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The main result of this paper is a proof of the existence of a solution

generated by a method for the variational assimilation of observational data

into the two-dimensional, incompressible Euler equations. The data are

assumed to be given by linear (measurement) functionals acting on the space

of functions representing vorticity. From a practical point of view, the data

are considered to be sparse and available on a fixed space-time domain.

The objective of the variational assimilation is to obtain an estimate

of the vorticity which minimizes a cost functional. The cost functional is

the sum of a generalized mean squared error in the dynamics, a generalized

mean squared error in the initial condition, and a weighted squared error

in the misfit to the observed data. These generalized mean squared errors

are computed over the fixed space-time domain containing the data. The

estimate then provides a best (generalized) least squares fit between the

model, the initial condition, and the data.
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A necessary condition for the estimate of vorticity to minimize the cost

functional is that it must satisfy the corresponding system of Euler-Lagrange

equations, which consist of a nonlinear, coupled system of partial differential

equations with an initial condition, a final condition, and boundary condi-

tions. Construction of a solution to the Euler-Lagrange equations is possible

provided they are linearized through an iterative scheme.

Analysis of one such scheme motivates a reformulation of the variational

problem in terms of an iterated linearization of the dynamics. This second

method results in a slightly different iterated system of Euler-Lagrange equa-

tions. The sequence of solutions generated is shown to be bounded in the

Sobolev space Wk,P (in space-time). It follows from a Sobolev imbedding

theorem that the sequence contains a convergent subsequence, the limit of

which is a classical solution of the nonlinear, forced Euler equation corre-

sponding to the forward problem of the Euler-Lagrange system.

The two schemes mentioned above are compared based on formal ap-

plications of Newton's method to the operators defining the systems. We

conclude that the two formulations of the assimilation problem are in fact

different and provide some intuitive reasons for preferring the second method,

beyond the fact that the existence proof is established.
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Existence of a Solution to a

Variational Data Assimilation Method

in Two-dimensional Hydrodynamics

1. Introduction

Interest in improving numerical forecasting and hindcasting in meteorol-

ogy and oceanography has led to the dedication of many resources to solving

variational data assimilation problems. In the case of forecasting, the data

to be assimilated are available at the initial time (and earlier) of the forecast

period. The data are usually sparse in comparison with a model state and

so an estimate of the initial state based on the available data becomes neces-

sary. That is, the data do not provide a complete model initialization. In the

case of a hindcast, the data to be assimilated are available over some fixed

space-time domain, and sparse in both space and time. A hindcast consists

of an estimate of the state over the entire space-time domain in which the

data are available. Creating a hindcast over some time interval, say [T1, T2],

is one means for creating an initialization (at time T2) for a forecasting model

which is to begin at time T2 (Bennett, et a]., 1992).

One specific approach to hindcasting is to find an estimate of the state

which minimizes, over a fixed space-time domain, the sum of a generalized

mean squared error in dynamics, a generalized mean squared error in the ini-

tial condition, and a generalized mean squared error between measurements

of the estimated state and a set of observed data (Bennett, 1990; Bennett

and Budgell, 1987; Bennett and Budgell, 1989; Bennett and Miller, 1991;
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Bennett, et a/., 1992; Courtier and Talagrand, 1987; Foreman, et al., 1992;

Talagrand and Courtier, 1987). This formulation may be considered as a

deterministic control problem where the forcing error and initial error are

the control variables. As a prototype for the hindcast problem we study

the application of this approach to the assimilation of data into the two-

dimensional, incompressible Euler equations (in vorticity form). This has

many of the mathematical features of the systems used in modeling atmo-

spheric and oceanic dynamics, in particular, it has the difficult feature of

being nonlinear.

We consider a model as consisting of a description of the dynamics

(which is the vorticity equation) and a description of the means and covari-

an.ces of the initial condition error, the dynamical error and the data error

(section 3.1). The error covariances have the effect of setting the control

parameters used in the forcing and initial conditions. When the "extra" in-

formation contained in the data and the error covariances are required to be

used, the dynamical model as an operator is overdetermined. In general, the

inversion of an overdetermined operator is called a generalized inverse (Reid,

1968). We accomplish a type of inversion by providing an estimate of vortic-

ity corresponding to finding an extremum of a cost functional which consists

of the generalized mean squared errors mentioned above (see section 3.2). In

terms of control theory this requires providing estimates of the control vari-

ables. When the inverse method includes the errors mentioned it is referred

to as a weak constraint formulation of the assimilation problem. In contrast,

a strong constraint formulation excludes the dynamical error from the cost

functional and may even exclude initial error as was the case in Courtier

and Talagrand, 1987. This has been shown to lead to ill-conditioned inverse

problems (Bennett and Miller, 1991).
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An extremum of the cost functional does not a priori correspond to a

solution which minimizes the cost functional. This is because the functional is

not convex with respect to vorticity, due to the nonlinearity in the dynamics.

The estimates of vorticity corresponding to extremals of the cost functional

will be referred to as smoothing solutions. This name is motivated by the

fact that we are attempting to find an estimate which is near the data (in

terms of minimum cost) and weakly constrained by the dynamics (also in

terms of minimum cost), providing a smoothed version of the data.

An extremum of the cost functional must satisfy the corresponding

EulerLagrange (EL) system and solving this system is the way in which

the smoothing solutions are found. The EL system resulting from the weak

constraint problem for the two-dimensional Euler equation is a coupled non-

linear system of partial differential equations with initial and final conditions

(section 3.2). To solve the EL system an iterative scheme was proposed by

Bennett and Thorburn (1992). The scheme is described in section 4.1 and

in this paper is referred as the Generalized Inverse Method (GIM).

It is argued in section 6.2 that the sequence produced by GIM admits a

linear instability. This provides a forcing feedback as iteration proceeds, and

may prevent the sequence from being bounded. Inspection of the iterative

scheme leads to a reformulation of the generalized inverse for which this

mechanism is not present. The vorticity equation is first iterated in order

to linearize the dynamics leading to a sequence of extremal problems. This

second type of inverse has been demonstrated to be of practical interest

(Bennett and Thorburn, 1992) and will be referred to in this paper as the

Extended Kalman Smoother Method (EKSM) (see section 4.2). We establish

the global existence of an EKSM solution over a finite spacetime domain

of arbitrary size. A prerequisite for establishing a generalized inverse by
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either the Generalized Inverse Method or the Extended Kalman Smoother

Method is the global existence of a solution to the two-dimensional Euler

equations. This has been established in various contexts by, for example,

Wolibner (1933), Judovie" (1966a), and Kato (1967).

Our proof of the global existence of an EKSM solution is motivated

by the existence proofs for the two-dimensional Euler equations by Judovi.e

(1966a) and the quasi-geostrophic equations by Bennett and Kloeden (1980).

The EKSM consists of a sequence of linear partial differential equations

whose solution generates a sequence of functions. The sequence of solu-

tions is shown to be bounded in the Sobolev space Wic'P (in space-time),

where p > 2 and k > 2, with differentiability conditions on the covariances

and the initial iterate. An appropriate choice of k and p allows the Sobolev

imbedding of Wk,P into a space of continuous functions, implying there ex-

ists a convergent subsequence whose limit has the necessary continuity to

satisfy the forward problem of the nonlinear Euler-Lagrange equations in

the classical sense.
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2. Some Mathematical Preliminaries

2.1 Notation

Let 52 C R2 be an open, bounded, simply-connected region. We require

52 to have a locally Lipschitz boundary, oft That is, for every point x E

there exists a neighborhood of x, Ur, such that xi n Ur is the graph of a

Lipschitz function. A Lipschitz function is continuous, possibly with corners,

but the corners can not be cusps. Of particular interest is the case where

52 is a rectangular region, since this is typical of the domains used in fluid

models such as localarea oceanic and atmospheric models.

Let T > 0 be a fixed real number, and S = ci x (0, T). The closure

of 5,3 = ci u as2 x [0, 7], is the spacetime domain over which we wish to

obtain a smoothing function. We will be considering two types of functions

defined on S, scalar functions having values in 1111, and vector functions

having values in 1R2, each with t E [0, 71 considered as a parameter. For a

scalar function 0 = 0(x, t), where x = (x1,x2) E 52, '70 = (0x 0x2) is the

usual (spatial) two-dimensional gradient operator, where subscripts denote

partial differentiation. It will be convenient to use the notation V-L0 for

the vector ( perpendicular (with a particular orientation) to the

gradient. The Laplacian of 0 will be denoted 6.0 Oxix, 0,2z2. Each of

these operators may be applied for any value of t in [0, 7].

By a vector, v, in lir we will mean an n x 1 matrix, which has a 1 x n

matrix transpose, v* = [vl, , vn]. Similarly, for any matrix M, we denote

its transpose by M*.
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2.2 Function spaces and imbedding theorems

We separate the regularity in time from that of regularity in space where

it is convenient and therefore use suitable notation involving, S or Si, to dis-

tinguish between these situations. For general remarks we use D to represent

either the entire spacetime domain S, or the space domain S-2. The closure

of D is = DU ap. Thus, if D represents 5-2, then = SI. If D represents

S, then -15 = x [0, 7].

We utilize the Sobolev spaces of p-integrable functions on D which have

k weak derivatives which are also p-integrable. That is, Wk'P(D) = ff E

LP(D) : DO f E LP(D) for 0 < < kl, where we use the multi-index

notation for derivatives. Hence, D13 D#2 D#3 here DP is excludedx, x2 t w

when D represents Q. Also, the order of the derivative corresponds to the

order of the multi-index, given by = t33. + /3, n = 2, or n = 3. For

Iip,D = II 110,p,D denoting the LP(D)-norm, the functional II' lik,P,D defined

by

IlfIlk,p,D = E 11D#flIpP,D
°5_1/315_1n

defines a norm on WkP(D). For a function f(x,t) defined on S, we mean

by IV Ilk,p,cz that the norm is applied to the spatial coordinates x, with t

considered as a parameter.

Extensive coverage of the properties of Sobolev spaces may be found

in (Adams, 1975). We state some theorems and properties which are used

in this application and refer the interested reader to Adams' book (Adams,

1975) for further details.

The main result of this paper relies on the following property of imbed-

dings. The space of functions Wk,P(D) is a space of equivalence classes of

L(V)-functions, two members of a class being equivalent if they differ only

if 1 < p < cx) , (2.2.1)
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on a set of Lebesgue measure zero. When Wk,P(D) is imbedded in Ci(D),

for an appropriate j, each equivalence class in Wic'P(D) contains an element

of Ci(D). The space Ci(D) is the space of functions which have up to jth-

order uniformly continuous derivatives on D with continuous extensions to

the boundary. Consequently, with no loss of generality, we may consider

the elements of Wic'P as Ci functions. When Wk,P(D) is compactly imbed-

ded in Ci(D), any sequence bounded in Wk,P(D) has a subsequence which

converges in the Cj topology to a Cj(D)-function. This is formally stated

in the Rellich-Kondrachov imbedding theorem which is the refinement of

the Sobolev imbedding theorem to compact imbeddings. We write it in the

following fashion.

Theorem 2.2.1 (theorem 6.2, part /// Adams, 1975) If V C lRn is bounded

with a locally Lipschitz boundary, then the following imbedding is compact:

Wi±m'P(D) -+ OD) if mp > n.

Thus, for example, W3'3(S) is compactly imbedded into C1(3) (for m =

2, p = 3, dim(S) = n 3), which means that any sequence, {un}, bounded

in W3'3(S) has a subsequence which converges in the C1 topology to a C1-

function. Furthermore, any function, u, in W3'3(S) is equal to a C1-function,

it, except on a set of measure zero. Hence, we may identify the maximum

of Plu I with the maximum of Plitt. Note further that any function in

W3'4(S) is equivalent to a C2-function. This "extra" order of differentiability

(from C1 to C2) obtained by increasing the order of integrability (from W"

to W") allows a needed elliptic estimate. The elliptic estimate bounds

derivatives of velocities in terms of the natural logarithm of the norm of the

vorticity in Wk'P(S/) (see Lemma 5.1.4 and equation (5.1.14)).
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Another fact which will be utilized throughout is that Wk'P(D) is a

Banach Algebra for kp > n = dim(D) (Adams, 1975). That is, for f,g E
w k ,p (D),

Ilfglik,p,/, 5_ clIfIlk,p,v1Iglik,p,D (2.2.2)

The constants appearing in various estimates will be denoted by a lower

case "c", and subscripted if there is more than one in a given equation. The

values of these constants may change from equation to equation.



3. Description of the Problem

3.1 The dynamical model

Consider the vorticity equation for the motion of a two-dimensional,

incompressible fluid in the region 52:

Ct v(() = F(x,t) for (x,t) E cix [0, 21]

v(C) n = 0, for xôci, t E [0, 71 (3.1.1)

((x, 0) = (°(x)

where n denotes the outward unit normal to 52.

The (scalar) vorticity, C, is related to a stream function, 0,, through the

boundary value problem

A0(x, t) = ((x,t) for x E 52
(3.1.2)

71,(x,t) = 0 for x E 052 ,

at each time t E [0, T]. The unique solution to (3.1.2) may be written 0 = G(

where G is the integral operator defined by the Green's function, g(x, y), for

the Dirichlet problem in 52. That is, let g(x, y) be the Green's function for

52, and G the integral operator defined by

G((x,t) = fig(x,y)((y,t)dy , (3.1.3)

where t may be considered as a parameter. Then 0 = G( is the solution (for

a given t) of (3.1.2).

