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Foreword 

An earlier draft of the first part of this paper, The Effect of Omitting 

Relevant Variables, was prepared in 1968. Since that time, most econometrics

textbooks have improved their treatment of this important topic, e.g., Johns-

ton's 1972 second edition [17, pp. 168-169]. Thus, econometricians and ex-

perienced applied economic researchers are sufficiently aware of the pitfalls

of specification bias. However, less experienced researchers (even though they

may know, mathematically, that bias exists whenever their estimated model does

not include the same variables as the true model) could be helped by observing

the great magnitude of bias which can actually occur in certain empirical prob-

lems. With increased awareness of the dangerous consequences of specification

bias, researchers should use more care in specifying their models, and should

also be encouraged to employ various methods of incorporating prior information

into their regression analysis [18, 32] to mitigate problems of multicollinear-

ity, rather than to merely delete variables to overcome this problem.

Having outlined the general problem involved in omitting relevant variables,

a relatively new method for coping with multicollinearity, "ridge" regression

[15, 16, 26], is explored. At the time of this writing, I have found no applica-

tion of this technique to economic research, even though most economic data are

highly aggregated, resulting in increased multicollinearity. Therefore, the

potential usefulness and limitations of ridge regression for economic research

are quite important to know, and are explored in the second part of this paper.

Because biased linear estimation is in a rapidly evolving stage of development,

this second part is in the nature of a progress report.

Research conducted under Oregon Agricultural Experiment Station Research Pro-
ject No. 128. The author is greatly indebted to David Fawcett for writing
the ridge regression computer programs for this research, and to Doug Young,
Richard Johnston, Don Pierce, Jim Fitch, Lyle Calvin, and Norman Johntlon for
helpful comments. Encouragement at several stages of this research,	 Emery
Castle, is also appreciated. Of course, only the author is responnible for er-
rors or deficiencies.
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EFFECT OF OMITTING RELEVANT VARIABLES VERSUS

USE OF RIDGE REGRESSION IN ECONOMIC RESEARCH

Background 

Almost every type of estimation difficulty can be categorized as a

"specification" problem of one kind or another. However, some of the other

sources of specification error will be neglected here to concentrate attention

on the problem of omission of important variables. The mathematical conse-

quences of this problem have long been known (Theil [31]). Theil's results

were applied by Griliches [10], primarily to ascertain the effect of specifi-

cation bias on returns to scale for Cobb-Douglas production functions.

Despite this earlier research, the dangerous consequences of "omission-

of-relevant-variables" bias has been somewhat neglected, perhaps because in

the past there have been no very satisfactory solutions to the problem of

multicollinearity, which has often forced the deletion of one or more explana-

tory variables. Mathematically, the problem of omitted variables can be seen

by looking at the well-known formula for estimating an ordinary least squares

regression coefficient, where there are two explanatory variables,

12ry2	 137i
2

1 - r
12	

1x2

In (1) above, lower case x and y indicate mean-corrected variables and r12

refers to the correlation between the two explanatory variables, X1 and X2 . As

can be easily seen from (1), the unbiased estimate of k must also include the
effect of X	 If X2

 is omitted, then the resulting estimate of ; will be biased,
2'	 1

except for the trivial cases where X2 does not affect Y, or where X1 and X2 are

uncorrelated. (These are trivial cases, since if X 2 and Y were unrelated, X2

should not have been included in the model in the first place. Similarly, zero

correlation between X1
 and X2

 is unusual for economic data.)

(1)
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The bias for the two-variable case extends easily to the case for k ex-

planatory variables, as first shown by Theil [31]. A good discussion of the

importance of the omitted-variables problem is given by Malinvaud [25, pp. 263-

266]. Some other texts also show the bias resulting from omitted variables but,

unfortunately, give little indication of its importance in applied research -

for example, Goldberger [9, pp. 195-197].

My contention is that the possibly devastating effect on parameter estima-

tion caused by omission of significant variables in economic research has been

too often ignored. At this point, some may object that we should be willing

to pay the price of a small bias, if the estimates are fairly "good" in other

respects.

This objection is difficult to refute mathematically, since there seems to

be little that can be deduced in general about the magnitude of bias of a par-

ticular regression coefficient when one or more unknown but significant vari-

ables are omitted. As with many questions involving bias, the actual magnitude

of omitted-variable bias depends upon the particular empirical problem. There-

fore, it should be informative to economists to examine the impact of deleting

certain commonly omitted variables from some actual models, where the original

models appear to be satisfactorily specified. Then, in the latter part of this

paper, the possibilities for correcting the conditions leading to omission of

relevant variables is explored more extensively.

Omitted-Variable Bias in Production Function Models 

The specification problem appears to have received the most attention in

empirical work by those researchers, such as Griliches [10], Mundlak [27],

Hoch [12], and Paris [29], attempting to estimate statistical production func-

tions. Much of this earlier work concentrated on the problem of accounting

for the effect of management in estimating the production function.

Knight's Empirical Model 

In some recent remarkable studies, Knight [22, 23, 24] has examined the

relation of farm size and efficiency to economic outcomes on Eastern, Central,
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and Western Kansas farms. In terms of the relatively complete specification of

model i
1
-
/ accuracy and stability of data, and plausibility of results, Knight's

empirical findings are surprisingly good, in comparison to other such studies

where coefficients often have the "wrong" signs and problems of multicollinear-

ity force the combination or deletion of various inputs.

Knight's success can be attributed partly to the excellent data that he

analyzed. For his Central Kansas study, he had 394 farm management association

farms, with price, input, and output data for each farm averaged over a five-year

period, 1960-1964 [23, p. 1]. Knight was thus able to average out most of the

year-to-year variability in yields and prices for crops and livestock. Also,

the use of only farm management association farms was an important factor in

maintaining high (and therefore fairly uniform) levels of management. If one

were to randomly sample all farms, the large variation in the management input

would be expected to seriously bias the other parameter estimates, Griliches [10].

Then, one would need to use other procedures, as did Hoch [14] and Mundlak [27],

or else one should try to measure the managerial input, as did Paris [29].

Knight's Central Kansas results are summarized in Table 1. The functional

form was a first-degree polynomial. Only two coefficients (Betas) seem somewhat

lower than might first be expected. These two low coefficients are for X 2 , feed

purchased and veterinary and livestock expense, and for X6 , value of livestock in-

ventory. However, cattle prices during the five-year period 1960-1964 were some-

what below average,
2/
 and could be one reason for lower coefficients for X 2

 and

X6. Persons familiar with the Central Kansas Farm Management Association area

j Of course, in practice an empirical production function can never be com-
pletely specified, since input categories could always be more finely sub-
divided or better measurements obtained. Also, questions of model formula-
tion relating to identification, Klein [19, pp. 193-194] and Hoch [12, 14],
or control for management by Mundlak [27] and Paris [29] can be raised.
Other algebraic forms of the production function have also been proposed,
Halter, et al. [11], Arrow, et al. [1].

2/
— During the post-World War II period, 1947-1967, average price per 100 pounds

for all grades of slaughter cattle averaged $26.32. During the five years
1960-1964, the average price was approximately 94.4 percent of the 1947-
1967 period [34, 35].
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should be much impressed by Knight's regression coefficients (Betas) shown in

Table 1.

Ruttan's Production Function Estimates 

Unfortunately, economists seldom have data of the quality used in the

Knight study. Instead, we must usually resort to secondary sources, such as

the U.S. Census of Agriculture. These data may be available only on a county

basis for all the variables that we want to incorporate into our model. Also,

census data provide only very crude indicators of many important inputs, such

as for labor or for machinery and equipment investment. Thus, the economist

is usually immediately faced with a serious specification problem which is com-

pounded by aggregation and errors-in-variables difficulties.

As an example of these difficulties, consider the pioneering research of

Ruttan [30] in developing new methodology for estimating the economic demand

for irrigated land acreage. In his prize-winning book for outstanding published

research in 1966, Ruttan developed new methods for projecting future irrigated

acreage, based upon the economic productivity of irrigated land rather than pre-

vious crude procedures of merely extrapolating past trends in irrigated acreages

or of projecting the quantity of inputs "required" to produce some projected

level of output. Thus, Ruttan's study was particularly significant as a frame-

work for analysis:1

Ruttan's basic model for analysis was a Cobb-Douglas type production func-

tion estimated from county data for the major water resource regions. County

value of all farm products sold was assumed to be- a linear function in loga-
rithms of the following inputs:

3/
Problems of empirical estimation encountered by Ruttan are used for illustra-
tive purposes, and this use is not intended to disparage the significant con-
tribution of his study. Ruttan was careful to note that the grossness of the
secondary data in some instances put a considerable strain on the methodology
[30, p. 3]. His empirical estimation problems are especially interesting be-
cause they are so typical of specification problems generally encountered by
economists using secondary data sources.
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X
1 = Number of family and hired workers.

