
AN ABSTRACT OF THE THESIS OF

Jin Jia for the degree of Master of Science in Computer Science presented on April
12, 2004.

Title: Object Highlighting: Real-Time Boundary Detection using a Bayesian
Network.

Abstract

Eric Mortensen

image segmentation continues to be a fundamental problem in computer vision and

image understanding. In this thesis, we present a Bayesian network that we use for

object boundary detection in which the MPE (most probable explanation) before

any evidence can produce multiple non-overlapping, non-self-intersecting closed

contours and the MPE with evidencewhere one or more connected boundary

points are providedproduces a single non-self-intersecting, closed contour that

accurately defines an object's boundary. We also present a near-linear-time

algorithm that determines the MPE by computing the minimum-path spanning tree

of a weighted, planar graph and finding the excluded edge (i.e., an edge not in the

spanning tree) that forms the most probable ioop. This efficient algorithm allows for

real-time feedback in an interactive environment in which every mouse movement

produces a recomputation of the MPE based on the new evidence (i.e., the new

cursor position) and displays the corresponding closed loop. We call this interface

"object highlighting" since the boundary of various objects and sub-objects appear

and disappear as the mouse cursor moves around within an image.

Object Highlighting: Real-Time Boundary Detection using a Bayesian Network

by

Jin Jia

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented April 12, 2004

Commencement June 2004

Master of Science thesis of Jin Jia presented on April 12, 2004.

APPROVED:

jor Professor, representing Computer Science

Associate Direor of the School of Electrical Engineering & Computer Science

Dean of Gr.iate'School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to
any reader upon request.

in Jia,

ACKNOWLEDGEMENTS

I would first and foremost like to express my gratitude towards my advisor,

Eric Mortensen, for his support, encouragement and guidance. I would also like to

thank him for introducing me to an area of Computer Science that I have come to

love, but had not had much experience with prior to meeting and working with him.

I also would like to thanks Professor Bruce D'Ambrosio for his wonderful

class and helpful discussion about Bayesian network. Thanks Xin Wang for her help

during class.

I would like to thank Professor Tim Budd for his help during admission and

my internship. I would like to thank Professor Ron Metoyer, Professor Prasad

Tadepalli and Professor David Birkes for being on my committee.

Thanks, also, to all members of our research lab, but in particular to those

who helped me out and discussed ideas with me, like Silvio, Hongli, Wei and

Ledah. I feel proud to work with these good people. I also extend this thanks to

everyone else in Dearborn 222, who made working in the lab more enjoyable. I

would like to thank Shriprakash for helping me checking my thesis.

Finally, I would like to thank my parents, to whom this thesis is dedicated,

for their understanding and constant support.

TABLE OF CONTENTS
Page

1. INTRODUCTION
. 1

1.1 Introduction .. 1

1.2 Statement of the Problem ... 5

1.3 Format and Chapter Overview ... 6

2. BACKGROUND AND RELATED WORK ... 7

2.1 Optimization in Object Boundary Detection.. 7

2.1.1 Region Based Optimization ... 8

2.1.2 Low Level Cues Based Grouping .. 9

2.1.3 Model Based Approach ... 13

2.2. Bayesian Network in Computer Vision .. 14

2.2.1 Bayesian Network in Image Interpretation ... 14

2.2.2 Bayesian Network in Object Recognition and Segmentation 16

2.3. Intelligent Scissors .. 17

3. OBJECT HIGHLIGHTING .. 20

3.1 Image Data Preprocessing .. 22

3.1.1 Tobogganing .. 22

3.1.2 Weighted graph creation .. 23

3.1.3 Computing Edge Confidence .. 25

3.2 Bayesian Network Overview ... 26

3.3 Our Bayesian Network Model .. 27

3.3.1 The Two Layer Topology ... 30

3.3.2 Probability Tables ... 32

TABLE OF CONTENTS (Continued)

3.4 Bayesian Inference .39

3.4.1 MPE in Our Bayesian Network ... 40

3.4.2 MPE without Evidence .. 41

3.4.3 Single Loop MPE with Evidence .. 43

3.5 Graph Search and Loop Detection ... 47

3.6 Object Highlighting Interface ... 51

4. RESULTS AND DISCUSSION .. 54

4.1 Single Observation... 55

4. 2 Multiple Observations ... 60

5. CONCLUSION AND FUTURE WORK ... 66

5.1 Conclusion.. 66

5.2Future Work ... 67

BIBLIOGRAPHY ... 69

LIST OF FIGURES

Figure Page

3.1 An overview of the entire Object Highlighting process 22

3.2: Examples of Tobogganing and weighted graph creation 24

3.3 shows the edge confidence map for the image in Figure 3.2 (a)........................ 26

3.4: Creation of our Bayesian network... 29

3.5: Two layer graph topology example in Netica format 31

3.6: Table for E-Node ... 34

3.7: Table for V-node ... 36

3.8: An example of MPE without evidence on a 128 by 128 image........................ 43

3.9: Loop detection using a spanning tree.. 47

3.10: The algorithm of single loop MPE with evidence... 50

3.11: Plot showing time to compute the minimum-path spanning tree.................... 51

3.12: Object Highlighting on the object of figures 3.4 and 3.10.............................. 52

4.1 Grayscale pocket knife boundary defined with single observations.................. 57

4.2 Grayscale test images ... 57

4.3 Grayscale block and hat images with single observation................................... 58

4.4: Grayscale image of stones on pavement... 59

4.5: Color still life image.. 59

4.6: Color cow boundary defined with three observations 62

4.7: Grayscale spoon boundary defined with three observations 63

4.8: Grayscale egg boundary defined with two observations................................... 64

4.9 Color human face boundary defined with two observations.............................. 65

4.10 Color sheep boundary define with thre observations 65

Object Highlighting: Real-Time Boundary Detection using a Bayesian
Network

1. Introduction

1.1 Introduction

"I stand at the window and see a house, trees, sky. Theoretically I might say there
were 327 brightness and nuances of color. Do I have "327'? No. 1 have sky, house,
and trees." --Max Wertheimer (1923)

What is an image? A matrix of numbers or a square of colored dots? When we

look at an image, we usually do not perceive it as individual dots or numbers; instead,

we see a representation of scene. But to a computer, an image is just a collection of

numbers. How does the computer covert these numbers to a scene description? The

goal of computer vision is to have the computer understand images and video. This

problem turns out to be enormously difficult for artificial intelligence and computer

vision.

Image understanding tries to grasp the meaning of images by converting the

pixel values to a scene description. Image segmentation, which partitions an image

into sets of pixels that correspond to "objects", is a key step in image understanding.

The first question we ask is: how human visual perception system does object

segmentation? This problem is called visual grouping and was first studied in

Psychology by the Gestalt school of visual perception nearly a century ago, which was

led by Max Wertheimer. This problem is also called visual grouping. The school

claimed that the mind perceives the world as objects, as wholes, not as atomic

2

primitives. This is the Gestalt laws of perceptual organization, which defines the

visual cues for perception, such as luminance similarity, proximity, continuity,

connectivity, symmetry, convexity, closure and collinearity. The summarized visual

cues are used by humans to do image segmentation.

However, the Gestalt laws only provide some basic principles for grouping, not

a detailed theory of human perception. Certainly, there is a much more complicated

process going on within the human visual system other than the simple principles

provided by Gestalt Laws. For example, it may be that humans recognize objects

because they have a database of those objects in some kind of compressed or abstract

form. They remember those objects and even the related context. Even during

occlusion, humans recognize an object just by seeing part of it. In this case, humans

may use object recognition to help with segmentation or do both at the same time.

How the human visual system really does object recognition and segmentation is still

like a black box to us. Even though the Gestalt laws are far from a detailed theory,

they do provide powerful principles that we can use. Currently, most visual grouping

research is based on the Gestalt laws.

Currently, most of the research in image segmentation is focusing on fully

automatic segmentation [34]. Complete automation is certainly preferred for such

tasks as robotic navigation, image and video compression, model driven object

delineation, multiple image correspondence, image-based modeling, or anytime

autonomous interpretation of image and video is desired. The primary goal of many

image segmentation techniques is to accurately find object boundaries in a fully

3

automatic fashion. Despite the large amount of research, no fully automatic technique

currently exits that correctly segments objects in a general class of images. Due to the

lack of understanding of how human visual perception deals with the complexity and

tradeoff among different situations, it is unlikely that the goal of accurate and fully

automatic segmentation will be achieved in the near future.

General purpose image/video editing and analysis will continue to require

human guidance [35,36}. This is due to three reasons. First, as mentioned, all current

fully automatic methods sometimes fail and produce incorrect results. Second, most

current advanced automatic segmentation algorithms are not real time, which take

several minutes and even hours to run. Third, image/video editing and analysis are

creative processes and subjective problems. Humans play the essential role and

identify which image components, objects or subobjects, are of interest. As we know,

the user knows exactly what he wants and where the correct object boundaries should

be. One method is to let the user interactively select the correct boundary from a

collection of good solutions given by the computer. Compared to manually tracing the

object boundary, this approach saves users' low level tedious work. This approach is

called semi automatic or interactive image segmentation. Compared to the fully

automatic approach, there is relatively much less research in this area. This interactive

approach has successful applications in areas like image composition and medical

image analysis. The goal of researches in this area are to minimize the human effort

and hopefully finally achieve one step object selection, which means the right object

boundary is highlighted instantly after user point to that object.

Regardless of different algorithms or tools being developed, there are some

properties that are desirable in interactive image segmentation [34]. These properties

include:

Simple: while the underlying computation may be complex, the default

interface presented to the user should be straightforward.

Fast: User need instant feedback and does not want to wait between mouse

clicks. It is usually desirable to be real time.

intelligent: it "understand" what the user wants based on a minimum of input-

the less effort and time a user needs to direct the tool to achieve the desired

result, the more intelligent the solution.

General: it has broad applicability and can be used effectively in a wide variety

of situations.

Robust: it is forgiving, to a degree, of noise in the input, both image and

human. It accepts rough or approximate inputs and noisy images and still

produces the desired results.

It is not necessary for a tool to possess all of these properties to be effective.

Conversely, some properties have trade off and could necessitate others. For example,

the more intelligent the interactive segmentation method is, the more the need for

computation time, which could slow down user interactions.

5

1.2 Statement of the Problem

Boundary detection in digital images continues to be one of the fundamental

problems for computer vision and image understanding applications. Despite the large

amount of research, no fully automatic technique currently exists that correctly

identifies objects of interest in a general class of images. General image segmentation

will continue to require some amount of human intervention. As such, our research

approach is to reduce the human effort required for accurate and reliable object

definition by exploiting high-level visual expertise [34,38].

