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ABSTRACT

A three-dimensional large-eddy simulation (LES) model was used to examine how stratified flow interacts
with bottom obstacles in the coastal ocean. Bottom terrain representing a 2D ridge was modeled using a finite-
volume approach with ridge height (4.5 m) and width (;30 m) and water depth (;45 m) appropriate for coastal
regions. Temperature and salinity profiles representative of coastal conditions giving constant buoyancy frequency
were applied with flow velocities between 0.16 and 0.4 m s21. Simulations using a free-slip lower boundary
yielded flow responses ranging from transition flows with relatively high internal wave pressure drag to super-
critical flow with relatively small internal wave drag. Cases with high wave drag exhibited strong lee-wave
systems with wavelength of ;100 m and regions of turbulent overturning. Application of bottom drag caused
a 5–10-m-thick bottom boundary layer to form, which greatly reduced the strength of lee-wave systems in the
transition cases. A final simulation with bottom drag, but with a much larger obstacle height (16 m) and width
(;400 m), produced a stronger lee-wave response, indicating that large obstacle flow is not influenced as much
by bottom roughness. Flow characteristics for the larger obstacle were more similar to hydraulic flow, with lee
waves that are relatively short in comparison with the obstacle width. The relatively strong effect of bottom
roughness on the small obstacle wave drag suggests that small-scale bottom variations may be ignored in internal
wave drag parameterizations. However, the more significant wave drag from larger-scale obstacles must still be
considered and may be responsible for mixing and momentum transfer at distances far from the obstacle source.

1. Introduction

A good understanding of boundary layer processes
in the ocean is essential for developing an accurate,
overall picture of the ocean circulation. This is partic-
ularly true in coastal regions where turbulent mixing
may be responsible for a significant portion of the ocean
vertical buoyancy flux. The relatively shallow depth of
the coastal environment forces a unique boundary layer
structure where the surface and bottom boundary layers
occupy a considerable fraction of the water column. At
the bottom, roughness elements can have a pronounced
influence on local circulation, forcing internal waves
and increased mixing. Coastal bathymetry is often com-
plex, implying that increased turbulence from bottom
interaction of mean and tidal currents is a likely process
defining the coastal bottom boundary layer.

Recent studies show that coastal flows over isolated
bumps or sills can behave much like a hydraulically
controlled two-fluid system with jump conditions and
elevated turbulence. For example, Farmer and Armi
(1999) observed a strong hydraulic undular jump over

Corresponding author address: Dr. Eric D. Skyllingstad, COAS,
104 Ocean Admin. Bldg., Oregon State University, Corvallis, OR
97331.
E-mail: skylling@coas.oregonstate.edu

a sill with accompanying Kelvin–Helmholtz instability
and internal wave activity. Nash and Moum (2001, here-
inafter NM) observed a similar hydraulic controlled
flow over Stonewall Bank off the central Oregon coast,
although the bump in this case was considerably broader
and less steep than the Farmer and Armi case and the
jump did not appear to have trailing lee waves. They
point out that very few measurements of mixing have
been made in continental shelf regions and that most
existing observations have avoided regions of rough
bottom topography. In general, observations of bound-
ary layer turbulence in both the ocean and atmosphere
are lacking in regions of complex topography. As a
consequence, we do not have a strong basic understand-
ing of how turbulent boundary layers interact with ob-
stacles that are of the same order depth as the boundary
layer.

Much of our understanding of geophysical flow in-
teraction with orography is based on studies of atmo-
spheric mountain waves where an infinite depth fluid
can be assumed and the bottom boundary layer structure
is considered of secondary importance (e.g., Peltier and
Clark 1979; Durran 1986; Smith 1985). Studies of flow
over bottom topography applicable to the ocean are
mainly derived from laboratory experiments of either
hydraulically controlled fluids or uniformly stratified
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FIG. 1. Schematic showing the response of a one-layer fluid as it
passes over a 2D obstacle. The Froude number F is defined in the
text.

flow over topography without separation or a fully de-
veloped turbulent boundary layer. For example, Baines
(1979) presents results from a series of experiments
showing how vertical stratification and flow velocity
affect the structure of internal waves generated by to-
pography and confined by a rigid lid.

We know from NM and numerous atmospheric stud-
ies that bottom obstacles can exert a significant drag on
the overlying fluid, far exceeding typical aerodynamic
frictional drag from small-scale (,0.1 m) roughness
elements. The strength of this drag can vary widely
depending on the flow stratification and velocity. Pa-
rameterizations of mountain wave drag based mainly on
linear internal wave solutions have been implemented
in atmospheric models, yielding substantial improve-
ments in the atmospheric general circulation (e.g., Kim
and Arakawa 1995). In contrast, present models of the
coastal ocean (e.g., Blumberg and Mellor 1987; Allen
et al. 1995) only account for bottom roughness through
simple drag laws and do not parameterize the effects of
subgrid-scale topographic features. This is a conse-
quence of our very limited knowledge of how the bot-
tom boundary layer interacts with terrain variations and
how these features affect mixing and momentum ex-
change in coastal waters. Understanding the role of flow
properties in determining topographic drag is an im-
portant goal if we are to improve simulations of the
ocean circulation.

a. Hydraulic flow

Flow over coastal obstacles is often described in terms
of hydraulic flow theory. Single-layer hydraulic flows
are characterized using a Froude number defined as Fh

5 U/( ), where U is the flow velocity, g is gravity,ÏgD
and D is the flow depth. When Fh is greater than 1
(supercritical) or less than 1 (subcritical) everywhere,
the flow behaves symmetrically when passing over an
obstacle (Fig. 1). When Fh is slightly subcritical up-
stream from an obstacle, then the flow becomes ‘‘trans-
critical’’ and can make a transition from subcritical to
supercritical while passing over the obstacle. Transi-
tional flows produce a strong acceleration in the lee of
the obstacle and are often turbulent in the downstream
supercritical region before returning back to a subcritical
state through a hydraulic jump. It is these transitional
flows that generate high drag states.