X2 = Value of implements and machinery.

X
3 = Value of livestock investment.

X
4 = Irrigated land.

X
5 = Non-irrigated cropland harvested.

X
6 = Current operating expenses.

Due to problems of multicollinearity and a limited number of observations,

Ruttan used only a subset of the above variables for several regions. In the

most extreme case, for seven counties making up the South Pacific region, only

X
4 and X6 were retained in the regression model. As pointed out by Hoch [13],

quite a serious omission-of-variable specification bias would likely result

from omitting the other variables. Hence, Hoch hypothesized that the marginal

value products for irrigated land were probably overstated in those cases where

variables were deleted. This hypothesis led me to make similar omissions from

Knight's fairly complete model, to examine the effects on parameter estimates.

Effect of Omitting Variables from the Knight Model 

To recast Knight's model into Ruttan's abbreviated South Pacific region

model, Knight's variable X2 , dollars feed purchased and veterinary livestock

expense, needs to be combined with his X 3 variable, dollars seed, crop, ferti-

lizer, and lime expense. Then the combined X
2-X3 variable from Knight's model

is roughly equivalent to Ruttan's X 6 , current operating expenses.

Ruttan's remaining variable, X4 , irrigated land acreage, is not entirely

comparable to Knight's land variables, X 7 and X8 . Knight's variables are de-

fined in terms of dollar value of real estate owned and real estate rented,

respectively, in contrast to Ruttan's irrigated acres. However, in either case

the land resource is the primary variable, with the land input being weighted

by its current market value in the Knight model.

After combining variables X2 and X3 and deleting all other variables
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except X7 and X8 , we have the following equation, with standard errors in paren-

theses below their respective coefficients:

(2)
	 2 = 2604.6 + 1.5366 (X2 + X3) + 0.1751 X7 + 0.0874 X8

R
2
 = 0.79.
	 (.0508)	 (.0102)	 (.00899)

Note that the above model, with omitted variables, is still very highly

significant overall by standard classical statistical tests. But a very drastic

change has resulted in the coefficients of the two land variables, X7 and X8,

with almost a four-fold increase in the coefficient for owned land, and more

than a four-fold increase for rented land! Most misleading of all is the appar-

ent, but not real, precision of estimation of the parameters in the poorly speci-

fied model in (2). By ordinary statistical procedures, the 99 percent confi-

dence limits of the coefficient for owned land represent a return per dollar of

land of approximately 14.9 to 20.1 percent of the market value of the land. On

the other hand, for the original well-specified Knight model, the 99 percent con-

fidence interval is 2.1 percent to 6.9 percent, certainly a more plausible range.

It is interesting to note that the 99 percent confidence intervals of the owned

land coefficients for the two models do not overlap. .A similar result holds for

the rented land coefficients.

One would infer from the preceding analysis of Knight's data that Ruttan's

estimates of the marginal value product of irrigated land in his more incomplete

models would be positively biased. How large this bias would be is uncertain,

since there were several important differences between the two models and the

data. Ruttan's model was of the Cobb-Douglas type, whereas the results from

the Knight data were for a linear model. Also, the Knight data were individual

farm observations, averaged over a five-year period, whereas Ruttan utilized

county data. Furthermore, the land inputs were measured differently and

represented a different type of land input, irrigated versus dryland acreage.

In fact, where Ruttan deleted variables, it had much less effect on his land

coefficient than was the case for the Knight model. Whether this difference

was due to the difference between the original models or due to data differ-

ences is uncertain at this point.
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At this point it should be noted that I have implicitly assumed that

Knight's model in Table 1 was the "complete" or "true" model, and that the

smaller model in (2) is therefore incomplete or "improperly specified". Ac-

tually, of course, we never know with certainty what all the variables in the

"true" model should be, or even the functional form of the "true" model.

This point is especially relevant from a non-Bayesian point of view which

might consider Knight's model in Table 1 and the abbreviated model in (2) as

both being equally valid before fitting, even though the two models later give

markedly different coefficient estimates. However, from the point of view of

economic theory, one should relate value of output to all "economic" inputs,

at least insofar as it is possible to measure them. ("Economic" inputs refer

to those inputs costing money to use, such as those in Table 1, as contrasted

to those free or uncontrollable inputs affecting production, such as sunshine

or rain. Of course, one might even with to include the free or "non-economic"

inputs, such as precipitation, if the inclusion of such variables would improve

the accuracy of estimation for the coefficients of the "economic" inputs.)

Therefore, from the economic point of view, it is contended that the speci-

fication of Knight's model in Table 1 is better than for the abbreviated model

in Equation (2), since Knight's model does, at least, include all measurable

"economic" factors of production. Thus, it seems reasonable to expect that the

positive contributions to gross farm income from the deleted inputs would be

erroneously attributed to the retained variables of Equation (2)). Hence, the

author believes, although he cannot prove, that the coefficients (called Betas)

in Table I are much closer to the true parameter values than those of Equation

(2). (Some statistical evidence in favor of Knight's complete model is also

provided by the t values in Table 1 and by the highly significant reduction in

R
2
 for Equation (2), as indicated by F test.)

The preceding results do show that omission of relevant variables from a

linear regression model can cause great changes in the individual estimates of

the remaining coefficients. However, some readers may object that the preceding

example was an extreme case, and that possible omitted-variable bias may be im-

portant only when estimating production functions. To counter this argument,

another example is presented for an outdoor recreation demand function.
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Omission of Distance from an Outdoor Recreation Demand Model 

The most commonly employed approach for estimating outdoor recreation

demand is based upon the pioneering research of Clawson [4]. This approach

attempts to measure recreational benefits by first estimating the inverse re-

lation between transfer costs and participation rates. If it . is assumed that

the population of consumers is essentially homogeneous from one distance zone

to another, then it can be argued that consumption-transfer cost combinations

trace out a demand relationship, since geographical location forces the more

distant consumers to bear heavier travel and related transfer costs.

Although some have argued that the Clawson approach is inappropriate or

needs modification for one or more reasons [7, 21, 36], the Clawson approach

still remains as the basis for most estimations of outdoor recreational bene-

fits. However, one serious difficulty with the traditional Clawson approach

was the omission of the non-monetary effects of distance, which tends to under-

estimate the value of a particular outdoor attraction, as noted by Knetsch in

1963 [20], and recently reiterated by Cesario and Knetsch [3, p. 702].

If distance does have an important negative effect on participation rates,

then the inclusion of a separate variable, such as travel time, would be needed.

Thus, visit rate could be expressed as a function of both money and time cost.

However, as pointed out by Cesario and Knetsch [3], the difficulty has been

that travel costs in monetary outlay and time are usually highly correlated,

making it very difficult to separate the effect of one from the other. Also,

including average distance or time traveled has tended to inflate the variance

of the transfer cost variable. Therefore, most researchers have simply omitted

variables such as hours or miles traveled, perhaps not being sufficiently con-

cerned about the resulting specification bias.

In a recent study of the Oregon big game resource [2, 28], we wanted to

estimate the net economic value of the resource to hunters. For the Northeast

region of Oregon, a participation rate-transfer cost relationship was estimated

from 31 distance zone averages:



= 2.4141 - 0.008712 Xlj - 0.007943 X2jj

(-1.252)	 (-3.749)

R2R = 0.604.

In theprecedingequarion,Ldeno tes the predicted average number of
.thhunter unit trips to be taken per hunting family in the y-- distance zone, Xli

thdenotes the average variable transfer cost per hunter trip in the t-- distance
thzone, and X2j denotes the distance in miles of the t-- distance zone to the

Northeast Oregon hunting region. Numbers in parentheses below the coefficients

are t values.

In Equation (3), the coefficient for the important transfer cost variable

is not significant, even at the 20 percent level. Given this situation, that is,

an unreliable statistical estimate of the important transfer cost variable, in

the past many researchers have deleted the distance variable in order to try to

"better" estimate the effect of the important transfer costs. If one follows

this procedure, one obtains an estimate of 01 which appears to be more accurate,
but which might be dangerously misleading, as in (4):

(30) Y3 = 2.1458 - 0.026836 Xlj
(-4.452)

= 0.406.

