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1. INTRODUCTION

The calculation of heat, mass and momentum transfer is of major
importance in many problems of engineering interest. A large
number of methods for this calculation have been proposed for
the steady two-dimensional or axisymmetrical laminar boundary
layer with arbitrary external pressure distribution and constant
physical properties. The formally exact power series expansion
methods [1,2,3,4,5] and the finite difference technique [6]
produce reasonably accurate solutions, but require considerable
computation. The approximate methods of Spalding [7,8],
Pohlhausen [9], Merk [10,11] and Eckert [10] all require
significantly less numerical labor. This reduction in labor

is unfortunately accompanied by a great loss of accuracy in
many flows, such as decelerating flow.

A new method has recently been proposed by Sisson [12] which
appears to be a reasonable compromise between ease of solution
and accuracy of results. The present report presents the
application of this method to a wide range of problems. The
figures necessary for this general type of calculation are also
included.

An extensive graphical presentation of the similar solutions
to the boundary layer equations is to be found in Appendix A.
A wide range of mass transfer rate K, pressure parameter BO
and dimensionless property ratio A has been covered.

2., FORMULATION OF THE PROBLEM

2.1 The laminar boundary layer equations

The boundary layer equations may be derived from the
general equations of change expressing the conservation
of momentum, mass and energy [13]. For two-dimensional
or axisymmetrical laminar flow of a pure or binary
fluid, the steady constant-property boundary layer
equations are given by:

Equation of continuity of mass

du + v _ 0 for two-dimensional flow (1)
0xX oy



— + — =0 for axisymmetrical flow (2)

Equation of motion

2
du au 1l dp a“u
—_— 4 _ = - — — 4 ——2-
X v Y% p dx v dy (3)
Equation of energy
2
9T oT 9°T
uT— + VvV _— =035 (4)
X ay Ay
Equation of continuity of a species in a binary mixture
2
. BXA o BxA . RPN (5)
ax 5y AB 3y2
subject to the boundary conditions,
at y = 0:
u=20 (6)
v = v, (x) (7)
T = T, (8)
X, = X (9)
A Aw
and as y =+ «:
u = U(x) (10)
T =T (11)
Xy = Xy (12)

Viscous dissipation, radiation and chemical reaction
within the fluid, and the Soret and Dufour effects are
neglected. The coordinate system used is shown in
Fig. 1.
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Transformation of variables

A more convenient representation of the boundary layer
equations can be obtained by employing Meksyn's [11]
transformation of variables with Mangler's [14]
transformation included to reduce the equations for
axXisymmetrical flow to the same form as for two-
dimensional flow. A stream function, ¥, is defined
such that:

_L 3y

u = r 3y (13)
- _L3

v = r 9% (14)

This definition of ¢ immediately satisfies the equation
of continuity (1) and (2). Here, L is an arbitrary
reference length on the body in the flow system. The
factor r/L implies Mangler's transformation from
axisymmetrical coordinates. For two-dimensional flow:

r/L =1 (15)

The x and y coordinates are transformed by:

X 2
£ =f Hlx), o ax (16)
o Us L°EL
1
Re 2 U(x) r vy
n= G Tt (an

where U(x) is the velocity of the fluid at the edge of
the boundary layer, U_ is a reference velocity and

UL 18
Re = 5 (18)

The stream function is now written:

1

2c 2
Vix,y) = UL (B2 £(n,8) (19)



Substitutions of the definitions (16), (17) and (19)
into equation (3) yields a third order, non-linear partial
differential equation

[ BN ] [ ] [ I | ' af' vy 9f
f + £f £ + 1 -f £ = 2 f —— - £ — 20
B ( ) g oE BE) (20)

where the prime indicates differentiation with respect to
n. The parameter B is defined by:

28 dU(x)
= 21
B U(x) dt (21)

The velocity components in terms of the transformation
variables are:

u(x) £ (n,£) (22)

u(x,y)

D UG e 2 2y (g - g (23)
L (2ERe) ™ X3

v(ix,y)

The boundary conditions on equation (20) may now be
written:

at n = 0,
£ =0 (24)
L
If Vul (2¢Re)
+ — = -
£+ 28 o3 o) (25)
and as n > o,
£ a1 (26)

Equations (4) and (5) will be transformed by introducing
the following dimensionless profile functions:

T R - T
(x,y) w

Ty (8 = (27)




Xp (%,Y) = Xp

I =
ap (Nr &) N (28)
A Aw
and defining:
v
AT =3 (29)
v

A = — (30)
AB DAB

The equations for thermal energy and mass diffusion are then
transformed to an identical form:

(] ' v oIl v of
Il + AfIl = 28N (f — - 11 —
EA | 3E ag) (31)

With the assumption that Ty, T,, Xa, and Xp are
independent of x, the boundary conditions on egBation (31)

become:

at n =0,
n=~0 (32)

as n - o,
-1 (33)

These non-linear partial differential equations (20) and
(31), then, with their boundary conditions (24), (25), (26)
and (32), (33), respectively, describe momentum, heat and
mass transfer within a steady two-dimensional or axisymmetri-
cal constant-property laminar boundary layer. The problem
in any practical application is that of finding an adequate
solution to these equations for a particular external

velocity distribution.



3.

1

3. DEVELOPMENT OF THE SOLUTION

A series solution of the momentum equation [12)

The calculation of the momentum transfer in laminar boundary
layer flows involves the substitution of two series into
the momentum equation (20).

The following series are defined:

[o0]

B(E) = B, (E) + Z an (£) By (8,) (34)
n=1 ‘
and
f(n,&) = fo(n,BO) + z an(E)fn(n,BO) (35)
n=1
For convenience, al is defined as
a, = 2¢& iﬁg (36)
1 dg

At the present time, the a_ for n > 2 are not of interest.
However, they will have similar arbitrary definitions.
Substitution of series (34) and (35) into equation (20)
produces the ordinary differential equations:

[} [}
+ - = 0
£, * £y £ B (1 - ££) (37)
and
[ I B ) [ B | [} [ ] [}
£ + fF£f - 2(8 + 1)f f + 3f f
1 0 0 0 1
[}
£ "o £ "o 1 - f £ (38
= - - Bl( - 0-0) )

0 BBO 0 880

The function B; may now be defined by setting the
boundary conditions on equation (38) such that



at n= 0,

£, =0 (39)

£1 =0 (40)

fi'= 0 (41)
and as n » o,

fi > 0 (42)

Similarly, if the a, are chosen so that the Bh appear as
free constants in the equations defining the fhs it will be
possible to define the B, by setting the boundary conditions
for the f,, equations such that, for n > 1,

atn=20,
£, = 0 (43)
fr'1 =0 (44)
£,'=0 (45)
and as n =+ o,
fr'1 > 0 (46)

Thus it may be seen that the f, for n > 1 make a zero
contribution to the boundary conditions (24), (25) and (26)
on the momentum equation (20). They also make no contribu-
tion to f'' at n = 0, so momentum transfer calculations may

be made using only fb' at n = 0.

The boundary conditions on equation (37) may now be
written:

at n =0,

v.. L L
fo __ W (2&Re) - K (47)
r U(x)

fO =0 (48)

and as n » o,

£o» 1 (49)



It may also be shown that
1

fO (0,80) = f (0,8) (50)

Extension to heat and mass transfer

Egquation (31) describing heat and mass transfer may now
be considered. The following series is defined:

[o0]

I(n,&) = Ho(n,BO) + EE aan(n,BO) (51)
n=1

Substituting equations (35), (36) and (51) into
eguation (31), it is found that

1t + — 52
HO AfOHO 0 (52)

and

. BT, , 9f,

L] ]
— 2AF . = A(f —2 - T 'y — 3AT f 53
01 (£, 28, 0 aeo) 01 (53)

' '
+ I
Hl AfO 1

Boundary conditions on these and the higher order
eguations are

at n =0,
HO =0 (54)
and for n > 1,
n =20 (55)
n
and as n » o,
n -1 56
0 (56)
and for n > 1,
Hn - 0 (57)

The function B84(&) is defined implicitly by eguation
(34), and, with knowledge of the ap, the Bn and the function
R(£), it would be possible to evaluate the function Bn(E).



Equation (35) could then be used, with knowledge of the
fn, to calculate the exact values of f(n,g&).

Various simplifications

Similar solution

When the external velocity distribution satisfies the
relationship [7]:

du (x)
dx

= ClUn(x) (58)

the substitution of the transformed variables into
equation (3) yields equation (37) and its corresponding
boundary conditions. Upon transformation both the eneray
equation (4) and the continuity of species ecquation (5)
reduce to equation (52) with its transformed boundary
conditions.

The solutions to eguations (37) and (52), with K and B
constant, are known as "similar solutions" because the
velocity profiles at all points within the boundary layer
differ only by a constant scale factor f15] . Tabulations
of the numerical solutions are available for large ranges
of the parameters B8, K and A [16,17,18,19]. Aopendix A
contains a qraphica? presentation of these solutions.
This is discussed more fully in part 4 of this paper.

Flow over a wedge [20], where

m .
U({x) = U;x (59)
2m
B0 T m o+ 1 (60)
and
m-1
(—5—)
v (x) = C, X (61)
\'N 2
comprises an important class of similar solutions. Using

potential flow theory [21], it may be shown that the
parameter B corresvonds to a wedge with an included angle
of (BOH), as illustrated in Fig. 1.

10



Merk similar method

The zero-order approximation is the truncation of
series (34) after the first term, so that

By(E) = B(E) (62)
This method was proposed by Merk [11]. The Merk similar

method unfortunately gives poor results for decelerating
flow.

First order approximation

A first-order approximation, which will also be called
the present method, is made by truncating series (34)
after the second term to obtain

dBO
g(E) = BO(E) + 28 3ar 81(80) (63)

Rearrangement of equation (63) produces an ordinary
differential equation

Zio ) Sge : to4)
1
with a boundary condition
at £ = 0
By = B (65)

At £ = 0 the right side of equation (64) is indetermin-
ate. By invoking L'Hospital's rule the boundary condition
can be found in the form of the derivative with respect
to £. Consequently,

at £ =0
dBo _ 1 das

dg 1 + 28, de

(66)

Since B(f{) can be determined by equation (21) and since
B1 is a function of B, and K, eguation (64) may be solved
to find an approximation of BO(E).

11



The extension to the calculation of heat and mass
transfer rates is simplified by the introduction of
another approximation. The series (51) defining 1 is
truncated after the first term to obtain:

H(nrngrA) = HO(H,BO,K,A) (67)

Thus 1 may be evaluated from the similar solutions at
the proper value of B3, just as f'' has been.

Since B, will in most cases be evaluated using the
approximate equation (64), there will be two approximations
used to evaluate II'. However, if values of Hﬁ for n > 1
were available, T' could be evaluated more accurately by
including additional terms in the series (51). At the
present time no values of IIJ for n > 1 are available. It
is anticipated that the calculation of heat and mass
transfer coefficients using the approximate eguations (64)
and (67) will be of sufficient accuracy for most practical
applications.

The Bl (BO,K) function

The B, function depends only on B85 and K and is determined
by so}ution of equations (37) and (38) with boundary
conditions (39) to (42) and (47) to (49). These equations
have been solved by Sisson [12] and the B1 function
tabulated for a wide range of By and K. A graphical and
tabular presentation of the By function is provided in
Appendix B.

Definitions

Transfer coefficients

The local friction coefficient, c;, defined by

aun
V55 =0
c® = ———;41—— (68)
f LUu2
mayv 0w be written in terms of the transformed variables
as
° r UZ(X) v
Cg = 2= —=— f (0,£,K) (69)

L Ui(2£Re)%

12



The local Nusselt number, Nu., defined by

T
e 1't  5yy=o0
Nu = —— = - ———— for heat transfer (70)
T k (T - T)
W 0
and
Ox
S b
Nu®_ = = - Yy Y= for mass transfer (71)
AB CDAB (XA - XA )
may be written as
nu® = = &) ' 0,e,k, 1) (72)
u,(28)”
Re

These expressions (69) and (72), then, relate the
dimensionless boundary layer functions f(n,§&,K) and
m(n,&,K,A) to the dimensionless functions cg and Nu®,
which are commonly used in momentum, heat and mass transfer
calculations.