Intelligent Scissors has proven to be an effective general interactive tool

[37,38]. Compared to traditional low level segmentation techniques, it is fast, robust

and requires relatively little human guidance to define an object boundary. The aim of

this research is adding more intelligence to Intelligent Scissors framework, which

could reduce human effort even more.

In this thesis, we are using Bayesian networks, which is one graphical

modeling technique in artificial intelligence that has been drawing lots of attention

recently [3,20]. We present a two-layer Bayesian network based on the pre-segmented

image graph. It captures the special relationships of edges and nodes in the feature

graph. The probability tables of this network enforce simple, non-self-intersecting

closed contours after some observation is provided in the form of a sequence of

connected contour points.

Exact inference in Bayesian network is generally NP-hard [5]. But with our

formulation on the probability tables, the exact MPE can be determined in a fraction of

a second using a near linear-time graph search algorithm. As such, we are able to

dynamically compute the MPE in an interactive environment we call Object

Highlighting. As the user moves the mouse, each new mouse position provides a new

observation in the form of a point on an object boundary. Based on the new evidence,

our graph search algorithm then computes the MPE by generating a bi-directional

shortest path tree. Branches of the tree form closed loops, which are the possible

object boundaries.

1.3 Format and Chapter Overview

The main problem addressed in this thesis is real time object boundary

detection. The organization of this thesis is as follows.

Chapter 1 is the introduction. Chapter 2 presents various recent optimization

techniques in image segmentation and different applications of Bayesian network in

computer vision. It also discusses the advantages and possible improvements to the

Intelligent Scissors framework. Chapter 3 describes the Object Highlighting approach

and our Bayesian network formulation in detail. Chapter 4 demonstrates the utility of

our approach by showing the results of different images. The image segmentation or

boundary detection experiments are carried out in various challenge situations.

Finally, Chapter 5 concludes with a discussion of future directions.

7

2. Background and Related Work

There is a large amount of literature on segmentation dating back over 30

years. In the following, I will give an overview of recent work in object boundary

detection and the applications of Bayesian network in computer vision. These methods

can be roughly divided into four kinds: region based optimization, low level cue

based grouping, model based approach and Bayesian networks in computer vision. In

particular, I will first review all above techniques except those related to Bayesian

networks. Then, there will be a discussion about recent applications of Bayesian

networks in computer vision. After that, I will examine Intelligent Scissors, including

its advantages and possible improvement.

2.1 Optimization in Object Boundary Detection

Most recently developed techniques for object boundary detection have one

thing in common: optimization. It obtains global characteristics based on the

accumulation of local features. Different methods for global optimization are reviewed

in this section: region based optimization, low level cues based grouping and model

based approach. Actually, some methods, like Leung and Malik's work that discussed

later [31], mix different approaches. Another thing in common to all the methods is

using some cues in Gestalt laws of perceptual organization, but using them in different

ways.

2.1.1 Region Based Optimization

Region based grouping or segmentation methods are probably less common

than edge detection as a low level processing operation in computer vision systems.

On the one hand, they are applicable in environments that are highly textured or

colored, for example outdoor scenery viewed by a mobile vehicle. They are robust to

noise and tend to be global. On the other hand, they often ignore important boundary

properties such as smoothness.

There are two approaches: top-down region partition and bottom up region

merging. Both use graphs to represent the data. Graph based methods consider a graph

whose nodes are the image features and whose edges are weighted according to some

measure of similarity between nodes.

There is a class of segmentation methods based on finding an optimal solution

in a graph by minimizing the similarity between pixels. For the bottom up approach,

Felzenszwalb and Huttenlocher [15] recently developed a near linear time algorithm

for image segmentation. The method is base on evidence for a boundary between each

pair of neighboring regions, which is actually comparing the similarity of neighboring

region pixels. The optimization is done by their algorithm, which is a variation of

Kruskal's algorithm for constructing the minimum spanning tree (MST) of the graph.

For the top-down approach, Z. Wu and R. Leahy [57] use minimum cut for

image segmentation. They formulate data clustering as minimum graph cut. Clustering

is achieved by removing edges of image graphs to form mutually exclusive subgraph

such that the largest inter-subgraph maximum flow is minimized. The method is

finding minimum cuts in a graph, where the cut criterion is designed in order to

minimize the similarity between pixels. The disadvantage is that this method is biased

towards finding small components.

Shi and Malik [48] developed a normalized cut technique, which provides a

significant advance over previous work. This technique uses a generalized eigenvalue

method to find normalized cuts of an image graph, and uses it to partition the image by

iterating the algorithm. Cut is a measure of association. Minimizing it will give a

partition with the maximum disassociation. The method measures similarity between

the two groups, normalized by the "volume" they occupy in the whole graph.

However, the normalized cut also yields NP-hard computational problem. Shi and

Malik developed an approximation methods but the error of this approximation is not

well understood. Even the approximation is fairly computationally expensive, which

requires several minutes for a general image.

Leung and Malik [311 extend the normalized cut by incorporating weak

contour continuity information into the region-based model. They use orientation

energy to get the soft contour information. They also use contour propagation to

complete the weak contrast gaps and subject contours.

2.1.2 Low Level Cues Based Grouping

Low level cues based grouping is the most widely used approach for image

segmentation in computer vision recently. The low level cues are included: similarity

of pixel brightness, proximity, continuity and texture. After detecting the cues,

10

different optimization methods are used to combine the information of the cues

associated with boundaries. For example, some current methods do some kinds of

local edge detection, by Canny or other ways [4], then groups the edges together.

Saliency measure is one of the most important methods ofperceptual grouping

of edges. This approach incorporates the local laws of proximity of edges and smooth-

continuation of contours in some form or other. Successive edges of a contour are

expected to be in close proximity and piece-wise smooth.

Parent and Zucker [42] present an approach for curve inference that is based on

curvature information. They use the concept of co-circularity as a constraint to assign

tangent and curvature to every point in the image. To aid the process of curve

inference, relaxation labeling is used to highlight image elements, like tangent and

curvature, which are consistent with its neighbors.

Shashua and Ullman [47] present a parallel network model for detecting salient

boundaries based on fragment proximity, boundary length and boundary smoothness.

After rating the best connections between each edge and its neighbors, a "saliency

network" of locally connected elements is created. The research done by Guy and

Medioni [22] used a voting scheme to estimate a tangent and a salience at each pixel

in the image.

In previous algorithms, we have seen that different visual cues from local

Gestalt laws have been applied to organize local edges into extended contours, which

include luminance similarity, proximity, continuity and smoothness constraints. The

closure constraints have been largely ignored. There are persuasive psychophysical

11

demonstrations that contour closure is a stronger global constraints compared to other

cues in perceptual organization [12,18]. The following researches incorporate closed

contours in segmentation of natural images.

As a recent significant advance over previous works, Mahamud and Williams

[33,40] show a method that reliably segments object boundaries using a saliency

measure based on the global property of contour closure.

In this paper, they derive an explicit relationship between the saliency measure,

which is the relative likelihood that smooth closed contours pass through a given edge,

and the corresponding components of the eigensolution. Then they present a

segmentation algorithm that utilizes the saliency measure to extract out multiple

closed contours by finding strongly-connected components on an induced graph. This

approach reduces the time taken to segment real images from an average of around 2

hours to about 10 seconds per object on a general-purpose workstation. Besides

improving efficiency, this method works for object in background with natural

textures. There are still some limitations in all the saliency measure, which are from its

convex and smoothness assumption about object contour.

Elder and Zucker [12] develop a probabilistic model for object boundary

detection in which maximum-likelihood contours are computed using a shortest path

algorithm. It guarantees an exact solution in polynomial time, but favors the shortest

loop and lacks global completeness and non-self-intersection constraints.

Eric Saund [46] presents an effective algorithm especially suited for finding

perceptually salient compact closed region structure in hand-drawn sketches on

12

whiteboards and contours from photographic imagery. They start with a graph of

curvilinear fragments whose proximal endpoints form junctions. The key problem is to

manage the search of possible path continuations through junctions in an effort to find

paths satisfying global criteria for closure and figural salience. Firstly, best-first

bidirectional search is used to check for the cleanest, most obvious paths. Then apply

more exhaustive search to find paths cluttered by blind alleys.

Jermyn and Ishikawa [26] describe a new form of energy functional for

modeling and identification of regions in images. They define the energy on the space

of boundaries in the image domain and combine different cues: intensity gradient,

texture and color. They introduce two polynomial-time directed graph algorithms for

finding the global minima of this energy. The first one found the globally optimal

solution by using a minimum cut algorithm. The second one uses a minimum ratio

cycle algorithm to find a cycle with minimum energy in an embedded graph.

Wang and Siskind [53,54] use a ratio cut to extract salient boundary from a set

of noisy boundary fragments detected in real images. It formulates the salient-

boundary detection problem into a problem for finding an optimal cycle in an

undirected graph. Similar to previous paper, the boundary saliency is defined using the

Gestalt laws of closure, proximity and continuity. This paper first constructs an

undirected graph with two different sets of edges: solid edges and dashed edges, which

means different weight. The most salient boundary is detected by searching for an

optimal cycle in this graph with minimum average weight. The most salient boundary

13

could only be a partial boundary. Instead of multiple objects, right now this paper is

only limited to detect single object boundary in an image.

2.1.3 Model Based Approach

The model-based approach is represented by the snake or active contour

method [28]. It uses gradient descent to optimize the functions locally on the space of

curves in an image. The main advantages of snakes are those of all optimization

techniques: the image data, desired contour properties and knowledge-based

constraints are integrated into a single extraction process. The disadvantage is that the

final extracted contour is highly dependent on the position and shape of the initial

contour as consequence of the many local minima in the energy function. This

approach also lacks real interactive feedback. The user has to wait until the algorithms

converge.

More recently, Elder et al. [10,111 introduce a Bayesian framework for

combining prior probabilistic knowledge of an object's appearance with probabilistic

models for contour grouping. I would think it also belongs to model based methods,

which have some specific object prior knowledge in the form of trained priors. They

solve it by using an approximate, constructive search technique, which finds a good

solution, but not guaranteed to be optimal. This method has similar limitations as the

snake method.

14

2.2. Bayesian Network in Computer Vision

Bayesian networks provide a formalism for reasoning under uncertainty. A

Bayesian network is defined by a directed acyclic graph over nodes representing

random variables of interest. The arcs signify the existence of direct causal influences

between the linked variables. The Bayesian network yields a uniform framework for

studying perceptual organization [14].

There has been a lot of work recently that applies graphical models to

computer vision and image understanding; e.g, Bayesian networks and Markov

Random Fields [3,14,20,26]. Of particular relevance to this work are those methods

that use Bayesian networks in computer vision.