The velocity, v(C), is the divergence free vector field given by V(G() =

((G()y, (G()z). This is given formally by k x V(G(), where k is normal to

the two dimensional plane of fluid motion. Note that v is well defined as an

9
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operator since the first (weak) derivatives of G( exist (see Lemma 5.1.2 and

Lemma 5.3.2).

The boundary condition in equation (3.1.1) may be generalized to in-

clude Lipschitz domains by instead requiring that G((x , t) = 0 for all points

x E as-2, for all t E [0, T]. This ensures that the normal velocity is zero when

an outward normal is defined, and allows "corners" since the boundary con-

dition is well defined at any such corners.

Now suppose that we are using this model in an effort to predict the

behavior of a particular "real" fluid. Then F(x,t) represents a first guess

to the forcing in the system (perhaps based on some observations of the

forcing) and this will inherently not be known perfectly. To allow for this

uncertainty we include an additional term in the model as part of the forcing

term, representing the error in the first guess. Similarly, we allow for error

in the initial condition since this will involve some observation as well. That

is, we modify the model to be

v(() V( = F(x , t) q(x ,t) for (x,t) E S2 x [0, 7]

G((x,t) = 0, for x E 5C2, t E [0, 71 (3.1.4)

C(x, 0) = C° (x) a(x) for x E S2 .

where F(x,t) and (°(x) are first estimates of the source of vorticity in Si

and the initial vorticity, while q(x , t) and a(x) are functions representing the

error in the first estimates. Indeed, by specifying two functions

Q : (S2 x [0, 71) x (1.2 x [0, T]) IR1 and A : x S2 IR1 , (3.1.5)

each symmetric and positive definite on its domain, there exist zero mean

random variables q and a such that

E(q(x,t)q(x' ,e)) = Q(x ,t, ,t') and E(a(x)a(x' )) = A(x , x') ,

(3.1.6)
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where E represents the expectation while Q and A are in fact the auto-

covariance functions corresponding to the random variables (Cramer and

Leadbetter, 1967). However, we will consider the functions q and a to be

deterministic control variables. In which case Q and A may be considered

to be the kernels of (covariance) operators formally related to weighting fac-

tors in the cost functional defined below (equations (3.2.3-4). These kernels

implicitly affect the allowable range of controls to be applied. In practice,

estimates for Q and A are made from various analyses of data where prior

knowledge of what factors contribute to the errors is available (Bennett, et

al., 1992).

Note that while we are introducing control variables in the forcing and

initial conditions in equation (3.1.4), we are not doing so with the boundary

conditions or the condition div v(() = 0. Hence, the rigid boundary condition

and the relation between vorticity and stream function, AO = C, are strong

constraints. As a consequence, the relation of vorticity to velocity, v(C) =

V-I-G, remains a strong constraint as well.

We will say that a function is a first guess solution if it solves (3.1.1).

That is, a first guess solution satisfies the dynamical equations when no

forcing error, q(x,t), and initial error, a(x), are present. Note that since

(3.1.1) is nonlinear, the solution of (3.1.4) is not the sum of a first guess

solution and a solution of (3.1.1) with q(x,t) as the forcing and a(x) as the

initial condition.

We consider a finite set of data dk, for k = 1, 2, ... consisting of

a sampling of the vorticity given by linear functionals Lk : R, plus a

sampling error ek. That is,

dk = Lk(((x,t)) ek (3.1.7)



For notational convenience we may write this as an M-vector,

d = r(() + E (3.1.8)

The auto-covariance of ek is assumed to be known and will be the (M x M)-

matrix w-1. We again consider w-1 to be formally related to w which is

a weight factor in a cost functional. The linear functionals Lk could, for

example, be evaluation of ( at the point (xk,tk) which may be represented

as integration against a kernel distribution,

(C) =
pT

dtLdx 6(x - xk)6(t tk)((x,i) = ((xk,tk)
Jo
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(3.1.9)

Alternatively, the kernel could have a smoothing property (that is, not point-

wise evaluation) which more realistically represents the tendency of a physical

sampling process to be spread over a small space-time domain. This may be

expressed as

Lk(C) = f dtf dx1Ck(x,t,xk,t0GC(x,t) (3.1.10)

where kk is any smooth function with support in a neighborhood of (xk,tk)

Other nonlocal forms of measurements such as empirical orthogonal func-

tionals or line averaged quantities can be expressed in this form, in which

case the measurement kernel is not localized. We note that in actual appli-

cations it is convenient to consider sampling the stream function rather than

vorticity directly, thus we include the linear integral operator G as part of

the measurement process.



3.2 The minimization problem and the Euler-Lagrange system

Let the functions W(x,t, s' ,t') and V (x, x'), where

W : (ri x [0, T]) x (S2 x [0, T])1-3 lR1 and V : Si >Ca 1-* Ifti , (3.2.1)

be defined as the formal "functional inverses" of the covariances Q(x,t, x' ,t')

and A(x , x') by satisfying the following properties (Bennett and Thorburn,

1992; Tarantola, 1987).

T

ideldX1Q(X, t, x' ,t')W(x' ,t' , y, 7) = 6(x - y)6(t - 7)
0 51

fdx' A(x, x' )V (xl , y) = 8(x - y) .
si

The functions W(x,t, x', t') and V (x , x') are the kernels of weighting opera-

tors in the sense of Tarantola, 1987.

The objective is to make an estimate of vorticity , C^, so that the cor-

responding error in forcing, 4, error in the initial condition, a, and error

in the measurements, e, are minimal over the fixed space-time domain in

a weighted least-squares sense. Specifically, we wish to minimize the cost

functional J(() over an appropriate class of functions IV, where
T T

J(() = fdtfixideldx ' q(x,t)W(x,t, x' , t')q(x' , t')
0 52 0 52

fdx fdx1a(x)V (x , x')a(xl )

fl 52

-I- E* WE .

The choice of an estimate which minimizes J will firstly smooth the data,

in the sense that measurements of ç will be near the data. Secondly, the esti-

mate ç will be interpretable as a vorticity, in the sense that it is constrained

to satisfy the dynamics.

13

(3.2.2)

(3.2.3)
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Rewriting the cost functional by formally replacing q(x , t) with (t

v(() F, a(x) with ((x , 0) (°(x), and the vector notation for the

matrix multiplication in the third term, we see the weighted least-squares

form explicitly in terms of the errors in dynamics, initial conditions and

measurements,

T T

J(C) = fdtidX idefdX1 (Ct 7-7(() V( F(x ,t))W (x ,t, x' ,t') X
0 St 0

((t v(() V( F (x' , e ))

fdx fdx'[((x , 0) (° (x)il (x , x')[((x' , 0) (°(x')]

[dk (atv CV)]
k,1

(3.2.4)

A necessary condition for J(() to be minimized by a particular choice

( = ( is that ( must be a local extremum for J ((). The calculus of variations

may be used to find the Euler-Lagrange (EL) system whose solution will be

such an extremum (Gelfand and Fomin, 1963). That is, a necessary condition

for ( to be a local extremum of J(() is that ( must satisfy the following

Euler-Lagrange system.

v(() V( = F(x,t) Q (x, t) (3.2.5a)

((x, 0) = (°(x) + A o (x, 0) (3.2.5b)

v(() G[Viii VC] = (3.2.6a)

[L(cr)(8(x e )6 (t r))]* w[d LW]

i.t(x , T) = 0 (3.2.6b)

In equation (3.2.5a), Q it is given by

(Q it)(x , t) = f de f dx' Q(x , t, , ),u(x' , ) . (3.2.7)
o



Similarly, A o it in (3.2.5b) is given by

(A o 11)(x , 0) = f dx' A(x, xl)p(x1, 0) . (3.2.8)

The last term of (3.2.6a), £(,,,)(6(x OS@ T)) indicates that the mea-

surement functional, defined by (3.1.10), acts on the variables (e, T). That

is,

OS@ T)) =

fdT
fde kk (6, T, xk , t k) G(b.(x e, t r)) .

(3.2.9)

The adjoint variable, it, is defined to be the weighted forcing error,

1.1(X,t) = fdT fdy W(X,t,y,r)q(y,r) . (3.2.10)

The derivation of the Euler-Lagrange system is outlined in Appendix A. No-

tice that (3.2.5 and 3.2.6) form a coupled nonlinear boundary value problem

in time, with initial and final conditions. The adjoint equation (3.2.6) is

forced by a weighted sum of delta functions with the weights depending on

measuring vorticity. The equations are also coupled through the advective

term v(() Viz and the term G[V-1-it V(] in the adjoint equation (3.2.6a).

If we can somehow decouple the system through an iterative process, the

adjoint equation (3.2.6) can be integrated "backwards", from T to 0. This

would then determine a correction to the initial condition in (3.2.5b) and the

forcing in (3.2.5a) so that integrating the "forward" equation will lead to a

solution which passes within prescirbed error of the data.

Comparing (3.2.5) with (3.1.4) we see that Q it is the estimate of the

forcing control, q(x,t), and A o fi is the estimate of the initial control, a(x).

15



4. Solution of the Euler-Lagrange System

4.1 The Generalized Inverse Method (GIM)

A standard approach for proving existence of solutions and numerically

approximating a solution to a nonlinear system such as (3.2.5-6) is to iter-

ate the equations in such a way as to linearize about the previous iterate.

In Chapter 6 a formal tangent linearization is developed in which Newton's

method is applied to obtain an iteration scheme. This is compared to the

results developed in the present chapter. For now we invoke a type of lin-

earization by selecting terms in the equations and evaluating them as present

(nth-level) iterates or previous ((n - 1)st-level) iterates. There are several

possible ways of selecting the terms, besides components of the nonlinear

terms, which will be treated as previous ((n - 1)st-level) iterates. A partic-

16

This choice is attractive in that the fewest fields have been evaluated at the

(n - 1)st level, and uniqueness may be established for pn using an energy

argument, and for (7, using the results of Judovi6 (1966a). However, since

the adjoint equation for pn (equation (4.1.2)) is not a simple integral along

characteristics, there is no obvious way to generate a solution. Furthermore,

the term G[Vilin VC7,_1] admits a linear instability which may prevent a

ular choice for the system (3.2.6-7) is the following.

((n)t-l-v((,) = F Q pn-i (4.1.1a)

((x, O) = (°(x) + A o pn(x, 0) (4.1.1b)

- v(Cn-i) - G[Vifin = (4.1.2a)

[r(c,)(6(x - 06(t - 7))1*w[d - r(Cn--1)]

pn(x,T) = 0 . (4.1.2b)



by

Ln 07) = it v(-i) Vii. (4.1.5)

That is, Ln represents the derivative along a path determined by the velocity

field from the previous ((n 1)st-level) iterate.

Also, let Jn_1 be the third term in (4.1.4a), that is,

Jn-1 = G[Vitin-1 (4.1.6)

Equations (4.1.3-4) become

L.((n)=F+Qtin
((x, O) = (°(x) + A pn(x, 0)

-Ln(Pn) = Jn-1±

[r(,,)(6(x )8(t T))]* w[d

lin (x,T) = 0 .

17

bound on the growth of pn as iteration proceeds, even over the fixed time

interval [0, T[. The interpretation of this term as a "growth" term is discussed

in more detail in chapter 6. This has lead the authors in Bennett, et al.,

1992 and Bennett and Thorburn, 1992 to adopt the following scheme.

((n)t+v(Cn-i) V(n = F Q tin (4.1.3a)

(n(x, 0) = 0(x) + A o pn(x, 0) (4.1.3b)

-(1-1)t - v(-i) - G[V-171n-1 = (4.1.4a)

[Z(e,r) (6(x - e)8(t - 7))]*w[d - Z((n)]

pn(x,T) = 0. (4.1.4b)

Assuming that (n-i and f/n-i are known, define the linear operator Ln

(4.1.9a)

(4.1.9b)

(4.1.10a)

(4.1.100
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For each n > 1, (4.1.9-10) form an inhomogeneous coupled linear system

for and tin. The uniqueness of solutions for the coupled system (4.1.9-10)

is slightly involved and is shown in Appendix B. The approach is the same as

in Bennett and Miller (1991), where the authors have established uniqueness

for a linear single-level quasi-geostrophic model whose domain is a rectangle,

with periodic boundary conditions.

The solutions generated by solving equations (4.1.9-10) form a sequence

whose limit, if it exists, is the result of having produced a generalized inverse

to the operator determined by the model dynamics, the data, and the statis-

tics of the data and model errors. We will refer to the iterative solution

method given by (4.1.9-10) (equivalently, (4.1.3-4)) as the Generalized In-

verse Method (GIM).

4.2 The Extended Kalman Smoother Method (EKSM)

The term J1 in equation (4.1.10a) arises from formally allowing inde-

pendent functional variations of the advecting velocity, v(C), when comput-

ing the first variation of the cost functional (3.2.4). A simplification can be

made by assuming that the advecting velocities are not allowed a functional

variation. That is, the cost functional is defined in terms of the linearized

dynamics by fixing the advecting velocity in (3.1.4). Once an estimate for

the vorticity is obtained by solving the EL system, a new advecting velocity

may be defined from the estimate. This leads to another cost functional

based on the latest estimate of velocity. The sequence of cost functionals



may be written as

fl( = idticlx1 n(Cn(x , t)) F)W (x , t , x` ,t1)(Ln(Cn(x1 ,e)) F)
0 f2

IndXfodX1{(72(X, 0) C° (4.17 (x, )[(n(x' , 0) (4)(x1)]

E[dk Ck(CnAwki[di Li((n)] -

k,1

(4.2.1)

19

Uniqueness of solutions to equations (4.2.2-3) is shown in Appendix B. The

solutions to the system (4.2.2-3) form a sequence each member of which is the

result of having formed a generalized inverse to the operator determined by

the linear model dynamics (dependent on the given element of the sequence),

the data, and the statistics of the errors in the linear model and the data. If

the limit of the sequence exists, it is intuitive that it will be different from

the limit found using GIM since the equations differ by the term Jn_1. That

is, equations (4.2.2-3) are the same as (4.1.9-10) with Jn_1 0 and, in

the limit as n tends to infinity, converge to different systems of nonlinear

partial differential equations. To distinguish these approaches for finding a

generalized inverse we call the iterative solution method given by (4.2.2-3)

the Extended Kalman. Smoother Method (EKSM). The notion that the GIM

The EL system corresponding to a stationary solution of (4.2.1) is the fol-

lowing system.