Flux ratios

Other frequently used quantities are the dimensionless
flux ratios, R,

NA MA + NB MB (NA MA + NB MB)UOO
\ w W \
RV = 1 [ ] = (73)
5prcf Ty
N. C_ + N, C (N. ¢ + N, C_)(T. - T,)
Aw Pa Bw Pp Aw Pa Bw - v
h S
NA + NBr xAr - xAoo
RaB = - ° - = . (75)
k N
X A(A]
NA + NB W
W Y

13



where

Ju
Tw = -pv (5§)y=0 (76)
aT
= -k (= 77
. 5y o (77)

When all physical properties are constant and equal

for each species,

RV

R
AB

The last
expression:

Rate factors

The rate factors,

the flux ratios may be written as:

pv_ (x)
w = '3} X (78)
U, c3/2 £ (0,£,K)
pépvw(x) _ KAT (79,
h® m'(0,£,K,A,)
T
cv {x) KA
Y _ ' AB (80)
k9 I (O,E,K,AAB)

two equations can be summarized in the single

S| (81)
m'(0,2,K,1)

¢, are the values of the corresponding R

with the transfer coefficients evaluated for the case of

no mass transfer,

bys

AB

K = 0.
pv_ (x)
w - K (82)
prCf/Z £ (0,&,0)
o€ v_(x) KA
pw = — T (83)
h il (O,E,O,AT)
cv. (x) KA
W _ : AB (84)
Ky 11 (O,E,O,AAB)

14



The general expression is

KA
¢ = (85)

m'(0,£,0,A)

Correction factor

The correction factor, 6, is the ratio of the transfer
coefficient for mass transfer to the transfer coefficient
for low or no mass transfer:

[ ] [ ]
I S
\Y Cf' T h '/ AB kx

and by inserting the definition of the transfer
coefficients,
n (6,&£,0,A) R

4. GRAPHICAL PRESENTATION OF SIMILAR SOLUTIONS

To facilitate the calculation of heat, mass and momentum transfer
through laminar boundary layers, the similar solutions have been
presented in various graphical forms in Appendix A. Most of the
results were obtained by Elzy and Sisson [16]. The solutions,
near or at the separation of the boundary layer, were taken from
the papers of Stewart and Prober [17] and Evans [18]. Some
extrapolation was done near the regions of separated flow. The
extrapolated regions are indicated by dashed lines.

The following figures are available in Appendix A:

Figure Axes Variable Parameter(s)
a-1 £''(0,809,K) vs K ~1<Bg<5

A-2 1'(0,8,,K,.7) vs K -1<Bp<5

A-3 thru A-11  A"1/31'(0,80,K,N) vs K -1<B(<5 and .1<A<20
A-12 Oy Vs ¢y -.1<By<5

A-13 Oy vs 1 + Ry -.05<Bp<5

A-14 thru A-18 6 vs ¢ 0.<Bp<5 and .1<A<e
A-19 thru A-23 6 vs 1 + R 0.<Bp<5 and .1<A<e
A-24 thru A-32 Kvs 1+ R 0.<Bp<5 and .1<A<20
A-33 thru A-41 1'A"1/3 vs 1 + R -.15<,<5 and .1<A<20

15



5. APPLICATION OF THE FIRST-ORDER APPROXIMATION

Taylor series solution

Evaluation of the local transfer coefficients requires a
local knowledge of BO and K. The solution of the first-
order differential equation (64) provides the function Bj.
Since B; is given in tabular or graphical form, numerical
solution of equation (64) is necessary. However, it is
possible to expand B3 in a Taylor series about £ = 0.

= n
BO(E) = z: bnE (87)
n=0

The bn are found by repeated use of L'Hospital's rule to
be:

b. = B (88)
0 e=0
1 1 + 28, dg [£=0
2 0B dRB
b= (1 (A I8 g% 1 g XK __l))l (90)
2 1+ 48, 2 ag? 1 38, dz K £=0
. s 26, 3 8281
b, = (= ==5 - 6byby, — = by >
3 1 + 68, 6 dg 98, 9B
2
ar 2P ak 2 9 By g% 98
et 3K ar 9K a2 3K f-0
etc.

)
The functions f '(O,E,K) and H'(O,E,K,A) can also be
expanded in a Taylor series about & = 0.

£ (0,€,K) = cpe” (92)

[0}

n=0

16



T'0,E,K,0) = ) aye" (93)
n=0
where
cy = £'(0,£,K) (94)
£=0
¢y = (by P (0.8K) AR DE(0,E,K), (95)
98, ag K £=0
2.1 '
1 .2 3°f (0,&,K) 3f  (0,&,K)
c. = — (b 2b
2 1 2 2
2 98, 38,
" 2 2 11 2 [N}
JL:L S (OéE,K) , d g 3f (o,g,K)) (96,
as 9K ag IK £=0
a = 1'(0,E,K,N) (97)
0 £=0
a) = (b, MACEHN ok 31 (o,a,K,A))’ (98)
38, ag 9K £=0
2 1 ]
d2 _ % (bi a°ll (OIEIKIA) + 2b2 oll (OIE;IKIA)
38, 38, -
ak. 2 321" (0,£.K,1) . a’K al'(0,£,K,A)
+ (_) IEI [ + 2 Igl ’ ) (99)
ag dK2 dg 3K £=0

The coefficients rapidly increase in difficulty of
computation, which, coupled with the slow convergence of
the series, limits the range of an exact solution of
equation (64) to the region near § = 0. The first few
terms are valuable in certain approximations as will be
shown in Section 4.4. Table 1 contains some o% the
partial derivatives necessary for the evaluation of the
above coefficients. The partials are tabulated for several
of the most commonly used By, K and A. The evaluation of
the partials was carried out numerically with a differenti-
ated Stirling's interpolation formula.

17
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Table 1. Derivatives for Tavlor series coefficients
* 52 2 * % % 2
0By 078 ! K* 5 £ 31’ (.7) 371 (.7)
3 K 28, 28,2 28, 28> 28, 284°
0 - .5 ~.149 .429 1.00 -1.29 .102 -.332
0 .0 -.272 1.34 1.30 ~3.05 .209 -.858
.5 - .5 -.0515 .0850 .652 - .389 .0468 ~.0509
.5 .0 -.0636 .125 .705 - .507 .0674 -.0948
.5 .5 -.0671 .148 .725 - .580 .0871 -.152
1.0 -1. -.0214 .0224 .482 - .160 .0220 ~.0134
1.0 - .5 -.0257 .0304 .514 - .197 .0300 -.0221
1.0 .0 ~.0287 .0376 .537 - .228 .0389 -.0341
1.0 .5 -.0285 .0392 .541 - .239 .0455 -.0455
¥ 2.1 ' 2_1 ' 2.1 J 2.1
91" (.01) 91 (.01) 3T (.05) 3“NM (.05) 8N (0.1) 9%m (.1) a7 (10.) 98°m (10.)
2 2 2 2
Bo K 38, 38, 38, 38, 38, 38, 38, 38,
0 0 .720859 -.0395 . 0339 ~.150 .0580 -.252 .754 -3.04
.5 0 .00237 -.00386 .00981 -.0154 L0172 -.0264 .258 - .332
1. 0 .00125 -.00128 .00530 -.00524  .00945 =-.00912  .158 - .122
* R 1 K
Cl is Bl(BO, )
xx  f'' ig f"(o,eO,K)
xxx ' (.7) is H'(O,BO,K,.7)




Numerical solution

Discussion of differential equation (64)

The most accurate values of the local coefficients are
obtained by solving equation (64) numerically to obtain
the function Bg(£). Since the right side of equation (64)
is indeterminate at £ = 0 difficulties are sometimes
incurred in numerical solution. For the case of ideal
potential flow around a cylinder with no mass transfer,
not even such simple techniques as Euler or Runga-Kutta,
give a stable solution. However, the external velocity
profile U(x)/U, = 1 - x/L offers no problem. It is
possible to avoid the instability by using the Taylor
series expansion of Bo(g) for a short distance and then
continue on to separation with numerical integration.

Sisson [12] circumvented the instability by calculating
Bp(&) at station n+l from

B = 60 + 1 (100)
n+l n 5.h + 2€n+%61n+

e

where

and

(102)

h
t&n t 35

The accuracy of equation (100) has been compared with
Runga-Kutta and Euler's integration methods for the case
of no mass transfer and U(x)/U, = 1 - x/L. The results
are given in Table 2. The close agreement of the methods
indicates that equation (100) provides sufficient accuracy
for most engineering applications.

19



Table 2.

Comparison of Sisson's integration

formula (100) with Runga-Kutta and

Euler's methods

20

U(x)/U, =1 - x/L, K = 0 and Ag = .002
Bo Bo Bo
£ Sisson's formula (100) Runga-Kutta Euler
.02 -.03247 -.03247 -.03246
.04 -.06623 -.06623 -.06621
.06 -.10109 -.10109 -.10105
.08 -.13663 -.13663 -.13661
.1 -.17197 -.17197 -.17200
11 -.18890 -.18889 -.18900
116 -.19828 -.19827 -.19850



Procedure for solving differential equation (64)

An outline of the integration procedure is given below
for a general single integration step. For the first
step, & and By will be determined by the boundary
condition (65).

Given: values of En and By
n

Determine: values of gn+l and 60
n

Step 1
Choose a step length h and calculate gn+l using equation (101).
Step 2

Use eguation (21) to calculate Bn+%' which is B evaluated
at

h
(£, + )
Step 3
For the first trial, evaluate Bl at BO and Kn+%'
n+% n

For successive trials, evaluate Bl using BO evaluated
from n+k n+k

8, = 2(8g  + Bg) (103)

Y 0

0n+1/2 2 0n+1 n
Step 4
Calculate BO using equation (100).

n+l

Step 5
If the change in the calculated values of B is within
the desired error limit, accept the last n+l
value of 3, . Otherwise, repeat Steps 3 and 4.

n+l

The orocedure may now be repeated for the next integration
step by starting at Step 1.

21



Procedure for calculation of local coefficients

The present method may be applied to the practical

calculation of momentum, heat and mass transfer coefficients

using the stepwise procedure outlined below.

Given: Uu(x), vw(x) and the fluid properties
Determine: the local transfer coefficients
Step 1

Determine £(x) using equation (16) and U(x). Then find
a convenient method of determining x(§):

a. analytically

b. as a successive approximation

c. vlot x vs £

Step 2

Determine B(£) using equation (21) and U(x).

Step 3

Determine K(&) using equation (47), vw(x) and the fluid
oroperties.

Step 4

With B(&), K(&) solve equation (64) using integration
formula (100) to obtain Bo(g).

Step 5

[ ]
Evaluate the dimensionless oradients f, (0,8,,K) and
Hb(O,BO,K,A) at the calculated values of Bp(g) and K(¢)
using Fig. A-1 through Fig. A-11 or tables of similar
solutions [16,17,18,19].
Step 6

® .

Calculate the transfer coefficients c; and Nu using
equations (69) and (72).

Average coefficients for heat and mass transfer

The average heat or mass transfer coefficient is given by
the integral expression:
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Nu® = ———— (104)

Expressing the differential area in terms of x and then
substitution of equation (72) for Nu® yields:

f'(%) 2 1
{ 2 (E) U(X) 1 (O,E,K,A) d(§)
b}<§) LU V2E L
L
Nu®//RE = — . (105)
f"(f) r x
2§ aE)
L L
(%)
LYy

or introducing the transformed variable £&:

"2 ' (0,8,K, M) ar
. Jg_ V2E
Na®//Re = — 2 = (106)
i
2 r X
fx T d(f)
(%)
Ly

Since the step-by-step procedure of Section 5.2 leads to
a tabular function for N1'{(0,£,X,A) equation (106) must be
evaluated numerically.

Replacing 0I'(0,£,K,A) in ecuation (106) with its Taylor

series, equation (93), and then integrating in the
numerator gives:
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_ /T
Nu®//Re = (do(Eé/z - ai/z)

&)
L,
d d
“1..3/2  .3/2 ~2, .5/2 5/2 .
+ 37(E) e ) vsey T - e+ ) (107)

Truncation of this series after one term produces good
results. This approximation is compared with numerical
integration of the local coefficients in the examples in
Sections 8.2, 8.3 and 8.4. The two methods usually differ
from three to ten per cent. It is also shown how the
addition of two more terms reduces the difference to
around one per cent.

A modification of the Taylor series approach to average
calculations is the truncation of equation (93) after the
third term and the addition of an empirically fitted term.

S

n'(0,8,K,A) = dg + d;& + a,6% + age (108)

S

The coefficient d. and exponent s may be found by forcing
equation (108) to meet two specifications:

1) Eguation (108) must give the correct H'(O,E,K,A)

for & = Esep'

2) When inserted into equation (106), equation (108)
must yield the correct Nu®/vRe for the range ¢ = 0
to £ = gsep'

Values of the exponent s for various cases are listed in
Table 3. It is suggested that s be taken as equal to ten
if no better information is available. Then, knowing

H'(O,E,K,A)Sep, dg can be computed from:

2 yyel0 (109)

d = (H (OIEIKIA) sep sep

3 sen d0 - dlE - d2E

sep

Combining equations (106) and (108) and integrating gives:
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/3 172 172, 91 32 372

Nu®//Re = = (Qp (65" = 8777 + S7(&57 7 + £77%)
o I a®
L
(5
L
d, 5/2 5/2 dq 21/2 21/2
AP P PER I ol -7 (110)

Equation (110) has been used in the examples in
Sections 8.2, 8.3 and 8.4. 1In all three cases the error
was reduced to less than one per cent. However, when
an'(o,&,K,A) is positive at £ = 0, the addition of the

dg empirical term does not greatly improve the
results. It can even give slightly worse results as 1is
shown in the example of Section 8.4.

Calculations involving R, ¢ and 6

In manv engineering problems R(x) is known instead of

v, (x). The following step-by-step procedure may be used.
Given: U(x), R(x) and the fluid properties
Determine: the local transfer coefficients

Step 1

Determine £(x) using ecuation (16) and U(x). Then find

a convenient method of determining x(§&):

a. analytically .

b. as a successive approximation

c. a plot of x vs §

Step 2

Determine B(&) using equation (21) and U(x).