2.2.1 Bayesian Networks in Image Interpretation

Bayesian networks provide a natural framework for computing an

interpretation of an image from a set of hypothesized objects. Unlike systems that find

interpretations by simply counting matched features, Bayesian networks allow one to

exploit the information present in object interactions, both visual and physical. Finding

the best interpretation of modeled scene is then equivalent to finding the MPE of the

network.

Buxon and Gong [3] describe an application of Bayesian networks to visual

surveillance. The task involves the tracking of purposively moving objects and of the

dynamic relationships between these objects, such as "overtaking", "following" in the

context of traffic monitoring. A Bayesian network is used to infer object

15

characteristics from the evidence provided by optical flow measurements. Prior

knowledge is used to initialize the network. These objects are tracked by find the Most

Probable Explanation (MPE) for the measurements at every frame, and updating the

Bayesian network with the evidence provided by these measurements.

Kumar and Desai [29] formulate the image interpretation as the maximum a

posteriori (MAP) estimate of a properly defined probability distribution function. They

shows that a Bayesian network can be used to represent this probability distribution

function as well as the domain knowledge needed for interpretation. The Bayesian

network may be relaxed to obtain the set of optimum interpretations.

Kalitzin etc [27] propose a Bayesian grouping approach for recognition and

segmentation of large-scale structures representing objects in images. It is based on the

detection of local image properties, extraction of simple geometrical primitives, and

grouping of these primitives according to probability rules and prior models. It selects

a list of subsets of the local primitives and finds the optimum set of model priors that

maximizes the likelihood of the model samples representing the selected subsets. In

contrast with global recognition methods that classify the whole image, this approach

aims at solving the recognition task together with the segmentation task.

Westling and Davis [55] use Bayesian network to represent and calculate the

configuration of hypotheses that best interprets the images. The network represents

both visual effects, such as the creation and occlusion of image features, and physical

constraints such as object interference. Once the network is generated, it can be

evaluated to find the set of hypotheses that best account for the image features.

16

Westling and Davis [56] later cast the image interpretation as the problem of

finding most probable explanation (MPE) in a Bayesian network that models both

visual and physical object interactions. The network was used in 3-D object

understanding to related model components to predict appearances and to control the

interpretation process.

2.2.2 Bayesian Network in Object Recognition and Segmentation

Object recognition and segmentation are the perceptual organization problems

that integrate low-level image features into high-level object boundary detection.

Those problems are well suited problems for the use of Bayesian networks.

Geman and Jedynak [19] track roads in satellite imagery using a decision tree

to estimate the Bayesian maximum a postenori (MAP). They assume independence

and a uniform prior. They express road tracking as the maximization of a product of

local likelihood ratios.

Coughian and Yuille [6] also address the problem of tracking roads and

develop a tree search that they prove has an expected convergence that is linear in the

size of the road (the depth of the tree), though the worst-case performance is

exponential.

Tu and Zhu [50,5 1] have developed a general purpose algorithm for Bayesian

inference known as Data-Driven Markov Chain Monte Carlo (DDMCMC). This

algorithm has been very successful at segmenting images when evaluated on datasets

with specified ground truth. It works by using low level cues to propose high-level

17

models (scene descriptions) which are validated, or rejected, by generative models. It

therefore combines bottom-up and top-down processing in a way that is suggestive of

the feedforward and feedback pathways in human brain. The algorithm has been

successfully extended to combine segmentation with the detection and recognition of

faces and text.

2.3. Intelligent Scissors

Intelligent Scissors is a general purpose, interactive objects selection tool

[34,35,36,37,381. It allows a user to choose a minimum cost contour segment

corresponding to a portion of desired object boundary. Intelligent Scissors achieves

this goal by an efficient, linear time implementation of Dijkstra's search algorithm on

the image graph. As the mouse position comes in proximity to an object edge, the

optimal path from the pointer position to the seed points is displayed. It shows like a

live-wire boundary snaps to and wraps around the object of interest. The user can

select an optimal contour segment. Compared to manual tracing, object selection or

segmentation using Intelligent Scissors is many times faster and more accurate.

The initial Intelligent Scissors is pixel based [37]. Currently, it is the toboggan-

based Intelligent Scissors with a four parameter edge model [38]. The toboggan-based

Intelligent Scissors computes the optimal path by over-segmenting the image using

tobogganing and then imposing a weighted planar graph on top of the resulting region

boundaries. Because the resulting region-based graph is many times smaller than

previous pixel-based graph, the graph search is faster. By fitting a four parameter edge

model, it can even provide sub-pixel localization of object boundary.

As mentioned in the introduction, there are some desired properties for a

interactive image segmentation techniques, which are simple, fast, intelligent, general

and robust. Intelligent Scissors has those properties. It is simple and fast. It computes

and displays the optimal path from the pointer position to the seed point in real time.

The user can interactively select an optimal path segment corresponding to a portion

of the desired object edge. The pixel-based Intelligent Scissors has two intelligent

features: on-the-fly training and boundary cooling. On-the-fly training causes the

boundary to adhere to the specific type of edge currently being followed, rather than

simply follow the strongest edge in the next. Boundary cooling automatically freezes

unchanging segments and automates input of additional seed points [37]. Toboggan-

based Intelligent Scissors has live wire extension and confidence based cursor

snapping, which reduce both the time required in positioning seed points and the

number of seed points required to be input by the user [38].

However, Intelligent Scissors has some limitations [35]. There is still plenty of

room for improvement. The first is adding closure constraint. For some simple objects,

just snap to the boundary and highlight the whole object with a closed contour. The

user does not need to input any seed points and move mouse cursor around the object.

Second, the user has to put the seed points in a particular order in Intelligent Scissors.

This limits the movement of the mouse to some degree. The style of "live wire" is

essentially step by step, which allows the user to select the correct boundary segments

19

in order and finally make a closed contour. Could we do the other way instead? Show

the closed contour in the first place. Let the user fix the contour segments that are

incorrect or add the missing correct object boundary. In this way, user can move the

mouse cursor around and put the seed points and discard in any order. Third, an

intelligent solution or system should not only represent comprehensive and diverse

information but also should be flexible enough to incorporate different approaches. It

should be a framework. By adding a graphical model to Intelligent Scissors, it allows

detecting the object boundary in different ways: with or without a prior object model,

with or without evidence or observation. Even possibly change a semi-automatic tool

to fully-automatic in some situations.

20

3. Object Highlighting

Object Highlighting is what we name the technique that we are working on. The

goal of this technique is to reduce the amount of human effort to near minimum for

any user-guided segmentation task. It should define some objects simply by snapping

the mouse cursor to the object boundary. The closed contour is displayed on the

screen. If it corresponds to the desired object boundary, the contour is selected via a

button press. Based on the formulation of our Bayesian network, Object Highlighting

could automatically highlight multiple objects without any evidence and highlight

single object at a time in images. In this thesis, we only briefly discussed the automatic

highlighting since lack of efficient inference algorithm for that situation. We mainly

present our algorithm for highlighting single object after user provides some

observation.

Since this technique mainly aims to add more intelligence to previous Intelligent

Scissors solution, we use the Bayesian networks, a framework in artificial intelligence.

Natural images have complexity and ambiguity. Bayesian model allows us to handle

these uncertainties by providing both a compact factorized representation and

multivariate probabilistic inference. The major challenge of using Bayesian network is

keeping the same efficiency as Intelligent Scissors while increasing intelligence. We

achieve real time segmentation by formulating our problem and using near linear time

graph search to compute single loop MPE.

21

As Figure 3.1 shows, the process of Object Highlighting technique involves

several steps. After inputting the image, it firstly pre-segments the images into

tobogganing regions. Edges are the boundaries of those regions and nodes are the

junctions between regions. Next, it converts the image into a weighted graph. Based

on the graph, it computes the confidence value of each edge in the graph. After those

preprocessing steps, it transforms the weighted graph into a Bayesian network. Next, it

uses an optimal graph search to compute the MPE of the Bayesian network. MPE of

our Bayesian network are the detected ioops corresponding to object boundaries.

Finally the detected object boundaries are displayed on the image.

Image Data

Transform to
Tobogganing)1 Bayesian

I Network

Create I I

Weighted Graph I Optimal Graph
Search

Compute Object
Edge Assurance Highlighting

22

Figure 3.1 An overview of the entire Object Highlighting process.

3.1 Image Data Preprocessing

Unlike some previous graph modeling techniques that create graph nodes for

every pixel [3,27,45], we build our Bayesian network from the over-segmented region

boundaries. As mentioned above, we first partition the image into a collection of small

object regions and then impose a weighted planar graph onto the resulting region

boundaries [35,38]. Region-based graph provides two advantages over pixel-based

graphs: first, it allows the belief network probabilities to incorporate meaningful

region based statistics along with the edge-based measures. Region based measure is

helpful in making the probability values robust to noise. Second, it reduces the graph

size resulting in faster operations.

3.1.1 Tobogganing

Tobogganing technique is effectively identical to computing the watershed of

the image's gradient magnitude. Tobogganing over-segments an image into small

regions by sliding in the derivative terrain. Figure 3.2 shows the tobogganed regions.

The basic idea is that given the gradient magnitude of an image, each pixel determines

a slide direction by finding the pixel in a neighborhood with the lowest gradient

magnitude. Pixels that "slide" to the same local minimum are grouped together to

form small regions. Each region consists of the pixels that "flow" into that region's

local minimum [35,38].

Tobogganed regions are similar to the catchment basins produced by applying

the popular watershed algorithm [1,2]. However, tobogganing is much more

computationally efficient. During tobogganing, each image pixel is processed only

once and thus accounting for linear time execution.

3.1.2 Weighted Graph Creation

We then impose an undirected graph G (V, E) on the resulting boundaries of

Tobogganed regions. Vertices V = [vi, V2, ..., v) are placed where three or more

region boundaries converge, which locate on a pixel corner. Undirected edges E

[(vi, v3)
I

v, Vj 6 V. i ii are created along each section of a region boundary

connecting two vertices. Since region boundaries follow pixel cracks, every pixel

belongs to some region and each vertex has at most degree four. Figure 3.2 illustrates

Tobogganing and creation of the weighted graph from an image.

By using different measures applying Gestalt law of perceptual organization,

we impose cost value or weights on the edges. There are three measures: gradient

magnitude, local region similarity and local edge curvature. Local edge costs are a

weighted sum of these three measures. The resulting weighted graph is used as a cost

map for object boundary in the image. Thus, graph edges corresponding to object

boundaries should exhibit low weights relative to non-object edges. The details of

three measurements are summarized in the dissertation [35]. To help understand the

work in this thesis, the three measurements are briefly discussed:

24

Gradient magnitude: Gradient magnitude is the local edge strength of the

discontinuity in color and brightness. A strong edge will exhibit a high gradient

magnitude and therefore should have a low cost.