Despite the apparent (but not real) accuracy of the estimation of the

effect of transfer costs, the estimate of 01 is now increased by a factor of

about three! Since the decline in participation rate in (4) is now all attri-

buted to the transfer cost variable rather than to both distance and transfer

costs, one should suspect a serious upward bias, due to the omission of the

important distance variable. In fact, based upon a more thorough analysis

utilizing all the individual observations, an estimate of 01 equal to about

-0.009 was obtained [2, p. 71]. Thus, if the distance variable were omitted,

the absolute value of 01 would be overestimated by a factor of about three. Simi-

larly, net economic value based upon (4) would be underestimated by a factor of

3 [28, pp. 121-124].

10

(3)
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The two preceding empirical examples from production and demand function

paramater estimation illustrate the danger of omitted-variable bias:4/ No doubt

many readers could provide other instances where possible omitted-variable bias

was equal to or greater than for the examples given here. However, if the seri-

ousness of the potential bias is accepted, how can the researcher best avoid

omitted-variable bias?

Suggestions for Alleviating Problems 
of Multicollinearity and Omitted-Variable Bias 

Of course, relevant variables are not usually deliberately omitted from

economic models. One usually starts with a model that is as completely speci-

fied as possible. However, when attempting to estimate the complete model by

ordinary least squares (OLS), or closely related simultaneous equation methods

or generalized least squares (GLS), one usually runs into severe problems of

estimation, due to multicollinearity.

High correlation among explanatory variables in economic models should be

expected because of the aggregated or averaged nature of economic data. The

underlying logic for increased correlation between grouped or aggregated vari-

ables was shown in 1964 by Cramer [5]. However, research on this topic was pri-

marily motivated by an interest in measuring the efficiency of Engel curve esti

mation where observations were grouped by various methods. Possibly for this

reason, the important implications of increased correlation for grouped variables

for the case of estimation of relationships involving many variables seems to

have been either overlooked or ignored, until noted by Brown and Nawas [2a, pp.

344-359].

At any rate, given aggregated data, what should be done? Ideally, one

would like to go back to the original individual observations, which would re-

duce intercorrelation and give more accurate estimates [2, 28]. However, this

procedure is often impossible when working with secondary data, such as census

4/
Of course, if the objective is to merely predict the dependent variable,
accurate estimation of individual parameters is of less concern. However,
note that intelligent decisions in economic policy almost always require
good estimates of the relevant economic parameters.
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data, where the anonymity of the respondents is protected. In other cases, the

way the data are collected and recorded may also preclude the use of individual

observations.

Farrar and Glauber [8] suggest an analysis to detect those explanatory

variables most affected by multicollinearity by computing the r, which cor-

respond to the main diagonal elements of the inverted correlation matrix of the

explanatory variables. Inspection of the rii will indicate the variables for

which additional data are most needed to break the multicollinearity deadlock.

Various methods for incorporating prior information into regression analy-

sis can be used to ameliorate the difficulties of multicollinearity. Even if

one has only a subjective probability estimate for given parameter(s), this

information can often be used to reduce multicollinearity by following the

approach suggested by Theil [32] in 1963. Similarly, prior knowledge about the

permissible bounds for a coefficient (e.g., that a probability must take a

value, 0 < p1 < 1) can be used to form inequality constraints which can signi-

ficantly lessen difficulties of multicollinearity [18].

Another promising approach for the estimation of models with high inter-

correlation among the explanatory variables is through the use of so-called

"ridge regression", which is, in effect, another way of incorporating prior in-

formation into the estimating procedure [15, 16, 26]. Potential gains from, and

limitations of, ridge regression for estimation of economic models are explored

mathematically and by means of some simple Monte Carlo experiments in the fol-

lowing sections.

Definition and Variance of the Ridge Regression Estimator 

The basic idea of ridge regression is quite simple. Multicollinearity is

mitigated by augmenting the main diagonal elements of the correlation matrix by

small positive quantities [15, 16] or, as to be shown, one can increase all the

main diagonal elements of the mean-corrected sums of squares and cross-product

matrix by the same percentage to obtain the same result in terms of the regular

(non-standardized) ridge regression coefficients. However, first following Hoerl
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and Kennard [15], let X'X represent the correlation matrix of the explanatory

variables. Then, assume the linear model,.

(5) Y = X8 + u,

where Y is n 1, fixed X is n p, 13 is p 1, u is n 1, Eu = 0, and Euu' =V

is positive definite. The ridge estimator, 8 , is defined as

A*	 -1
(6) 8 = (X'X + kI)	 X'Y.

Thus,

(7) 8
*
 =3 + y + (X'X + kI)

-1
 X'u

by substituting for Y from (5) where y represents the bias in 8 . By definition

[17, p. 125], the variance-covariance matrix for 8 is:

(8) Var-Cov ( g* ) = E[6* - Eg* )(g* - ER*)']

E{[(X ' X	 ki)-1 X'u][(X'X + kI) - X'u]'}

= (X'X + kI) -1 X'VX (X'X + kI)-1.

If we further assume that we have a homogeneous, nonautocorrelated error

term, then

A*	 -1	 -1
Var-Cov (8 ) = a2 (X'X + kI)	 X'X (X'X + kI) .

For the experiments presented later, it was much easier to interpret and

summarize the results by working with the mean-corrected sums of squares and

cross-products, rather than the correlations. In. terms of the corrected sums

of squares and cross-products, one can estimate the non-standardized ridge re-

gression coefficients as

(10)	 6* = (X'X +	 X'Y

where X'X represents the p X p matrix of mean-corrected sums of squares and

cross-products, and A is a diagonal matrix of order p consisting of the sums

(9)
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of squares:-
5/
 Then, the equivalent of (9) for the regular (non-standardized)

ridge regression coefficients is:

(9a)	 Var-Cov (R*) = a
2
(X f X + kA)

-1
 X'X (X'X +

-1
.

The variances as defined by (9a) are the appropriate ones for the simple

experiments to be reported in terms of the regular ridge regression coefficients.

However, before the experimental results can be properly interpreted, the ex-

pected bias of the ridge estimator should be reviewed.

Expected Bias of the Ridge Regression Estimator in 
Terms of the True a Values 

Although Hoerl and Kennard [12, p. 60] derive the proper expression for the

bias squared of the standardized ridge estimator in terms of k and the true stan-

dardized 0 values, a more elementary derivation, in terms of the non-standardized

values, is presented here.-/ By assuming fixed X values in (10), substituting

X0 + u for Y, and taking expected values, we obtain

^*	 -1(11) = (X'X + kA)
-1
 (X'X) = (X'X + kA)	 (X'X + kA - kA) a since Eui=0

= (X'X + -1 (X'X +	 0 - (X'X + kA) -1 (kA) 0

a - k (X'X + kA)
-1 

AR.

Letting A = (X'X + kA),

	  (adj A
*
) A0.

A
(12) E(0 -

*I

For any particular 13
i' 

and denoting the	 element of the adjoint of A *

by,cji

2/ It should be emphasized that (10) gives exactly the same estimate of the non-
standardized ridge coefficients as one obtains by multiplying the standardized

2x2i.

The -112 observation of the standardized variable, X, is defined as

*	 th

estimates from (6) by the corresponding
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A*
(13) E(0. - f3.) =	 *	 .	 + ci2X?2132

3	 I 
k

A

	

+	 ++	 + c. XIX

	

JJ J J J	 JP 	 P P

	

-k 	
p

	

-	 *	 y c..X 
i
X

	

I A- I	 1=1 31	 i 1

Of course, for standardized variables, Xi X. = 1 for all i, and X'X can be

ignored in (13). The significance of (13) can be more easily seen if we apply

it to the simple case of two standardized explanatory variables. Then, for el,

Equation (13) reduces to

^*
(14) E(01 - 01) -	 [(1+k) e1 - r12 e2 ]

(l+k)
2k

 - r 
2
12

where r12 denotes, the correlation between the two explanatory variables, Xl and

X2 , and k denotes the amount of increment of the main diagonal elements of the
correlation matrix.

