to worsen as our assumptions regarding this vector 

progressively deviate from this orthogonality assumption, which underlies the data generating 

process.  Unfortunately, this result is of relatively little practical value, since researchers have 

almost no a priori knowledge of the ‘true’ directional vector.  Therefore, those who estimate 

directional revenue functions should consider assessing the robustness of their results to 

alternative direction vectors. 
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Last but not least, it appears that the quadratic parameterizations are overall better than 

translog in approximating both types of true technologies, polynomial and translog alike. 

Columns 2, 4, and 6 of Table 1 show that the quadratic function is unambiguously better than 

translog in the case of all type-A (low p1, high p2)  polynomial technologies. This manifests itself 

in the form of lower mean benchmark values, as well as a smaller percentage of convex frontier 

estimates (Table 2). The fact the translog parameterization yields convex rather than concave 

frontier estimates in all but one type-A models over 99% of the time regardless of sample size is 

particularly disappointing.  Perhaps this functional form may not be as flexible in certain 

situations as has been assumed in the literature.  We note that this result contrasts with the results 

of previous simulation studies of flexible functional forms—neither Guilkey et al. (1983) nor 

Gagné and Ouellette (1998) managed to find a function with approximation properties superior 

to those of the translog. 

On the other hand, the translog function’s inherent tendency to produce convex 

boundaries can be very useful when the technology must be modeled using the cost function or 

the input distance function [Shephard (1970)], both of which are defined with respect to the input 

sets ( ) { }yproducecanxxyL := .  Relying on the translog to parameterize these functions 

can be recommended not only due to their homogeneity, but also because the frontier of input 

sets is assumed to be convex.17 

Columns 3, 5, and 7 of Table 1, which contain the results corresponding to type-B 

models, imply that the quadratic function should be given preference only in large samples and 

                                                 
17 The investigation of the relative quality of approximation in models that correspond to convex 

frontiers is left as a topic for future research. Recall that our analysis involves concave 

boundaries only. 
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for our case when the directional vector is predominantly northern.  Although the quadratic 

function’s dominance is not universal in this class of true models, we find that there exists at 

least one directional vector, such as ( )3,1=g  in the case of Models P2B and P3B, whose 

corresponding quadratic specification will outperform the translog.  Nevertheless, the translog 

approximation outperforms other quadratic parameterizations for type-B technologies, especially 

those that assume mostly eastern directional vectors. 

The rate at which the quadratic estimates first catch up with and then outperform their 

translog counterparts in type-B models accelerates with more curvature in the true model.  For 

example, when 500=K  and ( )3,1=g  the difference between the mean benchmarks, which is 

consistently in favor of the quadratic function, grows from 0.108 in Model P1B ( )397.0505.0 −  

to 0.299 and then 0.509 in Models P2B and P3B, respectively.  At the same time, the fraction of 

frontier estimates that possess wrong curvature falls from 48.6 to zero among quadratic 

parameterizations but increases from an already high 90.5 to 99.6 percent in the case of the 

translog function (columns 3 and 7 of Table 2).  To reiterate, the quadratic function’s dominance 

is not universal and gradually disappears in type-B models with each eastward rotation of the 

directional vector—a result that is particularly noticeable in small samples. 

Finally, the relative quality of approximation of true translog technologies is similar to 

that of type-B polynomial models.  Mean benchmark discrepancies in the last three columns of 

Table 1 show that translog parameterizations dominate quadratic specifications in cases when the 

latter are based on mostly eastern directional vectors.  As in the case of type-B models, the 

quadratic revenue function’s approximation properties gradually improve as this vector is rotated 

northward, especially in large samples.  Indeed, when 500=K  and ( )3,1=g  the quadratic 
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function outperforms the translog in both Models L2 and L3, as well as produces fewer curvature 

violations than does the translog function. 