Hydraulic flow behavior normally assumes that the
flow is hydrostatic, which is a good approximation for
obstacles that have a long horizontal scale such that D/
L, where L is the obstacle width, is much less than 1.
If, however, D/L approaches 1, then the flow can gen-
erate dispersive, nonhydrostatic waves that propagate
energy away from the obstacle and modify or prevent
the formation of a well-defined hydraulic jump. In gen-
eral, the focus of this paper is on obstacles with scales
for which nonhydrostatic effects are important and result
in dispersive internal waves.

b. Stratified flow

When flows are uniformly stratified, the hydraulic
description is insufficient because of propagating inter-
nal waves. Nevertheless, stratified flows can still exhibit
transitional behavior if flow parameters are within cer-
tain values (e.g., see Durran 1986). In contrast to hy-
draulic flows that typically generate a distinct jump con-
dition downstream from the obstacle, transition states
in uniformly stratified flows are distinguished by an am-
plified wave system with strong downslope flow on the
lee side of the obstacle, overturning, and trailing lee
waves if the obstacle width is sufficiently small. Two
significant dimensionless parameters for limited depth
flow are the mode number,

K 5 DN/(pU), (1)

and dimensionless obstacle height,

ĥ 5 hN/U, (2)

where

g ]r
N 5 2 ,! r ]z

h is the height of the obstacle, z is the vertical coor-
dinate, r is density, and g is gravitational acceleration
(see Turner 1973, p. 33). The mode number K deter-
mines the number of vertical wave components con-
tained in a fluid of depth D and is equal to the inverse
internal Froude number. The dimensionless obstacle
height ĥ is a measure of the flow nonlinearity; as ĥ
increases, the flow becomes more likely to generate
overturning internal waves. A third parameter that is
important for determining flow behavior is Na/U, where
a is a representative half-width scale of the bottom ob-
stacle. Na/U is similar to D/L for the hydraulic system
and determines if the flow will produce primarily dis-
persive, nonhydrostatic waves (Na/U , 10) or hydro-
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static wave systems confined mostly to the region near
the obstacle (Na/U . 10).

Long (1955) derived a nonlinear streamfunction equa-
tion for the problem of uniform flow over a bump and
determined specific vertical modes or wave behavior
based on values of K and the relative obstacle height,
h/D. These solutions for a nonhydrostatic case were
compared against laboratory tank experiments by both
Long (1955) and Baines (1979), showing good agree-
ment in both cases. Two basic classes of flows analogous
with single-layer hydraulic flow were described in these
studies based on the upstream value of K. When K ,
1 (supercritical), the flow exhibited a symmetric pattern
localized over the obstacle, following the supercritical
flow schematic shown in Fig. 1. Obstacle effects in this
case were minimal, with the average flow conditions
showing little change in crossing over the obstacle. For
flows with K . 1 (subcritical), Long’s solutions pre-
dicted lee-wave circulations with overturning, indicat-
ing turbulence production and momentum flux.

In addition to the value of K, Long found that over-
turning was dependent on the height of the obstacle.
Two critical heights were calculated by Long, one by
assuming hydrostatic conditions (large Na/U) and a sec-
ond by solving Long’s equation for various obstacle
heights. Solutions directly from Long’s equation were
found to be more restrictive, for example, predicting
breaking for obstacle heights about 0.05D higher than
the hydrostatic solutions. Long found that as K was
increased above ;2, values of critical obstacle height,
hcr, decreased in both cases, although the internal wave
strength was greatly reduced for these higher modes in
comparison with the mode-1 wave forced when 1 , K
, 2. Recently, Lamb (1994) performed numerical sim-
ulations with small Na/U (i.e., nonhydrostatic) for 1 ,
K , 2 and found that hcr were considerably less than
those predicted using Long’s equation solutions, espe-
cially when K approached 2. Lamb also determined that
certain stable solutions from Long’s model initially ex-
hibited breaking, but eventually reached equilibrium af-
ter long time periods. During the initial transient phase,
these flows exhibited overturning and regions of tur-
bulence, indicating that short duration flows (e.g., tidal)
in the coastal ocean may never reach equilibrium.

c. Objectives

Actual ocean conditions are usually somewhere be-
tween the two fluid system described by hydraulic flow
theory and the uniformly stratified flow as represented
in the Long and Lamb solutions. For example, NM pre-
sent a series of cross-section plots showing flow be-
havior that appears to have a two-layer structure, but
also exhibits periods of relatively uniform stratification.
In each of their plots, microstructure measurements in-
dicate a sharp rise in pycnocline surfaces and an increase
in turbulence downstream from the flow obstruction,
suggesting a hydraulic jump. The hydraulic jump ob-

served by NM may also be interpreted as the first com-
ponent of a lee-wave system analogous to the transition
conditions described by Long and Lamb. As a compli-
cating factor, the ocean bottom typically has a turbulent
boundary layer dependent on the roughness and current
velocity. Our understanding of how bottom turbulence
interacts with terrain-induced perturbations is an open
question that has not been addressed in past studies that
typically assume a free-slip bottom boundary.

In this paper we investigate the behavior of flow over
a simple, small-scale two-dimensional obstacle using a
three-dimensional large-eddy simulation (LES) model
that has been modified to include resolved bottom
boundary features. We use an LES model so that tur-
bulence generated by overturning lee waves can be more
accurately represented and so that a bottom boundary
with resolved turbulent eddies can be forced when con-
sidering a rough bottom. This is an improvement over
past two-dimensional experiments (e.g., Lamb 1994)
where three-dimensional turbulent eddies were not re-
solved and bottom boundary layer formation was not
considered. The importance of three-dimensional dy-
namics is pointed out in Winters and D’Asaro (1994),
who show that accurate representation of breaking
waves requires a three-dimensional structure because of
convectively forced roll circulations in the plane of the
two-dimensional waves.

Cases are examined having uniform stratification and
background flow velocity with constant K and H, fol-
lowing the previous Long and Lamb experiments. Ide-
alized experiments are performed, examining O(40 m)-
wide, two-dimensional topographic features with an em-
phasis on understanding obstacle-forced pressure drag
and turbulence generation by the interaction of a con-
stant flow with topography for typical coastal condi-
tions. Initial conditions are prescribed using typical
coastal ocean parameters for temperature, salinity, flow
velocity, obstacle height, and water depth, with K set
by assigning different constant flow speeds. Cases with
dimensionless height above and below the hcr from Long
are modeled. In the experiments Na/U is generally O(1),
and so dispersive nonhydrostatic waves are produced in
the simulations.

The paper is outlined as follows. In section 2 the
model is described along with basic initial conditions
used in the experiments. Results are presented in section
3, focusing on the role of K and the obstacle height in
controlling the flow behavior and on the effects of bot-
tom roughness and boundary layer formation on obsta-
cle flow. Conclusions are presented in section 4.

2. Model description

Simulations of atmospheric mountain waves normally
use a nonhydrostatic, Boussinesq model with open
boundary conditions and free-slip lower boundary con-
ditions (see, e.g., Durran 1986). Smooth inflow condi-
tions are prescribed without turbulence or horizontal
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variations. LES models have only recently been applied
to geophysical problems involving topography and have
focused almost exclusively on atmospheric conditions.
The first of these studies were presented in Krettenauer
and Schumann (1992) and Dörnbrack and Schumann
(1993) involving convection over wavy terrain. Of prin-
cipal interest in these simulations was the effect of ter-
rain on surface heating and resulting convection. The
surface layer was poorly resolved in these experiments,
and shear-dominated, neutrally stable boundary layers
could not be accurately simulated. More recently, Gong
et al. (1996), Wu and Squires (1998), Brown et al.
(2001), and Calhoun and Street (2001) have used LES
to examine neutral flow over a sinusoidal ridge, focusing
on the generation of turbulence in the immediate region
of the orography. Results from these studies compare
favorably with laboratory data, indicating that LES can
yield an accurate description of the boundary layer in-
teraction with surface obstacles.