L72((n)=F+QFin (4.2.2a)

Cn(x, 0) = (x) -I- A o (x, 0) (4.2.2b)

L(1t) = (4.2.3a)

[L(cf)( (x 06(t 7))]* w[d r(Cn)]

itn(x,T) = 0 . (4.2.3b)
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and EKSM may lead to different types of generalized inverse solutions is

explored further in Chapter 6.

The name 'Extended Kalman Smoother' was chosen by Bennett and

Thorburn (1992) to suggest the similarity to the extended Kalman filter

(Gelb, 1974). The present approach, as well as that of Bennett and Thorburn

(1992), is formally deterministic and the name is only intended as an analogy.

4.3 Construction of solutions

To construct a solution to the system (4.1.9-10), define M scalar repre-

senter functions rni ,rnm, or in vector form rn (rril , ,r)*,)*, and their

adjoints (aL . . . , an* by

L(r) Q an

rn,(x,0) = A o an(x,0)

-.Wan) =

[L(,,)( .5(x - )8(t - r))]

an(x,T) = 0.

(4.3.1a)

(4.3.1b)

(4.3.2a)

(4.3.2b)

Application of Ln, Q., and Ao to vectors is meant component-wise. A

solution to the system (4.3.1-2) may be constructed by first finding an as

the solution to the final value problem (4.3.2). Once this is known rn may be

obtained by solving the initial value problem (4.3.1). A proof that solutions

to the system (4.3.1-2) are unique follows the same argument as given in

Appendix B for the systems (4.1.9-10) and (4.2.2-3).

In Appendix C it is shown that the action of the measurement func-

tion.als, Lj(), may be expressed as an inner product with the representer

functions, (7-4, -), for each iteration n. That is, Li(.) = (r4,.) (equation C2).
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The Riesz representation theorem asserts the uniqueness of this relation,

meaning that there is only one function ri7, which represents the action of

the measurement functional Li . Hence, the functions r,, are appropriately

named "representer functions".

Next, denote the nth first guess solution by (Fn and tiFn. That is, CF,

and pFn are solutions to the following system.

Ln((F)=F+QpF (4.3.3a)

(Fri(x, 0) = (°(x)+A 0 0) (4.3.3b)

Ln(PF.) jn-1
(4.3.4a)

PF(x, = 0 (4.3.40

Now consider the sum of the nth first guess solutions and a linear com-

bination of the representers. That is, let

= Fr, (X brn(x,t) (4.3.5a)

An(x,t) = ktFn(x,t) + b7ia,i(x,t) (4.3.5b)

where 14, =

We may derive an algebraic system of equations which has solution bn

by substituting the expansion (4.3.5) into the system (4.1.9-10), using the

equations defining the representers (4.3.1-2) and the firstguess (4.3.3-4),

and equating coefficients of .C(,,)(8(x 08(t 7)). The matrix system has

the form

Pnb. = hn (4.3.6)

where

hn = d 'C(,r)((.F.) and (4.3.7)

Pn = Rn 11)-1 (4.3.8)
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Recall that the iteration index is n and in the above equations Pn, Rn and

w-1 are M by M matrices while bn, hn, d and .G,.,-((F) are vectors in lRm

In the last equation, (4.3.8), Rn is the M x M matrix of representers where

the (i, j)th element is given by the jth measurement functional, Li applied

to the ith representer, r,

(Rn)ij = ri(rni ) . (4.3.9)

We will show that Rn is a symmetric, positive definite matrix in Lemma

4.3.1 and Lemma 4.3.2 which follow. Thus, Pr, is also a symmetric, positive

definite matrix and invertible for each n. From the matrix equation (4.3.6)

we obtain the sequence of representer coefficients

bn = P,T1 hn . (4.3.10)

Lemma 4.3.1 The matrix of measured represent ers, Rn, is symmetric.

Proof: We first define the fundamental solution (or influence function),

r(x,t, y, r), for the equations governing the representers (4.3.1-2). The fun-

damental solution depends on the iterate, n, but we are concerned with

only a fixed iterate and so do not indicate this dependence with a subscript.

The symmetry of the fundamental solution will be apparent. Then a simple

calculation shows that the representer matrix Rn is obtained by applying

the measurement functional to each of the dependencies (x, t) and (y, r) in

the fundamental solution F. This solution being symmetric with respect to

interchange of (x, t) and (y, r) implies the symmetry of R.

Let -Mx, t, y, r),-y(x,t, y, r)} be functions which satisfy the following

system.

Lnr 1dt/fix' Q(x,t, ,t1)7(x' , t', y, r) (4.3.11a)

0 12



T

fltjdx'W (x , t , x' ,e)L(x, ,i9r(xt , t' , y, r) =
o n

T T

fdtidx/w(x,t, xi ,ti) fitildx" (2(xl , t', x" ,t")7(x" , t", y, 7)

o ft 0 ft

r(x, 0, y, r) = flx1 il(x, x1)-y(x, 0, y, T) (4.3.11b)

ft

Lay = Ox y, t 7-) (4.3.12a)

-y(x , T, y , 7) = 0 , (4.3.12b)

where Ln = alai+ v(Cn_i) V, as in (4.1.5). The solution r may be ex-

pressed as an integral involving the influence function -y, as shown by the

following construction. The subscript on the differential operator Ln will be

suppressed, and instead replaced by notation to specify on which variables

it is to act. Thus L() = 5159+ v(Cri_1) - V' specifies the spatial derivative

in 6 and the time derivative in 9 .

Applying the weight operator W to the equation governing r (4.3.11a),

T

= fdt" fix" 8(x x" ,t t")7(x" ,t" , y, r)
o S-2

=-y(x ,t, y, 7) .

Now apply the differential operator L(x,t) to each side of equation the above

equation (4.3.13). The result is

T

fitidxf { L(x,i)W (x,t, x' ,t1)1,(x, ,t9r(x' , t', y, 7)} = (4.3.14)

o 0

L(x,t)y(x,t, y, r) = 8(x y,t r).

23

(4.3.13)

If we multiply each side of equation (4.3.14) by r(x, t, 6, ri) and integrate over

the (x, t) domain we have
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r(y,7,6,77) = (4.3.15)
T T

fltidx fdtpx'r ,t,e,01L(x, x tow( , x' ,t1)1,(x,,e)r(x',e, y, r)} .

00 OR
Using the relation given in (4.3.13) to rewrite the last term in (4.3.15) we

have

= (4.3.16)

fdtpxr(x,t,e, 1,(,(x,t, y, 7)}

Integrating by parts and using the equation for r (4.3.11), we obtain an

integral representation for r in terms of 7,

r(Y,7,6, 77) = (4.3.17)
T T

fdtidx
-y(x ,t, y, 7-)Q(x ,t, , t')-y(x' , , 6, 77)

Of2

fclx
fdx' -y(x , 0, y, T)A(x, x' )-y(x' , 0, 6 , n) .

Note that, by inspection of the integrals in (4.3.17), r is symmetric in the

sense that

= y, 7) , (4.3.18)

provided that Q and A are symmetric.

From r we are able to construct the representer matrix by applying

the measurement functional to each of the pairs of independent variables in

T(y, T,6,77). That is, we will show that the representer matrix defined in

(4.3.9) is given by

Rij = E-1(x,ori(y,r)r(x,t,y,r) . (4.3.19)
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To prove the relationship given by (4.3.19), first apply the measurement

functional Li to the equation governing -y (4.3.12) to obtain(Y,r)

-1,(xmLi(y,7)-y(x,t, y, 7) = Li(y,r)(S(x - y,t - 7) (4.3.20)

Liom-y(x,T, y,r) = 0.

By uniqueness of solutions to the adjoint representer equation (4.3.2), we

must have the relation

Liom-y(x, t,y, 7) = ,t) . (4.3.21)

Applying LL.) to the equation for I' (4.3.11) and substituting a, for L3(y,f)-y

we have

L(xmLiomr(x,t, y, 7) Q ai(x,t) (4.3.22a)

L(x,t)Ci(ymr(x, 0, y, 7) = A o ai(x, 0) . (4.3.220

Using the fact that solutions to the representer equations (4.3.1) are unique,

we have the relation

= (x,t) . (4.3.23)

By applying the measurement functional to the representers r3 we obtain

= ri(x,t) (ri(x, t)) (4.3.24)

= L.i(x,i)ri(ymr(x,t, y, 7) .

The symmetry of r with respect to (x, t) and (y, 7) given by (4.3.18) implies

the symmetry with respect to i and j of 1?i3 in (4.3.24). This concludes the

proof of Lemma 4.3.1
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Lemma 4.3.2 The symmetric matrix of measured represent ers, R, is pos-

itive definite.

Proof: Let c E lR114 be an arbitrary nonzero vector. Then, using the

expression for R given by (4.3.24),

c* Rnc =
3

Now replacing r in (4.3.25) by its expression in terms of 7 using equation

(4.3.17),

c* Rnc =

[Liyo_rix,t ideldx" flefdx17(x" , t", x,t)Q(x" , t", x', t')
0 ft 0 ft

-y(x' , , y,

fdx"
fdx1-y(x" , 0, x ,t)A(x" , x1)7(x' , 0, y, Ci . (4.3.26)

0

= fdiliffiX" idefdX1 [ ciL , t", x ,t)]Q(x" , t", ,t')x
0 ft 0 0

[E cirjv ,Try(x' , t', y, 7)1+

,tr(x,t, yo-)ci . (4.3.25)

czrl,t7(x" , 0, x, t)] A(x" , )x

[E ci,C-L , 0, y, 7)] . (4.3.27)

We rewrite equation (4.3.27) as

c* =

= fleidX" fitidX1 Pi(x" ,t")Q(x" , t", ,e)131.(x' ,e)d-

0 ft 0 ft

fdx"
fdx'Pi(x" ,O)A(x" , x')131(x' , 0) , (4.3.28)

0 ft
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where

77) = x,t) . (4.3.29)

By assumption, Q and A are positive definite so that c*Rnc in (4.3.28) will

be positive if P1 is nonzero for any (x, t) E S and for any x E It at t = 0.

Note that P1 is just a linear combination of the adjoint representers (see

equation (4.3.21)). That is,

77) = 77) (4.3.30)

Since the adjoint representers are solutions to the linear equation (4.3.2),

a linear combination of the adjoint representers must satisfy the equation

-Ln(Pi(x,t)) = ci4,7(8(x - - 7))

(4.3.31)
Pi.(x,T) = 0

By assumption, the measurement functionals are independent. That is, any

linear combination of measurements of delta distributions, such as the right

hand side of (4.3.31), is not zero whenever any ci is not zero. Thus, even

though Pi(x,T) = 0, Pi(x,t) is nonzero for some (x,t) E S and for some

x E 52 at t = 0 due to the nonzero forcing in (4.3.31). This concludes the

proof of Lemma 4.3.2.

The functions given by the sum of the first-guess solutions and the

linear combination of representers defined by equation (4.3.5) are solutions

to (4.1.9-4.1.10) provided that the coefficients bn exist. The existence of bn

is guaranteed by the invertibility of Pn, given by (4.3.8), and the existence

of the first-guess misfits hn, given by (4.3.7). The hn exist and are unique

since (Fn is uniquely determined by (4.3.3-4). By using the representer

functions defined by (4.3.1-2) we are able to construct a solution to (4.1.9-

10) in the form of the linear combination (4.3.5). The independence of the
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measurement functionals and the uniqueness of solutions to the representer

equations (4.3.1-2) guarantees that th,2 representers are linearly independent

functions. The solution procedure developed in this section is a method

suitable to numerical approximation, since it provides an explicit method for

solving the original system (4.1.9-10) (Bennett and Thorburn, 1992; Bennett,

et al., 1992).



uniformly in [0, 2].

5. Global Existence of an EKSM Solution

5.1 a priori bounds

We would like establish the existence of a solution to the nonlinear EL

system (3.2.5-6) by showing that the sequence given by (4.3.5) is bounded

in an appropriate Sobolev space. However, in Chapter 6 we give an informal

argument as to why we believe that this will not be possible. It is the nature

of the nonlinearity that produces this difficulty. Therefore, for practical

interest, we address the question of existence of an EKSM solution, that is, a

solution to the system (4.2.2-3). The EKSM solution is currently being used

in the context of ocean and atmosphere quasigeostrophic models (Bennett,

et al., 1992; Bennett and Thorburn, 1992).

We establish the existence of a solution to the EKSM problem using

equations (4.2.2-3) for an arbitrary smoother interval [0, 1]. This is shown

in the sense that there exists (at least) one convergent subsequence of the

sequence of solutions to the system (4.2.2-3).

