Cooperation, Externalities, and Spatial Property Rights: Implications for Small Scale Fisheries Management

Gabriel Sampson, James Sanchirico, & James Wilen
University of California, Davis

May 21, 2015
Top-down, market based management difficult
Territorial use rights fisheries (TURFs)
 Effective alternative (Hilborn, et al., 2005)
 More than 40 countries (Auriemma, et al., 2014)
TURF challenges
 Resource mobility → spatial externalities
 Internal organization (i.e. communal management)
 • Most TURFs communal (Afflerbach, et al., 2014)
Introduction and motivation

- **Standard TURF story**
 - No interactions within TURFs
 - Design ‘large’ TURFs or target immobile species

- **This paper**
 - Spatial scale (size of the TURF)
 - Species dispersal
 - Fisher interactions within and across TURFs

- Message: *standard TURF conclusions do not hold with internal interactions*
Biological model

- Spatially explicit model with 2 patches
- Implicit larval and adult life stages
 - Common pool larval production
 - Density dependent larval settlement
 - Adult migration based on relative densities
- 4 dispersal cases

<table>
<thead>
<tr>
<th>Adult dispersal</th>
<th>Larval dispersal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>On</td>
</tr>
<tr>
<td>High</td>
<td>Off</td>
</tr>
</tbody>
</table>

- Low adult dispersal
- Source-sink
- High adult dispersal
- No larval dispersal
Multi-person game over the amount of fishing effort to invest within a patch

Two stage game theoretic model

- Stage 1: fishers agree on cooperative effort level within each patch; jointly maximizes profits to all fishers
- Stage 2: each fisher chooses individual effort level, e.g. ‘cooperate’ or ‘defect’
Result 1 A

Standard TURF story: TURFs most effective with immobile species.

Finding: Profits with common pool larval dispersal and cooperation within each patch greater than with immobile species.
Result 1 A: internal cooperation

Profits with larval dispersal and internal cooperation greater than with immobile species

Per Capita Profits Relative to Spatial Independence

- Low adult dispersal
- High adult dispersal
- No larval dispersal
- Source-sink

Spatial scale where both patches more profitable

Patch 1 Size

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0% 50% 100% 150% 200% 250%
Result 1 B

Standard TURF story: TURFs most effective with immobile species.

Finding: when every fisher defects, profits under species dispersal always **less** than immobile case.
Result 1 B: internal non-cooperation

Without cooperation, profits always lower than immobile case.
Result 2

Standard TURF story: design TURFs to ‘internalize’ species dispersal

Finding: challenges to internal cooperation highest when adult mobility is ‘low’
Result 2: incentives to defect

Challenges to internal cooperation highest when adult mobility is ‘low’

G.S. Sampson
Spatial Property Rights and Small Scale Fisheries
Result 3

Standard TURF story: sole ownership

Finding: when internal cooperation fails, significant local costs and neighboring costs (spatial externality)
Result 3: costs of a defection

With low adult dispersal, cost of a defection largely borne locally

With high adult dispersal, cost of a defection shifts to neighbor

With low adult dispersal, cost of a defection largely borne locally.

With high adult dispersal, cost of a defection shifts to neighbor.

Graph:

- **Low adult dispersal:**
 - Relative losses greater *within* TURF
 - Graph showing relative losses as a function of patch size, with a curve indicating higher relative losses within TURF.

- **High adult dispersal:**
 - Relative losses greater *outside* TURF
 - Graph showing relative losses as a function of patch size, with a curve indicating higher relative losses outside TURF.

G.S. Sampson

Spatial Property Rights and Small Scale Fisheries
Fishery outcomes depend critically on scale and biological connectivities.

Likelihood of internal cooperation depends on dispersal:
- Inform enforcement costs to maintain durable cooperation.

Distribution of costs and benefits in TURF networks can be complex.
Informing design

- Are there conditions we can identify ex ante that correlate with successful communal management?
- What costs are necessary to maintain durable cooperative arrangements in TURFs?

gsampson@ucdavis.edu
Biological model

Patch 1 larval settlement: \(\left(1 - \frac{x_1}{m}\right) \)

Larval pool production:
- \(((1 - \alpha_1)x_1 + (1 - \alpha_2)x_2) \)
- \(((1 - \alpha_1)x_1 + (1 - \alpha_2)x_2) \)

Patch 2 larval settlement: \(\left(1 - \frac{x_2}{1-m}\right) \)

\[b \left(\frac{x_2}{1-m} - \frac{x_1}{m} \right) \quad \text{Adult dispersal} \quad b \left(\frac{x_1}{m} - \frac{x_2}{1-m} \right) \]

Patch 1 size = \(m \)

Patch 2 size = \(1-m \)
References