Note that in Equation (14), for the usual case of high positive correlation

between economic variables, the expected bias in el will be lessened if the
true R values have the same sign, and even more so if they are also of about

equal magnitude. Conversely, if el and a2 are of opposite signs (and X1 and X2

are positively correlated), then the expected bias in 01 will be greatly in-
creased, as indicated by Equation (14). This result can be generalized to cases

of more than two explanatory variables, as shown later, and is of great impor-

tance in deciding whether or not to use ridge regression for a particular prob-

lem. The crucial importance of similar sign and similar (standardized) magnitude

for models with positively correlated explanatory variables is next illustrated by

some simple experiments. (Of course, if r 12 in (14) were negative, then bias
squared and mean square error will be smallest when el and e2 are about equal

7/
in absolute magnitude but differ in sign.)--

1 By definition, the mean square error (MSE) of an estimated parameter, 8, is
- 0) 2 , which implies MSE (0) Variance (0) + square of bias 0).
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Experimental Results for Two-Explanatory-Variables 

The surprising estimating power of ridge regression for nonorthogonal data

can be illustrated by the experimental results from the simple two-explanatory-

variable model,

(15)	
Yi = a	 I32X2i ui

where E(ui) = 0.5(4) + 0.5(-4) and E(u jui+s) = 0 for all s # O.

values for X
li 

and X
2i 

were, respectively, (1,1.2), (2,1.67335)

(4,4.32665), and (5,4.8). By taking all possible samples (25

The five fixed

(3,3),

32) generated by

the simple binomial error term, the distribution of the OLS estimates of 01 and 12,2

were computed and the results summarized in the third column, k=0, of Table 2.

The OLS estimates are quite variable, ranging from -10.657 to 18.657 for the OLS

estimates of al , and with a similar range for the OLS estimates of a2 . Although

exactly the true value of al = 4 is obtained by OLS 4/16 of the time, 5/16 of
the time one does not even obtain the proper sign for gl . Similarly, the true

value of f3
2 

= 4 is also obtained 4/16 of the time by OLS, but negative values

occur 6/16 = 37.5 percent of the time. This erratic behavior of the OLS esti-

mated coefficients is reflected in the high variances for gi and S2
in the lower

part of Table 2. Since the OLS estimates are unbiased, the mean square error

in the last two lines of Table 2 is equal to the variance for OLS.

The main reason for the large variances of the OLS estimates in Table 2 is,

of course, the high intercorrelation between X1 and

and X2 were orthogonal, the variance of R1 would be

X
1
 and X

2
 are correlated, the variance is increased

34.3. Similarly, the variance of g, is increased

X2, r
12 

= 0.98533. If X1

02 xx2 = 16/10. Since

by a factor of 1/(1 - 42)

by the same amount.

The ridge regression estimates in Table 2 show a dramatic reduction in vari-
*

ability, compared to OLS. For k = 0.1, the variance of 131
 is 1.258, only slightly

over 2 percent of that for g • the variance of a
2 

is similarly reduced. However,

more important than the size of the variance itself is the dramatic reduction
*	 A

2
*	 *	 A

2
*

in the mean square error (MSE) for 01 and 13. For k = 0.25, MSE for f3.1 and (3

is less than 1.25 percent that for OLS. With such great improvement in accuracy



17

Table 2. Distribution of Estimated 1 and 82 Coefficients for OLS VErsus Ridge Regression
Where Yi = a + 4Xli + 4X21 + ui ; E(ui) = 0.5(4) + 0.5(-4); and Fixed X i and X2
Take the 5 Values (1,1.2), (2,1.67335), (3,3), (4,4.32665), and (5,4.8)

Probability
Variable
number

.*	 ^*
Distribution of 8 1 and 82 for several levels of k

k=0
(OLS) k=0.05 k=0.10 k=0.15 k=0.20 k=0.25 k=0.30

1 -10.657 0.355 1.688 2.164 2.383 2.493 2.548
1/16

2 18.063 6.870 5.363 4.722 4.346 4.085 3.886

1 -4.438 2.339 3.115 3.361 3.451 3.475 3.467
2/16

2 13.375 6.379 5.394 4.948 4,668 4.463 4.297

1 -2.219 1.918 2.382 2.521 2.566 2.570 2.556
2/16

2 8.688 4.392 3.777 3.493 3.311 3.175 3.064

.1 1.781 4.322 4.542 4.559 4.519 4.458 4.386
1/16

2 8.688 5.889 5.425 5.174 4.991 4.840 4.708

4.000 3.902 3.808 3.719 3.634 3.553 3.475
4/16

4.000 3.902 3.808 3.719 3.634 3.553 3.475

1 6.219 3.481 3.075 2.879 2.748 2.648 2.564
1/16

2 -0.688 1.914 2.191 2.264 2.277 2.265 2.242	 •

1 10.219 5.886 5.235 4.917 4.702 4.535 4.394
2/16

2 -0.688 3.411 3.839 3.945 3.957 3.930 3.886

1 12.438 5.465 4.501 4.077 3.817 3.630 3.483
2/16

2 -5.375 1.424 2.222 2.490 2.599 2.643 2.652

1 18.657 7.449 5.928 5.274- 4.885 4.612 4.403
1/16

2 -10.063 0.937 2.254 2.716 2.922 3.020 3.063

E($1) 4.000 3.902 3.808 3.719 3.634 3.553 3.475

E(132) 4.000 3.902 3.808 3.719 3.634 3.553 3.475
^is

E Var(82) 54.936 3.190 1.258 0.781 0.587 0.485 0.423

E Var(82) 54.936 3.190 1.258 0.781 0.587 0.485 0.423

E MSE(01) 54.936 3.199 1.295 0.860 0.721 0.686 0.698

E MSE(82) 54.936 3.199 1.295 0.860 0.721 0.686 0.698
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of estimation from ridge regression in Table 2, one may well wonder if OLS re-

gression is not obsolete for most economic research where one must work with non-

orthogonal data. However, it should be remembered from the earlier discussion

of Equations (13) and (14) that for high positive correlation between two explana-

tory variables, bias is increased if the true R values are of unequal magnitude

or of different sign.

Before leaving the results in Table 2, it should be noted that the use of

the binomial error term in combination with only five observations can be criti-
A*	 A*

cized, since it permits only nine different values of 01 and 02 in Table 2 and

the other experiments. Thus, the use of a normally distributed error term might
A*	 A*

have been preferable for generating a greater range of values for 01 and 02.

Alternatively, the number of outcomes with the binomial error could have been

increased by increasing the number of observations from five to, say, seven.

However, despite these limitations, it is thought that a fairly good range of

experimental values were obtained, as shown in Table 2. Some idea of the dis-

tributional pattern for Ri can be obtained from Figure 1, where the cumulative

probability for the various observed OLS estimates of 01 are presented. As would

be expected, the distribution of 13.1 in Figure 1 is not too far from the cumulative

normal although, no doubt, a closer approximation could have been obtained by

using a normally distributed error term with many samples. However, the expected
A*	 A*

mean square error for R1 and 0
2 would have been exactly the same, since the vari-

ance and bias of the ridge estimates do not depend upon how the error term is

distributed, as can be seen from Equations (9a) and (13). !/ Also, the binomial

error term was extremely convenient, since only a few samples needed to be con-

sidered per experiment.

It should also be noted that the estimates of a are not included in Tables

2-5. The ridge estimates of 01 and 02 were obtained by solving the following

normal equations in terms of the mean-corrected sums of squares and cross-products:

8/
Note also from (9) or (9a) and (13) that the sample size, n=5, does not
affect the ratio of mean square error of OLS to ridge regression.
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.84
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.75

.69

.66

.60

.54

.51

.45

.39-

.36

Cumulative probability

for (R1 - 4)/a"01
Cumulative probability
	  for the normal dis-

tribution

.30

.24

.21-

.15—

.12_

.09_

.06-
•

.03 • •
•

I	 I

-3.0	 -2.0 -1.0	 0.0 1.0	 2.0 3.0	 a
Figure 1. Cumulative probability of a =	 - 4)/n from the model,

P1
Y = a + 4X + 4X + u • E(u ) = 0.5(4) + 0.5(-4); and1	 2i	 i'
fixed X

1 and X2 take the 5 values (1,1.2), (2,1.67335), (3,3),
(4,4.32665), and (5,4.8).
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r 2 A* 	 " r(l+k) Lx11 + Lx1x22 = Lx1y

r	 *	 rIxix2 01 + (l+k)Lx21 02 = Lxy

Although apparently not treated in the literature, one could define
*	 Aft-	 ^*_
a = Y - 01X1 - 02X2 . Then, one can derive

2	 ^*	 _2	 —	 ^*a
var(a

*
) =	 + X1 var (01 ) + X2 var (0 ) + 2X1X2 cov (I3

Using the above formula for k=0 in Table 2, we obtain:

var (a)	 16/5 + 9(54.936) + 9(54.936) + 2(9)(-54.130) A 17.71.