The existence of the solution to the elliptic equation (3.1.2) and its

regularity properties may be found, for example, in Gilbarg and Trudinger

(1983). This is summarized in the following lemma, which is Corollary 1

(equation (4.24)) of Judovi'e (1966b), except that we modify the statement

of the boundary smoothness.

Lemma 5.1.1 For (7, in Wic,P(S2), k > 0 and p> 2, where ft has a locally

Lipschitz boundary, the unique solution On of (3.1.2) is in Wk+2,P(S2), with

k+2,p,f2 CP1K7z k,p,C2

29
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Proof: An examination of the proof by Judovie (1966b) reveals that the

case of a locally Lipschitz boundary is easily accommodated. Interior local

estimates of Dk+20n follow by placing spheres inside 1-2 (lemma 3.2 Judovie,

1966b). Local boundary estimates are achieved by locally mapping neighbor-

hoods of boundary points to hemispheres and applying lemma 3.4 of Judovie

(1966b). Boundary corners may be locally mapped to quarter spheres, which

reduce to estimates on hemispheres by even extensions of On. A locally Lip-

schitz domain may be covered by finitely many regions for which these local

estimates hold. This process eventually leads to the global bound (see the-

orem 1 and corollary 1 of Judovie, 1966b). The basis of the proof is the

Calderon-Zygmund inequality (Adams, 1975, Gilbarg and Trudinger, 1983)

and the Sobolev imbedding theorem (Adams, 1975).

As a consequence of Lemma 5.1.1 we obtain the following estimate on

the norm of velocity. This is an minor modification of lemma 1.4 of Judovie

(1966a).

Lemma 5.1.2 Given in TV'P(C2), k > 0 and p > 2, there is a unique

vn = v((n) such that vn is in Wk+1,P(1-2) and satisfies the bound

Ilvnlik4-1,p,12 ClICrillk,p,f2

uniformly in [0, Tj.

Proof: We simply note that Ilvidik+i,p,ft = IIVIOn k,p,f2

11(-(0n)y,(0n)x)lik+1,p,o ilOnlik+2,p,st and apply Lemma 5.1.1. Note that

by Theorem 2.2.1, w2,3 x [U T] compactly imbeds into C1(ri) x C°[0, T],

thus if we are given Cn E W1,3(52) x W1,2[0, 7], we have E W2,3(52) x

w1,2r,,,rrn
EU and vn is equivalent to a C1(5-2) x C°[0, 2]-function.

Let v : 1-2 x [0, 7] IR2 be a C1(S-2) x C°([0, TD vector field, with

div v = 0 in 1-2 and v n = 0 on 5C2 (n being the outward normal to fl). Let
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-y = -y(x,t, s) be the solution to the o.d.e.
d'y

= 2 47 WI s)
(5.1.1)

-y(t) = x.

That is, -y(x , t, s) is the position of the fluid particle at time s which passes

through the point x at time t. The next lemma establishes the existence of

the characteristics 7.

Lemma 5.1.3 (lemma 2.2 and lemma 2.3 (Kato, 1967)) There exists a

unique global solution -y = -y(x,t,$) to problem (5.1.1) for 0 < s < T for

any initial condition -y(t) = x where t E [0, 21 and x E a Furthermore, the

solution of (5.1.1) is c1 in all three variables. For fixed t and s, the map

4>t,, : QI--+ It defined by x i-- 7(x,t,$) is one-to-one and measure preserving,

where aci 1-4 as-2. The map (13t,i given by x 1---÷ -y(x,t,t) is the identity (i.e.

-y(x,t,t) -- x) and (1)s,i is defined as (ki-,81.

We will need to solve the following two types of problems. Given v as

above, UP (X) E C°(52), wT(x) E C°(Q), and F E C°(S2) x C°([0, 7]), find the

solution to the initial-value problem

LW = Wt+V vw , F(x,t)
(5.1.2)

u.,(x , 0) = 2(x)
and the final-value problem

Lco = wt+v - VW = F(x,t)

w(x , T) = 4.,,T (x) .

(5.1.3)

Each of these may be solved by integrating the equation along a characteristic

given by the solution to (5.1.1), 7(x,1,$), for 0 < s < t or t < s < T,

respectively. The solution to the initial-value problem (5.1.2) may then be

expressed as
,

w(x,t) = w°(-y(x,t, 0)) +I F(7(x,t,$),$)ds . (5.1.4)
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Similarly, the solution to the final-value problem (5.1.3) may be expressed

as

W(X,t)= WT(7(X,t,T)) - f F(7(x,t, s), s) ds . (5.1.5)

The preceding lemmas serve to establish the solvability of the linearized

equations for the GIM (4.1.9-10), the representers (4.3.1-2), and the first-

guess (4.3.3-4) for a given iterate n. We conclude this section with an esti-

mate of the sequence of velocities, vn, which follows from an elliptic estimate.

The following lemma is an extension of lemma 1.5 of Judovie (1966a), where

the second derivatives of the stream function are estimated in terms of the

logarithm of the gradient of vorticity in Lp(52). (See also theorem 4.4 of

Bennett and Kloeden (1980).)

Lemma 5.1.4 Given in Wk'P(S2), k > 1 and p> 2, where 01-2 is locally

Lipschitz and maxzEo IDS621 < Mk for < k - 1 then On = G(r, satisfies

the bound

max I < cip ln{c2p c3P11(11k,p,st}
xES2

where < k + 1 and the ci, i = 1, 2,3, depend only on Mk.

Proof: First note that provided p> 2, T47k,P(S2) compactly imbeds into

Ck-1(11) (see section 2.2), so that assuming bounds on derivatives of Cirt up to

order k - 1 is consistent. Such a bound is utilized below in equation (5.1.9).

The proof of the theorem follows the proof by Judovie of lemma 1.5 (Judovie,

1966a) with the needed changes to accommodate the higher regularity.

Let ri = where y is an arbitrary multi-index with 1-y1 < k 1 and

= G(n. Using Sobolev's integral identity (Judovie, 1966a; Bennett and

Kloeden, 1980; Adams, 1975) we have the relation

Vo

kl(x) 177(yr + '7W 177(y)lin-2Irgxr lx - yj 6(Y) V71(Y)] dy , (5.1.6)
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where Vo is an arbitrary fixed cone with vertex x contained in f2, 6 and

6 = (e,e?)) are known functions, continuous and bounded on

Estimating the second term on the right using Holder's (generalized)

inequality we have

In(x)ri c1 117/11:,o + c2m11\77711p,0 117711(rn,7:21)p,,0 (5.1.7)

where c2 depends on in and pi. = p(3p 2)/(p 1)(p 2).

Inequality (5.1.7) is then substituted into the power series expansion for

exp where is an arbitrary real constant. That is,

s'1771`exp(81771) = 1 + <
1!

1=1
cc 81

1 + ci 1177111 +
1.1

Lemma 5.1.1 is now used to estimate 1,17711/,i? by

= 5_ IlOnlik+1,1,s2 5_ c3ignilk-1,/,0 5_ /M , (5.1.9)

where M is independent of 1. Substituting the bound (5.1.9) into (5.1.8) we

have

exP(61771)
co a

+ ClE-ITThm)/ + sc211 V 11 Ilp,

61-1

(1
lI7II(1-1)p1,fZ (5.1.8)

1.1

(1 1)! 1)pi M)1-1 (5.1.10)

Stirling's formula for 1! = \/27/(//e)1(1 + 1/121 + 0(1/n2)) provides the

bound /1//! < coel. Choosing S < Mepi the geometric series in (5.1.10) are

convergent and produce the bound

,61771 < C7 + c811vnllp (5.1.11)
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Finally, using Lemma 5.1.1 again to estimate and taking the

logarithm of each side we have the desired result.

Lemma 5.1.4 allows us to establish a bound on the velocities, vn = v((n),

in W k 'P (CI) as follows. Since,

and

II., Hpvn kp IlDavn11; = fID' vn IP ,

iDavnIP max IDavn PI max IDfi'On I
zEs2 x Ell

where PI = lal + 1, by applying Lemma 5.1.4 we obtain

Ilvnl1/;,,p c01521 max 1.13130n1 ISM]. in(c2 c311(nIlk,p)
xES2

5.2 Regularity in space

For the EKSM solution we have <1_1 = 0 in the firstguess adjoint

equation (4.3.4). Thus the firstguess adjoint equation is the final-value

problem
Lri(pFn)= 0

(5.2.1)
,uFn(x,T) = 0.

This is seen to be the same type of problem as given by (5.1.3), having the

form

(5.1.12)

(5.1.13)

(5.1.14)

ilFn (X t)= 0 V (x, t) E 1 x [0, . (5.2.3)

(1iFn)t+v (ZN.,uF,i)= 0
(5.2.2)

PF(x,T)= 0,

where the vector field v is v((n_1). Following (5.1.5), the solution is



to
Ln((F) = F

((x, 0) = C° (s) .

The solution may be written as in (5.1.4), that is,

While the system (5.2.4-5) would appear to have simplified the solution

procedure developed in section 4.3, the presence of bn in (4.2.4) still requires

the complete methods of section 4.3. The system (5.2.4-5) merely represents

a "rearrangement" of the constructive method.

We subsequently show that the sequence of coefficients, bn, is bounded,

the sequence of representer adjoints, an, is bounded, and this results in a

bound on the sequence of vorticities, (n.

From equation (5.2.3), the firstguess vorticity equation (4.3.3) reduces
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As a consequence of the firstguess adjoint being zero (equation (5.2.3)),

the expansion (4.3.5) implies that the EKSM system (4.2.2-3) may be written

(5.2.6)

(x t) = ('°(7(x, t, 0)) + F('-y(x , t, s), s) ds . (5.2.7)

Consequently, the L2(S)norm of (F is bounded independently of n,

ii(F.112,s 5_ IK°112,s + THFI12,s (5.2.8)

as

Ln((n)=F+Qb:`,a (5.2.4a)

((x, 0) = .°(x) + A o b:icen(x, 0) . (5.2.4b)

L(a) = [.C(0-)(8(x )8(t (5.2.5a)

an(x,T) = 0 . (5.2.50



Lemma 5.2.1 libnlico = maxi<i<m Ibini is bounded independently of n.

Proof: From equation (4.3.10), we have

Ilbn11. = (5.2.9)

We establish the boundedness of each of the factors on the right hand side.

Consider that

Ilhn11. = LKF,3100

iidlioo

< + max Iri(CF,-, )1
1.<i<m
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(5.2.10)

By assumption, the measurement functionals are bounded from Wk'P(S) into

R1 and so, using the bound (5.2.8) where the norm on L2(S) n wk,P(s) is

taken to be the L2(S)-norm,

ILi((Fn )1 11V112,sIICF,32.s

5_ ci(110112,s + TIIF112,$) . (5.2.11)

Inequalities (5.2.10) and (5.2.11) imply that IIhII is bounded independently

of n.

It remains to show that the matrix norm of PV, liPri-111,0, is bounded

independently of n. Since w and Rn are real and symmetric matrices, there

exist orthogonal transformations Z, and W such that

and

w = W*coW . (5.2.12)

In equation (5.2.12), AT, diag[Al (Rn), , Am (R,i)] and 4.,.> =

diag[Al(w), , )M(w)} are diagonal matrices consisting of the eigenvalues



and since the matrix norm of Zn and 2-7,* is unity,

iiP;11100<M1<mkax
{(Ak(Pn))-11 .
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of Rn, Ak (R), and the eigenvalues of w, Ak (w). Since R7, and w are positive

definite we have

0 < A(R) <A(R) < <(R,) and
(5.2.13)

0 < A(w) <)(w) < Aintl(w) .

Since Pn must be real, symmetric and positive definite, there exists an Or-

thogonal transformation 2,2 such that

Pn = , Am(Pn)14 (5.2.14)

where Ak(Pn) is the kth largest eigenvalue of P. Consequently,

P,;71 = indiag[(A1(Pn))-1,... , (Am (Pn))-1]k:; , (5.2.15)

(5.2.16)

A result from linear algebra (see Wilkinson (1965), section 44) is the relation

Ak(Rn)-F Am(w-1) Ak (Rn w-1) Ak (P) _< Ak (Rn) '(w'),
(5.2.17)

from which we have the bound

(Ak(Pn))-1 = (\k (R w-1))-1

(Ak(R)+ A1(w-1))-1

< (A1(w-1))-1 = A1(w) . (5.2.18)

Inequalities (5.2.16) and (5.2.18) establish a bound, independent of the it-

eration index n, on the norm of the matrix P;1, concluding the proof of

Lemma 5.2.1.
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In the next lemma we establish bounds on the model forcing correc-

tion, Q an, and initial condition correction, A o an, by using the adjoint

representer equation (4.3.2). Recall that ki is the kernel of the measure-

ment functional defined by (3.1.10) and appears in the measurement of delta

functions in (4.3.2).

Lemma 5.2.2

For ki E C°(3) x C°(57), the sequence of solutions to the adjoint rep-

resenter equation (4.3.2) is bounded in L(1), uniformly for t E [0, T].

If Q E ck(3) X Ck(S), k > 0, and a.1., E Lp(C.1) uniformly in t, then

Q ct-1., E Wk'P(C2). If A E ck(n) x Ck(D-) and a4(t = 0) E Lp(S2),

then A o E Wk,P(12).

Proof: The ith component of the representer adjoint equation (4.3.2) is the

equation

= £(0.)[6(X - e,t - (5.2.19a)

crli(x,T) = 0 . (5.2.19b)

Multiplying by pas!i1c41P-2, integrating over Q, and using the condition that

div (v((n_i)) = 0 yields the differential inequality

a .