In the experiments presented here we are interested
in the effects of topographic features that are of the same
scale as the ocean bottom boundary layer depth. Con-
sequently, a realistic boundary layer structure is re-
quired, including surface drag (via aerodynamic rough-
ness) and turbulence fluxes. Because the topographic
scales of interest overlap turbulence eddy scales, we
employ a LES model with resolved topography that is
set using a finite-element approach similar to Steppler
et al. (2002) and Adcroft et al. (1997). The LES model
is based on Skyllingstad et al. (1999) with a modified
equation of motion using an enstrophy conserving
scheme from Tripoli (1992),

˜]u ] ] ]Pi 5 « u h 2 KE 2 ^u0u0& 2i, j,k i k i j]t ]x ]x ]xi j i

r9
122 d g 1 g] u , (3)i3 ir 0

where

]u ]u P 2ji 2˜^u0u0& 5 2K 1 , P 5 1 q ,i j m1 2]x ]x r 3j i 0

]u 1j 2h 5 z 1 f , z 5 « , KE 5 u ,k k k k k,i, j i1 2]x 2i

ui are the Cartesian velocity components, t is time, g is
the acceleration of gravity, di3 is the Kronecker delta,
r9 is perturbation density, r0 is a constant average den-
sity, P is pressure, Km is the subgrid-scale eddy viscosity,

is the subgrid-scale turbulent kinetic energy, and2q
g]12ui is a twelfth-order filter with filter coefficient g
5 0.07 to remove a 2Dx artifact of the differencing
scheme (see Denbo and Skyllingstad 1996). Topography
is prescribed by setting velocity components and sub-
grid-scale fluxes to zero in grid cells that are part of the
solid bottom. Grid cells that are intersected by the terrain
surface are approximated by finite volumes assuming

the grid cell is partially filled with the terrain surface.
The main effect of this assumption is a modification of
the divergence operator for the partially filled grid cells
to account for the differing volume. A more complete
description of the method is presented in the appendix
along with a figure showing how the method performs
in comparison with an equivalent terrain-following
model.

We investigate cases with both free-slip and frictional
bottom boundary conditions parameterized using a
roughness-length approach. Application of bottom fric-
tion in the LES model leads to the formation of a wall-
like bottom boundary layer with resolved turbulent ed-
dies and a logarithmic average velocity profile. Our ex-
periments differ from atmospheric studies of mountain
lee waves where boundary layer dynamics, if they are
present, are parameterized because the horizontal grid
spacing is usually much greater than turbulence eddy
scales (e.g., Doyle and Durran 2002). Laboratory ex-
periments, while having parameters more similar to
oceanographic conditions, are normally too short in du-
ration to develop a fully turbulent boundary layer. For
the ocean conditions considered here, the depth of the
boundary layer is nearly the same as the topographic
feature. Consequently, the turbulent boundary layer has
a significant influence on the topographic internal wave
structure and resulting wave drag. Unfortunately, be-
cause the turbulent boundary layer requires considerable
time to evolve, we are restricted to using periodic
boundary conditions with the LES model. Use of an
open upstream boundary, as commonly applied in pre-
vious lee wave studies, would require prescribing a bal-
anced three-dimensional turbulence field involving both
momentum and pressure, or use of a very large upstream
domain. To minimize the effects of the periodic bound-
ary, we employ a domain size that is ;30 times the
obstacle half-width, which reduces the effects of recir-
culation. Nevertheless, because of the periodic bound-
aries, our solutions are of an infinite field of widely
spaced obstacles, rather than the singular features de-
scribed in Farmer and Armi (1999) and NM and mod-
eled in Lamb (1994).

Bottom friction is parameterized by substituting the
subgrid-scale momentum flux at the lowest model grid
point adjacent to bottom topography. We apply a
Monin–Obukhov similarity profile in estimating the bot-
tom momentum flux,

^u0u0& 5 C u ,i 3 D i (4)

where the drag coefficient,

2
k

C 5 ,D [ ]ln(dz/z )o

dz 5 ½Dz or one-half of the vertical grid spacing, k 5
0.4 is the von Kármán constant, and zo is the roughness
length. In the present application, we do not impose a
wind stress or wave parameterization at the model top.
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FIG. 2. Initial profiles of temperature, salinity, and potential density yielding N 5 0.025 s21.

TABLE 1. Parameters for experiments examining transitional flows.
Here N in each case is 0.025 s21; ĥ is defined in text.

Case U (m s21) K ĥ hL hhyd Na/U

1
2
3
4

0.4
0.32
0.2
0.16

0.89
1.12
1.79
2.24

0.3
0.35
0.61
0.76

NA
5.0 m
9.5 m
3.6 m

NA
3.2 m
7.7 m
2.7 m

0.94
1.17
1.88
2.34

Bottom orography is set using a ‘‘witch of Agnesi’’
profile,

hmaxh 5 , (5)
21 1 (x/a)

where hmax is the maximum height and a is the half-
width of the obstacle. Simulations are performed with
topography held constant in the y-axis direction and with
periodic boundary conditions in the x and y directions.
A rectangular channel domain is used with a length of
1200 m (x axis), width of 67.5 m (y axis), depth of 45
m (z axis), and a grid spacing of 0.75 m. Model initial
conditions are set using prescribed profiles of temper-
ature and salinity as shown in Fig. 2, with velocity in-
creased linearly from a state of rest to the final value
over the first hour of the simulation. Velocity is in-
creased gradually to reduce the formation of transient
waves that might form from starting with an impulsive
velocity field. The duration of each simulation following
the velocity spinup is 3 h for a total simulation time of
4 h.

3. Results

The first question that we wanted to address con-
cerned the behavior of flows with differing values of
K. To do this we performed a set of experiments having
constant stratification, N 5 0.025 s21, and a ridge height
of 4.5 m, yielding a range of K similar to values ex-
amined in Long (1955) and Lamb (1994). Lower bound-
ary conditions in these experiments were free slip. A

second set of experiments was performed with frictional
bottom boundary conditions, using (4) with a roughness
length of 0.001 m. We refer to these two sets of ex-
periments as the free-slip and rough-boundary cases,
respectively. Obstacle width a in these simulations was
set to 15 m.