Step 3

Determine R(£) from R(x) and the relationship between
x and £ found in Step 1.

25



Table 3. Exponent s for various cases

26

U(x) /U, r{x)/L K A S

1 - x/L 1 0 .01 10.1

1 - x/L 1 0 .05 8.7

l1 - x/L 1 0 .1 8.3

1 - x/L 1 0 .7 7.2

1 - x/L 1 0 10. 7.8

2 sin x/R 1 0 .01 11.5
2 sin x/R 1 0 .05 10.7
2 sin x/R 1 0 .1 9.6
2 sin x/R 1 0 .7 8.8

2 sin x/R 1 0 10. 8.9

2 sin x/R 1 .5 .7 8.4
2 sin x/R 1 -.5 .7 9.2

1.5 sin x/R sin x/R 0 .01 27.4
1.5 sin x/R sin x/R 0 .7 11.1
1.5 sin x/R sin x/R 0 10. 10.8
1.5 sin x/R sin x/R 5 .7 8.8
1.5 sin x/R sin x/R ~-.5 .7 13.3



Step 4

Choose a step length h and calculate £, 47 and Ep+k from
equations (101) and (102) respectively.

Step 5

Use equation (21) to calculate B+l which is B evaluated
at En+%. )

Step 6

Estimate Kp4k by extrapolating from the values of K
at the previous stations. Newton's formula for 3-point
extrapolation would be:

Kpgy = 3K, - 3K o + Ky 9 (111)
In order to begin at station n=0 use:
h dK
K, = K < (112)

0 ¥ 2 dgle=0

Ny

Step 7

For the first trial, evaluate Bln+; at Bon and KpyL.
2 .
For successive trials, evaluate Bln+% by using BOn+%

calculated from equation (103).

Step 8

Calculate Bon+1 from equation (100).

Step 3

If the change in the calculated values of 80n+1 is within

the desired error limit, accept the last value of Bon+1°
Otherwise, repeat Steps 7 and 8.

Step 10

Locate Kp41 in Fig. A-24 through A-32 using R(£,47) and
Bon+l'
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Step 11

Interpolate K from:

n+%

ool —

3
+ 4 K -

3
K =3 K n

N+ K (113)

n+1l n-1

If this Kp,1 agrees with the Kptl used in Step 7 within
the prescribed error limits, accept the last B +1
calculated in Step 8. Otherwise, use the Kp4i n
calculated from eguation (113) and repeat Steps 7-11
until acreement for Kp+k is attained.

Step 12

Evaluate the dimensionless gradients fé'(O,BO,K) and
m'(0,Bqg,K,A) at the calculated values of Bp,,; and
Kp+1 using Fig. A-1 through A-11 or tables

of similar solutions [16,17,18,19].

Step 13

Calculate the local transfer coefficients c; and Nu.
using equations (69) and (72).

Repeat Steps 4-13 until separation occurs or the region
of interest has been covered.

6. MOMENTUM TRANSFER RESULTS OF THE FIRST-ORDER
APPROXIMATION AND COMPARISONS WITH OTHER WORK

The circular cylinder with U(x)/U, = 2 sin x and K = 0

Fig. 2 shows the results of momentum transfer calculations
made using the first order approximation with the external
velocity distribution of U(x)/U, = 2 sin x, which is
predicted by votential flow theory for a circular cylinder
in crossflow. Also shown are the results of calculations
made by the approximate methods of Merk [11], Eckert [10],
Spalding [7] and Pohlhausen [15], by the series methods of
Blasius [15] and Gortler [3] and by the continuation
method of Gortler and Witting [22]. The separation points
predicted by these different calculations are presented in
Table 4.

The present method shows good agreement with the Blasius
series and the calculations of Gortler and Witting. The
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Table 4. Separation points with U(x)/U_ = 2 sin X

and K = 0

Method Separation Point
Fckert [10] 1.626
Merk [11] 1.661
Spalding [7] 1.768
Blasius [15] 1.898
Gortler and Wittinag [22] 1.90
Present method 1.902
Pohlhausen [15] 1.912
Gortler series, 6 terms [3] 2.052
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Merk and Eckert similar methods are reasonably close out
to x = 1.4, where they fall off rapidly. Spalding's
method is in reasonable agreement out to x = 1.6, where
it also falls rapidly. Pohlhausen's method is low in
the region near the stagnation point and somewhat high
in the region near separation, although it predicts
separation closely. With six terms, Gortler's series
does not converge adequately for x > 1.6. Thus, for
this case, the first-order approximation appears to give
substantially better results for momentum transfer
calculations than do other approximate methods.

The velocity distribution U(x)/U, = 1 - x"

The results of momentum transfer calculations by the
present method for the external velocitv distribution

U(x)/U_ = 1 - x are shown in Fig. 3. Also shown are the
formally exact calculations of Clutter and Smith [6] and
Gortler and Witting [22]. Calculations made using the

Merk similar method are also shown, for they represent
the zero-order approximation and thus are of special
interest. Table 5 compares the predicted separation
point with that predicted by other investigators. See
the example in Section 8.2 for sample calculations.

Calculations made by the present method and by Gortler

and Witting [24] for U(x)/U, = 1 - xM, with n = 2, 3, 4,
and 5, are shown in Fig. 4. Table 6 gives the separation
points predicted by several methods. Except for Spalding's
method, the Merk similar method and the present method,

all are considered formally exact.

For n = 1, 2, and 3, there is reasonably good agreement
between the present method and the formally exact methods,
although it appears that the present method is slightly
high in the region just before separation. For n = 4 and
5, the nresent method is significantly higher than the
calculations of Gortler and Witting. However, the latter
calculations are less reliable for these values of n
because only two terms could be used in Gortler's series
although Witting's numerical continuation was started
relatively earlv [23].

The velocity distribution U(x)/U, = (1 + x) 1
Yomentum transfer calculations for the external velocity

distribution U(x)/U, = (1 + x) ™D have been carried out
using the present method. Fig. 5 shows the results for
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Table 5. Separation points with U(x) /U, = 1 - x

Investigator Separation Point
Merk [11] 0.0867
Spalding [7] 0.1073
Leigh [23] 0.1198
Clutter and Smith [6] 0.1200
Present method 0.1241
Gortler and Witting [24] 0.125
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Table 6. Separation points with U(x)/U_ =1 - x

Exponent

n Method Separation Point

2 Tani [25] 0.271
Present method 0.288
Gortler and Witting [24] 0.290

3 Present method i 0.408
Gortler and Witting [24] 0.409

4 Tani [25] 0.462
Gortler and Witting [24] 0.485
Present method 0.495

5 Gortler and Witting [24] 0.552
Present method 0.560

Table 7. Separation points with U(x)/U_ = (1 + x) 1

Exponent
n Method Separation Point
1 Merk [11] 0.1045
Clutter and Smith [6] 0.1450
Present method 0.1534
Gortler and Witting [22] 0.161
1.5 Present method 0.0984
Gortler and Witting [22] 0.101
2 Present method 0.0725
Gortler and Witting [22] 0.075
2.5 Present method 0.0573
Gortler and Witting [22] 0.058
3 Present method 0.0474
Gortler and Witting [22] 0.048
3.5 Present method 0.0404
Gortler and Witting [22] 0.041
4 Present method 0.0353
Gortler and Witting [22] 0.036
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n = 1. Also shown are the calculations made by Clutter
and Smith [6], by Gortler and Witting [22] and by the
Merk similar method [11]. Predicted separation points
for n=1, 1.5, 2, 2.5, 3, 3.5 and 4 are given in

Table 7.

For n = 1, the first-order approximation compares quite
well with the calculations of Clutter and Smith, and
Gortler aid Witting. 1In fact, the results at every point
lie on or between these formally exact calculations. The
relatively sharp curvature in the calculations of Clutter
and Smith at x = 0.13, however, indicates that they may
have experienced difficulties with their numerical methods
and that their results past this point may not be reliable.
For the higher values of n, the present method agrees
quite well with the calculations of Gortler and Witting

in prediction of the separation points.

Axisymmetrical flow on a sphere with U(x)/U, = 1.5 sin x

An example of axisymmetrical flow, the sphere with

U(x)/U, = 1.5 sin x, has also bheen treated using the present
method. The results are shown in Fig. 6. Also shown are
the calculations by Clutter and Smith [6] and by the Merk
similar method [11]. Table 8 gives the separation points
predicted by four different methods.

In the region just before separation, 1.6 < x < 1.9, the
present method gives results significantly higher than the
formally exact calculations of Clutter and Smith. However,
the Blasius-type series employed by Schlichting predicts
separation after the first-order approximation does. Since
the Blasius series gives good results on the cylinder, the
calculations of Clutter and Smith may not be reliable in

this region. It may be noted that in this mostly accelerated
and, for 0 < x < 1.2, reasonably similar flow the Merk
similar method gives reasonably good results.

A cylinder with injection at the surface

The present method was used to calculate momentum transfer
on a cylinder with several different rates of injection at
the surface. These results are compared in Fig. 7 with
calculations made using the series method of Sparrow,
Torrance and Hung | 4]. The velocity distribution used was
a seventh-degree polynomial correlation of Elzy's [10] 3
data and is given by U(x)/U, = 1.79(x/R) - 0.36276(x/R)
+ 0.02323(x/R)5 - 0.010153(x/R) 7.
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Table 8. Separation points on a sphere

Method Separation Point
Merk |[11] 1.693
Clutter and Smith [6] 1.846
Present method 1.894
Blasius-type series [15] 1.913

Table 9. Separation points on a cylinder

with injection at the surface

Present Sparrow, Torrance
fwa Method and Hung [4]
0.137 1.482 1.479
0.697 1.434 1.428
1.771 1.350 1.349
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The parameter f 4, is a measure of the normal velocity
at the surface and 1s defined by:

v
YV /Re (114)

In this case f 5 is positive, and consequently the momentum
transfer coefficients are reduced.

The separation points predicted by these methods at various
rates of injection are given in Table 9. The results
obtained with the present method compare quite well with
the formally exact calculations made using the series of
Sparrow, Torrance and Hung.

HEAT AND MASS TRANSFER RESULTS OF THE FIRST-ORDER
APPROXIMATION AND COMPARISONS WITH OTHER WORK

Introduction

Few accurate analytical solutions are available for heat
and mass transfer in non-similar constant-property
incompressible laminar boundary layer flow, so the
calculations of heat and mass transfer by the present
method are also compared to experimental data.

Analytical solutions for the circular cylinder

Fig. 8 shows the comparison between the first-order
approximation and Newman's Blasius-series type calculations
[26] which are formally exact. The external velocity
profile was U(x)/U, = 2 sin X, K = 0 and A = .7. It is
seaon that both methods agree very well. It is instructive
to also consider the Schmidt-Wenner [27] velocity profile,
U(x)/Us, = 1.816(x/R) - 0.4094(x/R)3 - 0.005247(x/R)5, so
that the effect of the form of U(x) can be demonstrated.
Fig. 9 shows the results. Blasius series methods require
coefficients in the polynomial expansion for U(x) so that

a fifth order polynomial does not allow Newman's [26]
method to include higher order terms. As a result Newman's
results are not accurate in the range 80-90 degrees, while
the present method performs guite well.

The external velocity orofile U(x)/U, = 2 sin x was used
for the calculation of the heat and mass transfer
coefficients for the following cases:
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1) K=0, A= .01
2) K=-.5, A= .7
3) K=0, A=.7
4) K= .5, A=.7
5 K=0, A=10

The results are given in Fig. 10.

Experimental heat and mass transfer data for a circular
cylinder

Heat and mass transfer data for a circular cylinder in
crossflow taken from five investigations [27, 28, 29, 30,
31] is compared in Fig. 11 with calculations made using
the present method. The velocity distribution of
Schmidt and Wenner [27], correlated by a fifth degree
polynomial, U(x)/U, = 1.8155(x/R) - 0.4094(x/R)3

- 0.005247(x/R)>, was used in the calculations. The
parameter Nu/AO-4ReO-5 is recommended by Sogin and
Subramanian [29] for the correlation of heat and mass
transfer data taken at different values of A.

The present method shows reasonably good agreement with

the data up to the point of separation, which was calculated
to be 81.0° and which appears to vary in the data from

about 770 to 90°.

The mass transfer data of Schnautz [28], taken on a
cylinder, is shown in Fig. 12. Shown for comparison are
calculations made using the Merk [11] and the Eckert [10]
similar methods, and the present method, all with A = 0.7.
Here the Chilton-Colburn analogy [13] has been used to

convert Schnautz's data to A = 0.7. The velocity distribu-
tion of Schmidt and Wenner as given above was used in the
calculations. An additional calculation was made with the

present method using a fifth deagree polynomial velocity
distribution, U(x)/U, = 1.737(x/R) - 0.2935(x/R)3

- 0.0593(x/R)5, measured by Elzy [10] in the same wind
tunnel used by Schnautz.

