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study the effectiveness of maximum likelihood matching under vari-

ation of the three factors (1) '""roughness' of the set of population
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MULTINOMIAL ESTIMATION FROM
CENSORED SAMPLES

CHAPTER 1

INTRODUCTION

This thesis is one approach to the problem of how to esti-
mate the category proportions in a multinomial population from a
sample which is ""censored'' as described in Chapter 2. An interest-
ing example of this thesis problem is realized in the problem of solv-
ing a simple substitution cipher such as the secret message which is
written in English. The problem is to match off the message (sample)
proportions of letter A, B, C, ..., Y, Z with the English (popula-
tion) proportions, which is explained in detail in Chapter 3. Fisher's
well -known method of ""maximum likelihood'" has been used to attack
this problem of estimating population proportions by matching sample
proportions with population proportions. Another objective of this
thesis is to study the effectiveness of maximum likelihood matching
as compared with the method of random matching. Both maximum
likelihood and random methods of matching and also the effectiveness
of maximum likelihood are detailed in Chapter 4. Chapter 5 contains
the table of results from the complete enumeration of cases for sim-
ple problems as given at the end of the previous chapter. Also in-

cluded in Chapter 5 is the detailed discussion about the probabilities
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and effectiveness of maximum likelihood matching. Finally the con-
clusions are given. The last chapter contains proposals for further
work relating to this problem. In the Appendix some examples of the

empirical study for simple problems are given.



CHAPTER 2

THE PROBLEM

The problem specified in the thesis title in simple lan-
guage involves the estimation of the category proportions in a multi-
nomial population from a sample which is ''censored' in the sense
that only a set of proportions is observed, and there is an unknown
correspondence between sample proportions and population propor -
tions. The set of population proportions is known, so that the prob-
lem of estimating category proportions reduces to a problem of
establishing the correspondence between sample proportions and
population proportions.

For example, in sampling from a k-nomial population,

a random sample of size n is drawn and the sample frequencies

X, , Xi s e Xi are observed where
T2 k
k -population proportions Pl,,P.Z, P3, Cee Pk are known
and k-sample proportions X, , X ,X., ..., X are known
i1, 1 1
1 2 3 k
as n .. ,th . o
1 if t observation in i, category
J =1 0 Otherwise; ij:’é/j j=12, ...k
n
= 1 1 th
X == _ 1 . . Con.
3 nxi. a ZXt is the 1j sample proportion

(3
(3.
ot
1]
[
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The problem of estimating category proportions reduces

to a problem of establishing the correspondence between the set of

population proportions Pl, PZ’ P3, e, Pk and the set of sample
proportions }_( , }—( , 5{ s e e s }_( , that is, establishing which
i i i i
1 2 3 k
permutationof 1,2, , ... , k 1is the set 11, 12, NN lk

One could contrast this problem with the usual problem
of estimation of the population proportions from the known sample
proportions in which the sample is not ''censored' .

The random sample of size n is drawn fromthe kenomial

distribution and sample frequencies Xl’ XZ’ cee Xk are observed
«vhere k -population proportions Pl’ PZ’ P3, cee Pk are unknown
and k-sample proportions -}—(1, 3-(2, )_(3, cee }_(k are known
, th
as 2 1inj * category;j=1, 2, ...,k
X, = Z X, X, =
) 2 ' |0 Otherwise

el
0

1, L
n n

. .th .
i x, is the j  sample proportion.

Mg

The problem is to estimate the set of population proportions

ERIEEE

>l

P,P_, ... ,P_ from the set of sample proportions X

1 2 k
or estimate Pi; i=1,2, ..., k

The solution is that the population proportions will be

estimated by the corresponding sample proportions, or



P = X, i=1,2 ..., k

An interesting example of the problem of this thesis is
the solution of a simple substitution cipher. The sample consists of
a set of letter frequencies which must be matched with known letter
frequencies of the language. A correct matching of sample frequen-
cies to population frequencies identifies the simple substitution cipher
and renders the cipher readable.

The method of maximum likelihood is used to provide a
procedure for establishing the correspondence between sample pro-
portions and population proportions. It makes the highest sample
proportion correspondto the highest population proportion, the sec-
ond highest sample proportion correspond to the second highest popu-
lation proportion, and so forth. Such a procedure has considerable
intuitive appeal. Its merits are studied by comparison with a pro-
cedure of random matching of sample proportions to population pro-
portions, and the influence of the factors (1) variation among popu-
lation proportions, (2)number of categories, and (3) sample size
is examined. A complete enumeration of cases is made for certain
simple problems to obtain exact data on the merits of the maximum

likelihood procedure and the influence of the several factors.