(a) (b)

Figure 3.2: Examples of Tobogganing and weighted graph creation. (a) The
original 256x256 block image. (b) Tobogganing of the image. (c) Tobogganing
regions in a small zoomed area. The colored lines are region boundaries. The
small circle in each region is the local minimum. The arrows show the slide
direction. (c) also shows how the weighted graph is created. The region
boundaries are the edges and the white dots on the junctions are the nodes in the

25

graph.

Local region similarity: This measure indicates statistical similarity between

the regions on either side of the edge. The measure currently used is the student's t-

test, which measures the probability that two sampled unimodal Gaussian distributions

have the same mean.

Local edge curvature: The curvature or bending measure adds a smoothness

constraint to object contours by associating a relatively high cost for sharp changes in

boundary direction. The primary advantage of a bending constraint is to force smooth

contours in areas of low contrast or edge strength where noise dominates gradient-

based costs.

3.1.3 Computing Edge Confidence

Based on previous local edge and region information, we assign to each edge

in the weight graph a "confidence" value between 0 and 1.0. An edge's initial

confidence is close to 1.0 for edges that are estimated to be on the object boundary and

close to 0 for edges that are not.

In previous work, it was called the edge confidence value [35,38]. The edge

confidence measure, in turn, relies on another measure called the branch extension

cost, which computes the minimum cumulative cost path from among all possible

fixed length paths extending out from an edge. For details, please refer to the work of

Toboggan based Intelligent Scissors [35,38].

26

:

;:

JtL

F'
.- ---.,----

(a) (b)

Figure 3.3 shows the edge confidence map for the image in Figure 3.2 (a). (a)
Threshold edge confidence at 0.5. All edge confidence larger than 0.5 are shown in
black in Figure 3.3 (b).

3.2 Bayesian Network Overview

Bayesian networks, also called belief networks, provide formalism for

reasoning under uncertainty. A belief network is defined by a directed acyclic graph

over nodes representing random variables of interest. The arcs signify the existence of

direct causal influences between the linked variables, and the strength of these

influences are quantified by conditional probabilities. A belief network relies on the

notion of a directed graph. Next are the definitions of Graph and Bayesian network

[8].

DEFINITION 1: [Graphs] A directed graph is a pair G = (V, E), where V =

{X1, ...,X} isasetofverticesandE= {(X,X)l X1,X eV, ij } is asetof

edges.

DEFINITION 2: [Bayesian network] A Bayesian network is a pair (G, P),

where G = (X, L) is a directed acyclic graph over nodes. Let X = {X1, ..., X}

be a set of random variables, each having a finite number of possible states. L

27

are links or arcs to model direct causal relationship between the variables. P =

{P(X
I

Pa1)
I

i=1,. . .n)} is a set of conditional probability tables (CPT) defined

for each variable X1 and its parents Pa1 in the G.

Why using Bayesian network in computer vision? There are three advantages

[14,50,51,55,56]. First, Bayesian networks provide formalism for reasoning under

uncertainty. A good vision solution should be able to combine large amounts of

objectively ambiguous information to yield something that are rarely ambiguous.

Second, Bayesian networks provide a joint probability of different factors and good

inference algorithms that exploit this structure. Bayesian network could break those

complicated computer vision problems down into small problems. Third, Bayesian

network emphasizes the role of the generative model, and thus tie naturally to the

growing body of work on graphical models.

3.3 Our Bayesian Network Model

We describe the creation and notation of our Bayesian network. Same as

others, our Bayesian network is a pair of (G, P). G is a directed acyclic graph (DAG)

built from the previous undirected weighted graph. The graph is in the form G = (X,

L). X is the set of nodes which corresponding to random variables, each having two

states: true or false. L is the set of links that model direct causal relationship between

the variables. P is a set of conditional probability tables (CPT) defined for each

variables X1 and its parents Pa1 in the G. Figure 3.4 illustrates how our Bayesian

network is created.

The variables X1 are composed of two types: edge nodes XE and vertex nodes

Xi'. Both nodes are directly transformed from the weight graph G = (V, E). Xv, created

from V= [vj, ..., v,,], is a set of vertices. XE, created from E = (ek = (v1, v1)
I
v, v E V. i j]

is a set of edges. The links connect the edge nodes and vertex nodes. They are created by the

edge nodes X. [(X', X)'), i j] connecting its two vertices X', X at both ends.

Each E1 is connected to exactly two vertices. Two links are created on each edge node L =

((X., X'), (X., X3Y)), which connect to the two vertex nodes on both end. The arrow is

pointed to the vertex node from the edge node. The intuitive meaning is that edge node has a

direct influence on its nodes on both ends. Vertex nodes are created at the junction of

neighboring edges.

Besides G, the other part of Bayesian network is P. which is a set of CPT, and

for each variable X1. This set of tables represents the joint probability distribution over

the set of random variables X. Like the set of nodes X, our set of probability tables P=

pE, pV is the union of the set of prior probability tables pE' = I P(X1) E XE)

and the set of CPTP1T= (P(XIJPa1)I XTEX11).

29

(I))

xi' X

Figure 3.4: Creation of our Bayesian network. (a) Original image. (b)
Watershed transform of gradient magnitude. (c) Zoomed section of (b)
showing initial graph construction. (d) Belief network constructed from
initial graph in (c). (e) Two-layer representation.

30

Let lower case letters, ek and v, denote the values of the corresponding variables

and X' respectively. S, = (e0, e1, ... e) denote a particular assignment of edge

node states, true or false. The closed boundary of object is a state of the network with

a series of edges on the path set to be true and the rest set to be false. There are totally

2" possible states of the network. The joint probability of our Bayesian network can be

written as follows:

P(e,v) = fJiP(e1)fIP(v = true pa(v)) (3.1)

Where P(v = true pa(v3)) is the conditional probability distribution (CPD) of nodes V

given the set of its parents. The parent pa(v3) of V is the edge connected to that node

in the image weighted graph. P(e,) is the prior probability that E = e1 before any edge

has been set to true.

3.3.1 The Two Layer Topology

The topology of our graph model is a planar directed acyclic graph. The top

layer has all the edge nodes (E-node), which are the parent nodes holding prior

information. The second layer has all the vertex nodes (V-node), which are the

conditional variables. The two layers are connected by the arcs: which model the

relationship of E-nodes and V-nodes. The relationships are: each E-node is connected

to exactly two V-nodes and each V-node is connected to three or four E-nodes. From

Bayesian point of view, we can also think the top layer is hypothesis layer which

31

include all the hypothesis variables. The second layer is the finding layer which

constrains the relationship of those hypothesis variables.

The topology formulation is focusing on the research goal of this thesis: object

boundary detection. The two layer topology is one of the simplest structures. First, this

simple structure could simplify the computational complexity of Bayesian network.

Second, this structure is also able to capture the relationships of edges segments in an

image. An example of simple Bayesian network topology is shown on Figure 3.5.

Figure 3.5: Two layer graph topology example in Netica format.

32

3.3.2 Probability Tables

The formulation of probability tables of both nodes and edges is based on the

confidence value of each edge. As a general segmentation strategy, there should be no

restriction on the size, shape and type of the object. The way we design the probability

table is that it should not include application-specific priors, but could add them if

desired later.

The goal of our technique is to find complete, closed contours in the image that

correspond to object or semi-object boundaries. Bayesian network is the way to

decompose the global hypothesis, the closed object contour, to small local hypothesis,

the edge segments. As such, our design of V-node and E-node's probability tables

should satisfy the following criteria:

Local edge probability: estimate the probability of each local edge segment

corresponding to object boundaries.

Closed contour: Incorporate low level knowledge of object boundary about

how to connect the segments into closed contour. Enforce closed contours.

Connecting local probabilities: Link the decomposed local hypothesis to a

global solution. When given evidence for one E-node, the observation should

be able to propagate to all the other E-nodes. This could be done by the

neighboring relationships of the edges in the graph.

In the following, the probability table of E-node and V-node are discussed

separately. The local edge probability requirement is handled by the probability table

33

of E-node. The closed contour and connecting local probability are handled by the

conditional probability table of V-nodes.

3.3.2.1 Probability table of E-node

Probability table of E-node is the local prior probability of the Bayesian

network based on the edge confidence value. For each edge in the image region graph,

we define a Boolean variable Ej. If edge i is on the most probable loop, then the value

of E is true; otherwise, E is false. The prior in the edge table is formulated as ratio of

the paths passing through current edge and not passing through current edge.

The first idea we have is to define the true probability of an E-node as its

confidence value normalized by the sum of all edges in the image. The sum of all the

edge segments in the weighted image graph has a probability 1.0. This is shown in

Equation (3.2).

a(v,,v)P(X =True)
a(vk,vl)

(vk ,v1)E

(3.2)

This formulation of E-node probability turns out to be not very helpful to our

research problem. There are two reasons. First, this formulation produces very small

probabilities for even the strongest edges and as such, an E-node is more likely to be

off than on. This means that when a loop is forced to exist in response to some

observations, the maximum probability loop will try to turn on as few E-node as

possible. The results are small loops that typically surround only pre-segmentation

regions. Second, Equation (3.2) shows only one edge can be on or only edge which is

34

locally strong has more probability. For the case of all weak priors on some place of

the image that lack contrast, they still could have object boundary. Equation (3.2) does

not model this situation.

The low level knowledge of object boundary shows that boundary should be

relatively strong in dissimilarity of local region and should be continuous even in the

part that lost contrast. Since we have already modeled the local contrast of the E-node

from its local confidence, we should model the edge by their continuity of the

confidence value relative to its neighboring K-nodes. An important piece of

knowledge for normal object boundaries is that all the E-nodes along the object

boundaries should be spatially continuous and should have exactly degrees of two.

ki

I True I False

Edge X. P(XfJ. = True) Equation (3.3) 1 P(X = True)

Figure 3.6: Table for E-Node.

P(XIEJ = True)
Sum0(i,j)

a(v1,v) (3.3)
(i, J) + SumOff (i, f)

35

Sum0(i,j)=! a(vk,v)+a(vl,vJ)+a(vJ,vl) (3.4)
XkDe pa, XQ9))E Pa)

.1Sum0ff(i,J)= a(vk,v,)+a(v,v,)
XkJ)pa, X,,J)Epa1 (35)

a(vk,vJ)+a(vJ,v,)

X(kOJEpa X<k.JI),JE paj

Equation (3.3), (3.4) and (3.5) show how the B-node probability is computed.

Equation (3.3) shows the ratio of the weighted total confidence of all the paths that

pass through that edge to all paths that not pass through that edge in the neighborhood.