However, for k=0.25, we obtain

var	 ) = 16/5 + 9(0.4854) + 9(0.4854) + 2(9)(0.150325) a 14.64.

Although we obtain a lower variance for the preceding estimate of a at
*

k=0.25, it should be noted that mean square error for a is not reduced. For
#.*

k=0.25, we have E(a ) = [E(Y)	 E(0*) Xi - E(0 ) X2 ] = [18 - 3.553(3) - 3.553(3)]

3.318. Thus, the bias of a is -3.318 - (-6) A 2.682. Therefore, MSE )

14.64 + 7.19 A 21.8. Thus, mean square error of a at k=0.25 is greater than

for OLS. Even for k=0.05, only a slight reduction in mean square error relative
*	 A

to OLS is obtained. The relative lack of improvement in a as compared to OLS a

seems puzzling until one remembers that a is the coefficient for a variable con-

sisting entirely of 1.0's. Hence, its correlation with any of the other vari-

ables is identically zero and, therefore, perhaps little improvement over OLS

should really be expected. However, further investigation of various methods

of estimating a appears to be needed.

In Table 3, results from another model are presented, where the true 0 val-

ues are 01 = 5.33 and 02 = 2.665. These particular numerical values were selec-

ted so as to have 01 = 202' and to have approximately the same R2 as for the case

of equal 01 and 02 in Table 2. Thus, the overall significance of the regression

equation was maintained at about the same level for all the experiments, with
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Table 3. Distribution of Estimatedand (3 2
 Coefficients for OLS Versus Ridge Regression

1
Where Yi = a + 5.33X11 + 2.665X21 + ui; E(ui) = 0.5(4) + 0.5(-4); and Fixed X1 and

X2 Take the 5 Values (1,1.2), (2,1.67335), (3,3), (4,4.32665), and (5,4.8)
^*	 ^lc

Distribution of a and 02 for several levels of k1

Variable	 k=0
Probability	 number	 (OLS)	 k=0.05	 k=0.10	 k=0.15	 k=0.20 .	 k=0.25	 k=0.30

1/16

2/16

2/16

1/16

• 4/16

1/16

2/16

2/16

1/16

E(61)

E(82 )
^*

E Var(81)

E Var(13;)

A*
E MSE(8 )1

E MSE(82)

19.987 7.749 6.096 5.391 4.974 4.684 4.462

-11.398 0.624 2.081 2.595 2.829 2.944 2.999

13.768 5.765 4.669 4.193 3.906 3.702 3.543

-6.710 1.119 2.050 2.369 2.506 .2.567 2.588

11.549 6.185 5.403 5.033 4.791 4.607 4.454

-2.023 3.107 3.667 3.824 3.863 3.854 3.822

7.549 3.781 3.243 2.995 2.837 2.719 2.624

-2.023 1.610 2.018 2.143 2.183 2.189 2.177

5.330 4.202 3.976 3.835 3.723 3.624 3.535

2.665 3.597 3.635 3.598 3.541 3.477 3.411

3.111 4.622 4.710 4.675 4.608 4.529  4.446

7.353 5.584 5.252 5.053 4.898 4.764 4.644

-0.889 2.218 2.550 2.638 2.654 2.642 2.616

7.353 4.087 3.604 3.372 3.218 3.099 3.000	 •

-3.108 2.638 3.283 3.478 3.540 3.547 3.527

12.040 6.075 5.221 4.827 4.575 4.387 4.233

-9.327 0.655 1.857 2.280 ' 2.472 2.565 2.608

16.728 6.565 5.190 4.601 4.252 4.009 3.822

5.330 4.202 3.976 3.835 3.723 3.624 3.535

2.665 3.597 3.635 3.598 3.541 3.477 3.411

54.936 3.190 1.258 0.781 0.587 0.485 0.423

54.936 3.190 1.258 0.781 0.587 0.485 -0.423

54.936 4.463 3.090 3.015. 3.171 3.395 3.645

54.936 4.058 2.199 1.652 1.354 1.144 0.979

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
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the true R values always selected to give an expected sum of squares for the de-

pendent variable of about 699.3056, by using

2E(1372 )	
[1(Ey.)2 + 1E(u - u) 2

 ] = [ 02Vx2 + 20	 Yx x +	 Xx + (n-1)(1
2
 ]i	 1L 1	 1 2 1 2	 2

(635.3056 + 64) = 699.3056.

As should be expected from earlier Equations (13) and (14), the reduction
A*

in the total mean square error for a1 and a2 is somewhat less in Table 3 thanA*	 *
for Table 2. The sum of MSE (a1) + MSE (02) = 4.525 for k = 0.20 in Table 3,
about 4.12 percent that for OLS. Although this reduction in MSE is still con-

siderable, it is less than for Table 2, where MSE for k = 0.25 was less than 1.25

percent that for OLS.

Although mean square error is still much reduced by ridge regression in

Table 3, the bias is fairly substantial. For example, for k = 0.20, the ex-

pected value of 01 = 3.723 in the lower part of Table 3 implies a percentageA*
bias of (3.723 - 5.33) /5.33 30 percent. For R2 and k = 0.20, the per-

centage bias is even worse, being equal to over 70 percent of the true 02 value
of 2.665. Thus, it can be seen that for even substantial reduction in mean

square error, as in Table 3, the problem of bias can become serious, at least

for economic analysis where parameter estimates are to be used for economic

policy.

The third experiment performed followed exactly the same format as for

those shown in Tables 2 and 3. The true S values selected were S1 = 6.6550

and a2 = 1.3310. These values again yield approximately the same significance
of the overall regression and the same OLS variance estimates. For the sake

of brevity, the results for this third experiment are not presented in table

form. The results, however, followed the trend started in Table 3; that is,

ridge regression considerably underestimated al and overestimated 02 in all
cases for k > 0.10. The sum of mean square error for 01 and 02 was about
13.365 at its lowest point for k = 0.10 (using increments of 0.05 for k).

A*	 *
Therefore, MSE (01) + MSE (02 ) was about 12.2 percent that for OLS at k = 0.10.
However, accompanying this gratifying reduction in mean square error from ridge

reduction was an underestimate of a A 4.142, only about 62 percent of thel' 1
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A*
true value. Even worse was the overestimate of 2'2 1 

3.461, about 2.6 times

the true value. However, one must remember that the OLS estimates were also

very poor.

The substantial bias possible from ridge regression is illustrated even more

strongly by the results from the fourth experiment, presented in Table 4. For

the model in Table 4, exactly the same explanatory variables and error terms

were used as for the models in Tables 2 and 3, but the values 0 = 7.9706 and
1

2 
= 0.0 were used.

Danger of being misled by ridge regression, if one does not have prior in-

formation regarding the true a values, is illustrated by the results of Table 4.

Suppose, for example, that one thought that the expected mean square error was

only 0.721 at k = 0.20, similar to that for the first model of Table 2. Then,

one would be misled into thinking that a2 was significantly different from zero
A*

since 02 ranges from 1.99 to over 4.0 in Table 4 for k = 0.20. In fact, of
A*

course, the estimated variance for a2 varies in Table 4, depending upon the

estimate of a
2 , which changes over the 16 distinct samples. If one computes

*
the ratio of A2 

to the square root of its variance at k = 0.20 for each of the

16 distinct samples making up Table 4, then these ratios range from 2.55, 2.82,

3.33, •••, 9.71 (excluding the one distinct sample where the estimate of 
a2

is zero).

It is clear from the results of Table 4 that one can be in danger of making

a Type I error when using ridge regression for the type of model of Table 4.

That is, one would tend to reject the null hypothesis that 02 = 0 when, in

fact, 02 were equal to zero - unless one had good prior information about the

true al and 02 values from which one could estimate the bias likely to be in-

volved. This serious problem involved in trying to make inferences about the

true parameter values will be examined in more detail in the next section,

Rules for Selection of Optimal k Values. However, before proceeding with that

section, results from a fifth experiment, shown in Table 5, should be noted.