CHAPTER 3

EXAMPLE OF SIMPLE SUBSTITUTION CIPHER

The earliest appearances of cipher were among the well-
educated Greeks and in the late Roman Republic [ 7] where the two
great classes of cipher seem to have been invented, respectively;

(1) Transposition Cipher, in which the letters of the original message
are thrown into some meaningless order and (2) Substitution Cipher,
in which each letter of the original message is replaced by some
other letter, symbol or figure [7,10]. Substitution cipher is divided
into two classes, simple and multiple substitution ciphers. Simple
substitution cipher has each letter of the original message repre-
sented by one and always the same letter, symbol, or figure. For
example, if the original message is ""TODAY IS A GOOD DAY",

and the letters of the original (plain text) message are represented

as in the table below,

PLAIN A B
F

E F....X Y
CIPHER E I J.. B C

C D Z

G H D

then the resulting (cipher text) message will read XSHEC MW E
KSSH HEC.

Multiple substitution cipher involves multiple use of

simple substitution cipher as, for example, the use of one simple



substitution cipher for the first ten letters of the message, a second
simple substitution cipher for the second ten letters, and so forth.

For example, the first ten letters are represented as in the table

PLAIN A B C D E F....X Y Z
CIPHER D E F G H I....A B C
The second ten letters are represented as in the table
PLAIN A B C D E F.,..X Y 2
CIPHER E F G H I J -B C D

and so forth.

Let us illustrate the decipherment of a simple substitu-
tion cipher in English below. The sample is a message of unknown
content and consists of a set of letter frequencies which must be
matched with known letter frequencies of the language. A correct
matching of sample frequencies to population frequencies identifies
the simple substitution cipher and renders the cipher readable as in

the following message.

1 2 3 4 5 6
SZPQP ERJKQ PCRKJ VZXPU PJSZP GKRSC

7 8 9 10 i1 12 13
GCSPT QIQXI, SKNQC LZPQR ZKTFM ZPRES CSPFK

14 15 16 17 18 19
JNKUP QCREG LFPRT HRSES TSEKJ IELZP Q

(The groups are numbered for convenience in referring to them.)



The first step in decipherment is to count the frequency

with which each letter appears and draw up a frequency table as fol-

lows
P=13 T =4
S=10 F=3
Q= 38 G=3
K= 8 I =2
R= 8 U=2
Z= 7 X=2
C= 6 N=2
E= 6 M=1
J= 5 H=1
L= 4 V=1

where P and S are the first and second highest frequencies
followed by Q, K, R, Z, etc.

We now turn to the table of letter frequencies [7, p. 252,
Table I]. Here we have found that letter E is the most frequent
letter in English with T next. We use the maximum likelihood
matching so that the highest sample proportion corresponds to the
highest population proportion, the second highest sample proportion
to the second highest population proportion, and so forth. Therefore,

it seems likely that Pis E and Sis T. For convenience, we are
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going to rewrite the message with the provisional values, P = e and

S =t, in replacement.

1 2 3 4 5 6
tZeQe ERJKQ eCRKJ VZXeU eJtZe GKRTC

7 8 9 10 11 12 13
GCteT QIQXL tKNQC LZeQR ZKTFM ZeREt CteFK

14 15 16 17 18 19
JNKUe QCREG LFeRT HRtEt TtEKJ IELZe Q.
Consider the next letters in order of frequency are
A, O,N,R,I and S. In the message under consideration this cor-
responds very well with the high frequencies of the letters K, Q,
R, Z, C and E; but both in the message and in the frequency table
these six letters are closely grouped. It is very difficult to tell which
was which without any more information. We take a short cut by
consulting the table of Bigrams and Trigrams [ 7, p. 260-264,
Tables VIII, XII, respectively] . These show that TH, THE are
the most frequent of two and three letter combinations in the lan-
guage. Reference to groups 1 and 5 the combination T-blank-E
occurs twice, and in both the blank is represented by the same
letter of the cipher Z, then Z should represent H as the maxi-
mum likelihood matching.
If Z is H, then Q is probably R or S; for with the
insertion of the H group 1 reads THE-blank-E, which is a strong

possibility for THERE or THESE. However in groupsl10 and 19-20
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the combination ZPQ occurs and the ZP has been solved as HE,
reference to Trigram table shows that HER is one of the most com-
mon, while HES is relatively rare. Then Q is more likely to be
R. And in group 17-18 occurs the combination SESTSE which has
been partially solved to read T-blank-T -blank-T-blank, which with
the repeated E's, constitutes a pattern word. Therefore, we look at
the table of common or high frequency pattern words [ 7, p. 263,
Table XI] and will discover that this pattern usually occurrs as
TITUTI or TETATE. Since we have found P = E in this cipher,
then the pattern must represent the first of these two combinations
as E=1 and T = U.