To summarize, although the quadratic function does not appear to be a clear favorite, it 

usually beats the translog function in large samples and when the true frontier has pronounced 

curvature.  Therefore, we recommend the use of both functional forms in preliminary stages of 

empirical studies.  Since the quadratic frontier estimates seem to be sensitive to the choice of the 

directional vector, we recommend robustness checks with respect to the choice of direction 

vector. 

 

6. Conclusions 

Our goal is specification of revenue functions in their dual price space.  We consider two 

distance functions:  a Shephard output distance function and a directional output distance 

function, both defined in price space.  Functional equation methods and properties of the distance 

functions provide some guidance on the choice of functional form for these:  homogeneity in the 

Shephard case yields translog, translation in the directional distance function case yields a 

quadratic functional form.  We employ Monte Carlo methods to assess the relative performance 

of these two functional forms. 

  Our simulation results regarding the revenue function representations in price space 

with Shephard and directional output distance functions are mixed.  While the quadratic 

directional distance function generally outperforms the translog Shephard distance function in 

true models that have a polynomial structure, the opposite is usually true when the true 

technology is translog. 
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The quality of quadratic approximations appears to be sensitive to the choice of the 

directional vector. Some quadratic specifications outperform the translog regardless of the type 

of the true technology, especially in large samples.  We have also encountered cases when the 

translog parameterization performed reasonably well, especially in small samples, although its 

ability to approximate frontiers with a relatively large amount of curvature was questionable. 

In terms of our effort here with respect to the revenue function, we have provided 

evidence that translog specifications can sometimes yield imprecise estimates of technology, 

despite the fact that they satisfy the homogeneity property.  This problem is particularly serious 

when the true technology is characterized by relatively unbalanced prices.  Fortunately, in cases 

when translog parameterizations are inadequate, the quadratic directional output distance 

function in price space can be relied upon to provide an alternative way to identify the revenue 

function. 
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7. Appendix 

 Below we provide a brief sketch of the proof of the lemma. It is similar to Luenberger’s 

(1995, p. 100) proof of the relation between the utility function and the benefit function. 

 Recall that the revenue function is convex in prices and thus continuous on the interior of 

M
+ℜ  (Shephard, 1970, p. 230). It is also non-decreasing in prices. 

 Following Luenberger (1995, p. 100), given that 

i) ( ) ( ) 0,,, >>+ αα pxRgpxR  (a condition on R), 

 

If ( ) RpxR =,  then ( ) .0;,, =∆ gRpx  

Conversely, if ∈p  Interior of M
+ℜ  and ( ) 0;,, =∆ gRpx , then ( ) RpxR =, . 

 

Details: 

Assume that ( ) RpxR =, . Then ( ) 0;,, ≥∆ gRpx . Since i) holds, ( ) ( ) 0,,, >>+ αα pxRgpxR . Thus, 

( ) .0;,, =∆ gRpx  

 

Conversely, let ∈p  Interior of M
+ℜ . Then ( ) 0;,, =∆ gRpx  implies that ( ) RpxR ≤,  and 

( ) ( )pxRgpxR ,, >+α . By continuity of R in p, ( ) RpxR =, . 
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Figure 1 

The Shephard Price Output Distance Function and the Directional Revenue Function 
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Figure 2 
True Frontiers of the Price Space Output Set 
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Table 1 
Weighted Average Discrepancy between the True and Simulated Benchmark Values; Various Models 

 
 

 Model 
P1A 

Model 
P1B 

Model 
P2A 

Model 
P2B 

Model 
P3A 

Model 
P3B 

Model 
L1 

Model 
L2 

Model 
L3 

Quadratic Directional Revenue Function 

g = (3,1) 

K=50 
K=100 
K=500 

0.678 
0.680 
0.703 

0.783 
0.797 
0.777 

0.805 
0.805 
0.864 

1.024 
1.007 
0.980 

0.983 
1.012 
1.057 

1.283 
1.229 
1.174 

1.615 
1.452 
1.296 

1.981 
1.868 
1.711 

2.718 
2.627 
2.501 

g = (1,1) 