Both the Merk and the Eckert similar methods agree well with
the data until shortly before they predict separation, at

x = 1.231 and 1.253 respectively. However, separation does
not occur until about x = 1.45. The vpresent method agrees
well with the data. The velocity distribution of Elzy
predicts separation slightly earlier, at x = 1.355, than
does the velocity distribution of Schmidt and Wenner,

which indicated separation at x = 1.416. Since the velocity
distributions were actually quite similar, it appears that
good correlation of velocity data may be quite important.
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Experimental transpiration coolinag data on a circular
cylinder

The series method of Sparrow, Torrance and Hung (4] and
the present method are compared in ¥ia. 13 with the heat
transfer data of Elzy [10] taken on a cylinder with
transpiration coolina. The injection parameter, £,3, iz
defined by equation (114). Two velocity distributions
were used. The velocity profile U(X)/U, = 1.665(x/R)

+ 0.0393(x/R”) - 0.1977(x/R) was used in the re~ion nea

the stagnation point. The seventh dearee nolvnorial
correlation of Elzv's [10] data, discussed earlier, was
used over the rest of the cvlinder. Gee the example in

Section 8.3 for samnle calculations of a case with a
different velocity orofile and suction.

Results for deceleratina flow

The external velocity preofile U(x)/Us, = 1 - x has been
used in the followino cases:

1) XK =0, A .01
2) K=20, A= .7
3) K=20, & =10

The heat and mass transfer results are plotted in Fioc. 14.
See the example in Section 8.2 for sample calculations
of case 2.

Results ¥for a sphere

The external velocity profile U(x)/U, = 1.5 sin x has been
used in the following cases:

1) K = 0, A= .01
2) K =-.5, A = .7
3) K = 0, A= .7
4) K = .5, L=
5) K =0, A =10

The heat and mass transfer re-ults are plotted in Fig. 15.
See the example in Section 8.4 for sample calculations
of case 4.
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8. EXAMPLES

Example 1. Similar solution of flat plate with injection

Air is flowing over a flat plate through which the

. . N . . X—L .
injection rate is proportional to (£) 7%. Determine the
local Nusselt number and local L

friction factor as a function of the blowing parameter,

(2Re,) %,

8C‘. I€<

for A = .7.
Solution

Tor a flat By = 0, % =1, and U(x)/U, = 1. As m = 0,
eguation (619 requires that v (x) = CZX"% for a similar
solution to exist. Since it 1s given that the injection
rate is proportional to (X)™% or expressing this in terms
of v, (x), L

I r wl
/ = &y e
VW(X)/ Ue C2(L) ’

the oroblem has a similar solution. The ~ther expressions
needed are:
bl bl
L "L
_} SHETIE N N T
& TJ U, L L’ L’ L
0 0
L
K = Vw(x) L (2tRe) * Vw(x) TRe
g, ¥ U(x)/U, Ug X
r ux) .2 £ 0,8,k 2 5 e
ct =2 = ( ) - == (z—) £ (0,&,K)
= LU, (2ERe) 2 Re,,

or

‘ _ [ ]
cf/ReX = vy2 £ (0,&,K)
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%l Re%l
Nu® = £ ¥ 915l<§§) ' (0,8,k,0) = (52 1 (0,€,K,1)

or

Nu®//Rey, = L0 LK)
* vz

]

For the desired K look up f @ (0,£,K) and T (0,£,%,A)
in Fig. A-1 and Fig. A-2 respectively. The local Nusselt
number and local friction factor can now be calculated.
The results are provided in Table 10.

Example 2. Decelerating flow

A system with decelerating flow has an external velocity
function, U(x)/U_, = 1 - x/L. There is no mass transferred

through the solid surface and A = .7. Calculate the local
friction factor, local Nusselt number, separation point
and averace Nusselt number for the region from £ = 0 to
separation.

Solution

The functions & and B are derived for this two-dimensional
case, i.e., r/L = 1.

~X ~X
v 12 a) - i L% ey =X .1 x?
& = U, (z) $) = (-9 dp) =5 -3 @G
or
% =1- /I -2¢
and
X
___2¢ du (X) /Ue d(g) _ _2¢ (-1) 1L _ _ 2¢
U(x) /U, X dg _ X X 28 -1
d(f) 1 e 1 :
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Table 10. Results of calculations for Examnple 1

K = gz/iﬁag £'(0,8,K) cP/EE. T (0,£,K,.7)  Nuy//Re,
0 .4696 .6641 .4139 .2927
.1 .3986 .5637 .3618 .2558
.2 .3305 .4674 .3108 .2198
.3 .2658 .3759 .2610 .1846
.4 .2049 .2898 .2126 .1503
.5 .1485 .2100 .1656 .1171
.6 .09747 .1378 .1201 .08492
.8 .01757 .02485 .03399 .02403



Since there is no mass transfer, K = 0. Table 11 shows
the results of Steps 4, 5 and 6 of Section 5.2 using a
step increment of AE = .002.

The solution may be approximated with the Taylor series
(92) and (93). The following derivations and limits are
needed:

Blg=o - Bo'g:o =0
a8 _ _ 2 a8 -
ac = m’ so that e | £=0 2
2 2
a2g 8 a2s
er__ 85 that S = -3
g2 (1 - 2¢)3 50 FNAE 3e2 |e=o0

Tables B-1 and 1 and Fig. A-1 and A-2 supply the
following:

8. | = .129105
1leg=0
e T
3B £=0
f"(O,S,K)I€=O = .4696
2£" ' (0,&,K) _ 130
%9 £=0
211
3°£ ' (0,&,K) _
52 I = -3.05
0 £=0
H'(O,E,K,A)|€_O = .4139
31’ (0,&,K,0) _ 209
9B £=0
321’ (0,&,K,A) _ _ gsg

2
880
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Table 11. Results of calculations for Example 2

9¢

[N

£ x B0 £ (c VRe) | H;(O,E,K,AT) (Nu/VRe) | (c /Re), (Nu/VRe),
.0 0.0 0.0 0.4696 = 0.4139 . w o
.01 0.01005 -0.01606 0.4483 6.213 0.4104 2.873 6.21 2.87
.02 0.02020 -0.03247 0.4257 4.086 0.4066 1.992 4.09 1.99
.03 0.03046 -0.04920 0.4015 3.082 0.4024 1.593 3.09 1.59
.04 0.04083 -0.06623 0.3755 2.443 0.3978 1.349 2.45 1.35
.05 0.05131 -0.08354 0.3476 1.979 0.3925 1.178 2.00 1.18
.06 0.06192 -0.1011 0.3173 1.612 0.3866 1.047 1.64 1.05
07 0.07264 -0.1188 0.2840 1.306 0.3797 .9410 1.36 .951
.08 0.08348 -0.1366 0.2472 1.038 0.3716 .8514 1.11 .866
.09 0.09446  -0.1544 0.2053 0.7937 0.3617 .7720 .991 .795
.10 0.1056 ~0.1720 0.1555 0.5563 0.3487 .6973 .723 .733
.11 0.1168 ~0.1889  0.0914 0.3039 0.3297 0.6209 .561 .678
.116  0.1236 ~0.1983  0.0109 0.0348 0.3000 0.5459 471 .648
.1164 0.1241  -0.19883 0.0002 0.0005 0.2957 0.5368 .466 .646

Results of numerical solution.
Results of truncation of Taylor series after third term.



Calculation of the proper coefficients, equations (94-99),
gives as approximate results:

£'(0,6,K) = .4696 — 2.07 - 6.10£2

m'(0,£,K,A) = .4139 - .332¢ - 1.44£2

The Nusselt number and friction factor predicted by these
expansions are presented in Table 11. The expansion for
n'(0,&,K,A) is also compared with the numerical integration
results in Fig. 16.

It is now possible to calculate values of Nu //ﬁg from
£ = 0 to the separation point calculated earlier
(Egep = -1164). Numerical integration of equation (105)
using II'(0,&,K,A) calculated by numerical means gives
Nu //Re = 1.53. The percent error listed after the
following approximate average Nusselt numbers uses this
Nu //Re as the true value.

—_— dO'Z‘Esep
Nu /vRe = ?2;————* = 1.61 % error = 5.2
R sep ,
— 9 372 4 5/2
. ‘/E(do gsep + T(gsep) + 5_'(gsep) )
Nu /v/Re = ” - - = 1.54
(%)
R sep
% error = .7

Using gseﬁog .1164 in equation (109) vyields,

dg = -1.32 x Equation (110) gives:
Nu //Re = 1.53
Example 3. Flow around a cylinder with suction

A cylinder of radius R rests in a stream of air which is
moving perpendicular to the axis of the cylinder. Assume
that the external velocity profile is that of Elzy [10],
U(x) /U, = 1.737(%) - .2935(%)3 - .0593(%)5. The velocity

of the air being pulled through the surface of the cylinder
is given by Vi (X)

I/Red =-.9319.
Calculate the local friction factor, local Nusselt number,

separation point and average Nusselt number for the region
from x = 0 to separation. Assume that A = .7.
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Solution

= 1 and the functions

=H

The flow is two-dimensional so
£,8 and K become:

X X
; A
| U 2 3 5

_ Uix) X, _ 1 X, _ X _ X X
g —Jf U (R) d(R) =1 ul(R) u3(R) u5(R) d(R)
0 Jo
2 4 6
= .8685(%) - .073375(%) - .0098833 (%)
B = Zg dU(X)/Uoo
U(x) /U, dag
2(.8685(%)2 - .073375(§)4 - .0098833(§)6)
_ i (1.737
Xy Xy3 _ Xy 5,2
(1.737(%) - .2935(%) 10593(%) %)
- .8805(5)% - L2065(%) ")
1
. - V) Ry (2ERe)”
U, r U(x)/U,
Xy2 _ xyv4 _ Xy 6y %
(.8685 (%) .073375(%) 10098833 (%) )

= -.9319 b4 Xy 3 X, 5
l.737(§) - .2935(§) - .0593(§)

The values needed to start the solution are

Bleg=o = 1

Klgzo = -.5

Proceeding with Steps 4, 5 and 6 of Section 5.2 with
A = .05 orovides results which are given in Table 12.
Substitution of the avpropriate results into ecguation (105)
and then integrating numerically gives Nu®/v/Regq = 1.25 for
the range from stagnation to separation.
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Table 12. Results of calculations for Example 3
£ x K Bo fo CR/Rey ' (0,£,K,h) (Nu®/VRey) /Rey)
0.0 0.0 .5000 1.0000 1.542 0.0 .7410 1.381 .38
.1 .3410 .5077 .9707 1.532 3.264 .7441 1.366 .37
.2 .4849 .5163 .9361 1.519 4.427 .7476 1.349 .35
.3 .5972 .5260 .8950 1.504 5.171 .7514 1.331 .33
.4 .6938 .5370 .8462 1.485 5.658 . 7557 1.311 .31
.5 .7808 .5494 .7884 1.462 5.946 .7603 1.290 .28
.6 .8614 .5637 .7194 1.432 6.064 .7656 1.266 . 26
.7 .9375 .5803 .6370 1.396 6.023 .7714 1.239 .23
8 1.011 .5997 .5379 1.349 5.827 .7780 1.209 .19
9 1.082 .6227 .4184 1.288 5.473 . 7855 1.175 .15
1.0 1.152 .6508 .2739 1.208 4,955 .7939 1.137 .11
1.1 1.222 .6856 .0998 1.100 4.262 .8034 1.092 .06
1.2 1.292 .7305 -.1072 .9479 3.380 .8139 1.038 .00
1.3 1.365 .7910 -.3447 .7370 2.333 .8272 .9745 .928
1.4 1.442 .8788 -.5951 .2401 .6389 .8097 .8587 .840
1.422 1.460 .9044 -.6516 .0008 .0020 .7875 .8114 .817

[Nl

Results of numerical solution.
Results of truncation of Tavlor series

after third term.



In order to calculate Nﬁ.//Red from the Taylor
series the following limits are needed:

3u
as 3
== = = -.2918
dele=0 ul2
a2g 2 1 2
——5’ = — ——Z(4Oulu5 - 39u3 ) = -.5478
dg“le=0 3 uy
u v
aK = -6 ———51——75015 /Regq) = .07296
dg|£=0 (2u)3/2 'y,
a2k ,0 21uj - léujug vy
X _ 20 5 (— V/Regq) = -.04517
B1|gmp = -0421643
3B
'é——l = -,0257
Bole=g
m'(0,&,K,A = .740987
0,8, % M|,
31 (o,a,K,A)l 0300
9B £=0
321" (0,£,%,0) |
S l = -.0221
e _
0 £=0
3§| =  .00448
3K {£=0
oll (OIEIKIA)‘ -.524
9K £=0
2 1
321 (o,g,K,A)I - 119
9K £=0
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The 1I'(0,&,K,A) expansion for three terms becomes
m'(0,&,K,N) = .74099 + .0302f + .00384£2. This expansion

is compared graphically in Fig. 17 with that calculated
numerically. The following values of Nu®//Re ; can now be
calculated. The percent error listed after the results

uses the numerically integrated value of Nu’// calculated
previously as the true value.