The group of letters that show high frequencies in the
message which now remains unsolved is R, C, K and J. Of the high-
frequency letters for which no values in the message have been
found there remain A, O, N and S. Two of these drop into place with
the acceptance of the TITUTI combination, which can hardly end in
anything but ON, yielding K= O and J = N

If this is correct, groups l1-2 now read THERE I-NOR
or THERE I NO R, which makes it apparent that R = S.

Finally this leaves only one letter in the high-frequency
group (A) and in the message (C), thatis C = A.

Once more filling in, we have



11

1 2 3 4 5
there/ is/ no/ r eason/ VhXeU en/ the/
6 7 8 9 10 11 12

Gost/ a Gateu r/IrXL toNra Lhers houFM/ he sit
13 14 15 16 17 18 19
ate/ Fo nNoUe r/alsiG LFel/su Hstit ution/ IiLhe/ r

Obviously nothing will do at the end of group 11 but the
letters L and D to complete the word '"should" which gives the
correspondences F = L and M = D.

Also replacing G of the message in group 6 with M
yields a satisfactory result, and U in groups 4 and 14 work out
nicely as V. LON-blank in group 13-14 now becomes clear as
LONG, and H= B is required in group 17. Thus the remainder
can be filledin: V=W; X=Y; L=P;I=C.

Finally the message is solved using the correspondences

PLAIN ABCDEFGHIJKLMNOPQRSTUVWXYZ
CIPHER CHIMPANZEE FGJKL QRSTUV X

Now we can write down the original message as

1 2 3 4 5
There/ is/ no/r eason/ why/ ev  en/the

6 7 8 9 10 11 12
most/ a mateu r/ cryp togra pher/s hould/ hesit

13 14 15 16 17 18 19
ate/lo ng/ove r/alsim ple/ su Dbstit ution/ ciphe r/.
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CHAPTER 4

THE METHOD OF MAXIMUM LIKELIHOOD

Principle of Maximum Likelihood

One of the most widely used techniques for obtaining a
desirable estimate and one which is closely connected with other
desirable criteria is the method of maximum likelihood. In order to
define the maximum likelihood estimates, let us first define and

interpret the likelihood function. The likelihood function of n-random

variables XpsXor oee s X is the joint density of the n-random
variables, ¢(x1, Xor wo s x ©), which is considered to be a function
of parameter vector ©. Particularly, if Xl’ XZ’ e, xn is a ran-

dom sample from the density £(x,8). Then the likelihood function is

¢(X1; X2’ T Xn;e) = f(xl’ e) f(XZ, e)! ey f(xn’ e)
n
= H f(x., ©) . (1)
. i
i=1
A A
The maximum likelihood estimate 9 = e(xl, Xy oo Xn) of 6 isthat

value © among all values in the paramater space € which maximizes

the likelihood function (if such a value exists). That is

¢(x1, Koy oo xn;é)z ¢(x1, Koy ooy xn;e) for all B¢ ©.
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If certain regularity conditions are satisfied, then the maxi-
mum likelihood estimate (é) is usually obtained by setting the
derivation with respect to the unknown parameter equal to zero and

solving for the unknown as

_ 8 PO -
0 = z= $0x,, %, .00 ,x 30) = B iT;[lf(xl,e).

Equivalently, 8 is found

n
0—81 ( ;0) = 81 f(x,;09)
= Anelxp XX 0) = ot x50
i=1
Let us illustrate the method of maximum likelihood to estimate the

parameter of a binomial distribution.

Example 1. Suppose that a random sample of size n is

drawn from the point binomial distribution.

f(x, p) = pqu-x ;i x=0,1; 0< p <1

The sample values are x . X, a sequence of 0's and 1's.
n

1’ %2’
Thus the likelihood function is

0w ] oxs TX: n-Ix;:

1 1 1 1

Lip) = J[p g = p q
i=1

or



L = log L(p) = _inlcg p tin - in) logq .
al* o (aeEx))
®» "L T ¢
p

2X, (n-Zx,)

1 1 ~ A

= q = 1-p

A A
p l-p

That is, X is the maximum likelihood estimate of p.
Next we illustrate the methed of maximum likelihood to

estimate the two parameters of a normal distibution.

Example 2. A random sample of size n from normal

distribution has the likelihood function,

n Lesow )
2 1 2o
Lp,0) = J] —— e
i=1 N2mo
1 ﬂX'Hﬁ
1 n/ 2 > —J—Z—U
= ( ) e
2mo
% 2 2
or L (o ) = log L{u,o )

- 2 n 1 2
—2"‘ lOgO —ElogZN-;ZE(Xi—p)

A2 .
Differentiating with respect to }/l and ¢ , we obtain

14



— = Z(x,-p) = 0
o G
and
e s By L me ® = 0
d¢c 25 26 !