Equation (3.4) is the summed confidence of all neighborhood paths that pass through

edge(v, vi). Equation (3.5) is the summed confidence of all neighborhood paths that

do not pass through edge(v1, vi).

The ratio of weighted sums in Equation (3.3) assigns a high probability to an

edge if it is on one or more high confidence paths that pass through that edge's

neighborhood. One problem is that it did not differentiate the situation of noise and

real object boundary. In some noise situation, it could happen that all the edges have

low confidence but one or two have relatively higher confidence. To differentiate

these two situations, we choose to multiply the ratio by the edge's initial confidence

value.

'I1

3.3.2.2 Probability table of V-node

From the Gestalt law of perceptual organization, we know that closure and

local feature continuity are often considered important features to ensure object

boundary. Both these constraints can be enforced by the CPT of the V-node. To

demonstrate how we designed the CPT of V-node, Figure 3.7 shows the CPT for a

degree three V-node.

Ii

E,32 P(XT = True)

False False False 0.5

False False True 0.0

False True False 0.0

False True True Ff(j2,j3;j1)/Sum,(j1,j2,j3)

True False False 0.0

True False True Jf(j1,j3;j2)/Sum,(j1,j2,j3)

True True False F3(j1,j2;j3)/Sum,3(j1,j2,j3)

True True True 0.0

Figure 3.7: Table for V-node

37

F3(j1, j2; j3) = a(v1,v1)a(v,v12)[l a(v1,v13)] (3.6)

Sum(j1,j2, J3) J(k+2)d3;Jk) (3.7)

Degree of v1 is 3. Degree of is 4.

Equation (3.6) is the unnormalized probability of the assignment (true, true,

false) to and E,J3 respectively. Equation (3.7) is the normalization factor

which sum over the probability of all non-zero entries of node
v1.

The CPT for a degree four V-node is similar except that it has 2=16 rows,7

non-zero entries (including the false case). The Equation (3.6) and (3.7) can be easily

change to four degrees F3(j1,j2,j3;j4) and Sum,'(j1,j2,j3,j4)

3.3.2.2.1 Connecting local probability

In the image weighted graph, vertices are the junction of edges. V-node

connects the local prior probability of the E-node, which means the influence among

E-nodes happens via V-nodes. After transforming the image weighted graph into

Bayesian network, the V-nodes are the finding nodes that are known and constrain the

probability relationship and the way of propagation of E-node's observation.

The probability of all the V-nodes is set to true, which means they are the

finding nodes. This is very important because it create the influence between edges. If

all the V-nodes are set to false, this is called "D-separation" in Bayesian network

terms. "D-separation" means that no information can be transmitted between the two

nodes X and Y given a set of nodes Z while all paths between X and Y are blocked by

Z. All the E-nodes are conditional independent and not influence each other any more.

The change of local probability of E-node would not propagate to other E-nodes. If all

the V-nodes are set to true, the E-nodes are not D-separation anymore. The local

neighboring E-nodes have direct influence to each other. For the change of probability

of a single E-node, it is possible to affect any other E-nodes in the Bayesian network.

This is done by propagating the evidence along a specific path through neighboring V-

nodes. This assumption is known as causal independence [23].

3.3.2.2.2 Closed contour

A contour in the image is represented as either a path in the Bayesian network

graph G or a sequence of married E-nodes where two E-nodes are married if they are

both parents to the same V-node. The object boundary is a closed contour which is

represented as a cycle in graph G or a sequence of married E-nodes such that m = ii in

Equation (3.8). The first and the last edge in the sequence are neighbors. Each edge

segment in a closed contour has exactly degree two.

(X1' , X14 ,..., , X_1,) (3.8)

Due to the relational nature of our image weighted graph, if an edge i is on the

most probable ioop, then one and only one edge from both sides of its neighbors is on

the most probable loop. In the CPT entries, we can model these relationships by

allowing the cases of two edges is true could happen and not allow other cases happen,

like one, three or four edges are true. This means the true probability of the entries are

non-zero if and only if there are only two neighboring E-nodes are true. We also

model the case that all the edges are false to occur. Since there is no other information

for us to tell how likely this case could happen, the probability is set to be 0.5 which

means it does not favor either situation. Above setups on CPT of V-nodes could

enforce simple, non self intersection and non overlap closed contours.

3.4 Bayesian Inference

Inference refers to the process of computing the answer to a query in the

Bayesian network. There are two main types of Bayesian Inference tasks: belief

updating and belief revision [39,43]. The objective of belief updating is to calculate

P(HIE), the posterior probabilities of query nodes H, given some observed values of

evidence nodes E. The task of belief revision is about finding the most probable

instantiation of all or some of the hypothesis variables, given the observed evidence

[21,7]. There are two types of belief revision: most probable explanation (MPE) and

maximum a posterior hypothesis (MAP). MPE is about finding maximum probability

assignment to all hypothesis variables given the evidence. MAP is more general query

and requires finding a maximum probability assignment to a subset of hypothesis

variables given the evidence. Although MAP query is more general, MPE is a special

case because it is computationally simpler and thus should be applied when

appropriate [8].

Researchers have developed various kinds of exact and approximate Bayesian

network inference algorithms. Some of them are particularly designed for certain

applications. Next, we briefly summarize three popular Bayesian Inference algorithms.

For polytree like structure, there is an efficient message propagation inference

algorithm. It is exact and polynomial complexity in the number of nodes [39,43]. The

most popular exact Bayesian network inference algorithm is Clique-tree message

passing algorithm [30,25]. It is also called "Junction tree" algorithm. It works

efficiently for sparse networks. Its complexity is exponential in the size of the largest

clique of the transformed undirected graph. Symbolic probabilistic inference (SPI)

views probabilistic inference as a combinatorial optimization problem, the optimal

factoring problem. The performance of different Bayesian inference algorithms

depend on the network characteristics: size, connectivity, skewness of the conditional

probability table [211.

Inference algorithms for arbitrary Bayesian networks are impractical for large,

complex belief networks. However, Inference algorithms for specialized classes of

Bayesian networks have been shown to be more efficient. Huang and Henrion present

an efficient search-based algorithm for approximate inference on arbitrary, noisy-OR

belief networks [24].

3.4.1 MPE in Our Bayesian Network

Once the Bayesian network is specified, boundary detection can be formulated

as finding the MPE that is the most likely assignment to all E nodes in our Bayesian

network given some observations {E31, Ej2,... = true}. In the MPE, all the edges on

the object boundary should be set to true.

= argmax P(e,v) = argrnaxP(e)flP(v = true pa(v)) (39)

41

The problem of how to determine exact conditional probabilities for the

network is shown to be unimportant, since the goal is to find the most probable

configuration of edges in the graph, not to calculate absolute probabilities. The most

probable configuration of edges is a closed contour in the image or loop in the graph.

Determining the general case MPE is known to be NP-hard [5]. Recently, it

has been proved that even finding the MPE of a two-level belief network in general is

NP-hard [49]. After transforming weighted image graph into our Bayesian network,

the size is very large. For example, a general real 256 by 256 image has more than

36,000 nodes, including both the E-nodes and V-nodes. In the following, we show two

methods for finding the MPE in our Bayesian network. The first is computing the

exact MPE without evidence using available inference algorithm and software. The

second method is an efficient MPE algorithm we developed for this problem, which

specifically designed for finding single loop with evidence in our Bayesian network.

3.4.2 MPE without Evidence

After formulating our research problem into Bayesian network inference, we

first want to compute the exact MPE without evidence. To solve this problem, we use

the well known Bayesian Inference algorithm and available free/commercial library.

Since our network is very sparse, clique tree message passing algorithm, the fastest

known exact Bayesian Inference algorithm, should be the best choice [21].

We use Netica for computing the exact MPE, which is the world's most widely

used Bayesian network commercial software. It uses the clique tree message passing

42

algorithm for exact probabilistic inference in a compiled Bayesian network [411.

"Compile" means transforming the Bayesian network into a large set of data structure

called "junction tree". Bayesian Inference is done by the message passing algorithm

operating on the underlying junction tree structures. The size of Bayesian network that

Netica can handle depends on the amount of memory required for compiling the whole

network into junction tree structures.

There are advantages and disadvantages of using Netica. The advantages are

that it is robust and standard. It is not an easy task to implement the junction tree

message passing algorithm from scratch by ourselves. We also need to make sure the

junction tree message passing algorithm could practically handle our problem. The

disadvantage is that it is a general algorithm and not specifically designed for our

problem. When our network is larger than a certain size, Netica can not compile it into

a junction tree structure due the huge memory requirement.

To find out the computation limitation of Netica on our problem, we tested

different sizes of our Bayesian network. The maximum number of nodes that Netica

can handle is about 1300 nodes totally. When it is above that range, Netica will report

an error indicating shortage of memory during complication. Figure 3.9 shows an

example of exact MPE computed by Netica. Without any evidence, there are three

loops automatically highlight three object boundaries respectively. Figure 3.8 shows

an example of automatic highlighting, computing MPE without evidence, with the size

of 1044 nodes in total.

43

(a) (b)

Figure 3.8: An example of MPE without evidence on a 128 by 128 image. (a) The
threshold image graph. The number of V-node is 422. The number of E-node is
622. The gradient magnitude of Tobogganing is threshold at 1/50 of the maximum
possible gradient magnitude. The right figure (b) shows the three loops detected by
computing the exact MPE, which correspond to the object boundaries.

3.4.3 Single Loop MPE with Evidence

3.4.3.1 Simply the problem by finding single loop

Although we can compute the MPE with existing Bayesian Inference

algorithms and libraries, it is not practical. The algorithm does not scale up and can

only handle limited size. As we mentioned earlier, the computation of object boundary

need to be fast and hopefully work real time in an interactive segmentation

environment. We need to develop our own inference algorithm, which is efficient,

scales up and specially designed for our Bayesian network. The customized inference

algorithm should be able to compute MPE of our Bayesian network with thousands of

44

node in fraction of second in a general case, like 20,000 nodes. It should also be able

to scale up in the situation of large size images.

Based on the specialized characters of our Bayesian network, we think there

may be a polynomial time algorithm that computing exact MPE for multiple loops

without evidence. It is due to two reasons. First, our network is very sparse, all the E-

nodes have degree of two and V-nodes have degree of three or four. Second, our

network has special designed CPT for V-node, which enforces simple, closed

contours. Though we have not got an efficient algorithm now, we put this on our list

of future works.

Other than working on efficient solution for this complex problem, we tried

another approach, which is reducing the computational complexity based on our

research goal. The major goal of this research is to find the object boundary in an

image for the users before or after they provide some observation. In an interactive

environment, we find that user usually only select one object at a time. Based on this

assumption, we simplify our problem to finding single loop in an image given some

evidence, though it is possible that there are multiple objects forming multiple loops in

an image.