— o 2d0'€seg
Nu //Red = > = 1.21 % error = 3
(3)
R sep
d 3/2 4 5/2
B 2(d/Eaep + 3=(Esep)  + so(Egep) )
Nu’//ﬁgg - " = 1.24
()
© sep
% error = .8

Now that the separation point is known equation (109)
yields, ds = -.000123. Equation (110) gives

S
Nu®//Regq = 1.24

Example 4. Ideal flow around a sphere with injection

A sphere of radius R is falling at a constant velocity

through air. Potential theory gives U(X)/Us = 1.5 sin ()
for ideal flow around a sphere. Assume that K remains

constant at .5. Calculate the local Nusselt number,
friction factor, separation point and average Nusselt
number for the region x = 0 to separation. Assume A is

constant at .7.
Solution

For axisymmetrical flow around a sphere:

The functions & and R become:

X X
‘R U(x) ,r 2 X (R X X
£ =J T (2 dE) =J : 1.5 sin”(3)d(3)
= 5[2 - cos(g) (sin (%) + 2”
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.2
g = 2 AU(x) /Usm _ [2 - COS(%)(Sln (%) + 2) ] cos(%)
© U(x) /Ug ac =

1.5 sin? (%)

The necessary starting limits are

B|g=o = .5

K|€=0 =

Carryina out Steps 4, 5 and 6 of Section 5.2 with

AE = .01 gives the results which are tabulated in
Table 13. Calculation of the average Nusselt number
gives Nu®/vRey = .456

The following values are needed in order to compute
the Tavlor series coefficients:

lim
€—>Og—%—>—m
lim 2
g»og———é%»oo
dag
Bl|€=0 = .0637851
3B
ggll = -.0671
0lg=0
H'(O,é,K,A)lg_O = .262224
31" (0,&,K,A) _ 0871
98B0 £=0
521 (0,8,K, 1) e
38,2 -
0 £=0

. ds .
A plot of B vs & shows that a representative at 1s
attained at £ = .I. A good rerresentation of 8

can be acguired by letting
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Table 13. Results of calculations for Example 4

£ X By £, c$/Rey TM(0,£,K,A)  (Nu®/VReg), (nvu®//Rey)
0.0 0.0 .5000 .6594 0.0 .2622 .6423 .642
.1 . 7535 . 4477 .6206  2.828 .2574 .5717 .576
.2 .9168 L4172 .5972  3.004 .2544 .5375 .541
.3 1.034 .3877 .5739  2.993 .2513 5085 .511
.4 1.131 .3574 .5492  2.895 .2480 .4815 .484
.5 1.216 .3254 .5224  2.741 .2441 .4554 .457
o .6 1.294 .2910 .4923  2.545 .2397 .4294 .432
.7 1.367 .2535 .4582  2.314 .2343 .4028 .407
.8 1.436 .2124 4186  2.050 - .2278 .3751 .382
.9 1.504 .1670 .3717  1.752 .2193 .3452 .358
1.0 1.571 .1167 .3153  1.419 .2082 .3123 .333
1.1 1.638 .06138  .2444  1.042 .1921 .2734 .309
1.2 1.705 .00065  .1498 .5987 .1660 .2232 .284
1.290 1.768 -.05017  .0003 .0010 .0948 .1204 .262

1 Results of numerical solution.
2 PResults of truncation of Tavlor

series after third term.



0
where e0 = .5
_ d8 _
el = aEle=.1 " -.3672
e, = -.06803

The value of e, was selected so that the B approximation
gives the true“value of B at £ = 0.1. In order to
calculate dj and dp let the B derivatives needed be
given by

= e = -.3672

2

£

w Qa'Q:
|

o

-.13606

il

= 2e2

O,
|\

The 1I'(0,&,K,\) expansion becomes:
1'(0,6,K,A) = .262224 — .0284f - .0118£°

This is compared with the numerically computed n'(o0,¢,K,NA)
in Fig. 18,

Application of equation (107) to the above expansion
with both one and three terms gives the following
approximations for Nu®/v/Rey. The percentage error
listed after the results uses the previously found
average for the true value.

— 2d0 gsep :
Nu./;/Red = = .498 % error = 9.2
1 - cos (5)
R sep
1/2 dl 3/2 d2 5/2
2(d0 Ese + == £ + = £ )
ﬂ_ p 3 sep 5 sep
Nu®//Req = — = .467
1 - cos (§)Sep
% error = 2.4

¥ig. A-2 provides the value of n'(o0,&,K,A) = .09459 at
separation when K = .5. Equation (109) then aives

dg = -.008702. Now egquation (110) gives:

ﬁﬁ'//Red = .457
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Example 5. 1Injection from a cylinder with constant Rap
A gaseous species B is moving perpendicular to the axis of

a cylinder. Assume the external velocity profile is the
same as in Example 3. The conditions are such that the mole
fraction of species A remains .544 over the entire surface
of the cylinder. The Schmidt number is equal to .7. The
solubility of B in A is negligible. Calculate the local
friction factor, local Nusselt number, separation point

and average Nusselt number for the region from x = 0 to
Separation.

Solution

The functions & and B are the same as in Example 3.
Assuming ideal gas behavior, equilibrium at the surface
of the cylinder and complete insolubility of species B
in species A, we have:

xA = .544
4

X =0

AOO

NB =0
4

Substitution of these values into equation (75) gives

AT A (00} —-—
R _ W _ -544 0 = 1.19
AB N, 1 - .544
W
N. + N.  *a
A B
w W

It can be shown that:

B = B,_q = 1.0
ol_g £=0

This value of 38, and the value of Rap @llow Kl=g to be
found from Fig. A-27.

Ke_g = -5

In order to start the computation, is needed.

aK
Since Rag is constant: dgje=0
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dK _ “AB 4n’
dg A,y dE
and also
an' _an' %o an' ax

ae 38y df 9K  df

Eliminating an’ gives
dg
dx _oan’ dBO/(AAB ) an')'
& = =
dg |l &=0 880 dg Ran oK £=0
_ 1 ag an'/(AAB _an,
1 + 28, dg 3B, Rpp oK £=0
. . . dK
The followina guantities required to evaluate ac le=0 are:
Bll£=0 = .0419968
am’
§~—l = .0455
Bole=0
8,I_Il .
o | = -.354
0K " &=0
dg|
— = -.29
ael£=0 .2918
Therefore,
dK
At le=0 = -.0130

Carrving out Steps 4-13 of Section 5.3 gives results which

are tabulated in Table 14. The average Nusselt number is
found by numerical intearation to be Nu'//Red = .475.
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.243

.3410
.4849
.5972
.6938
.7808
.8614
.9375
.011
.082
.152
.222
.292

.324

Table 14. Results of calculations for Example 5

1.000
.9707
.93¢1
.8950
. 8464
.7888
.7205
.6391
.5420
.4265
.2902
.1332

-.0355

-.1032

QO -

.9692

.9540

.9357

.9136

.8869

. 8545

.8147

.7653

.7031

.6233

.5183

.3751

.1552

.0000

Ce

0.

vReD

0

.033

.726

.141

.379

.477

.449

.303

.038

.648

.126

.453

.5535

.0000

T'(0,8,K,A)

.2933
.2925
.2915
.2902
.2886
.2866
.2841
.2808
.2763
.2700
.2606
.2451
.2055

.1703

Nu//ReD

.5467
.5369
.5261
.5141
.5009
.4862
.4697
4509
.4294
.4041
.3732
.3331
.2622

.2103



9. SUMMARY

The method of calculation provosed by Sisson [12] works
well because the B1 function is defined such that it
forces f1' = 0 at n = 0. Thus the second derivative of
the stream function, which is given by the expansion

dg

(0,8) = fO(O,BO) + 2¢ az fl (O,BO) + ...,

can be anproximated verv well by similar solutions at
the value By, i.e., f5'(0,B0). The B; function has been
shown to be a function of the parameters By and K; if
eguation (35) is substituted into equation (25), the
exact form for equation (39) is given by

df
£,(0) = g or £,(0) = 13K ,
3 9841 12¢ 3 380120

so By is also a function of the parameter (BK/BBO)Inzo.
Since in most practical problems K is nearly

constant or (BK/BBO)I -0 is not large, the boundary
condition was replaceg by fl(O) = 0 as in equation (39)
so that By will depend only on By and K. This procedure
produces little error in the B unction as shown by

calculations for high rates of injection at constant
velocity from a cylinder where (3K/3Bq) ., ¥ 0.5.(See
Pig. 7.)

The most accurate results are ohtained bv solving
equation (64) by numerical means. Sisson's formula (100)
is recommended as it is both accurate and vrovides a
stable solution near & = 0.

When the separation point is unknown, the Taylor series
expansions (92) and (93) give accurate solutions near

= 0. Ecuation (107) gives very good approximations of
Nu®//Re. The results for truncation after one term are
in error by no more than ten per cent.

If the sevaration voint is known, equation (110) nrovides

an approximation of Nu®/v/Re which is in error by no more
than one per cent.
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Dimensions are given in terms of mass (M), length (L), time (t),

NOMENCLATURE

and temperature (T).

A

a
n

area of the surface, L2;

coefficienﬁs in the series (34), (35) and (51),
dimensionless;

coefficients in the series (87), dimensionless;
constant in equation (58);
constant in eguation (61);
coefficients in the series (92), dimensionless;

heat cagacity at constant pressure for species i,
L2t-2p-1;

total molar concentration, moles L°3;

local friction coefficient defined by equation (68)
or (69), dimensionless;

coefficients in the series (93), dimensionless;

binary diffusivity, th-l;

stream function, dimensionless, see equation (20);

similar stream function, dimensionless, see
equation (35);

auxiliary stream function of order n, used in
equation (35), dimensionless;

2,-1..-1

-2) T ~, see

heat transfer coefficient, (ML2t L™°t”

equation (70);
thermal conductivity of the fluid, (Mth'z)L'lt"lT"l;

dimensionless mass transfer rate defined by
equation (47);

mass transfer coefficient, moles L2
see equation (71);
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arbitrary reference length, L;
molecular weight of species i, M(moles)_l;

exponent in equation (59), dimensionless;

molar flux of species i with respect to stationary

coordinates, moles L-2¢-1,

local Nusselt number defined in equation (72),

dimensionless;

energy flux at wall, Mt'3, see eguation (77);
radius of axisymmetrical body, L, see Fig. 1;

flux ratio, dimensionless, see equation (76);

Reynolds number, UyL/v, dimensionless;
exponent in equation (108), dimensionless;
time, t;

temperature, T;

longitudinal velocity, Lt—l;

coefficients in external velocity distribution,

see Section 8.3;
constant in eguation (59);
mainstream velocity, Lt'l;

reference velocity, Lt—l;

transverse velocity, Lt‘l}

longitudinal coordinate, L;

mole fraction of species A, dimensionless;
transverse coordinate, L;

thermal diffusivity, L2t'l;

flow parameter defined by equation (21),
dinensionless;
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B flow parameter defined by equation (60) or (64),
0 dimensionless;

Bn parameters in the fn equations, dimensionless,
see equation (34);

n similar coordinate defined by equation (17),
dimensionless;

S correction factor, dimensionless, see equation (81);

A diffusivity ratio defined in equations (29) and
(30), dimensionless;

v kinematic viscosity, L2t-1;

it profile function defined by equations (27) and (28),
dimensionliess;

HO similar profile function defined by equation (36),
dimensionless;

Hn auxiliary profile function of order n, used in
equation (51), dimensionless;

£ coordinate defined by equation (16), dimensionless;

o mass density, ML_3;

To shear stress at solid surface, Mt_zL-l, see
equation (76);

) rate factor, dimensionless, see equation (80);

Subscripts

d the diameter is used as the reference length L;

sep evaluated at the separation point;

v quantity relative to momentum transfer;

w evaluated at wall or surface conditions;

o0 evaluated at n = o}

A evaluated for species A;

T or AB quantity relative to energy or mass transfer,
respectively;
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Superscripts

) denotes a gquantity evaluated at the prevailing
mass transfer conditions;

Overlines
denotes an average quantity;
A per unit mass;

per mole.
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£€Z1

~5e
~4 e
=3
—~2
=leb
~1e2
=10
~0.8
‘006
=045
~0e4
~043
=062
-0l
Ce0

Vel

TABLE B-la. THE FUNCTION B1 (Bp,K)

80 =1 ~045 =042 =0.15 ~0.1l -0405
0e4233256-1 0.203698~-1 0e¢189121-1 0.186881-1 0«184689~-1 0e¢182546-1
0¢357854-1 0e294184-1 02652071 0.260887~1 0256696-1 0e252628~-1
0¢619959-1 06456076~1 0e391344~-1 0e382170-1 0e373384~1 0e364963~1
0e138539 0.787118-1 0e615372~1 04593264-1 0e572567-1 0e553157~1
06237153 0102821 0e753552~1 0e¢720556~1 0¢690122-1 0e661975-1

0el41754 0e¢937507~-1 0.886192-1 0839889~-1 06797909-1
06173171 0105363 0988205~1 0¢930090-1 0e878128~-1
06226494 0e¢119229 04110700 0103286 06967779-1

0el36262 O0el24758 0.115076 04106792

Oelbb486 0.132856 0el121651 00112231

0«158386 0+.141896 0128769 0117980

06172783 0152176 0136534 0el24061

0191479 Oelb4225 0145105 0130504

0219983 0.179138 0e154755 0137349

0199812 0166005 Oel4asgbb7

0240398 0180071 0el152584

0200886 O0e161377

00171768

0186396

06252467

VALUES IN TABLE MUST BE MULTIPLIED BY THE POWER OF TEN

INDICATED AFTER THE NUMBER
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TABLE B-1b.