By solving the simultaneous equations for ﬁ and ' we find the

estimators

B - nl_zxi
= X
and
632 = l—Z(x,-s_()z
n i

Consider the method of maximum likelihood as applied to
the problem of this thesis.

Let X, ,X,, ... ,X, be the k sample frequencies,
hWo o2 'k

y Py v , P

X ,3(—, , ... ,X, the k sample proportions, and P1 2

1 2 'k x
the k population proportions from a k-nomial population. The

problem is to determine the correspondence between the set of

sample proportions and the set of population proportions. Let
P1 > P2 = ... Pk . We shall see that if Xl’ XZ’ . Xk is the
reordering of Xil, Xiz, v Xik such that Xl > Xzz “on Xk’

15

then the method of maximum likelihood gives the correspondence 3—(1
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corresponds to Pi for i=1,2,... ,k. Thus the method of maxi-
mum likelihood yields the matching that common sense or one's

intuition would suggest: highest sample proportion associated with

highest population proportion, ..... etc.
Let L1 = likelihood function for order #1
= o(X. ,X, , ,X, ,P)
o2 'k
n! PXilpxiz PXik
ToxXlxoroox, ! 1 2
o2 'k
L2 = likelihood function for order #2
= ¢X. ,X , ...,X ;P)
113 'k
_ n! PXil le3 ok
TOX, X! . X! 1 2 k
o1 '3 'k
Lkl - likelihood function for order #k! -1
= (X X, ...,X, P
k2 k-1
Xi Xi Xi
n! k 2 k-1
X X . X ! P1 PZ P
v 2 k-1
Lk' = likelihood function for order #k!
= ¢(X, ,X., ... ,X. ;P)
| k-1
X, X, X.
k 1 k-1
_ n! Pl P2 cee Pk .
TOX, M, VL)X
1 1 1

k 1 k-1
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That is the biggest function of L, say Lj will give the maxi-

mum likelihood matching of k-random sample frequencies

X ,X., cev, Xi with k-population proportions P , P ., P

1 2 k

1" 2 k'

(highest

We shall see that Lj has highest sample frequency X1

X1
n

sample proportion Xl = ) associated with highest population

proportion Pl’ second highest sample frequency X2 (second highest

X
= 2
sample proportion X2 =— ) associated with second highest popu-

lation proportion PZ’ and so forth. This statement canbe proved as given

below. Suppose

1>P2>P33... >Pk>0
and X1>X2>X32... >Xk (known)
where Xis(O,l,Z,...,n),i=1,2,...,k
k
E X, = n>0
i
i=1
and X ,X , ... ,X represents X ,X_, ... , X, in some order
i i i 1 2 k —_—— ———
1 2 k
of all possible k! orders.
Then we have to prove that
X’1 X2 Xk Xil Xiz Xik
P1 -P2 Pk ;Pl 'Pz Pk

Proof Clearly X1 > X

X + X, > X, + X



and in general,

X, +X,+... X.>X, +X + ... X  for
1 J 11 12 1J ; 7[:_]
because the sum of the j largest X's are at least as large as or

larger than the sum of one arbitrary set of j X's.

Let X X X
1 2 k
L = P1 -P2 Pk
and Xi1 Xiz Xik
L .
L'= P1 P2 Pk
or
LogL = XllogPl +X210gP2 +... Xklog Pk
1 -—
Log L' = X logP1 +X1210gP2 +... Xlklog Pk

rewritten in form of additive terms of logarithms for convenience in

comparing.

LogL=(\logP1 +lo‘gP1+. logPlz +(\logP2+1ogP2+. ..lo gPZI)-F.,. .,(iogPRH-o ng+.‘ . logLT%
v —v v
X1 terms X2 terms Xk terms
1
LogLl —(\10gP1+10 gfl+. . logPI)l-l-(\lo gP2+logI12+. . logPZ)l +... (\1ong+lo g‘P};. . long)/.
X, terms X, terms X, terms
i i, i

Let us consider the first X1 terms of LogL, which are all log Pl'

Since X1 p3 Xi , then all log P1 of Log L' are included within the
1

first Xl terms. That is, the first X1 termsof Log L' must involve

log P, logP ; all £ log Pl. Hence the first X1 terms of

l’ 2 -

LogL'< the first X, terms of Log L. The next X_ terms of the LogL

1 2



19

The next X_ terms ofLogL' involve

are all log PZ' 2

log P, logP .;allg log P because no more log P. left in

2’ 3 2’ 1

Log L'. Therefore the next X2 terms of Log L' € next X2 terms of

LogL. The next X3 terms of LogL are all log P3.