For the fifth experiment, values of 01 = 9.918 and 2 = -1.9836 were

assigned. Again, the same explanatory variables and error terms were used as
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Table 4. Distribution of Estimated 
81

Where Yi = a + 7.9706X + 0

and 82 Coefficients for OLS Versus Ridge Regression

.0X21 ; E(ui) = 0.5(4) + 0.5(-4); and Fixed X1 and
X2 Take the 5 Values (1,1.2) ,	 (2,1.67335), 	 (3,3),	 (4,4.32665), and (5,4.8)

Probability
Variable
number

A*	 A*
Distribution of 0

1
 and 62 for several levels of k

k=0
(OLS) k=0.05 k=0.10 k=0.15 k=0.20 k=0.25 k=0.30

1 22.627 8.338 6.424 5.616 5.144 4.820 4.575
1/16

2 -14.063 0.015 1.730 2.347 2.637. 2.786 2.865

1 16.408 6.355 4.997 4.418 4.076 3.838 3.656
2/1'6

2 -9.375 0.506 1.699 2.121 2.314 2.409 2.454

1 14.190 6.775 5.731 5.258 4.961 4.743 4.567
2/16

2 -4.688 2.493 3.316 3.576 3.671 3.696 3.687

1 10.190 4.371 3.571 3.220 3.007 2.856 2.737
1/16

2 -4.688 0.996 1.667 1.895. 1.991 2.031 2.043

1 7.971 4.791 4.304 4.060 3.893 3.760 3.648
4/16

2 0.000 2.983 3.284 3.350 3.348 3.319 3.276

1 5.752 5.212 5.037 4.900 4.778 4.665 4.559
.1/16

2 4.688 4.971 4.901 4.806 4.706 4.606 4.510

1 1.752 2.808 2.877 2.863 2.825 2.778 2.729
2/16

2 4.688 3.474 3.253 3.124 3.025 2.941 2.865

1 -0.467 3.228 3.611 3.703 3.710 3.683 3.640
2/16

2 9.375 5.461 4.870 4.580 4.383 4.229 4.099

1 -6.686 1.244 2.184 2.505 2.642 2.701 2.721
1/16

2 14.063 5.951 4.839 4.354 4.060 3.851 3.688

E(q) 7.971 4.791 4.304 4.060 3.893 3.760 3.648
.*

E(s2) 0.000 2.983 3.284 3.350 3.348 3.319 3.271
.*

E Var(02) 54.936 3.190 1.258 0.781 0.587 0.485 0.423
A*

E Var(02) 54.936 3.190 1.258 0.781 0.587 0.485 0.423
A*

E MSE(02) 54.936 13.297 14.701 16.071 17.215 18.211 19.108

E MSE(0
2
) 54.936 12.090 12.045 12.006 11.798 11.499 11.095
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Table 5. Distribution of Estimated a1 and 02
 Coefficients for OLS Versus Ridge Regression

Where Yi = a + 9.918X11 - 1.9836X21 + ui ; E(ui) = 0.5(4) + 0.5(-4); and Fixed X i and

X2 Take the 5 Values (1,1.2), (2,1.67335), (3,3), (4,4.32665), and (5,4.8)

Distribution of a and 02 for several levels of k1

Probability

Variable
number

k=0
(OLS) k=0.05 k=0.10 k=0.15 k-0.20 k=0.25 k=0.30

1 24.575 8.767 6.658 5.774 5.262 4.913 4.651
1/16

-16.047 -0.448 1.461 2.155 2.486 2.661 2.757

1 18.356 6.783 5.231 4.576 4.194 3.931 3.732
2/16

-11.359 0.042 1.430 1.929 2.163 2.284 2.347

1 16.137 7.204 5.965 5.416 5.079 4.836 4.643
2/16

2 -6.671 2.030 3.047 3.384 3.520 3.571 3.580

.1 12.137 4.799 3.805 3.379 3.125 2.948 2.812
1/16

-6.671 0.532 1.399 1.703 1.840 1.906 1.936

1 9.918 5.220 4.538 4.219 •	 4.011 3.853 3.724
4/16

2 -1.984 2.520 3.016 3.158 3.197 3.194 3.169

1 7.699 5.640 5.272 5.059 4.896 4.758	 ' 4.635
1/16

2 2.704 -4.507 4.633 4.614 4.555 4.481 4.402

1 3.699 3.236 3.112 3.021 2.943 2.871 2.804
2/16

2 2.704 3.010 2.984 2.932 • 2.875 2.816 2.758

1 1.480 3.656 3.845 3.861 3.828 3.776 3.716
2/16

2 7.392 4.998 4.601 4.388 4.232 4.104 3.991

-4.739 1.673 2.419 2.663 2.760 2.794 2.796
1/16

12.079 5.488 4.570 4.162 3.909 3.726 3.581

E(01) 9.918 5.220 4.538 4.219 4.011 3.853 3.724

E(02) -1.984 2.520 3.016 3.158 3.197 3.194 3.169

E Var(01) 54.936 3.190 1.258 .0.781 0.587 0.485 0.423

E Var($2) 54.936 3.190 1.258 0.781 0.587 0.485 0.423

E MSE(01) 54.936 25.264 30.199 33.264 35.482 37.265 38.790

E MSE(82) 54.936 23.471 26.250 27.221 27.431 27.290 26.972

•
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preceding experiments. Also, 81 and 82 were selected such that 8 1 = 5(-82)

and such that the expected sum of squares for the dependent variable was again

approximately equal to 699.3056.

Ridge regression results continue to worsen for the model presented in

Table 5, as would be expected from Equation (14) for explanatory variables with

high positive correlation and for true 8 coefficients with unlike signs. For
A*	 A*

k = 0.05, the sum of mean square error of 8
1
 and 82 was reduced to about 44 per-

cent that for the OLS estimates. However, this reduction was accompanied by a

large bias. The estimated value of 81 was 5.220, only about 53 percent of the
A*

true value of 9.918. Even worse was the bias for 8
2 
= 2.520 versus the true

value of 8
2 = -1.9836.

At this point it should be noted that the increments of the k values were

too large for the model in Table 5, since the smallest mean square error may

have occurred for some k value less than 0.05. To check this hypothesis, solu-

A*
a rather substantial bias is still encountered, the relative bias in 8 being

(6.446 - 9.918)/9.918, equal to about 35 percent. Of course, the relative bias

for the ridge estimate of 8 2 is even worse, being about (1.410 + 1.9836)/1.9836,

equal to about 171 percent of the true value. (Perhaps it should have been

mentioned even earlier that the mean square error function for the ridge estimator

will always have an unique minimum for some k > 0, due to the properties of the

variance and squared bias functions, as shown by Hoerl and Kennard [15, pp. 61-63].)

Although the greatest danger in using ridge regression (when one does not

have fairly good information about the true 8 values) would be that of making

Type I statistical errors (that is, of concluding that some 8 values were statis-

tically different from zero when, in fact, some of the 8 values were equal to

zero), the possibility of making the opposite type of error (Type II) cannot be

ruled out. Suppose, for example, that we have exactly the same explanatory

variables and error term as before, but we select 8
2
 = -0.86008798 al and 8

1
,

tions were obtained for k = 0.00, 0.01, 0.02,
A*	 A*

square error for 81 and 82 was observed at k =
A*

43.89. Expected values at k = 0.02 were E(8
1
)

•••, (:).10. Smallest sum of mean
A*

0.02, where MSE (8,) + MSE (82)
J-

= 6.446 and E(13 2 ) = 1.410. Thus,
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such that there is the same overall level of significance for the total regres-
r

sion as for the preceding models with E(Ly
2
) = 699.3056. Solving, we obtain

81 = 37.6532092 and 0, 2 = -32.38507275. For this model, if we set k = 0.20, weA*
obtain E(82) = -0.0001. Thus, for k > 0.20, one could mistakenly conclude that

82 = O.

Actually, such a mistaken conclusion would be quite unlikely in the pre-

ceding case, since the OLS estimates of 81 and 82 would almost always have large

t ratios. Therefore, the researcher would usually automatically reject k values

large enough to cause the Type II error, at least when working with only two

explanatory variables. Even for models with more explanatory variables, treated

in a later section, Type II errors should be less likely than Type I errors.

One question that can be raised about the preceding two-explanatory-variable

experiments is, "What would have happened if the 8 values had been in the same

ratio, but larger?" The answer can be inferred from the earlier equations for

the variance, (9a), and the bias, (13), for the regular (non-standardized) 8's.

With increased values for the true 0 values in (13), the bias would be increased

proportionally. At the same time, assuming the same error term, the variance for
A*
0 (and OLS) would remain unchanged. Thus, the advantage in mean square error

from ridge regression compared to OLS . umuld decrease, since the bias squared of
A*
8 would increase with the square of the true 0 values. Of course, if one had

increased (decreased) correlation between X
1
 and X

2 for the equations used in

Tables 2-5, the relative advantage of ridge regression would increase (decrease).