Flow parameters for each of the basic experiments
are shown in Table 1. Values of K for these experiments
range from supercritical for case 1 to subcritical for
cases 2–4. Critical obstacle heights from Long’s equa-
tion, hL, and from Long’s equation with the hydrostatic
assumption, hhyd, range from above and below the 4.5
obstacle height. Overturning heights given by Long are
not based on a witch of Agnesi obstacle profile, but are
useful nevertheless in providing a range for comparison.
Based on hL, transition will only occur in case 4, where-
as hhyd predicts overturning with cases 2 and 4. We also
show values of Na/U, which as mentioned earlier is a
measure of the hydrostatic/nonhydrostatic response of
the system. For flows examined here, Na/U ; O(1),
indicating that nonhydrostatic, dispersive waves are ex-
pected. In general, hydrostatic internal waves are dom-
inant for flows with Na/U . O(10). Our scaled value
of a is about 2 times that of Lamb (1994), who con-
sidered Na/U between 0.5 and 1.0; however, the obstacle
width is still well within the nonhydrostatic limit.

a. Effects of K, free slip

Results from cases 1–4 are presented in Fig. 3, show-
ing vertical–horizontal cross sections of velocity and
potential density after 3 hours. In each case, the model
spinup generates a series of weak internal waves that
propagate downstream from the obstacle and reappear
on the left-hand side of the domain after passing through
the periodic boundary. These waves appear to have a
minimal effect on the upstream conditions, with the
strongest lee-wave response evident just downstream
from the obstacle. For case 1 (K 5 0.89), the flow is
characterized by an almost symmetric circulation cen-
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FIG. 3. Vertical cross sections of the perturbation horizontal velocity (m s21) and potential density (kg m23) taken from y 5 96 m after 3
h from the free-slip bottom cases 1–4. Perturbation horizontal velocity is calculated by subtracting the initial horizontal velocity.
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tered over the obstacle, agreeing with supercritical flow
behavior described by Baines (1979). The strongest hor-
izontal velocity perturbation is directly above the ridge
with weaker disturbances downstream both at the bot-
tom and top boundary. Potential density tends to behave
like streamlines with regions of gradient constriction
overlapping areas of high flow speed. Overall, the flow
near the ridge is symmetric and does not show a strong
transition in crossing over the obstacle.

Increasing K to just above 1 in case 2 (K 5 1.12)
produces a strong lee-wave system consistent with a
transition in the flow behavior. Velocity perturbations
for this case are much greater than case 1, ranging from
0.1 to 0.7 m s21, or more than double the inflow velocity
magnitude. Vertical displacement of density surfaces
show a total range of up to ;15 m or 3 times the obstacle
height. Unlike case 1, both the velocity and density
fields are asymmetric relative to the ridge axis, with
weak flow minima on the upstream side of the ridge
and flow maxima just downstream from the obstacle,
extending from the top of the obstacle down the entire
length of the lee slope. Flow separation, as noted in
Farmer and Armi (1999), is not forced in this case.
Qualitative comparison of case 2 with Long’s solution
(Long 1955) and laboratory tank results (e.g., Baines
1979) shows strong similarities. A region of ‘‘dead’’
water is apparent near the model top downstream from
the ridge, in roughly the same position as the stagnant
zone simulated by Lamb (1994) and observed by Farmer
and Armi (1999). High-amplitude lee waves and pos-
sible overturning in case 2 are not consistent with the
high value of hL shown in Table 1, although the model
obstacle height is greater than hhyd Lamb (1994) notes
similar behavior, but for an obstacle with smaller width.

Increasing K further to 1.79 in case 3 leads to the
collapse of the transitional flow noted in case 2 and an
almost nonexistent lee-wave system. This result is con-
sistent with both hL and hhyd and numerical results from
Lamb (1994) showing that hcr increases as K approaches
;2, preventing wave overturning and transitional flow.
Higher-amplitude but shorter-wavelength internal waves
reappear when K is increased to 2.24 in case 4. Flow
along the lee slope of the obstacle is similar to case 2
with an increased downslope component. However, be-
cause of the shorter lee-wave horizontal wavelength, the
flow separates about halfway down the slope. Long’s
solutions predict a reduction in hcr as mode number
increases beyond 2, which explains why lee waves are
again strong in case 4 and exhibit signs of waves over-
turning. Reduction in hcr can be thought of as a con-
sequence of the smaller length scales forced by higher
mode waves. For example, in Fig. 3 a mode-2 wave is
forced, which generates two regions of increased flow
above the obstacle, effectively behaving like two wave
systems with a vertical scale that is one-half of the fluid
depth. Relative to the bottom wave component in the
mode-2 solution, the obstacle height appears much taller
than in the mode-1 case.

For obstacles with ĥ K 1, linear theory predicts a
lee-wave response such that

p
2 2 1/2k 5 (K 2 j ) , (6)j H

where kj 5 2p/l is the horizontal wavenumber, l is the
wavelength, and j is the largest integer less than K (see
Baines 1995, p. 263). Equation (6) yields a wavelength
of ;180 m for case 2, which is similar to the wave
feature shown in Fig. 3. For case 4, (6) predicts a wave-
length of ;90 m agreeing with the shorter wavelength
produced by the simulation for this case. However, sim-
ulated lee waves for case 4 are about 50–60 m long;
considerably shorter than the linear prediction. Nonlin-
ear wave steepening and overturning in this case are
probably responsible for this disagreement.

b. Perturbation kinetic energy

Figure 3 demonstrates that obstacles can have a large
effect on the overall flow depending on the state of the
flow and the height of the obstacle. The simulations also
suggest that internal wave overturning can generate re-
gions of turbulent mixing that would not otherwise exist
if turbulence was limited to just the turbulent bottom
boundary layer. Case 4 with free-slip conditions is a
particularly interesting simulation because of the gen-
eration of overturning in the center of the water column,
away from the upper and lower boundaries. Observa-
tions of coastal turbulence often show isolated patches
of mixing in the stratified pycnocline that are not directly
connected with a source region such as the top and
bottom boundary layer. Here we present an analysis of
the case 4 wave-breaking event shown in Fig. 3, which
has similarities to observed pycnocline patches.

Normally, an analysis of turbulence kinetic energy
(TKE) could be made from the LES results by subtract-
ing the average current velocity from the full fields to
yield a turbulence velocity field (see, e.g., Skyllingstad
et al. 1999). In the present case, however, strong velocity
perturbations from internal waves exist over much of
the domain and do not represent turbulence structures
with active mixing. Separating turbulence velocities
from internal waves is a difficult task even with balanced
three-dimensional fields as produced by the LES model.