K=50 
K=100 
K=500 

0.651 
0.614 
0.570 

0.750 
0.677 
0.617 

0.732 
0.707 
0.671 

0.939 
0.851 
0.782 

0.906 
0.863 
0.801 

1.116 
1.036 
0.959 

1.571 
1.413 
1.234 

1.962 
1.831 
1.627 

2.622 
2.500 
2.325 

g = (1,3) 

K=50 
K=100 
K=500 

0.647 
0.465 
0.356 

0.679 
0.500 
0.397 

0.682 
0.508 
0.401 

0.749 
0.571 
0.503 

0.747 
0.556 
0.461 

0.849 
0.706 
0.625 

1.464 
1.263 
1.086 

1.742 
1.564 
1.382 

2.390 
2.181 
2.010 

Translog Price Output Distance Function 

K=50 
K=100 
K=500 

0.958 
0.804 
0.797 

0.577 
0.463 
0.505 

1.282 
1.111 
1.168 

0.714 
0.659 
0.802 

1.524 
1.424 
1.572 

0.973 
1.007 
1.134 

1.189 
1.060 
0.986 

1.520 
1.429 
1.423 

2.219 
2.157 
2.179 

 
 

Note: Recall that type-A technologies are associated with relatively low values of p1 and relatively high values of 

p2, whereas type-B technologies assume a relatively similar range for p1 and p2. 
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Table 2 
Fraction of Frontier Estimates that Possess Wrong Curvature 

 
 

 Model 
P1A 

Model 
P1B 

Model 
P2A 

Model 
P2B 

Model 
P3A 

Model 
P3B 

Model 
L1 

Model 
L2 

Model 
L3 

Quadratic Directional Revenue Function 

g = (3,1) 

K=50 
K=100 
K=500 

81.0 
92.5 

100.0 

67.3 
75.0 
97.8 

81.8 
93.3 

100.0 

66.3 
73.1 
94.6 

82.6 
90.2 

100.0 

53.1 
55.5 
62.4 

54.0 
55.0 
59.0 

52.3 
54.0 
52.0 

49.6 
51.3 
55.0 

g = (1,1) 

K=50 
K=100 
K=500 

83.4 
94.4 

100.0 

63.6 
71.4 
93.2 

78.6 
88.4 

100.0 

48.5 
54.4 
47.8 

72.6 
80.2 
95.8 

34.3 
24.3 
2.8 

47.8 
48.0 
44.2 

42.4 
43.2 
28.4 

40.7 
36.1 
19.6 

g = (1,3) 

K=50 
K=100 
K=500 

72.2 
82.0 
97.2 

53.5 
52.3 
48.6 

63.1 
58.9 
66.4 

27.8 
16.4 
1.6 

46.7 
35.8 
11.2 

12.3 
4.0 
0.0 

41.8 
31.3 
12.4 

23.1 
20.7 
0.8 

20.2 
9.4 
0.6 

Translog Price Output Distance Function 

K=50 
K=100 
K=500 

99.6 
100.0 
100.0 

59.8 
62.4 
90.5 

99.7 
100.0 
100.0 

49.3 
54.3 
97.2 

98.8 
100.0 
100.0 

55.4 
72.0 
99.6 

32.4 
25.1 
11.2 

24.0 
15.4 
13.2 

18.3 
12.0 
12.4 
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Figure 3 
True and Simulated Frontiers of the Price Output Set; Polynomial Technologies 
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Figure 3 (continued) 
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Figure 4 
True and Simulated Frontiers of the Price Output Set; Translog Technologies 
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Figure 4 (continued) 
 

Model L3 
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Figure 5 
Model P3B Directional Revenue Function Estimates of the Price Output Set Frontier; 

Various Mapping Vectors 
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