3.4.3.2 Non-negative graph weights

We create a weighted, planar graph by simply adding edge and vertex weights

to our initial planar graph described in Section 3.1 from the corresponding probability

tables in the belief network. Since an E-node is assumed to be off prior to any

45

evidence, an edge weight we(vj, vj) corresponds to flipping an E-node from off to on

and is given by

[pE(jj)l
we(vj, v) = ml

L off(l'3)j

(3.10)
pE

Likewise, a vertex weight is given by

FI(i, j,k)l
w"(v; v, vk) =

j
=lnP(j)lnP(i,j,k) (3.11)

and corresponds to switching the node from having no parents on to having the parents

X.and X7k

If P0 > 0.5 in either Equation 3.10 or 3.11, then the resulting weight will be

negative. Search algorithms for undirected graphs with negative weights are more

computational than those with non-negative weights [1,37]. In the Intelligent Scissors

framework, Dijkstra's shortest path algorithm could be implemented to compute an

optimal solution in near linear time O(V+E) for a graph (V. E) [36,38]. Dijkstra's

algorithm assume that all edge weights in the input graph are nonnegative. Bellman-

Ford algorithm allows negative weights in the input graph. It can produce a correct

answer as long as no negative weight cycles are reachable from the source. The time

complexity is O(VE). Due to the large number of V-nodes and E-nodes, Bellman-Ford

algorithm is not fast enough for the interactive image segmentation in general.

3.4.3.3 Clipping table

For simplifying computation of MPE by allowing for efficient graph-based

search techniques, we clip the probability table. Clipping CPT table means suppress

the true prior probability value of E-node. When the value is greater than 0.5, we clip

the value to 0.5. This provides two advantages over the previous non-clipping CPT

table. Other than allowing using efficient shortest path search to compute the MPE, it

also provides length invariance for the path expansion or observation propagation.

Clipping probability tables of both the V-node and E-node in our Bayesian

network make the cost of edges during the graph search non-negative. All the False

probability is 0.5 in our CPT table. The maximum clipped True probability is 0.5. The

cost of flip an edge to on is always going to be positive or zero. This enable us to do

the Dijkstra' s graph search.

The clipped tables suppress all the edges that are false as the initial MPE

assignment, which means there is no user's evidence. We can think all the E-nodes are

off before user's interaction. When the user provides evidence, which turn one edge on

by setting it to True, this observation is going to propagate to the whole network.

The clipped probability tables enable length invariance during path expansion

to form closed contours. Length invariance means it should neither penalize nor

reward an object contour based on its length. Due to clipping the probability table,

some edges have equal true probability and false probability, both at 0.5. The cost of

adding this edge to path is zero. This creates long segments of zero cost, which are

those continuous high confidence edge sequences. It overcomes the tendency towards

47

small ioops if all the edges have positive cost. It does not favor longer path, because

add more high confidence edge sequences does not decrease total cost as the negative

weight situation.

3.5 Graph Search and Loop Detection

We use a variation of Dijkstra's graph search [37] on the non-negative weight

graph to find a single loop corresponding to object boundary. Given a weighted graph

and an evidence edge, the edge starts to expand to both sides and a minimum-path

spanning tree (MPST) is computed, being rooted at one of the vertex of that edge. Two

major branches are formed on both side of the edge and all paths emanate from one of

the two endpoints of the evidence edge.

' ¼ '- > -"-s '-
:' _ -? .r-'
1,

p-. -.
. ,'L .. .' '-i

. Q, .? ,,,
.s IL,....,5,
L

-:

'.;i -'-'i

TL ;''

-. -.
'-

; i. .c

I.i

("',I

Figure 3.9: Loop detection using a spanning tree. The minimum-path spanning
tree of a 128 by 128 image created using Dijkstra's graph search with a seed
edge (shown in purple). The two major branches of the seed are shown in red
and green while the edges that are excluded from the spanning tree that connect

major branches, thus forming loops that include the seed, are shown in black.
(The excluded edge forming the minimum cost loop is indicated).

The spanning tree expands to every node but not every edge. The reason is that

all the V-nodes are set to true in the Bayesian network. Excluded edges are the edges

that are not included in the spanning tree. An excluded edge connects two nodes from

different major branches and forms a loop. Generally, a loop includes edges on

branches from the two major branches of the spanning tree, the exclude edge and

evidence edge provided by the user. The cost of the loop is the multiplication of

clipped prior probability of all the E-nodes and relative probability table entries of the

V-node along the loop.

Maximization of multiplication can be transformed into minimization the sum

of the negative logarithm of Equation (3.8). Computing the MPE is equivalent to

finding the assignment that minimizes Equation (3.12).

-lnP(e,v) = armin{_ ln[ñP(ei)P(vi = true Pa(vi))]}

I n m (3.12)
= argminlnP(e1)lnP(v =truel pa(v))

i=1 f=o

After the evidence is given, the process of MPST propagation is: the

observation will propagate to all the V-nodes which are set to be true. When we find

an excluded edge that connects two branches, we compute the ioop cost and keep track

of the minimum cost ioop. Closed contour formed by two branches of the search tree.

We can propagate to all the nodes of an image, but not all the edges. The minimum

cost loop of different scale is computed during the expansion, which forms small ioops

to large ones. There is linear number of loops. The best loop is the one with minimum

cost among those "minimum cost" loops of different scales.

Following is the Psuedo code for the algorithm of single ioop MPE with

evidence:

Algorithm 1: MPE loop detection.
Input:

(v51, .., V) (Seed path.)

Data Structures:
A Active list: sorted by path cost (initially empty).
nghbr(v) (Set of neighbors of (vertices adjacent to) vertex v.)
dona(v (Boolean function: tme ifv has been expanded.
g(v) (Total path cost function from v5 to v,}

branch(v) (Major branch that v is on (initialized toO).
Vmin(v) (Neighboring vcrtex on mm cost path from v.

Output:
Edge specifying most probable loop.

9mm (Minimum cost of loop formed by
Algorithm:
1 g(P) 0; 9mmn4- mit. cost for seed path vertices and mm. loop,
2 branch(V) f 1; (Set major branch of seed path end Vertices
3 branch(V8) s 2; { to different values.)
4 A V1 (Place seed path end vertices on active list.
5 while A 0 (While still nodes to cxpand(
6 v s min(A); (Remove mm. cost node v from active list.)
7 done(v) TRUE; Mark v as expanded (i.e., processed).
8 for each v1 e nghbr(v) (For each neighboring vertex m' of v:
9 if not done(v) then if neighbor not yet expanded:
10 g - g(v) + wV(v; vmmn(v), Vj) (Compute cost to neighbor.)

+ w9(v, v1);

11 if Vj C A and g' <g(v1) then (Remove higher cost
12 v1 .4A; (neighbor from list.)
13 if v1 A then If neighbor not on list,
14 g(v1) g'; opt(v) - v; set total cost, set opt. path,
15 branchvm) branth(v) (set major branch, and)
16 A 4- vj; place on (or ictarn to) list.)
17 else if branth(v) branch(v) then { epanded: check for loop)
18 g(v) + wV(v; Vmjn(V), v1) (Compute cost of loop.

+ g(v1) + wV(vm; V. Vmtn(Vm)) + w9(v, v1);
19 if g <g then (If new ioop cost is lower:)
20 OMPE4-(v v1); gmmng'; Set new lower cost ioop.

Figure 3.10: The algorithm of single loop IvIPE with evidence.

During the graph search, the path through a vertex is determined only when

that node is removed from the active list and expanded (i.e., the total cost to its

neighbors is computed). As such, the total path cost from a vertex v to a neighboring

vertex v, is equal to the total cost to, but not including, v, plus the vertex weight for v,

plus the cost of the edge from v to v (see line 10 above). If during expansion, the

neighboring node v1 has already been expanded and is on a different major branch (line

17), then the edge (v, v,) forms a loop that includes the seed path. The total cost of that

loop is equal to sum of the total costs to both vertices, g(v) and g(vj), plus the vertex

costs for both v and vi, plus the edge cost we(v, v) (line 18). If the ioop cost is less

than the current minimum loop cost (line 19) then the minimum cost ioop is updated

(line 20).

The computational complexity of our graph search is near linear in the number

of graph edges. This attributes to an efficient hash table implementation of the active

list that allows near constant time insertion and removal of the vertices (including

removal of the minimum cost vertex). Figure 3.11 shows a plot created from several

images of the average time to compute the MPST relative to the number of graph

edges. These times were measured on a 550 MHz Sun workstation. Note that even for

large graphs with approximately 100,000 edges the total computation time is about 1/3

of a sec. For comparison, the image in Figure 3.9 is 128 by 128 pixels, has 4,436

edges, and requires approximately 0.008 seconds to compute the MPST.

51

IO

21:11
U 10 20 30 40 0 60 70 SO 90 100

4 of edges x i)O)

Figure 3.11: Plot showing time to compute the minimum-path spanning tree.
The MPE loop of the belief network as a function the number of graph edges or
E-nodes in the Bayesian network.

As we discussed earlier, it is important to notice that general Bayesian network

Inference task is NP-hard. Our algorithm is capable of computing the approximate

MPE in near linear time. This is because the way we simplify our problem as shown in

previous section. We assume there is single loop given evidence, clipping the

probability tables of E-nodes and V-nodes.

3.6 Object Highlighting Interface

Object highlighting is the interface that allows the user to interact with the

Bayesian network in real time to quickly specify object boundaries. It allows the user

to interact with belief network by providing it with observations and receiving real-

time feedback in the form of an updated MPE that displays the most probable loop

52

based on each new observation. Our Bayesian network and graph search for

computing the single ioop MPE are all implemented in the Intelligent Scissors

framework [35,36,38]. As the user moves mouse around within the image, various

objects or subobjects are "highlighted" when cursor snaps to a point on their

boundary. We can divide Object Highlighting into several steps:

Figure 3.12: Object Highlighting on the object of figures 3.4 and 3.10.

The first step is cursor snapping. When the user moves the mouse, the system

automatically snaps the mouse cursor to the edge with the highest confidence and on

the boundary of the object that user wants to highlight. The snapped edge or the seed

edge, a partial boundary, provides an evidence for the Bayesian network, which means

the variable corresponds to that edge will be set true.

The second step is creating the minimum-path spanning tree (MPST) for

computing the single ioop MPE with evidence in the image. The snapped edge, a

53

partial boundary, obtained from previous step starts to expand using our graph search.

Computation of the MPST is fast enough (even on a 550 MHz workstation) to allow

for interactive recomputation of the most probable loop as the mouse moves. Each

new cursor position specifies a new evidence edge in the graph causing recomputation

of the MPST and display of the resulting MPE loop.