Before considering implications for larger regression models, the question

of how the k values should be selected is briefly considered (since the level of

k has a marked influence on the size of the estimated parameters, as illustrated

in Tables 2-5.)

Selection of Optimal k Values 

Although it has been proven that there always exists a k > 0 such that-a

smaller mean square error can be obtained from ridge regression than from or-

dinary least squares [15], the best method for selecting a particular value of
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k is not obvious. Although other approaches are mentioned, Hoerl and Kennard

seem to place the most confidence in the use of the "Ridge Trace" [15, p. 	 91

"Based on experience, the best method for achieving a better
^*

estimate of (3 is to use k
i
 = k for all i and use the Ridge Trace

to select a single value of k and a unique (3 ."

Hoerl and Kennard then indicate several considerations that can be used to

guide one to a choice of a particular k value:

(1) At a certain value of k the system will stabilize and have the

general characteristics of an orthogonal system.

(2) Coefficients will not have unreasonable absolute values with

respect to the factors for which they represent rates of change.

(3) Coefficients with apparently incorrect signs at k = 0 will have

changed to have the proper sign.

(4) The residual sum of squares will not have been increased to an

unreasonable value. It will not be large relative to the mini-

mum residual sum of squares, or large relative to what would be

a reasonable variance for the process generating the data.

In their second article [16], Hoerl and Kennard illustrate the use of the

Ridge Trace by analyzing an empirical ten-factor regression model and a thirteen-

factor model. Because of their heavy reliance upon the stabilization of the

Ridge Trace (preceding consideration No. 1), the question arises as to whether

one could formulate some decision rule as it relates to the stability of the

ridge estimates.

One such rule could be defined as the following:

9/ "Ridge Trace" denotes a simple graph of the values of the ridge estimates
on the vertical axis plotted against the corresponding values of k on the
horizontal axis.



Using the same selection rule for the model of Table 3, the ridge estimate

of a
2 for the first sample in the top part of Table 3 attains its highest posi-A*

tive value (by k increments of 0.05) at k = 0.35. For k = 0.35, al 4.28202
A*

and 82 = 3.01947, yielding a total mean square error of (4.28202 - 5.33)
2
 +

(3.01947 - 2.665)
2
 = 1.2239. Computing the mean square error in this way for

the other samples, and weighting by the probabilities in the left hand column

of Table 3, the expected mean square errors were as follows:

29

RULE: Select a particular value of k at that point where the last

ridge estimate attains its maximum absolute magnitude after

having attained its "ultimate" sign, where "ultimate" sign

is defined as being the sign at, say, k = 0.9.

To illustrate the use of the preceding rule, consider the results for the

model in Table 2. For this model, the "ultimate" sign for both coefficients is

positive for k = 0.9 over all the possible samples presented in Table 2. There-

fore, the rule reduces to finding the value of k for each sample such that the

last ridge estimate has attained its maximum positive value. For the first
A*

sample in the top part of Table 2, 81 declines throughout; therefore, attention
A*	 A*

should be focused on a
1. The value of 8

1 
continues to increase in Table 2,

reaching 2.548 at k = 0.30. However, the maximum value (by increments of 0.05)
A*

of 82 
is 3.59019 at k = 0.40. Using these values, the sum of mean square error

*	 *
for 8

1 
and a

2 
is (2.57415 - 4)

2
 + (3.59019 - 4)

2
 = 2.2010. Similarly, for the

A*
second set of estimates from the top in Table 2, 0

1 
reaches its highest value

which adds to about 0.489.

Following the above procedure for each sample situation, and weighting by

the probabilities given in the left hand column of Table 2, an expected sum of
A*	 A*

mean square error for 8
1 
and 8

2 
of 1.3076 is obtained from following the pre-

ceding selection rule. Surprisingly, the selection rule gives a slightly better

result than any single value of k listed in Table 2. Best result for any single

k value given in Table 2 is for k = 0.25, with an expected sum of mean square

error of 2(0.686) A 1.372.

A*
at 8

1 
= 3.475 at k = 0.25. Therefore, sum of mean square error for this sample

situation (which occurs 2/16 of the time) would be (3.475 - 4)
2
 + (4.463 - 4)

2
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MSE (8) A 3.1629
1

MSE (82) A 1.3279

Sum	 4.4908

Again, as for Table 2, the k selection rule gave a surprisingly good result,

with the sum of mean square error being slightly less than for any of the k values

listed in Table 3. (The smallest sum of mean square error in Table 3 is 4.525

for k = 0.20). Considering the fact that the selection rule utilized no prior

information, the results of its use on the models of Tables 2 and 3 were en-

couraging. However, it is interesting that for models with greater bias re-

sulting from ridge regression, such as Model 4 of Table 4, the results from using

the preceding selection rule were also less satisfactory. Use of the selection

rule for the model of Table 4 gave a sum of mean square error of around 30.1,

about 18.6 percent higher than for the sum of mean square error of 25.4 for

k = 0.05 in Table 4.

In summary, the use of the preceding selection rule gives surprisingly good

results for models which are "well-suited" to ridge regression, as discussed ear-

lier with regard to expected bias of the ridge estimator in terms of the true 8

values. Similarly, use of the Ridge Trace also might give fairly good results

for the models of Tables 2 and 3, although the ambiguity of the Ridge Trace for

selecting k is a disadvantage. However, an important finding of this study is

the fact that both the Ridge Trace and the preceding selection rule would give

unreliable or poor results for models similar to those of Tables 4 and 5. There-

fore, fairly good prior information about the true 8 values of the model appears

necessary to be able to benefit from ridge regression.

Implications for Larger Models 

The preceding conclusion about the necessity of good prior information for

the use of ridge regression on the simple two-explanatory-variable model can be

extended to the general linear model with p explanatory variables. As indicated

by earlier Equation (13), the expected bias of the ridge estimates can be ex-

pressed in terms of cofactors and the true 8 values. Then, for the case of two

explanatory variables, a very simple interpretation was possible, as discussed
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earlier for (14). However, the direct interpretation of (13) for three or more

explanatory variables is much less obvious. An illuminating interpretation

follows for the general model by means of the following theorem which is, so

far as I can find, original with this paper.

th
THEOREM 1. The bias of the ridge estimate of the 	 standardized regres-

sion coefficient can be expressed as

k c..	 P
E0.) -0 = —i.L-X fi; 	 whereb = -1.0 if i = j

IA I i=1 
ji	 Ji

A*	 thand if i # j, bji denotes the ridge estimate of the i-- regression coefficient

of the model where X
i
 has been regressed on the remaining (p-1) explanatory vari-

ables.(Ofcourse,ai ande..
J 

in Theorem 1 represent the true regression coeffi-

cients in the original model, Y = X0 + u.)

PROOF: In terms of the standardized variables, and for j=p, (13) is

(13a) -k
E(13)_13 -	 *	 c .a

P	 IA I 1=1 P/ 1

.
-k 

	

*	
[c
p1

13
1
 + c

p2
a
2 + ... + c

pp
0

p ]
IA I

[

. -k cpp cal ,1 +.c.2.2.. 

02
+ ... +1.0 a	 .

	

1A*1	
cPP 

/5	
cPP
	 P

To evaluate c /c , let 1=1 and observe that
Pi pp

(16) _ (-1)2P-1

•••r
p-1,2 

r
p-1,3	

rp_i,p

r
1p	

r
12	 r 1,p-1

r2p	 (l+k)	 r2,p-1

•••	 (l+k)r
p-1,p rp-1,2

^
= -b

p*l'
by Cra-
mer s
rule.PP  

r12	 r13	
r
1p

(l+k) r23	 r
2p(15) f_21. _ (-1)15+1 

PP	 PP    
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Note that in (16), the value of 
cpl/cpp will always be a negative number,

(-1)
2p-1

/c PP , times the minor given in (16), since the number of column inter-

changes needed to transfer the last column of the minor of (15) to the first

column position (and to leave the relative order of the other columns unchanged),

will always be (p-2). Since the sign of IA
pl

I, the minor in (15), is (-1)
p+1

,
*

the sign of the rearranged minor in (16) must always be (-1)P+1(-1)P-2 =

= -1.0. In the same way, for any i<p, (-1)P-1-1(-1)P-1-1 = (-1) 2P-1 = (-1) implies

that c /c must be equal to -b . Since the order of an explanatory variable
Pi PP	 Pi

in the equation has no effect on its estimated coefficient in ridge or OLS re-

gression, the theorem is proved.