11r-'(,,)[8(x e,tat
(5.2.20)

From (5.2.21), 4 E Lp for all t E [0, T], provided the term on the right

hand side of (5.2.21) is finite.

Integrating with respect to t, for t E [0, T], we obtain

Idt - - . (5.2.21)



IQ ainliPp,0 =f dx fdtidx' Q(x ,t, ,

f2
0 f2
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Consider the function f (x ,t) defined by

f(x,t) = Limr)[8(x e , t 7)] (5.2.22)

= fdldeki(e, T, Xi, t j)G[8(X

f/

= idW(e, t, Xj, tj)N(x .

We have used N(x = G[8(x e)] to denote the fundamental solution of

the Laplacian, that is, N(x e) = (2r)(-1) log Ix I.

Since N(x e) is in L2 for CI a bounded domain (which implies N is

L1) and ki(e,t,xi,ti) is in C°(3) as a function of (e, t), we have that f(x,t)

is continuous on Ti x [0, T]. It then follows that f(x,t) is L(l) x L1[0, T].

That is,

Idtli.C&09[8(x
e,t r)]Jip,9 = Idtil f(x,t)11p,i) < oo . (5.2.23)

This establishes part (a) of the lemma.

It is possible to relax the assumption of continuity in of 1Ci(e,t,xi ,t i)

to merely L1 integrability. However, we consider a physical measurement

process to be one which essentially is a smoothing operator, motivating the

stronger assumption of continuity.

For part (b), we begin with the LP norm of the Oth derivative PI < k)

of Q a4. That is,

5- Pi max { IDN(x ,t, x' ,t')IP} fdtidx' la3(xI ,e)IP
rES

(x' ,e)ES 0 f2

= II max {ID°Q(x,t, , t')IPI I de Ila-711; (5.2.24)
xEst

(x' ,t1)E.S.
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where I11 = f1-2 dx. From the proof of past (a) we have a uniform bound

ll'ap,st , thus, the last integral in the inequality (5.2.24) is bounded.

Summing over all /3, 101 < m, we arrive at the needed bound.

The estimates for II Aoa(x, 0)11,7,,,p,n are essentially the same calculation.

From the fith derivative of A o 0),

11D A o ajnlIpP ,c1 =J dx DI3 I dx'A(x,x')crin(xi3O)

< IImax { 1/Y3 A(x,x1)1P} jdx' lain(x`,0)1P

xx EElls

PI max { ID#A(x, x')IPI Idt n p *
(5 2 25)

X

0

which is bounded by a constant. Summing over 3 yields the bound on A o an

This completes the proof of Lemma 5.2.2.

The next theorem establishes the spatial regularity of a solution to the

EKSM by showing the existence of a convergent subsequence of the sequence

given by (4.3.5a).

Theorem 5.2.3 If = 0 (in equation (4.3.4a)), Q E Ck(S) x CkCg)

and A E Ck(S-2) x Ck(r2), then the sequence {CO defined by (4.3.5a) is

bounded in Wk,P(ci) with gnIlk,p,S1 E Li [0, T], for k > 1 and p > 2, provided

the initial iterate .,i(x,t) is in T47-2'3(S) and the forcing is in Wk() with

E [0, 7].

Proof: The strategy is based on that of Judovie" (1966a), allowing for the

required higher regularity of the forcing term introduced by the control vari-

able, Qb*nan, and the regularity of the initial control, Ao br, *a. The problem

as written in equation (5.2.4) appear to be an initial value problem. How-

ever, the inverse nature of the problem is still present in the computation of
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the vector b, which requires solving the representer equations. Fortunately

we have a bound on the vector 14, in Lemma 5.2.1.

To construct the desired bound on Cfl, take all the Oth derivatives, 1/31 <

k, of (5.2.4)

)t + E (3)Dav,i_1 VD Cr, = DS , (5.2.26)
a<i3 a

where ,Fn, denotes F Q bn* an and vn_i = v(C,i). For a = (a1, a2), the

multi-index inequality 0 < a < means 0 < ai < #i for i = 1,2.

Multiplying (5.2.26) by pDC,,IDS (nIP-2 and integrating over S2 we have

uP
Ii - f P E Ca)

0<ct<i3

pf Cr,ID) (,,IP-2 .Fri .

In equation (5.2.27), the term in the sum for which a = 0 has the form

fs) vn-1 ' VIZ IP where Z is Di3C. This term will vanish since div (vn_i) = 0

and vn_i n = 0 on aa Consequently, the sum in (5.2.27) is over values of

a 0, that is 0 < a <

Taking the absolute value of the right hand side of equation (5.2.27),

the first term is bounded by

P E Di3--vcapi@cnr_l (5.2.28)
0<ce<fl

Using Holder's inequality we have

P E (afl)11Davni I-P-aV(40,p,oliD13Cn11105.,-pl,S2
0<a<fl

Davn_i (LP Cnia3 (n V.a8aCn)

(5.2.27)

(5.2.29)



which is bounded by

P E (13) [a ilDavn2-1/y5.-.+(o,i)(-40,p,12]

(5.2.30)

0<a<13

C.11107;1,0

2
pc {11Vni

/-
k,p,S-2] II-D1%/211109,piSI . (5.2.31)

With the Banach Algebra property of Wk'1)(52), kp > 2 (Adams, 1975; the-

orem 5.23) and bounds on the velocity components using Hviii 1 II ic,p,S2

livn-1llk,p,s2, the quantity in (5.2.31) is bounded by

PCi IlVn-111k,P,Q gn II ,p,1211D/%71111;c7p1;i2 (5.2.32)

The right hand side of equation (5.2.27) can now be estimated using Holder's

inequality and the bound on the sum given by (5.2.32). This yields

a
-57 IlDfl(n P ID

nM 1D13'Fn

P2k IlVn-111m,p lKnllm,pIla3(nlIPp

where 2k bounds the constant E (n.

, (5.2.33)
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Writing the scalar product in component form, where vni_1 = v rep-

resents the ith component of vrt_i, and

1)0,3) °'
ax l 54

we have the equivalent expression

E (a/3) [11Davni_ID,3-«+(1,o)cn +Davn2--i-a8-a±("Cao,p,01 X
0<a<j3



1k } IKll "D 11P1. (5.2.34)
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Using the bound on the velocity in equation (5.1.12), a consequence

of Lemma 5.1.4, we can bound the norm of the velocity by ci ln{Pc2 +

Pc3ii(n-iiik,p,11}, that is,

a ,,

-57 HD- Cn 111;,,f1 P11 D( 11Pp:Q1 111Y .Tn11,,+

p2kc1 ln{pc2 + pc31Kn-i

Summing on /3, for I/31 < k,

a
il(nek,p,n 5- PlKnII,p1,Q 11-1Y-Tn11,Q+

p2k KnI1Pk,p,Q1n{pc2 pc311(n 111k ,p ,12} . (5.2.35)

To simplify the notation, let R(t) = 1,1 (II II k,p,f1 and fn = 11.Fn k,p,f2

This is in analogy to the notation introduced by JudoviC (1966a). Then

equation (5.2.35) is a differential inequality of the form

(R)t 5_ pRV1 .fn + p K2 in(Pc2 + pc3Rn_i)R-11, (5.2.36a)

.R(0) = ii(n(x, = 110(x) + A o Hk,p,1-2 , (5.2.36b)

where K2 -= c12/c. Equation (5.2.36) is analogous to equation 1.79 of JudoviC

(1966a).

Given a real constant (5 > 0, let Rn satisfy

-1-1Pn) t 5- Prn- 1fn + pc51n(Pc2 + Pc3 Ttn-Oren (5.2.37a)

-fin(0) = Rn(0) . (5.2.37b)

Since R(0) > 0 and fn > 0, we then have 0 < < Rn.

We can solve the differential inequality (5.2.37) formally by integrating

each side of the equation with respect to t. This produces the relation

Rn(t) Rn(0) f fn(r) dr + C5111(Pc2 + pc3Rn_i(r))Rn(r) dr .
0 0

(5.2.38)



Or, by defining Nn Rn(0) + + foT f(r)d7, we have

1-7(t) < Nn + Ic51n(Pc2 +Pc3Rn-i(r))Rn(r) , (5.2.39)

corresponding to equation(1.82) of Judovi'C (1966a). Now multiply (5.2.39)

by c5 ln(pc2 pc3Rn-1)11,-, and divide by Nn e5 foThl(Pc2 + Pc3Rn_i) to

observe that (5.2.38) can be written as

This has the solution

Nn c5 Ttn ln(pc2 pc3Rn_1) dr

Nn exp{f c5 ln(Pc2 pc31L-1) dr} . (5.2.41)

0

Combining the inequalities (5.2.39) and (5.2.41) we have

-An < Nn exP{ f cs in(Pc2 + pc3Rn_i) dr} . (5.2.42)

Multiplying each side of inequality (5.2.42) by pc3 , adding pc2 , and taking

the logarithm we obtain

111(Pc2 pc3 N n exP{i c57n-1 dr} (5.2.43)

where

ln{Nn c5 Yin ln(pc2+pc3n_i)}drat

< c5 ln(pc2 pc3-Tin-1)
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(5.2.40)

-y. = ln(Pc2 + Pc3Rn) (5.2.44)



Noting that for positive

ln(a + bee) < ln(a b) , (5.2.45)

we obtain from (4.2.43) an inequality analogous to (1.91) of JudoviC' (1966a).

< fC5771-1 ln(pc2 pc3Nn) (5.2.46)

The last term in (5.2.46) can be shown to be independent of n in the following

way. Looking back through the various substitutions we have

Nn = Rn(0) 6 + I ftt (5.2.47)

= IK°(x)+A o cx(x +6+ I 11F Q bnak,p,11

5 Ile (X)111c,p ,p,f1 +

ho 4(x, 0)11k,p,ti f IIQ bn*anlik,p,0

Consider the last two terms of (5.2.47). In particular, for 1,31 < m we have

IPS Q ban 11;41 = I dx
Jc

1313 Q(x,t, ,e)bn * a(x' ,t')
0 f2

dx IP LI Di Q Cxin

3=1

M max Ibi Q
1<j<M

Summing on # we have

IIQ b:aniik,p M max blllQ aak,p1<j<ilf

45

(5.2.48)

(5.2.49)



Go = max -yo(t) = max ln{pc2 + pc3Ro(t)}
tEt0,T1 tE[o,T}

= max ln{pc2 + pc3(Ro(t) 8)}
tE[o,T]

= max ln{pc2 + pc3(11(o(t)Ilk,p,0 6)}tE[0,71
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Now inequality (5.2.47) shows that Nn is bounded independently of n. This

follows since the first three terms, liC°(x)iik,p,$) +f IIFIlk,p,o+6, are constants,

and the last two terms, in view of the bound (5.2.49), Lemma 5.2.1, and

Lemma 5.2.2, are bounded independently of n.

As a result of the bound on Nn, the last term in the inequality (5.2.46) is

bounded independently of n, say by N. We therefore write equation (5.2.46)

as

lin 5_ f C51 + N. (5.2.50)

Inequality (5.2.50) is precisely the same as inequality (2.40) of Judovie

(1966a), allowing for differences in the definitions of -y7, and N. Hence,

following the proof in Judovie, we obtain from induction the estimate

(c5t)2 (c5t)n-1
7n(t) <

(c5t)n
Go + (1 + c5t + + + )Np . (5.2.51)

n! 2! (n - 1)!

In inequality (5.2.51) Go is the maximum on [0, 7] of 70(t), given by

(5.2.52)

We assume continuity of (0, corresponding to a smooth initial iterate specified

by 00. It suffices to assume that (0(x ,t) E W2,3 (S) since the compact

embedding (Theorem 2.2.1) implies

1472'3(S) 1-4 C°(S) .

That is, (0(x, t) is equivalent to a C°(1-2) x C°[0, 7]-function. Therefore the

maximum in (5.2.52), Go, exists.



From inequality (5.2.51), we have the bound

In the limit as n tends to oo, the first term on the right of inequality (5.2.53)

tends to zero. We then have

-yit(t) <(c5T)n Go Np ec'T .
n!

lim ln(pc2 pc3.fin) < Np ec5T
fl*00

from which it follows that

lim Rn < c6 <00 .

Finally, from (5.2.55) we have the desired bound on (n. That is,

urn 11(7,11k,p,f1 = lim Rn <
n-400 n+oc,

liM Rn < c6 <00 , (5.2.56)
n

where the constant, c6, is independent of n and t. This concludes the proof

of Theorem 5.2.3.

5.3 Regularity in time (existence)

In this section we establish a bound on the sequence {}, defined by

equations (5.2.4-5), in the Wk'P(S) norm, for k > 1 and p > 2. By the

imbedding given in Theorem 2.2.1 we conclude that there is a convergent

subsequence whose limit is a classical solution of (4.2.4) in the case k > 2

and p > 3, or k > 3 and p > 3.

We have relations between the spatial regularity of stream function,

velocity, and vorticity from section 5.2. Combining these with the particular

47

(5.2.53)

(5.2.54)

(5.2.55)
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nature of equation (5.2.4) we extend various estimates of functions on SI to

functions on S = 12 x [0, T]. We begin with an extension of Lemma 5.1.1.

Lemma 5.3.1 For ( in Wk'P(S), k > 0 and p> 2, where Cl has a locally

Lipschitz boundary, the solution On of (3.1.2) is in Wk+24)(S), with

liOniik+2,p,5 5_ cPliCnilk,p,s

the bound being uniform on [0, 11.