Since Xi +X, > Xi +X then all log P, and log P, of

1 i, 2 1 2
LogL' will be within the first X1 + X2 terms. So that the next X3
terms of Log L' must involve only log P3, log P4, .5 all € log P3.

Hence the next X_ terms of Log L' the next X

3 terms of Log L

3

and so forth.

The last Xk term of Log L' the last Xk term of Log L.

Hence, finally the sum of all n terms of Log L' the sum of all
n terms of LogL.
Therefore Log L' Log L or Log L > log L'

Whence L > L'

1 2 k i i2 Xiye

Then the statement above has been proved.
For an example in Trinomial distribution, suppose

Xi , Xi s Xi be a sample frequency from a sample of size n =10
1 2 3

with population proportions P1 = .5; P2=. 3; P3=. 2 and Xi =1
o
Xi = 2; X, = 1. Therefore, the maximum likelihood function will be
2 3
10!

7 2 1
L W('S) (.3)°(. 2)
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where i, is in the order of 1, 2, 3 respectively.

1’ 203

Note: In the above example, suppose X, = 8; X,1 =1 andXi =1.

2 3
When,. because of ''ties'' such as Xi =1 and X. =1, the likelihood
2 '3
function does not have a unique solution, but rather a set of k
solutions (here k = 2!), then the maximum likelihood estimate is
obtained by a random selection from among the k solutions. If one
of the k-solutions involves the correct matching of sample proportions
to population proportions, then the chance of the maximum likelihood
1

estimate being correct is T times the chance of the occurrence of

a solution of the likelihood equation, which is

This fact is taken into account in the probability computations in the

Appendix.

The Method of Random Matching

The method of random matching consists in selecting at

random one of the k! reorderings of the sample proportions

X ,X,,...,X, to correspond to the population proportions
o2 'k

Pl’ Pz, e, Pk’ where P1 > P2> N ;Pk. The reordering

Xl’ XZ, , Xk of Xil’ i s Xik has Xi corresponding to
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Pi’ i=1,2, ...,k. We can call this method that the "Guessing
Method''. It gives us the matching without any information. The
probability of matching depends on the number of categories or all
possible ways of getting matching. That is, if the number of
categories is large, the probability of correct random matching must
be small and if there is a small number of categories, the probability

of correct random matching will be large.

For instance, in the binomial distribution there are two

categories.
!
f > 1
/
2 > 2
All possible ways of getting matching = 2! = 2 ways.
Therefore, the probability of random matching = li = 0. 5000.

In the trinomial distribution there are three categories.

2 >2
/
3 >3
All possible ways of getting matching = 3! = 6 ways.
The probability of random matching = -16- = 0.16667

In case of k-nomial distribution which consists of
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k categories, and all possible ways of matching = k! ways, the
probability of random matching = 1?1'—

How Good is the Method of Maximum Likelihood as Compared to the
Method of Random Matching

Besides using the method of maximum likelihood in matching
off the sample proportions with the population proportions, the work
of this thesis is also to examine how good the method of maximum
likelihood matching is by a complete enumeration of cases for some
simple problems as given below. The problems considered are:

(I)binomial distribution(2 categories)with populationproportions

. . .5 5
Case 1. identical; 16’ 10
Case 2 derately different; -— —=
e 2. moderately different; 10 10
Case 3. very much different; —9— —L—
' y ' 10" 10

each case for sample sizes 2, 3,4, 5 times the number of categories

which are 2(2) = 4, 3(2) = 6, 4(2) = 8, 5(2) = 10 respectively.

(II)trinomial distribution(3 categories) with population proportions

Case 1. identical; —-o3 333 3.33

10 10’ 10
Case 2. moderately different; —5— 3— —2—
' y aitlerent: 150 10’ 1o
7 2 1
. iff ; m—, o, —
Case 3. very different To o n

each case for sample sizes 2, 3,4, 5 times the number of
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categories which are 2(3) = 6, 3(3) = 9, 4(3) =12, 5(3) =15,
respectively.

And in order to have a measure of "how good the method

of maximum likelihood is"" we shall use the ratio

Proportion of time maximum likelihood correct matching;
Proportion of time random correct matching

or the effectiveness of the method of maximum likelihood as com-
pared to random matching. This will help us interpret the results
as we vary the three factors number of categories (binomial, tri-
nomial, etc.), sample sizes (2, 3, 4 and 5 times the number of
categories), and population proportions (identical, moderately

different, very much different) .
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CHAPTER 5

RESULTS AND CONCLUSIONS

This chapter gives the results and conclusions in summary.

Table I gives the values of the ratio

Proportion of the time maximum likelihood correct matching
Proportion of the time random correct matching

for all the problems considered, including variations in the three

factors: number of categories, sample size, population proportions.