A proxy for turbulence strength can be calculated by
assuming that cross-stream averages describe both the
mean current and velocities associated with internal
waves. Here we refer to cross stream as being the di-
rection parallel to the ridge axis. Examination of hori-
zontal plane sections indicates that flow fields forced by
the bottom ridge have very little cross-stream variability
except in regions of overturning, for example, near x 5
;800, z 5 ;20 in case 4 from Fig. 3. Computing per-
turbations of u, y, and w using

1
û 5 u 2 u(x, y, z), (7)O

L yy
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FIG. 4. Cross-stream averages of (a) estimated TKE and (b) subgrid-scale eddy viscosity Km from the free-slip bottom case 4 after 3 h.
Potential density (km m23) is also shown to indicate position of the lee-wave system.

where Ly is the number of grid points in the cross-stream
direction, yields an estimate of the turbulence kinetic
energy, TKE 5 ½(û2 1 2 1 ŵ2) as shown in Fig. 4a.ŷ
Also plotted in Fig. 4b is the subgrid-scale eddy vis-
cosity, Km, which provides an indication of where tur-
bulence is dissipated in the model. Figure 4 shows that
turbulence is produced in roughly two vertical patches
extending downstream from the obstacle. The first patch
is located near the lower boundary with the bottom in-
ternal wave system and can be connected with a sep-
aration zone that exists behind the obstacle (as shown
by the weak current reversal in Fig. 3). A second region
of turbulence is present in the middle of the water col-
umn about 100 m downstream from the obstacle. Dis-
sipation in this patch appears to be stronger based on
the magnitude of Km. The two patches are separated by
a more stratified region created when the flow divides
into two modes as it passes over the obstacle.

Horizontal and vertical cross sections taken from a
depth of 22 m and near x 5 760 m (Fig. 5) provide a
three-dimensional view of the mixing region. Probably
the most obvious feature in Fig. 5a is the lee-wave dis-
turbance that appears as a banded structure extending
across the flow. Turbulent motions are superimposed on
the wave pattern and generate convergence/divergence

zones in the velocity fields and cross-stream variations
in the density field. In the wave troughs (denoted by
low density), the velocity field is weak with regions of
flow reversal, for example, near y 5 60 m, x 5 705 m,
and jets, for example, at y 5 35 m, x 5 755 m. These
circulations are also present in the vertical plane (Fig.
5b) where a number of vortical motions are present, for
example, at y 5 46 m, z 5 22 m. The vertical cross
section also shows that upward motion in the lee wave
has large variability in the cross-stream direction, prob-
ably because of convectively unstable conditions set up
by wave overturning.

c. Frictional drag—Bottom boundary layer formation

Our second set of experiments duplicates the first set,
but with prescribed bottom roughness and frictional drag
(as discussed in section 2). These cases are referred to
as the rough-boundary experiments versus the free-slip
cases presented above. Cross-section plots from these
experiments are shown in Fig. 6, corresponding re-
spectively to the experiments shown in Fig. 3. It is clear
from comparing these two sets of experiments (Figs. 3
and 6) that the bottom boundary layer development has
a strong influence on internal wave systems, especially
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FIG. 5. (a) Horizontal cross section of potential density and horizontal velocity vectors at 22.125-m depth and (b)
vertical cross section at x 5 760 m of velocity vectors at hour 3 from case 4.

when the background current is large (small K). For
example, the strong wave system forced in case 2 of
the free-slip experiment is much weaker when bottom
drag is imposed. Case 1, on the other hand, shows a
more significant downstream wave feature that modu-
lates the boundary layer depth, but an overall weaker
vertical density surface displacement in comparison
with the free-slip simulation.

As the background current is increased, a turbulent
boundary layer develops along the model bottom in re-
sponse to bottom drag. Stronger currents (i.e., smaller
K) force more vigorous turbulence because of stronger
shear, which leads to a deeper bottom boundary layer.
In cases 1 and 2, the bottom boundary layer is deep
enough to cause a decrease in the low-level current
speed and vertical stratification, which decouples the
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FIG. 6. As in Fig. 3 but from the rough-bottom cases 1–4.

near-bottom flow from the rest of the column. One direct
effect of the boundary layer is a reduction in the mo-
mentum and energy of the near-bottom mean flow,
which decreases the source of energy and momentum
for the lee-wave systems. Formation of the bottom

boundary layer also reduces the effective height of the
obstacle to a level less than hcr, reducing pressure drag
and the transition flow structure shown for case 2 in
Fig. 3. In addition, reduction in the near-bottom flow
speed may also cause the effective K to increase, which
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FIG. 7. Horizontal cross section of Ri at hour 3 from case 2 with bottom friction.

corresponds to an increase in hcr and more stringent
conditions for flow transition. Because the bottom
boundary turbulence strength and layer depth is directly
linked to the current speed, the effect of bottom rough-
ness is weaker for the higher mode cases.

Lee waves in case 1 and 2 force changes in the bottom
boundary depth downstream from the ridge, resulting
in a more vigorous turbulent layer under wave crests in
comparison with wave troughs. Stratification in the
wave troughs inhibits turbulence, whereas the weaker
vertical density gradient in the wave crests enhances
turbulence. This is shown by plotting the Richardson
number

2
]ui2Ri 5 N (8)@1 2]z

from the rough bottom case 2 (Fig. 7). The formation
of waves in these cases is similar to results presented
in Uchida and Ohya (2001), who examined how lower
boundaries affect lee waves using a two-dimensional
direct numerical simulation. They found that strong vor-
tices are produced using both free-slip and no-slip
boundary conditions. In our simulations, however, the
formation of three-dimensional turbulence limits the
strength of recirculation in the lee waves downstream
from the obstacle, particularly when bottom friction is
applied. Bottom boundary layer formation in cases 3
and 4 also affects internal wave systems as flow velocity
is decreased, although to a lessor degree than cases 1
and 2. Weaker mean velocities limit the speed of bound-
ary layer growth, and so the portion of the obstacle
above the turbulent boundary layer is greater in com-
parison with the higher velocity cases.

d. Momentum budget

One of our goals in this study was to examine how
obstacles affect ocean currents away from the bottom.
To do this we calculated the average velocity at depths
between the surface and 37.5 m,

1
u(t) 5 u(x, y, z), (9)O

n z50,37.5

where n is the number of grid points. Our intent was to
see how internal waves affect momentum above the
obstacle, so averaging in the vertical was limited to
between 0 and 37.5-m depth, thereby excluding near-
bottom blocking and bottom boundary layer formation.
Plots of the percentage change in domain-averaged hor-
izontal cross-ridge momentum for the free-slip cases
(Fig. 8a),

u(t) 2 u(t 5 1 h)
3 100,

u(t 5 1 h)

show how transition flow in the simulations affects the
transfer of momentum to internal waves forced by the
obstacle (the initial flow is set to t 5 1 h because of
the 1-h spinup). Without overturning (cases 1 and 3),
the average flow decreases by about 2% over the sim-
ulation period. In contrast, the transition flow simulated
in cases 2 and 4 produces an ;8% decrease in the av-
erage velocity by hour 3. Case 2 undergoes an oscil-
lation between 2 and 3 hours where the momentum
increases slightly before continuing downward. This be-
havior is similar to oscillations in the wave drag pre-
sented in Lamb (1994) and is discussed in more detail
below in our analysis of the momentum budget.