Finally, the detected loop is displayed on the screen. Often, the displayed loop

defines the boundary of an object or subobject. If it corresponds to the desired object

boundary, the contour is selected by the user to press the mouse button to put an

anchored seed point.

4. Results and Discussion

This section demonstrates the robustness and generality of our Object

Highlighting technique on wide varieties of images including real world color images

with complex object boundaries, foregrounds, and backgrounds. All the results are

obtained using the single loop MPE method in section 3.4.3 with clipping tables of

both E-nodes and V-nodes.

Figures 4.1 to 4.5 demonstrate how our technique highlights the objects in

different images by single observation. In terms of speed, all the objects can be

highlighted in less than a fraction of second. As the user moves the mouse cursor close

to the target object boundary, the mouse cursor snaps to the boundary and highlights

the whole object instantly.

Single observation does not always work. For more complex object,

foreground or background, users need to provide multiple observations. Figures 4.6 to

4.10 demonstrate Object Highlighting's performance on images with varying degree

of complexity with multiple observations.

In all the figures in this section, the contours, crosshair and small circles are

overlaid on top of each image to indicate the object's boundaries and the observations

provided by the users. The blue closed contour corresponds to the final detected object

boundary. The yellow closed contour is the current highlighted object boundary. The

red crosshair is the current mouse position, which provides an observation on the edge

55

of that position. The small blue circles are the seed points to represent the observations

anchored on the object boundary.

4.1 Single Observation

All images in this section demonstrate defining an object boundary using

single observation. The images are chosen for demonstrating different kinds of

difficult situations for normal object segmentation methods.

Let's consider Figure 4.1 to illustrate the process for highlighting the pocket

knife with single observation. The process is the same as the one described in the

section 3.6. Figure 4.6a shows the cursor snapped to the object boundary to provide

the first observation. If the boundary is correct, the closed contour can be selected via

a button press, which put an anchor seed point on the boundary of object. Figure 4.6b

shows the selected closed contour in blue and the seed point as a red circle.

Figure 4.2 shows two synthetic test images with different shapes, which are

created to test how Object Highlighting performs in the presence of different shapes,

edge blurring, and white Gaussian noise. Figure 4.2a is a polygonal shape with sharp

corners and Figure 4.2b is a curved shape with varying degrees of curvature. Both the

test images have white noise with 32 gray levels standard deviation and are blurred

using a Gaussian filter with 2.33 pixel standard deviation. Figure 4.2b would be a

challenging case for the most recent salient measure techniques [40] for object

segmentation, due to the small edge segments and lack of smoothness and convexity

in the part with varying degrees of curvatures.

56

Figure 4.3 shows three object boundaries on the block image and one object

boundary on the hat image. Compared to Figure 3.8 that highlights three object

boundaries automatically, we can see the result boundaries are the same in Figure

4.3a, 4.3b and 4.3c. In Figure 4.3a, the "U" on top of the block demonstrates the

length invariance property of our boundary detection algorithm. If the algorithm

favors longer loops, the loop of the "U" will connect with the outside rectangular

boundary shown in Figure 4.3b. If it favors a short loop, it will just generate some

small local loops around the tobogganing regions. Figure 4.3d shows the utility of

contour closure constraint. There are other ioops around the hat, but those loops are

open, like the shadow areas.

Figure 4.4 shows the boundaries of stones on pavement. This figure illustrates

how our Object Highlighting produces object boundaries in highly textured

background, which are difficult for normal edge following techniques. Notice, the best

loop is still the object boundary though the shadow could form alternative loops. For

the same image, the most recent salient measure could detect the rough boundary of

the three stones in about 10 seconds [40]. Our Object Highlighting only takes a

fraction of second to correctly highlight each one.

Figure 4.5 is the color still life image. It demonstrates Object Highlighting's

generality and application to real world color scenes. The yellow rose in Figure 4.5b is

selected with a single observation and the red rose in Figure 4.5c is highlighted with

two observations. Notice, both roses have inner complexity and are on highly textured

backgrounds. The apple in Figure 4.5e is also on a highly textured background.

(a) (b)

57

Figure 4.1 Grayscale pocket knife boundary defined with single observations. (a)
Provide the first the observation. The whole boundary is selected. (b) If the
displayed boundary is correct, press mouse button and the boundary was "set"
indicating by the blue contour. The red circle marks the location of the seed
edge.

(a) (b)

Figure 4.2 Grayscale test images with single observation. (a) Boundary of a
shape with sharp corners. (b) Boundary of a shape with varying curvatures.

(a)

4.3 Grayscale block and hat images with single observa
object boundaries in the block image. (d) Boundary of hat.

(c)

(a)

I
(b)

(c) (d)

Figure 4.4: Grayscale image of stones on pavement. (a) Original image. (b) (c) (d)
Boundaries of the stone images.

(b) (c)

(a)
(d) (e)

Figure 4.5: Color still life image. (b) Boundary of yellow rose. (c) Boundary of red
rose, actually with two observations. (d) Boundary of apricot. (e) Boundary of
apple on highly textured background.

4.2 Multiple Observations

The object boundaries in images of this section are not trivial and are used to

demonstrate how our techniques deal with more complex object boundaries. All the

object boundaries in this section are defined using multiple observations.

Let's use Figure 4.6 as an example to illustrate the process for highlighting the

cow with multiple boundary observations. In Figure 4.6a there is not yet an anchored

seed so the display seed consists of the single edge as defined by the current cursor

(indicated with a white cross-hair). In this case, that single observation is sufficient to

define the cow's ear, but not the entire cow. Pressing the mouse button copies the

current display seed to the anchor network and computes the MPST using the new

anchored seed. For each new cursor position, the minimum path from that point back

to the seed path in the anchor MPST is combined with the anchor seed path to form

the new seed path for the display network, which then recomputes and displays its

MPE loop. In Figure 4.6b, the mouse has moved slightly to the left of the anchored

seed edge (now shown as a blue circle) and the snapped cursor position has defined a

new observation on the back of the cow. However, this is still not sufficient to define

the whole cow so a third observation just below the ear is added in Figure 4.6c.

Figure 4.7 is spoon image, which is another challenging case for all current

segmentation techniques. The reflection property of the spoon material produces

several saturated, bright and constant intensity areas on the spoon. Humans can

recognize it because we have knowledge and context information of the object. We

61

know what the spoon should look like and how the reflection affects the spoon, which

prevents us from confusing by the reflections.

Figure 4.8 demonstrates how our techniques deal with the problem of gaps on

the object boundary. Gaps are created by loss of contrast in some areas and cause

problems in previous local edge following techniques in image segmentation. Our

Object Highlighting solves this gap problem by providing a second observation, which

creates a seed path between the first and second seed points and goes across the gap.

There are still multiple gaps along the boundary of the egg. But the seed path set the

scaling of the loops, other loops in or above this scaling could have more gaps and

overall cost is higher than the egg's boundary loop.

Figure 4.9 demonstrates how Object Highlighting helps a normal user to edit

his own images. Figure 4.9 is the upper body of human figure in an outdoor scene,

which is randomly picked from a collection of image taken by a digital camera. This

image has misleading background and weak edges on object boundaries. Figure 4.9a

shows the boundary with the first observation and Figure 4.9b shows the human face

is defined with two observations. With two observations, both the human face and

neck could be highlighted showing in Figure 4.9c.

Figure 4.10 shows the sheep boundary defined with three observations. This is

yet another challenging case which both the sheep and background are highly textured.

There are also lighting problem on the back of the sheep and the boundary of the

sheep is not smooth. Our Object Highlighting techniques could still handle this

complex situation with only three observations.

62

(I)) (()

Figure 4.6: Color cow boundary defined with three observations. (a) A single
observation specifies a single seed edge and is sufficient to define the cow's ear,
but not the entire cow. (b) A second observation to the right of the first observation
produces a seed path between the current cursor position and the first observation,
but this is still not sufficient to define the entire cow. (c) A third observation
augments the seed path further. There are now sufficient observations to define the
cow's boundary.

Figure 4.7: Grayscale spoon boundary defined with three observations. (a) A
single observation defines most part of the spoon, but still misses two places on
the right contour. (b) A second observation on the tail to fix one. (c) A third
observation on the head to fix the other one. Now the spoon's boundary is
mostly correct defined.

(c) (d)

Figure 4.8: Grayscale egg boundary defined with two observations. (a)(b)(c) are
the observations along the egg boundaries. (d) shows the gap problem in the
zoomed area.

(a) (b) (c)

Figure 4.9 Color human face boundary defined with two observations. (a) The
first observation. (b) Two observations successfully define the human face. (c) If
the second observation is moved to lower part, it defines both the human face
and the neck.

Figure 4.10 Color sheep boundary defined with three observations.

5. Conclusion and Future Work

5.1 Conclusion

In this thesis, we have introduced a Bayesian network approach that could used

for both automatic and interactive object boundary detection. We mainly focus on

interactive object segmentation based on the near linear time graph search algorithm.

The major contributions of this work include:

1. Use of pre-segment edges and junctions of edges as the primitives for

defined variable of Bayesian network other than using the pixels, which has been used

by most other researchers. This not only reduces the size of Bayesian network but also

allows incorporating both edge and region based measures.

2. We present a two layer topology, which could naturally convert the planar

image feature graph into our Bayesian network. This thesis also presents an innovative

design of the conditional probability table of the V-nodes, constrained to find non-

overlapping and non-self-intersecting closed contours.

3. The Bayesian network formulation allows both automatic and interactive

object boundary detection. We mainly focus on interactive object boundary detection

in this thesis. We present a near linear time algorithm for finding the most probable

loop. The efficient computation allows a user to interact with the belief network to

quickly define object boundaries within a general class of images. To the best of our

knowledge, there doesn't seem to be any previous work that computes the most

probable explanation (MPE) of a Bayesian network in near linear time under certain

67

assumptions and apply the results within a real-time environment that allows the user

to interact with the belief network.

5.2 Future Work

Although Object Highlighting has dramatically decreased the time and

provided flexibility for object boundary detection, there are still possible extensions of

this work.

First and foremost is designing an efficient inference algorithm to compute

MPE of multiple objects without evidence, which utilizes the special characteristics of

our network. It should allow negative weight in the graph and also keep the length

invariance features. This would make fully automatic Object Highlighting practical in

some situations. As such, the current Bayesian network approach would provide a

framework for both automatic and interactive image segmentation.

Second, our current probability tables mainly include low level knowledge of

object boundaries, which integrates well with the Gestalt laws of proximity, continuity

and closure. The prior probability of E-nodes is only local information currently. It

would be helpful to incorporate some global information, like geometry shape

information. This would be model based automatic Object Highlighting based on the

prior knowledge of some global information. Another possible extension of the

probability table is to interactively adjust the prior probability using measured

distributions of boundary features from the current ioop and then re-compute a new

MPE loop from these learned prior probabilities.