THE FUNCTION B, (BO,K)

BO 0e0 0405 Oel 0e2 0e3 Qeb
0.180448-1 0e178396-1 0e176388~-1 0el72495-1 Qel68762-1 0e165179-1
0e248679-1 0e244844~] Oe241117-1 02339731 0e227215-1 0e220814-1
0e356885~-1 0e349131-1 0e341683-1 0e327638-1 O0e314627-1 0e302546-1
0e6534921-1 0eb517762-1 0¢501590~-1 0et71899-1 0e445305-1 0.421366~1
0.635873-1 0¢611610~-1 04589005-1 0e548155~-1 0512269~1 0e48Q0525~1
0e759685~1 Oel724T744-1 0e692691-1 0e635955~-1 OQe587341-1 Qen4b5261-1
0e831394-1 0e¢789144~1 0750770-1 0¢683725-1 0e627146-1 Qe278803-~1
09101571 0e858777-1 0e812674-1 Oe733363~-1 0667606~1 O0e612238-1
069961321 06933246~1 Qe877673-1 O0e783841-1 0e707641-1 0e644535~]
0104177 06972016-1 0¢910931-1 0¢808911-1 0e727028~-1 0e659832~1
0.108910 0101155 0e944365~-1 0e833511~-1 Qe745669-1 Qeb74/79-1
064113796 04105156 0e977626-1 0e857293~-1 0¢763260~1 0e68762<7~1
O0.118814 0109165 04101025 OQe879827-1 Qe 779446~-1 0699576-1
04123933 00113126 04104166 0900592-1 0e793813~-1 07098101
06129105 0e¢116964 06107107 0.918956-1 0.805883~-1 0e717990-1
0el134260 06120574 0109746 0e934157~1 0e815113-1 0723700~1
06139297 00123811 06111952 0e945292-1 0820894-1 QeT726520-1
0el44058 06126469 O0el13552 0e951302-1 0e822559-1 0e726030-1
0el148299 0e¢128255 O0el114326 0¢950981~1 0819402-1 Qe721768~1
0e151607 04128747 06113991 0e942996-1 0810704-1 Qe713314~1
O0e153217 06127329 06112200 0e925961~-1 0e795784~-1 0700292~1
06140773 04115014 06102653 0e859796~1 O0e745180-1 0659507~1

06836340~-1 0e833402~1 OQe747354~1 066660221 0e5989485-1
0e336160-1 0e438260-1 0eb48593~1 Qe&3432¢~1

0¢130303-1 Oel74121-1 0e1999605-1

03679462 Qe&77801~2

VALUES

IN TABLE MUST BE MULTIPLIED BY THE POWER OF TEN INDICATED AFTER THE NUMBER



TABLE B-1c.

THE FUNCTION Bl (BO,K)

YA

[
[eNe)
o o
~N

WN =~ 00000000
FO OOV L WN - O

Oe5 Oe6 Oe7 O«8 0.9 1.0
0e161737~1 0.158427-1 0el55244—1 0.152180~1 0e149229-1 0el46385-1
0e214743-1 0.208978~1 0¢203498~-1 0e.198282-1 0.193313~-1 0.188574~1
0e¢291301~-1 0.280812-1 0+271008-1 0e261826-1 0.253212-1 0s245116-1
0e399717-1 0.380055~-1 0362130-1 0e345727~-1 03306691 0«316801~-1
044522661 0s6426967-1 0¢404200-1 0e383615~1 0e364922~1 0.347880~-1
0+508515-1 0e476173~-1 0e&447510~1 0e421946~1 0¢399019-1 0378349~-1
04537055~-1 0.500667-1 0¢468690~-1 0e440387-1 0¢415173-1 03925781
045650091 06524277-1 0+488809-1 0e457665-1 0¢430114-1 0+405580-1
06591437~1 0e546161~1 0507119~1 04731211 0et43263~1 Oe416844-1
0.603704~1 0¢556133~1 0e515316-1 0e479924-1 0e448957~1 0e421643-1
0¢615101-1 0¢565254~1 0e6522704~1 0.485968-1 0e453943~-] 0e425784-1
0e625420-1 0.573356-1 0e¢529142~1 0e491135-1 0.458122-1 04429185-1
066344301 0.580253-1 0e534482~1 0+495304-1 0461394~ Oe431761-1
0.641881~-1 0«585746-1 04538564-1 06498346~1 0e463655~1 0e433429-1
0e647501-1 0e589628-1 0e541227~1 04500134~-1 0.464804-1 0e434103-1
04651001-1 04591682-1 0e¢5642304-1 04500537-1 0e464737~1 04433704-1
0.652083-1 «591688~1 0e541632~-1 0e499433~1 0e463358~1 0e432155-1
0¢650443-1 04589432~1 0¢539053~1 0¢496703-1 0.460578-1 0¢429386~1
06457881 0e584712~1 0e534426-1 0e492243~1 0e¢456319~1 0e425339~-1
0e637851-1 0.577351-1 0e527627~1 0e485966-1 0e450518~-1 04419968-1
0e626404~1 0e567205~1 0+518563-1 04477810-1 0e443133-1 0e413242-1
0e592433-1 0e538255-1 0+493468-1 0e455766~1 0e423559~1 0395707-1
0e543824-1 0e497976~1 0¢459319~1 0e426308-~1 0397796-1 0e372922-1
0e¢413202~1 0.390919-1 0e369455~1 0e349474~1 0e331132-1 0e314384-1
0213745~-1 0.219971-1 0e221545-1 0e220264-1 0e217242~-1 0e213180-1
Oe575461~-2 0e659711-2 0e730684-2 04789331~2 08369832 0.875079-2

VALUES IN TABLE MUST BE MULTIPLIED BY THE POWER OF TEN INDICATED AFTER THE NUMBER
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TABLE B~1d.

THE FUNCTION B, (Bg,K)

VALUES

le2 led leb6 l.8 20 50
06140995-1 0¢135970-1 0e¢131276-1 0el26882~-1 0el22761-1 0e820571-2
06179726-1 O0el71634-1 0e164206-1 0e157367-1 04151051-1 0.934832-2
0.230307-1 0e¢217102-1 0205262-1 0e¢194591-1 0¢184928-1 0e104769~-1
0e292128-1 0e270861~-1 0e252358~-1 0e236127-1 0e221782-1 O0ell4261-1
0e317966-1 0e292591~-1 0e¢270820~-1 0251953-1 0e235458-1 0e117305-1
0e342601-1 0e312799-1 0.287603-1 06266042~-1 0e247398-1 0e¢118989-1
0353803-1 0e321768-1 0e294887-1 0272030-1 0e252372~1 0e119597~-1
04363810-1 0e329612-1 0301130-1 0277063~-1 Qe256473~1 0el119934~-1
06372221-1 0¢336016-1 0+306082-1 0e¢280940~-1 0e259539-1 0e119983-1
063756921 0¢338573-1 06307992-1 0s282381-1 0e260631~-1 0e¢119893~1
04378596-1 0e¢340643-1 0309481~-1 Q0e283455~1 0e261403-1 0el19726~-1
0.380876-1 0e¢342182-1 0e310516~-1 0e284137~1 0e261834~-1 0e119480~1
04382471-1 0e343148~1 0¢311064-1 0e¢284403-1 06261906~-1 0el19152-1
0e383323-1 Oe343497~-1 06311096-1 0e284231-1 0e¢261601-1 0ell8742-1
0.383375-1 0e¢343191-1 0e310582-1 0e283598~-1 0260903-1 0ell8249-1
04382574-1 0e342193-1 0309497-1 Q0e282486~-1 0e259798~-1 O0ell7672-1
0+380870-1 0e¢340470~1 0e307817-1 0.280878~1 0e258274-1 0¢117010-1
0.378221-1 0e¢337992-1 0305523-1 0e278761~1 0e256322-1 0ell6265-1
0e374590-1 0e334739-1 0¢302601~-1 0.276125-1 0253934-1 Oellb5435~1
0e369952-1 0¢330695-1 06299041-1 0e272965-1 0e251107-1 0elléb21-1
0e364292-1 D06¢325852~-1 0294840-1 0e269280-1 Qe247842-1 O0ell3524-1
06349912-1 0«313788-1 0e284537~1 0e260353-1 04240014-1 Oelll284~-]1
0s331612-1 0e298681~-1 0+271802~1 0¢249436-1 0.230528~-1 0108727~1
062851671 Ce260727-1 0+240076-1 0e222439-1 06207217-1 0el02732-1
0e203547-1 0el93335-1 0¢183363~-1 0e173956~1 0el65223~1 069191672
0.928026-2 0e957621-2 0970946-2 0973059-2 0e967508~-2 Oe712688-2

IN TABLE MUST BE MULTIPLIED BY THE POWER OF TEN INOICATew AFTER THit NUMBER



OREGON STATE UNIVERSITY
ENGINEERING EXPERIMENT STATION
CORVALLIS, OREGON

LIST OF PUBLICATIONS

Bulletins—
No. 1. DPreliminary Report on the Control of Stream Pollution in Oregon, by C. V., Langton
and H..S. Rogers. 1929, 15¢.
No. 2. A Sanitary Survey of the Willamette Valley, by I S. Rogers, C. A Mockmore,
and C. D. Adams. 1930, 40¢.
No. 3. The l'ropertlm of Cement-Sawdust Mortars, Main and with Variouns Admixtures,
by S _ Graf and R. II. Johnson. 1930. +0¢.
No. 4. lnterpretahon of Exhaust Gas Analyses, by S. H. Graf, G. WL Gleeson, and W, HL
Paul. 1934, 25¢.
No. 5. Boiler-Water Troubles and Treatments with Special Reference to Problems in
Western Oregon, by R. E. Summers. 1933, None available.
No. 6. A Sanitary Survey of the Willamette River from Sellwood Bridge to the Columbia,
by G. W. Gleeson. 1936. 25¢.
No. 7. Industrial and Domestic Wastes of the Willamette Valley, by G. W. Gleeson and
F. Merryfield. 1936, 30¢.
No. 8. An Investigation of Some Oregon Sands with a Statistical Stluly of the Predictive
Values of Tests, hy (. E. Thomas and S, . Graf. 1037, 30¢.
No. 9. Pruerv:mn, Treatments of Fence Posts. 1938 Progress Report on the ost Farm,
J Starker, 1938. 25¢. Yearly progress reports, 9-A, 9- B, 9-C, 9-D,
t) F B0 T3¢
No. 10. Pl‘cu])lt{\tlon Static  Radio  Interference  Phenomena Originating on Aircraft, by
E. C. Starr. 1039, 75¢.
No. 11. Electric Fence Controllers with Special Reference to Equipment Developed for
Measuring Their Characteristics, by F. A, Everest. 1939,
No. 12. Mathematics of Alignment Chart Construction Without the Use of Determinants,
by T. R. Griffith. 1940. 25¢,
No. 13. Oil-Tar Creosote for \Wood Preservation, by Glenn Voorhies. 1940. 25¢.
No. 14. Optimum Power and Economy Air-Fuel Ratios for Liquefied Petroleum Gases, by
\W. H. Paul and M, Popovich. 1941, 25¢.
No. 15. Rating and Care of Domestic Sawdust Burners, hy E. C. Willey. 141, 25¢.
No. 16. The Improvement of Reversible Dry Kilu Fans, by A. D, Hughes. 1041, 25¢.
No. 17.  An lInventory of Sawmill Waste in Oregon, by Glenn Voorlies. 1942, 25¢.
No. 18. The Use of the Fourier Serics in the Solution of Beam P roblems, by B. . Ruffner.
1944, 30¢.
No. 19. 1945 IP'rogress Report on Pollution of Oregon Streams, by Fred Merryield and
W. G. Wilmot. 1943, 40¢.
No. 20. The Fishes of the Willamette River System in Relation to Pollution, by R. E.
Dimick and Fred Merryiield, 1945, 40c.
No. 21. The b~e of the Fourier Series in the Solution of Beam-Column Problems, by
. F. Ruffner, 1945. 25¢.
No. 22. ln«luwnal and City \Wastes, by Fred Merryficld, \W. B. Bollen, and F. C. Kacliel-
hoffer. 1947. 40¢.
No. 23. Ten-Year Mortar Strength Tests of Some Oregon Sands, by C. E. Thomas and
S, H. Graf. 1948, 25¢.
No. 24, Space Heating by Electric Radiant Panels and by Reverse-Cycle, by Louis Slegel.
1948, 301‘.
No. 25. The Banki Water Turbine, by C. A, Mockmore and Ired Alerryfield. Feb 1949,
40c.
No. 26. lgnition Temperatures of Various Papers, Woodls, and Fabrics. by 8. Tl Graf.
Mar 1949, 60c.
No. 27. Cylinder Head Temperatures in Four Airplanes with Continental A.65 Engines, by
S, Lowy. July 1949,
No. 28, bielectric Properties of Douglas Fir at High Frequencies, by ). 1 Wittkopt and
M. D, Macdonald,  fuly 1949, 40¢.
No. 20. Diclectric Propertics of Ponderosa Pine at Hich Frequencics, by 1)L Wittkopf and
M. D. Macdonald,  September 1949, 40¢
No. 30. FExpanded Shale Ageregate in Structural ('ontrctu, by D. D. Ritchie and S, 1
Graf. Aug 1951. 60¢.
No. 31, Improvements in the Field Distillation of Peppermint Oil, by A. D. Hughes.