Average flow behavior in the rough bottom cases dif-
fers considerably from the free-slip bottom experiments
(Fig. 8b). With the exception of case 4, average mo-
mentum reduction for these cases is more a function of
the initial flow speed, indicating that faster-moving wa-
ter experiences greater frictional drag and more rapid
development of a bottom boundary layer. Reduction in
internal wave strength in cases 2 and 4 results in less
drag with a rough lower boundary than a free-slip lower
boundary. This behavior is similar to the decrease in
drag that occurs around spherical objects that have a
turbulent boundary layer [e.g., see p. 320–322 from
Kundu (1990)]. In the case of spherical objects, the
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FIG. 8. Percentage change in the volume-averaged u component of
velocity between the surface and 37.5-m depth for cases 1 (K 5
0.89), 2 (K 5 1.12), 3 (K 5 1.79), and 4 (K 5 2.24) with (a) free-
slip bottom and (b) rough bottom boundary conditions. Rough bottom
has a roughness length of 0.001 m.

FIG. 9. Percentage change in the horizontally averaged u component of velocity at hour 3 for cases 2 (K 5 1.12), 3 (K
5 1.79), and 4 (K 5 2.24) with (a) free-slip bottom boundary conditions and (b) rough bottom boundary conditions.

formation of a turbulent boundary layer delays the onset
of separation, limiting the size of the wake region and
the overall form drag. For the obstacle flow studied here,
pressure drag is transmitted through internal waves that
are forced when flow moves upward over the obstacle.
Boundary layer formation reduces the low-level flow
speed, thereby limiting the strength of upward motion
on the upstream side of the obstacle and related verti-
cally propagating internal waves.

Vertical profile plots of the total change in horizon-
tally averaged momentum for a given time,

u(z, t) 2 u(z, t 5 1 h)
3 100,

u(z, t 5 1 h)

where

1
u(z, t) 5 u(x, y, z, t), (10)O

n x,yxy

and nxy equals the total number of horizontal grid points
excluding topography (Fig. 9), show how the internal
wave drag is distributed in the vertical. All cases show
the largest decrease in relative velocity near the bottom
either from flow blockage (in the free-slip cases) or from
bottom drag. In the free-slip cases, the internal wave
drag location is dependent on the mode number. For
case 2 (K 5 1.12), drag is maximized in the upper half
of the column, whereas case 4 (K 5 2.24) shows stron-
ger drag near the middle of the water column where
wave overturning is indicated (see Fig. 3). When bottom
friction is applied (Fig. 9b), bottom drag is the dominant
momentum loss. However, the importance of form drag
is still evident as shown by case 4 (K 5 2.24) where
the flow velocity indicates a small decrease through
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FIG. 10. Horizontally averaged momentum budget terms representing vertical transport, 2]( 1 )/]z, andu9w9 ^u0w0&
pressure drag 2r21]P/]x for case 2 with (a) free-slip bottom boundary conditions and (b) rough bottom boundary
conditions. Terms are averaged between hours 1 and 2.

most of the water column. In the other cases, drag is
much weaker away from the bottom boundary layer in
comparison with the free-slip bottom cases.

A better sense of how the obstacle affects the mean
flow is revealed by the horizontally averaged momen-
tum budget equation,

]u ] 1 ]P
5 2 (u9w9 1 ^u0w0&) 2 1 f y , (11)

]t ]z r ]x

where single primes represent departures from the hor-
izontally averaged flow, ^u0w0& represents the subgrid-
scale momentum flux, P is the pressure, f is the Coriolis
term, and y is the along-slope velocity. The first term
on the right-hand side of (11) represents the vertical
divergence of the momentum flux from both resolved-
scale and subgrid-scale motions, representing internal
waves and turbulence. Bottom friction appears in the
subgrid term when it is applied. Except at the surface,
term 1 represents the vertical transport of momentum.
Term 2 is the horizontal pressure drag induced by the
obstacle, and term 3 is the Coriolis force, which is rel-
atively small for the short duration simulations pre-
sented here.

Terms 1 and 2, time averaged between hour 1 and 2
for case 2 (K 5 1.12), are presented in Fig. 10 for both
the free-slip and rough bottom cases. These terms are
referred to as the transport and pressure terms, respec-
tively, in Fig. 10 (we note that with periodic boundaries
the average of the pressure term should equal zero above
the obstacle, as is shown in Fig. 10). In the free-slip
case, momentum is lost primarily through pressure drag
between the bottom and 40-m depth and is redistributed
vertically by internal waves. This is shown in Fig. 10a

by a near balance between the low-level pressure term
and the transport term below ;40 m. Momentum lost
by the pressure term is replaced by momentum trans-
ported downward by the internal wave flux. The source
of this momentum is the flow above the obstacle height,
as shown by the negative transport term between ;40
m and the surface. Turbulence fluxes are also a part of
the vertical transport, but have a much weaker influence
relative to the internal wave system. Mismatch between
pressure drag and vertical transport below 40 m results
in a gradual reduction (i.e., negative tendency) in the
low-level flow, as shown by the reduced velocity in Fig.
9. In the rough-bottom case, pressure drag is about the
same as the free-slip experiment; however, the transport
term is negative at the bottom because of bottom drag.
Bottom frictional drag in this case is still less in mag-
nitude than the pressure drag, but its effect is com-
pounded because it directly reduces the flow velocity
in the boundary layer, which in turn greatly decreases
the flux of momentum through vertical internal wave
propagation. Momentum transport in the rough case
falls off rapidly above the obstacle height, showing al-
most no influence above ;20 m.

Internal wave momentum transport from case 2 with
free-slip conditions as measured by (Fig. 11a) isu9w9
consistent with mean flow behavior, showing a reversal
in sign at about hour 2 and hour 3 and a switch from
net positive vertical flux divergence (flow deceleration)
to negative vertical divergence (flow acceleration). Var-
iations in also follow the average pressure dragu9w9
term defined as

]
D 5 h(x) P(z 5 h) dx, (12)f E ]x
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FIG. 11. Time series of (a) horizontally averaged momentum flux , (b) surface pressure drag,u9w9
and (c) domain-averaged pressure acceleration term for the free-slip bottom case. Also shown is the
acceleration term for the rough bottom case. Horizontal line in (b) represents pressure drag from the
analytical linear (FD) formula given in Baines (1995).

shown in Fig. 11b. Likewise, the average pressure ac-
celeration, defined as the domain average of term 2 in
(11), shows a reduction in strength at about 2 and 3 h
(Fig. 11c). Also shown in Fig. 11c is the pressure term
from the rough case, which is much weaker in com-
parison with the free-slip result, again showing the pro-

nounced effect of the frictional drag. An estimate of
obstacle drag from linear theory for an unbounded fluid
(see Baines 1995, p. 245),

p
2F 5 r Nh (13)D o8
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yields a drag value of ;0.16 (shown as a horizontal
line in Fig. 11b), which is near the maximum pressure
drag produced in the simulation. The similarity between
the analytical drag diagnosed from (13) and the value
produced in our periodic, limited-depth fluid is of in-
terest because it suggests that transition modes may have
an upper-limit drag that is given by the unbounded fluid
value. This correspondence may be important when con-
sidering internal wave drag parameterizations, which
often rely on analytical results to assess obstacle wave
drag profiles.