Proof: Note that for 1 _< m < k 4- 2, the elliptic problem DrAO. = Dr(n

has solutionditn?1,,, = G(DT(n), and from Lemma 5.1.1 we have

lign Oniik+2,p,f1 5_ IlDin(nlik,p,f2

for all t in [0, 7]. Thus,

fdt cignirk,p,s1 + E Idt ii t
nni0

C311(niilic,p,S gn111;c,p,S

C511(nrk,p,S 7
(5.3.2)

which establishes the lemma.

A similar extension of Lemma 5.1.2 produces the following.

Lemma 5.3.2 For n > 0 fixed, (n E Wk,P(S), k > 0 and p> 2, implies

the bound on velocity

iivnlik+i,p,s 5_ egnilk,p,s

Eidt lignOnirk+2,,P,11
0
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the bound being uniform on [0, T].

Proof: Simply note that livnlIk+i,p,s = 11V-1-0,11k+1,p,s 11/Pnilk+2,p,s. Now

apply Lemma 5.3.1.

Note that for (n E W1'4(S) or W2'3(S), Lemma 5.3.2 implies vn E

W2'4(S) or W3,3(S). By the imbedding theorem, Theorem 2.2.1, vn is equiv-

alent to a C1(3)-function. The existence of the characteristics as solutions

of (5.1.1) is then ensured by Lemma 5.1.3.

With the estimates given in Lemma 5.3.1 and Lemma 5.3.2 we are in a

position to establish the following theorem, from which the existence result

will follow.

Theorem 5.3.3 Suppose the sequence (n satisfies the hypothesis of Theo-

rem 5.2.3 with the restriction that k > 2. Then (n E Wk'P(S) (k > 2 and

p> 2) and the sequence is bounded independently of n in Wk,P(S).

Proof: The proof is by induction on k. That is, assume that the sequence

{(n} is bounded in wk,P(n) for k > 2 and p> 2. We first show that {62}

is bounded in Wl,P(S). Then assuming {(.72} is bounded in Win-LP(S) for

all m where m - 1 < k we show {(n} is bounded in Wrn'P(S). The details

follow.

In accordance with Theorem 5.2.3, suppose the sequence (n

Wk'P(S2)is bounded independently of n and t with E L1[0,7]-

Then

II lip
,p = fdt IcnIOp < f (5.3.3)

which is finite and independent of n by Theorem 5.2.3. That is, we have

established that {(n} is bounded in W°,P(S). In addition, we have

Iv lIP = fdt + IlDt6z11'13,p,01 (5.3.4)



Using equation (5.2.4a) we have

11DtC.111,p,f/

11v.-1- vC.1110',,0 + 11F1110),p,fi + IIQ bn*a.11'0),,0 (5.3.5)

Using the fact that W1'P(12) is a Banach Algebra for p> 2 (Adams, 1975),

the first term on the right of inequality (5.3.5) may be estimated by

iivn-i V(ng,p,ft 5- vn -
(721111),P,0

< Ilv.--1111;,,p,011vCnili,p,ct (5.3.6)

Lemma 5.1.2 yields an estimate for vn_i, thus,

v(.1110),p,f2 _5_ cillCn1110),,Q11Cng,p,n . (5.3.7)

Lemma 5.2.2(3) establishes a bound on II Q b*anillo),p,f2 and we have assumed

that the forcing, F, satisfies 11.Filk,p,0 E Li [0, 7]. Using these bounds, noting

that they are independent of n and t, we have j' IlLp,ci is bounded by

the integral over [0.T] of a constant, and thus is finite. From equation (5.3.4)

it follows that the sequence {CO is bounded in W1,P(S), independently of n.

For the induction step, suppose {C} is bounded independently of n in

Wj,P(S) for each j = 1, , m - 1 < k. Then,

II Up
= + E 11D%.1110),,s

ic= M

m-1,p ,S f 11(41:n ,p f totcnic_i,"= Env
1=10

1161111)m-1,p,S f 1162 Irk,p,12 C f II (71 , p,S . (5.3.8)
0 0

In each of the terms on the right in inequality (5.3.8), the sequence {(,21 is

bounded independently of n by the induction hypothesis and Theorem 5.2.3.

This concludes the proof.
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As a corollary to Theorem 5.3.3, we establish the existence of an EKSM

solution. That is, there exists a subsequence of the sequence generated by

(4.2.2-3) which converges to a vorticity estimate, C*, which satisfies equation

(3.2.6) in the classical sense. The proof is an immediate consequence of the

imbedding theorem, Theorem 2.2.1.

Corollary 5.3.4 Given a sequence {(i,} defined by equations (5.2.4-5), Q E

Ck(-57)xCk(3) and A E ck(n) x Ck(n), and satisfying Theorem 5.3.3, there

exists a subsequence, {(,,,} , converging in Cj (3) to a limit, c* E Ci (S),

where j = k m, provided rnp > n = 3.

For a the limit, (* to be a classical solution to equation (5.2.4), that

is, (* E Cl(S), we need either (n E w234(s\,) E C2(3) x C2(3) and A E

c2(ri)x c2(2), or CT, E W3'3 (S), Q E C3(3) X C3(3) and A E C3(52) x C3(Q).
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6. A Comparison of Iterative Schemes

The Generalized Inverse Method (GIM) resulting from the solution of

equations (4.1.3-4) (assuming a solution exists) is the result of a formal

iterated linearization used as a means for constructing solutions to a non-

linear coupled system (3.2.5-6). Similarly, the Extended Kalman Smoother

Method (EKSM) resulting from the solution of (4.2.2-3) was derived using

a formal iterated linearization of the nonlinear dynamics (3.1.4). In the fol-

lowing sections we derive two more inverse methods by replacing the formal

iterated linearizations leading to GIM and EKSM with formal applications

of Newton's method. Newton's method applied to the nonlinear EL equa-

tions (3.2.5-6) will be called the Generalized Inverse Method #2 (GIM2).

The method derived from application of Newton's method to the model dy-

namics (3.1.4) will be called the Extended Kalman Smoother Method # 2

(EKSM2).

In comparing these methods we assume that solutions exits and the

methods converge. Allowing the iteration index to tend to infinity reveals

that GIM, GIM2, and EKSM2 all converge to the nonlinear EL equations

(3.2.5-6). EKSM does not converge to the same EL system, suggesting that

the iterative linearization leading to the EKSM is in some way too severe.

Justification for preferring this "reduced" method (EKSM) to the equivalent

methods (GIM, GIM2 and EKSM2) is given in terms of physical arguments

and modeling considerations.

The linearizations are easiest to derive by taking a geometric point of

view. That is, the differential operators involved in either the model (3.1.4)

or the Euler-Lagrange equations (3.2.5-6) must be viewed as smooth maps

from an appropriate space into al or 1112. This requires introducing certain
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definitions to develop a sufficiently abstract vantage point. Since achieving

an iterative solution method to circumvent the nonlinearities of these systems

is a modest goal, certain technical aspects which may unnecessarily compli-

cate the issues are intentionally omitted. In keeping with this philosophy,

the basic definitions are given with the intent of making their relevance to

the applications apparent and are therefore not presented in full generality.

The general definitions and technical considerations are considered in Olver

(1986).

6.1 A second Extended Kalman Smoother Method

Recall that the model includes the dynamical equation (3.1.4), which

we repeat here as (6.1.1):

+ v(C) = q(x,t)

G((x,t) = 0, for x E 01-2 (6.1.1)

((x, 0) = (°(x) a(x) .

Note that we have assumed that the first-guess forcing, F(x,t) in equation

(3.1.4), is zero. This is merely to reduce some of the notational clutter and

does not affect the conclusions.

The basic space of three independent variables (x1, x2,t) E S2 x (0, T) =

S is a subset of X := IR3. The space of two dependent variables ((,q) is in

U, a subset of IR2. The basic space of independent and dependent variables

is X xU which is a subset of IR5. In order to achieve the desired geometric

vantage point it is necessary to extend the basic space X x U to a space

which represents the various partial derivatives occurring in equation (6.1.1).

The set U1 C IR6 represents the space containing coordinates corresponding

to the first derivatives of the dependent variables (C C C :a a a 1,,x1, ,x2, zt,

A space may now be defined by UM = U x U1 having eight coordinates
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representing the dependent variables and their first derivatives. An element

of U(1) will be denoted by u(1) and has components representing variables

given by (C a: Cl C ( a, a q2).

Given a smooth function f = f(x,t) such that f : X U c lR2 there is

an induced map f(1) = pr(l)f(x, t) such that f(1) : X 1--+ U(1) called the first

prolongation of f. Thus, for each (x, t), pr(1) f (x , t) is a vector whose entries

represent the values of f and all its first derivatives at the point (x, t).

The space X x U(1), whose coordinates represent the independent vari-

ables, the dependent variables and the first derivatives of the dependent

variables is called the first order jet space of the underlying space X x U.

We are interested in differential equations defined over some open subset

MCXxU, for which we denote the first order jet space by M(')=MxU1.

The partial differential equation (6.1.1) can be written as

u(1)(i)) = 0 (6.1.2)

which indicates the dependence of the system on = (x1, x2, t) E x (0,T)

and u(1) = (C, q; qxl, qx The operator A can be viewed as a

smooth map from the jet space M(1) = X x U(1) to IR1,

A : M(1) IR1 , (6.1.3)

and is called a differential function.

The differential equation (6.1.2) specifies where the map has value zero

on M(1), determining what is called a subvariety of the space MO), defined

by

ab, = {(Y,u(1)) : A(i,u(1)) = c mo) . (6.1.4)

A smooth function f(i) = f(x,t) is a solution of (6.1.2) provided that

pr(1)f()) = 0 whenever = (x, t) is in the domain of f. This is equiva-
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lent to saying that the graph of the (first) prolongation off, {(±*,pr(1)f (I))1,

must lie entirely in the subvariety That is,

,pr(1) f (i))} C -c:Sp = {A(i,((1)) = 0) . (6.1.5)

We now have in place a reformulation of finding a solution to the partial

differential equation (6.1.1) in terms of finding a zero of the map A given by

(6.1.3). Formally, we may apply Newton's Method to the differential function

A in an attempt to define a sequence which will converge to a zero of the

map. This requires defining the derivative of the map A in an applicable

fashion.

Let A denote the space of smooth functions Ari, u(1)(Y)) mapping

MO) C X X U(1) into RI. That is, A is a space of differential functions.

Note that A is an algebra, meaning that the set is closed under addition and

in particular, multiplication.

Let A(E, ((1)(5)) E A be a differential function. The Frechet derivative

of A is the differential operator DA : A A, defined so that

D(G)=
dc A(Y, ("V) G(4 ((1) (Y))) (6.1.6)

for any differential function G E A.

For example, to compute the Frechet derivative of the specific A given

by (6.1.2), replace ((, q) and its derivatives by (( EG1 , q EG2) and its

derivatives. Compute the first derivative with respect to e of the resulting

expression and evaluate the derivative at E = 0. Hence, replacing u = ((, q)

with u eG = (( eG1 , q e G2) in the definition of A (equations (6.1.1-2)

we have

ACi,u(1)-EG(i,u(1)) = ((+eGl)t+v(CH-eG1)V((+eG1)qcG2 , (6.1.7)
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where G = (G1, G2) is any differential function in A. Now computing the

derivative with respect to e,

DA(G) = (( + eG1)t + v(( + eG1) '7(( + eG1) q G2
de

= G1 + v (G1) VC + v(C) G1 EG2 . (6.1.8)

We are now in a position to construct Newton's method for finding a

zero of the map A : M(1) --+ Il11. The method consists of using a linear ap-

proximation to A at some "prior" estimate, unW 1, of the zero and then using

the element of 111(1) at which the linear map vanishes as the "posterior" esti-

mate, u(n1)1. The process is repeated until convergence (n -4 oo) if possible.

The linearization of the operator A is its Frechet derivative evaluated at the

prior estimate, u(n1)1. This leads to the algorithm

A(g,u(ni)i) + DIL(u(n1) - u.(n1)i) = 0 (6.1.8)

where D(G) = G1 ± v(G1) 7761.-1 + v((n-i) - VG 1 G2 -si the Frechet

derivative of A evaluated at (('n-1, qn-1) Writing the operators explicitly

and collecting like terms we obtain the following equation.

((n )t + v( 6., _ 1 ) . V(, + v( c. ) V(n-i - v((n-i) - qn = 0. (6.1.9)

An initial condition must be given for Cr, and we introduce the initial error,

an, so that

((x, 0) = (°(x) d- a. (6.1.10)

In analogy with equation (4.2.1) we define the nth cost functional whose

minimum will yield the nth best estimate of the nth vorticity in terms of a

weighted least squares fit of the (linearized) dynamics (6.1.9) to the data of



(3.1.8). The sequence of cost functionals is defined by
T T

Jn n) = fdifdx qn(x ,t)W (x ,t , x' ,t1)q(x' , )--1-

0 S2 0 11

+ fix fdx'a(x)V (x , x')a(x1)

SI S2

e* we

where the dependence of qn(x ,t) on C72(x ,t) is, from (6.1.9),

qn(x,t) = (Cn)t v(Cni) C v((n) Cn 1 v(Crii) V_1. (6.1.12)

The corresponding EulerLagrange system of partial differential equa-

tions is derived using virtually the same calculations as given in Appendix A

for the derivation of equations (3.6.5-6), with appropriate modifications for

the equations being used. The result is the system

((n)t+v((n-1) Ve'n v(n) V62-1

v((ni) VCn-1 Q [In (6.1.13a)

((x, O) = C°(x) + A itn(x, 0) (6.1.13b)

(Ptn)t v((ni) G[Viiin V(ni]

[L(,7-) (8(x t 7))]* w[d ,C(Cn)] (6.1.14a)

tin(x, T) = 0 . (6.1.14b)

Note that solving the system (6.1.13-14) yields an estimate which min-

imizes jn, equation (6.1.11), since J' is quadratic in (n. This is easily

verified by computing the second variation of jn , which results in

_1 (52 jn (6.1.15)
2

T T

fdtfix fcleidx1 L nWx , t)W (x t, x' ,e).L ig(x' ,

0 S2 0 1.2

flx fdx' (x , O)V , , 0) + Lk ()w kl (e)
k,
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(6.1.11)
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The method of producing the sequence defined by (6.1.13-14) will be

referred to as the Extended Kalman Smoother Method version 2 (EKSM2)

to distinguish it from the EKSM defined using (4.2.2-3).