Finally, speed up the pre-processing time for Object Highlighting technique.

Right now, the image pre-processing takes several seconds for a normal sized image.

The most time consuming step is the computing the confidence of all edges. The edge

confidence is based the weight or cost of the edges in a weighted image graph. It

would save the preprocessing time if prior probability tables of the E-nodes and V-

nodes are directly computed from edge weights other than edge confidence.

Bibliography

[1] R. E. Bellman, "On a Routing Problem," Quart. Appi. Math, 16:87-90, 1958.

[2] S. Beucher and C. Lantuéjoul, "Use of Watersheds in Contour Detection," in
Proc. Int'l Workshop Image Processing, Real-Time Edge and Motion
Detection/Estimation, 132:2.1-2.12, Sept. 1979.

[3] H. Buxton and S. Gong, "Visual surveillance in a dynamic and uncertain world,"
Artificial Intelligence, vol. 78, pp. 431-459, 1995.

[4] J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 679-698, Nov.
1986.

[5] G. Cooper, "The computational complexity of probabilistic inference using
Bayesian belief networks," Artificial Intelligence, Vol. 2(2-3), pp. 393-405,
1990.

[6] J. M. Coughian and A. L. Yuille, "Bayesian A* Tree Search with Expected 0(N)
Node Expansions: Applications to Road Tracking, "Neural Computation. Vol. 14
(8), pp 1929-1958, August 2002.

[7] B. D'Ambrosio, "Inference in Bayesian Networks," Al Magazine, Summer, 1999.

[8] R. Dechter, uBucket Elimination: A Unifying Framework for Probabilistic
Inference" In Uncertainty in Artificial Intelligence UAJ96, 1996, pp. 211-219.

[9] E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs,"
Numerische Mathematik, 1: 269-270, 1959.

[10] J. H. Elder and R. M. Goldberg, "Ecological statistics of Gestalt laws for the
perceptual organization of contours," Journal of Vision, Vol. 2, No. 4, pp 324-
353, 2002.

[11] J. H. Elder, A. Krupmik and L. A. Johnston, "Contour Grouping with Prior
Models," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
25, No. 6, pp. 661-674, June 2003.

[12] J. H. Elder and S. W. Zucker, "Computing Contour Closure," in Proc. European
Conference on Computer Vision, Vol. I, pp. 399-412, 1996.

70

[13] J. Fairfield, "Toboggan Contrast Enhancement for Contrast Segmentation," in
IEEE Proc. of the 10th International Conference on Pattern Recognition (ICPR
'90), Vol. 1, PP. 712-716, Atlantic City, NJ, June 1990.

[14] L. Fei-Fei, R. Fergus, and P. Perona, "A Bayesian approach to unsupervised
One-Shot learning of Object categories," in Proc. IEEE International Conference
on Computer Vision (JCCV), 2003.

[15] P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient Graph-Based Image
Segmentation," To appear in the International Journal ofComputer Vision.

[16] D. Fleet, "Bayesian Inference of Visual Motion Boundaries," in Vision Interface
(VI), pp. 22-26, June 2003.

[17] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton Univ. Press,
Princeton, NJ, 1962.

[18] W.T. Freeman. "Steerable Filters and Local Analysis of Image Structure". PhD
thesis, MiT Media Lab, 1992.

[19] D. Geman and B. Jedynak, "An Active Testing Model for Tracking Roads in
Satellite Images," IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 21, no. 1, pp. 1-14, Jan. 1996.

[20] S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 6, PP. 72 1-741, 1984.

[21] H. Guo and William H. Hsu, "A Survey of Algorithms for Real-Time Bayesian
Network Inference," AAAJ/KDD/UAI-2002 Joint Workshop on Real-Time
Decision Support and Diagnosis Systems. Edmonton, 29 July 2002.

[22] G. Guy and G. Medioni, "Inferring Global Perceptual Contours from Local
Features," International Journal of Computer Vision, Vol. 20, pp. 113-133, 1996.

[23] D. Heckerman, J. Breese, "Causal Independence for Probability Assessment and
Inference Using Bayesian Networks," IEEE Transactions on Systems, Man, and
Cybernetics, 26:826-83 1, 1996.

[24] K. Huang and M. Henrion, "Efficient Search-Based Inference for Noisy-OR
Belief Networks: TopEpsilon," Twelfth Conference on Uncertainty in ArtifIcial
Intelligence, Portland, OR, 325-33 1. 1996.

71

[25] F. V. Jensen, An Introduction to Bayesian Networks. Springer-Verlag, New York
NY, 1996.

[26] H. Jermyn and H. Ishikawa, "Globally optimal regions and boundaries as
minimum ratio cycles," IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 23, no.10, pp. 1075-1088, 2001.

[27] S. N. Kalitzin, J.J. Staal, B.M. ter Haar Romeny, M.A. Viergever, "Image
segmentation and object recognition by Bayesian grouping," in International
Conference on Image Processing, IEEE Signal Processing Society, 2000.

[28] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active Contour Models,"
International Journal of Computer Vision, Vol. 1, No. 4, pp. 321-331, Jan. 1988.

[29] V. P. Kumar and U. B. Desai, "Image interpretation using Bayesian networks,"
IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 18, No.
1, pp. 74-77, Jan 1996.

[30] 5. L. Lauritzen and D. J. Spiegeihalter, "Local computations with probabilities
on graphical structures and their applications to expert systems," Proceedings of
the Royal Statistical Society, Series B., 50, 154-227,1988.

[31] T. Leung and J. Mallik, "Representing and recognizing the visual appearance of
materials using three-dimensional textons," International Journal of Computer
Vision, Vol. 43, Number 1, pp 29-44, June 2001.

[32] Z. Li and B. D'Ambrosio, "Efficient Inference in Bayes Networks as a
Combinatorial Optimization Problem," International Journal of Approximate
Reasoning, ii, 55--81.

[33] S. Mahamud, L. R. Williams, K. K. Thornber, and K. Xu, "Segmentation of
multiple salient closed contours from real images," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 25, no. 4, pp. 433-444, 2003.

[34] E. N. Mortensen, "Vision-Assisted Image Editing," Computer Graphics, Vol. 33,
No. 4, pp. 55-57, Nov. 1999.

[35] E. N. Mortensen, Simultaneous Multi-Frame Subpixel Boundary Definition using
Toboggan-Based Intelligent Scissors for Image and Movie Editing, Doctoral
Dissertation, Department of Computer Science, Brigham Young University,
Provo, UT, Dec. 2000.

72

[36] E. N. Mortensen and W. A. Barrett, "A Confidence Measure for Boundary
Detection and Object Selection," in Proc. IEEE: Computer Vision and Pattern
Recognition (CVPR '01), Vol. I, Lihue, HI, Dec. 2001.

[37] E. N. Mortensen and W. A. Barrett, "Interactive Segmentation with Intelligent
Scissors," Graphical Models and Image Processing, Vol. 60, No. 5, pp. 349-384,
Sept. 1998.

[38] E. N. Mortensen and W. A. Barrett, "Toboggan-Based Intelligent Scissors with a
Four Parameter Edge Model," in Proc. IEEE: Computer Vision and Pattern
Recognition (CVPR '99), Vol. II, pp. 452-458, Fort Collins, CO, June 1999.

[39] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, California: Morgan Kaufman, 2nd ed., 1988

[40] S. Mahamud, K.K. Thornber, and L.R. Williams, "Segmentation of Salient
Closed Contours from Real Images," IEEE International Conference on
Computer Vision (ICCV), IEEE, September, 1999.

[41] Norsys Software Corp. Netica Manual, 2003.

[42] P. Parent and S. W. Zucker, "Trace Inference, Curvature Consistency, and Curve
Detection," IEEE Transactions Pattern Analysis and Machine Intelligence, Vol.
11, No. 8, Aug. 1989, pp. 823-839.

[43] J. Pearl. Fusion, propagation and structuring in belief networks. UCLA Computer
Science Department Technical Report 850022 (R-42); Artificial Intelligence,
Vol. 29, No. 3, 241-288, September 1986.

[44] Rish, M. Brodie, and S. Ma, "Efficient fault diagnosis using probing, "in Proc.
of 2002 AAAI Spring Symposium on "Information Refinement and Revision for
Decision Making: Modeling for Diagnostics, Prognostics, and Prediction",
Stanford, Palo Alto, March 25-27, 2002.

[45] S. Sarkar and K. L. Boyer, "Integration, inference and management of spatial
information using Bayesian networks: perceptual organization," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 3,
pp. 256-274, 1993.

[46] E. Saund, "Finding Perceptually Closed Paths in Sketches and Drawings," IEEE
Transactions Pattern Analysis and Machine Intelligence, V. 25, No. 4, April
2003, pp. 475-49 1.

73

[47] Shashua and S. Uliman, "Structural saliency: The detection of globally salient
structures using a locally connected network," In international Conference on
Computer Vision, pages 321-327, 1988.

[48] J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888-905,
2000.

[49] S. B. Shimony and C. Domshlak, "Complexity of Probabilistic Reasoning in
Directed-Path Singly Connected Bayes Networks," Artificial Intelligence, vol
151, no. 1, pp. 213-225, December 2003.

[50] Z. Tu and S. C. Zhu, "Image Segmentation by Data-Driven Markov Chain Monte
Carlo," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
24, No. 5, May, 2002

[51] Z. Tu, A. Chen, A.L. Yuille and S.C. Zhu, "Image Parsing," Proceedings of

international Conference on Computer Vision. ICCV'2003. Cannes. France.

[52] L. Vincent and P. Soille, "Watersheds in Digital Spaces: An Efficient Algorithm
Based on Immersion Simulations," IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 13, no. 6, pp. 583-598, June 1991.

[53] S. Wang, T. Kubota, J. M. Siskind, "Salient Boundary Detection using Ratio
Contour," Advances in Neural Information Processing Systems NIPS,
Vancouver, Canada, 2003.

[54] S. Wang and J. M. Siskind, "Image segmentation with ratio cut," IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, no. 6, pp.
675-690, 2003.

[55] M. Westling, L. Davis, "Object recognition by fast hypothesis generation and
reasoning about object interactions," 13th International Conference on Pattern
Recognition (ICPR'96), Vienna, Austria, 1996

[56] M. Westling, L. Davis, "Interpretation of complex scenes using Bayesian
networks," Asian Conference on Computer Vision (ACCV'98), Hong Kong, 1998

[57] Z. Wu and R. Leahy, "An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 15, no. 11, pp. 1101-1113,
1993.