Table 1

Number of

P ti
Categories Sample Sizes opulation

Proportions

2- (#Categories) 3: (#Categories) 4- (#Categories) 5-(#Categories)

Binomial 1. 000 1. 000 1. 000 1. 000 identical
Trinomial 1. 000 1. 000 1. 000 1. 000  'oenne
Binomial 1. 568 1. 674 1.748 1.802 moderately
Trinomial 2. 321 2. 674 2. 889 3. 052 different
Binomial 1.944 1. 99 1.995 1,998 very much
Trinomial 3.091 3.982 4,134 4. 480 different

Table II gives the values of the probabilities of giving cor-
rect matching by the methods of maximum likelihood and random

matching, also the ratio of



Table II

BINOMIAL DISTRIBUTION(Two Categories) TRINOMIAL DISTRIBUTION(Three Categories) .
Pr. (max. likelihood Pr. (max. likelihood
Population Sample Pr. (ﬂ? 1?;1ura Pr. (random .correct matching) Pr. (maximum likeli~ Pr.(random cor- correct matching)
. . 1kellhoo correct R .
Proportions Sizes correct matching) Pr. (random correct hood correct matching) rect matching) Pr. (random correct
matching) matching) matching)
2: (#categories) 0,50000 0. 50000 1 0.16667 0.16667 1
3-(#categories) 0.50000 0. 50000 1 0.16667 0.16667 1
Case I 4 (#categories) 0.50000 0. 50000 1 0.16667 0.16667 1
(Identical)
5- (#categories)  0.50000 0. 50000 1 0.16667 0.16667 1
2+ (#categories) 0.78410 0. 50000 1.56800 0.386938 0.16667 2.321581
3-(#categories) 0.836920 0. 50000 1.67384 0.443996 0.16667 2663975
Case II
(Mod. 4- (#categories) 0.873964 0. 50000 1.74793 0. 481426 0.16667 2888551
different)
5-(#categories) 0.9011913  0.50000 1.80238 0.508643 0.16667 3.0518)5
2+ (#categories) 0. 972000 0. 50000 1.94400 0.515211 0.16667 3.091261
3+ (#categories) 0. 991440 0. 50000 1.99144 0.663616 0.16667 3,981692.
Case 111
(Very 4- (#categories) 0.997272 0. 50000 1.99454 0.689037 0.16667 4.134221
different)
5+ (#categories) 0,999109 0. 50000 1.99822 0.746678 0.16667 4,480065

K4
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Proportion of the time maximum likelihood correct matching
Proportion of the time random correct matching

or the effectiveness of maximum likelihood as compared to random
matching, for all the problems considered, including variations
in the three factors: number of proportions, sample sizes, and num-

ber of categories.

Discussion

In order to make it easier for the reader to understand the
conclusions in the next section, we are going to give a detailed dis-
cussion on the probabilities and effectiveness of maximum likelihood
matching as compared to the random matching from the table of

results (Table II, p. 25).

Case 1. The population proportions are identical both in
binomial and trinomial distributions. We have discovered that the
probabilities of giving correct matching by the method of maximum
likelihood in binomial and trinomial distribution are constant re-
gardless of the sample sizes used 0. 5000 and 0.16667 respectively.
In this case random matching gives the same probability as that of
maximum likelihood. The effectiveness of maximum likelihood
matching as compared to random matching equal to 1 in both dis-

tributions.
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Case 2. The population proportions are moderately ;iiffer-
ent, We have found that the probabilities of giving correct matching
by the method of maximum likelihood will increase slightly in both
distributions when compared with the first case at the same sample
sizes. Also these probabilities will increase as sample size in-
creases and will decrease as the number of categories is increased.
Although the probability of correct matching by maximum likelihood
decreases as the number of categories is increased, the probability
of correct matching by the random method decreases also, and in a
greater proportion; so that the effectiveness ratio actually increases
when the number of categories is increased. Therefore, in this
case the effectiveness of maximum likelihood matching as compared
to random matching will significantly increase when the sample size

and number of categories increase.

Case 3. In this case the population proportions are very
different. We have found that the probabilities of the maximum likeli-
hood matching are higher than those probabilities of the first and
second case at the same sample sizes. These probabilities will
increase when the sample size increases and such probabilities will
decrease as the number of categories increases. This case the
effectiveness of maximum likelihood matching as compared to ran-

dom matching is also higher than those of the first two cases at the
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same sample size. And it will significantly increase as the sample
size and number of categories increase.

Since we know that the greatest probability of correct match-
ing by maximum likelihood is 1, then we can assert the maximum
effectiveness of maximum likelihood matching as compared to ran-

dom matching as given below.