Aug 1932, 60¢.
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A Gage for the Measurement of Transient Hydraulic Pressures, by E. F. Rice.
Oct 1952. 40¢
The Effect of Fuel Sulfur and Jacket Temperature on Piston Ring Wear as
Determined by Radioactive ‘I'racer, by M, Popovich and R. W. [Peterson.
July 1953. 40¢.
Pozzolanic Properties of Several Oregon I'umicites, by C. O. Heath, Jr. and N. R.
Brandenburg. 1933, 50¢
Model Studies of Inlet Designs for Dipe Culverts on Steep Grades, by Malcolm
Karr and Leslie A. Clayton. June 1954,
A Study of Ductile Iron and ITts Response to \\'e]dmp:, by W. R. Rice and O. G.
Paasche. Mar 1955 obe.
valuatlon of Typical Ore;,on Base-Course Materials by Triaxial Testing, by
A. Ring, Jr. July 1956, 30¢.
Bacternl Fermentation of Spent ‘Sulfite Liquor for the Production of Protein
Concentrate Animal Feed Supplement, by ITerman R, Amberg. Oct. 1956.  50¢.
Wood Waste Disposal and Utilization, by R. W. Boubel, M. Northcraft, A. Van
Vliet, M. Popovich. Ang. 1938, $1. 00
Tables of Similar Solutions to the Equations of Momentum, Heat and Mass Transfer
in I_\n\mnr Boundary Layer Flow, by E. Elzy and R. M. Sisson. leb, 1967.

l‘npnu ring Calenlations of Momentum, Heat and Mass Transfer Through laminar
Boundary Layers, by E. Elzy and G. A Myers. July 1968, $1.50.

A Discussion of the Properties and Economics of I'uels Used in Oregon, by C. L.
Thownas and G. D, Keerins. 1929, 25¢

Adjustment of Auntomotive Carburetors for Economy, by S. H. Graf and G, W.
Gleeson. 1930. None available.

Elements of Refrigeration for Small Commercial Plants, by W. H, Martin. 1935,
Noune available.

Some Engineering Aspects of Locker and Home Cold-Storage Ilants, by W. H.
Martin, 1938, 25¢.

Refrigeration Applications to Certain Oregon Industries, by W. H. Martin. 1940.
25¢.

The Use of a Technical Library, by W. E. Jorgenson. 1942. 25¢.

Saving TFuel in Oregon Homes, by E. C. Willey. 1942, 25¢.

Technical \mwroadl to the Utilization of Wartime Motor Fuels, by W. H. Paul.
1944, 235¢.

Electric and Other Types of House Heating Systems, by Louis Slegel. 1946. 23¢.

Eeonomics of Personal Airplane Operation, by W. J. Skinner. 1947. 25¢.

Digest of Orepon lLand Surveying Laws, by C. A. Mockmore, M. P. Coopey,
B. B. Irving, and E. A. Buckhorn, 1948. 25¢.

The Aluminum Industry of the Northwest, by J. Granville Jensen, 1930. 25c.

Fuel Oil Requircments of Oregon and Southern Washington, by Chester K.
Sterrett. 1950, 235¢.

Market for Glass Containers in Oregon and Southern \Washington, by Chester K.
Sterrett. 1951, 25¢.

Proclegeillingséoof the 1931 Oregon State Conference on Roads and Streets. April
Sl ¢.

Water Works Operators’ Manual, by Warren C. Westgarth. Mar 1933, 75¢.
Proceedings of the 1033 Northwest Conference on Road Building, July 1933, 60¢.
Proceedings of the 1933 Northwest Conference on Road Building. June 1955, 60¢.
Review for Fnginecering Registration, 1. Fundamentals Section, by Leslie A, Clay-

ton, Dec 1935, 60¢.
Digest of Oregon Land Surveying laws, by Kenneth J. O’Connell. June 1936, 75¢.

Review for Engineering Registration, 2. Civil Engineering, by Leslie A. Clayton
and Marvin A, Ring. luly 1950, $1.23

Review for Engiueering Registration, 3. Me;hamcal Engineering, by Charles O.
Heath, Jr. Feb 19537. $1.25.

Rese)a;ch and Testing in the School of Engineering, by M. Popovich. May 1957.
25¢.

Proceedings of tlie 1957 Northwest Conference on Road Building, July 1957. $1.00,

Proceedings of the 1939 Northwest Conference on Road Building, Aung 1959, $1.00.

|{6>(;1llé(‘]l Activitics in the School of Engineering, by J. (. Knudsen, Nov 1960,
=0C.

Proceedings of the 1960 Northwest Highway Engincering Confercnce, Dec 1960.
$1.00.

No. 32.
No. 33.
No. 34,
No. 35
No. 36.
No. 37.
No. 38.
No. 39.
No. 40,
Na. 41.
Circulars—
No. 1
No. 2.
No. 3.
No. +
No. 5.
No. 6.
No. 7.
No. 8.
No. 9.
No. 10.
No. 11.
No. 12.
No. 13.
No. 14,
No. 15
No. 16.
No. 17,
No. 18.
No. 19.
No. 20.
No. 21.
No. 22
No. 23.
No. 24,
No. 25.
No. 26.
No. 27
No. 28.

Proceedings of the 1962 Northwest Roads and Street Conference, Mar 19620 $1.00.
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No. Procecdings of the Fleventh Pacific Northwest [idustrial Waste Conference- 1963,
Sept 1963, $1.00.

No. Proceedings of the 1964 Northwest Roads and Strects Conference, June 1964 $1.00.

Na. Research Activities in the School of Engineering, by | G. Knudsen, Sept, 1964,
35¢.

No. . The Use of a Technical Library, by R. K. Waldron, Oct. 1964, 33¢.

No. 13 Procecdings of the 1964 Surveying and Mapping Conference, July 1965, 33,

No. 34, Wood Residue Incineration in Tepee Burners, by R. W. Boubel, July 1905, 35¢.

No. 15, Research Activitics in the School of Engineering, 1904-66, by . G. Knudsen,
November 1966, 75¢.

No, | Indlustrial Engineering in Industry, by W. I, Engesser. Aug. 1967, 60C.

No. Procecdings of the 1966 Northwest Roads and Street Conferenee, Nov, 1907, $1.25.

Reprints—

No. Methods of Live Line ll!\\lllh)l Testing and Results of Tests with Different
Inmumxnh by I5. O, McMillan. Reprinted from Proc NW Klec 1.t and Power
Assoc,  [Y27. .ZO(,‘.

No. Some ;\noumlns of Siliceous  Matter in Boiler Water Chemistry, by R. E.
Sununers, Reprinted Trom Comhustion, Jan 1935, e,

No. Asphalt Emulsion Treatment Prevents Radio Interference, by 1. O. McMillan.
Reprinted from Electrical West. Jan 1935, None available.

No. Some Characteristics of A-C Conductor Corona, by F. 0O, MceMillan,  Reprinted
from Ficetrical Engincering, Mar 1935 None available.

No. A Radio Interference Measuring Instrument, by F. O, MceMiltan and H. G Barnett.
Reprinted from Electrical Engineering, Aug. 1935, 10

No. Water-Gas  Reaction .\pparently (mmul\ Engine Exhaust Gas Composition, by
G, W, Gleeson and WL 11 Paul. Reprinted from Nation: 1l Petroleum News.
el 1936, None availahle,

No. Steam Generation by Burning Wood, by R K. Simnters. Reprinted from Heating
amd Ventilating, Apr 19360 10¢.

No. The Piezo Eleetric Engine bdicator, hy W FL Paul and K. R. Eldredge. Reprinted
from Oregon State Technical Record. Nov 1933, 10¢.

No. Humidity and Low Temperature, by W, . Martin and E. C. Willev.  Reprinted
from PPower Plant Engineering, Feb 1937, None available.

No Heat Transfer Efficiency of Range Units, by W, 1. Walsh,  Reprinted from
Electrical Engineering. Aug 1937. None available.

No Design of Concrete Mixtures, by [ F. Waterman, Reprinted from Conerete. Nov
1937, None available.

No. Water-Wise Refrigeration, by W. H. Martin and R, E. Summers. Reprinted from
Tower, July 1938, 10¢.

No Polarity Limits of the Sphere Gap, by . 0. MeMillan, Reprinted from AITEE
Transactions, Vol 38. Mar 1939, 10c.

No Influence of Utensils on Heat Transfer, by W, (i, Short. Reprinted from Fleetrical
Engincering, Nov 1938, 10¢.

No Corrosion 5m<l Self-Protection of Metals, hy R, E. Summers.  Reprinted from
Industrial Power. Sept and Oct 1938 10¢.

Nao. Monocoque Fuselage Circular Ring Analysis, by B. I Ruffner. Reprinted from
Journal of the Aeronantical Sciences, Jan 19390 10¢.

No. The Photoelastic Method as an Aid in Stress Analysis and Structural Design, by
B F. Ruffner. Reprinted from Aero Digest. Apr 19390 10¢.

No l~'|ul Value of Old-Growth vs. Second-Growth Douglas Fir, by Lee Gabie. Reprinted
from The Timberman. June 1939, 10¢.

No. Stoichiometric  Calawlations  of  Fxhaust Gas, by Go W. Gleeson and - Foo WL
Woodfield, Ir Reprinted from National Petrolenm News., Nov 1039, 10¢.

No. The Application of Feedback to Wide-Band Guipt Amplifiers, by . AL Everest
and IL R. Johnston. Reprinted from Proc of the lustitute of Radio Enginecrs.
I"eb 1040, 1oc,

No. Streases Dite to Secondary Bending, by B i Rufiner. Reprinted from Proc of
First Northwest  Photoelasticity Conference. University of  Washington, Mar
1940, 10¢.

Nu. Wall Heat Loxs Back of Radiators, by K. C. Willey, Reprinted from Heating and
Ventilating. Nov 1940. 10¢.

No. Stress ('nnce:mr:\tiun Tactors in Main Members Due to Welded  Stiffeners, by
\W. R. Cherry. Reprinted from the Welding Journal, Research Supplement.
Dree 19410 10¢,

No Horizontal-Polar-Pattern Tracer for Directional  Broadeast Antennas. hy oA
Fverest amd \W. 8. Pritchett.  Reprinted from Proc of The [nstitute of Radin
Engineers, \Lly 1942, 10¢.

No. 25 Modern Methods of Mine Sampling, by R. K. Meade, Reprinted from The Compass

of Sipma Gamma Epsilon, lan 1942, 10e.

129



No.

No

No.

No.

No.

No. 5

No.

.20,

41

42,

43.

14,

. 46.

LA

.48,

. 49.

o
"

Broadeast Antennas and  Arravs, Calenlation of  Radiation Patterns; Impedance
Relationships, by Wilson Pritchett. Reprinted from Communications. Aug and
Sept 1944, None available.

Heat Losses Through Wetted Walls, by ¥E. . Willey. Reprinted from ASHVE
Journal Scetion of Heating, I||un< and Air Conditioming. June 1936, 10¢.

Flectrie Power in China, by F. O, MeMitlan. Reprinted from Electrical Enginecr-
ing. lan 1947, 10¢.

The Transient Euncergy Method of Caleulating  Stahility, by 7. €. Magnusson.
Reprinted from ATEE Transactions, Vol 66, 1047, 10¢.

Observations on Are Discharges at Low Pressures, by M. J. Kofoid. Reprinted
from Journal of :\]!I!Il(tl l‘ll\~m April 10480 10¢.

Planning for Power Supply, hy IF. O, McMitlan. Reprinted from

cal Engineering. Dec 19480 10¢.

Ileat Transfer Coefficients in Beds of Moving Solids, by . Levenspiel and
1. S. Walton. Reprinted from Proc of the Heat Transfer and Fluid Mechanics
Institute, 1949, 10¢.

Catalytic Dehydrogenation of Ethane by Selective Oxidation, by J. I>. McCullough
and J. 8. Walton. Reprinted from Industrial and Engineering Chemistry. July

1949, 10¢,
Diffusion Cocfficients of Organic  Liquids in  Solution from Surface Tension
Measurcments, by R, I, Olson and J. S, Walton. Reprinted from Industrial

Enginecring Chemistry. Mar 19510 10¢.

Transients in Coupled Inductance-Capacitance Circuits Analyzed in Terms of a
Rolling-Ball Analogue. by Afagnusson.  Reprinted from Vol 69, AIEE
Transactions. 1950, 10¢.