Oscillations in the pressure drag can be explained by
examining the time variation of the lee-wave system.
Analysis of the pressure fields from the free-slip case
2 around the time of the first flux reversal (Fig. 12)
shows that the lee waves trailing behind the obstacle
are not stationary in time. At 140 min, the pressure is
lower over the lee side of the obstacle under the trough
of the first lee wave. Consequently, the bottom pressure
gradient over the terrain is on average negative, which
according to (12) will cause a negative form drag and
downward wave momentum flux. As the mean flow de-
creases in response to the wave drag, a component of
the lee-wave system begins to propagate upstream at
around 145 min. Eventually, the wave overtakes the
position of the obstacle at ;150 min and causes the
horizontal pressure gradient over the obstacle to relax
and reverse direction. While the wave is over the ob-
stacle, the form drag is in the same direction as the flow,
causing a slight reduction in the negative momentum
carried by the wave and a loss of wave energy. At 155
min, the wave propagating over the obstacle decays,
leading to the eventual reestablishment of the lee-wave
system.

The pattern of upstream lee wave progression shown
in Fig. 12 is similar to results presented in Lamb (1994)
that also indicated an oscillatory behavior for wave sys-
tems in transition flows. Lamb describes a very similar
scenario whereby the lee-wave system propagates up-
stream, causing a reduction and reversal in the wave
drag. Alternatively, oscillatory behavior in our solutions
may be a result of the periodic boundaries. However,
as Fig. 3 shows, lee waves that recirculate in the model
are of small amplitude in comparison with the upstream
propagating mode shown in Fig. 12.

4. Summary and discussion

Simulations of uniform, stratified flow over a two-
dimensional obstacle were performed using a turbu-
lence-resolving large-eddy simulation model. Initial
profiles of temperature and salinity representing typical
conditions along the western coast of North America
were used so that results could be related to ongoing
observational and coastal modeling efforts. Realistic ve-
locities ranging from 0.16 to 0.4 m s21 were considered,
yielding flow responses ranging from supercritical flow
with relatively minor form drag to transitional flows

having strong lee-wave systems, significant wave drag,
and regions of turbulence. We found that free-slip lower
boundary conditions generated results qualitatively sim-
ilar to analytical and laboratory tank experiments pre-
sented by Long (1955) and Baines (1979). For example,
as the mode number of the flow, K, was increased (de-
creasing velocity), the velocity and density structure ex-
hibited multiple layers in close agreement with past re-
sults. Form drag produced by the obstacle was strongly
dependent on the mode number and the relative obstacle
height. When the obstacle height was greater than the
hydrostatic wave-breaking threshold, wave drag result-
ed in an ;8% decrease in the average flow momentum
over a 2-h period. In contrast, obstacle height below the
threshold produced average flow deceleration of only
;2%. Our results were in qualitative agreement with
Lamb (1994) in showing that obstacle height breaking
thresholds based on Long’s equation were too high.

Application of bottom frictional drag based on a
roughness length of 0.001 m significantly affected the
outcome of the simulations, in some cases greatly de-
creasing the role of lee waves and accompanying wave
drag. Frictional drag caused the formation of shear and
the development of a surface turbulent boundary layer.
For high flow velocity, the boundary layer was deep
enough to encompass much of the obstacle height, lim-
iting the effect of the obstruction on the overlying strat-
ified flow. In particular, the mode-1, high-drag transi-
tional flow (case 2) exhibited a substantial decrease in
lee-wave strength and overall wave drag. With the in-
troduction of surface roughness, internal wave pressure
drag in case 2 was reduced by as much as ;2/3 relative
to the free-slip case.

Two main points can be made as a result of this study.
First, our results suggest that bottom features can have
a major effect on the momentum budget of the coastal
ocean without requiring significant turbulence fluxes.
Pressure drag can effectively reduce the average veloc-
ity through internal wave propagation with wave dis-
sipation possibly occurring some distance from the
source region. One implication of this result is that mo-
mentum flux estimates from microstructure measure-
ments in areas of complex bottom bathymetry may be
missing a portion of the total flux. A second result from
this work concerns the sensitivity of pressure form drag
to the strength of the turbulent bottom boundary layer.
Bottom drag and the formation of a boundary layer can
disrupt lee-wave formation, decreasing form drag, and
reducing the overall momentum loss from bottom ob-
stacles. As a consequence, the ocean bottom roughness
can be a key parameter for determining the effects of
bottom orography on the overall momentum budget.

Our results showing that bottom roughness greatly
decreases the pressure drag created by obstacles appear
to be in conflict with observations such as those of NM.
Their observations frequently show a turbulent bound-
ary layer upstream from the obstacle, which, unlike our
results, does not prevent the formation of a transitional
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FIG. 12. Horizontal cross sections of pressure (shaded; N m22) and potential density (contours; kg m23) taken from y 5
48 m at (a) 145, (b) 150, (c), 155, and (d) 160 min of free-slip bottom case 2.
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FIG. 13. Vertical cross section of the perturbation horizontal velocity (m s21) and potential density (kg m23) taken from
y 5 5.6 m after 3 h for the large domain case. Obstacle half-width in this simulation is 150 m with height of 16 m.

flow. Three main differences between our simulations
and the observations from Stonewall Bank are important
to note. First, the horizontal scale of Stonewall Bank is
roughly 3000 m, versus the O(100 m) bump considered
here. As a consequence, the flow over Stonewall Bank
is well within the hydrostatic range with Na/U 5
O(100), indicating that obstacle forced waves are non-
dispersive and effectively trapped above the obstacle
(i.e., weak lee waves). These conditions are more similar
to hydraulic flow where flow adjustment occurs through
a hydraulic jump rather than through trailing lee waves
as produced in our simulations. A second significant
difference between our simulations and Stonewall Bank
is the scaled height of the obstacle, which yields a value
of hN/U ø 1 for Stonewall Bank versus 0.7–0.28 for
our cases. Higher values of hN/U promote stronger non-
linear waves, overturning, and turbulence. Last, the con-
ditions observed by NM did not have uniform density
gradients or velocity as used in our experiments and
there may have been flow features generated by the
three-dimensional shape of the bank.