(1) Binomial Distribution,

The maximum effectiveness of maximum likelihood correct matching

_The greatest probability of maximum likelihood correct matching_ 1 -2
“The probability of random correct matching 12"

(2) Trinomial Distribution

The maximum effectiveness of maximum likelihood correct matching

_The greatest probability of maximumlikelihood correct matching 1 6
"The probability of random correct matching “1/6

From the table of results (Table II), we have found that the
highest effectiveness of maximum likelihood as compared to random
matching are 1. 998 and 4. 480 in binomial and trinomial distribu-
tions respectively at the sample size 5 times the number of cate-
gories. This effectiveness is still less than the maximum effective-
ness as shown above. The reasons are (1) the sample size is not
big enough (2) the population proportions are not much different from

each other.
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Furthermore, if we reconsider the effectiveness of maxi-
mum likelihood correct matching in each distribution, we will realize
that the effectiveness of maximum likelihood will indicate the '"rough-

ness'’ in the population proportions such as in the trinomial distribu-
tion at sample size five times the number of categories. The effec-

tiveness of maximurm likelihood matching as compared to random match-

ing is 1 when the population proportions are P1:P2:P3:

3.33  3.33 3.33
10 10 10

are Plz PZ: P3 = 5:3:2; and finally be 4.4801 at the population

; and it is 3. 0518 when population proportions

proportions are Pl:PZ:P3 = 7:2:1

Conclusions

From the above discussion we conclude the following.

(1). Other things (sample size and number of
categories) being equal, as the population pro-
portions become ''more different' (''roughness"
increases) the effectiveness of maximum likeli-
hood matching as compared to random matching
increases.

(2). Other things (sample size and population
proportions) being equal, as the number of cate-
gories increases the effectiveness of maximum
likelihood matching as compared to random
matching increases.

(3) Other things (number of categories and popu-
lation proportions) being equal, as the sample size
increases the effectiveness of maximum likelihood
matching as compared to random matching increases.



(4) When the population proportions are all
equal, the effectiveness of maximum likelihood
matching is the same as that of random matching.

30
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CHAPTER 6

PROPOSAL FOR FURTHER STUDY

In this chapter we suggest methods of information theory
to replace the method of complete enumeration of cases in studying
multinomial population where the number of categories is large.
Reference could be made to Shannon's paper ''Communication Theory
of Secret Systems''[ 8, 9] for earlier work done using information
theory. Further enumeration work might be carried out by using a
computer. One might classify languages in accordance with the
"roughness'' of their population proportions, characterizing a lan-
guage's effectiveness for maximum likelihood matching, and hence
ease of solution of simple substitution cipher. One might determine
the sample size required to obtain a certain degree of matching of
sample proportions with population proportions. One might develop
a sequential method of matching sample proportions with population

proportions.
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APPENDIX

AN EMPIRICAL STUDY

The detailed computations given here are just for samples
of size two times the number of categories when both number of
categories and population proportions vary, for the results (effect-
iveness of maximum likelihood as compared to random matching:
1.000,1. 000, 1. 568, 2.321,1. 944 and 3. 097) shown in the left hand
column of Table I, p. 24. The complete computation of cases has
been worked out in the same pattern as the given example and is not
shown here because the work involves a lengthy mathematical
operation. However the exact data of results can be found in Table
II, p.25.

Consider the binomial distribution (2 categories); at sample
size = two times the number of categories = 2x 2= 4.

The possible values in the two sample categories are:

X1 X2
4 0
3 ’ 1
2 2

The probabilities and the effectiveness of maximum likeli-

hood matching at each possibility are:
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Case 1. identical; P1: P‘2 = 1—%- :—1—%—
Pr. (4, 0) =z% (T%;L ( 1—%)0 = 0.0625
Pr.(3,1) = 3.,i1"-‘, (15—0)3 (-—1%; = 0.2500
Pr.(2,2) = %5‘32— (%)2(%)2 - 0.1875

The probability of maximum likelihood correct matching = ZPr.

= 0. 5000 .

The effectiveness of maximum likelihood matching is

The probability of maximum likelihood correct matching _ 0. 5000 _

The probability of random correct matching = 0.5000 ~
C 2 derately differ 1;'P'P~—’-7—'i
ase 2. moderately different; P2 ® 5% To
4 0
4! 7 3
Pr. (4, 0) = Ior (1—0) (TB) = 0. 2401
g 17 3l .
PI‘.(3,1) = W 0) (m) = 0. 411 .
2 2
1 4! 7 3
Pr. (2, 2) = -?: ZTZ—' (1——) (1—6) = 0.1323
The probability of maximum likelihood correct matching = ZPr.
= 0. 7840
The effectiveness of maximum likelihood matching is
The probability of maximum likelihood correct matching 0.7840 1. 568

The probability of random correct matching ©0.5000
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- D . A
Case 3. very different; Pl. P2 75" 10
4 0
a9 % _
Pr. (4, 0) = Ior (-1—(-)) (i—o) = 0. 6561
3 i
_ 4! 9 1 _
Pr.(3,1) = 3T (1—5 (10) = 0.2916
2 2
1 4! 9
Pr. (2, 2) = = 2'7 (ﬁ)-) (ﬁ) = 0.0243

The probability of maximum likelihood correct matching is = ZPr.