The earlier conclusions based upon Equation (13) and the experiments for

the two-explanatory-variable case can now be extended to the general case for p

explanatory variables. The only difference from the simple two-variable case

is that, instead of talking about bias as it relates to the simple correlation

between the two-explanatory-variables and the true 8 values, we now need to
A*

talk about the bias of a particular ridge estimate, 0j , as it is affected by

the functional relationship of X. to the other p-1 explanatory variables and

the true 8 values.

For illustration, consider a three-explanatory-variable model. From Theo-

rem 1, the bias of the ridge estimate of the coefficient for the first standard-

ized explanatory variable can be written as

k c
11	 A*	 A*

(17) E01) - 
a =	

o2)
1	 IA*1 

[(-1) 8
1
 + b

12.3 
8
2 
+ b

13 . 2 2

where the notation is the same as for Theorem 1 except that the longer, but more

conventional, notation is used to denote the ridge estimates of the coefficients

of the equation where X
1
 is regressed on X

2
 and X • that is, where

3'

A* A*	 A*
Xl 

= b12.3 X
2 + b13•2 X3.

(-1)2P-1

(18)

If Xi is a positive function of X2 and X3 in (18), as will usually be the

case for economic variables which tend to go up and down together, then the bias
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in (17) will tend to be small if 6 1 , 62 , and 63 are all of the same sign and
about the same magnitude. Suppose, for example, that 0 1 = 02 = 63 and R2 .123y

= 0.99. Further, suppose that r 12 = r13 = r23 = 0.99. Then, ryl = ry2 = ry3 -
+ 0.9916652658 and

S1
	 = 63 + 0.332773579. Thus, for k=0.2 and positive* 1	 62	 3 --

6's, the bias in k is

A*	 0.2(.4599) 
[ 0.33277358 + 2(.45205479)(0.33277358)](19) E(a1 ) - a1	 0.140238

-0.02092916.

For the preceding model, variance for estimated al by OLS was 0.06677852,
if we assume that there were 14 observations. The corresponding mean square

A*
error for a1 at k=0.2 would be the variance plus the bias squared, orA* A*
MSE (01) = 0.00024940 + 0.00043803 0.00068743. Thus, mean square error of 01
at k=0.2 is only about one percent that for OLS.

Suppose, however, that for the same explanatory variables as before, the
2dependent variable is such that al = -62 = -63. Then, for Ry.123 = 0.99, we

would have 6
1 4 -0.98518436 and 62 = 3 4 0.98518436. Substituting into (17),

we obtain

"Ialc‘	
a = 0.2(.4599) (20)

"‘140238	
[.98518436 + 2(.45205479)(.98518436)]q /	 0.14023

1.230374.

*
Thus, mean square error for 01 at k=0.2 is the variance, 0.00024940, plus

A*
(1.230374)

2
, or MSE (61) 4 1.51407, which is over 22 times the mean square error

for OLS! Therefore, some caution in the use of ridge regression on a model

with the preceding structure would be advisable. But to be able to know whether

one can expect the small bias and small mean square error from ridge regression,

such as that for the model giving the small bias in (19), or whether one can

expect a large bias and mean square error as in (20), one must have good prior

information about the true 6 values for Y = X13 + u and good information or data

concerning the nature of the interrelationships among the explanatory variables.

Only if one has this good information does it appear possible to evaluate one's

results from ridge regression.
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Fortunately, at least for economic research, there are important estimating

problems which should lend themselves very well to ridge regression. For ex-

ample, in the estimation of production functions we would usually expect the

explanatory variables (the factor inputs) to all be positively related to each

other. Furthermore, we would expect each productive input to contribute a posi-

tive amount to total value product; otherwise, the manager or operator is being

irrational in his use of resources. Therefore, from Theorem 1 we can conclude

that ridge regression may provide a powerful new tool to the economist for esti-

mation of production functions. (In fact, our preliminary results in estimating

production functions appear very promising. These empirical results will be pre-

sented in a later paper.)

On the other hand, from Theorem 1 we can deduce that there are some esti-

mating problems in economics where ridge regression should be used only with

extreme caution, if at all. For example, consider an oversimplified hypothe-

sized demand model

(21)
	

Q =
o + 1

I + 13
2
P + u.

In (21), Q denotes the product quantity demanded, I denotes per capita in-

come, and P may denote either actual or predicted product price. In (21), both

income and price may have trended upward over time; hence, in many cases they

would be positively related to each other. If the product is not a so-called

"inferior" good, the consumption may have tended to increase because of in-

creased incomes. If so, we would expect Rl to be positive. However, from eco-

nomic theory, we would expect the price coefficient, 13 2 , to be negative. There-

fore, for at least some products, we would expect "poor" results from the use

of ridge regression for the estimation of (21).

Economic models intermediate between production functions and the demand

function of (21) would need to be examined on an individual basis. One advan-

tage of Theorem 1 is that it allows one to examine the possible bias from ridge

regression for each coefficient. (The economist may often be more interested

in the mean square error of a particular coefficient than for the sum of mean

square error for all coefficients.) Therefore, at this point in time, the fol-

lowing procedure appears reasonable:
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1. For one or more coefficients of particular interest, say a.,

ridge regress X as a function of the other p-1 explanatory

variables at various plausible k values.

2. Hypothesize one or more sets of a values for the main model,

Y = X0 + u.

3. Substitute these hypothesized a values and the ridge estimates

from Step #1 into Theorem 1 to provide some idea of expected

bias at various values of k.

4. If the expected bias does not appear to be too serious, use

ridge regression to estimate the main model, Y = X0 + u, and

select a value of k giving "fairly low" variance and "fairly

low" bias (from Step #3).

In practice, of course, the above procedure can be criticized as being
rather vague and subjective. Nevertheless, it appears to be a reasonable al-

ternative to the present all-too-common practice of merely deleting important

variables, as discussed in the early sections of this paper. Other alterna-

tives should also be considered by economists, such as incorporating prior

information by means of the Theil-Goldberger mixed model [32].

SUMMARY AND CONCLUSIONS

Two empirical economic models were analyzed to measure the effect of omit-

ting relevant variables from these models. Effect of omitting variables from

an originally well-specified production function was to overestimate the co-

efficients of interest by a factor of about four. Similarly, deleting the

commonly omitted distance or travel time variable from an outdoor recreation

model resulted in overestimating the transfer cost coefficient by about three.

In both cases, small variances for the coefficients in the omitted-variables

model could lull the inexperienced researcher into a false sense of security,

if he were not properly aware of the dangerous consequences of omitted-variable

bias.
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Relevant variables have usually been omitted from economic models because

of multicollinearity problems encountered with the complete models. One fairly

recent alternative to the deletion of relevant variables is ridge regression

[15, 16, 26], developed by engineering and physical science researchers. The

second part of this paper explores the potential of ridge regression for esti-

mating economic models.

Although always effective for reducing high variances caused by multicol-

linearity, a few experiments with simple two-explanatory-variable models showed

that ridge regression estimates were sometimes very good and, at other times,

rather poor and misleading. Poor results were caused by large biases in the

ridge estimates. Examination of an expression for the bias showed that for

high positive intercorrelation in the two-explanatory-variable model, low bias

results if the true coefficients are of the same sign and of about equal magni-

tude.

The preceding result was extended to the general case of p explanatory

variables by means of a mathematical theorem. In essence, this theorem states
.ththat the expected bias for the ridge estimate of the coefficient of the y--

variable in the model, Y = Xa + u, is the following:

^*	
j k 

c	 ^*
2

E(a3) - a -	
, 

[b 1
	 j
+ b a

2 
+ ••• + 

t3,3
-1j-1 - 1.0 .

	

j1	 a

+ bj,j+1 aj+1 + ••• + b. a 1.
JP P

In the above theorem, b denotes the ridge estimate of the coefficientji
th

for the I-- variable, where X has been regressed on the p-1 remaining explana-
*	 3

tory variables; A = (X'X + kI); and c is a cofactor of A . From the theo-
ii ^*

rem, one can deduce that if the sum of thevalues sum to around 1.0, thenbji	
.th

the bias and mean square error for the ridge estimate of the J.-- coefficient

will be relatively small if the true R values all have the same sign. Thus, some

economic models, such as production functions, may be very well suited for esti-

mation by means of ridge regression. On the other hand, ridge estimation of some

other economic models, such as certain demand functions, could give poor results.
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Further experimentation with various decision rules for selecting a par-

ticular k value would likely be of value for the empirical estimation of eco-

nomic models by ridge regression.
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