Even with these differences, certain characteristics of
the Stonewall Bank flow are in qualitative agreement
with our results. For example, NM present three cases
having an approximate range of K from ;0.8 to ;3,
with one example having K similar to our case 2. For
K ø 1.5, they observed a transitional flow that appeared
quite sensitive to the flow velocity, ranging from a sig-
nificant hydraulic jump and turbulence, to relatively
smooth flow (when velocities are large) more similar to
supercritical conditions. In general, NM found that the
strongest transitional flows, as indicated by the inte-
grated turbulence dissipation rates, occurred with K be-
tween ;0.8 and 2.0. Nash and Moum (2001) did not
find strong evidence for trailing lee waves, which may
be a result of the long length scale and hydrostatic nature
of the flow, or could be because the waves were too
short to be measured accurately using a horizontal pro-
file interval of ;100 m.

At this time, simulating the scales of Stonewall Bank
imposes too large of a computational burden for an LES
turbulence model as used here. However, as a test we
performed an experiment with scales approaching
Stonewall Bank by using grid dimensions of 3200 3
16 3 150, effectively doubling the along-stream length
of the domain (at the cost of marginal cross-stream res-
olution). We also applied a vertical profile similar to
conditions reported in NM, with N 5 0.015 s21 and U
5 0.2 m s21, yielding K 5 1.07. Obstacle half-width
in this case was increased to 200 m, yielding Na/U of
15, which is considerably less than the actual Stonewall
Bank value but is large enough to generate a stronger
hydrostatic response (see Gallus and Klemp 2000). Ob-
stacle height was increased to 16 m to be consistent
with the drop in height for Stonewall Bank shown in
NM. A bottom roughness of zo 5 0.001 m was applied
to see if boundary layer formation affected the flow
behavior as in the small-obstacle cases.

A cross section from this case is shown in Fig. 13
after 3 h. Figure 13 shows that the larger-scale obstacle
produces a strong downslope flow that ends abruptly in
a series of relatively short wavelength lee waves. Over-
all, Fig. 13 indicates that bottom roughness has little
impact on the formation of a strong transition flow for
a sufficiently large obstacle, suggesting that our earlier
results may not apply to obstacle scales that produce a
mainly hydrostatic response. As compared with the
small-bump cases, the behavior of this flow is more
similar to the observations of NM, although lee waves
are still generated in the simulation probably because
of the obstacle width still being about one-quarter of
the size of Stonewall Bank. Qualitative comparison of
the undular jump in this simulation with observations
presented in Farmer and Armi (1999) of flow over a
similar size obstacle shows better agreement, although
the uniform initial conditions used in the model are
much different than the observed layered structure.

Although limited, the experiments performed in this
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FIG. A1. Schematic showing finite-volume grid cells adjacent to
bottom terrain feature. Heavy line represents the bottom slope. Stip-
pled regions are the portion of the grid cells that are below the bottom
and excluded from the model momentum and mass balance. Symbols
are explained in the text.

FIG. A2. Contours of potential temperature plotted every 0.5 K from finite-volume (solid) and
terrain-following coordinate models after 30 min.

study hint that parameterizing the effects of orography
should be possible by exploiting the dependence of
wave drag on the internal mode number DN/pU, relative
obstacle height, and obstacle horizontal scale. An ap-
proach could be developed following Kim and Arakawa
(1995), who consider momentum flux from wave break-
ing at both high and low levels in the atmosphere based
on a mode number tied to local subgrid-scale terrain.
Key to most atmospheric mountain wave drag param-
eterizations is an accurate description of the surface
orography. For the coastal ocean, only sparse datasets
exist describing bottom features with dimensions im-
portant for wave drag (length scales of 100s to 1000s
of meters). Increasing accuracy in bottom bathymetry
data should eventually allow for the development of
wave drag parameterizations based on local values of
the internal mode number and height of the terrain fea-
tures.

A more difficult issue may be the prediction of the
turbulent bottom boundary layer depth and the assign-
ment of accurate roughness lengths for coastal waters.
Measurements on the California shelf indicate that the
bottom behaves like a hydrodynamically smooth surface
and should not be modeled using aerodynamically
rough, logarithmic approach (Caldwell and Chriss
1979). Given the possible large effects of the bottom
boundary layer on pressure form drag, it is critical that
we have a better description of the ocean bottom in all
coastal regions and estimates of turbulence produced by
orographic features. Future LES experiments using
more realistic, three-dimensional bottom orography, dif-
ferent roughness length values, and more complex ver-

tical density structure are also needed to fully explore
the effects of bottom variations. Ideally, a parameteri-
zation will be developed that only takes into account
obstacles that are large enough to be unaffected by bot-
tom boundary layer formation.
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APPENDIX

Bottom Terrain Representation

Terrain in the LES model is prescribed using a var-
iation of the finite volume method described in Adcroft
et al. (1997) and Steppler et al. (2002). Each bottom
grid cell that is intersected by terrain is approximated
by a reduced volume, which can be implemented by
using a modified divergence operator,

=u 5 d(A u),x (A1)

where Ax is the area of the grid cell having velocity u
as shown in Fig. A1 and d represents a finite difference
over Dx. The modified divergence is used to compute
pressure by applying (A1) to (3), assuming a forward
difference in time, and setting the predicted velocity
divergence to zero, yielding

˜]P 1
dA 5 RHS 2 d(A u )/Dt, (A2)x x n21]x 6i

where RHS represents the right-hand side forcing terms,
un21 represents the velocity from the previous time step,
and Dt is the time step. The factor of 1⁄ follows from
a similar equation form used by Harlow and Welch
(1965). Equation (A2) is solved iteratively using a con-
jugate residual method from Smolarkiewicz and Mar-
golin (1994).

Other modifications to the equations of motion in-
clude reducing the vertical grid spacing when computing
vertical derivatives for bottom boundary points and
modifying the grid cell fluxes following Adcroft et al.
(1997). We also set the boundary horizontal vorticity
component to zero at the bottom boundary, which is
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equivalent to prescribing a no-slip bottom boundary
condition; bottom drag was introduced explicitly via (4).

Validation of the modified bottom boundary was
achieved by performing experiments with a terrain-fol-
lowing coordinate system model having a rigid lid and
periodic boundaries, as used in the LES model. The
model used in this comparison was the Advanced Re-
gional Prediction System (ARPS) atmospheric model
described in Xue et al. (1995). For these comparisons,
we used a domain 1280 m in length, 32 m in width,
and 100 m deep. Grid resolution in the LES model was
set to 2 m in both vertical and horizontal directions,
whereas in ARPS we used a horizontal grid spacing of
8 m and a vertical spacing over flat terrain of 2 m.
Vertical grid spacing in ARPS over the terrain was al-
lowed to vary by assuming the top of the model was at
a constant height of 100 m. Both models were run with
U 5 1 m s21, N 5 0.035 s21, yielding a mode number
K 5 1.11. Obstacle height and half-width were set to
12 and 40 m, respectively, using a witch of Agnesi
profile from (5).

A comparison of the two models is presented in Fig.
A2 showing potential temperature contours after 30 min.
Other than a few minor differences in the position of
the lee waves, Fig. A2 shows that the two models pro-
duce very similar results, even though they use entirely
different numerical techniques.
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