= 0.9720

The effectiveness of maximum likelihood matching is

The probability of maximum likelihood correct matching 0.9720_ 1.9440
The probability of random correct matching 7 0.5000 ’

Consider the trinomial distribution (3 categories), at the
sample size two times of the number of categories = 2(3) = 6. The

possible values in the three sample categories are:

X1 XZ X3
6 0 0
5 1 0
4 2 0
4 1 1
3 3 0
3 2 1
2 2 2

The probabilities and the effectiveness of maximum likeli-

hood matching at each possibility are:
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. . . . . _ 3.33 3.33 3.33
Case 1. identical; Pl.PZ.P3 = o ‘" 10 ° 10

6
1 6! 333 3.33 3. 33 .
Pr.(6,0,0) = 5-.6_,0.,0_,( o) ) ) <o 000686
5 1 0
oo 1
Pr.(51,0) = ,6', ,(3 33)(3 33)(3 33) =0. 008230
5!1!0!
2 0
6! 3. 33 3.33
Pr.(4,2,0) =y, ( 10)( )( 10) = 0. 020576
1 ! . 33
Pr.(4,1,1) —5411,\10)(310)(3 ) =0. 020576
3 3 0
1 6! . 33 337,3. 33
Pr. (3, 3, 0) =E'3.'3.'0.'<310)(3 )\ ) =0.013717
3 2 1
6! 3.33,3.33,_,3.33
P . =
(3, 21) 37210 C1o ) U0 ) g ) = O- 082302
2 2 2
1 6! 3.33°3.33°3.33"
Pr. (2, 2, 2) = C 32t 10 N 10 )¢ 10)—O. 020576
The probability of maximum likelihood correct matching = ZPr.
= 0.1666

The effectiveness of maximum likelihood matching is

The probability of maximum likelihood correct matching _ 0.1666 _ 1
The probability of random correct matching T 0.1666° 77
Case 2 derately different; P, :P_:P, = —: o: =
se 2. moderately different; P :P,:P, = 751 750 15
. 6 _0 _0
1 6! 5 3 2
Pr. (6, 0, = = =) (=) (— = 0.0078
r-(6,0,0) =2 ronite 70 To 0.007812
5 .1 0
6! 5,3 ,2
P = 2y () (= = 0.
r(51,0) T TS T 0. 056250
4 2 0
6! 5,3 2
Pr. = —_ — = 0.
r(4,2,0) =g (79 62) () 0. 084375
1 6! 54 31 21
Pr.(4,1,1) = > I (_)(ﬁ)(i—o) = 0. 05625
3 3 0
1 6! 5 3
Pr. (3, 3, 0) = 531370 (1 o) (——1 0)(1 ) 0. 03375
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3 .2 .1
6! 5,3, 2
Pr.(3,2,1) = RN (——10)(-—10)(—-—10) = 0.135000
2 2 .2

1 6! 5.3, 2

Pr.(2,2,2) = RS (ﬁ)(m)(ﬁ) = 0. 013500
The probability of maximum likelihood correct matching = ZPr.

= 0. 386938

The effectiveness of maximum likelihood matching is

The probability of maximum likelihood correct matching 0.386938 21581

The probability of random correct matching T0.J6606 T
Case 3. very different; P :P_:P_ = —7— —2—- L
1 23 101010
6
Pr.(6,0,0) =5z (o) (%)O(Tl-o-)o = 0.058825
Pr.(51,0) = E%T("I?B)S(T%:ﬁ%;) = 0. 201684
Pr. (4, 2, 0) =4,(2°::03 (‘1364‘T26;2(1‘16§) = 0.14406
Pr.(4,1,1) = 12- 4—,—1%—.,-(-1-%;} ('1‘26; (%; = 0.07203
Pr350 b f (LR o ooras
Pr.(3,21) = 3rom (%)3 (%; (ﬁ)l = 0..008232
Pr.(2,2,2) = % 2,6;.,2., (%)2(-1—‘%)2(1—%)2 = 0.00294
The probability of maximum likelihood correct matching = ZPr.
= 0. 515211

The effectiveness of maximum likelihood matching is

The probability of maximum likelihood correct matching 0.515211
The probability of random correct matching 0.166666

3.001241