Geometric Mean Distance of Angle-Shaped Conductors, by . C. Magnusson. Re-
printed from Vol 70. NEE Transactions. 1951 I(('

Energy-— Choose It Wisely Today for Safety Tomorro\v, by G. W, Gleeson. Re-
printed from ASHVIE Tournal Section of 1leating, Piping, and ‘Air Condition-
mg. Aug 1951 10¢.

An Analysis of Conductor Vibration Field Data, by R. F. Steidel, Jr. and M. B.
Elton. AIEE conference paper presented at I’amﬁc General Mcetmq Portland,
Oregon. Aug 23, 1051, [V

The Humphreys (mhlnw Compression Foeme, by W Ho Paul and 1 B, Hum-
phreys. Reprinted from SAE Quarterly Transactions. April 19520 10¢.

Gas-Solid Film Coefficients of Ieat Transfer in Fluidized Coal Beds, by .~
Walton, R. L. Olson, and Octave Levenspiel. Reprinted from Industrial and
Engineering Chemistry, June 1932, 10¢.

Restaurant Ventilation, hy W Il. Martin. Reprinted from The Santtarian, Vol
14, No. 6. Muy-June 1932,

Flectrochemistry in the DPucific \ortln\(t by Joseph Schulein. Reprinted from
Journal of the Electrochemical Society, lune 19330 20¢.

Model Studies of Tapered Iniets for Box Culverts, hy Roy H. Shoemaker and
Leslie A. Clayton. Reprinted from Research Report 13-B, Ilighway Rescarch
Board, Waslington, D, C. 1933, 20¢.

Bed-Wall Heat Transfer in Fluidized Systems, by 0. levensoicl and J. S0 Walton,
Reprints from Heat Transfer-Research Studies. 1954, 10¢,

Shunt Capacitors in Large Transmission Networks, by E. C. Starr and E. J.
Harrington, Reprinted from Power Apparatus and Systems, Dec 1933, 10¢.
The Design and Effectiveness of an Underwater Diffusion Line for the Disposal
of Spent Sulphite Liguor, by H. R, Amberg and .\, (i Strang. Reprinted from

TAPPL July 1954, 10¢.

Compare Your Mcethads with this Survey, by Arthur 1. Roberts and lyle E.
Weatherhee, Reprinted from Western Industry, Dec 1933, 10¢.

Some Stream Pollution ’roblems and Abatement Measures Undertaken in the DPa-
citic Northwest, by . R. Amberg. Reprinted from TAPPI. Feb, 1955 10¢

Fabrication of a Zirconium:lined Reaction Vessel, by O, G, Paasche and A. ).
Killin, Reprinted from The Welding Journal. Feb 1954, 20¢.

Heat Transfer Between Immiscible Liguids, bv S. S. (:rover and J. G. Knudsen.
Reprinted rrom Chemical Engineering, No. 17, Vol 51,

How Oil Viscosity Affects Piston Ring Wear, by M, I’opovich and 1.. E. John-
son. Reprinted from Automotive Industries. January 1956. 10¢.

Intermittent Discharge of Spent Sulfite Liquor, by Herman R, Amberg and Robert
Elder. Aprtl 1956, 10¢

Hydraulics of Box Culverts with Fish-T.adder Baffles, by Roy H. Shoemaker, Tr.
Reprinted from Proceedings of the Highway Research Board, Vol 35. 1956.
. 25¢.

A Numerical Solution to Dimensional Analysis, by O. Levenspiel, N. J. Weinstein,
7. C. R. Li. Reprinted from Industrial and Engineering Chemistry, Vol 48.
Feb 1936. 23¢.

Thermal Conductivity of Liquid-Liquid Emulsions, by R. H. Wang and James G
Knudsen. Reprinfed from Industrial and Engincering Chemistry, Nov 1938, 10¢.
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No.

No.

No.

No.

No.
No.
No.

No.

No.

No.

No.

No.

No.

50,

o0,

61,

62,

(RN

OO,

0N,

69,

0.

No.

Local Shell-Side lleat Transter (oeltluu\l». in the Vicinity of Segmental DBaffles in
Tubnlar Heat Exchangers, by M. 8. Gurushankariah and J. G. Knudsen, Re-
printed from lleat Transfer ‘Chicago issue of AICHE Symposium Series. 1959
10¢.

Hard-Water Scaling of Finned Tubes at Moderate Temperatures, by H. K.
MeCluer and ). G. Knndsen. Reprinted from Heat Transfer-Chicago issue of
AICKE Symposium Series. 1939, 10¢.

Heat Transfer from Isothermal Flat Plates: An Extension of Pohlhausen’s Soln-
tion to Low and High Prandtt Number Fluids, by F. D, Fisher and ] G
Knudsen, Reprinted from Chemical Engineering Progress Synposium Serics
No. 29, 1939, 10¢.

Radio Interference Attenuation on Energized ngh\ot\g( Transmission Lines:
Lesnrenent and Application, by L. N. Stone, B, Ho Gehrig, and RS0 Gens,
Reprinted from Power Apparatus Systems, Dee 1959, 10¢.

EHV Single and Twin Bundle Conductors—-Influence of Conductor Diameter and
\tlm(l Diameter on Radio Influence Voltage and Corona Initiation Veltage,
by 1. N, Stone, Reprinted from Power Apparatus and Systems, Dec 1939, 10¢.

T.ocal \hcll Side 1leat Transfer Cocfficicuts and Pressure Drop in a Tubular Ieat
Exchanger with Orifice Baffles, by K, S, Lee and J. G. Knudsen. Reprinted
from AICLE Journal, Dec 1960. 10¢.

Rates of Ileat Transfer from Short Sections of an Tsothermal Pipe, by A, A,
Faruqui and J. G. Knudsen. Reprinted from Heat Transfer-Buffalo issuc of
ALChE Symposium Series. Mar 10961, 10¢,

Drag Coelfticients at Lm\ Revnolds Numbers for Flow ]’A:t Immersed Dodies, by
A Jones and |, G, Knudsen, Reprinted from ALChE Journal, Mar 1961, 10¢,

i Organic Polhution in Water,

& Meuasure

Persulfate Oxidizable Carbon and BOI1

by (. Merryfield, 1. Burgess, L. Purkerson, and J. K. Cars
well, Proc of 15th Purdue  Iudustrial Waste Conf.  May
1901, 10,

FEvaluation (nturn for Deep Trickling Filters, by F. J. Burgess, IF. Merrvfield,
K. Carswell, and €. M, Gilmour, l\(]mmul from Journ Water Pollution Con-
trol lulu iion, Aug 1961, 106,

Effect af Neeative Cornna Upon Formation of Positive Corona, by G, A, Pearson.
Reprinted irem Power Apparatus & Systems, Dec 1901,

Desion of the ESTAC Algebraie Computer, by J. C. Looney and M. L. Morgan.
Reprinted  from TRE Transactions o Electronic Computers, Rept 1961, 10¢.

Thermal Stresses i1 an Hdealized Wing Structure, hy Mark Levinson. Reprinted
from Journ of Aerospace Seiences, 1961, 1ie,

The ESIAC Potential-Plane Analog Compnter. by 1. C. Looney. Reprinted from
Automatic Control, May 19601, 10¢

Wood Waste Incineration, by M. Popovich, M. Northeraft, Ro W, Boubel, and
G. . Thornbureh. Reprinted from Teel Report A6l-3, Robert A, Tait Sanitary
Fugr Center. Publie Health Service, UL S0 Dept of Health, Eduocation. and
Welfare, 101, lue.

The Role of Current Distribution in Cathodic Protection. hy R E. Meredith, Re-
printed from Materials Protection, Feb 1963, 10¢.

Local Rates of Heat Transfer amd Pressure Losses 1 the Vieinity of Annular
Orifices, by oS0 Williams and 1.6, Kmulsen. Reprinted from The Canadian
Journal of Chemical Engineerin \pnl 1963, 10¢,

Convection Heat Transfer From Transverse Finned Tubes, by Ro Bo Pan and . G
Kuwdsen, Reprinted from Chemical Engineering |’1<1uru~ Jaly 1963, 10¢.
setric Surface Potentials for Machine Control, by R, R, Michael and F. R,

Crawford, Reprimted from Electrical Engineering, Nov 1903, 10¢.

Variable Width Pulse Generation Using Avalanche Transistors, by W, G Mag.
mson. Reprinted from TEEE Transactions, Sept 1903, 10¢.

Fvahi mn“ the I‘ﬁ(k(l\( Resistances of Diaphragms or Electrolytic Separators, by
R. Meredith and C. WL Tobias, Reprinted from Journat of the Electrochem-
eal ,\mlt‘l_\, Dec 1963, 10¢,

Oxides of Nitroger and  Unburned  Hydrocarbons Produced  during Controiled
Combustion, by R. W, Boubel and 1.0 A, Ripperton, Reprinted from Journal of
the Adr Pollution Control Assoctation, June 1903, 10¢.

Sonie Deteetion of Tnternal Decay in Wood Poles, by L. C. Jensen, Reprinted from
the Sccond Symposium on e Non-Destructive “Festing of Wood, Washington
State University, 1965, 10e.

Pressnre-Volune Characteristics of Plastic Bags, by ROOWL Boubel. Reprinted from
American Indostrial Hygiene Association Jonrnal, May June 1965 Toc.

Ldentification of Low-Flow Angnentaion Regquivements for Water Ouality. Control
by Computer ‘Teelniques, by ) Lo Worley, WO W Tawne, and Fo ) Burgess,
Reprinted from Journal of the Water Pollution Control Federation, May 1963,
10¢.

Predicting Temperatures in Rivers and Reserveirs, by W. H. Delay and Joln
Scaders. IFeb, 1966, 10¢.

Water-Water Evervwhere, by F.o 1o Burgesse Nov, 1960, 10¢,

A High-Temperature Solid Stare Battery, by Do PO Clok and ROE Meredith,
Reprinted from Electrochemical Technology, Sept.-Oct. 1967, 10¢,
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ROGER DEAN OLLEMAN, Ph.D., Metallurgical Engineering.
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DONALD CHARLES PHILLIPS, Ph.D., Sanitary Engineering.
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JOHN CLAYTON RINGLE, Ph.D., Nuclear Engineering.

JEFFERSON BELTON RODGERS, A.E., Agricultural Engineering.

JOHN LOUIS SAUGEN, Ph.D., Control Systems.

ROBERT JAMES SCHULTZ, M.S., Surveying and Photogrammetry.
MILTON CONWELL SHEELY, B.S., Manufacturing Processes.

LOUIS SLEGEL, Ph.D., Mechanical Engineering.

CHARLES EDWARD SMITH, Ph.D., Applied Mechanics.

LOUIS NELSON STONE, B.S., High Voltage and Computers.

JESSE SEBURN WALTON, B.S., Chemical and Metallurgical Engineering.
LEONARD JOSEPH WEBER, M.S., Communications Engineering.
JAMES RICHARD WELTY, Ph.D., Transport Phenomena.
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RESIDENT INSTRUCTION

Undergraduate Liberal Arts and Sciences
School of Humanities and Social Sciences (B.A., B.S. degrees)
School of Science (B.A., B.S. degrees)

Undergraduate Professional Schools
School of Agriculture (B.S., B.Agr. degrees)
School of Business and Technology (B.A., B.S. degrees)
School of Education (B.A., B.S. degrees)
School of Engineering (B.A., B.S. degrees)
School of Forestry (B.S., B.F. degrees)
School of Home Economics (B.A., B.S. degrees)
School of Pharmacy (B.A., B.S. degrees)

Graduate School Fields of Study
Agriculture (M.S., M.Agr., Ph.D. degrees)
Biological and Physical Sciences (M.A., M.S., Ph.D. degrees)
Business and Technology (M.B.A., M.S. degrees)
Education (M.A., M.S., Ed.M., Ed.D., Ph.D. degrees)
Engineering (M.A., M.S., M.Bioeng., M.Eng., M.Mat.Sc., A.E.,

Ch.E., C.E., E.E., L.E., M.E., Met.E., Min.E., Ph.D. degrees)

Forestry (M.S., M.F., Ph.D. degrees)
Home Economics (M.A., M.S., M.H.Ec., Ph.D. degrees)
Pharmacy (M.A., M.S., M.Pharm., Ph.D. degrees)

Summer Term (four, eight, and eleven week sessions)

Short Courses, Institutes, Workshops

RESEARCH AND EXPERIMENTATION
(Date indicates year established)

General Research (1932)
Agricultural Experiment Station (1888)

Branch stations at Astoria, Union, Klamath Falls, Ontario, Hood River, Aurora,
Pendleton, Moro, Medford, Burns, Hermiston, and Redmond.

Computer Center (1965)

Engineering Experiment Station (1927)

Forest Research Laboratory (1941)

Genetics Institute (1963) 3

Marine Science Center at Newport (1965)

Nuclear Science and Engineering Institute (1966)

Nutrition Research Institute (1964)

Radiation Center (1964)

Science Research Institute (1952)

Transportation Research Institute (1960)

Water Resources Research Institute (1960)
EXTENSION

Federal Cooperative Extension (Agriculture and Home Economics)

Division of Continuing Education, State System of Higher Education