Equations (6.1.13-14) which define EKSM2 are similar to equation

(4.1.3-4) which define GIM. The differences being the presence in the adjoint

equation of GIM (eq. (4.1.4)) of the term G[Viiin_1 V(n_i] compared to

the term G[V-I-pn V(n_i] in the adjoint equation of EKSM2 (eq. (6.1.14)),

and the extra terms in the forward equation of EKSM2 (6.1.13) compared to

the forward equation of GIM (4.1.3). The limit of GIM and EKSM2 are both

the nonlinear Euler-Lagrange system (3.2.5-6). This is significant because

it shows that the iterative linearization leading to EKSM which excludes the

terms v((n) V(n-1 - v((.-1) V(71-1 from (6.1.9) is resulting in a different

type of data smoothing estimate than GIM and EKSM2.

6.2 A second Generalized Inverse Method

Another approach to consider is a linearization using the formal ap-

plication of Newton's method to the map corresponding to the nonlinear

EL equations (3.2.5-6). The basic space of independent and dependent

variables is again the set AlCXxUc IR5 representing the coordi-

nates (x1, x2, t; C, p). The first order jet space, M(1) , represents coordinates

(xi , X21t; (, (xi,(x2, Px2, /-ti,)

The system of partial differential equations (equations (3.2.5-6)) can

now be written as

A(s,U(1)(Y)) =0 (6.2.1)

involving i = (xi, x2, t) and u(1) = (C C C Cf: It, xi,, x21 , In equa-



so that

u(1) EG(1)) (( EG t+

v(( eGi) V(C EG Q GI EG 2)

A2(i, u(1) eG(1)) (ia EG2)t-

v(C EG1) V(ii + EG2)

G[V-L(p, + EG2) V((. + EGO]

r(8)* w[d G(C + EQ1)] .
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tion (6.2.1) we consider A to be an ordered pair of differential functions, that

is, in A2, of the form A(i, u(1)) = u(1)), A2(i, u(1))) where

Ai(i,u(1)) = + v() - (2 p, (6.2.2)

,A2(1, u(1)) = - v(()

G[Viii (1 - G[8]* w[d - L(C)] . (6.2.3)

Applying Newton's method to equation (6.2.1) yields the following iter-

ated system.

, u(nl)i)D1-1(u(T1 - u( 1)_1)= 0 . (6.2.4)

The Frechet derivative, DA, of the operator A is computed as follows. Re-

place u(1) = (((1), (1)) with

u(1) eG(1) = (0) + EG(11), ii(1) EG(21)

(6.2.5a)

(6.2.51))

Differentiating the expressions (6.2.5a and b) with respect to E and evaluating

at E = 0 we have,
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Tic

Ai(5,u(1)(i) + eG(-i ,u(1)(Y))) =
c=o

(G1)t + v(Gi) V( + v(() Gi Q (G2)

A2(g,u(1)(i) + EG(i, u(1) (I))) =
c=o

(G2 )t v(Gi) v(P) v(() -VQ2

G[V1L-G2 V( + Vitt 191]--

L(6)* w[d £(Q1)]

We are now in a position to explicitly write (6.2.4) in terms of iterates

of ( and ii. Evaluating (6.2.6) at ((n-i , i-172-1) to find DV, applying it to

((1), /41)), the algorithm (6.2.4) becomes

((.)t + v((1) + v((.)

v((n-1) C.--i Q pn = 0 (6.2.7a)

(-1.)t v((.-1) - tin v((n) ii.-1 + v((.-1) Ani-

G[V-Litn VC.--i + VI/in-1 - VC. Vitini VC.ii-
.C[5]* w[d L((,-,)] = 0 (6.2.7b)

The initial condition for the vorticity iterate, (n(x, 0), and the final condition

for the adjoint variable, tin( x ,T) are given by the EL system (3.2.6b,7b).

((x , 0) = C° + A o itn(x, 0) (6.2.8)

pii(x ,T) = 0 (6.2.9)
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(6.2.6a)

(6.2.6b)

For convenience of reference we collect each of the methods (GIM, GIM2,

EKSM, and EKSM2) on the following pages.



GIM: Generalized Inverse Method (eq.(4.1.3-4),

(CT/)t + V((n-1) V(T/ = F + Q itn (6.2.10a)

(n(x, 0) = (°(x)+ A o itii(x, 0) (6.2.10b)

(itn)L v(Cn-1) G[V(A/In-1) V(71-1] = (6.2.11a)

[r(0-) (8(x - 06(t - 7))1* w[d - r((n)]

An(x,T) = 0. (6.2.11b)

GIM2: Generalized Inverse Method version 2 (eq.(6.2.6-9),

(Cn)t + v((ni) (n + v((n) '

v((_1) (n-1 = Q In (6.2.12a)

(n(x, 0) = (0 + A 0 p(x, 0) (6.2.121))

(POL v((_1) V((n) V/Lni + V((ni) V/Lnl-

G[Vilin V(n-1 + VI/LT/-1 ' VC71 VI7LT1-1

G[6]* w[d - L((n)] = 0 (6.2.13a)

I in(x ,T) = 0 (6.2.13b)

EKSM: Extended Kalman Smoother Method (eq.(4.2.2-3),

(CrOt + v((n-i) V (z, = F + Q lin (6.2.14a)

(n(x, 0) = e(x)+ A 0 pn(x, 0) (6.2.141))

-(itn)t - v((n-i) = (6.2.15a)

[r(,,) (8(x - e)8(t - TM* w[d - L((n)]

itn(X, T) = 0 . (6.2.15b)
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EKSM2: Extended Kalman Smoother Method version 2 (eq.(6.1.13-14),

(C0i+v(C.--1) VC. + v((n) vC,7-1-

69

The derivations of each of these methods are summarized as follows. In

an effort to smooth the given data d, defined in equation (3.1.8), using the

nonlinear model (3.1.4) there are two basic approaches considered here. One

approach is to define a cost functional using a weighted mean squared model

error, initial error and data error. Deriving the Euler-Lagrange equations

whose solution corresponds to a necessary condition for a minimum leads to a

nonlinear boundary-value (space and time) problem (3.2.5-6). One method

of iterating this system leads to the Generalized Inverse Method (GIM). As

an alternative iterative method, a formal application of Newton's method

may be applied to the nonlinear system resulting in the Generalized Inverse

Method version 2 (GIM2).

Another approach used to smooth the data is to first linearize the model,

and then define a sequence of minimization problems of which each iterate

obtains the best least-squares fit of a linearized model to the data. One

method of iterating was given in (4.2.2-3) is the Extended Kalman Smoother

Method (EKSM). An alternative iterative method is to formally apply New-

ton's method to obtain an iterated model (eq.(6.1.9-10)) resulting in the

v(_1) = Q 12. (6.1.16a)

(i,(x,o) = e(x)+ A (x, 0) (6.1.16b)

- v((7,--1) qv-Lyn v C.-1]

=[L(,,-)(8(x - e,t - T))rw[d - r(C..)] (6.1.16a)

pt,,,(x,T) = 0. (6.1.16b)
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Extended Kalman Smoother version 2 (EKSM2).

The primary objective of data assimilation is to obtain an estimate of

the state of the vorticity at each spacetime point (x, t) in the fixed domain

------ S2 X [0, 7]. Any of the above methods, in principle, will provide such an

estimate. Furthermore, if the sequences generated by each of the methods

converge, then GIM, GIM2, and EKSM2 provide the same estimate since

in the limit each of these methods converges to the EL system (3.2.5-6).

The estimate provided by EKSM will, in principle, differ from the estimate

provided by the other methods. Yet, by the argument which follows, it is

EKSM which is the most attractive scheme from a modeling point of view.

Any presence of terms of the form v((ii) 776,_1 in the forward inte-

gration allows for the formation of a barotropic instability with exponential

growth in amplitude with time (Pedlosky, 1987). This mechanism extracts

energy from the mean flow of the (n 1)st iterate and feeds it into the nth

iterate. Similarly, the presence of terms such as V. -1-pn V(7,--1 provide a

mechanism for the growth of "energy" in the adjoint variable, /in, leading

to unstable forcing in the forward equation governing Cn. These terms are

present in GIM2 and EKSM2. Even GIM contains the term

which provides a potential feedback mechanism for the forcing on successive

iterates. It is the presence of these terms and the mechanisms for instability

which are associated to them that indicates that showing that the sequence

of solutions generated by GIM2, EKSM2, and GIM are bounded is not likely

to be accomplished.
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7. Summary and Discussion

Chapter 1 is a general introduction to the scope of this thesis. Chapter 2

establishes the notation and collects pertinent definitions and theorems which

are used throughout.

Chapter 3 is a description of one approach for constructing a general-

ized inverse of the two-dimensional, incompressible Euler equations when

observed data are available. The resulting estimate of vorticity smooths the

(sparse) data over a fixed space-time domain. The method is a control the-

ory approach in which control functions are introduced into the forcing and

initial condition of the vorticity equation. The problem is to then minimize

a cost functional consisting of a sum of weighted L2-norms of the controls

plus a weighted squared misfit to the data. A vorticity estimate must sat-

isfy the corresponding Euler-Lagrange equations if it is to minimize the cost

functional. Solving the Euler-Lagrange system is the way in which the esti-

mates are produced in the context of this paper. The nonlinear nature of the

vorticity dynamics presents some difficulties. One is that the cost functional

is not convex in its dependence on the vorticity and so an extremum of the

cost is not necessarily a local minimum, or even a local minimum. Another

difficulty is that the Euler-Lagrange equations are nonlinear, in addition to

being a coupled system and having initial, final, and spatial boundary con-

ditions. An iteration method which provides a means to solve this system

(GIM) is described in Chapter 4.

The fact that the nonlinear Euler-Lagrange equations must be solved

using an iterative scheme motivated a reformulation of the control prob-

lem: iterate the vorticity equation (to linearize) and then form a sequence
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of quadratic cost functionals. The sequence of cost functionals has a corre-

sponding sequence of linear Euler-Lagrange systems (EKSM; section 4.2).

Section 4.3 contains a means for constructing solutions to the systems of

partial differential equations defined by GIM and EKSM. The construction

is accomplished by writing the vorticity estimates as a sum of a first-guess

solution plus a linear combination of representer functions. The representer

functions are dependent on the structure of the measurement functionals and

the dynamics. The representers completely characterize the influence of the

observing system (i.e. measurement functionals) in the following sense. The

first-guess, (F, and the representers, r, span a finite dimensional space,

span{ (Fr, rn } Any field orthogonal to span{CFn rn} (in the sense of the

inner product defined in equation (Cl)) is unobservable, meaning that its

measured values are zero (Bennett and Thorburn, 1992, Bennett, 1990).

The coefficients in the linear combination are determined by measurements

of the representer functions, and by the discrepancy between the observed

data and the measured first-guess.

In Theorem 5.3.3 of Chapter 5, the sequence of vorticity estimates ob-

tained from EKSM, {Cm}, was shown to be bounded in the Sobolev space

Wk,P(S). This holds for k > 2, p > 2, and under mild restrictions on the

first iterate, (0(x, t), the initial condition, (°(x), and the covariance kernels

Q(x ,t, x' ,t1) and A(x , x' ). The strategy used to obtain the bound was to

first show that the sequence is bounded in Wk'PA with II(n k,p,S2 E Li [On

Then the bound in Wk,P(S) was achieved using an induction argument and

relying on the specific properties of the partial differential equation governing

the vorticity estimate (4.2.2-3). The main result of this paper is the proof

of the existence of an estimate of vorticity resulting from EKSM (Corollary

5.3.4). The proof of existence of a solution establishes EKSM as a viable
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method for applications. The shortcomings of applying a method for which

existence of a solution is uncertain is obvious.

In EKSM, the first-guess vorticity, is not influenced by the control

parameters since the first-guess adjoint, ptF is identically zero (see equa-

tions (4.3.3-4) and (5.2.1-3)). In contrast, the first-guess vorticity of GIM

does depend on the control parameters since ilF 0. This difference in the

first-guess solutions obtained from GIM and EKSM is one of the significant

features which allowed the proof of existence of an EKSM solution and pre-

vented us from obtaining a bound on the sequence generated by GIM. In

Chapter 6 we have argued that certain instability mechanisms which are for-

mally present in GIM, may prevent the sequence of vorticity estimates from

being bounded as iteration progresses. Bennett and Thorburn (1992) have

shown GIM diverges for a numerically simulated quasi-geostrophic model.

The relationship between EKSM and GIM was explored in Chapter 6

in terms of formal applications of Newton's method. Again there are two

approaches. One is to apply Newton's method to the (nonlinear) Euler-

Lagrange equations. This resulted in the method referred to as GIM2. The

other approach is to first use Newton's method to iterate the vorticity equa-

tion resulting in a sequence of cost functionals. Solution of the corresponding

sequence of (linear) Euler-Lagrange equations results in the method referred

to as EKSM2. These two approaches (GIM2 and EKSM2) are equivalent in

the sense that in the limit, as the iteration index tends to infinity, both of

the linear iterated Euler-Lagrange systems converge to the nonlinear Euler-

Lagrange system. (This is also true of GIM). The linear iterated Euler-

Lagrange system in EKSM does not converge to the nonlinear system since

the iterative method leaves out some terms which are present in the formal

application of Newton's method. However, the forward equation of EKSM
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does converge to the forward equation of the nonlinear Euler-Lagrange sys-

tem. That is, EKSM provides a vorticity estimate consistent with the non-

linear dynamical problem, but the nature of the applied controls is somewhat

different than those provided by GIM, GIM2, or EKSM2. Furthermore, the

presence of instability mechanisms in each of GIM, GIM2, and EKSM2 leaves

EKSM as being the most robust, supported by our proof of existence of a

solution using EKSM.

The theory for linear finite and infinite dimensional control problems is

well developed. The theory for nonlinear finite dimensional control problems

has been considered from a stochastic processes point of view, utilizing sta-

tistical linearizations (Gelb, 1974). We have provided an existence proof for

a nonlinear infinite dimensional (deterministic) control problem. The tech-

niques were motivated by existence proofs for models of two-dimensional,

incompressible fluids (Judovie, 1966a, Bennett and Kloeden, 1980). The

opportunity to extend the existence proof of EKSM to more complicated

fluid models depends on the availability of existence proofs for the models

themselves. The proof relies on the specific nature of the system of partial

differential equations to establish the required differential inequalities. It

would not be difficult to extend the results to a quasi-geostrophic channel

model, which is useful for local-area ocean and atmosphere modeling.
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Appendix A

Al. Derivation of the EulerLagrange system

The dynamics are considered to be the vorticity equation for two-

dimensional, incompressible flow

v(().\7( = F(x,t) + q(x,t)

G((x,t) = 0, for x E as2 (A1.1.1)

((x, 0) = (0(x) + a(x) ,

where G is the Greens function operator associated with the Dirichlet

problem

(A1.1.2)
i)= 0 on as2

at each time t. That is,

= G( . (A1.1.3)

The velocity field, v((), in (A1.1.1) is the divergence free vector field given

by Vi(G(()) = ((G(), (G()).

The measurement functionals are linear functionals acting on ele-

ments of Wk,P(S) (the space of vorticity distributions) and have the form

rk (C) = idtidxkk (x ,t , xk,tk)G((x,t) . (A1.2.1)

0 12

We consider the measurement operator to be a smoothing operator, by

considering the kernel kk to be a smooth function localized about the

point (xk,tk).
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The cost functional to be minimized over all (" E {e E WkP(Q)

. 0 on OS2} is given by

T T

J(() = latidx1 litfaxg(x, ow(x, t, x', ti)q(x1, t')+
0 ft 0 0

Idx`
Idxa(x)V (x , x1)a(x1)-1- (A1.3.1)

0 St

E[dk rk (C)iw kl[di Li (CA
k,I

The functional variations must be of the same class as C, and there-

fore must satisfy G e(x ,t) . 0 for x E aci. We have that

$.7(( + Ee) = (A1.3.2)
T T

idefiXidifiX{ [Ct + v(C + 60 .C7(( + 60) 111W (Xl , ti , X , ox
on 0 0

[Ct + v(C + 60 . V (C + 60) 111+

fix'Idx[((x 0)--1-ee(x, 0) 0(x)] V (x , x')[((x' , 0) + ee(x' , 0) 0 (X1 )1 +

n n
E[dk £k( + ee)]p

ki[dI Li (( +
CC)].

k,1

Taking the derivative of j(c + fo with respect to e, and using the as-

sumption that W and V are symmetric with respect to the primed and

unprimed arguments,

1 d
- -dij = (A1.3.3)

T T

fdtfdXfdifdX1[6 + V(0 V(( + ce) + (v(C)+ ev(e)) - V41 x
°non

W (X , t , x' , ti )[(t + 66 + ' 4( + 60 V(( ± 60 F]}+

fix
fdx'{e(x , 0)V (x , x' )[((x' , 0) + e"(xi, 0) C° (x')]} +



E {rk()wkdricc + di]}.
kl

In the limit as 6 0, we have the first variation of the cost functional,

-1(5J
2

T T

iltidxfdillX1{[et
v() VC + v(C) eiT/V (x , t , , ) x

0 12 0 11

v (C)

fdx
fdx1 {(x , 0)V (x , )[( (xi , 0) (° (x' )]}

11

E {riccowki[Li(o .

k 1

The adjoint variable, p(x , t) is defined to be the weighted forcing error,

that is,

) = fdtidXfW (X , t , ,ts)q(x` ,t` )

0 5-2

= fie flX1 W(X t ti)Kt v(() VC) F]

0 St

The first variation of the cost functional can then be written

2

iltidX[6
V(e) V( v(() .71(x,

0 St

fixfdx`frx, 0)V (x, x1)[((x' , 0)- (0(x1)1}-1-

1-2

E tek(e)wki[r1()_ dl]}.
kl
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(A1.3.4)

(A1.3.5)

(A1.3.6)



Integration by parts yields

5
3. =

2

fdtidx{[ itt v(C) G(V-Lkt

ft

EtCk (8(x , t t'))w ki[CI (C) di}}]e}
kl

fdX{
fdX1V (X , )[(*(X1 , 0) it(x' , }6(x, 0)+-

ft 52

fdx[p(x,T)6(x,T)] ,

where the measurement term has been obtained by observing the following

relation.

, t)) (A1.3.7)

= fdtidXkk (X , t, Xk, tk)G(e(X ,t))
ft

= IdtidX{kk (x ,t,xk,t k)G ideldx' {6(x' , t8(x x' ,t t')}
52 0 SI

T T

= fdtPX fdtjdX16(X1 ,t1 )1Ck (X , t, Xk, t k)G[6(X ,t )]

f2 0 ct

T T

= fdtidX fdXte(X ,t)kk (x' xk, t k)G[8(x ,t t')]
0 0 ft

= fdtidXe(X , t),Ck [(5(x ,t t')}.
0 f2

We have used the following property of the integral operator G,

74

(A1.3.6)

fdtidxG(e)f(x ,t) = Idtidx fdx'g(x, x1)6(x' ,t)f(x ,t) (A1.3.8)

0 St 0 ft 52



= fdtidx fdx' g(x` , x)e(x ,t)fix' ,t)
0

= IdtidxeG(f) .

0 11

For variations e, in the class {e E W k 'P (S) : Ge = 0 on 5s2} (with

k > 2 and p > 4 or k > 3 and p > 2), a necessary condition for 6,7 = 0 is

that y satisfy the following equation.

Pt v(() G[VII/] (A1.3.9)

E {Lie (6(X ,t ti ))w £1(()]} = 0.
kl

Assuming that we have such a the first variation of the cost functional

is reduced to

fix{
idx11 (x x')[((x' , 0) C° (x' ) pt(x 0)] (x 0)4- (A1.3.10)

St SI

Idx[p(x ,T)e(x ,T)] ,

from which the following initial and final conditions are deduced to be

necessary.

,u(x , 0) = flx'17 (x )[((x' 0) (.°(x')] (A1.3.11)

/2(x ,T) = 0 (A1.3.12)

The initial condition for ,u in equation (A1.3.11) may be changed

into an initial condition for ç by multiplying (A1.3.11) by A(x, x') and

using the functional inverse property (3.2.3). This yields the condition on

((x, 0),

75

((x 0) = (°(x) + A 0 (x, 0) , (A1.3.13)
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where A o it is as given by (3.2.9).

We now have a system of equations given by the dynamics (A1.1.1),

with the initial condition (A1.3.13), and the adjoint equation to the dy-

namics (A1.3.9), with the final condition (A1.3.12). This is the system

given in (3.2.6-7).
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Appendix B

Bl. Uniqueness of solutions for each iterate

We will show that a solution to the system given by equations (4.1.9-

10) or by equations (4.2.2-3) must be unique. For convenience of notation

we will assume that the iteration index, n, is fixed and disregard it in the

notation. Instead we will denote v((,i_i) by U, by J and Ln_1 by

L. That is,

L(r)) = it + u v(li) (B1)

= Tit + v(n_i) v(77) .

With this notation, (4.1.9-10) is written as

LC=F±Qit (B2.a)

C(x, 0) = (°(x) + A o it(x, 0) (B2. b)

= J [L..)( 6(x )(5'(t T))]* w[d G(()] (B3.a)

p(x,T) = 0 . (B3. b)

Suppose that ((', pi) and ((2, /22) are each solutions to (B2-B3).

Then their difference ((., tt) = ((1 (2 ,[11 it2) must satisfy

L( Q ,u (B4.a)

((0) = A o 0) (B4. b)

Lit = [L(,,r)( 8(x e)6(t 7))]* w[r(()] (B5.a)

it(x,T) = 0 (B5.b)

Notice that if we had started instead with equations (4.2.2-3) this equation

still holds since the term J has dropped out. Therefore what follows

applies to either GIM or EKSM.
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Multiplying (B5.a) by ç and integrating by parts over Si x [0, T] we

obtain

fdtfdx(g) p Idx((x ,O)p(x, 0) + .C(()* wC(C) = 0 (B6)
o

Substituting into B6, using B4.a we have

fdtidx(C 2 0)p + fdx(A o (x, 0))(x, 0) + £(C)* w) = 0. (B7)
o0

That is,

T T

idtidx
fdt'fix'p(x , t)Q(x , t, ,t1)p(x' ,t') (B8)

0 0 0 0

fdx
fdx' p(x ,O)A(x , )p(x, 0)

0

.C(()* wr(() = 0 .

Equation (B8) shows that a quadratic functional is equal to zero,

which is possible only if each of the positive terms in the sum is zero.

Consequently,

p(x,t) a- 0 and L(C) 0 . (B9)

Then (B4) reduces to

= 0 (B10)

((x, 0) = 0

which implies

((x, t) a 0 . (B11)

We conclude that (2 and tti proving uniqueness of solutions for

the linear system (B2-3). As a consequence, we have shown uniqueness

for either GIM (4.1.9-10) or EKSM (4.2.2-3).
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Appendix C

Some properties of representers

Let a(x,t) and b(x,t) be functions in Wk,P(S) with div (Ga) =

div (Gb) = 0 for all t E [0, 7]. Define the mapping (, ),-, from
wk,p(s) x wk,p(s) into al by

(a, b) =
T T

fdtidx'
fltidx Lna(x ,t)W (x,t, x't')Lb(x'

0 f2 Of2

Idx1clx a(x 0)V (x, )b(x, 0) .

f2

Since W and V are symmetric, positive definite functions (see equa-

tion (3.2.2), the relation (, is an inner product on Wk,P(S) (not nec-

essarily equivalent to the usual inner product). Using the representer

equations (4.3.1-2) and integration by parts we have for any ( E Wk'P(S)

(Bennett and Thorburn, 1992, Bennett, 1990),

( 'On = L3(C) (C2)

Define the cost functional, Cn((), by,

Cn(C) = (C - (Fr, , (FT,). - (rn () w[d - (rn, () ni (C3)

where (F satisfies equation (4.3.3).

An easy check using equation (4.3.3) to substitute for (F, and (C2)

to substitute for (rii, On shows that the Euler-Lagrange system corre-

sponding to the cost functional Cn is the system (4.2.2-3). Hence, the

vorticity estimates which are extremals of Cr are also extremals of J"

(and vice versa). This allows a geometric interpretation of EKSM.

(Cl)
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The representer functions, r, together with the first-guess, (Fn, span

a finite dimensional subspace of Wk,P(S) of at most dimension M. Thus,

we can write ( E Wk'P(S) as the first-guess plus a linear combination of

the representers, plus a function gn(x, t) which is orthogonal to all of the

r4's in the sense that (r1. , gn) = 0.

= (Fn b*nrn gn (C4)

From equation (C2) we see that gn being orthogonal to rn means that gn

is unobservableall of its measured values are zero.

Substituting the expansion (C4) into the cost functional (C3) it is

possible to obtain the following form (Bennett, 1990,Bennett and Thor-

burn, 1992).

Cn(C) = [bn - * Sn[bn - Ln] (gn, gn)n h13,T1 hn , (C5)

where bn = I:71 is the ESKM estimate for bn (4.3.10), Sn = Rn d-RnwRn,

Rn being the representer matrix given by (4.3.9), .19n = Rn w-1 from

equation (4.3.8), and hn = d - .C((Fn) as in equation (4.3.7). The point

of obtaining the cost functional (C3) in the form of equation (C5) is

that it provides a geometric interpretation of the minimization problem.

By choosing bn = bn, and gn(x,t) = 0 we obtain the minimum cost,

min C' = h* 13-1 hn = - f(CF)][Rn w-1]-1[d - L((Fn)]. The choice

bn =-6n means that the optimal (in the sense of minimum cost) represen-

ter coefficients are given by solving the linear system in equation (4.3.6)

corresponding to the EKSM solution. Choosing gn(x,t) = 0 implies that

no unobservable field is included in the inverse.




